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Temporal Network Prediction and Interpretation

Li Zou"™, Xiu-Xiu Zhan", Jie Sun", Alan Hanjalic

Abstract—Temporal networks refer to networks like physical
contact networks whose topology changes over time. Predicting
future temporal network is crucial e.g., to forecast the epidemics.
Existing prediction methods are either relatively accurate but black-
box, or white-box but less accurate. The lack of interpretable and
accurate prediction methods motivates us to explore what intrinsic
properties/mechanisms facilitate the prediction of temporal
networks. We use interpretable learning algorithms, Lasso
Regression and Random Forest, to predict, based on the current
activities (i.e., connected or not) of all links, the activity of each link at
the next time step. From the coefficients learned from each
algorithm, we construct the prediction backbone network that
presents the influence of all links in determining each link’s future
activity. Analysis of the backbone, its relation to the link activity time
series and to the time aggregated network reflects which properties
of temporal networks are captured by the learning algorithms. Via
six real-world contact networks, we find that the next step activity of
a particular link is mainly influenced by (a) its current activity and
(b) links strongly correlated in the time series to that particular link
and close in distance (in hops) in the aggregated network.

Index Terms—Temporal network, link prediction, prediction
backbone network.

1. INTRODUCTION

EAL-world systems can be represented as complex net-

works, where nodes denote the components and links
denote relations or interaction between these components. In
many cases, however, the interactions are not continuously
active. For example, individuals connect via email, text mes-
sage, phone call or physical contact at specific time stamps
instead of constantly. Temporal networks [1]-[3] could repre-
sent these systems more realistically with time-varying net-
work topology. A temporal network can be regarded as a
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static network where each link is further associated with a
time series specifying whether an interaction (contact) occurs
or not at each time step. Temporal networks display non-trivial
properties, which may have profound effect on the dynamic
processes deployed on them. For example, the inter-event (con-
tact, activation) time between a node pair has been found to fol-
low a heavy-tail or power-law distribution in many temporal
networks [4]-[6]. It has been shown that temporal network
properties such as community structure, the degree distribution
in the aggregated network and inter-event time influence the
diffusion processes on the temporal network [7]-[16].

Temporal network prediction is a task of predicting temporal
interactions/contacts at a future time step based on the temporal
network topology observed in the past. Predicting the temporal
network such as a physical contact network in the future is essen-
tial to forecast performance of a process upon the network like
the prevalence of epidemic spreading. The temporal network
prediction problem is also equivalent to problems in recom-
mender systems, e.g., predicting which user will purchase which
product, which individuals will become acquaintance [17]-[19].

Existing prediction methods are either relatively accurate but
black-box, or white-box but less accurate, although progress has
also been made recently in evaluating the predictability of a tem-
poral network [20]. Markovian Methods and machine learning
algorithms have been developed to predict temporal network in
short term, i.e., at the next time step based on the network
observed so far within a given time window. Markovian mod-
els [21] can be developed by considering the time series or activ-
ity of each link and predict a link’s future activity based on its
previous activities. Markovian models have also been built by
regarding the temporal network or the link activated at each time
step as the state [22], [23]. Deep learning methods have been fur-
ther developed to improve the temporal link prediction. Exam-
ples include temporal network embedding [24]-[26], restricted
Boltzmann machine (RBM) based methods [27], [28] and Graph
neural networks [29]-[32]. These methods, however, do not
allow for insightful interpretation regarding which inherent
property or mechanism of the temporal networks could these
methods capture when predicting temporal networks.

In this work, we address the problem of temporal network
prediction, and its interpretation with respect to what underly-
ing properties of temporal networks a prediction algorithm pos-
sibly captures or utilizes. We confine ourselves to the problem
of predicting the activity of each link at a given time step based
on the activities of all the links at the previous step. A statistical
learning algorithm, i.e., Lasso Regression and a basic machine
learning algorithm, i.e., Random Forest have been used for net-
work prediction because of their interpretability. We further
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TABLE
THE NUMBER OF NODES (N = |V|), THE NUMBER OF NODE PAIRS THAT
HAVE CONTACT(S) (M), THE LENGTH OF THE OBSERVATION TIME WINDOW
(T'), TIME RESOLUTION (8§ SEC), THE AVERAGE NUMBER OF CONTACTS
WITHIN THE OBSERVATION TIME WINDOW PER LINK (77) AND THE TYPE
OF CONTACTS IN EACH EMPIRICAL NETWORK

Network N M T 0 n Type
Hypertext 2009 113 2196 5246 20 9.5 Human contact
(conference)
Highschool 312 2242 899 20 12.8  Human contact
(high school)
Call 75 270 8597 1 34 Human contact
(phone call)
Sms 110 210 60932 1 291 Human contact
(message)
Baboons 26 303 10072 5 1401  Animal contact
(Baboons)
Ant 89 649 993 0.5 2.8 Animal contact
(ants)

construct the prediction backbone network using the coeffi-
cients learned from the algorithms. The weighted backbone
network suggests the influence of every link in determining a
given’s activity. Characterizing the backbone network in rela-
tion to the time series of all the links and the aggregated net-
work unveils other patterns underlying the temporal networks
that possibly facilitate the prediction. We find that a link’s cur-
rent state is largely determined by its own activity but also
influenced by the activities of other links, at the previous time
step. Links tend to influence each other more if they have a
shorter and/or more shortest paths in the aggregated network
and are more strongly correlated in their time series.

These findings, when combined with modern deep learning
techniques can potentially lead to interpretable yet accurate
prediction models. They may also inspire the development of
temporal network models and strategies to mitigate epidemic
spreading on physical contact networks.

II. TEMPORAL NETWORK REPRESENTATION

A temporal network can be represented as a sequence of
network snapshots G = {G1, Gy, ...,Gr}, where T is dura-
tion of the observation window, G; = (V; E}) is the snapshot
at time step ¢t with V' and E} being the set of nodes and con-
tacts, respectively. If node j and k have a contact at time step
t, (j,k) € E;. Here, we assume all snapshots share the same
set of nodes, i.e., V. The links in the aggregated network G,
are defined as F = UtT:lEt. That is, a pair of nodes is con-
nected with a link in the aggregated network if at least one
contact occurs between them in the temporal network. Hence,
the link set E in the aggregated network contains all the node
pairs that have contact(s) in the temporal network and the total
number of links is M = |E|. We give each link in the aggre-
gated network an index ¢, where ¢ € [1, M]. The temporal con-
nection or activity of link ¢ over time could then be
represented by a T-dimension vector x; whose element is
x;(t), where t € [1,T], z;(t) = 1 when node pair i has a con-
tact at time ¢ and ;(t) = 0 if no contact occurs at ¢. The activ-
ity of all links can be captured by a M x T dimensional
matrix X with its element X (i,¢) = x;(¢) where ¢ € [1, T] and
i€l[l, M].
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Fig. 1. The probability distribution Pr[A = k] of the inter-event time A in
number of time steps in log-log scale for (a) Baboons, (b) Hypertext 2009,
(c) Call, (d) Highschool, (e) Sms and (f) Ant.

III. EMPIRICAL DATA SETS

Most real-world temporal network data sets available are
contact networks. Without losing the generality, we choose six
empirical networks that range from physical and virtual human
contact networks to animal contact networks: Hypertext
2009 [33], [34], Highschool [35], Call [36], Sms [36],
Baboons [37], and Ant [38]. Basic description is given in Sec-
tion 1 in Supplementary and properties of these data sets are
given in Table I. Note that the time steps at which there is no
contact in the whole network have been deleted. Basic descrip-
tion of how each temporal network is measured and constructed
explains to some extent the difference of these networks in, for
example, the average number of contacts per link.

We report the distribution of inter-event(contact) time in
Fig. 1, i.e., the interval between two consecutive contacts
between a node pair. As it is often the case for human dynam-
ics, the distributions of inter-contact time are heterogeneous.
All our six systems show a heavy-tail distribution. It means
the networks we consider exhibit burstiness which corre-
sponds to frequent activities over a short period of time fol-
lowed by a long period of inactivity [39]-[41].

IV. TEMPORAL NETWORK PREDICTION METHODS

In this section, we propose our methodology which allows
not only temporal network prediction but also the deduction
of the relationship between links in the aggregated network
G, in influencing each other’s activity, i.e., the dynamic of
link activities. Specifically, we aim to understand to what
extend a link’s activity (active/having contact or not) at a
given time step is determined by the other links’ and its own
activity at the previous time step.

Firstly, we introduce a statistical learning algorithm, i.e.,
Lasso Regression and a basic machine learning algorithm, i.e.,
Random Forest, to predict temporal networks. In view of the
heavy-tail distribution of inter-event time, thus the possibility
that the activity of a link remains the same within a short
period, we introduce two baseline models that assume the
activity of a link is determined only by its own activity at the
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previous time step. These four models predict the activity of a
link at a given time based on its and/or other links’ activities
at the previous time step.

Afterwards, we illustrate how to deduce the influence
between links in activities via applying these proposed models
to real-world temporal network data. This requires the calibra-
tion of the coefficients of the models and entails the the setup
of training and test data sets.

A. Lasso Regression and Random Forest Model

Our method applies to a generic temporal network with NV
nodes and M links (node pairs that have at least one contact)
whose activities are recorded within a time window [1, T]. The
activities of the M links are recorded by a M * T" matrix X. The
state or activity of link ¢ at time ¢+ 1 is z;(t+1)
(t € [p,p + L — 1]), which equals 1 when link ¢ is active, and
equals O otherwise. We assume that the activity of link ¢ at time
t + 1 is a function of the activities of all the links at time ¢, i.e.,

.’L‘i(t-‘rl) = fi(l‘l(t),l‘g(t),...,.rM<t)). (nH

The mapping function f; is unknown and link-specific. It can be
learned from the activities of all links, i.e., [2;(p),z;(p + 1),
-+ xi(p+ L)] where ¢ € [1, M] within a time window [p, p +
L], and denoted as f? £ We construct in total L training data
samples for each link ¢ based on the temporal network observed
within [p, p + L|: we use link i’s state at each time step ¢ + 1 €
[p+ 1,p+ L] as target and the corresponding features are the
states of all links at time step t. The training data samples for
node pair 7 is expressed as a set D; (p, L):

Di(p, L) ={zi(t+1);21(t), 22(t), ..., e (O} ()

A learning algorithm assumes a given function f? £ whose
coefficients can be learned from a training set D;(p, L). The
learned function f7 £ tells us to what extent z;(t + 1) can be
estimated by the activity of each link at ¢ respectively.

We explore a statistical learning (Lasso Regression) and a
machine learning algorithm (Random Forest) to learn f? L

Lasso Regression assumes f; to be a linear function
[42], [43]

M

zit+1) =Y i(t)B; +ci- (3)

J=1

The objective is

P M M
rr;;n{ @i+ =Y a0y — ) +a Y IﬂUI}- “)
1 = =1

=

where L is the number of training samples, M is the number of
features as well as the number of links, ¢; is the constant coeffi-
cientand 8; = {B;1, B, - - - » B;as | are the regression coefficients
of all the features for link 7. A large coefficient §;; indicates that
feature x;(t) influences or determines significantly the target
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We use L1 regularization, which adds a penalty to the sum
of the magnitude of coefficients Zi‘il |B;;|. The parameter o
controls the penalty strength. The regularization forces some
of the coefficients to be zero and thus lead to models with few
non-zero coefficients (relevant features). If « is zero, Lasso
Regression reduces to the classical linear regression algo-
rithm. Given a training data set D;(p, L) = {x;(t + 1); z1(¢),
xo(t), ..., xp(t) fipL*l, the coefficients B;(p, L) of the Lasso
Regression model for each node 7 can be learned. The optimal
« that achieves the best prediction is chosen from 50 logarith-
mically spaced points within [10~%, 10].

Random Forest is a non-linear ensemble learning algorithm
for tasks such as classification [44], [45]. A large number of
decision trees can be constructed from a training set. A decision
tree is a flowchart-like structure in which each internal node
represents a “test” on a feature, each branch represents the out-
come of the test, and each leaf node represents a class label.
The paths from root to leaf represent classification rules. Each
tree is grown based on each training set D;(p, L) = {x;(t +
1); 4 (t),:ng(t),...,xM(t)}f;L*l as follows: 1) choose ran-
domly a set of m (m < < M) features out of the M features
as the nodes in the tree 2) collect from each training sample the
m features and the corresponding target 3) construct the deci-
sion tree based on the data collected from 2). The optimal m
that leads to the highest prediction precision is chosen.

Random Forest could rank the importance of the features in
estimating the target in a nonlinear way. Considering training
set Di(p, L) = {wi(t+1);21(t), 22(t), ...,z (t) Y10 ", the
value of the jth feature in the first sample is z;(p), the value in
the second sample is z;(p + 1). The values for the jth feature
are ordered as {z;(p),zj(p+1),...,zj(p+ L — 1)} from the
first sample to the (p + L)th sample. To measure the impor-
tance of the jth feature, its values {z;(p),z;(p+1),
...,zj(p+ L — 1)} are randomized/permuted. Random Forest
model is then trained by the original training set and the per-
muted training set respectively. The importance of a feature is
reflected by the difference between the prediction errors of the
model learned from the original and permuted training set
respectively. The coefficient B;; is obtained as the normalized
difference in prediction error. A larger difference in prediction
error means a larger contribution of the feature to the target pre-
diction. We use TreeBagger implementation in Matlab with
1000 trees and use default values for other parameters.

B. Training and Test Data

The temporal network observed in each sub-window [p, p +
L] where p € [1,T — L — 1] is considered as a training set and
the learned model function will be tested in predicting the
temporal network observed at p + L + 1, using the temporal
network observed at p + L. For each learning algorithm, the
coefficients {B;(p, L)}, i =1,2,..., M, learned from each
training set D;(p, L) will be used to predict the activity of the
links in the test set Q;(p,L) = {xi(p+ L+ 1);z:1(p+
L),zo(p+L),...,zpm(p+ L)}. In total, T — L — 1 training
sets, together with their corresponding test sets, will be consid-
ered for each temporal network.
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Fig. 2. The prediction quality AUC for Lasso Regression, Random Forest
and Baseline model 1 and 2 respectively in six temporal networks at different
training set lengths L.

C. Baseline Models

We introduce two baseline models that predict a link’s
future activity based on its current activity. The probability
that a link has the same state at two consecutive time steps is
high, above 0.93 in each network. Hence, the baseline model
1 predicts the activity of a link at the next time step equal to
the link’s own activity at the current step, i.e., ;(t + 1) =
x;(t). If link ¢ is active (inactive) at time step ¢ — 1, then its
state at ¢ is predicted to active (inactive) in baseline model 1.

Baseline model 2 is the corresponding Lasso Regression,
x;(t+ 1) = B;;x;(t) + ¢; where a link’s current activity is a
linear function its own previous activity. The same training
and test sets have been used as introduced in section IV-A.

V. MODEL EVALUATION

For a given length L of the training sets, we evaluate each
model via its average quality in predicting links’ activities in a
test set QQ;(p, L) using the coefficients {B;(p, L)} learned from
the corresponding training set D;(p, L), where : = 1,2, ..., M.
The average is over all test sets, i.e.,p € [1,7 — L — 1].

The prediction quality in a test set is measured via the area
under the ROC' curve (AUC) [46], [47]. AUC provides an
aggregate measure of performance across all possible classifi-
cation thresholds. It ranges in value from 0 to 1. A high AUC
implies high prediction quality.

Different lengths L € [1,T — 50] of the training set are con-
sidered when evaluating the performance of each model. The
maximum L,,,,; =T — 50 ensures a minimum of 50 training/
test sets for each temporal network.

Fig. 2 shows that the training set length L indeed affects the
prediction the quality AUC' in all the networks. A relatively
good performance tends to be obtained by a medium training
length L, e.g., L ~ 100. A small length, e.g., L ~ 10 is insuffi-
cient for a model to learn the coefficients that to have reason-
able prediction quality. A model with a large length may not
capture the change of network dynamics over time, if there is.
When the length is extremely large, e.g., L — T — 50, the
number of training set 7" — (L + 1) is small and the corre-
sponding test sets lie mainly at the end of the observation

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 3, MAY/JUNE 2022

window [0, T']. Such boundary effect leads to low robustness
of the model against abrupt change in data at the end of the
observation window. For example, Supplementary Fig. 2
shows an abrupt change in the total number of contacts per
time step at the end of the time window in network Call. Cor-
respondingly, the prediction quality AUC changes sharply
when L is around 7" — 50.

Almost all the AUC' values are larger than 0.5, which corre-
sponds to the performance of random guessing. This suggests
that all the models including the simple baseline models per-
form better than random guessing.

Lasso Regression performs the best in Hypertext 2009, Call,
Sms and Ant networks. And for Baboons and Highschool net-
works, Lasso regression and Random Forest perform compa-
rably, better than the baseline models. Random Forest does
not perform evidently better than the baseline model 2 in Call,
Sms and Ant, which have a lower number of contacts per step
on average than the other networks (see Supplementary
Fig. 2). In general, the linear relationship of Lasso Regression
models the link activity dynamic in temporal networks the
best. In contrast, the baseline models that predict a link activ-
ity based on the link’s own activity in the previous time step,
gain a smaller AUC. Hence, the activities of other links con-
tribute to the prediction of a given link’s activity. Both Lasso
Regression and Random Forest could achieve a reasonably
good prediction quality via the choice of the training length L.

The area under the precision recall curve AUPR [48] is also
considered to measure the prediction quality. It is considered as
a more suitable measure for imbalanced classification prob-
lems. A larger AUPR suggests a better prediction quality. Sim-
ilar results are obtained when AUPR is used to measure the
link prediction quality for model evaluation (see Supplemen-
tary Fig. 1). The prediction quality is the lowest in network
Ant, which is possibly due to its lowest average number of con-
tacts per link observed within the observation time window.

VI. MODEL INTERPRETATION

The relatively good performance of the two models moti-
vates us to further explore which links’ activities influence a
given link’s activity more via the coefficients learned from the
two models. We firstly introduce how to construct the predic-
tion backbone network using the coefficients learned from a
model. The backbone is a directed weighted network where
nodes are the links in the aggregated network and weight B;;,
i, € [1, M] represents the influence of link j in the aggre-
gated network on link ¢ in predicting link 7’s activity. Further-
more, we unravel which links’ activities influence a given
link’s activity more via analyzing properties of the backbone
as well as its relation to the aggregated network and the time
series of the links.

A. Construction of the Prediction Backbone Network Using
Influence Coefficients

The coefficients of each algorithm can be derived as follows.

From a training set D;(p, L), where i = 1,2,..., M, we can
obtain the coefficients or coefficient matrix {8;;(p, L)}f\ §:1 for
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Fig. 3. The probability density function fB,,/(:r) of the weight B;; in the
backbone network, when ¢ = j and 7 # j respectively.

each learning algorithm, either Lasso Regression or Random
Forest. Each element B;;(p, L) indicates the contribution or
influence of the activity of link j at a time ¢ — 1 in determining
the activity of link ¢ at ¢, where ¢t € [p+ 1, L + p).

For each network, we consider from now on the training set
length L at which the Lasso Regression obtains the maximal
AUC value. Furthermore, we randomly choose 50 out of 7" —
(L + 1) training sets. We consider the coefficient matrices
obtained from these 50 training sets via Lasso Regression and
Random Forest, respectively, as samples to understand the
influence between links.

We find a positive correlation between the coefficients
B;;(p, L) obtained from the two algorithms respectively. Their
Pearson correlation coefficients is higher than 0.5 in all net-
works and is higher than 0.8 in network Baboons, Hyper-
text2009, Call and Sms. It indicates that the coefficients, i.e.,
the influence between links, obtained by these two learning
algorithms are consistent with each other. Hence, we will
focus on the coefficients and the corresponding prediction
backbone of Lasso Regression since now on, which performs
the best in link prediction.

The prediction backbone network can be constructed as fol-
lows. The nodes of the backbone correspond to the M links in
the aggregated network. The backbone is a directed and
weighted complete network with self-loops. The weight B;; =
E[B;(p, L)] where i,j € [1, M] is the average of the coeffi-
cient over the 50 samples, representing the influence of link j
in the aggregated network on link ¢ in determining link ¢’s
activity. The coefficient B;;(p, L) where i, j € [1, M] derived
from a sample, possibly positive or negative, represents to
what extent the contact of link j leads to the contact of link ¢
at the next step. Among the 50 samples, the coefficients of any
two samples are positively correlated on average. The average
Pearson correlation of the coefficients from two random sam-
ples is 0.77, 0.72, 0.45, 0.74, 0.88 and 0.07 for Baboons,
Hypertext 2009, Call, Highschool, Sms, and Ant respectively.
Hence, the weight B;; = E[B;;(p, L)] in the backbone sug-
gests the average influence of link j on link ¢ in activity.

We evaluate to what extent a link’s activity is influenced by
the activity of its own and of the other links. The probability
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Fig. 4. Visualization of a sub-network of the Sms backbone network. The
sub-network is composed of only the none self-loop links in the backbone net-
work that have the highest weights and their corresponding end nodes, such
that average degree of the sub-networks is 2. When a node pair is connected
by one (two) unidirectional links, the connection is represented by a link in
red (two links in green). Node size and node color are proportional to the
node’s in-strength and out-strength in the sub-graph respectively. A dark blue
(white) color of a node represents a large (small) out-strength.

density function’ f,;i] (z) where i = j of the influence of a link
on its own activity and fp;(z) where i # j of the influence of
a different link are given in Fig. 3. The influence of the link
itself B;—; tends to be larger than the influence of another link
Bi;; on link ¢’s activity in most networks except for Hypertext
2009 and Ant, where the self-influence B;_; can be negative.
This suggests that Lasso’s out-performance than the baseline
model is because Lasso considers other links’ influence on a
given link’s activity and Lasso considers a link’s its own influ-
ence differently from the baseline model.

To have a better understanding of our backbone networks
which are weighted directed complete graphs with self-loops,
we visualize the sub-network of a backbone network. The
sub-network includes only the none self-loop links in the
backbone network that have the highest weights/influence and
the corresponding end nodes of these links, such that the aver-
age degree of the sub-network is 2. We take the Sms backbone
as an example, since it has the smallest number of nodes
among all data sets, and visualize the sub-network of its back-
bone in Fig. 4. Since the backbone is a directed network, a
node pair in the sub-network may have none, one or two unidi-
rectional links. Fig. 4 shows that few node pair is connected by
two unidirectional links or a bidirectional link, which is

! The probability density function fB”(.r) of a continuous variable B;; is

Prlz < Bjj<z+Ax]

defined as fp; () = limag—o i , the probability that the variable
is within each range or bin (z, z + Az] normalized by the size of the bin Az.
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TABLE I
THE PEARSON CORRELATION COEFFICIENT p(S;;,, S,ut) BETWEEN
IN-STRENGTH AND OUT-STRENGTH OF NODE, AND p(B,;]-, B j,;) BETWEEN
THE WEIGHT B(i, j) AND B(j, %) OF THE TWO RECIPROCAL LINKS
OF A NODE PAIR IN THE BACKBONE NETWORK

Network p(Sin, Sout)  p(Bij, Bji)
Baboons 0.30 0.27
Hypertext 2009 -0.02 -0.01
Call 0.01 0.01
Highschool -0.22 0.00
Sms -0.40 0.08
Ant 0.19 -0.01

represented by two green links, whereas most node pairs are
connected by an unidirectional link, which is colored in red.
This suggests that a high weight B;; of link from ¢ to j in the
backbone does not imply a high weight of Bj;. This observa-
tion is in line with the weak correction p(B;;, Bj;) between
the weight of the two reciprocal links of a node pair in the
original un-sampled backbone network, as shown in in
Table II. Furthermore, node size and node color in Fig. 4 are
proportional to the node’s in-strength and out-strength in the
sub-graph respectively. A dark blue (white) color of a node
represents a large (small) out-strength. We find that a node
with a large in-strength in the sub-network does not necessar-
ily have a large out-strength. This finding via visualization is
consistent with the weak Pearson correlation (S, Sout)
between the in-strength and out-strength of a node in the origi-
nal un-sampled backbone network, as given in Table II.

B. Backbone Network in Relation to Time Series

To understand which kind of links influence a given link 7’s
activity more, we explore the relation between the weight B;;
in the backbone and the correlation of the time series corre-
sponding to link ¢ and 3.

We first explore whether the relatively high coefficients B;;
can be explained by the auto-correlation of a link ¢’s time series
{xi(t)},—1 5 7. Auto-correlation describes the degree of simi-
larity between a given time series and its lagged version. It meas-
ures the correlation between current value of a time series and its
past value. Our models use links’ activities at the previous time
step to predict a link’s activity at current time step. Hence, we
compute, for each link ¢, the Pearson correlation coefficient
Ry, (t,t — 1) between {zi(t)},_y o py and {wi(t)}_o5 1
as its auto-correlation coefficient. The distribution of the auto-
correlation coefficient of a link in each empirical temporal net-
work is shown in Fig. 5. In networks, such as Baboons (Hyper-
text 2009 and Ant) where the average auto-correlation
coefficient is high (low), the self-influence B,—; tends (not) to be
evidently larger than the influence of another link B;; on the
given link ¢’s activity. Moreover, we find that the ranking of
these networks in the average number of contacts within the
observation time window per link (see Table I) is the same as
their ranking in the average auto-correlation (see Fig. 5). Hence,
a network with a large average number of contacts per link tends
to have a high auto-correlation. Correspondingly, its self-influ-
ence B;_; in the backbone tends to be evidently larger than the
influence of another link B;; (see Fig. 3).
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Similarly, we study further the relation between the coeffi-
cient B;; and the Pearson correlation coefficient RIV,I], (t,t —
1) between {z;(t)}_p5 . r and {z;(t)},_y 5 71> Where i €
[1,M] and i # j. This aims to understand whether the influ-
ence B;; of another link j on ¢ can be explained by the cross
correlation R, (t,t —1) between the two links™ activity
series. The cross correlation is non-reciprocal R,El.z]. (t,t—1) /
= Ry (8t — 1). The Pearson correlation coefficients
between Rzﬂj and szzi are 0.99, 0.29, 0.25, 0.42, 0.68 and
0.05 for Baboons, Hypertext 2009, Call, Highschool, Sms and
Ant respectively. Specifically, we compute the Pearson corre-
lation coefficient at each node ¢ between the influence B;; and
cross correlation R, (t,t — 1) where i € [1, M] and i # j.
The probability density function of this Pearson correlation
coefficient at a random node in Fig. 6 shows that the influence
B;; tends to be positively correlated with thus can be partly
explained by the cross correlation coefficient R, (f,t —1).
The correlation R,,;;(t,t — 1) between the activities of link i
and j allows our models to predict the activity of link ¢ at ¢
using the activity of link j at ¢ — 1. The Pearson coefficient
BC between B;; and cross-correlation RJ,MJ. is the strongest in
Sms. The skewed probability density function fRziIJ (z) Of the

cross-correlation in Sms (see Supplementary Figure 3)
explains the skewed distribution fp,;(x) where i # j of the
influence of another link in the backbone (see Fig. 3).

C. The Backbone Network in Relation to the Aggregated
Network

The activities of other links have been shown to contribute
to a better prediction of a link’s activity. We would like to
explore which kind of other links have more influence B;; on
a link. Would links that are close in the aggregated network
tend to have a high influence on each other in activity predic-
tion? Firstly, we define the topological distance or hopcount
between two links in the aggregated network. The topological
distance, also called hopcount, between two nodes on a static
network is the number of links along the shortest path between
the two nodes. The distance H;; between two links 7 and j is
defined on the aggregated network. The distance H;; between
the same link 7 is 0. The distance H;; between two different
links 7 and j is defined as the minimal hopcount between one
end node of link 7 and one end node of link j plus one. Hence,
two links that share one end node in common have a hopcount
1. The line graph, e.g, G of an aggregated network (¢, can
be constructed by considering each link in G, as a node, and
two nodes are connected in G, if the two corresponding links
in GG, share a common end node. The distance between two
links in G, equals the hopcount between their corresponding
nodes in the line graph G .

Fig. 7 shows the distribution Pr[H = k] of link distance for
all the six networks. The distance is in general small, except
that few nodes are isolated from the largest connected compo-
nent, leading to an infinite distance to the other nodes. Net-
works that are measured within a small (large) spatial space
like Ant, Baboons, Hypertext (Call, Sms, Highschool) tend to
have a small (large) average hopcount and a large (small) link
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Fig. 6. The probability density distribution of Pearson coefficient BC
between B;; and cross-correlation coefficient RWJ;"

density in the aggregated network, which is the number of
links M normalized by N(N — 1)/2. Of course, the average
hopcount of a network could be also influenced by the number
N of nodes.

Ref. [49] has shown that nodes that are closer to a target
node have more influence on the target node’s state. So here
we further explore whether links that are closer in topological
distance tend to have more influence on each other’s activity.
Fig. 8 illustrates influence between two links E[B;;|H;; = k]
given their topological distance. Still, we focus on Lasso
Regression. The influence E[B;;|H;; = k] in general decreases
with k. This is also supported by the negative Pearson correla-
tion between the B;; and the distance H;; of two links for
Baboons (-0.32), Hypertext 2009 (-0.13), Call (-0.014), High-
school (-0.068), Sms (-0.035) and Ant (-0.027). In network
call and Ant, the probability that two links have a distance 4
or larger is small. The average influence E[B;;|H,; = k] when
k < 4 is thus derived from few link pairs and can be noisy.
Since B;; can be negative, F[B;;|H;; = k| represents to what
extent on average the contact of link j could lead to the contact

Fig. 7. The probability distribution Pr[H = k] of the topological distance H
of two random links in the aggregated network. All six real-world networks
are considered.

of link ¢ given that ¢ and j have a distance k. The average
strength of influence E[|B;;||H;; = k] also tends to decrease
with k, as shown in Supplementary Fig. 4.

It is interesting to notice that the average weight E[B;;
|H;; = inf] is none zero when the distance is infinity in net-
work Call and Sms. Normally, it is assumed that links can
influence each other at least when they are connected. The
none zero coefficient E[B;;|H;; = inf] may suggest that the
two links are possibly connected in the aggregated network,
but not observable in the current aggregated network or the
temporal network measured within the short time window
[1,T].

Fig. 8 shows that E[B;;|H;; = k| is relatively large when
k =1,2. We consider further the link pairs that have a dis-
tance H;; =1 and H;; = 2 respectively. Among those link
pairs, we explore whether link pairs that are well connected
tend to have a high influence. How well link ¢ and j are con-
nected can be measured by the number of common neighbors
n;; of their corresponding nodes in the line graph G,. Fig. 9
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Fig. 8. The average weight in Lasso Regression F[B;;|H;; = k| given the
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2,n;; = k] in Lasso Regression coefficient given the distance H;; and number
of common neighbors n;; between link 7 and j.

demonstrates the influence between two links E[B;;|H;; =
1,n;; = k] and E[B;;|H;; = 2,n;; = k| respectively as a func-
tion k of the number of common neighbors. We find no clear
relation between E[B;j|H;; = 1,n,; = k] and k. The distance
H;; = 1 means that node 7 an j are connected by a link in the
line graph G’ . In this case, the number of common neighbors,
which equals the number of two-hop paths, paths that are lon-
ger than the shortest path is not correlated with the influence.
However, E[B;;|H;; = 2,n;; = k] does increase with k. Node
pairs that have more shortest paths, i.e., two hop paths tend to
have a higher influence. Similarly the average influence
strength E[|B;j||H;; = 2,n;; = k] also tends to increase with
k, as shown in Supplementary Fig. 5. Links that have a short
distance and are connected by many shortest paths tend to
influence each other strongly.

VII. LONG-TERM EFFECT

The Lasso regression assumes that a link’s current state is a
linear function of the activities of all the links at the previous
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TABLE III
THE PREDICTION QUALITY AUC FOR LASSO REGRESSION FOR
DIFFERENT INFLUENCE PERIOD p

Network p=1 p=2 p=3 p=4 p=5
Hypertext 2009  0.97 0.97 0.97 0.93 0.93
Highschool 0.93 0.94 0.93 0.93 0.93
Call 0.97 0.97 0.96 0.96 0.96
Sms 0.96 0.96 0.96 0.96 0.96
Baboons 0.96 0.96 0.96 0.96 0.96
Ant 0.76 0.77 0.76 0.76 0.76

step. In this section, we generalize this assumption as:

M
zi(t) =Y {z;(t—1)B}+x;(t—2)B+. ..
j=1
+;(t—p)B}; + i}

where a link’s current state is a linear function of the activities of
all the links in the previous p steps. The Lasso regression (see
(3)) that we have investigated in the previous sections corre-
sponds to the case when p = 1. The prediction quality AUC is
shown in Table III for different choices of p. In general, consid-
ering the activity of a longer influence period, i.e., p > 1 can
hardly improve the link prediction quality. The same is observed
when the prediction quality is evaluated via AUPR (see Supple-
mentary Table I). The current activity of a link is mainly influ-
enced by the activities of links at the previous time step.

The small memory length p that we have considered is insuf-
ficient to capture periodic or pseudo-periodic behavior, in view
the time resolution or duration of a time step, which is in the
order of seconds. This choice is limited by two factors: the
observation window of most real-world temporal networks is
short and the computational complexity of Lasso Regres-
sion [50] is high: O((Mp)® + (Mp)® L), where M and L are
number of nodes in the backbone and the length of training set,
respectively. We deem it as an important future work to explore
how underlying periodic behavior in the temporal network is
captured by a learning model and influences the link prediction.
Our finding with regard to which kind of links in the backbone
tend to have a high weight may shed light on the selection of
model features to reduce the computational complexity.

&)

VIII. CONCLUSION

In this work, we illustrate our method that enables interpret-
able temporal network prediction. Interpretable learning algo-
rithm Lasso Regression and Random Forest are employed to
predict the activity (connected or not) of each link at the next
time step based on the current activities of all links. The coef-
ficients learned from each algorithm are further used to con-
struct the prediction backbone network, presenting the
influence or contribution of all links in determining each link’s
activity. Via exploring the properties of the backbone network
and its relation to the activity time series of links and its rela-
tion to the aggregated network, we find the following in six
real-world physical and virtual contact networks. A link’s
next step activity is mainly influenced by the current activity
of the link itself and of other links that are better connected
with the link. Two links are better connected if they have
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shorter and/or more shortest paths in the aggregated network.
The influence between two links tend to be large if their corre-
sponding activity time series are strongly correlated. Hence,
the learning algorithm also captures the underlying network
properties and correlation in activity time series, which are
usually utilized by network property based prediction meth-
ods. Finally, both algorithms’ performance can be hardly
improved by considering the activities of more than one time
steps in the past. The physical contact networks considered
differ in the average number of contacts per link observed due
the nature of these networks and the methods they are mea-
sured or defined. A low average number of contacts per link,
e.g., in Ant, may suggest a low prediction quality, a low auto-
correlation of the time series in the network and a less evident
self-influence in the backbone.

These findings, when combined with modern deep learning
techniques, can potentially lead to interpretable and more
accurate prediction. Our findings may also shed lights on the
modeling of the long-term temporal network evolution, in
contrast to short-term network prediction. Such models are
crucial to forecast the long-term performance of e.g. epi-
demic/information spreading on the network. The linear
regression assumed by Lasso could be one elementary mecha-
nism to model temporal networks. The influence patterns that
we have discovered can be further used to adapt other dynamic
processes to model temporal networks. Our findings of the
backbone network and its association with other network
properties may also inspire the solution of network classifica-
tion and optimization problems. For example, the spread of
epidemic/information can be mitigated by blocking the tempo-
ral interactions of selected links [51], [52]. The influence of a
link on and by the other links could possibly help with the
selection of the links to block.

High-order models have been explored recently to account
for various types of high-order dependencies in data on com-
plex systems [53]. It has been found, for example, high-order
models of paths in temporal networks, could improve node
ranking [54], [55] and community detection [56]. Our Lasso
Regression and Random Forest Model are high-order in broad
sense: the state of a node pair depends on the states of many
node pairs in the past over a period. These models together
with the interpretations may shed light on the possible mecha-
nism by which the temporal network may emerge and patterns
in paths [53] may emerge.
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