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Abstract

For radar imaging, resolution and dynamic range are two critical metrics to measure image
quality. MIMO array exploits the spatial diversity of transmitters and receivers to achieve
high cross-range resolution with fewer antennas than array-based imaging.

Generally, to make full use of the sparsity, at least the transmit array or the receive array
does not satisfy the Nyquist sampling criterion. Therefore, the grating lobes may occur, which
would produce ghost targets and submerge the weak targets. For far-field imaging, the grating
lobes can be eliminated with various array design methods. In contrast, it cannot be completely
eliminated for near-field imaging applications. Besides, the high sidelobes would also mask
the weak targets and reduce the image’s dynamic range. The traditional weighting method can
effectively suppress the sidelobes, but the mainlobe resolution would be reduced.

In this thesis, we propose a method based on the spatially variant apodization method to
enhance the image quality of near-field 1-D and 2-D MIMO array imaging. According to the
generalized matched filtering imaging method, we can individually analyze the wavenumber
spectrum in the cross-range and range directions of the transmit array and the receive array.
Then the method can be easily implemented in the space domain to suppress the sidelobes
and grating lobes without sacrificing the cross-range and range resolution. Moreover, three
acceleration approaches are proposed to reduce the computation burden.

Both numerical simulation and experimental validation indicate that the proposed method
can effectively suppress the sidelobes and grating lobes without spreading the mainlobe.
Moreover, the acceleration methods can suppress the sidelobe and grating lobe level mean-
while decrease the processing time remarkably under some conditions.
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1
Introduction

This chapter begins with introducing the background and the motivation and then lists the
main methods for sidelobe suppression of short-range MIMO array imaging. Next to this,
the research problem, the objectives, the challenges, and contributions are given. Lastly, the
outline of the thesis is drawn.

1.1 Background and Motivation
Radar is short for radio detection and ranging, well-known for the secret development and
use for military purposes in World War II. However, the research of radar started before WW
II. Early in 1914, the idea of radar was introduced by Nikola Tesla [1]. In 1922, Guglielmo
Marconi gave a speech on the principle of radar about the possibility of object detection at the
American Institute of Radar Engineers Conference [2]. The radar system works by sending
a signal and receiving the echo reflected from the object, which contains the information of
location, angle, speed, etc. After years of development, the radar system is widely used for
detection, tracking, surveillance, imaging, etc.

As an important technology, radar imaging can be used all weather and all day compared
with optical imaging. Furthermore, it has excellent penetrating ability and accuracy. The
commonly used radar systems for imaging include synthetic aperture radar (SAR), inverse
synthetic aperture radar (ISAR) and MIMO radar. For an imaging system, the spatial reso-
lution in the cross-range and range directions, as well as the imaging dynamic range, are the
primary measures of the performance [3].

High-resolution radar imaging provides a powerful tool to separate adjacent small targets.
The range resolution is the minimum distance to distinguish or resolve two targets in the same
range direction and is determined by the bandwidth B of the transmit signal

δr =
c

2B
(1.1)

where c is the speed of light. Obviously, the large signal bandwidth B results in high range
resolution. The cross-range resolution is approximated by

δcr = R
λ

L
(1.2)

1



2 1. Introduction

where R is the distance between the aperture and the target, λ is the wavelength, and L is
the aperture length. So a larger aperture array results in higher cross-range resolution, which
means the better capability of radar to distinguish between two targets along the cross-range
direction.

In fact, the size of the physical aperture is limited by the size of the equipment and the
operating environment. To achieve high cross-range resolution, SAR translates and receives
the signal with an antenna or a small array at successive positions along a line to realize an
effective large aperture. At each position, both the amplitude and the phase information are
stored. And the combination of the successive echo signals can generate a virtual aperture
that is much longer than the physical aperture [4]. However, SAR is based on a moving
platform and takes longer time for data acquisition. For (near) real-time imaging, SAR is time
inefficient. Therefore, another consideration to achieve large aperture is to use MIMO radar.

MIMO radar exploits spatial diversity of transmit and receive antennas to synthesize a
large aperture. A MIMO radar with M transmit antennas and N receive antennas results in a
large virtual array with M×N elements [5]. Compared with the traditional linear array system,
fewer antennas are used to get the same size aperture. Therefore, MIMO radar can achieve
high cross-range resolution by cost-effectively increasing the virtual antennas. Thus, it is an
excellent choice to use MIMO radar for high-resolution imaging.

MIMO radar has been widely used in short-range imaging applications, such as security
imaging, nondestructive testing, concealed weapon detection, and through-the-wall imaging
[6]–[9]. However, the possible high grating lobes and sidelobes of its effective sparse ar-
ray would significantly degrade the quality of the images. Generally, traditional linear array
radar requires the element spacing smaller than a half wavelength to prevent the grating lobes.
However, there is no limit of the element spacing for the MIMO array to make full use of the
sparsity. Thus, the grating lobes may occur, which will produce unwanted ghost targets. Fur-
thermore, high sidelobes would submerge the weak targets. All these artifacts will degrade the
image quality. Therefore, many methods are proposed to suppress the sidelobes and grating
lobes.

1.2 Literature Review
The traditional method to suppress the sidelobe and grating lobe level is to apply a non-
rectangular weighting function on the aperture or the data in the frequency domain. How-
ever, any weighting function is a compromise between the low sidelobe level and the narrow
mainlobe resolution.

One idea is based on the pre-setup of the signal or the array. Zhuge [10] applied ultra-
wideband technology with the fractional bandwidth greater than 100% to get high resolution
and reduce the sidelobes and grating lobes. Unfortunately, it has a high requirement of band-
width that is not suitable for the more general situation. Tu et al. [11] and Ge et al. [12] utilized
the array design method by exploiting the difference of the images with two sub-array to sup-
press the sidelobes and gratin globes. Furthermore, Tu. combines with the cross-correlation
weighting to get a better suppression effect. However, this method is based on the unique array
topology, and the suppression effect is determined by how different the two images are. Tian
et al. [13] proposed a design method of MIMO array by increasing the antennas to compensate
for the mainlobe spreading due to applying the window function on the aperture. However,
this method is not suitable in real life for a well-designed radar.
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Another idea is based on the processing of the data or the image. The CLEAN method
is applied for sparse MIMO array [14] by iteratively subtracting the point spread function of
the strong targets from the original image. However, iteration results in complicated imple-
mentation and large computation. Liu et al. [15] proposed a weighting method by finding
the optimal weighting coefficient on each channel data based on convex optimization. How-
ever, although it provides a better sidelobe suppression effect than the traditional weighting
function, it generates a high computation load, and the mainlobe resolution is still reduced.
Furthermore, a kind of weighting method is based on the image and back-projection (BP)
imaging algorithm. The coherence factor (CF) method [16], [17] is an amplitude weighting
method with the weighting coefficient CF to suppress the sidelobe and grating lobe. The co-
herence factor is the ratio of the coherent power over the incoherent power for a point in the
image. For the main lobes, the CF ratio is the unity, while for the sidelobes and the grating
lobes, due to the incoherence of data channels, the CF ratio is smaller than 1. Therefore, it
can reduce the sidelobes and grating lobes level. Furthermore, to make use of the phase in-
formation, the phase coherence factor (PCF) method [18] is proposed by J. Camacho et al.
Moreover, the PCF method combined with a dual apodization method [19] is proposed to get
better suppression effect both in cross-range and range directions. The PCF is related to the
standard deviation of the complex exponential term. For the mainlobe, the standard deviation
is zero, and the PCF equals 1. For other regions, the standard deviation increases, and the PCF
decreases. However, the PCF has complicated computation. In addition, a sign coherence
factor method is proposed by Liu [20] to reduce the computation load. However, it requires
a low-pass filter to smooth the transitions of the sign. Though all CF-related methods show
a good suppression effect, they are only as of the improvement of the BP algorithm and the
peak amplitude of the targets would attenuate.

The non-linear multi-apodization method has been applied for MIMO array imaging in
recent years. Zhu et al. [21] proposed a grating lobe suppressing method by utilizing a
combination of zero migration and multi-apodization. However, this method has a limited
suppressing effect, and sidelobe suppression is not considered. They also proposed another
method of combining the aperture weighting method with multi-apodization technology [22].
However, since it is only using a finite number of weighting functions, the suppression effect
could be improved by considering more weighting functions but with the price of increasing
the processing time.

Therefore, a new method [23] based on spatially variant apodization (SVA) for MIMO
array imaging is proposed. It has no requirements of the array topology and is easy to imple-
ment.

1.3 Research Problem and Objectives
The SVA method is initially used for SAR imagery. By exploiting the spatial property of the
cosine-on-pedestal weighting function, it is easy to implement with three-point convolution.
Compared with the linear weighting function method, it can effectively reduce the sidelobe
level without sacrificing the mainlobe resolution. Therefore, the SVA method is an excellent
choice to improve the image quality.

The SVA method is a non-linear operation that allows each pixel to receive its own weight-
ing coefficient. For SAR imagery, the wavenumber spectrum of each pixel is spatially-invariant,
which means that the direction of the sidelobes for any target in the image is the same. Further-
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more, the window length for the weighting function is also the same. We can directly perform
the SVA method on the SAR imagery to achieve sidelobe suppression. The application of the
SVA method for SAR imagery is mature. Stankwitz. et al. [24] gave a detailed discussion of
the implementation of the SVA method under the integer multiple of Nyquist sampled data.
Smith [25] gave the implementation for the non-integer case. Carlos [26] proposed a more ro-
bust method for the non-integer case, and Ni [27] proposed a modified SVA method. However,
all these are based on SAR imagery.

Zhu [23] proposed the implementation of the SVA method in the cross-range direction
for1-D MIMO array imaging but did not consider the sidelobe suppression in the range direc-
tion. Therefore, the main objectives of this thesis project is to propose a method to implement
SVA both in the cross-range and range direction for 1-D MIMO array imaging, and propose
a method to implement SVA for 2-D MIMO array imaging. Moreover, we try to give the
acceleration approaches of the SVA method for MIMO array imaging to speed up the imple-
mentation.

1.4 Challenges and Contributions
The analysis of the wavenumber spectrum is complicated for a MIMO array due to the trans-
mission and receiving separation, and the wavenumber spectrum is spatially variant for dif-
ferent targets, compared with SAR imaging. Therefore, the SVA method cannot be directly
used due to the variant support width and spatially variant sidelobe direction. However, when
applying the SVA method, it is crucial to determine the window length and align the central
wavenumber to the zero-wavenumber position for each pixel. Therefore, approximating the
wavenumber spectrum of a MIMO array for the SVA implementation is a critical problem.

In the cross-range direction, by utilizing the generalized matched filtering (GMF) imaging
method, we can individually analyze the cross-range wavenumber spectrum of the transmit
array and the receive array, forming a new imaging plane about the cross-range imaging posi-
tions corresponding to the sub-arrays. In this way, the complicated analysis of the wavenumber
spectrum for the MIMO array is simplified, and we can make some approximations to obtain
the support width. Then by compensating the phase term to align the central wavenumber to
the zero-wavenumber position, we can apply the 2-D SVA method in the cross-range direc-
tion. Assume the array centers of the transmit and the receive array are not coincident; there
are two range directions for one target. In one range direction, by analyzing the wavenumber
spectrum, the total wavenumber width consists of the original part and the projection part from
another range direction. Similarly, a phase term is compensated in the space domain. Then
the two 1-D basic SVA method can be applied independently and in parallel.

In this thesis, we propose an approach of the SVA method applied in the range direction
for 1-D MIMO array imaging. Besides, by recovering the phase information, the complete
implementation of the SVA method both in the cross-range and range directions is provided.
The proposed method can achieve a sidelobe reduction of around 20 dB in both directions
and at least 4 dB grating lobe suppression in the cross-range direction without sacrificing the
cross-range and range resolution.

Moreover, with a similar analysis, we also propose a method of SVA for 2-D MIMO
array imaging. The numerical simulation and the experimental validation show that the SVA
method could be effectively performed on 2-D MIMO array imaging to suppress the sidelobes
and grating lobes without spreading the mainlobe.
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Furthermore, we give three acceleration implementations of the SVA method to reduce the
computational time. Under a suitable imaging grid, the three approaches can provide a good
suppression effect with much less computational time.

1.5 Thesis Outline
Chapter 1 begins with the introduction of the background, the motivation of this thesis project.
Next to it, the literature review about sidelobe and grating lobe suppression of MIMO array
imaging is listed. Then the research problem, the main objectives, the challenges, and the
novel contributions are provided.

Chapter 2 introduces and compares the basic SVA method and its variants, the GSVA
method, the RSVA method and the MSVA method for sidelobe suppression. Furthermore,
two other variants, the super-SVA and the 3/4-SVA method for resolution improvement, are
also introduced.

Chapter 3 deals with the 1-D MIMO array imaging. The analysis and implementation of
the BSVA method both in the cross-range and the range direction are drawn. Furthermore, the
acceleration implementation of the SVA method is also provided.

Chapter 4 deals with the 2-D MIMO array imaging. The analysis and implementation of
the BSVA method both in the cross-range plane and the range direction are drawn. Further-
more, the acceleration implementation of the SVA method is also discussed. Moreover, an
experimental validation is provided to verify the suppression performance.

Finally, the conclusion and the future work of the thesis project are discussed in chapter 5.





2
Nonlinear Apodization Method Review

Apodization technique is a sidelobe control method which is initially proposed in optic pro-
cessing to suppress the diffraction sidelobe [24]. The sidelobe control of radar imaging is
analogous to that for optics. Therefore, in radar processing, we borrow the term ‘apodization’
to describe sidelobe suppression. Actually, the apodization method utilizes different window
functions to realize the different combinations of sidelobe suppression level and main-lobe
resolution. It can be divided into the linear apodization method and the non-linear apodization
method. The common linear apodization form is the multiplication of a sinc function by some
non-rectangular window function. As a result, the sidelobe level can be reduced, but the main-
lobe resolution is reduced at the same time. With non-linear apodization, the sidelobe can be
suppressed while maintaining the mainlobe resolution by using different weighting functions.
On account of this remarkable property, it is often used in synthetic aperture radar imagery.
This chapter will introduce several main non-linear apodization methods, especially the gen-
eral spatially variant apodization(SVA) method and its variants. The structure of this chapter is
given as follows. In section 2.1, start with introducing a dual apodization method that chooses
two different weighting functions and then expands to the multi-apodization method. In sec-
tion 2.2, the basic SVA method and its variants for sidelobe suppression will be introduced.
The SVA method for resolution improvement will be introduced in section 3.3. A summary of
the non-linear apodization method is given in section 3.4.

2.1 Dual and Multi-apodization
Considering a family of 2Ni + 1 finite generalized symmetric frequency domain cosine-on-
pedestal weighting functions

A( f ) = a+
Ni

∑
i=1

2wi cos
(

2πi
f
fs

)
(2.1)

where a is the normalization parameter, wi is the weighting coefficient which defines a partic-
ular window of the family, fs is the sampling frequency and f is the frequency whose support
region is

[
− f0

2 ,
f0
2

]
.

Let us begin by considering a simple case that the sampling frequency equals the Nyquist

7
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Figure 2.1: Weighting functions with ws = 1 and Ni = 1 under different weighting coefficients

sampling rate, namely fs = f0 and Ni = 1. Then the equation (2.1) is expressed as

A( f ) = 1+2wcos
(

2π
f
f0

)
s.t. 0≤ w≤ 0.5

(2.2)

The weighting function A( f ) ranges from uniform weighting with w= 0 to Hanning weighting
with w = 0.5. Figure 2.1 gives the weighting functions with different weighting coefficients
in frequency domain. The descent speed from the center frequency to the edges is different
with different weighting coefficients. By multiplying with the above weighting function in
the frequency domain under a fixed weighting coefficient, the sidelobe of a sinc function can
be suppressed in the space domain. And this is called amplitude tapering, which is linear
apodization.

Figure 2.2: Weighted results of a sinc function with diffrent weighting coefficients

The weighted result of a sinc function with different weighting coefficients is shown in
Figure 2.2. We can see that the sidelobes have been suppressed while the mainlobe has been
broadened. Moreover, the better suppression of the sidelobe means the wider the mainlobe
broadened. In this case, if we select the minimum absolute value of two weighted results
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at each sample, we can get a new weighted result which has good sidelobe suppression and
reasonable resolution. And this is the critical idea of dual apodization (DA).

Logically, triple apodization selects the minimum absolute value at each sample location
from the weighted results with three different weighting coefficients, and multiple apodization
is with multiple weighting coefficients. Figure 2.3 gives the absolute value of a sinc function
after applying DA method with uniform window function w= 0 and Hanning window function
w = 0.5 and triple apodization with w = 0, w = 0.2 and w = 0.5. From the figure, we can see
that the TA method’s sidelobe suppression performance is better than that of the DA method,
and its resolution is also better.

Figure 2.3: Result of applying DA method with w = 0 and w = 0.5

Furthermore, dual apodization is based on the absolute value at each sample point. Ac-
tually, the imaging result is complex-valued. Therefore, we can separately consider the real
component (I or in-phase) and the imaginary (Q or quadrature) component. In this case, we
can make use of the sign change to get a better sidelobe suppression effect. Suppose the signs
of two weighted results are opposite for the real or imaginary component at one sample point.
In that case, it means that some other weighting coefficient can make this point achieve its
minimum value of zero. Otherwise, if the signs are the same, select the smaller absolute value
of the two. Do this operation both in real and imaginary components, then combine them to
form the final complex-valued weighted result. This kind of algorithm is called complex dual
apodization (CDA). Figure 2.4 compares the results of applying the DA method and the CDA
method. Obviously, the CDA method shows a better sidelobe suppression effect.

2.2 Spatially Variant Apodization for sidelobe suppression
From figure 2.2, we can see that with weighting factors in the interval 0 to 0.5, the sidelobes
between two nulls are above or below zero, which means that for each sample point, it can
achieve its minimum value of zero by finding a proper weighting coefficient in this interval.
Therefore, we can perform the multiple-apodization method. In principle, if we apply enough
weighting functions with w between 0 and 0.5, we can achieve the minimum value of zero
at the sidelobes by taking the min function. However, this procedure is at the expense of
a large computational load. Actually, this process can be explained as finding the optimal
weighting coefficient w for each sample point. Therefore, the key is to find a method to find



10 2. Nonlinear Apodization Method Review

Figure 2.4: Results of applying DA and CDA method with w = 0 and w = 0.5

the proper weighting coefficient for each sample point adaptively. Fortunately, according to the
Fourier transform, the multiplication in the frequency domain is equivalent to the convolution
in the time domain. Therefore, the cosine-on-pedestal weighting function can be implemented
effectively using a three-point kernel in the space domain. Moreover, the optimal weighted
result of each sample point can be calculated by solving a minimization problem subject to
some conditions about the weighting factor w. From Figure 2.2, we can see that for different
sample points, the optimal weighting coefficient may be different. And this is why we call this
method a spatially variant apodization method.

Taking inverse Fourier transform of the weighting function (2.1) with respect to the fre-
quency, it can be expressed in discrete space domain as

a[n] = aδ [n]+
Ni

∑
i=1

wi

(
δ

[
n+ i

⌊
fs

f0

⌋]
+δ

[
n− i

⌊
fs

f0

⌋])
(2.3)

where n is the sampling point in the space domain, and b c means rounding down. Denote the
unweighted image as g(m), where m is the index of the pixel, and denote

⌊
fs
f0

⌋
as integer l.

When m = n, the weighted result can be expressed as

g′[m] = g[m]⊗a[m]

= ag[m]+
Ni

∑
i=1

wi(m)(g[m+ i · l]+g[m− i · l])
(2.4)

Where ⊗ is the convolution operator and w(m) is the weighting coefficient for pixel m de-
pendent on the pixel location. SVA method reduces the sidelobe level by choosing w(m) to
minimize the weighted result g′(m). Since the problem is degenerate, some constraints need
to be imposed [25].

Considering the frequency f in the weighting function (2.1) having the support over the
region − f0

2 ≤ f ≤ f0
2 , then equation (2.1) can be formulated as

A( f ) = a+
Ni

∑
i=1

2wi cos
(

2πi
f
fs

)
× supp( f ) (2.5)
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with

supp( f ) =

{
1, − f0/2≤ f ≤ f0/2
0, others

(2.6)

Taking inverse Fourier transform on the above function and express it in the space domain (in
continuous form), the impulse response of equation (2.5) is

I(x) = asinc(x)+
Ni

∑
i=1

wi [sinc( f0x+ ilws)+ sinc( f0x− ilws)] (2.7)

with sinc(x) is defined as

sinc(x) =
sin(πx)

πx
(2.8)

and ws represents the oversampling ratio

ws =
f0

fs
(2.9)

Two constraints will be imposed to avoid invalid window function. The first constraint is about
unit gain:

I(0) = 1 (2.10)

The second constraint is the monotonicity of the window function, which can be reduced to
require the positive edge of the window and the maximum at the center:

A( f0/2)≥ 0
A(0)≥ A( f0/2)

(2.11)

2.2.1 Basic Spatially Variant Apodization
1-D basic SVA method

The basic SVA (BSVA) method considers the three-tap window function with Ni = 1 and
requires the data sampled at an integer multiple of the Nyquist frequency, namely fs = l · f0,
where l is an integer. The constraint of the BSVA method is the simplest by ignoring the
influence of l, namely considering l = 1 and the constraints (2.10) and (2.11) are simplified
as:

a = 1 (2.12)
0≤ w≤ 0.5 (2.13)

Then the cosine-on-pedestal weighting function is in the form of the equation (2.2). The
weighted result of the image is

g′B[m] = g[m]+w(m)(g[m+ l]+g[m− l]) (2.14)

The optimal result of the above function can be obtained by minimizing g′B[m] (2.14) subject
to the constraints (2.13):

minimize
w(m)

∣∣g′B[m]
∣∣2

s.t. 0≤ w(m)≤ 0.5
(2.15)
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The above optimization problem can be solved by setting equal to zero the partial derivative
of |g′B[m]|2 with respect to w(m)

∂ |g′B [m]|2

∂w(m)
= 0 (2.16)

Since the image result g[m] is of complex values, there are two approaches to consider.

• I and Q jointly
Considering the complex-value case g[m] = I[m]+ jQ[m], the result of the equation (2.16)
is

wu(m) =−
{

1
2
· g[m]

g[m− l]+g[m+ l]

}
−
{

1
2
· g[m]

g[m− l]+g[m+ l]

}∗
(2.17)

=−Re
[

g[m]

g[m− l]+g[m+ l]

]
(2.18)

Since w(m) is constrained in the interval [0,1/2], let w(m) = 0 for wu(m)< 0, w(m) = 1/2
for wu(m)> 1/2. The final image g

′
B[m] can be expressed as

g′B[m] =


g[m], wu(m)< 0
g[m]+wu(m) · (g[m− l]+g[m+ l]) , 0≤ wu(m)≤ 1/2
g[m]+ 1

2 (g[m− l]+g[m+ l]) , wu (m)> 1/2
(2.19)

• I and Q separately
Let g[m] is either the real(I) component or the imaginary(Q) component of the complex-
valued image, the result of the equation (2.16) is

w(m) =
−g[m]

g[m− l]+g[m+ l]
(2.20)

Considering wu(m) = 0 for w(m)< 0, wu(m) = 1/2 for w(m)> 1/2 again, the final image
g′B[m] can be expressed as

g′B[m] =


g[m], wu(m)< 0
0, 0≤ wu(m)≤ 1/2
g[m]+ 1

2 (g[m− l]+g[m+ l]) , wu(m)> 1/2
(2.21)

Then the final complex-valued weighted result of the image is the combination of the weighted
real component and the imaginary component

g′out [m] = g′R[m]+ jg′I[m] (2.22)

where the subscript R and I represent the real result and imaginary result respectively.

From Figure 2.5, we can see that considering I and Q separately yields better sidelobe sup-
pression. Therefore, in the following content, we will focus on the case of I and Q separately.
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Figure 2.5: Results of BSVA under I/Q separately and I/Q jointly

Multi-dimensional basic SVA Method

• Multi-dimensional sequentially
If the sidelobes along k dimensions need to be suppressed, we can apply the 1-D BSVA
method along with each direction one by one. However, this approach has a drawback. After
applying the BSVA method on the first dimension, the phase relations of the data change,
and applying BSVA in the next dimension is not on a properly Nyquist sampled data. This
will result in a worse suppression effect. A better consideration is that after performing
the BSVA method on the first dimension, remain the new magnitude but recover the phase
information. This is to make sure that the previous operation would not influence the other
dimensions to apply BSVA method. The reason is SVA method relies on the relations of
phases.

• Multi-dimensional simultaneously
considering k dimensions need to apply the BSVA method. Then the cosine-on-pedestal
weighting function is

A( f ) =
k

∏
i=1

[
1+2wi cos

(
2π

f
fs

)]
s.t. 0≤ wi ≤ 0.5

(2.23)

Taking inverse Fourier transform on the above weighting function and convolved with raw
data, the weighted result can be expressed as

g′[m1,m2, ...,mk] = g[m1,m2, ...,mk]⊗ (δ [m1]+w1(δ [m1− l]+δ [m1 + l]))⊗
...⊗ (δ [mk]+wk(δ [mk− l]+δ [mk + l]))

(2.24)

The optimal weighted result is still to minimize the problem |g′[m1,m2, ...,mk]|2 subject to
the constraints:

minimize
wi

∣∣g′[m1,m2, ...,mk]
∣∣2

s.t. 0≤ (w1,w2, ...,wk)≤ 1/2
(2.25)

There are several ways to solve the above problem.
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– Multi-dimensions coupled
considering all the dimensions coupled, then w1 = w2 = ... = wk and denote them as w.
Still considering I/Q separately, the steps to perform the BSVA method for considering
coupling are as follows.

1) Compute w0 obtained by setting equation (2.24) equal to zero. We will get two w0. If
the two are real-valued and either one is in the interval [0,1/2], then g′[m1,m2, ...,mk] =
0;

2) Otherwise, compute we obtained by setting equal to zero the partial derivative of
|g′[m1,m2, ...,mk]|2 with respect to w. Compute g′[m1,m2, ...,mk] with w= {0,1/2,we}
and select the one with minimum absolute value.

– Multi-dimensions uncoupled
Actually, the constraints form a multi-dimensional polyhedron and g′[m1,m2, ...,mk] is

linear for each wi. Therefore, the maximum value and the minimum value of g′[m1,m2, ...,mk]
occur at the vertices of the polyhedron. And since g′[m1,m2, ...,mk] is monotonic for each
wi, it goes through zero if and only if it has a sign-change within the interval. Then the
steps of this approach are as follows.

1) Compute g′[m1,m2, ...,mk] for each vertices of the polyhedron composed of all the wi.
If any of the results have the opposite sign with g[m1,m2, ...,mk], then set g′[m1,m2, ...,mk] =
0;

2) Otherwise, select the one with minimum absolute value from the results at all ver-
tices.

– Multi-dimensional independently and in parallel
Except considering the dimensions coupled and uncoupled, we can perform BSVA method
on each dimensional data independently and in parallel and then take the minimum of
these results. The steps of this approach are as follow.

1) Compute g′[m1,m2, ...,mk] for (w1, ...,wi...,wk) = (0, ...,1/2, ...0) where i is from
1 to k. If any of the results have the opposite sign with g[m1,m2, ...,mk], then set
g′[m1,m2, ...,mk] = 0;

2) Otherwise, select the oe with minimum absolute value from all the results.

Next, we will take the 2D implementation of the BSVA method as an example to go into
details of the dimensional simultaneous case.

Considering two dimensions to apply BSVA method. The weighting function (2.23) be-
comes

A( f ) =
[

1+2w1 cos
(

2π
f
fs

)]
·
[

1+2w2 cos
(

2π
f
fs

)]
s.t. 0≤ w1 ≤ 0.5, 0≤ w2 ≤ 0.5

(2.26)

Then after taking inverse Fourier transform on the above function and convolevd with the
unweighted data, the equation (2.24) becomes

g′[m1,m2] =g[m1,m2]⊗ (δ [m1]+w1(δ [m1− l]+δ [m1 + l]))
⊗ (δ ([m2]+w2(δ [m2− l]+δ [m2 + l]))

=g[m1,m2]+w1w2P+w1Q1 +w2Q2

(2.27)
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with

Q1 = g[m1− l,m2]+g[m1 + l,m2]

Q2 = g[m1,m2− l]+g[m1,m2 + l]
P = g[m1− l,m2− l]+g[m1− l,m2 + l]+g[m1 + l,m2− l]+g[m1 + l,m2 + l]

(2.28)

The minimization problem (2.25) becomes

minimize
w1,w2

∣∣g′[m1,m2]
∣∣2

s.t. 0≤ w1 ≤ 1/2, ≤ w2 ≤ 1/2
(2.29)

– 2-D coupled
Two dimensions coupled means w1 = w2 = w. Then the weighted image (2.27) becomes

g′[m1,m2] = g[m1,m2]+w2P+wQ (2.30)

with
Q = Q1 +Q2 (2.31)

The zeros of g′[m1,m2] can be found by setting it equal to zero:

w01 =
−Q+

√
Q2−4P ·g[m1,m2]

2P

w02 =
−Q−

√
Q2−4P ·g[m1,m2]

2P

(2.32)

If Q2− 4Pg[m1,m2] < 0, then w01 and w02 are complex values and there is no zeros for
g′[m1,m2]. Then by setting the partial derivative of the problem (2.29) with respect to w
equal to zero, we can get its local extremum at we =

−Q
2P .

Then the ultimate weighted result of this case can be expressed as

g′[m1,m2] = g′R[m1,m2]+ j ·g′I[m1,m2] (2.33)

with

g′R[m1,m2] =

{
0, if Q2−4Pg[m1,m2]> 0 & 0≤ w01 or w02 ≤ 1/2
min{|g′R[m1,m2]| s.t. w ∈ Γ} , others.

(2.34)

g′I[m1,m2] =

{
0, if Q2−4Pg[m1,m2]> 0 & 0≤ w01 or w02 ≤ 1/2
min{|g′I[m1,m2]| s.t. w ∈ Γ} , others.

(2.35)

where Γ = {0,1/2,we}.
– 2-D uncoupled

Two dimensions uncoupled means that the weighting coefficients can be different. Then
the weighted result is like the function (2.27) and the ultimate result of the minimization
problem (2.29) is

g′[m1,m2] = g′R[m1,m2]+ j ·g′I[m1,m2] (2.36)
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with

g′R[m1,m2] =

{
0, if g′R[m1,m2] ·g[m1,m2]< 0 s.t. (w1,w2) ∈ Γ

min{|g′R[m1,m2]| s.t. (w1,w2) ∈ Γ} , others.
(2.37)

g′I[m1,m2] =

{
0, if g′R[m1,m2] ·g[m1,m2]< 0 s.t. (w1,w2) ∈ Γ

min{|g′I[m1,m2]| s.t. (w1,w2) ∈ Γ} , others.
(2.38)

where Γ = {(0,0),(0,1/2),(1/2,0),(1/2,1/2)}.
– 2-D independently and in parellel

In this case, since we treat the two dimensions independently and in parallel, the weighted
image can be expressed as

g′1[m1,m2] = g[m1,m2]+w1(g[m1− l, m2]+g[m1 + l, m2])

g′2[m1,m2] = g[m1,m2]+w2(g[m1, m2− l]+g[m1, m2 + l])
(2.39)

The two functions can be combined into one:

g′[m1,m2] =g[m1,m2]+w1(g[m1− l,m2]+g[m1 + l,m2])

+w2(g[m1,m2− l]+g[m1,m2 + l])
(2.40)

We can see that the weighted image function is the same as that of the case I/Q separately
and uncoupled. And the result is also similar to that of the uncoupled case, but considering
Γ different by ignoring the term (w1,w2) = (1/2,1/2). Therefore, the suppression effect
of the case I/Q separately and uncoupled is better than the case independently and in
parallel.
And from the article [24], we know that considering the suppression performance and the
computational efficiency, the best choice for 2-D BSVA method is the case I/Q separately
and uncoupled.

The BSVA method requires that it be performed on an integer of multiple Nyquist sampled
data. If the data is not sampled at an integer multiple Nyquist frequency, it must be upsampled
at an integer rate. However, this process will increase the computation load. Therefore, a more
general variant of SVA will be introduced, which can be implemented on any over-sampled
data.

2.2.2 General Spatially Variant Apodization
The GSVA method [25] is also considering the three-tap window function with Ni = 1, but
there is no requirement for the sampling rate. The constraints (2.10) and (2.11) are simplified
as

a = 1−2wsinc(l ·ws) (2.41)
w≥ 0 (2.42)

w · [sinc(l ·ws)− cos(2π ·ws)]≤
1
2

(2.43)

To get a valid upper limit of w in the equation (2.43), there is a hidden limitation of oversam-
pling rate that it should not be over the two times of Nyquist frequency; otherwise, we can not
get valid weighting coefficients.
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To extend to the more general case of any sampling rate, we can regard the sampling rate
as the oversample of the integer multiple of the Nyquist rate. Denote the sampling frequency
as fs, the Nyquist frequency as fNy. The l′ times of Nyquist frequency can be expressed as

fin = l′ · fNy (2.44)

where l′ is an integer. Since we consider the oversampling case, the real sampling freqeuncy
fs should be bigger than fin

fs > fin (2.45)

Inserting the equation (2.44) into the above function, we can get

l′ ≤
⌊

fs

fNy

⌋
(2.46)

And since the real sampling freqeuncy fs should be smaller than the double of fin, we can get

fs < 2 · fin (2.47)

Inserting (2.44) into the above function, we can get

l′ ≥
⌈

fs

2 fNy

⌉
(2.48)

The operators b c and d e represent rounding down and rounding up respectively. Then l′ could
be any integer from

⌈
fs

2 fNy

⌉
to
⌊

fs
fNy

⌋
.

Then the equivalent oversampling ratio ws can be expressed as

w′s =
fin

fs

=
l′ · fNy

fs

(2.49)

The equivalent oversampling multiple is

k =
1

w′s
(2.50)

where k is in the interval (1,2).
Then the constraints of GSVA method can be expressed as

a = 1−2wsinc(ws) (2.51)

0≤ w≤ πw′s
2cos(πw′s)[tan(πw′s)−πw′s]

(2.52)

And the weighted result of the image is

g′G[m] = (1−2w(m)sinc(w′s))g[m]+w(m)
(
g[m+ l′]+g[m− l′]

)
= g[m]+w(m)

(
−2sinc(w′s)g[m]+g[m+ l′]+g[m− l′]

) (2.53)
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(a) (b)

Figure 2.6: Result of applying the GSVA method on the non-integer Nyquist sampled data with fs = 14.8 f0.
(a) Absolute value, (b) dB.

The GSVA method is performed by minimizing the weighted result (2.53) subject to the con-
straint (2.52):

minimize
w(m)

∣∣g′G[m]
∣∣2

s.t. 0≤ w≤ πw′s
2cos(πw′s)[tan(πw′s)−πw′s]

(2.54)

Calculate the weighted image g′G[m] for w= 0 and w=wmax which are the lower and the upper
limit in the equation (2.54) respectively and denote them as g′G1

[m] and g′G2
[m]. The solution

of the above optimization problem can be expressed as

g′G[m] =

{
0, if g′G1

[m] ·g′G2
[m]< 0

min{|g′G1
[m]|, |g′G2

[m]|}, others.
(2.55)

What should be noted is that When fs is over three times of fNy, l′ could be multiple values
which result in different oversampling ratio w′s and multiple choices for the implementation
of the GSVA method. The weighted result has some difference for different choice. Later, we
will give the explanation for this according to the simulation result.

We use a single matched filtering LFM signal sampled at 14.8 multiple of fNy to do the
simulation. Then l′ = [8,14]. Figure 2.6 gives the simulation results before and after applying
the GSVA method with all possible w′s. Obviously, the GSVA method can suppress the side-
lobes effectively without expanding the resolution. But there are some residual sidelobes that
can not be completely eliminated and with bigger k, the residual sidelobe level goes higher.
Although they are with very low intensity, but may appear as artifacts in the output imagery.
Therefore, a robust SVA algorithm[26] is presented by Carlos Castillo-Rubio to improve the
suppression performance.

2.2.3 Robust Spatially Variant Apodization
The idea for the robust SVA method is to increase the degree of freedom of the cosine-on-
pedestal weighting function by extending it from three tap to five tap. Considering Ni = 2 in
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the equation (2.5) and it becomes

A( f ) = a+2w1 cos
(

2π
f
fs

)
+2w2 cos

(
2π

2 f
fs

)
(2.56)

Then equation (2.4) of RSVA method can be expressed as

g′R[m] = g[m]+w1
(
−2sinc(w′s)g[m]+g[m+ l′]+g[m− l′]

)
+w2

(
−2sinc(w′s)g[m]+g[m+2l′]+g[m−2l′]

) (2.57)

Similarly, the result of equation (2.57) can be obtained by solve the minimization problem
|g′R[m]|2 subject to some constraints. Still considering the first constraint in equations (2.10),
we can get

a = 1−2w1sinc(w′s)−2w2sinc(2w′s) (2.58)

The second constraint now should satisfy{
A( f )≥ 0, f ∈ [− f0/2, f0/2]
dA( f )

d f < 0, f ∈ [0, f0/2]
(2.59)

Inserting (2.56) and (2.58) into the equation (2.59), we can get

1−2
(

sinc(w′s)− cos
(

2π f
fs

))
·w1−2

(
sinc(2w′s)− cos

(
4π f

fs

))
·w2 < 0,

s.t. f ∈ [− f0/2, f0/2]
(2.60)

1−2
(

sinc(w′s)+
2π

fs
sin
(

2π f
fs

))
·w1−2

(
sinc(2w′s)+

4π

fs
sin
(

4π f
fs

))
·w2 < 0,

s.t. f ∈ [0, f0/2]
(2.61)

We can see that the constraints consist of a set of linear inequalities of {w1,w2}. And the valid
weighting coefficient pairs lie in the polygon bounded by these straight lines in the w1−w2
plane. The task is to find the optimal weighting coefficients w1 and w2 in the polygon that can
achieve the minimum value of g′R[m] at each imaging pixel. Since the weighted result g′R[m]
is linear for w1 and w2, the extrema can be obtained when {w1,w2} is at the vertex of the
polygon. If the weighted result at any two vertices is of different signs, there must be a pair of
{w1,w2} in the polygon that can make g′R[m] achieve the minimal value of zero. Otherwise,
choose the one of minimum magnitude from the weighted results at all the vertices. However,
this means that we should find out all the vertices. Moreover, the computation load will get
very high. Therefore, to implement the RSVA method fast, we can do some relaxation on the
constraints. After doing some mathematical manipulation, the constraints (2.60) and (2.61)
are relaxed to equation (2.11) with some extra restrictions for wi:

0≤ w1 ≤ 1 (2.62)
0≤ w2 ≤ 1 (2.63)
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Figure 2.7: The flowchart of Robust SVA method

Then the whole constraints for the robust SVA method can be expressed as

w2 ≥−w1
cos(πw′s)−1

cos(2πw′s)−1
(2.64)

w2 ≤
0.5

sinc(2w′s)− cos(2πw′s)
−w1

sinc(w′s)− cos(πw′s)
sinc(2w′s)− cos(2πw′s)

(2.65)

0≤ w1 ≤ 1 (2.66)
0≤ w2 ≤ 1 (2.67)

Now, we can solve the minimization problem |g′R[m]|2 subject to the constraints of equa-
tions (2.64) to (2.67). The flowchart of the robust SVA method is shown in Figure 2.7. Still
do the simulation on the 14.8 multiple oversampled signal, the weighted result after applying
the RSVA method is given in Figure 2.6 with all possible w′s. Comparing it with Figure 2.6,
the residual sidelobes are canceled out. Furthermore, the mainlobe resolution is improved, but
the mainlobe energy is a little bit suppressed. Observing the enlarged part in Figure 2.8(a), we
can see that with different w′s, the mainlobe energy suppression is different, so the improved
resolution is. In this case, the best choice is with k = 1.35 to get the best sidelobe suppression,
best mainlobe resolution, and most minor mainlobe energy suppression. However, this does
not mean that we can get the best mainlobe resolution and most minor mainlobe energy sup-
pression at the same time. Figure 2.9 gives the simulation result with the same signal sampled
at 19.7 multiple of fNy. Observing the enlarged part in Figure 2.9(a), we can see that the side-
lobe suppression is still good, and with k = 1.41, we can get the best mainlobe resolution with
the worst mainlobe energy. Furthermore, observing Figure 2.8(a) and 2.9(a), we can see that
the mainlobe energy suppression is very small and can be ignored. Therefore, choosing the
ws with the best mainlobe resolution is much more critical for the RSVA method. According
to the simulation, there is a simple conclusion that for fixed Nyquist frequency and sampling
frequency, in general, when l′ is equal to the middle integer of its interval, the mainlobe reso-
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(a) (b)

Figure 2.8: Result of applying the RSVA method on the non-integer Nyquist sampled data with fs = 14.8 fNy.
(a) Absolute value, (b) dB.

(a) (b)

Figure 2.9: Result of applying the RSVA method on the non-integer Nyquist sampled data with fs = 19.7 fNy.
(a) Absolute value, (b) dB.

lution can get to the best.
Actually, during the implementation of the RSVA method, the vertices of the polygon

bounded by the constraints are obtained by calculating the intersections of any two straight
lines of {w1,w2} in the equations (2.64) to (2.67). However, some intersections are not in
the polygon. When g[m] is in the mainlobe, and the minimum value from the weighted result
g′R[m] at all the vertices is smaller than the original one, the mainlobe energy will be reduced.
Moreover, the RSVA method requires a strict sinc kernel. Otherwise, the mainlobe may dete-
riorate rapidly, and the target will disappear due to the relaxation of the constraints. Therefore,
Chong Ni, et al. presented a modified SVA (MSVA) method based on the RSVA method.

2.2.4 Modified Spatially Variant Apodization
The MSVA method discusses different situations of the polygon to determine the valid ver-
tices. For example, figure 2.10(a) and 2.10(b) show two possible polygons. Cons1 and Cons2
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in the figures are the straight lines of taking the equality of the equation (2.64) and (2.65)
respectively. The square bounded by two dashed lines shows the polygon of constraints (2.66)
and (2.67).

Case 1 is under the situation that k = 1.35, while case 2 is with k = 1.41. The shadow
shows the valid polygon of the weighting coefficient pair {w1,w2}. The orange points are the
vertices of the valid polygon, while the purple points are the invalid intersections. The two
figures show that the shape of the valid polygon is determined by the sampling frequency and
the Nyquist frequency. Therefore, by discussing different cases, we can determine the valid
intersections. This process is linear programming. And this method is called the modified
SVA method.

The weighted result of applying the MSVA method on the data oversampled at 14.8 times
of Nyquist sampling frequency is shown in figure 2.11. Comparing it with the weighted re-
sult of the RSVA method shown in Figure 2.8, we can see that the mainlobe energy is overall
improved, although it is still a little bit reduced due to the relaxation of the constraints. And

(a) (b)

Figure 2.10: The valid polygon of the weighting coefficients. (a) Case 1 with k = 1.35 for fs = 14.8 fNy, (b)
Case 2 with k = 1.41 for fs = 19.7 fNy

(a) (b)

Figure 2.11: Result of applying the MSVA method on the non-integer multiple Nyquist sampled data with
fs = 14.8 fNy. (a) Absolute value, (b) dB.
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(a) (b)

Figure 2.12: Result of applying the MSVA method on the non-integer multiple Nyquist sampled data with
fs = 19.7 fNy. (a) Absolute value, (b) dB.

(a) (b)

Figure 2.13: Comparison of applying different methods on the non-integer multiple Nyquist sampled data with
fs = 14.8 fNy: the best choice of GSVA with k = 1.06; the best choice for RSVA, and MSVA with k = 1.35. (a)

Absolute value, (b) dB.

there is no mainlobe resolution improvement, but it keeps unchanged compared with the orig-
inal one. Still, we also give the simulation result of the RSVA method applied on the LFM
signal sampled at 17.9 times of fNy, which is shown in Figure 2.12. According to large sim-
ulation for different fs, we can simply conclude that when l′ takes the median value of its
interval, the mainlobe energy is the best and almost equal to the original value.

Observing Figure 2.8 and 2.11, we can see that the best choice of RSVA and MSVA method
for signal sampled at fs = 14.8 fNy is with k = 1.35. Similarly, observing Figure 2.9 and 2.12,
the best choice for fs = 19.7 fNy is with k = 1.41. The comparison of the GSVA, RSVA and
MSVA method for the two cases is shown in Figure 2.11and 2.12 .

In conclusion, the amplitude weighting, BSVA, GSVA, RSVA, and MSVA methods all
work for sidelobe suppression. The amplitude method has a limited suppression effect mean-
while broadening the mainlobe . The BSVA method can suppress the sidelobe completely
without broadening the mainlobe but with the condition that the data should be sampled at an
integer multiple of the Nyquist sampling frequency. Otherwise, the data must be up-sampled
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(a) (b)

Figure 2.14: Comparison of applying different methods on the non-integer multiple Nyquist sampled data with
fs = 19.7 fNy: the best choice of GSVA with k = 1.04; the best choice for RSVA, and MSVA with k = 1.31. (a)

Absolute value, (b) dB.

Figure 2.15: Comparison of different weighting methods

to an integer rate. To implement the SVA method at any sampling rate, the GSVA method was
proposed, but some residual sidelobes exist. The RSVA method considers a more robust situ-
ation to solve the residual sidelobe by expanding 3-tap SVA to 5-tap. It gives better sidelobe
suppression performance than the GSVA method, and with some ws, it can improve the main-
lobe resolution. However, it may reduce the mainlobe energy. In addition, the performance of
the RSVA method relies on the information of the strict sinc kernel. Otherwise, the target may
be disappearing due to the relaxed constraints. Therefore, based on the RSVA method, the
MSVA method was proposed to maintain the mainlobe energy and give a more robust result.
The relationships and characteristics of these methods are shown in Figure 2.15.
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2.3 Spatially Variant Apodization for resolution improvement
Besides sidelobe suppression, the SVA method also can be applied to improve the resolution.
This section will simply introduce two variants of the SVA methods that work for resolution
improvement.

2.3.1 Super Spatially Variant Apodization
The super-SVA method improves the resolution for SAR imagery by extrapolating sparse sub-
apertures into a full aperture without requiring any prior knowledge of scene content or point
scatterer modeling [28], [29]. Actually, the super-SVA method is an iterative process of the
SVA method [30]. From section 2.2, we know that after applying the SVA method, all the
sidelobe in the image can be removed ideally and only maintain the mainlobe. Then perform
an inverse Fourier transform on the SVA image. In this case, the frequency band is extended
compared with the original. The next step is to apply inverse weighting and truncation to keep
the total extrapolation below 60% of the original spectrum [31]. This is to avoid singularity
over the extrapolated aperture. Then, replace the center portion with the original signal. Now,
the new frequency spectrum is formed, and applying Fourier transform, a new sinc function
with a narrower mainlobe can be obtained. Applying the SVA method again, the sidelobe
suppressed and narrower mainlobe image can be achieved.

Furthermore, the above procedure can be repeated several times, and finally, we will get
a super-resolved image. This is called the super-SVA method. Stankwitz et al. have pointed
that if the extrapolation process is repeated n times by a factor k, the total extrapolation factor
would be K = kn. Therefore, two iterations with each extrapolation factor k =

√
2 can achieve

an extrapolated aperture by a factor of two [31].

2.3.2 Three Quarter Spatially Variant Apodization
3/4 SVA method is also to improve the contrast and resolution for SAR imagery. The image
data can be represented by an array of complex values. Here, the size of the array before
processing with Fourier transform is referred to as the aperture. Generally, the oversampled
image is preferred. Therefore, the aperture filling ratio is commonly 1/2 or higher, where the
integer represents the amount of the oversampling. A larger integer means more zero filling
and this requires more memory load. Furthermore, since the processing time is three times of
the number of pixels with the SVA method, larger oversampling means a higher computation
load. Therefore, 3/4 SVA is proposed to implement the SVA algorithm efficiently under a
3/4 aperture filling ratio. First, the data should be oversampled by a 4/3 ratio and zero-filled
and then take Fourier transform to the space domain. Next, the data will be convolved with
two 3x3 kernels spaced four samples apart and two samples apart respectively. And make a
decision based on the results. The details of the super-SVA can be found in the patent [32].

2.4 Summary
This chapter introduces the non-linear apodization method from the dual apodization to the
basic spatially variant apodization. The BSVA method is based on the integer multiple of
Nyquist sampled data, and it can improve the image quality by suppressing the sidelobe level
meanwhile maintaining the mainlobe resolution. Moreover, several SVA variants under non-
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integer multiple of Nyquist sampling frequency are summarized and compared. The GSVA
method retains some residual sidelobes, while the RSVA method suppresses the sidelobes
completely and improves the resolution under some conditions. However, the peak magnitude
is a little bit reduced. The MSVA method suppresses the sidelobes completely and maintains
the peak magnitude (ideally) while the mainlobe resolution is not improved. Lastly, we intro-
duce two other SVA variants for resolution improvement. In conclusion, the SVA method is
efficient and easy to implement for high image quality.



3
SVA method for 1-D MIMO Array Imaging

For a MIMO array, the antenna elements are separated as transmitters and receivers that only
transmit or receive signals. The analysis of the wavenumber domain spectrum for a MIMO
array is therefore complicated compared with a uniformly linear array or synthetic aperture
radar. However, when applying the SVA method, it is crucial to analyze the wavenumber
domain spectrum. In addition, to suppress the sidelobe level in the cross-range and range di-
rections, we need to perform wavenumber domain spectrum analysis in each direction. This
chapter analyzes how to realize sidelobe suppression via the basic SVA method on 1-D MIMO
array imaging. In section 3.1, the signal model and the imaging method of the generalized
matched filtering (GMF) will be introduced. In section 3.2, based on GMF method, the anal-
ysis and simulation of the BSVA method in the cross-range direction will be discussed. An
analysis and simulation of the BSVA method in the range direction will be discussed in sec-
tion 3.3. Section 3.4 gives the implementation in both directions. The acceleration approach
is provided in Section 3.5 via the BSVA, GSVA and MSVA methods. The conclusion is drawn
in Section 3.6.

3.1 1-D MIMO Array Imaging
Linear sparse periodic array (SPA) is a commonly used 1-D MIMO array in near-field imaging
application [33], [34]. For a properly configured SPA array with Nt transmit elements and Nr
receive elements, if the transmit spacing is dt , the receive spacing is dr =Nt ·dt . The equivalent
virtual array consists of Nev = Nt ·Nr elements with a spacing of dev = dt . Thus, it can achieve
high resolution with a large virtual aperture. The geometry of SPA is shown in Figure 3.1.

3.1.1 Signal Model
Assume the sparse periodic array is on the x-axis. The position of the mth transmit antenna is
um = (umx,0), the nth receive antenna is vn = (vnx,0). There is a point target P = (xp,yp) in the
spatial x− y domain. Consider the linear frequency modulation (LFM) signal as the transmit
signal and generate the echo signal in frequency domain:

s( f ,um,vn) = ∑
i

δ ( f − fi)e− j2π f τ (3.1)

27
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Figure 3.1: 1-D sparse periodic array

where fi = [ fmin, fmax] is the signal frequency band, τ is the time delay from the target to the
pair T/R antennas. And τ can be expressed as

τ =

(√
(xp−umx)

2 + y2
p +
√
(xp− vnx)

2 + y2
p

)
/c

= rT/c+ rR/c
(3.2)

Then, the echo signal can be denoted as

s(k,um,vn) = ∑
i

δ (k− ki)e− jkrT e− jkrR (3.3)

where k = [kmin,kmax] is the wavenumber under the wide-band measurement, rT and rR are the
distances of the target w.r.t a transmitter and a receiver.

3.1.2 Generalized Matched Filtering
The Generalized matched filtering (GMF) method is a kind of novel imaging method [22]
which is based on the original matched filtering (OMF) method. Assume the position of an
arbitrary imaging pixel is p0 = (x0,y0). The imaging result of OMF can be expressed as

g(x0,y0) = ∑
k

∑
um

∑
vn

s(k,um,vn)e
jk
(√

(umx−x0)
2+y2

0+
√

(vnx−x0)
2+y2

0

)
(3.4)

The phase term is the two-way phase delay of the signal between each pair T/R antennas to
the imaging pixel.

For GMF method, we consider two different pixels at the same height P1(xT ,y0) and
P2(xR,y0). xT and xR denote the azimuth imaging positions corresponding to the transmit
array and receive array, respectively. The imaging result of GMF is about one-way phase
delay w.r.t. a transmitter or a receiver and can be formulated as

g(xT ,xR|y=y0) = ∑
k

∑
um

∑
vn

s(k,um,vn)e jk
(√

(umx−xT )2+y2
0+
√

(vnx−xR)2+y2
0

)
(3.5)

In this case, at each height, the imaging result of the GMF method will form a 2-D plane about
xT and xR as shown in Figure 3.2. The diagonal of the plane, namely xT = xR = x is the imaging
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Figure 3.2: GMF imaging

result of the original matched filtering. Therefore, for the GMF imaging method about MIMO
array, we can separately consider the matching about the transmit array and the receive array.
This is of great benefit for the following wavenumber analysis and the application of the BSVA
method.

3.2 BSVA in the Cross-range Direction
To suppress the grating lobes and side lobes via the BSVA method in the cross-range direc-
tion, we should first analyze the cross-range wavenumber spectrum and then deduce how to
implement the BSVA method. Finally, verify the suppression effect by doing the numerical
simulation in MATLAB.

3.2.1 Cross-range Wavenumber Spectrum Analysis
From the equation (3.5), we know that the imaging result of GMF is the sum related to each
transmitter and receiver for each wavenumber. According to the discrete convolution principle
[35], equation (3.5) can be expressed as

g
(

xT ,xR|y= y0

)
= ∑

k
s(k,xT ,xR)⊗xT e jk

√
x2

T+y2
0⊗xR e jk

√
x2

R+y2
0 (3.6)

where ⊗xT and ⊗xR denote the convolution operation about xT and xR, respectively.
According to the Fourier transform [35], the convolution operation in the space domain is

equal to the multiplication in the wavenumber domain. Thus, the corresponding wavenumber
spectrum of equation (3.6) can be expressed as

G(kum ,kvn) = F{s(k,xT ,xR)} ·FxT

{
e jk
√

x2
T+y2

0

}
·FxR

{
e jk
√

x2
R+y2

0

}
(3.7)

where F represents Fourier transform. Considering the explicit expression of the above
Fourier transform function, denote F{s(k,xT ,xR)}= S(k,kum,kvn) and

FxT

(
e jk
√

x2
T+y2

0

)
=
∫ +∞

−∞

e jk
√

x2
T+y2

0× e− jkumxT dxT

=
∫ +∞

−∞

e− j
(

k
√

x2
T+y2

0−kumxT

)
dxT

(3.8)
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Figure 3.3: GMF of the receiving array

where kum is the wavenumber domain variable of mth transmitter corresponding to the cross-
range imaging domain xT . According to stationary phase principle [36], the above integral
is significantly non-zero at the point where the phase variation rate is zero in the integral xT
domain, namely the phase is stationary. Denote this point as x′T and it can be found by

∂

[
k
√

x2
T + y2

0− kumxT

]
∂xT

∣∣∣∣∣∣∣
xT=x′T

= 0 (3.9)

Then the explicit representation of the integral equation (3.8) can be obtained as follows:

FxT

(
e jk
√

x2
T+y2

0

)
= e− jπ/4 · e

j
√

k2−k2
umy0√

k2− k2
um

(3.10)

Similarly considering stationary phase on xR domain and ignoring the amplitude fluctuation,
the equation (3.7) can be explicitly expressed as

G(kum,kvn) = S (k,kum,kvn)e j
√

k2−k2
umy0e j

√
k2−k2

vny0 (3.11)

with
kum = k · x0−umx√

(x0−umx)
2 + y2

0

(3.12)

kvn = k · x0− vnx√
(x0− vnx)

2 + y2
0

(3.13)

From equation (3.12) and (3.13), we can know that the fraction term is the cosine value of
the angle formed by the point and the mth transmitter or nth receiver concerning the positive
direction of x-axis. Therefore, the value range of the cross-range wavenumber of transmit array
ku and receive array kv are determined by the leftmost antenna uxl and vxl and the rightmost
antenna uxr and vxr concerning the transmit array and receive array respectively. Figure 3.3
shows the angles formed by two different points concerning receive array, which determine the
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minimum and maximum cross-range wavenumber value. Furthermore, since the wavenumber
k is not a single value, therefore, to express the support of kum and kvn , take kc =

1
2(kmin + kmax)

to approximate:

supp(ku) =

1, kc
x0−uxr√

(x0−uxr)
2+y2

0

≤ ku ≤ kc
x0−uxl√

(x0−uxl)2+y2
0

0, otherwise
(3.14)

supp(kv) =

1, kc
x0−vxr√

(x0−vxr)
2+y2

0

≤ kv ≤ kc
x0−vxl√

(x0−vxl)
2+y2

0

0, otherwise
(3.15)

Then the widths of the cross-range wavenumber spectral of ku and kv can be obtained by

Bku(x0) = kc

 x0−uxl√
(x0−uxl)

2− y2
0

− x0−uxr√
(x0−uxr)

2 + y2
0

 (3.16)

Bkv(x0) = kc

 x0− vxl√
(x0− vxl)

2 + y2
0

− x0− vxr√
(x0− vxr)

2 + y2
0

 (3.17)

And the central positions of the two supports can be obtained by

ku,c (x0) =
kc

2

 x0−uxl√
(x0−uxl)

2 + y2
0

+
x0−uxr√

(x0−uxr)
2 + y2

0

 (3.18)

kv,c (x0) =
kc

2

 x0− vxl√
(x0− vxl)

2 + y2
0

+
x0− vxr√

(x0− vxr)
2 + y2

0

 (3.19)

From the above equations, it is clear that the width and the central position of the cross-
range wavenumber spectrum are related to the point position. As shown in Figure 3.4, the
widths of the cross-range wavenumber spectrum of point x0 and x1 w.r.t the receive array are
different, so are central-wavenumber positions. This shows that the cross-range wavenumber
spectrum of MIMO array imaging is spatially variant which is different from SAR imaging.
And this is the key problem need to be solved when applying the BSVA method for MIMO
array imaging.

3.2.2 Implementation
Phase compensation

From chapter 2, we know that the SVA method employs a cosine-on-pedestal weighting func-
tion in the frequency domain. The width of the window is determined by the frequency band,
and the window is symmetric about zero-frequency. From the last section, we know how to
calculate the width of the cross-range wavenumber spectrum. However, for those pixels not
on the center line of the array, the central-wavenumber deviates from the zero-wavenumber
position. Therefore, one crucial step is to shift the cross-range wavenumber spectrum to align
the zero-wavenumber center as shown in Figure 3.5.
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(a) (b)

Figure 3.4: Cross-range wavenumber spectrum concerning receive array. (a) of point (x0,y0), (b) of point
(x1,y0).

(a) (b)

Figure 3.5: Alignment of the central wavenumber. (a) of point (x0,y0), (b) of point (x1,y0).

According to the Fourier transform pair

f (t)e jω0t F⇐⇒ F(ω−ω0) (3.20)

the shift in the frequency domain will lead to an exponential term in the time domain. There-
fore, to apply the 2-D BSVA method in xT −xR plane, we first need to compensate the follow-
ing two exponential terms along the two axes in the space domain to align central-wavenumber
to the zero-wavenumber position.

g(xT )e− jku,c(x0)xT F⇐⇒ G(ku (x0)+ ku,c (x0)) (3.21)

g(xR)e− jkv,c(x0)xR F⇐⇒ G(kv (x0)+ kv,c (x0)) (3.22)

Denote the total compensating phase term as ϕ (xT ,xR), then the compensating exponential
term can be expressed as

e− jϕ(xT ,xR) = e− j[ku,c(x0)xT+kv,c(x0)xR] (3.23)

However, we cannot directly calculate its value, since each point at the same height of x0
will generate an exponential term at the point (xT ,xR). Therefore, considering Fourier series
expansion to approximate, the compensating phase term can be obtained by satisfying the
following conditions: {

∂ϕ(xT ,xR)
∂xT

|xT=x0 = ku,c(x0),
∂ϕ(xT ,xR)

∂xR
|xR=x0 = kv,c(x0).

(3.24)
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Inserting equation (3.18) and (3.19) into the above equation (3.24), the compensating phase
term can be solved as

ϕ (xT ,xR) =
kc

2

[√
(xT −uxr)

2 + y2
0 +

√
(xT −uxl)

2 + y2
0

]
+

kc

2

[√
(xR− vxr)

2 + y2
0 +

√
(xR− vxl)

2 + y2
0

] (3.25)

Then the compensated imaging result can be obtained by

gC

(
xT ,xR|y=y0

)
= g

(
xT ,xR|y=y0

)
e− jϕ(xT ,xR) (3.26)

Implementation of 2-D BSVA method

Now, the central position of the wavenumber spectra for different points are aligned at the
zero-wavenumber position and we can deduce the 2-D BSVA method implementation in the
space domain.

From the introduction of 2-D BSVA method in chapter 2, the cosine-on-pedestal weighting
function can be expressed as

A(ku,kv) =

[
1+2w(xT )cos

(
2πku

Bku(xT )

)]
×
[

1+2w(xR)cos
(

2πkv

Bkv(xR)

)]
s.t. 0 < w(xT )< 0.5, 0 < w(xR)< 0.5

(3.27)

where w(xT ) and w(xR) are weighting coefficients in domain ku and kv, respectively. Taking
inverse Fourier transform(IFT) on the above weighting function yields:

a(xT ,xR) = a(xT )⊗a(xR) (3.28)

with

a(xT ) = δ [xT ]+w(xT )δ

[
xT −

2π

Bku(xT )

]
+w(xT )δ

[
xT +

2π

Bku(xT )

]
a(xR) = δ [xR]+w(xR)δ

[
xR−

2π

Bkv(xR)

]
+w(xR)δ

[
xR +

2π

Bkv(xR)

] (3.29)

where ⊗ denotes the convolution operation. Then the weighted imaging result g̃C can be
expressed as

g̃C

(
xT ,xR|y= y0

)
= gC (xT ,xR)+w(xT )w(xR)P+w(xT )QT +w(xR)QR (3.30)

with

QT = gC

(
xT −

2π

Bku (xT )
,xR

)
+ gC

(
xT +

2π

Bku (xT )
,xR

)
QR = gC

(
xT ,xR−

2π

Bkv (xR)

)
+ gC

(
xT ,xR +

2π

Bkv (xR)

)
P = gC

(
xT −

2π

Bku (xT )
,xR−

2π

Bkv (xR)

)
+ gC

(
xT +

2π

Bku (xT )
,xR +

2π

Bkv (xR)

)
+gC

(
xT −

2π

Bku (xT )
,xR +

2π

Bkv (xR)

)
+ gC

(
xT +

2π

Bku (xT )
,xR−

2π

Bkv (xR)

)
(3.31)
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The task now is to find the minimum value of g̃C subject to its constraints. The constrained
minimization problem is

minimize
w(xT ),w(xR)

∣∣g̃C (xT ,xR|y=y0)
∣∣2

s.t. 0 < w(xT )< 0.5,
0 < w(xR)< 0.5

(3.32)

Considering I/Q separately, take the real component and imaginary component of the com-
pensated imaging result in the problem respectively, and the output is

gout

(
xT ,xR|y=y0

)
= gR

out

(
xT ,xR|y=y0

)
+ jgI

out

(
xT ,xR|y=y0

)
(3.33)

with

gR
out

(
xT ,xR|y=y0

)
=

0, if g̃R
C

(
xT ,xR|y=y0

)
·gR

C (xT ,xR|y=y0)< 0 s.t. (w(xT ),w(xR)) ∈ Γ

min
{

g̃R
C

(
xT ,xR|y=y0

)
||(w(xT ),w(xR)) ∈ Γ

}
, others

(3.34)

gI
out

(
xT ,xR|y=y0

)
=

0, if g̃I
C

(
xT ,xR|y=y0

)
·gI

C (xT ,xR|y=y0)< 0 s.t. (w(xT ),w(xR)) ∈ Γ

min
{

g̃I
C

(
xT ,xR|y=y0

)
||(w(xT ),w(xR)) ∈ Γ

}
, others

(3.35)

where Γ = {(0,0),(0,0.5),(0.5,0),(0.5,0.5)}. Now,we can get the weighted result of xT −xR
plane at height y= y0. Taking xT = xR = x0 which is on the diagonal line, the ultimate weighted
imaging result at point (x0,y0) can be obtained by

gout(x0,y0) = gout

(
x0,x0|y=y0

)
(3.36)

Similarly, taking other diagonal values in the xT − xR plane at height y = y0, the weighted
imaging result of MIMO array imaging at height y = y0 via BSVA method can be obtained.
Repeat the above operations at each height of the imaging area; the ultimate image after sup-
pressing sidelobes and grating lobes can be obtained.

3.2.3 Numerical Simulation
Simulation Setup

The numerical simulation is carried out in MATLAB. The sparse periodic MIMO array con-
sists of nine transmit elements with an interval of 2mm and ten receive elements with an
interval of 18 mm. The structure of the MIMO array is shown in Figure 3.6(a). Seven point
targets are distributed in the x− y plane, and two of them are weak targets with 0.2 times
the signal strength compared with others. The ground truth of the point targets is shown in
Figure 3.6(b). These targets are illuminated by a stepped-frequency continuous wave (SFCW)
signal from 120 GHz to 150 GHz with steps of 150 MHz. The imaging area is 0.3m×0.3m
with 301×301 samples. All the parameters are listed in Table 3.1.
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Table 3.1: Parameters of simulations

Parameters Values

Frequency band f 120 – 150 GHz
Frequency interval d f 150 MHz
Transmit interval dT x 2 mm
Receive interval dRx 18 mm
Number of transmitters NT x 9
Number of receivers NRx 10
Imaging area X [-0.15 0.15]
Imaging area Y [0.3 0.6]
Grid spacing dX 1 mm
Grid spacing dY 1 mm
Image samples 301×301

Targets positions
(0.1,0.35); (0,0.35); (0,0.45); (0.01,0.45);
(0,0.46); (0,0.55); (-0.1,0.55)

Targets power [1; 1; 1; 0.2; 0.2; 1; 1]

(a)

(b)

Figure 3.6: Simulation setup. (a) 1-D MIMO array Topology. (b) Target positions.
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(a)

(b) (c)

Figure 3.7: Imaging results. (a) The original image. (b) Cross-range sidelobe suppression via BSVA method.
(c) Cross-range sidelobe suppression with Taylor weighting on the receiver array and increasing four receivers.

Simulation Result

The simulation result of the original image is shown in Figure 3.7(a). It can be seen that
the grating lobes and the sidelobes are pretty high that the weak target p4 is submerged in
the sidelobe of the strong target p3 and can not be distinguished. After applying the BSVA
method in the cross-range direction as shown in Figure 3.7(b), the grating lobe level and the
sidelobe level are significantly reduced without spreading the mainlobe, and the weak target
p4 can be resolved now.

Here, the aperture weighting method [13] with increasing four receivers to maintain the
main lobe resolution is compared. The result is shown in Figure 3.7(c). Compared with the
original imaging result, this method also shows a good sidelobe suppression effect. However,
there are some residual sidelobes, and the grating lobe level is still pretty high compared with
the SVA result.

In order to clearly illuminate this, the grating lobe level of four grating lobes is listed in
Table 3.2. It shows that the BSVA method has a better grating lobe suppression effect. It has
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Table 3.2: Grating lobe level

Original
Aperture Weighting

+Increasing receivers BSVA

G1 [dB] -34.72 -37.93 -40.18
G2 [dB] -32.18 -35.00 -36.36
G3 [dB] -29.44 -31.18 -37.09
G4 [dB] -32.44 -35.20 -Inf
G5 [dB] -34.95 -37.27 -45.77

Figure 3.8: Slice comparison at y = 0.45m.

reduced by at least 4.18 dB with the BSVA method, compared with 1.74 dB with the aperture
weighting method.

Furthermore, the slice along cross-range direction at height y = 0.45m is given in Fig-
ure 3.8. The result shows that the sidelobe suppression effect of the SVA method is better than
the aperture weighting method. What should be noted is that with the SVA method, the point
p3 is a little bit offset from its true position. The reason is that the SVA method relies on phase
information, and the phase of the weak target is interfered by the strong closely spaced target
destructively or constructively. Then its position may be a little bit offset, or even it may be
split into two.

3.3 BSVA in the Range Direction
From the last section, we implement and verify the suppression effect of the BSVA method
in the cross-range direction. Generally, for the range direction, we add a non-rectangular
window function on the data to suppress the sidelobes. However, the price is sacrificing the
range resolution, which also degrades the imaging quality, especially for close targets in the
range direction.

Observing the imaging figures in the last section, we know that the sidelobes in the range
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(a) (b)

Figure 3.9: Range direction analysis. (a) 1-D MIMO array imaging of p0. (b) Wavenumber spectrum of p0.

direction are along with the directions from the center of the transmit array and receive array
to the target. Therefore, in principle, the BSVA method can also be used in the range direction.
From Figure 3.6(a), we can see that the center of transmit array and receive array are coincident
at zero. Considering more general cases, assume they are located at different positions on the
x-axis as shown in Figure 3.9a. In this section, we start by analyzing the wavenumber spectrum
and then deduce the implementation of the BSVA method in the range direction. Lastly, do
the numerical simulation in MATLAB.

3.3.1 Range Wavenumber Spectrum Analysis
Assume that an arbitrary point p0 is located at (x0,y0). As shown in Figure 3.9(a), the sidelobe
directions of p0 will be along the direction 1 (r1) with angle θ1 and direction 2 (r2) with
angle θ2. The whole wavenumber of the transmit and receive array about p0 is shown in
Figure 3.9(b). What should be noted is that here the wavenumber spectrum is about kx− ky
domain, which is different from the analysis of the cross-range wavenumber spectrum. The
whole wavenumber spectrum of the MIMO array is complicated. However, as we know that
the sidelobe is along the direction from the array center to the point, it makes sense to take the
propagation direction from the array center (shown as the red line segment) to approximate.
Furthermore, the support of the wavenumber spectrum along the range direction is the same
for any point, but with different direction.

The support of wavenumber spectrum of the transmit array and the receive array are ex-
pressed as

supp(kr1) =

{
1, kmin < kr1 < kmax

0, otherwise
(3.37)

supp(kr2) =

{
1, kmin < kr2 < kmax

0, otherwise
(3.38)

where kmin and kmax are the minimum value and maximum value of the wavenumber. kr1 and
kr2 are the wavenumber of the transmit and the receive array with directions determined by θ1
and θ2, respectively. Therefore, the widths of the wavenumber kr1 and kr2 are the same and
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Figure 3.10: Wavenumber projection

denoted as Bkr :
Bkr = Bkr1

= Bkr2

= kmax− kmin

(3.39)

And the central-wavenumber can be obtained by

kr,c = kr1,c

= kr2,c

= (kmax + kmin)/2
(3.40)

Since the wavenumber of the transmit and receive array are not orthogonal, one wavenum-
ber will influence another one. For example, as shown in Figure 3.10, the projection of the
wavenumber of receive array kr2 to the direction r1 will make the total width of wavenum-
ber in the direction r1 longer than Bkr1

. The angle ∆θ formed between the two directions is
determined by

∆θ = |θ2−θ1| (3.41)

Then the total width of the wavenumber spectrum in the direction r1 can be obtained by

B′kr1
= Bkr1

+∆Bkr (3.42)

with
∆Bkr = Bkr2

×|cos(∆θ)| (3.43)

Inserting (3.39) and (3.43) into equation (3.42), we can see that the width of the wavenumber
spectrum along the two sidelobe directions are the same:

B′kr
= Bkr × (1+ |cos(∆θ)|) (3.44)

3.3.2 Implementation
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Phase compensation

According to equation (3.40), it is obvious that the central position of the range wavenumber
spectrum is not at zero-wavenumber position which need to be aligned before applying the
BSVA method.

For an arbitrary point p0 = (x0,y0), the distances to the transmit and receive array center
are

r1 =
√
(x0− xu,c)2 + y2

0 (3.45)

r2 =
√
(x0− xv,c)2 + y2

0 (3.46)

According to the analysis of phase compensation deduced in section 3.2.2, the compensat-
ing phase term can be formulated by

ϕ = kr,c · (r1 + r2) (3.47)

Then the compensated imaging result is

gC(x0,y0) = g(x0,y0)e− jϕ (3.48)

Implementation of 2-D BSVA method

When dealing with the implementation in the cross-range direction, we apply I/Q separately,
2-D simultaneously, and uncoupled BSVA method to suppress the sidelobe and grating lobe
level. For the range problem, since we have two sidelobe directions, in principle, we can also
form a 2-D plane of r1 and r2. However, since the imaging area is constructed according to
Cartesian coordinates and the two range directions are not orthogonal with the axes, the pro-
cess will be complicated to operate. Combining the introduction of the multi-dimensional SVA
method in section 2.2.1, the BSVA method in the two range directions can be implemented
independently and in parallel.

Firstly, we deduce the BSVA implementation in the two range directions independently.
The cosine-on-pedestal weighting function of 1-D BSVA method applying in the range direc-
tions is

A(kr1) = 1+2w1(r1)cos

(
2πkr1

B′kr

)
s.t. 0 < w1(r1)< 0.5 (3.49)

A(kr2) = 1+2w2(r2)cos

(
2πkr2

B′kr

)
s.t. 0 < w2(r2)< 0.5 (3.50)

Doing IFT of the above functions, the weighting function in the space domain are

a(r1) = δ [r1]+w1(r1)δ

[
r1−

2π

B′kr

]
+w1(r1)δ

[
r1 +

2π

B′kr

]
(3.51)

a(r2) = δ [r2]+w2(r2)δ

[
r2−

2π

B′kr

]
+w2(r2)δ

[
r2 +

2π

B′kr

]
(3.52)
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Denote dr =
2π

B′kr
, then the above weighting function can be expressed in Cartesian coordinates:

a1(x0,y0) =δ [x0,y0]+w1(x0,y0)δ [x0−drcos(θ1), y0−dr sin(θ1)]

+w1(x0,y0)δ [x0 +drcos(θ1), y0 +dr sin(θ1)]
(3.53)

a2(x0,y0) =δ [x0,y0]+w2(x0,y0)δ [x0−dr cos(θ2), y0−dr sin(θ2)]

+w2(x0,y0)δ [x0 +drcos(θ2), y0 +dr sin(θ2)]
(3.54)

Then the weighted imaging result can be obtained by

g′C(x0,y0) = gC(x0,y0)⊗a1(x0,y0)

= gC(x0,y0)+w1(x0,y0)P1 +w1(x0,y0)P2
(3.55)

g′C(x0,y0) = gC(x0,y0)⊗a2(x0,y0)

= gC(x0,y0)+w2(x0,y0)Q1 +w2(x0,y0)Q2
(3.56)

with
P1 = gC(x0−dr cos(θ1), y0−dr sin(θ1))

P2 = gC(x0 +dr cos(θ1), y0 +dr sin(θ1))
(3.57)

Q1 = gC(x0−dr cos(θ2), y0−dr sin(θ2))

Q2 = gC(x0 +dr cos(θ2), y0 +dr sin(θ2))
(3.58)

Then combining equation (3.55) and (3.56), the BSVA method in the two range directions
can be implemented simultaneously. The ultimate weighted imaging result can be expressed
as

g̃C(x0,y0) = gC(x0,y0)+w1(x0,y0)(P1 +P2)+w2(x0,y0)(Q1 +Q2) (3.59)

The task now is to solve the following problem:

minimize
w1,w2

|g̃C(x0,y0)|2

s.t. 0 < w1(x0,y0)< 0.5,
0 < w2(x0,y0)< 0.5

(3.60)

Still considering I/Q separately, the output of the above problem is

gout(x0,y0) = gR
out(x0,y0)+gI

out(x0,y0) (3.61)

with

gR
out(x0,y0) =

{
0, if g̃R

C(x0,y0) ·gR
C(x0,y0)< 0, s.t. (w1,w2) ∈ Γ1

min
{

g̃R
C(x0,y0)||(w1,w2) ∈ Γ2

}
, otherwise

(3.62)

gI
out(x0,y0) =

{
0, if g̃I

C(x0,y0) ·gI
C(x0,y0)< 0, s.t. (w1,w2) ∈ Γ1

min
{

g̃I
C(x0,y0)||(w1,w2) ∈ Γ2

}
, otherwise

(3.63)

where Γ1 = [(0,0.5),(0.5,0)] and Γ2 = [(0,0),(0.5,0),(0.5,0.5)]. Repeat the above process
on each pixels, then we can implement the sidelobe suppression along the range directions.
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3.3.3 Numerical Simulation
The parameters for MATLAB simulation is the same as that in Table 3.1. The simulation result
of the image applying the BSVA method in the range direction is shown in Figure 3.11(a).
Furthermore, Hamming weighting method in the range direction is shown in Figure 3.11(b)
as a comparison. Comparing the two figures with Figure 3.7(a), we can see that both methods
can suppress the sidelobe in the range direction effectively. However, the weak target p5 can
not be distinguished due to the mainlobe spreading with Hamming window. While with the
BSVA method, the mianlobe maintains unchanged, then p5 can be resolved from the sidelobes
of the strong target p3.

To show this clearly, Figure 3.12 gives the slice at X = 0m. It is more clear that for the win-
dow method, the mianlobe is spreading. In contrast, the BSVA method maintains the mainlobe
resolution unchanged. Therefore, the weak closely spaced target can be distinguished. More-
over, Table 3.3 gives the specific parameters to compare the performance of window method
and BSVA method. We can see that the PSLR of the proposed method provides a sidelobe
reduction of around 20 dB without degrading the range resolution, while the window method
provides a sidelobe reduction of around 18 dB with the mainlobe spreading 1.49 times.

3.4 BSVA in Two Directions
Now, we implement the BSVA method in the cross-range direction and range direction, re-
spectively. To suppress the sidelobes and grating lobes in the two dimensions, we need to

(a) (b)

Figure 3.11: Images of sidelobe suppression in the range direction. (a) Image with BSVA method. (b) Image
with Hamming weighting.

Table 3.3: Performance comparison

Original Hamming BSVA

PSLR[dB] -13.34 -31.76 -34.16
Resolution(-3dB) [mm] 4.3 6.4 4.3
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Figure 3.12: Comparison of slice at X = 0m

apply the BSVA method in the two directions sequentially. However, since the BSVA method
relies on the phase information and after applying the BSVA method in the cross-range direc-
tion, the phase information is different from the original ones. In this case, we can not directly
apply the BSVA method in the range direction to get the image with sidelobe suppression in
both directions.

Therefore, an essential step between applying the BSVA method in the cross-range direc-
tion and the range direction is to recover the phase information of the original image. Denote
the image after applying the BSVA method in the cross-range direction as ga(x,y), the phase
terms of the original image as ϕ(go(x,y)); thus, the phase-recovered image is

gpr(x,y) = |ga(x,y)|e jϕ(go(x,y)) (3.64)

Regard the phase recovered image as the new original image and then we can apply the
BSVA method in the range direction as introduced in the last section.

3.4.1 Simulation Results
The simulation result of applying the BSVA method both in the cross-range direction and in the
range direction is shown in Figure 3.13. Comparing this figure with the original imaging result
of Figure 3.7(a), we can see that the two weak point target p4 and p5, which are submerged in
the sidelobes of the strong closely spaced point target p3 can be distinguished after applying
the BSVA method in the two directions.

3.5 Acceleration
From above, we know that the weighted result of each pixel is related to the imaging values
of its eight adjacent points when applying the BSVA method along the cross-range direction.
And then, applying it in the range direction, the imaging results of four more adjacent points
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Figure 3.13: Image after applying the BSVA method in the cross-range and range directions

are needed. Generally, the twelve adjacent points are not located on the pixel, so we need to
calculate their imaging values instead of directly getting from the original image. Therefore,
the total processing time is approximately twelve times that of the original imaging, which
results in a large computational burden. To speed up this process, the intuitive idea is to make
use of the original imaging results. In other words, if these adjacent points are located in the
imaging area, then we can approximate them to the nearest pixel.

3.5.1 Acceleration in the Range Direction
Consider the process acceleration in the range direction at first. From section 3.3, we know that
when applying the BSVA method in the range direction, the four adjacent points are needed
for each pixel. Denote the imaging grid spacing in the cross-range and down-range direction
as dX and dY , respectively. If the four adjacent points are located in the imaging area, we can
make the following approximation.

First, combining with equation (3.57) and (3.58), calculate the number of pixels in the
interval of the adjacent point and the target point (x0,y0).

Nx1 =

⌊
dr cos(θ1)

dX

]
Nx2 =

⌊
dr cos(θ2)

dX

⌉ (3.65)

and

Ny1 =

⌊
dr sin(θ1)

dY

⌉
Ny2 =

⌊
dr sin(θ2)

dY

⌉ (3.66)

where b emeans rounding to an integer. Then the four adjacent points can be approximated as

p1 = (x0−Nx1 ·dX ,y0−Ny1 ·dY )

p2 = (x0 +Nx1 ·dX ,y0 +Ny1 ·dY )
(3.67)
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and
p3 = (x0−Nx2 ·dX ,y0−Ny2 ·dY )

p4 = (x0 +Nx2 ·dX ,y0 +Ny2 ·dY )
(3.68)

Now, the four adjacent points are located on the pixels, and we can make use of the original
imaging result to speed up the implementation of the BSVA method in the range direction. It
should be noted that if the four points are located outside the imaging area, we still need to
calculate their imaging result by any imaging method. Furthermore, there are some limitations
for the grid spacing that dX and dY should not be too large. The reason is that once Nx and
Ny equals to zero due to large dX and dY , the adjacent points p1, p2, p3 and p4 are coincident
with the target point. Then for this point, there is no suppression effect with the SVA method.
In addition, Large grid spacing and small imaging area mean that the adjacent points are more
likely to locate outside the imaging area, and we can not make the approximation. Therefore,
the effect of the acceleration is better for a large imaging area with small grid spacing.

3.5.2 Acceleration in the Cross-range Direction
From section 3.2, we know that in the cross-range direction, we use the GMF method to form
a new 2-D imaging plane at each height and then apply the 2-D BSVA method. The eight ad-
jacent points needed for each pixel in this process are in the new imaging plane, which means
that we can not use the original imaging result to implement process acceleration. Fortunately,
according to the wavenumber analysis in section 3.2.1, we have got the wavenumber spectrum
of the transmit array and the receive array. If we consider the two jointly and regard the whole
cross-range wavenumber spectrum as the sum of the two, we can implement the 1-D BSVA
method in the cross-range direction. In this case, only two adjacent points are needed for each
pixel and they are located in the original imaging plane. And if they are located in the imaging
area, we can make some approximation to realize the process acceleration in the cross-range
direction.

First, we should deduce the implementation of the 1-D BSVA method in the cross-range
direction. The total wavenumber spectrum in the cross-range direction can be expressed as

kx(x0) = ku(x0)+ kv(x0) (3.69)

where ku(x0) and kv(x0) are defined in equation (3.12) and (3.13) respectively. Then its support
can be expressed as

supp(kx(x0)) =1, kc

(
x0−uxr√

(x0−uxr)2+y2
0
+ x0−vxr√

(x0−vxr)2+y2
0

)
≤ kx ≤ kc

(
x0−uxl√

(x0−vxl)2+y2
0
+ x0−vxl√

(x0−uxl)2+y2
0

)
0, otherwise.

(3.70)
Combining equation (3.16) and (3.17), the total wavenumber spectrum width is

Bkx(x0) = Bku(x0)+Bkv(x0) (3.71)

and the central wavenumber is

kx,c(x0) = ku,c(x0)+ kv,c(x0) (3.72)
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According to the analysis of the compensating phase in section 3.2.2, the compensating
phase term can be expressed as

ϕ(x0,y0) =
kc

2

[√
(x0−uxl)2 + y2

0 +
√

(x0−uxr)2 + y2
0

]
+

kc

2

[√
(x0− vxl)2 + y2

0 +
√
(x0− vxr)2 + y2

0

] (3.73)

Then the compensated image can be obtained by

gC(x0,y0) = g(x0,y0)e− jϕ(x0,y0) (3.74)

Then we can apply the 1-D BSVA method in the cross-range direction. The weighting
function can be expressed as

A(kx) = 1+w(x0)cos
(

2πkx

Bkx(x0)

)
(3.75)

Taking inverse Fourier transform on the above function yields:

a(x0) = δ [x0]+w(x0)δ

[
x0−

2π

Bkx(x0)

]
+w(x0)δ

[
x0 +

2π

Bkx(x0)

]
(3.76)

Take the convolution of the above function with the compensated image, we can get the
weighted imaging result:

g̃C(x0,y0) = gC(x0,y0)⊗a(x0)

= gC(x0,y0)+w(x0)

[
gC

(
x0−

2π

Bkx(x0)
,y0

)
+gC

(
x0 +

2π

Bkx(x0)
,y0

)]
(3.77)

The optimal weighting result is also obtained by solving the minimization problem with
the constraint:

minimize
w(x0)

|g̃C(x0,y0)|2

s.t. 0 < w(x0)< 0.5
(3.78)

This is a typical 1-D BSVA problem and the solution can be found in section 2.2.1.
We can see that the weighted result of pixel (x0,y0) is related to the compensated imaging

results of another two points q1 =
(

x0− 2π

Bkx(x0)
,y0

)
and q2 =

(
x0 +

2π

Bkx(x0)
,y0

)
. It is clear that

the two points are in the imaging plane and if they are located in the imaging area, we can
take some approximation to realize acceleration. And there are two kinds of considerations
for process acceleration in the cross-range direction.

• Approximation with 1-D BSVA method
We can still consider applying the BSVA method with directly approximating the two points
q1 and q2 to the nearest pixel, similar to what we do in the range direction.

The number of pixels in the interval of q1 or q2 to p0(x0,y0) is

Nq(x0) =

⌊
2π

Bkx(x0) ·dX

⌉
(3.79)
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Then q1 and q2 can be approximated as

q′1 = (x0−Nq(x0) ·dX ,y0)

q′2 = (x0 +Nq(x0) ·dX ,y0)
(3.80)

Now q′1 and q′2 are located on the pixels and we can make use of the original imaging result.

The weighted image can be expressed as

g̃C(x0,y0) = gC(x0,y0)+w(x0)
[
gC
(
q′1
)
+gC

(
q′2
)]

(3.81)

Still, if q1 and q2 are located outside the imaging area, there is no pixels to approximate and
we need to calculate their imaging results.

• Approximation with 1-D GSVA method
Still, we approximate q1 and q2 to the close pixel. Combining the introduction of non-integer
multiple of Nyquist sampling case in chapter 2, this approximation can also be regarded as
this situation. And then we can apply the 1-D GSVA method. Nq(x0) now is defined as⌈

Bkx(x0)

2BNy(x0)

⌉
< Nq(x0)<

⌊
Bkx(x0)

BNy(x0)

⌋
(3.82)

where BNy is the space angular Nyquist frequency, b c and d e represent rounding down and
rounding up to an integer. Solving this equation and only considering non-integer sampling
case, we can get

Bk(x0)

2 ·Np(x0)
< BNy(x0)<

Bk(x0)

N p(x0)
(3.83)

In this case, for Nq(x0) ≥ 1, we can always find a proper BNy that can make it be regarded
as the oversampling case. And the oversampling ratio ws is defined as

ws =
Nq(xo) ·BNy

BKx(x0)
(3.84)

Therefore, ws can be any value in the interval (0.5,1).

Then the weighted image can be expressed as

g̃C(x0,y0) = (1−w(x0)sinc(ws))gC(x0,y0)+w(x0)
(
gC(q′1)+gC(q′2)

)
(3.85)

The solution of the above function can be found in section 2.2.2. Furthermore, according
to the introduction of the GSVA method in section 2.2.2, we know that with bigger ws, the
residual sidelobe after applying the GSVA method is lower. Therefore, taking large value of
ws is a better choice.

Furthermore, for non-integer multiple Nyquist sampling case, we can also consider the five-
tap RSVA or MSVA method.

• Approximation with 1-D MSVA method
In principle, we can choose either RSVA or MSVA method. However, for MIMO array
imaging, due to the spatially variant wavenumber spectrum, the signal in the cross-range
is not a strict sinc function but similar to the sinc function. Therefore, when we apply the
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SVA method, we need to compensate the phase for aligning the wavenumber center of each
point. But the compensated phase is an approximate result according to section 3.2.2. If we
choose the more relaxed RSVA method compared with the MSVA method, we may miss the
targets. Therefore, we consider applying the 5-tap MSVA method.

Compared with the BSVA method, two more adjacent points are needed for the MSVA
method, which will increase the processing time. Fortunately, the increased time is still
short enough compared with that before approximation.

The another two adjacent points are

q3 =

(
x0−

4π

Bkx(x0)
,y0

)
q4 =

(
x0 +

4π

Bkx(x0)
,y0

) (3.86)

The number of pixels between q3 or q4 to the point target (x0,y0) is

N′q(x0) =

⌊
2 ·π

Bkx(x0) ·dX

⌉
(3.87)

Then q3 and q4 can be approximated as

q′3(x0) = x0−N′q(x0) ·dX ,y0)

q′4(x0) = x0 +N′q(x0) ·dX ,y0)
(3.88)

The weighted image can be expressed as

g̃C(x0,y0) =gC(x0,y0)

+w1(x0)
(
−2sinc(ws)gC(x0,y0)+gC(q′1)+gC(q′2)

)
+w2(x0)

(
−2sinc(ws)gC(x0,y0)+gC(q′3)+gC(q′4)

) (3.89)

where ws = (0.5,1). The optimal weighted image can be formulated according to the intro-
duction of the MSVA method in section 2.2.4.

To make sure the SVA method for each approximation considerations can be performed
well in the cross-range direction, Nq should be bigger than and equal to one, namely

dX ≤
2 ·π

Bkx(x0)
(3.90)

The key is to determine the maximum wavenumber spectrum width Bkx of the whole imaging
area. From the equation (3.71), we know that Bkx(x0) is related to the antenna position, the
pixel position, and the central wavenumber. Therefore, it is complicated to determine its
maximum value. Only for one situation that the transmit array center is coincident with the
receive array center and the imaging area is in front of the array, it is easy to determine the
maximum Bkx . Denote the position of the array center as Ac = (xa,0) and the minimum height
of the imaging area as Ymin, then the maximum Bkx for the whole imaging area can be obtained
at the point (xa,Ymin).

In our simulation setup, the maximum Bkx is obtained at the pixel (0,0.3) and the maxi-
mum grid spacing in the cross-range direction could be 3.9mm. Therefore, dX = 1mm satis-
fies this condition and we can consider the acceleration of SVA implementation and get good
suppression effect in the cross-range direction.
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(a) (b)

(c)

Figure 3.14: Results of acceleration implementation of SVA method. (a) Acceleration with BSVA method in
the range direction and cross-range direction. (b) Acceleration with BSVA in the range direction and GSVA

method in the cross-range direction. (c) Acceleration with BSVA in the range direction and MSVA method in
the cross-range direction.

3.5.3 Simulation Result
Considering 1.1 times oversampling, then the oversampling ratio ws is

ws(x0) =
1

1.1
= 0.909 (3.91)

Figure 3.14 gives the simulation results of acceleration implementation with the BSVA method,
GSVA method, and MSVA method in the cross-range direction and BSVA method in the range
direction. Comparing it with the original image (Figure 3.7(a)) and the original SVA image
(Figure 3.13), both the three acceleration methods can implement sidelobe suppression effec-
tively. And comparing these acceleration methods, the MSVA method gives better sidelobe
and grating lobe suppression.

Table 3.4 gives the comparison of the processing time, the amplitude of the sidelobe s1 =
(−0.116m,0.543m) and s2 = (0.11m,0.343m), and the grating lobe g1 = (0.054m,0.363m)
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Table 3.4: Performance comparison

Original BSVA BSVA-
acceleration

GSVA-
acceleration

MSVA-
acceleration

Processing time [s] 6.76 90.23 9.28 9.4 10.38
s1[dB] -27.27 -41.95 -35.68 -37.14 -Inf
s2[dB] -27.52 -44.59 -34.34 -35.68 -Inf
g1[dB] -33.07 -Inf -36.41 -37.78 -Inf
g2[dB] -30.12 -Inf -31.11 -32.01 -34.32

and g2 = (0.142m,0.338m) before and after acceleration. We can see that the processing
time is greatly reduced after acceleration and the suppression performance is still remarkable.
Therefore, with proper imaging gird, the acceleration implementation of the SVA method can
also give good suppression performance with much less processing time. Furthermore, the
MSVA method is the best choice with comparable suppression performance with the original
BSVA method, and the processing time only increases 53.55% that of the original imaging.

3.6 Conclusion
In this chapter, based on the GMF imaging method, we analyze the wavenumber spectrum
in the cross-range direction and range direction and propose a method to perform the BSVA
method in the two directions for 1-D MIMO array imaging. Then by numerical simulation,
we verify that this method can realize sidelobe suppression in the two directions without sac-
rificing the mainlobe resolution. The sidelobe level is suppressed by at least 22.59 dB in
the cross-range direction, and the grating lobe level is suppressed by at least 4.18 dB. In the
range direction, the sidelobe is suppressed by at least 20.82 dB. Both in the two directions, the
mainlobe resolution remains unchanged. Therefore, it can improve the image quality.

In addition, to address the problem of large computational burden, we propose three ac-
celeration implementations of this method. And they all can work well under some conditions
of imaging grid. In our simulation, the BSVA and GSVA acceleration method has reduced
the processing time to 10.28% and 10.42% of the original SVA method, while the suppres-
sion effect has also been reduced slightly. The MSVA acceleration method has reduced the
processing time to 11.50% and provided a comparable suppression effect of the original SVA
method.



4
SVA Method for 2-D MIMO Array Imaging

In this chapter, we consider the application of the BSVA method on 2-D planar MIMO array
imaging. We are still considering the implementation in the cross-range and range directions.
But the cross-range directions include horizontal and vertical directions. Therefore, in the
cross-range directions, we need to apply the BSVA method two times. The structure of this
chapter is as follows. In section 4.1, the signal model and the GMF implementation of 2-
D MIMO array imaging are given. In section 4.2, the analysis and simulation of the BSVA
method in the cross-range plane are discussed. The analysis and simulation of the BSVA
method in the range direction are discussed in section 4.3. The complete implementation of
the BSVA method in cross-range and range directions for 2-D MIMO array imaging is given
in section 4.4. The acceleration implementation of the SVA approach is provided in section
4.5. Lastly, the conclusion is drawn in section 4.6.

4.1 2-D MIMO Array Imaging
Assume the antenna elements of a 2-D MIMO array are uniformly distributed in the xoz plane.
As shown in Figure 4.1, the black points are transmitters and the red points denote receivers.

Figure 4.1: 2-D MIMO array topology

51
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Assume the position of the mth transmit element is um = (umx,0,umz) and the nth receive
element is vn = (vnx,0,vnz). An arbitrary point target p0 = (x0,y0,z0) is located in front of the
MIMO array. Denote the one-way distance from the mth transmitter and the nth receiver to the
point target p0 as rum and rvn respectively and they can be expressed as

rum =
√

(x0−umx)2 + y2
0 +(z0−umz)2

rvn =
√

(x0− vnx)2 + y2
0 +(z0− vnz)2

(4.1)

4.1.1 Signal Model
The signal model is the same as that for 1-D MIMO array imaging. According to equation
(3.3) and (4.1), the echo signal can be expressed as

s(k,um,vn) = ∑
i

δ (k− ki)e− jkrum e− jkrvn (4.2)

4.1.2 Generalized Matching Filtering
Similar to the expression of GMF for 1-D MIMO array imaging, for 2-D MIMO array imaging,
considering at a specific range y = y0 and considering the generalized matched filtering of x
and z, the imaging result of point p0 can be formulated as

g
(

xT ,zT ,xR,zR|y=y0

)
=

∑
k

∑
un

∑
vm

s(k,un,vm)e jk
√

(xT−umx)2+y2
0+(zT−umz)2

e jk
√

(xR−vnx)
2+y2

0+(zR−vnz)2 (4.3)

When xT = xR = x0 and zT = zR = z0, the imaging result of the GMF is the same as the original
matched filtering.

4.2 BSVA in the Cross-range Plane

4.2.1 Cross-range Wavenumber Spectrum Analysis
Express the equation (4.3) in convolution form,

g
(

xT ,zT ,xR,zR|y=y0

)
= ∑

k
s(k,xT ,zT ,xR,zR)⊗xT ,zT e jk

√
x2

T+z2
T+y2

0⊗xR,zR e jk
√

x2
R+z2

R+y2
0 (4.4)

here, ⊗xT ,zT means the 2-D convolution in domain xT ,zT ; ⊗xR,zR means the 2-D convolution
in domain xR,zR.

Take 2-D Fourier transform on xT ,zT ,zR,zR, the corresponding wavenumber spectrum of
equation (4.4) can be expressed as

G
(

kumx ,kumz ,kvnx ,kvnz

∣∣
y=y0

)
=FxT ,zT ,xR,zR {s(k,xT ,zT ,xR,zR)}

·FxT ,zT

{
e jk
√

x2
T+z2

T+y2
0

}
·FxR,zR

{
e jk
√

x2
R+z2

R+y2
0

} (4.5)
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According to stationary phase principle [36], the above equation can be denoted as

G
(

kumx ,kumz,kvnx ,kvnz

∣∣
y=y0

)
= S(kumx ,kumz,kvnx ,kvnz)e

j
√

k2−k2
umx−k2

umzy0e j
√

k2−k2
vnx−k2

vnz y0 (4.6)

with
S(kumx ,kumz,kvnx ,kvnz) = F{s(k,xT ,zT ,xR,zR)} (4.7)

and the corresponding wavenumber along x-axis and z-axis are

kumx = k
x0−umx√

(x0−umx)2 +(z0−umz)2 + y2
0

kvnx = k
x0− vnx√

(x0− vnx)2 +(z0− vnz)2 + y2
0

kumz = k
z0−umz√

(x0−umx)2 +(z0−umz)2 + y2
0

kvnz = k
z0− vnx√

(x0− vnz)2 +(z0− vnz)2 + y2
0

(4.8)

Denote the fraction terms as µmx,γnx,µnz,γnz respectively and for wide-band measurement,
take the central wavenumber kc =(kmin+kmax)/2 to approximate. The supports of the wavenum-
ber spectra can be denoted as

supp(kux) =

{
1, kc ·µx,min < kux < kc ·µx,max

0, others
(4.9)

supp(kvx) =

{
1, kc · γx,min < kvx < kc · γx,max

0, others
(4.10)

supp(kuz) =

{
1, kc ·µz,min < kuz < kc ·µz,max

0, others
(4.11)

supp(kvz) =

{
1, kc · γz,min < kvz < kc · γz,max

0, others
(4.12)

Here, the value ranges of kux ,kvx ,kuz and kvz are limited by the minimum and maximum value
of the fraction terms, which are determined by the corner positions of the antenna array.
Therefore, corresponding to a rectangular antenna array, in order to obtain the support of
the wavenumber spectrum, we need to insert the four corner positions of the antenna array
into the equation (4.8) to calculate the minimum and maximum value of the fraction terms.
The relations of the fraction values and the corner points are listed in Table 4.1.

Then the widths of the wavenumber spectral are

Bkux
(x0) = kc (µx,max−µx,min)

Bkvx
(x0) = kc (γx,max− γx,min)

Bkuz
(z0) = kc (µz,max−µz,min)

Bkvz
(z0) = kc (γz,max− γz,min)

(4.13)
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Table 4.1: Corner Points

Fraction values Corner points

µx,min PT 1
µx,max PT 2
γx,min PR1
γx,max PR2
µz,min QT 1
µz,max QT 2
γz,min QR1
γz,max QR2

The central positions of the wavenumber spectral are

kux,c(x0) =
kc

2
(µx,max +µx,min)

kvx,c(x0) =
kc

2
(γx,max + γx,min)

kuz,c(z0) =
kc

2
(µz,max +µz,min)

kvz,c(z0) =
kc

2
(γz,max + γz,min)

(4.14)

According to Table 4.1, we can know that at which antenna the minimum or maximum value
of the wavenumber spectrum is obtained.

4.2.2 Implementation
Phase compensation

Similarly, in general, the central wavenumber is not at the zero-wavenumber position. There-
fore, we need to compensate a phase term in the space domain, and the compensating phase
term can be formulated by

ϕ(xT ,xR) =

kc

2

[√
(xT − xPT 1)

2 +(z0− zPT 1)
2 + y2

0 +
√
(xT − xPT 2)

2 +(z0− zPT 2)
2 + y2

0

]
+

kc

2

[√
(xR− xPR1)

2 +(z0− zPR1)
2 + y2

0 +
√
(xR− xPR2)

2 +(z0− zPR2)
2 + y2

0

] (4.15)

and

ϕ (zT ,zR) =

kc

2

[√
(x0− xQT 1)

2 +(zT − zQT 1)
2 + y2

0 +
√
(x0− xQT 2)

2 +(zT − zQT 2)
2 + y2

0

]
+

kc

2

[√
(x0− xQR1)

2 +(zR− zQR1)
2 + y2

0 +
√
(x0− xQR2)

2 +(zR− zQR2)
2 + y2

0

]
(4.16)
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Then the compensated imaging results can be obtained by

gC (xT ,xR) = g
(

xT ,xR|y=y0
z=z0

)
e− jϕ(xT ,xR) (4.17)

and
gC (zT ,zR) = g

(
zT ,zR|x=x0

y=y0

)
e− jϕ(zT ,zR) (4.18)

Implementation of 2-D BSVA method

The implementation of the BSVA method in the cross-range plane for 2-D MIMO array imag-
ing is almost the same as that for 1-D MIMO array imaging. The only difference is that for
2-D MIMO array imaging, we need to apply the 2-D BSVA method in kux − kvx plane and
kuz− kvz plane, respectively. And then take the minimum value between the output results of
the two.

In kux− kvx plane, the cosine-on-pedestal weighting function is

A(kux ,kvx) =

[
1+2wux(x0)cos

(
2πkux(x0)

Bkux
(x0)

)]
·
[

1+2wvx(x0)cos
(

2πkvx(x0)

Bkvx
(x0)

)]
s.t. 0 < wux(x0)< 0.5, 0 < wvx(x0)< 0.5

(4.19)

where wux(x0) adn wvx(x0) are the weighting coefficients in domain kux(x0) and kvx(x0) respec-
tively.

In kuz− kvz plane, the cosine-on-pedestal weighting function is

A(kuz,kvz) =

[
1+2wuz(z0)cos

(
2πkuz(z0)

Bkuz
(z0)

)]
·

[
1+2wvz(z0)cos

(
2πkvz(z0)

Bkvz
(z0)

)]
s.t. 0 < wuz(z0)< 0.5, 0 < wvz(z0)< 0.5

(4.20)

where wuz(z0) and wvz(z0) are the weighting coefficients in domain kuz(z0) and kvz(z0) respec-
tively.

Taking IFT on the above weighting functions yields:

a(xT ,xR) = a(xT )⊗a(xR) (4.21)

a(zT ,zR) = a(zT )⊗a(zR) (4.22)

with

a(xT ) = δ [xT ]+wux(x0)δ

[
xT −

2π

Bkux
(x0)

]
+wux(x0)δ

[
xT +

2π

Bkux
(x0)

]
(4.23)

a(xR) = δ [xR]+wvx(x0)δ

[
xR−

2π

Bkvx
(x0)

]
+wvx(x0)δ

[
xR +

2π

Bkvx
(x0)

]
(4.24)

and

a(zT ) = δ [zT ]+wuz(z0)δ

[
zT −

2π

Bkuz
(z0)

]
+wuz(z0)δ

[
zT +

2π

Bkuz
(z0)

]
(4.25)

a(zR) = δ [zR]+wvz(z0)δ

[
zR−

2π

Bkvz
(z0)

]
+wvz(z0)δ

[
zR +

2π

Bkvz
(z0)

]
(4.26)
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Then the weighted imaging results g̃C about the GMF in the two plane are

g̃C

(
xT ,xR|y=y0

z=z0

)
= gC(xT ,xR)+wux(x0)wvx(x0)Px +wux(x0)QTx +wvx(x0)QRx (4.27)

g̃C

(
zT ,zR|x=x0

y=y0

)
= gC(zT ,zR)+wuz(z0)wvz(z0)Pz +wuz(z0)QTz +wvz(z0)QRz (4.28)

with

QTx = gC

(
xT −

2π

Bkux
(x0)

,xR

)
+gC

(
xT +

2π

Bkux
(x0)

,xR

)
(4.29)

QRx = gC

(
xT ,xR−

2π

Bkvx
(x0)

)
+gC

(
xT ,xR +

2π

Bkvx
(x0)

)
(4.30)

Px = gC

(
xT −

2π

Bkux
(x0)

,xR−
2π

Bkvx
(x0)

)
+gC

(
xT −

2π

Bkux
(x0)

,xR +
2π

Bkvx
(x0)

)
(4.31)

+gC

(
xT +

2π

Bkux
(x0)

,xR−
2π

Bkvx
(x0)

)
+gC

(
xT +

2π

Bkux
(x0)

,xR +
2π

Bkvx
(x0)

)
(4.32)

and

QTz = gC

(
zT −

2π

Bkuz
(z0)

,zR

)
+gC

(
zT +

2π

Bkuz
(z0)

,zR

)
(4.33)

QRz = gC

(
zT ,zR−

2π

Bkvz
(z0)

)
+gC

(
zT ,zR +

2π

Bkvz
(z0)

)
(4.34)

Pz = gC

(
zT −

2π

Bkuz
(z0)

,zR−
2π

Bkvz
(z0)

)
+gC

(
zT −

2π

Bkuz
(z0)

,zR +
2π

Bkvz
(z0)

)
(4.35)

+gC

(
zT +

2π

Bkuz
(z0)

,zR−
2π

Bkvz
(z0)

)
+gC

(
zT +

2π

Bkuz
(z0)

,zR +
2π

Bkvz
(z0)

)
(4.36)

Now, the task is to find the minimum value of g̃C

(
xT ,xR|y=y0

z=z0

)
and g̃C

(
zT ,zR|x=x0

y=y0

)
sub-

ject to the constraints.

minimize
wux ,wvx

∣∣∣g̃C

(
xT ,xR|y=y0

z=z0

)∣∣∣2
s.t. 0 < wux(x0)< 0.5,

0 < wvx(x0)< 0.5

(4.37)

minimize
wuz ,wvz

∣∣∣g̃C

(
zT ,zR|x=x0

y=y0

)∣∣∣2
s.t. 0 < wuz(z0)< 0.5,

0 < wvz(z0)< 0.5

(4.38)

We still consider I and Q separately, take the real component in the two constrained problem
and we will get

gR
1

(
xT ,xR|y=y0

z=z0

)
=


0, if g̃R

C

(
xT ,xR|y=y0

z=z0

)
·gR

C

(
xT ,xR|y=y0

z=z0

)
< 0,

s.t. (w(xT ),w(xR)) ∈ Γ

min
{

g̃R
C

(
xT ,xR|y=y0

z=z0

)
||(w(xT ),w(xR)) ∈ Γ

}
, others

(4.39)
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gR
2

(
zT ,zR|x=x0

y=y0

)
=


0, if g̃R

C

(
zT ,zR|x=x0

y=y0

)
·gR

C

(
zT ,zR|x=x0

y=y0

)
< 0,

s.t. (w(zT ),w(zR)) ∈ Γ

min
{

g̃R
C

(
zT ,zR|x=x0

y=y0

)
||(w(zT ),w(zR)) ∈ Γ

}
, others

(4.40)

where Γ = {(0,0),(0.5,0),(0,0.5),(0.5,0.5)}.
Now, we get the real component of the whole weighted imaging result of GMF in the plane

xT − xR and zT − zR. Then, taking xT = xR = x0 and zT = zR = z0 respectively, we can get two
weighted imaging results at point (x0,y0,z0). The last step is to take the min function on the
amplitude of the two:

gR
out(x0,y0,z0) = sign(a) ·min

(∣∣∣gR
1

(
x0,x0|y=y0

z=z0

)∣∣∣ , ∣∣∣gR
2

(
z0,z0|x=x0

y=y0

)∣∣∣) (4.41)

where sign(a) means taking the sign of the two weighted results which has the minimum
amplitude.

In the same way, take the imaginary component in the two constrained problem in equation
(4.39) and (4.40), and taking xT = xR = x0 and zT = zR = z0, we will get gI

1

(
x0,x0|y=y0

z=z0

)
and

gI
2

(
z0,z0|x=x0

y=y0

)
. And then we can get the imaginary component of the ultimate imaging result:

gI
out(x0,y0,z0) = sign(b) ·min

(∣∣∣gI
1

(
x0,x0|y=y0

z=z0

)∣∣∣ , ∣∣∣gI
2

(
z0,z0|x=x0

y=y0

)∣∣∣) (4.42)

where sign(b) means taking the sign of the two imaginary component which has the minimum
amplitude.

Then the ultimate complex-valued weighted result after applying 2-D BSVA method in the
cross-range plane is

gout(x0,y0,z0) = gR
out(x0,y0,z0)+ j ·gI

out(x0,y0,z0) (4.43)

Repeat the above process for each imaging pixel, then we can get the whole weighted 3-D
imaging result.

Table 4.2: Parameters of simulations

Parameters Values

Frequency band f 120 – 150 GHz
Frequency interval d f 150 MHz
Transmit interval dT x 2 mm
Receive interval dRx 6 mm
Number of transmitters NT x 9
Number of receivers NRx 36
Imaging area X range [-0.07 0.07]
Imaging area Y range [0.07 0.13]
Imaging area Z range [-0.07 0.07]
Image samples 141×61×141

Targets positions
(0,0.11,0); (0,0.11,0.02); (0.02,0.11,0); (0,0.095,0);
(0.04,0.11,0.04); (0.04,0.095,0.04);
(-0.04,0.11,-0.04); (-0.04,0.095,-0.04);

Targets power [1; 0.2; 0.2; 0.2; 1; 0.2; 0.2; 1]
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(a) (b)

(c) (d)

Figure 4.2: Simulation setup of 2-D MIMO array. (a) The 2-D MIMO array Topology. (b) The position of the
MIMO array and point targets. (c) The front view of the target positions. (d) The side view of the target

positions.

4.2.3 Numerical Simulation
Simulation Setup

The 2-D MIMO array consists of nine transmit elements with the interval of 2 mm and thirty-
six receive elements with 6 mm and distributed in xoz plane. The structure of the MIMO array
is shown in Figure 4.2(a). Six-point targets are distributed in the 3-D space, and three of them
are weak targets with 0.2 times the signal strength of others. The ground truth of the point
targets relative to the MIMO array is shown in Figure 4.2(b). The front view and the side
view of the point targets are shown in Figure 4.2(c) and 4.2(d) . These targets are illuminated
by a stepped-frequency continuous wave (SFCW) signal from 120 GHz to 150 GHz with
an interval of 150 MHz. The imaging area is 0.14m× 0.06m× 0.14m with 141× 61× 141
samples. All the parameters are listed in Table 4.2.
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(a) (b)

Figure 4.3: The original imaging result of 2-D MIMO array imaging. (a) The front view of the original image.
(b) The back view of the original image.

(a) (b)
Figure 4.4: Cross-range BSVA result of 2-D MIMO array imaging. (a) The front view of the cross-range BSVA

image. (b) The back view of the cross-range BSVA image.

Imaging Result

The original image and the image after applying the BSVA method in the cross-range xoz plane
are shown in Figure 4.3 and 4.4 respectively. The original image shows that the sidelobes are
pretty high, and we can only identify three strong targets while the weak targets are submerged.
After applying the BSVA method, the sidelobes are suppressed effectively. Then the weak
target p2 and p3 submerged in the sidelobes in the original image, can be distinguished now.
Furthermore, the grating lobes are also suppressed.

To go details of the suppression performance, Figure 4.5(a) and 4.5(b) give the slices of
the original 3D image and the cross-range BSVA 3D image at y = 0.11m along xoz plane.
Figure 4.5(c) and 4.5(d) give the slices along x-axis and z-axis of Figure 4.5(a) and 4.5(b)
respectively. From the figures, we can see that the mainlobe of the strong target p1 is not
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(a) (b)

(c) (d)

Figure 4.5: Slices. (a) Slice of the original 3D image at y = 0.11m; (b) Slice of the cross-range SVA 3D image at
y = 0.11m; (c) Slice at y = 0.11m,z = 0m (along the x-axis); (d) Slice at y = 0.11m,x = 0m (along the z-axis).

broadened and the sidelobes are suppressed. The first side lobe level has been suppressed
from -13.41 dB to -26.68 dB. Therefore, the weak target with comparable amplitude of the
first sidelobe of the strong target can be distinguished.

4.3 BSVA in the Range Direction
The analysis of the BSVA method in the range direction for 2-D MIMO array imaging is sim-
ilar to that for 1-D case. Denote the center antenna of the transmit array as uc = (xc,T ,0,zc,T )
and the center antenna of the receive array as vc = (xc,R,0,zc,R). An arbitrary pixel p0 is
located at (x0,y0,z0). The analysis along range direction is shown in Figure 4.6(a).

4.3.1 Range Wavenumber Spectrum Analysis
According to the deduction in section 3.3.1, the sidelobe along range direction for 2-D MIMO
array imaging is also from the transmit center to the target point and from the receive center to
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(a) (b)

Figure 4.6: Range direction analysis. (a) The imaging domain. (b) The wavenumber spectrum

the target point. The only difference is that it is about 3-D space. Denote the wavenumber in
the two directions as kru and krv as shown in Figure 4.6(b). Then, the analysis of the wavenum-
ber spectrum along range direction for 2-D MIMO array can be simplified by analyzing kru

and krv .
The support of kru and krv can be formulated as

kru =

{
1, kmin < kru < kmax

0, otherwise
(4.44)

krv =

{
1, kmin < krv < kmax

0, otherwise
(4.45)

where kmin and kmax are the minimum and maximum values of the wavenumber under wide-
band measurement. The directions are determined by θ1 and θ2 respectively.

The width of the two supports are the same and can be expressed as

Bkr = Bkru

= Bkrv

= kmax− kmin

(4.46)

The central wavenumber of the supports are

kr,c = kru,c

= krv,c

=
kmax + kmin

2

(4.47)

The angle ∆θ formed between the two directions is determined by

∆θ = |θ2−θ1| (4.48)
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Thus, the projection of wavenumber support of receive array r2 in that of transmit array r1 is
expressed as

∆Bk = Bk · |cos(∆θ)| (4.49)

Considering the whole MIMO array and the sidelobes suppression in the direction r1, the
width of the wavenumber spectrum is

B′k = Bk +∆Bk (4.50)

which is the same in direction r2.
Now, the problem is to calculate the angle ∆θ and the key is to calculate θ1 and θ2. Since

the positions of the central transmit antenna, the central receive antenna and pixel are known,
we can form three vectors. Denote the transmit array center as pc,T = (xc,T ,yc,T ,zc,T ), and the
receive array center as pc,R = (xc,R,yc,R,zc,R).

The vector from the transmit center to p0 is denoted as

ru = (x0− xc,T , y0, z0− zc,T ) (4.51)

The vector from the receive center to p0 is denoted as

rv = (x0− xc,R, y0, z0− zc,R) (4.52)

The vector from the transmit center to the receive center is denoted as

ruv = (xc,R− xc,T , 0, zc,R− zc,T ) (4.53)

According to the definition of the dot product, the cosine value of the angle between two
vectors can be calculated

cos(θ1) =
ru · ruv
‖ru‖‖ruv‖

(4.54)

cos(θ2) =
rv · ruv
‖rv‖‖ruv‖

(4.55)

Then by taking inverse cosine functions, we can get the values of θ1 and θ2. And the ∆θ can
be formulated by

∆θ = |cos−1(θ2)− cos−1(θ1)| (4.56)

4.3.2 Implementation
Phase compensation

Similarly, according to the equation (4.47), it is clear that the central wavenumber is not at the
zero-wavenumber position. For the arbitrary point p0 = (x0,y0,z0), the distances to the array
centers are

‖ru‖=
√

(x0− xc,T )2 +(z0− zc,T )2 + y2
0

‖rv‖=
√

(x0− xc,R)2 +(z0− zc,R)2 + y2
0

(4.57)

Thus, the compensating phase term is

ϕ = kr,c · (‖ru‖+‖rv‖) (4.58)

The compensated result is denoted as

gC(x0,y0,z0) = g(x0,y0,z0)e− jϕ (4.59)
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Implementation of 2-D BSVA method

Firstly, considering applying the 1-D BSVA method in the direction r1 , the cosine-on-pedestal
weighting function is

A1(kr1) = 1+w1(r1)cos
(

2πkr1

B′k

)
s.t. 0≤ w1(r1)≤ 0.5

(4.60)

Taking IFT on the above function,

a1(r1) = δ [r1]+w1(r1)δ

[
r1−

2π

B′k

]
+w1(r1)δ

[
r1 +

2π

B′k

]
(4.61)

Now, the problem is to express the above function in Cartesian coordinates.
Set dr =

2π

B′k
, denote the angle formed by the vector ru with the positive directions of x-axis,

y-axis, and z-axis as αx,αy and αz. The cosine values of the three angles can be formulated by

cos(αx) =
x0− xc,T

‖ru‖
cos(αy) =

y0

‖ru‖

cos(αz) =
z0− zc,T

‖ru‖

(4.62)

Denote the two points along the direction r1 for 1-D BSVA method as p1 = (xp1,yp1 ,zp1) and
p2 = (xp2,yp2,zp2), then the position of the two points can be formulated by

xp1 = x0−dr · cos(αx)

yp1 = y0−dr · cos(αy)

zp1 = z0−dr · cos(αz)

(4.63)

and
xp2 = x0 +dr · cos(αx)

yp2 = y0 +dr · cos(αy)

zp2 = z0 +dr · cos(αz)

(4.64)

Then the function of equation (4.61) can be expressed as

a1(x0,y0,z0) = δ [x0,y0,z0]+w1δ [xp1 ,yp1,zp1]+w1δ [xp2,yp2,zp2] (4.65)

The weighted imaging result can be denoted as

g′C(x0,y0,z0) = gC(x0,y0,z0)⊗a1(x0,y0,z0)

= gC(x0,y0,z0)+w1gC(xp1,yp1,zp1)+w1gC(xp2,yp2,zp2)
(4.66)

Similarly, applying the 1-D BSVA method in the direction r2, the cosine-on-pedestal
weighting function is

A2(kr2) =1+w2(r2)cos
(

2πkr2

B′k

)
s.t. 0≤ w2(r2)≤ 0.5

(4.67)
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Taking IFT on the above function,

a2(r2) = δ [r2]+w2(r2)δ

[
r2−

2π

B′k

]
+w2(r2)δ

[
r2 +

2π

B′k

]
(4.68)

denote the angle formed by the vector rv with the positive directions of x-axis, y-axis, and
z-axis as βx,βy and βz. The cosine values of the three angles can be formulated by

cos(βx) =
x0− xc,R

‖rv‖
cos(βy) =

y0

‖rv‖

cos(βz) =
z0− zc,R

‖rv‖

(4.69)

Denote the two points along the direction r2 for 1-D BSVA method as p3 = (xp3,yp3,zp3) and
p4 = (xp4 ,yp4,zp4), then the position of the two points can be formulated by

xp3 = x0−dr · cos(βx)

yp3 = y0−dr · cos(βy)

zp3 = z0−dr · cos(βz)

(4.70)

and
xp4 = x0 +dr · cos(βx)

yp4 = y0 +dr · cos(βy)

zp4 = z0 +dr · cos(βz)

(4.71)

Then the function of equation (4.68) can be expressed as

a2(x0,y0,z0) = δ [x0,y0,z0]+w2δ [xp3,yp3,zp3]+w2δ [xp4,yp4,zp4] (4.72)

The weighted imaging result can be denoted as

g′C(x0,y0,z0) = gC(x0,y0,z0)⊗a2(x0,y0,z0)

= gC(x0,y0,z0)+w2gC(xp3,yp3,zp3)+w2gC(xp4,yp4,zp4)
(4.73)

Now, considering the two 1-D BSVA methods are applied in parallel and simultaneously,
the weighted imaging result can be expressed as

g̃C(x0,y0,z0) = gC(x0,y0,z0)+w1(gC[xp1,yp1,zp1]+gC[xp2,yp2,zp2])

+w2(gC[xp3 ,yp3,zp3]+gC[xp4,yp4,zp4])
(4.74)

Then the task is to solve the constrained problem

minimize
w1,w2

|g̃C(x0,y0,z0)|2

s.t. 0 < w1 < 0.5
0 < w2 < 0.5

(4.75)

Still considering I/Q separately, the output of the above problem is

gout(x0,y0,z0) = gR
out(x0,y0,z0)+gI

out(x0,y0,z0) (4.76)
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with

gR
out(x0,y0,z0) =

{
0, if g̃R

C(x0,y0,z0) ·gR
C(x0,y0,z0)< 0 s.t. (w1,w2) ∈ Γ1

min
{

g̃R
C(x0,y0,z0)||(w1,w2) ∈ Γ2

}
, otherwise

(4.77)

gI
out(x0,y0,z0) =

{
0, if g̃I

C(x0,y0,z0) ·gI
C(x0,y0,z0)< 0, s.t. (w1,w2) ∈ Γ1

min
{

g̃I
C(x0,y0,z0)||(w1,w2) ∈ Γ2

}
, otherwise

(4.78)

where Γ1 = [(0,0.5),(0.5,0)] and Γ2 = [(0,0),(0.5,0),(0.5,0.5)]. Repeat the above process
for each pixel, we can get the ultimate optimal weighted result of BSVA method applied in the
range direction.

4.3.3 Numerical Simulation

The parameters for MATLAB simulation is the same as that in Table 4.2. The imaging result
of applying the BSVA method along the range direction is shown in Figure 4.7. Comparing
the figure with the original imaging result (Figure 4.3), we can see that the weak targets p4, p6
and p7 which are submerged in the original image can be distinguished.

To go details of the suppression performance, Figure 4.8(a) and 4.8(b) give the slices of the
original 3D image and the range BSVA 3D image at x = 0m along the yoz plane. Figure 4.8(c)
gives the slice along the y-axis of Figure 4.8(a) and 4.8(b). From the figures, we can see that
the mainlobe of the strong target p1 is not broadened and the first sidelobe level is suppressed
form -13.13 dB to -32.06 dB. Therefore, the weak target p4 with comparable amplitude of the
first sidelobe of the strong target p1 can be distinguished.

(a) (b)

Figure 4.7: Range BSVA result of 2-D MIMO array imaging. (a) The front view of the range SVA image,
(b) The back view of the range SVA image.
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(a) (b)

(c)

Figure 4.8: Slices. (a) Slice of the original 3D image at x = 0m. (b) Slice of the range BSVA 3D image at
x = 0m. (c) Slice at x = 0m,z = 0m (along y-axis).

4.4 BSVA Applied on Two Directions
Similar to the 1-D MIMO case, after performing BSVA method in the cross-range plane, we
should recover the phase information of the original image:

gpr(x,y,z) = |gcr(x,y,z)|e j(ϕgo(x,y,z)) (4.79)

where gcr(x,y,z) is the magnitude of the image after applying BSVA in the cross-range plane
and ϕ(go(x,y,z)) is the phase terms of the original image.
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(a) (b)

Figure 4.9: Cross-range and range BSVA result of 2-D MIMO array imaging. (a) The front view of the
cross-range and range SVA image. (b) The back view of the cross-range and range SVA image.

4.4.1 Simulation Results

The result of applying BSVA method both in the cross-range plane and in the range direction is
shown in Figure 4.9. Comparing the figure with the original 3D image (Figure 4.3), it is clear
that the sidelobes are suppressed, therefore all the weak targets submerged in the sidelobes of
the close strong targets in the original image can be distinguished. Furthermore, the grating
lobes are also suppressed.

4.5 Acceleration

Similar to the acceleration of the SVA method for 1-D MIMO array imaging. We also can
deduce the acceleration of the SVA method for 2-D MIMO array imaging.

4.5.1 Acceleration in the Range Direction

Combining with equation (4.63), (4.64), (4.70) and (4.71), we can calculate the number of
pixels in the interval of the adjacent point p1 to the target P0(x0,y0) and p3 to the target
P0(x0,y0), respectively.

Nx(p1) =

⌊
dr cos(αx)

dX

⌉
Ny(p1) =

⌊
dr cos(αy)

dY

⌉
Nz(p1) =

⌊
dr cos(αz)

dZ

⌉ (4.80)
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and

Nx(p3) =

⌊
dr cos(βx)

dX

⌉
Ny(p3) =

⌊
dr cos(βy)

dY

⌉
Nz(p3) =

⌊
dr cos(βz)

dZ

⌉ (4.81)

Then the four adjacent point can be approximated as

p′1 = (x0−Nx(p1) ·dX ,y0−Ny(p1) ·dY ,z0−Nz(p1) ·dZ)

p′2 = (x0 +Nx(p1) ·dX ,y0 +Ny(p1) ·dY ,z0 +Nz(p1) ·dZ)
(4.82)

and
p′3 = (x0−Nx(p3) ·dX ,y0−Ny(p3) ·dY ,z0−Nz(p3) ·dZ)

p′4 = (x0 +Nx(p3) ·dX ,y0 +Ny(p3) ·dY ,z0 +Nz(p3) ·dZ)
(4.83)

Then the weighted image of applying BSVA method (4.74) in the range direction can be
expressed as

g̃C(x0,y0,z0) = gC(x0,y0,z0)+w1(gC(p′1)+gC(p′2))+w2(gC(p′3)+gC(p′4)) (4.84)

Still, if p′1, p′2, p′3 and p′4 are located outside of the imaging area, we need to calculate their
imaging results according to the imaging method.

4.5.2 Acceleration in the Cross-range Direction
For the cross-range sidelobe suppression of 2-D MIMO array imaging, we use two times 2-D
BSVA method along x-axis and z-axis, respectively. Same as the acceleration method used
in 1-D MIMO array imaging, firstly, we need to implement 1-D BSVA method to replace the
2-D BSVA method.

According to the deduction of 1-D BSVA method in the cross-range direction of 1-D
MIMO array imaging in section 3.5.2 and combining equation (4.13), the total equivalent
wavenumber spectrum width along x-axis and z-axis can be expressed as

Bkx(x0) = Bkux
(x0)+Bkvx

(x0)

Bkz(z0) = Bkuz
(z0)+Bkvz

(z0)
(4.85)

The compensating phase term ϕ(x0) and ϕ(z0) can be obtained according to equation (4.15)
and (4.16) by taking xT = xR = x0 and zT = zR = z0, respectively. Then the compensated image
along x-axis and z-axis can be expressed as

g1(x0,y0,z0) = g(x0,y0,z0)e− jϕ(x0)

g2(x0,y0,z0) = g(x0,y0,z0)e− jϕ(z0)
(4.86)

According 1-D BSVA method, the adjacent two points along each axis can be expressed
as

qx1 =

(
x0−

2π

Bkx(x0)
,y0,z0

)
qx2 =

(
x0 +

2π

Bkx(x0)
,y0,z0

) (4.87)
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and

qz1 =

(
x0,y0,z0−

2π

Bkz(z0)

)
qz2 =

(
x0,y0,z0 +

2π

Bkz(z0)

) (4.88)

Then the corresponding weighted image with 1-D BSVA method can be expressed as

g̃1(x0,y0,z0) = g1(x0,y0,z0)+w11(x0)(g1(qx1)+g1(qx2))

g̃2(x0,y0,z0) = g2(x0,y0,z0)+w21(z0)(g2(qz1)+g2(qz2))
(4.89)

The above functions can be solved according to the introduction of 1-D BSVA method in
section 2.2.1, we will get two complex values for each pixel, then choose the one with smaller
magnitude as the final weighted result. In this way, we can implement sidelobe suppression
via 1-D BSVA method for 2-D MIMO array imaging.

To speed up the implementation of SVA method by making use of the original imaging
values, we also need to approximate the points to the nearest pixels.

• Approximation with 1-D BSVA method
Considering BSVA method, the number of pixels for the point target and its adjacent points
can be formulated by

N11(x0) =

⌊
2π

Bkx(x0) ·dX

⌉
N21(z0) =

⌊
2π

Bkz(z0) ·dZ

⌉ (4.90)

The adjacent points can be approximated as

q′x1
= (x0−N11(x0) ·dX , y0, z0)

q′x2
= (x0 +N11(x0) ·dX , y0, z0)

q′z1
= (x0, y0, z0−N21(z0) ·dZ)

q′z2
= (x0, y0, z0 +N21(z0) ·dZ)

(4.91)

The equation (4.89) can be expressed as

g̃′1(x0,y0,z0) = g1(x0,y0,z0)+w11(x0)[g1(q′x1
)+g1(q′x2

)]

g̃′2(x0,y0,z0) = g2(x0,y0,z0)+w21(z0)[g2(q′z1
)+g2(q′z2

)]
(4.92)

Then we can implement acceleration of 1-D BSVA method.

• Approximation with 1-D GSVA method
Similarly, we can apply GSVA method. The equation (4.89) can be expressed according to
the GSVA method

g̃′1(x0,y0,z0) = (1−w11(x0)sinc(ws))g1(x0,y0,z0)+w11(x0)[g1(q′x1
)+g1(q′x2

)]

g̃′2(x0,y0,z0) = (1−w21(z0)sinc(ws))g2(x0,y0,z0)+w21(z0)[g2(q′z1
)+g2(q′z2

)]
(4.93)

The above functions can be solved according to the introduction of 1-D GSVA method in
section 2.2.2. And choose the result with smaller magnitude of the two functions as the final
optimal weighted result.
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• Approximation with 1-D MSVA method
Similarly, we can apply MSVA method. Then the another two adjacent points along each
axis are

qx3 =

(
x0−

4π

Bkx(x0)
, y0, z0

)
qx4 =

(
x0 +

4π

Bkx(x0)
, y0, z0

) (4.94)

qz3 =

(
x0, y0, z0−

4π

Bkz(z0)

)
qz4 =

(
x0, y0, z0 +

4π

Bkz(z0)

) (4.95)

The number of the pixels between the point target and the new adjacent points are

N12(x0) =

⌊
4π

Bkx(x0) ·dX

⌉
N22(z0) =

⌊
4π

Bkz(z0) ·dZ

⌉ (4.96)

The new adjacent points can be approximated as

q′x3
= (x0−N12(x0) ·dX , y0, z0)

q′x4
= (x0 +N12(x0) ·dX , y0, z0)

q′z3
= (x0, y0, z0−N22(z0) ·dZ)

q′z4
= (x0, y0, z0 +N22(z0) ·dZ)

(4.97)

The weighted image can be expressed as

g̃′1(x0,y0,z0) = g1(x0,y0,z0)+w11(x0)[−2sinc(ws)g1(x0,y0,z0)+g1(q′x1
)+g1(q′x2

)]

+w12(x0)[−2sinc(ws)g1(x0,y0,z0)+g1(q′x3
)+g1(q′x4

)]

g̃′2(x0,y0,z0) = g2(x0,y0,z0)+w21(z0)[−2sinc(ws)g2(x0,y0,z0)+(g2(q′z1
)+g1(q′z2

)]

+w22(z0)[−2sinc(ws)g2(x0,y0,z0)+g2(q′z3
)+g2(q′z4

)]
(4.98)

Then we can implement acceleration of 1-D MSVA method.

4.5.3 Simulation Result
Still, set ws = 0.909, and we get the following simulation results. Figure 4.10 gives the acceler-
ation result with the BSVA, GSVA and MSVA method in the cross-range direction. Compared
with the original image (Figure 4.3), the sidelobe suppression is effective. However, com-
pared with the original SVA image (Figure 4.9), there are some residual sidelobes, especially
for the targets located at the corner of the imaging area. But the MSVA method gives better
performance among the three acceleration implementations.

Table 4.3 compares the processing time, the amplitude of the first and second sidelobes and
two grating lobes. s1 = (0.051m,0.105m,0.04m) and s2 = (0.059m,0.101m,0.04m) are the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Acceleration results with different SVA method in the cross-range direction and BSVA in the range
direction. (a) Front view with BSVA method, (b) back view with BSVA method; (c) Front view with GSVA
method, (d) back view with GSVA method; (e) Front view with MSVA method, (f) back view with MSVA

method.
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Table 4.3: Performance comparison

Original BSVA BSVA-
acceleration

GSVA-
acceleration

MSVA-
acceleration

Processing time [min] 5.30 106.6 11.09 11.07 14.04
s1[dB] -13.53 -Inf -21.33 -22.41 -32.21
s2[dB] -18.68 -32.21 -21.50 -22.24 -Inf
s3[dB] -13.51 -Inf -21.68 -22.82 -Inf
s4[dB] -18.78 -33.86 -22.70 -23.52 -43.66
g1[dB] -23.31 -23.79 -24.02 -24.30 -25.02
g2[dB] -22.14 -34.59 -22.34 -22.82 -28.07

first and second sidelobes of the strong target p5 along x-axis. s3 =(−0.04m,0.09m,−0.05m)
and s4 = (−0.04m,0.086m,−0.057m) are the first and second sidelobes of the strong target
p8 along z-axis. g1 = (0.042m,0.086m,−0.069m) and g2 = (0.062m,0.07m,−0.042m) are
the grating lobes of p8 along x-axis and p5 along z-axis respectively. From the table, we
can see that the processing time is significantly reduced with acceleration methods. With
BSVA and GSVA acceleration method, it has been reduced to around 10% of the original SVA
method. With MSVA acceleration method, it has been reduced to 13.17%. The suppression
performance of BSVA-acceleration method and GSVA-acceleration method is similar. But
due to the approximation, some errors are introduced, then the suppression performance is
not as good as that of the original SVA method. While the suppression effect of the MSVA-
acceleration method is almost comparable with that of the original SVA method, the process-
ing time only increases 1.65 times that of the original imaging, much less than 20 times for the
original SVA method. Therefore, with a proper imaging grid, the MSVA-acceleration method
is a good choice to implement sidelobe and grating lobe suppression effectively and quickly.

4.6 Experimental Validation

4.6.1 Measurement Setup
The experimental measurement campaign was performed in the anechoic chamber in the Delft
University of Technology (TU Delft). And the method is implemented in MATLAB using the
Server 2 of Group MS3 , EEMCS, TU Delft.

The operating frequency is from 1 GHz to 26 GHz with steps of 100 MHz. The MIMO
array composes of 16 transmitters and 9 receivers. And a target is placed in front of the
array around 0.5 m. The imaging area is 0.495m× 0.59m× 0.495m with 100× 60× 100
samples. All the parameters are listed in the table 4.4. The structure of the MIMO array is
shown in Figure 4.11. What should be noted is that here we choose a irregular MIMO array to
verify the general case. When dealing with the cross-range SVA method, the corner antenna is
determined by calculating the wavenumber width of all antennas corresponding to the current
pixel and choosing the antenna pair that getting the maximum wavenumber width. When
dealing with the range SVA method, the central position of the transmit array and the receive
array is determined with k-mean clustering method.
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Table 4.4: Parameters of Experimental Validation

Parameters Values

Frequency band f 1 – 26 GHz
Frequency interval d f 100 MHz
Number of transmitters NT x 16
Number of receivers NRx 9
Imaging area X [-0.25 0.245]
Imaging area Y [0 0.59]
Imaging area Z [-0.25 0.245]
Grid spacing dX 5 mm
Grid spacing dY 10 mm
Grid spacing dZ 5 mm
Image samples 100×60×100

Figure 4.11: MIMO array topology of experimental validation

4.6.2 Experimental Results

The original imaging result is shown in Figure 4.12(a) and the image after performing SVA
method is given in Figure 4.12(b). The sidelobes are greatly suppressed with the SVA method
in Figure 4.12(b), compared with the original image.
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(a) (b)
Figure 4.12: Images of experimental data. (a) The original image. (b) The SVA image.

(a) (b)

(c)

Figure 4.13: The acceleration implementation of the experimental measurement. (a) with BSVA method in the
cross-range plane; (b) with GSVA method in the cross-range plane; (c) with MSVA method in the cross-range

plane.
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Table 4.5: Processing time comparison

Original BSVA BSVA-
acceleration

GSVA-
acceleration

MSVA-
acceleration

Processing time [min] 1.69 33.34 3.19 3.19 4.07

The comparison of the processing time is listed in Table 4.5. The acceleration implemen-
tation results are given in Figure 4.13(a), 4.13(b) and 4.13(c) . Compared with the original
image, the three acceleration implementations can suppress the sidelobe level. The BSVA
and GSVA acceleration implementation show the similar suppression effect but not that good.
The MSVA implementation show better sidelobe suppression effect but also loss part of the
distributed target due to the relaxation of the constraints. In this case, the MSVA method is
not a good choice to accelerate the SVA implementation. And this is what need to solve in the
future, to find a more robust and low-computation constraints of the MSVA method.

4.7 Conclusion
In this chapter, based on the SVA applied on 1-D MIMO array imaging in chapter 3, we
give the deduction and implementation of the BSVA method for 2-D MIMO array imaging
in the cross-range plane (x-axis direction and z-axis direction) and range direction separately.
Furthermore, we propose a method to implement the BSVA method in the three directions
simultaneously.

Besides, we propose three acceleration implementations of the SVA method. And they can
work well under some conditions of imaging grid and the oversampling ratio.

The numerical simulation verifies the effectiveness of the SVA method and the accelera-
tion implementations of the SVA method based on a uniformly spaced 2-D MIMO array. The
sidelobe level in the cross-range plane has been suppressed at least 13.27 dB, and the sidelobe
suppression in the range direction of 18.93 dB has been achieved. Furthermore, the mainlobe
in the cross-range and range directions are not been broadened. With the BSVA and GSVA
acceleration method, the computational time has been reduced to around 10% of the original
SVA method, while the suppression effect has been weakened slightly. With the MSVA accel-
eration method, the processing time has been reduced to 13.17% of the original SVA method,
while the suppression effect is comparable with that before acceleration.

Lastly, we verify the SVA method with the experimental measurement. The result shows
that the SVA method can be performed on the irregular 2-D MIMO array imaging to im-
prove the image quality by suppressing the sidelobe level without sacrificing the mainlobe
resolution. Besides, the result of the acceleration shows the limitation of the three accelera-
tion methods. the BSVA and GSVA acceleration provide limited suppression effect and the
MSVA acceleration loss part of the distributed target due to the relaxation of the constraints.
Therefore, investigating a more robust and effective acceleration method is the future work.





5
Conclusion and Future Work

5.1 Conclusion
This thesis project aims to enhance the image quality of the short-range MIMO array imaging
by suppressing the sidelobe and grating lobe level via non-linear apodization method. The
traditional method is to apply a non-rectangular weighting function on the array aperture or
the data. However, all weighting methods result in the mainlobe spreading, which reduces
the resolution. Furthermore, through the literature review of the main methods applied on
MIMO array imaging, we can see some limitations, for example, only suitable for the specific
array topology, the limited suppression effect, or the complex implementation. Through the
research, we find that the non-linear apodization method used for SAR imagery could effec-
tively suppress the sidelobe level without sacrificing the mainlobe resolution. Furthermore, it
is easy to implement due to the unique spatial property of the cosine-on-pedestal weighting
function. The optimal weighting results can be obtained pixel by pixel with a three-point con-
volver. Therefore, it seems a good choice for MIMO array imaging. However, the challenge
is that the wavenumber spectrum of a MIMO array is complicated and spatially variant that
we cannot directly apply the SVA method on a MIMO array imaging.

The analysis of the wavenumber spectrum is the key point to address the problem. By
utilizing the imaging method of generalized matched filtering in the cross-range direction, we
can separately analyze the cross-range wavenumber spectrum of the transmit array and the
receive array. In this way, the complicated wavenumber spectrum analysis of MIMO array
imaging is simplified. Then, we can make some approximations to obtain the support of the
wavenumber spectrum of the separate sub-array in the cross-range direction and form a new
imaging plane at each imaging height. By analyzing the wavenumber spectrum support, we
find its width is spatially variant and related to the imaging point. Therefore, when applying
the SVA method, the spatial sampling frequency for each pixel is different, which results in
the different sampling spacing in the space domain. Furthermore, for the pixel not on the
line of the array center, its central wavenumber deviates from the zero-wavenumber position.
Thus, a phase term is compensated in the space domain to eliminate the deviation of the
central wavenumber. Then we can implement the 2-D BSVA pixel by pixel. In the range
direction, the support width of the sub-array does not change. However, the wavenumber in
one range direction will project on another range direction due to the non-orthogonality of the
two range directions. Therefore, the total wavenumber consists of two parts. Furthermore, the
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central wavenumber is also not at the zero-wavenumber position. A phase term is needed to
compensate in the space domain. Then two 1-D BSVA methods can be applied independently
and in parallel.

In this thesis, the SVA method is first applied to suppress the sidelobes in the range direc-
tion of the 1-D MIMO array imaging. And the complete implementation of the SVA method
both in the cross-range and range direction is provided. Besides, the SVA method for 2-D
MIMO array imaging is also proposed to reduce the sidelobe level in the cross-range plane
and the range direction. Furthermore, three acceleration approaches are proposed to reduce
the computational time.

For 1-D case, the numerical simulation is based on a sparse periodic array. The result
shows that the sidelobe level has been suppressed by at least 22.59 dB in the cross-range di-
rection; the grating lobe level has been suppressed by at least 4.18 dB. In the range direction,
at least 20.82 dB suppression of the sidelobe has been achieved. Besides, the mainlobe has
not been broadened in the two directions. Therefore, the small closely spaced targets can be
resolved from the strong closely spaced targets with this method since the main lobe resolu-
tion remains unchanged and the sidelobe level is effectively suppressed. Then to address the
much-increased processing time, we propose several acceleration implementations of the SVA
method. Among them, the BSVA and GSVA acceleration method has reduced the processing
time to around 10% that of the original SVA method, while the suppression effect has been
weakened slightly. The MSVA-acceleration method shows a better suppression effect, which
is comparable with the original SVA method. At the same time, the processing time is only
11.50% that of the original SVA method. What should be noted is that the acceleration meth-
ods have the requirement of the imaging grid. Once the grid is too dense, the suppression
effect of acceleration methods would degrade rapidly.

For 2-D case, the numerical simulation is based on a uniformly spaced rectangular MIMO
array. The result shows that the proposed method provides a sidelobe reduction of at least
13.27 dB in the cross-range plane and 18.93 dB in the range direction. At the same time, the
grating lobe level has been reduced slightly. Besides, the cross-range resolution and range
resolution remains unchanged. Therefore, the proposed method can enhance the image qual-
ity of 2-D MIMO array imaging by providing a large dynamic range without degrading the
main lobe width. Furthermore, several acceleration implementations are also proposed and
implemented. The processing time with BSVA and GSVA acceleration method has been re-
duced to around 10% that of the original SVA method, while the suppression effect has been
weakened slightly. The MSVA-acceleration method shows a better suppression effect, and the
processing time is 13.17% that of the original SVA method. Besides, experimental validation
is also given to verify the performance of the proposed method. The experimental validation
is based on an irregular MIMO array to illustrate the generality of the proposed method. The
result shows that the proposed method can also be applied on the irregular array and achieve
a sidelobe reduction of 8 dB with preserving the mainlobe resolution. Moreover, the acceler-
ation implementations are also provided. However, the experimental results show the limited
suppression performance with the BSVA and GSVA acceleration methods. The suppression
effect gets better with the MSVA acceleration method, while part of the distributed targets are
suppressed and even lost. And this is what we need to address in the future.

In conclusion, the proposed method is suitable for arbitrary MIMO array. For the 1-D
and 2-D cases, the sidelobe level is suppressed to below -26 dB in the cross-range and range
directions with the proposed method. Therefore, the proposed method is highly effective for a
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MIMO array to provide better suppression performance than a full array in the same aperture
size. Furthermore, with acceleration approaches under a dense imaging grid, the sidelobe level
can also be reduced to below -26 dB, at the same time, the computational time is reduced to
around 10% that before acceleration.

5.2 Recommendation and Future Work
Though the acceleration implementations of the proposed method work well for simulation, it
shows the limitation in the experimental validation. Once the imaging grid is too sparse, the
acceleration implementations would not achieve a good sidelobe suppression effect. Further-
more, the MSVA acceleration implementation may result in the loss of the targets. Therefore,
some work can be carried in the future.

Firstly, go a step further in the detailed conditions and effect of acceleration implementa-
tion with the BSVA and GSVA method. Try to give a robust consideration and implementation
to achieve the compromise between the less processing time and better suppression effect.

Secondly, redefine the constraints of the MSVA method for the MIMO array imaging.
The constraints of the 5-tap SVA method is relaxed to reduce the complicated computation.
Therefore, it requires a strict sinc kernel of the point spread function (PSF) to avoid the loss
of the target. However, the PSF of the MIMO array is only similar to the sinc kernel due to
the spatially variant wavenumber spectrum. Furthermore, combined with the approximation
of the wavenumber width and the compensated phase, the error would be enlarged, and the
uncontrolled risk of losing the targets would increase. To avoid the loss, we need to tighten
the excessive relaxed constraints.

Thirdly, we can investigate the acceleration implementation of the SVA method with ma-
chine learning. The key idea for acceleration is to make use of the original imaging result. By
machine learning, we may implement the acceleration fast and accurate.
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