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Abstract Eukaryotic DNA is tightly packed into a hierarchi-
cally ordered structure called chromatin in order to fit into the
micron-scaled nucleus. The basic unit of chromatin is the nu-
cleosome, which consists of a short piece of DNA wrapped
around a core of eight histone proteins. In addition to their role
in packaging DNA, nucleosomes impact the regulation of es-
sential nuclear processes such as replication, transcription, and
repair by controlling the accessibility of DNA. Thus, knowl-
edge of this fundamental DNA–protein complex is crucial for
understanding the mechanisms of gene control. While struc-
tural and biochemical studies over the past few decades have
provided key insights into both the molecular composition
and functional aspects of nucleosomes, these approaches nec-
essarily average over large populations and times. In contrast,
single-molecule methods are capable of revealing features of
subpopulations and dynamic changes in the structure or func-
tion of biomolecules, rendering them a powerful complemen-
tary tool for probing mechanistic aspects of DNA–protein
interactions. In this review, we highlight how these single-
molecule approaches have recently yielded new insights into
nucleosomal and subnucleosomal structures and dynamics.

Keywords Single-molecule techniques . (Sub)nucleosome
structure and dynamics . Histones . Nucleosome remodeling .

Post-translational modifications . Transcriptional barrier

Introduction

The genome of eukaryotic organisms ranges from millions to
hundreds of billions of base pairs for different species and can
be stretched accordingly to millimeters or meters (Kidwell
2002; Merhej and Raoult 2012; Zimmer 2007). These lengths
are several orders of magnitude larger than the cell nucleus,
with an average diameter of roughly 5 μm, and therefore the
genome must be tightly packed in order to fit into the nucleus.
To achieve an appropriate compaction level, eukaryotic organ-
isms organize their genome in hierarchical protein–DNA as-
semblies termed chromatin that inevitably influence DNA ac-
cessibility during key cellular processes. Hence, revealing the
details of chromatin structure is essential for understanding the
regulation of the genome. A major milestone was set about
forty years ago, when chromatin was first reported to comprise
a repeating unit of ∼200 bp of DNAwrapped around a core of
histone proteins (Kornberg 1974; Olins and Olins 1974;
Oudet et al. 1975). This basic component of chromatin,
termed the nucleosome, has been a central subject of research
ever since.

Bulk studies based on traditional biochemical approaches
from molecular and structural biology have provided invalu-
able insight into nucleosome structure and function (Kornberg
1977; Kornberg and Lorch 1999; Li et al. 2007; McGhee and
Felsenfeld 1980; Workman and Kingston 1998; Zentner and
Henikoff 2013). However, thesemethods only reflect collective
properties of samples due to ensemble and time-averaging.
Partial features, such as rare or transient events, and especially
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the intrinsic dynamics of usually heterogeneous biological sam-
ples cannot be resolved.

When many identical biomolecules are present in a solu-
tion, each one can occupy any one of a number of different
conformational states with similar energies. Assuming for
simplicity that each state corresponds to a distinct, visible
color, the whole solution will at any given time display a color
that reflects the average of all the individual molecules, which
will each occupy different states with their corresponding dis-
tinct colors. Likewise, the observation of a single molecule on
a long timescale, during which the molecule can convert be-
tween all states with the corresponding colors, will also yield
an average color. The heterogeneity arising from both static
differences between single biomolecules and individual dy-
namic changes in, for example, their structure, function or
chemical modification remains therefore hidden.

Details of molecular properties can be revealed by directly
studying single molecules over time. However, the insights
that can be obtained here strongly depend on the characteris-
tics of the experimental system in use and the spatial and
temporal resolution of the applied technique. During the ob-
servation within a certain time frame, the molecule might con-
vert between barely different states at such high speed that
intermediates would be averaged out and obscured. Hence,
since the 1990s the development of single-molecule studies
has not only included the interrogation of different biological
systems but also the continued improvement of their accuracy
and sensitivity (Dulin et al. 2013; Eigen and Rigler 1994; Hell
2009; Huang et al. 2009; Jares-Erijman and Jovin 2003; Joo
et al. 2008; Moerner 2007; Neuman and Nagy 2008; Tinoco
and Gonzalez 2011; Weiss 1999). Single-molecule techniques
have become a highly suitable tool for investigating DNA–
protein interactions at the molecular level (Duzdevich et al.
2014; Heller et al. 2014; Monico et al. 2013). In the context of
DNA compaction into chromatin, they have also yielded new,
complementary findings on the structure, function and espe-
cially dynamics of chromatin and nucleosomes (Buning and
van Noort 2010; Choy and Lee 2012; Killian et al. 2012;
Lavelle et al. 2011; Petesch and Lis 2012; Zlatanova and
Leuba 2003).

In this review, we will introduce the most commonly used
single-molecule techniques in nucleosome research and pres-
ent the recent insights they have provided into nucleosomal
and subnucleosomal structure, function and dynamics within
the last 3 years.

Single-molecule techniques in nucleosome research

Over the past two decades, time-resolved observation and
manipulation of single molecules have become very powerful
means to investigate biological systems. The major single-
molecule techniques enable the researchers to either directly

visualize or influence individual molecules to reveal molecu-
lar details of their structure, function and dynamics on the
nanometer scale. Substantial technical advances in optical mi-
croscopy and fluorescent probes have made fluorescence mi-
croscopy and fluorescence spectroscopy routine methods for
directly visualizing and observing single molecules over time
(Giepmans et al. 2006; Moerner and Fromm 2003). The ma-
nipulation of individual molecules using force spectroscopy
has become possible by the development of trapping methods
with different types of force transducers (Neuman et al. 2007).
Among these techniques, atomic force microscopy (AFM) is a
unique method that enables either the direct observation or the
manipulation of single molecules by imaging or trapping, re-
spectively (Butt et al. 2005; Hansma and Hoh 1994). Themost
commonly employed single-molecule techniques and their as-
sociated specific experimental approaches are described in the
following subsections.

Fluorescence microscopy and fluorescence spectroscopy

Fluorescence microscopy essentially relies on the detection of
light emitted at a specific wavelength by specific molecules
(fluorophores) that are fused to the biomolecule of interest
following their excitation at an initial, typically shorter, wave-
length. The type and precise characteristics of these
fluorophores will ultimately determine the efficiency and ap-
plicability of this technique to a specific study (Berlier et al.
2003; Shaner et al. 2005). Fluorescent samples can be excited
either in a large or a small area depending on the design of the
microscope. In wide-field microscopy, the sample is illumi-
nated by a nearly collimated light beam, resulting in the si-
multaneous excitation of numerous fluorophores at different
depths of focus and therefore in considerable background
noise (Funatsu et al. 1995; Schmidt et al. 1996). This out-of-
focus fluorescence is substantially decreased in total internal
reflection fluorescence microscopy (TIRFM), which restricts
the illumination depth to about 100 nm via a highly localized,
quickly decaying electromagnetic field (evanescent field) that
is generated at the sample surface (Axelrod 1981, 2001).
Confocal microscopy reduces the excitation volume and al-
most entirely eliminates out-of-focus light by using a focused
laser beam and a spatial pinhole positioned just before the
detector (Minsky 1988; Nie et al. 1994). These excitation
methods are used in combination with different fluorescence
spectroscopy techniques depending on the research question.

Förster or fluorescence resonance energy transfer (FRET)
is a well-established method to study the structural dynamics
of single molecules. It is based on the non-radiative energy
transfer between two fluorescent probes in very close proxim-
ity (Förster 1948; Ha et al. 1996). An excited fluorophore
(donor) can non-radiatively transfer its energy to another, suf-
ficiently close fluorophore (acceptor) which then emits fluo-
rescent light (Fig. 1a). By monitoring this energy transfer and
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its efficiency in real-time, the dynamics and distances of inter-
and intramolecular interactions involved in conformational
changes can be revealed on the scale of 1–10 nm. This method
was first applied to nucleosomes for studying their structural
dynamics (Tomschik et al. 2005). The efficiency of FRET
between a donor and an acceptor fluorophore each located
on the nucleosomal DNA at ∼45 bp from its entry and exit
sites showed fast dynamic changes in nucleosome structure
between a long-lived, fully wrapped state (2–5 s) and a
transient, substantially unwrapped conformation (100–200
ms). This work represents the first attempt to directly
investigate the dynamic nature of nucleosomes, and the
results suggest a potential mechanism by which DNA
accessibility for DNA-binding proteins can be regulated.
However, the observed dynamics was highly affected by
fluorophore blinking, which influenced the results and was
corrected for in a later publication by the authors (Tomschik
et al. 2009). Different FRET-based assays have subsequently
been developed and used, enabling more accurate, robust and
reliable insights into nucleosome structure and dynamics
(Blosser et al. 2009; Koopmans et al. 2007; North et al.
2012; Simon et al. 2011).

Another frequently used single-molecule fluorescence
technique is fluorescence correlation spectroscopy (FCS),
which allows the study of the dynamics of individual mole-
cules as they freely diffuse in solution (Elson and Magde

1974; Magde et al. 1972, 1974; Rigler et al. 1993). FCS is
based on the correlation analysis of fluctuations in the time-
resolved fluorescence signal that arises from very few mol-
ecules diffusing through the tiny excitation volume (∼10−3

pl) generated in a confocal microscope (Fig. 1b). Essentially,
the fluorescence signal is compared to its replicas calculated
at different lag times to check their similarity and reveal
repetitive patterns due to the underlying physical processes,
such as free diffusion, chemical reaction or conformational
changes. The resulting mathematical expression (the auto-
correlation function) yields the characteristic parameters of
these processes, such as diffusion constants, concentrations,
hydrodynamic radii or reaction rates. FCS was first used to
investigate the structural dynamics of nucleosomes in com-
bination with FRET (Li et al. 2005). The un- and
rewrapping rates of the nucleosome were initially deter-
mined indirectly via FRET by trapping the open conforma-
tion using a site-specific DNA-binding protein. FCS mea-
surements were then performed on nucleosomes labeled
with either donor only or a donor–acceptor pair to directly
observe conformational changes for a more reliable interpre-
tation of the kinetics. The results obtained from both ap-
proaches led to the conclusion that nucleosomal DNA un-
wraps on a timescale of ∼250 ms and rewraps more rapidly
within 10–50 ms. Subsequent efforts using this technique
have provided additional insights into nucleosome structure

a

b

Fig. 1 Sketched examples of fluorescence spectroscopy techniques. a
Single-molecule fluorescence resonance energy transfer (smFRET). A
dynamic molecule (orange/yellow) is labelled with a donor (green) and
an acceptor (red) fluorophore. When the fluorophores are close together
within 10 nm, the excited donor will transfer its energy to the acceptor for
fluorescence emission. For distances of >10 nm, only the donor will
fluoresce. The recorded time-resolved fluorescence signals of the donor
(green) and acceptor (red) are used to calculate the efficiency of FRET. b

Fluorescence correlation spectroscopy. Very few molecules (black) dif-
fusing through the tiny excitation volume generated in a confocal micro-
scope are excited for fluorescence emission. The time-resolved fluores-
cence signal is recorded and analyzed by autocorrelation, i.e. checking its
similarity to its replicas shifted by different lag times (τ). The resulting
autocorrelation function [G(τ)] yields the characteristic parameters of the
underlying process, such as the diffusion time (τD) at about half of the
amplitude [G(0)/2]
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and dynamics (Bohm et al. 2011; Gansen et al. 2009;
Koopmans et al. 2009; Poirier et al. 2009; Tims et al. 2011).

These studies convincingly demonstrate the great power of
the most commonly used single-molecule fluorescence tech-
niques to visualize DNA–protein interactions. When used in
combination, they can yield complementary insights that al-
low the researchers to draw more reliable conclusions.
However, the data acquisition, analysis and interpretation in
fluorescence microscopy studies must always take into ac-
count the many factors related to the photophysics of the
fluorophores (Ha and Tinnefeld 2012). This issue is entirely
eliminated in force spectroscopy techniques which rely on the
detection of light scattered by micron-sized massive particles.
The most common approaches of these manipulation methods
are presented below.

Force spectroscopy

The basis of force spectroscopy techniques is the specific
attachment of single molecules between a substrate and a
force transducer by interacting proteins or organic or
engineered compounds. This tethering enables manipulation
of the molecules by the application of forces and, in some
cases, torques. The readouts provided by the force transduc-
ers are tracked in real-time, allowing for the investigation of
primarily mechanical properties of the sample. Depending
on the biological question of interest, different force trans-
ducers are used together with distinct methods for trapping
and monitoring them.

In optical tweezers (OT) dielectric micron-sized particles
are captured in the focus of an intense laser beam exerting a
force due to the light gradient (Ashkin 1992; Ashkin et al.
1986; Smith et al. 1996). In biological applications, OT typi-
cally involve a nucleic acid molecule tethered between an
optically trapped bead and a substrate, which can either be
the surface of the sample holder or another, fixed bead held
by a micropipette or even a second optical trap (Fig. 2a). The
underlying mechanism is based on controlling the position of
the trapped bead and, thereby, the molecule’s extension.
Therefore, this type of trapping is referred to as an extension
clamp. Moving the focused laser beam with the trapped bead
allows the manipulation of the molecule by inducing a con-
comitant change in its extension, which concurrently affects
the molecule’s tension that is related to the applied forces
ranging between 0.1 and 100 pN. The bead’s position is
recorded indirectly by detecting the laser signal on a
position-sensitive device, which enables the simultaneous
measurement of force and extension, the two key quantities
of force spectroscopy. This methodwas first used in chromatin
research to study the structure of native chromatin fibers
extracted from chicken erythrocytes (Cui and Bustamante
2000). The mechanical stretch–release manipulation revealed
a reversible decondensation of the fibers at low forces (<6 pN),

which was attributed to internucleosomal interactions.
Specifically, the fibers showed a pronounced transition be-
tween condensation and decondensation at 5–6 pN under
physiological salt concentrations, indicating strong
internucleosomal interactions with energies comparable to
the thermal energy. Upon pulling at high forces (>20 pN), the
fibers were observed to undergo irreversible changes in their
extension, which was explained by the possible eviction of the
histone proteins during this mechanical unfolding. The results
of this study led to the first insights into the energy landscape
of chromatin structure and also suggested a considerable dy-
namic nature due to thermal fluctuations. It was followed by
many other OT-based assays that shed more light on the struc-
ture and dynamics of nucleosomes (Bennink et al. 2001; Bintu
et al. 2012; Brower-Toland et al. 2005; Gemmen et al. 2005;
Hall et al. 2009; Hodges et al. 2009; Jin et al. 2010; Mack et al.
2012; Pope et al. 2005; Shundrovsky et al. 2006; Sirinakis
et al. 2011; Zhang et al. 2006).

Another very common technique used for mechanical ma-
nipulation of single molecules is magnetic tweezers (MT). In
this method, magnetic beads are trapped by permanent or
electrical magnets that exert a force as a result of a magnetic
field gradient (Amblard et al. 1996; Crick and Hughes 1950;
Smith et al. 1992; Strick et al. 1996, 1998; Ziemann et al.
1994). In the most common designs a nucleic acid molecule
is tethered between a magnetic bead and the surface of the
sample holder at its two extremities and manipulated using
permanent magnets (Fig. 2b). Vertical movement of the mag-
nets results in a corresponding change of the applied force,
ranging from 10−3 to 100 pN, and a concomitant change of the
bead’s position, which is directly recorded by video micros-
copy with a charge-coupled-device (CCD) camera. As the
applied force is the parameter that is precisely controlled in
this technique, the underlying mechanism is also referred to as
force clamp. However, besides forces, MT can also apply
torques by rotating the magnets. MT were first used in chro-
matin research to study the time- and force-dependence of the
assembly and disassembly of chromatin fibers (Leuba et al.
2003). Fibers were found to assemble only at forces up to 10
pN, while assemblies at the higher forces within this range
were observed to be reversible. These results revealed a strong
dependency of chromatin assembly on the force applied to the
DNA and illustrated the dynamic equilibrium of this process.
Translated to a possible scenario in the cell, these experiments
allow conclusions to be drawn on the potential fate of
chromatin/nucleosomes under forces exerted by enzymes dur-
ing DNA-templated processes. For example, the forces gener-
ated by the E. coli RNA polymerase (RNAP) were shown to
be in the picoNewton range (Wang et al. 1998). Subsequent
MT studies confirmed and further refined these results to a
more detailed picture of the structure and dynamics of chro-
matin and nucleosomes (Kruithof et al. 2009; Lia et al. 2006;
Simon et al. 2011; Vlijm et al. 2012; Yan et al. 2007). The
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specific function of the nucleosome in higher-order folding of
chromatin based on inter-nucleosomal interactions has also
been assessed using single-molecule force and torque spec-
troscopy, but it still remains elusive due to additional restric-
tions on the electrostatics, topology and elasticity of the com-
plex (Chien and van Noort 2009; Lavelle et al. 2010). While
MT and OT have become the routine approaches for force
spectroscopy due to their simple yet robust principles, they
are, however, limited to mechanical manipulation of samples
and do not allow direct observation.

Atomic force microscopy

Atomic force microscropy (AFM), also called scanning force
microscopy (SFM), is a technique that is capable of either ob-
serving or manipulating single molecules on the same instru-
ment by imaging or force spectroscopy, respectively (Binnig
et al. 1986; Florin et al. 1994). Both principles are based on the
use of a cantilever as the force transducer. This cantilever is
either scanned over a sample to obtain a topographical image
by means of atomic interactions or tethered to one extremity of
an individual molecule for its mechanical manipulation. Its
interaction with the sample involving forces ranging between
10 and 104 pN leads to the bending of the cantilever, which is
tracked by the use of a laser beam directed on the cantilever and

reflected onto a position-sensitive device (Fig. 3). In this way,
either the topology of a sample or the extension of a molecule
can be indirectly read out with near atomic resolution (≤1 nm)
by controlling the position of the cantilever. Hence, like OT,
AFM also operates primarily as an extension clamp in force
spectroscopy. In nucleosome research, this technique is mainly
used for imaging, as the applied forces are in the higher range
of the molecular scale and the distinct structures of chromatin,
such as mono- and polynucleosomes, or higher-order foldings
into fibers are very suitable to study using this specific ap-
proach. The first AFM study was performed on nucleosome
arrays in order to directly observe and characterize their struc-
tural details (Allen et al. 1993). This work convincingly
illustrated the applicability of AFM imaging for high-
resolution studies on nucleosome structure and was followed
up by many researchers investigating the dynamics, as well as
the role of nucleosomes in DNA accessibility (Bintu et al.
2011; Dalal et al. 2007; Dimitriadis et al. 2010; Miyagi et al.
2011; Shlyakhtenko et al. 2009; Yoda et al. 2000). Therefore,
AFM represents another widely used technique in nucleosome
research in addition to fluorescence and force spectroscopy. In
the following sections we highlight recent insights into
(sub)nucleosomal structure and dynamics from studies using
most of the specific single-molecule approaches presented
here.

a b

Fig. 2 Overview of force spectroscopy techniques. aOptical tweezers. A
DNA molecule (blue/green) is tethered between an optically trapped
dielectric microsphere (violet) and either the glass coverslip (top) or
another bead fixed using a micropipette (middle) or a second optical
trap (bottom). Moving the optical trap will change the tether’s extension
and tension related to the applied forces (F), ranging between 0.1 and 100
pN (extension clamp). bMagnetic tweezers. A DNAmolecule is tethered
between the glass coverslip and a magnetic bead that is trapped using a

pair of cubic permanent magnets (red/blue) which accurately exert forces
ranging between 10-3 and 100 pN due to themagnetic field gradient (force
clamp). Due to an induced horizontal magnetic moment (m0), the bead is
also torsionally trapped, which allows the application of torques by
rotating the permanent magnets. Torque application leads to
supercoiling of the DNA molecule and the formation of plectonemes
(circles of DNA). Non-magnetic reference beads adhered to the surface
are used to correct for drift
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Nucleosome structure and dynamics

The nucleosome consists of 147 bp of DNA wrapped
∼1.7 times in a left-handed superhelix around a discoidal
protein structure of ∼5 nm in height and ∼7 nm in diam-
eter formed by eight histones (Davey et al. 2002; Luger
et al. 1997; Richmond et al. 1984) (Fig. 4). This histone
octamer contains two copies of each of the so-called core
histones H2A, H2B, H3 and H4 that are assembled into
four heterodimers, i.e. two H2A/H2B and two H3–H4
dimers, by short-range interactions between the central
α-helical histone-fold domains in a ‘handshake’ manner
(Arents et al. 1991; Klug et al. 1980). The two H3–H4
dimers join to form a tetramer through the four-helix
bundles of the H3 histones centered on the pseudo-
twofold symmetry (dyad) axis, while the two H2A/H2B
dimers attach to the tetramer via similar four-helix bun-
dle interactions between the H2B and H4 histones. Each
core histone further features a flexible N-terminal tail,
while the histone H2A additionally exhibits a C-
terminal tail. All of the histones are highly positively

charged, and as such they balance the negative charge
of the DNA. Hence, the histone octamer is only found
to be stable in the presence of DNA or at high salt
concentrations (∼2 M), and it dissociates into the (H3–
H4)2 tetramer and the two H2A/H2B dimers at physio-
logical conditions (Eickbush and Moudrianakis 1978).
Likewise, the nucleosome is assembled in a stepwise
manner by the initial binding of the (H3–H4)2 tetramer
to the DNA and the subsequent incorporation of the
H2A/H2B dimers (Polo and Almouzni 2006). However,
the nucleosome complex resulting from this well-defined
assembly pathway is not static, but a highly dynamic
entity. Its inter-dependent structural, mechanical, chemi-
cal and functional properties are continuously altered by
different mechanisms, such as intrinsic dynamics, chem-
ical modifications of the DNA and histones, ATP-
dependent remodeling, as well as by forces and torques
exerted by genome processing enzymes. The concerted
action of all of these mechanisms makes it very difficult
to study this complex system as a whole using single-
molecule techniques. Such methods can, however,

a bFig. 3 Principles of atomic force
microscopy. A cantilever
(orange) is used to exert atomic
forces on the sample. Their
interaction leads to distortions of
the cantilever which is recorded
using a laser beam (red) that is
reflected onto a position-sensitive
device such as a quadrant
photodiode (blue). a The
cantilever can scan the sample to
obtain a topographical image. bA
DNA molecule is tethered
between the glass coverslip and
the cantilever to exert forces
between 10 and 104 pN for
force spectroscopy

Fig. 4 Structure of the
nucleosome. A total of 147 bp of
DNA (grey) are wrapped around a
discoidal protein structure
containing two copies of the eight
core histones H2A (magenta),
H2B (orange), H3 (green) and H4
(blue) in a left-handed superhelix.
a Top view. b Side view along the
pseudo-twofold symmetry (dyad)
axis. The images were created
from the structural data in the
RCSB Protein Data Bank (PDB)
with the identification code 1AOI
(Luger et al. 1997) using the
PyMOL Molecular Graphics
System, Version 1.7.2.1
Schrödinger, LLC
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provide invaluable insights into the different individual mech-
anisms and their impact on nucleosome structure, dynamics
and function (Choy and Lee 2012; Killian et al. 2012).

Intrinsic nucleosome dynamics

The observation of nucleosomes at the single-molecule level
have revealed that their structure is intrinsically dynamic. As
mentioned above, about 30 bp at the entry and exit sites of the
nucleosomal DNAwere reported to spontaneously unwrap and
rewrap on a timescale between 10–300 ms (Koopmans et al.
2007; Li et al. 2005; Miyagi et al. 2011) (Fig. 5a). However,
until recently this phenomenon of DNA breathing was studied
either indirectly with assays using DNA-binding proteins to trap
the open nucleosome conformation or directly using methods
limited in their specific time resolution for technical reasons.
Very recently, the transient unwrapping and rewrapping of nu-
cleosomal DNA ends has been identified on a timescale of 1–
10 ms using a novel single-molecule technique combining
single-molecule FRET (smFRET) and FCS with stochastic data
analysis based on maximum likelihood estimation (MLE) (Wei
et al. 2015). This approach enables the study of the structural
dynamics of biomolecules on the sub-microsecond timescale
considering the photophysical properties of the fluorophores.
By this means, this study provided the first direct evidence
that DNA breathing is a very fast process. In another recent
work, the first experimental evidence for a novel spontaneous
transition of nucleosome structure, called gaping, was reported

using smFRET (Ngo and Ha 2015). This phenomenon refers to
the transient opening of the two turns of nucleosomal DNAwith
respect to each other along the superhelical axis (Fig. 5b).
Different labeling schemes were used to study this conforma-
tional change associated with an estimated distance change of
0.5–1 nm and a timescale of 1–10 min (Fig. 5c, d). However,
due to technical limitations in terms of resolution owing to the
use of FRET and the labeling strategy based on the use of a
linker, further high-resolution studies are needed to reveal the
details of this phenomenon, including potential structural chang-
es in the histone octamer. Further evidence supporting these
recent findings will certainly have strong implications for the
role of the intrinsic structural dynamics of nucleosomes as a
major mechanism for regulating DNA accessibility in the con-
text of genomic processes.

The sequence of the nucleosomal DNA

The structural, mechanical and functional properties of nucle-
osomes have also been suggested to depend on the underlying
DNA sequence due to the influence of the latter on nucleo-
some positioning (Widom 2001). This notion has provoked
high interest in investigating nucleosomal DNA sequences to
identify weak and strong nucleosomes and has led to the de-
velopment of different artificial sequences which have be-
come widely used in in vitro studies (Trifonov and Nibhani
2015). Recently, the influence of DNA sequence on nucleo-
some structure was studied using a single-molecule approach

Fig. 5 Intrinsic nucleosome dynamics. a The nucleosomal DNA ends
transiently wrap and unwrap from the histone octamer (breathing),
indicated by the black arrow. b The two turns of nucleosomal DNA
transiently open with respect to each other along the superhelical axis
(gaping), depicted by the red arrow. c Different labelling schemes to
identify the gaping transition which is best characterized by the FRET
pair encircled in red. d Time-resolved fluorescence signals of the donor

(green) and acceptor (red) fluorophore from the best characterized FRET
pair are recorded and yield the FRETefficiency, showing a slight increase
over several minutes due to gaping. All panels (a–d) are figures reprinted
with minor changes from Ngo and Ha (2015), Copyright (2015), used
under a CCBY 4.0 license (http://creativecommons.org/licenses/by/4.0/).
This figure is not included in the present article's Creative Commons
license
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combining smFRET and OT (Ngo et al. 2015). This assay
allowed the simultaneous manipulation and observation of
the nucleosome to probe force-induced local conformational
changes. Nucleosomes were found to disassemble by asym-
metric and directional unwrapping under force, whereby
the relative stiffness of different regions of the nucleoso-
mal DNA dictated the unwrapping direction, with a pref-
erence for starting from the stiffer side. When the DNA
exhibited similar flexibility on both sides, nucleosomes
unwrapped stochastically from either side. Both ends fur-
ther showed an interplay in which the opening of one end
stabilized the other, indicating that even small differences
in DNA flexibility on either side could lead to an asym-
metric stability of the nucleosome. These findings clearly
demonstrate the influence of local DNA flexibility, caused
by its sequence composition, on nucleosome stability and
DNA accessibility. In a more general context, they sug-
gest a new mechanism contributing to the regulation of
DNA accessibility by the nucleosomal DNA sequence and
its modifications. However, if and to what extent
sequence-dependent effects on nucleosomal DNA dynam-
ics play a role for in vivo processes awaits future investi-
gation, which will likely be challenging, as many different
mechanisms cooperate to inf luence nucleosome
(re)organization in the cell.

Post-translational modification of histones

One well-established mechanism that substantially influences
nucleosome structure and dynamics is the post-translational
modification (PTM) of the unstructured histone tails protrud-
ing from the nucleosome core complex at specific positions
(Bowman and Poirier 2015). This form of dynamic chemical
alteration of the histones mediated by a great number of ded-
icated enzymes has been shown to change the structural and
dynamic properties of nucleosomes by affecting histone–
DNA or histone–histone interactions. The best-studied chem-
ical modifications include histone acetylation and phosphory-
lation. Their effects on nucleosome structural dynamics were
studied recently by complementing different biochemical as-
says with smFRET (Brehove et al. 2015). Phosphorylation of
tyrosine 41 and threonine 45 of histone H3 located in the
nucleosomal core near the DNA entry–exit sites was found
to enhance DNA accessibility by threefold, as did histone
acetylation of lysine 56 in the same region. Remarkably, si-
multaneous phosphorylation and acetylation were observed to
increase DNA accessibility by an order of magnitude.
Although DNA accessibility was tested indirectly by a
protein-binding assay, which does not allow direct quantifica-
tion of the intrinsic dynamics of nucleosomes, the study still
clearly demonstrates the significant effect of PTMs on DNA
unwrapping dynamics. In a broader context, these results sug-
gest that particularly PTMs of the globular domains of the

histones have the ability to directly affect nucleosome stability
by impacting histone–DNA interactions while modulating the
ability of the nucleosome to bind regulatory factors. A large
and increasing number of identified PTMs awaits further
study at the single-molecule level to advance our understand-
ing of nucleosome structure and dynamics (Arnaudo and
Garcia 2013).

ATP-dependent remodeling

Complementary to the chemical modification of histones, an-
other mechanism that affects the stability and dynamics of
nucleosomes is mediated by enzymes that actively reorganize
nucleosome structure. These ATP-dependent chromatin
remodelers catalyze changes in nucleosome position and com-
position by inducing nucleosome sliding or (partial)
disassembly/assembly of histones upon ATP-hydrolysis
(Clapier and Cairns 2009). The nucleosome remodeling pro-
cess by the ATP-dependent chromatin assembly and remodel-
ing factor (ACF) that contains a catalytic subunit belonging to
the imitation switch (ISWI)-family and generates uniformly
spaced nucleosomal arrays was recently studied in molecular
detail using smFRET (Hwang et al. 2014). This approach
allowed for the time-dependent observation of DNA translo-
cation upon remodeling by ACF. Both the linker DNA and the
histone H4 tail were found to affect DNA translocation by
increasing the pause durations in the remodeling process.
The catalytic and accessory subunit of ACF, Snfh2 and
Acf1, respectively, were observed to cooperate in detecting
the linker DNAwith the help of the histone H4 tail. For short
linker DNA lengths, Acf1 preferably bound to the N-terminal
region of the histone H4 tail, which resulted in autoinhibition
of the ATPase activity of Snfh2 while possibly increasing
pause durations. With increasing linker DNA lengths, howev-
er, Acf1 changed its binding preference towards the linker
DNA by releasing the histone H4 tail, which in turn relieved
the autorepression mechanism and resulted in activation of the
Snf2h ATPase. These results indicate that DNA linker length
and the histone H4 tail are important components of nucleo-
some remodeling by enzymes of the ISWI-family and suggest
a potential regulatory mechanism to direct nucleosome spac-
ing. Many chromatin remodelers of different families have
been identified, and the details of their remodeling mechanism
still need to be studied (Hota and Bartholomew 2011). As
demonstrated by the results of this study, single-molecule
techniques are highly suitable for this purpose. The bigger
challenge seems to be the investigation of all mechanisms
affecting nucleosome structure and dynamics in combination.

Genome processing enzymes

In addition to the mechanisms presented above that specifi-
cally target nucleosomes, non-specific external events
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mediated by other factors influence nucleosome structure
and dynamics. Certain enzymes have to exert forces and
torques in order to perform their tasks in processing the
genome. In a recent study, the effect of force and torque
on nucleosome structure was investigated using an angular
optical trapping method called the optical torque wrench
(OTW) (Sheinin et al. 2013). In addition to allowing the
manipulation of biomolecules by means of force, this OT-
based technique allows the application and measurement of
torque (La Porta and Wang 2004). Qualitatively, torque was
found to only have a modest effect on nucleosome disas-
sembly. The unwrapping of nucleosomes always followed a
distinct two-step pattern, namely, a sudden release of nucle-
osomal DNA at lower forces (<6 pN), attributed to the outer
turns around the H2A/H2B dimers, and another release at
higher forces (≥6 pN), assigned to the inner turn around the
(H3–H4)2 tetramer. This interpretation and the details of
nucleosome unwrapping, however, might need to be
reconsidered after the recent observation of asymmetric
unwrapping reported above. Quantitatively, however, torque
was observed to significantly affect the disruption forces by
stabilizing the outer turns and destabilizing the inner turn.
Remarkably, the application of positive torque additionally
led to a striking loss of H2A/H2B dimers, whereas the (H3–
H4)2 tetramer remains stably bound to the DNA. These
findings suggest a potential role of torque and supercoiling
in regulating DNA-templated processes by facilitating the
removal of the H2A/H2B dimers. More recently, the effect
of supercoiling on nucleosome structure was investigated
using AFM and FCS (Elbel and Langowski 2015). The ar-
chitecture of the nucleosomes was revealed by AFM imag-
ing, while their stability was studied by measuring the dif-
fusion constants upon salt-induced destabilization using
FCS. Nucleosome structure was found to be dependent on
the sign and density of the superhelical turns. Negative
supercoiling resulted in more compact and stable nucleo-
somes that were resistant to changes in salt concentration.
In contrast, nucleosomes reconstituted on either relaxed or
positively supercoiled DNA were observed to be more open
and prone to salt-induced disassembly. Destabilization of
these nucleosomes, leading to the enhanced eviction of the
H2A/H2B dimers, was observed to start at ∼600–800 mM
monovalent salt concentration. The (H3–H4)2 tetramer, how-
ever, was found to dissociate later at salt concentrations of
>1000 mM. These results from the combined approach of
imaging and fluorescence spectroscopy clearly demonstrate
the significant impact of DNA topology on nucleosome
structure and stability and further support the notion of
DNA supercoiling as a potential mechanism for regulating
the genome by facilitating histone eviction. Investigating
structural transitions in the histone octamer itself under
torque appears to be a logical next step to reveal more de-
tails of the force- and torque-induced disassembly of

nucleosomes. The single-molecule approaches, however,
need to take into account the biological relevance of all
components, such as the range of the applied forces and
torques, as well as the salt concentrations used. The regular
observation of distinct behavior for the H2A/H2B dimers
and the (H3–H4)2 tetramer raises more questions about the
architecture and dynamics of subnucleosomal structures
which will be discussed in the next section.

Subnucleosomal structures and dynamics

Asmentioned above, nucleosomes have been observed to lose
their outer H2A/H2B dimers under force, torque or changes in
salt concentration, while (H3–H4)2 tetramers remain bound to
the DNA. These findings indicate the existence of intermedi-
ate nucleosome states, several of which have in fact been
reported in different studies (Andrews and Luger 2011;
Lavelle and Prunell 2007; Luger et al. 2012; Zlatanova et al.
2009). The assembly of nucleosomes happens in a stepwise
manner through the initial binding of the (H3–H4)2 tetramer to
the DNA, followed by the incorporation of the two H2A/H2B
dimers (Polo and Almouzni 2006). In the absence of DNA but
under otherwise physiological conditions, the histone octamer
itself dissociates into the (H3–H4)2 tetramer and H2A/H2B
dimers (Luger 2001). Specific proteins called histone chaper-
ones exist to bind and stabilize histones and to control their
interactions for the assembly or disassembly of nucleosomes
(Gurard-Levin et al. 2014). These proteins can also alter the
composition of nucleosomes by being involved in the replace-
ment of core histones with histone variants which differ in the
protein sequence and can affect both histone–DNA and his-
tone–histone interactions to specifically change nucleosome
structure and dynamics (Talbert and Henikoff 2010). In addi-
tion, some histone chaperones contribute to the removal of
H2A/H2B dimers during transcription, such as the facilitates
chromatin transcription (FACT) complex (Reinberg and Sims
2006). Therefore, a reorganization of nucleosomes into sub-
structures seems plausible, even crucial, in the context of chro-
matin dynamics for regulating DNA-templated processes.
Thus, investigating subnucleosomal particles can provide fur-
ther insight into the structure and dynamics of full
nucleosomes.

As a whole, nucleosomes have been found to undergo a
conformational transition upon positive torsional stress by
changing their ‘chirality’ from a left-handed to a right-
handed DNA-wrapping into a reversed nucleosomal structure
called reversome (Bancaud et al. 2007). Another nucleosome
conformation, termed the split nucleosome, was observed in
the form of partial splitting of the H2A/H2B dimers from the
(H3–H4)2 tetramer while remaining bound to the DNA during
salt-induced disassembly, with an eventual stepwise release of
the H2A/H2B dimers and the (H3–H4)2 tetramer (Bohm et al.
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2011). Also, passage of the transcription enzyme RNAP II
through the nucleosome was found to produce a hexameric
subcomplex missing one H2A/H2B dimer, termed a
hexasome (Bintu et al. 2011; Kireeva et al. 2002). The
subnucleosomal structure that only contains the (H3–H4)2 tet-
ramer is called a tetrasome (Alilat et al. 1999). Tetrasomes
were then also found to have the additional, remarkable fea-
ture of intrinsically switching between a left-handed and a
right-handed ‘chirality’. Thus, tetrasomes constitute an impor-
tant subnucleosomal structure to study.

The nucleosome assembly protein 1 (NAP1)-mediated as-
sembly of full nucleosomes or tetrasomes was recently inves-
tigated in real-time using freely-orbiting magnetic tweezers
(FOMT) and electro-magnetic torque tweezers (eMTT)
(Vlijm et al. 2015a). These novel MT techniques enable the
study of the dynamics and the impact of small, and well-con-
trolled torques on biomolecules (Janssen et al. 2012; Lipfert
et al. 2011). In this study, a bare double-stranded DNA
(dsDNA) molecule was tethered between the glass coverslip
and a magnetic bead that was trapped by a permanent magnet
of cylindrical form, with the bead allowed to freely rotate on a
circular trajectory (Fig. 6a). Upon injection of the histones
with NAP1, nucleosome assembly occurred instantaneously
in steps that were reflected both in the tether’s extension as
well as the rotation angle, corresponding to the tether’s twist
and writhe (linking number). Nucleosome formation was al-
so achieved by first assembling tetrasomes followed by the
incorporation of the H2A/H2B dimers. Interaction with the
DNAwas not observed for H2A/H2B dimers, whereas they
readily bound to previously formed tetrasomes. This obser-
vation again confirms the necessity of tetramer binding before
the additional incorporation of H2A/H2B dimers. (H3–H4)2
tetramers assembled instantaneously onto the DNA and
remained stably bound for long times, indicating that
tetrasomes are viable nucleosomal substructures (Fig. 6b).
Remarkably, tetrasomes were further found to spontaneously
switch their ‘chirality’ between a preferred left-handed and a
less frequently occurring right-handed DNAwrapping, which
is referred to as ‘handedness flipping’ (Fig. 6c). These
structural dynamics may explain the significantly delayed
accumulation of torque in the DNA tether containing
tetrasomes in torque measurements (Fig. 6d, e). The conver-
sion of tetrasomes from one chirality state to the other by
applying weak torques was suggested as the underlying
mechanism for this phenomenon. In contrast, this sort of
structural dynamics and behavior was not observed for
nucleosomes. On the whole, this study provides new in-
sights into the structural dynamics of nucleosomes in the
context of substructures, suggesting a potential mechanism
to regulate supercoiling during DNA-templated processes
by absorbing the generated torque. Very similar results
were obtained in a more recent follow-up study with the
histone variant H3.3 (Vlijm et al. 2015b). Comparable

Fig. 6 Real-time assembly and structural dynamics of tetrasomes. a A
DNA molecule is tethered between a glass coverslip and a magnetic bead
trapped by a cylindrical magnet, thereby allowing its free rotation. The
injection of histones together with nucleosome assembly protein 1
(NAP1) yields histone assembly reflected by a decrease in the tether’s
extension (z, in μm) and the rotation angle (θ, in turns), which is related
to the tether’s twist and writhe (linking number). b The extension and angle
time traces show instantaneous changes in a stepwise manner upon
tetrasome assembly. c The angle time traces of assembled tetrasomes
reveal frequent transitions between two distinct linking numbers
corresponding to a structural change in their handedness. d Two pairs of
Helmholtz-coils are used to generate a horizontal magnetic field that is
rotated by alternating the applied current to generate precisely controlled
torques. e The rotation–extension traces of DNA molecules containing
tetrasomes (blue triangles) show smaller extensions and broadening com-
pared to the traces obtained with bare DNA (black circles), indicating
assembled tethers and torque absorption, respectively. Torque absorption
is verified by the rotation–torque curves revealing an additional plateau for
small torques (in pN∙nm) applied to tetrasomes (blue triangles) that is
absent with bare DNA (black circles). All panels (a–e) are figures reprinted
or adapted from Vlijm et al. (2015a), Copyright (2015), with permission
from Elsevier. This figure is not included in the present article’s Creative
Commons license
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details of the nucleosome assembly and the structural dynam-
ics of tetrasomes containing the histone variant H3.3 indicate
that the incorporation of this variant histone, which in the cell
occurs upon histone loss in processes such as transcription,
does not give rise to changes in nucleosomal structure and
dynamics, but rather may affect other processes such as the
recruitment of specific histone chaperones or remodelers.

The dynamics of (sub)nucleosomal structures were also in-
vestigated using high-speed-AFM (HS-AFM) (Katan et al.
2015). This novel technique enables the visualization of the
structure and dynamics of biomolecules at acquisition rates
of up to 10 Hz or higher (Ando et al. 2013). The histone–
DNA complexes were either reconstituted by salt dialysis or
assembled using NAP1 and deposited onto a mica substrate for
incubation prior to imaging in liquid. Nucleosomes were found
to spontaneously disassemble in a fast process on a timescale
of 1 s, while tetrasomes underwent several different dynamic
changes, such as sliding, hopping between two stable positions
involving a change in the ‘handedness’ of the DNA-wrapping
and disassembly with the concomitant formation of a DNA-
loop that remains stable for minutes. In addition to illustrating
the suitability of HS-AFM for probing DNA–protein interac-
tions, this study reveals the highly dynamic nature of
(sub)nucleosomal structureswhichmay add an additional layer
of flexibility in the accommodation and control of processes
such as transcription, replication and repair.

Overall, all nucleosomal (sub)structures and their proper-
ties carry significant biological potential in the context of gene
regulation during essential cellular processes. There are still
many questions left to be answered on their function which
could also be explained in the context of other nucleosome-
related mechanisms. Single-molecule techniques are a prom-
ising tool to advance the research on this topic by the devel-
opment and application of more complex assays, as described
in the next section.

The nucleosome as a barrier

As mentioned above, nucleosomes can act as dynamic me-
chanical barriers to related DNA-binding proteins and DNA-
processing enzymes. Many different processes that influence
nucleosome structure, such as intrinsic dynamics and remod-
eling involving histone chaperones, chromatin remodeling en-
zymes as well as post-translational modifications, possibly
facilitate the overcoming of the barrier. However, the exact
mechanisms underlying genome processing through nucleo-
somes that reveal the fate of colliding enzymes and histones
still remain unclear. As the first step of gene expression and
one of the crucial processes to maintain cell viability and
function, transcription has become a topic of great interest in
the context of nucleosome research at the single-molecule
level as well (Dangkulwanich et al. 2014; Teves et al. 2014).

Mimicking genome processing by unzipping dsDNA mole-
cules containing single nucleosomes using OT revealed the
locations and features of histone–DNA interactions at ∼1-bp
resolution (Hall et al. 2009). The 5-bp periodicity of these
strong interactions within three broad regions indicates that
nucleosomes actually represent a considerable energy barrier
to DNA-processing enzymes. This conclusion was further con-
firmed by several direct studies of transcription through nucle-
osomes using purified RNAP II in different assays based on the
common single-molecule techniques (Bintu et al. 2011, 2012;
Hodges et al. 2009; Jin et al. 2010). Nucleosomeswere found to
have a significant effect on the dynamics of RNAP II by locally
increasing the density and duration of its pausing, as well as by
decreasing their actual (pause-free) velocity (Hodges et al.
2009). The authors concluded that the changes in polymerase
dynamics are governed by fluctuations in nucleosome
unwrapping, which would either deny or give the polymerase
access to nucleosomal DNA in the closed or open nucleosome
conformation, respectively. In addition to increasing the pause
density and duration, nucleosomes were also observed to in-
duce backtracking of polymerases. A successive RNAP was,
however, found to release the preceding polymerase from
backtracking to restart and even continue with elongation at a
higher rate (Jin et al. 2010). This finding suggests that multiple
RNAP II enzymes could cooperatively increase transcription
efficiency. The nucleosomal barrier to transcription was further
shown to be highly controlled by specific structural elements of
the nucleosome (Bintu et al. 2012). Elimination of the histone
tails and destabilization of specific histone–DNA interactions
enabled transcription to overcome the nucleosomal barriermore
easily. The greater efficiency of transcription observed for
weakened histone–DNA interactions shows their essential role
in nucleosome stability, while, alternatively, the histone tails
could have a significant function in the recruitment and mode
of action of specific remodelers. Some details of nucleosomal
fate during transcription were revealed by simultaneous imag-
ing of RNAP and nucleosomes at different stages of transcrip-
tion using AFM (Bintu et al. 2011). While some nucleosomes
did not change their position upon transcription, others were
found upstream of their initial location, which was explained
by a DNA-looping mechanism for histone transfer. In addition,
some of the transcribed nucleosomes showed a smaller size
depending on the elongation rate, which was ascribed to the
loss of one H2A/H2B dimer during transcription resulting in
the formation of a hexamer. These studies have convincingly
illustrated how transcription through nucleosomes both requires
and causes structural changes that may occur by RNAP-
mediated changes in supercoiling and/or the action of the ac-
cessory factors, such as histone chaperones, chromatin
remodelers and other transcription factors.

Single-molecule research on the transcription of nucleo-
some substrates is now moving towards more complex sys-
tems involving additional factors. The effect of nucleosomes
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on the binding and dissociation of transcription factors (TF)
was recently studied using fluorescence microscopy, includ-
ing smFRET (Luo et al. 2014). In this study, dsDNA mole-
cules containing a binding site for either the TF LexA or the
TF Gal4 were used to reconstitute nucleosomes which
remained intact or were trapped in an open conformation upon
TF binding. Monitoring the FRET efficiency allowed the TF
binding and dissociation rates to be determined. Nucleosomes
were not only found to decrease the binding rate of the TFs by
∼500-fold, but also to significantly increase their dissociation
rate by ∼1000-fold compared to bare dsDNA molecules.
These results show that nucleosomes regulate TF access to
DNA and propose a possible mechanism for facilitating TF
exchange. This regulatory function of the nucleosome may
also apply to other DNA-binding proteins.

In another study, the effect of two general transcription
elongation factors, TFIIS and TFIIF, on the transcription pro-
cess of both bare and nucleosomal DNA was investigated
using OT (Ishibashi et al. 2014). The specific assay comprised
a dsDNA molecule directly attached to one bead at its down-
stream end and tethered to another bead through an RNAP II
complex (Fig. 7a). Depending on the orientation of the DNA
molecule, either an opposing or an assisting force could be
applied to the RNAP, allowing for complementary insights
into the transcription dynamics. Both TFs were added inde-
pendently or together and were not found to significantly in-
fluence the actual (pause-free) elongation rate. However, the
TFs did affect the pausing dynamics of the RNAP in a distinct
manner (Fig. 7b). TFIIS reduced the pause duration, while
TFIIF decreased both the pause density and duration depend-
ing on the force. The same effects also enhanced the

progression of RNAP through the nucleosomal barrier
(Fig. 7c). These single-molecule experiments thus helped to
pin down the details on the dynamics and the biophysical
mechanisms by which TFIIS and TFIIF enact their known
positive effects on RNAP II elongation efficiency.

In a very recent study, the effects of nucleosome remodel-
ling by either yeast SWI/SNF or ISW1a on the bound TF
Gal4DBD and vice versa were investigated using the above-
mentioned OT-based unzipping technique (Li et al. 2015). In
this assay, the single-stranded DNA (ssDNA) segments of an
already partially unzipped dsDNA molecule containing a sin-
gle nucleosome and a bound TF were tethered between the
glass coverslip and a microsphere. The molecules were further
unzipped by moving the glass coverslip away from the bead,
and the strengths and locations of the nucleosome and the
bound TF were simultaneously reflected as peaks in the
force-extension traces at ∼1 bp resolution. Unzipping mole-
cules after finalized remodeling reactions with either remodeler
revealed that a TF represents a considerable barrier to remod-
eling by ISW1a for nucleosome repositioning. However, the
SWI/SNF remodeler could generate nucleosome sliding ac-
companied by removal of the TF without a significant effect
on nucleosome positioning. Interestingly, the nucleosomes
were located in opposite directions after remodeling, indicating
that both remodelers have distinct roles in nucleosome posi-
tioning in the presence of TFs. This study demonstrates a po-
tential mechanism for the regulation of nucleosome remodel-
ing by TFs and vice versa, which could further have a major
role in the regulation of transcription in general.

In summary, the latest advances of in vitro single-molecule
research on transcription involving nucleosomes represent a

Fig. 7 Real-time dynamics of transcription enzyme RNA polymerase II
(RNAP II) elongation activity in the presence of transcription elongation
factors (TFs). a A DNA molecule is attached to an anti-digoxigenin
(AD)-coated bead at its downstream end and tethered to another
streptavidin (SA)-coated bead through an RNAP II complex with two
optical traps. Two different TFs (TFIIS, blue; TFIIF, red) are injected to
investigate their effect on transcription dynamics. b Time traces of the
opposing force (in pN) to the transcribing RNAP II complex reveal facil-
itated elongation by the TFs individually (TFIIS, blue; TFIIF, red) or

together (TFIIF/TFIIS, green) compared to RNAP II alone (black). c
Time traces of the RNAP II position (in bp) along a DNA molecule
containing an initially well-positioned single nucleosome (yellow-shaded
band) show stimulation of RNAP II processivity (black) through
nucleosomes by the TFs individually (TFIIS, blue; TFIIF, red) or
together (TFIIF/S, green). All panels (a–c) are figures reprinted with
minor changes from Ishibashi et al. (2014), with permission from
PNAS. This figure is not included in the present article's Creative
Commons license
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successful next step towards understanding more details of this
complex process. The combination of multiple proteins and
mechanisms in a crowded environment seems a promising ap-
proach to elucidate additional details of this complex fundamen-
tal process. The further development of this kind of assays is
expected to also finally explain the still striking feature of tran-
scription through chromatin in vivo occurring at similar rates to
in vitro transcription of bare DNA (Izban and Luse 1992).

Conclusions and future perspectives

As the basic packaging unit of chromatin, the nucleosome
represents a fundamental DNA–protein complex whose study
is required for understanding the organization and regulation
of the genome during essential cellular processes. In this con-
text, nucleosomes are not static, but highly ordered and dy-
namic entities. Their structure and dynamics are continuously
altered by different mechanisms involving spontaneous con-
formational changes, the properties of the underlying DNA,
post-translational modifications of the histones, ATP-
dependent remodelers, external forces and torques, the incor-
poration of histone variants, and interactions with histone
chaperones and other related proteins.

In this review, we have introduced the most commonly used
single-molecule techniques in nucleosome research and pre-
sented recent insights they have provided into nucleosome
structure, function and dynamics. Studies of individual

nucleosomes in a time-resolved manner have revealed tran-
sient conformational states on fast timescales, such as breath-
ing and possibly gaping. The structural and chemical proper-
ties of the nucleosomal DNA are suggested to influence nucle-
osome structure and dynamics. Post-translational modifica-
tions of histones have been found to significantly affect the
intrinsic dynamics and the stability of nucleosomes by altering
DNA–histone or histone–histone interactions. More assays
have been developed and extended by using other
nucleosome-related components, such as histone chaperones
and remodeling enzymes, to study their underlying molecular
mechanisms and impact on nucleosome (dis)assembly, archi-
tecture and dynamics. Various subnucleosomal structures have
been identified both in vivo and in vitro and are believed to
play an important role in the regulation of the genome during
nuclear processes. Some great insights into the function and
fate of the nucleosome as a barrier during DNA-templated
processes have been provided by the incorporation of genome
processing machineries. Single-molecule studies in the context
of histone variants and replication could provide more insights
into (sub)nucleosomal structure and dynamics and possibly
reveal new mechanisms to complement current knowledge.

However, as several different mechanisms involving vari-
ous proteins simultaneously act on nucleosomes in a concert-
ed manner, many questions remain to be answered regarding
the details of their interplay (Fig. 8). A powerful approach
seems to be the combination of fluorescence and force spec-
troscopy techniques, which has already been used to probe
various DNA–protein interactions (Cordova et al. 2014).
Further advances in microscopy and sample preparation tech-
niques at the single-molecule level will enable measurements
in crowded conditions involving several different components
and mechanisms. This will allow the recapitulation of actual
biological processes in an environment that approaches
in vivo conditions. In the vast majority of single-molecule
methods for studying nucleosomes, specifically designed
and immobilized DNA constructs containing strong
nucleosome-positioning sequences, purified, engineered or la-
beled proteins and non-physiological buffers are used. This
allows for a better control of the biological system, but in
the end does not reflect the native situation. On the other hand,
in vivo single-molecule studies that are mainly based on fluo-
rescence microscopy have been very challenging due to spe-
cific treatments of live cells and in particular the low spatial
resolution. However, recent developments in live cell micros-
copy towards super-resolution microscopy with highly im-
proved spatial resolution hold great promise for studies of
chromatin structure and dynamics in vivo (Lakadamyali and
Cosma 2015). Collectively, the complementary insights from
different techniques and assays will allow researchers to put
individual parts of the huge puzzle on chromatin structure and
dynamics together to advance our understanding of one of the
fundamental aspects of life.

Fig. 8 Overview of mechanisms influencing nucleosome structure and
dynamics. Nucleosomes are intrinsically dynamic (dark green) entities,
and their structure and dynamics are additionally affected by many
different mechanisms, such as sequence and chemical properties of the
underlying DNA (light green), post-translational modifications of
histones (orange), the incorporation of histone variants (yellow), the
interactions with histone chaperones (red), ATP-dependent remodelling
(magenta), the reorganization in subnucleosomal substructures (violet)
and non-specifc external factors like genome processing machineries
(dark blue) and DNA-binding proteins (blue/green). All these
mechanisms are coherent and act in a concerted manner (black lines)
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