

Delft University of Technology

A study of lattice reformulations for integer programming

Aardal, Karen; Scavuzzo, Lara; Wolsey, Laurence A.

DOI
10.1016/j.orl.2023.05.001
Publication date
2023
Document Version
Final published version
Published in
Operations Research Letters

Citation (APA)
Aardal, K., Scavuzzo, L., & Wolsey, L. A. (2023). A study of lattice reformulations for integer programming.
Operations Research Letters, 51(4), 401-407. https://doi.org/10.1016/j.orl.2023.05.001

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.orl.2023.05.001
https://doi.org/10.1016/j.orl.2023.05.001

Operations Research Letters 51 (2023) 401–407

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A study of lattice reformulations for integer programming

Karen Aardal a,∗, Lara Scavuzzo a, Laurence A. Wolsey b

a Technische Universiteit Delft, Mekelweg 4, 2628 CD Delft, the Netherlands
b CORE, UCLouvain, 34 voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 9 May 2023

Keywords:
Integer optimization
Lattice-based reformulation
Branching on general disjunctions

Branch-and-bound for integer optimization typically uses single-variable disjunctions. Enumerative
methods for integer optimization with theoretical guarantees use a non-binary search tree with general
disjunctions based on lattice structure. These disjunctions are expensive to compute and challenging to
implement. Here we compare two lattice reformulations that can be used to heuristically obtain general
disjunctions in the original space, we develop a new lattice-based variant, and compare the derived
disjunctions computationally with those produced by the algorithm of Lovász and Scarf.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

We consider the following linear integer set:

X = {x ∈Zn | Ax � a0} , (1)

where � symbolizes ≤ or = constraints.
The standard way of optimizing over X is by branch-and-bound,

which constructs a binary search tree. Each node of the tree is
either pruned or branched on to create two children using single-
variable disjunctions. Determining which variable to branch on is
commonly done using sophisticated heuristic decision rules [3] and
has recently received a lot of attention from the machine learn-
ing community [8,18]. There is no upper bound on the size of the
branch-and-bound search tree for (1) that depends only on n.

The enumerative algorithms by Lenstra [12] and by Lovász and
Scarf [15], or improvements thereof, have such an upper bound,
but use a different concept of branching: “branching on hyper-
planes”. Both algorithms build a search tree where branches are
created by imposing a new constraint dx = β , for all β in a range
that is bounded, in the worst case, by a constant that depends
only on n. This generates subproblems of lower dimension, lead-
ing to a search tree that has depth at most n. The direction d is
determined in each subproblem by a lattice basis reduction al-
gorithm. Even though the theoretical results for the Lenstra, and
Lovász-Scarf algorithms are very appealing, little is known of their
actual computational power. The only computational study we are

* Corresponding author.
E-mail addresses: k.i.aardal@tudelft.nl (K. Aardal),

L.V.ScavuzzoMontana@tudelft.nl (L. Scavuzzo), laurence.wolsey@uclouvain.be
(L.A. Wolsey).
https://doi.org/10.1016/j.orl.2023.05.001
0167-6377/© 2023 The Author(s). Published by Elsevier B.V. This is an open access artic
creativecommons .org /licenses /by-nc -nd /4 .0/).
aware of is by Cook et al. [4], where encouraging observations
were made. The use of general disjunctions is also studied in, e.g.,
[2,6,9,10,16,22].

In [2] and [10], reformulations of the feasible set X are sug-
gested. In both cases, a variable in the new coordinate system can
be expressed as a function of the original variables, so branching
on it can be viewed as a general disjunction in the original space.
The approach of Aardal et al. [2] combines a reformulation of the
problem as a full-dimensional problem with a shape changing step
in the new coordinate system, whereas Krishnamoorthy and Pataki
[10] only use a shape changing procedure.

In the present work, we compare the two approaches, and in
particular investigate the computational effect of the dimension re-
duction and the shape change. In addition, we suggest a new norm
that, for single-row problems, mimics a step of Lenstra’s algorithm
and yields a variant of the reformulation in [2]. The goal here is
to make the resulting polytope regular so that it can be inscribed
in a box of relatively small volume. An explicit upper bound on
this volume is derived. We also look at the lattice bases produced
by the Aardal et al. and the Krishnamoorthy-Pataki reformulations
and compare them to the Lovász-Scarf reduced bases, which in a
sense can be viewed as optimal.

Some of the test instances we consider are 0-1 integer pro-
grams. For such instances the worst-case branch-and-bound tree
size is already polynomial for fixed n. There are aspects of branch-
ing on general disjunctions that may still be interesting for such
instances. If, for instance, the solution space is embedded in an
affine subspace and/or if the constraints are not combinatorial,
then general disjunctions may result in smaller search trees in
practice. This is addressed in our computational study.

The outline is as follows. In Section 2 we give some basic defi-
nitions and sketch the principles of the hyperplane branching algo-
le under the CC BY-NC-ND license (http://

https://doi.org/10.1016/j.orl.2023.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2023.05.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:k.i.aardal@tudelft.nl
mailto:L.V.ScavuzzoMontana@tudelft.nl
mailto:laurence.wolsey@uclouvain.be
https://doi.org/10.1016/j.orl.2023.05.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

K. Aardal, L. Scavuzzo and L.A. Wolsey Operations Research Letters 51 (2023) 401–407
rithms by Lenstra and by Lovász and Scarf. In Section 3 we briefly
review the reformulations by Aardal et al. and by Krishnamoorthy
and Pataki, and introduce the new norm and volume bound for the
single-row problems. Computations are presented in Section 4.

This paper is dedicated to the memory of our most valued col-
league and friend Gerhard J. Woeginger.

2. Mathematical background

2.1. Lattices and basis reduction

Let b1, . . . , bl be linearly independent vectors. The set L = {x |
x = ∑l

j=1 λ jb
j, λ j ∈Z, j = 1, . . . , l} is called a lattice. Setting b j =

e j , where e j is the jth unit vector, we obtain the so-called standard
lattice Zl . Notice that a basis for a lattice is not unique, so even
though e j are obvious basis vectors for Zl , these basis vectors may
not be the best choice for representing the lattice.

The direction d that is used in both the Lenstra and Lovász-
Scarf algorithms to branch on hyperplanes dx = β , is determined
by lattice basis reduction. Lenstra uses the polynomial-time LLL-
reduction [11], and Lovász and Scarf use the generalized basis
reduction algorithm [15], which runs in polynomial time in fixed
dimension.

Definition 1. (LLL-reduced basis, [11]). Given is a basis b1, b2, . . . ,
bl of the lattice L, and the associated Gram-Schmidt vectors
b1∗, b2∗, . . . , bl∗ . Let μi j = 〈bi, b j∗〉/〈b j∗, b j∗〉, for 1 ≤ j < i ≤ l. The
basis is reduced if

|μi j| ≤ 1

2
, for 1 ≤ j < i ≤ l (2)

and, for y ∈ (1
4 , 1) and 1 < i ≤ l,

‖bi∗ + μi, i−1b(i−1)∗‖2 ≥ y ‖b(i−1)∗‖2 . (3)

Notice that condition (3) is satisfied if ‖b(i−1)∗‖2 ≤ c‖bi∗‖2,
where 1/c = (y − μ2

i,i−1) with y ∈ (1/4, 1) and μ2
i,i−1 ≤ 1/4. A

c-reduced basis is an LLL-reduced basis for a given value of the con-
stant c. This will be used in Schoof’s Lemma in Section 3.1. For a
description of the algorithm we refer to [11].

Lovász and Scarf [15] introduced the generalized basis reduction
algorithm. In this algorithm a different norm, or distance function,
from the Euclidean norm is used. In the case of integer program-
ming, the distance function is related to the polyhedron of the
underlying linear relaxation.

Let C be a compact convex body in Rn of positive volume and
symmetric about the origin. The distance function F (x) is defined
as

F (x) = inf{λ ≥ 0 | x

λ
∈ C} . (4)

Associated with the body C is its polar body C∗ defined as C∗ =
{y ∈Rn | yTx ≤ 1, for all x ∈ C}. We can use C∗ to define the polar
formulation of the distance function: F (y) = maxx∈C∗ yTx.

We can now use the distance function (4) when defining a re-
duced basis in the sense of Lovász and Scarf. Let b1, . . . , bn be a
basis for the lattice L. Instead of using the Gram-Schmidt vectors,
Lovász and Scarf use projections of the basis vectors. Let Ci be the
projection of C along the vectors b1, . . . , bi−1 into the affine space
Ei = ∑n

j=i Rb j . The lattice Li is obtained by projecting L along
b1, . . . , bi−1 into

∑n
j=i Zb j .

Definition 2. The distance function Fi(x) associated with Ci is
defined for x ∈ Ei by Fi(x) = minα1,...,αi−1 F (x + α1b1 + · · · +
αi−1bi−1).
402
Using the polar formulation of F one can show that the value
Fi(x) is equal to

max
z∈C∗ {xTz | (b1)Tz = 0, . . . , (bi−1)Tz = 0} . (5)

Definition 3. (LS-reduced basis, [15]). Given a lattice L with basis
b1, . . . , bn , fix 0 < y < 1/2. The basis is reduced for i = 1, . . . , n −1,
if

Fi(bi+1) ≥ (1 − y)Fi(bi),

Fi(bi+1 + μbi) ≥ Fi(bi+1), for all μ ∈Z .

We refer to Cook et al. [4] for a detailed description of an im-
plementation of the Lovász-Scarf algorithm.

2.2. Determining the direction d when branching on hyperplanes

Since the norms used by Lenstra and by Lovász and Scarf are
different, they also relate differently to the LP-relaxation polytope
P = {x ∈ Rn | Ax ≤ a0}. Lenstra transforms the polytope and the
lattice such that the transformed polytope τ P can be approxi-
mated well by concentric balls, one inscribed in τ P and one con-
taining τ P . LLL-reduction is now applied to a basis of the trans-
formed lattice τZn , and the direction d is chosen as the longest of
the reduced basis vectors.

To understand how the Lovász-Scarf norm relates to the poly-
tope we first consider a well-known fact from lattice theory. Let
L ⊂ E be a lattice of full rank in a Euclidean vector space E . Then
the set L∗ = {x ∈ E | xT y ∈ Z, for all y ∈ L} is also a lattice in E
of full rank, called the polar lattice. For x ∈ E − {0} we have, by
definition, that x ∈ L∗ if and only if the lattice L is contained in
{y ∈ E | xT y ∈Z}, which can be written as

{y ∈ E | xT y ∈Z} = (Rx)⊥ + k x′ , (6)

where (Rx)⊥ is the orthogonal complement of the space spanned
by x, k ∈Z, and x′ = x/‖x‖2. So (6) implies that x ∈ L∗ if and only
if L is contained in the translates (Rx)⊥ + k x′ . If the vector x is
short, the vector x′ is long, so finding a short vector in the polar
lattice L∗ is equivalent to finding widely spaced parallel “lattice
hyperplanes”.

To determine whether the full-dimensional polytope P = {x |
Ax ≤ a0} contains an integer vector, we observe that the sets
(P − P) and (P − P)∗ are compact, convex sets that are sym-
metric about the origin, and have positive volume. The algorithm
finds an approximation of the shortest vector given the distance
function (4) for the set C = (P − P)∗ , which is then the same
as finding a vector d such that the lattice is contained in widely
spaced translates of the orthogonal complement of d, or equiv-
alently, a direction d in which the width of P is thin. In this
polyhedral case the distance function Fi(d) using its dual represen-
tation (5) is now written as Fi(d) = max{d(x − y) | Ax ≤ a0, A y ≤
a0, (b1)T(x − y) = 0, . . . , (bi−1)T(x − y) = 0}.

The question is whether the approximation by balls combined
with polynomial basis reduction is computationally more demand-
ing than computing the generalized reduced basis. To our knowl-
edge, no implementation of Lenstra’s algorithm has been reported
on, whereas the Lovász-Scarf algorithm has been implemented and
successfully tested by Cook et al. [4]. This study dates back to 1993.
An implementation advantage of the Lovász-Scarf algorithm is that
the main “engine” of the reduction algorithm in the polyhedral
case is linear programming.

K. Aardal, L. Scavuzzo and L.A. Wolsey Operations Research Letters 51 (2023) 401–407
3. Lattice-based reformulations

Some of the lattice reformulations that we describe in this
section reformulate using the lattice of the null-space of the con-
straint matrix A. The set (1) in this case is assumed to have the
following form:

X = {x ∈Zn | Ax = a0, x ≥ 0} . (7)

We assume that A ∈Zm×n has full row rank. The linear relaxation
of X is denoted by XL P .

It is well-known that if the system Ax = a0 is integer fea-
sible, then there exist integer vectors x̄, x j, j = 1, . . . , n − m,
such that {x ∈ Zn | Ax = a0} = x̄ + ∑n−m

j=1 λ jx j , where x j, j =
1, . . . , n − m, are linearly independent. In particular, we can take
x j, j = 1, . . . , n −m, to be basis vectors of the lattice kerZA = {x ∈
Zn | Ax = 0}, that is, we write x j = b j, j = 1, . . . , n − m, where
B = [b j]n−m

j=1 can be any basis for kerZA. The vectors x̄, b j, j =
1, . . . , n − m, can be derived in polynomial time by for instance a
Hermite Normal Form computation, see Schrijver [19].

Once we have x̄, b j, j = 1, . . . , n − m, we can reformulate (7)
as

Xλ = {λ ∈ Zn−m | Bλ ≥ −x̄} . (8)

We denote the linear relaxation of Xλ by Xλ
L P . Notice that the sets

Xλ and Xλ
L P are full-dimensional. It is clear that upper bounds u

on the variables x can be handled by adding the constraints Bλ ≤
u − x̄.

For all reformulations in this section a variable disjunction in
the reformulated space corresponds to a general disjunction in the
original space.

3.1. Single-row reformulations

Here we consider the integer knapsack case, i.e., the matrix A
in formulation (7) of X has one row a (m = 1). Furthermore, we
assume that a0, a1, . . . , an > 0, and that gcd(a1, . . . , an) = 1.

We will study the volume of a rectangular box, oriented in
the coordinate directions, that contains the linear relaxation of the
problem at hand. This volume gives us an upper bound on the
number of branch-and-bound nodes needed to solve the instance
when branching along the coordinate directions. It is straightfor-
ward to determine the volume of the smallest such box containing
XL P , which is

V (XL P) = an
0

�n
i=1ai

. (9)

In this section we derive an expression for an upper bound on
the volume of a box containing Xλ

L P , denoted V (Xλ
L P) by choos-

ing an appropriate basis B of the lattice kerZa. The idea comes
from the approximation step in Lenstra’s algorithm [12], where an
appropriate polytope transformation is derived by mapping a high-
volume simplex, which is contained in the polytope, to a regular
simplex.

For our proof we will use a linear map D of Rn that maps
XL P to a regular simplex, D = aIn . Applying this map to XL P =
{x ∈ Rn | ∑n

i=1 ai xi = a0} yields a simplex that intersects each of
the coordinate axes at the point a0ei, i = 1, . . . , n: X D

L P = {x ∈Rn |∑n
i=1 xi = a0}.
Applying D to Zn yields the lattice � = DZn with basis D .

Under this map, the lattice kerZa becomes DkerZa = {x ∈ � |∑n
i=1 xi = 0} = ker�1.
Notice that if B = (b1, . . . , bn−1) is a basis for kerZa, then the

vectors b̂
i = Dbi, i = 1, . . . , n −1, form a basis for ker�1. Similarly,
403
if x̄ is a vector satisfying ax̄ = a0, then the vector x̂ = Dx̄ satisfies ∑n
i=1 x̂i = a0.

Lemma 1 (Schoof, see Section 12 of [13]). Given is a lattice L of rank n
generated by the basis B = (b1, . . . , bn), and a vector x ∈ Rn. Assume
that B is a c-reduced basis for L, with c ≥ 1, and let b1∗, . . . , bn∗ be the
Gram-Schmidt vectors corresponding to B . Let λ1, ..., λn be the coeffi-
cients in the unique expression of x in terms of the basis vectors b j , i.e.,
x = ∑n

j=1 λ jb
j . Then,

|λ j| ≤
(

3
√

c

2

)n− j

· ‖x‖
‖b j∗‖ for j = 1, . . . ,n .

We are now ready to state our result.

Theorem 2. Given a0, a = (a1, . . . , an), a basis B̂ of ker�1, and a vector
x̄ ∈Zn satisfying ax̄ = a0 , assume that

• a0, a1, . . . , an > 0,
• gcd(a1, . . . , an) = 1,
• B̂ is c-reduced with c ≥ 1.

Then, Xλ
L P = {λ ∈ Zn−1 | −Bλ ≤ x̄}, with B = D−1 B̂ , is contained in a

box with volume at most

(
3
√

c

2

) (n−1)(n−2)
2

· 2
n−1

2√
n

· an−1
0∏n
i=1 ai

. (10)

Proof. Let x(1) and x(2) be two arbitrary vectors in XL P , and
consider their representation in terms of B , namely x(1) = x̄ +∑n−1

j=1 λ
(1)
j b j , x(2) = x̄ + ∑n−1

j=1 λ
(2)
j b j . We can apply Schoof’s lemma

to the vector

D(x(1) − x(2)) =
n−1∑
j=1

(λ
(1)
j − λ

(2)
j)Db j =

n−1∑
j=1

(λ
(1)
j − λ

(2)
j)b̂

j
.

This yields, for j = 1, . . . , n − 1,

|λ(1)
j − λ

(2)
j | ≤

(
3
√

c

2

)n−1− j

· ‖D(x(1) − x(2))‖
‖b̂

j∗‖
.

Here b̂
j∗

, j = 1, . . . , n −1, are the Gram-Schmidt vectors associated
with the basis B̂ . Notice that the vectors Dx(1) and Dx(2) are in the
regular simplex X D

L P and therefore ||Dx(1) − Dx(2)|| ≤ √
2 ·a0. Using

this and the fact that x(1) and x(2) were chosen arbitrarily, we can
obtain an upper bound for the volume of Xλ

L P

V (Xλ
L P) ≤

n−1∏
j=1

(
3
√

c

2

)n−1− j

·
√

2 · a0

‖b̂
∗
j ‖

=

(
3
√

c

2

) (n−1)(n−2)
2

· 2
n−1

2 · an−1
0∏n−1

j=1 ‖b̂
∗
j ‖

. (11)

It is well-known that
∏n−1

j=1 ‖b̂
∗
j ‖ is an expression for d(ker�1),

so we only need to obtain an expression for d(ker�1) in terms of
the input.

The lattice ker�1 is a pure sublattice of �. From known lattice
formulae (see (14), (15), and (16) in the appendix) we obtain

d(ker�1) = d(�)

d(�/ker�1)
= d(�) · d((�/ker�1)∗)

= d(�) · d((ker�1)⊥) (12)

K. Aardal, L. Scavuzzo and L.A. Wolsey Operations Research Letters 51 (2023) 401–407
with (ker�1)⊥ = {x ∈ �∗ | 〈x, ker�1〉 = 0}. The determinant of the
lattice � is equal to d(�) = det(D) = ∏n

j=1 a j .

Since gcd(a1, . . . , an) = 1, the lattice (ker�1)⊥ is the lattice gen-
erated by the vector of all ones, i.e., (ker�1)⊥ = Z1 having deter-
minant equal to d((kerZ1)⊥) = 〈1, 1〉1/2 = √

n. Expression (12) has
now become:

d(ker�1) = d(�) · d((ker�1)⊥) =
n∏

j=1

a j · √n .

We now substitute
∏n−1

j=1 ‖b̂
∗
j ‖ in Expression (11) for

∏n
j=1 a j · √n

and obtain the desired result. �
If we compare expressions (9) and (10) we can make the fol-

lowing remarks. The first factor in the bound on V (Xλ
L P) is due to

the estimate that one gets from the LLL-reduction (see the proof
given in [13]). In practice, the LLL-reduction estimates typically
turn out much better than the theoretical bounds. In the last fac-
tor of the bound we have lost one power of the right-hand side
a0. It is not so clear how this gain compares with the first two fac-
tors. We investigate this in the computational study presented in
Section 4. Another question is how the basis used in the proof of
Theorem 2 compares computationally to the lattice reformulations
of Aardal et al. [2] and of Krishnamoorthy and Pataki [10], which
we describe next.

3.2. The Aardal-Hurkens-Lenstra and the Krishnamoorthy-Pataki
reformulations

Aardal et al. [2] use LLL reduction to derive the reformula-
tion (8) of the set {x ∈ Zn | Ax = a0}. They do so by consider-
ing a higher-dimensional lattice in which the vectors x̄, x j, j =
1, . . .n −m, as described in the introduction to Section 3, are short
and such that finding an initial basis for that lattice is trivial. The
LLL algorithm then outputs vectors x̄, x j, j = 1, . . .n − m or gives
a certificate for integer infeasibility in polynomial time. We refer
to this reformulation as the AHL-reformulation.

The starting point of Krishnamoorthy and Pataki (KP) [10] is the
set X≤ = {x ∈Zn | l ≤ Ax ≤ u}.

They reformulate the problem by reducing A, i.e. multiplying A
by a unimodular matrix U to obtain

X y
≤ = {y ∈Zn | l ≤ AU y ≤ u} . (13)

The KP-reformulation can of course also be applied to an equality
system, but it does not result in a dimension reduction as in the
AHL-reformulation.

It is worth noticing that if the original set is full-dimensional,
then the resulting KP-reformulation is equivalent to the AHL-
reformulation, see the appendix. In practice there are differences,
as the AHL-reformulation involves the extended matrix (A, a0) in-
stead of only A. When using the KP reformulation for equations,
we use AU y = a0.

4. Computational study

4.1. Instances and setup

We perform the comparison using 7 sets of instances from
the literature. A summary of their properties and a description
of the models can be found in the appendix. Four of the collec-
tions are composed of single-row feasibility problems and three
are multi-row binary problems. The single-row instances struct_s
and struct_b have been generated such that the lattice kerZa
has an (n − 2)-dimensional sublattice with small determinant d,
whereas d(kerZa) is large. This implies that LLL-reduction will
404
Table 1
Geometric mean of the number of nodes over 30 instances and 5 randomization
seeds (lower is better). We compare the original formulation with the four proposed
reformulations.

Instance Original AHL AHLD AHLlow KP

struct_s > 107 12.70 10.81 12.63 19.19
struct_b > 107 1.28 1.27 1.31 1.21

nostruct_s 121,456 97.10 68.64 90.43 128.98
nostruct_b 59,901 701.15 572.03 1779.06 566.99

MS 398,742 685.03 - 4111.48 1545.95
GAP 893.37 52.15 - 72.52 122.92
CA 11.26 21.03 - 95.08 16.14

Table 2
Geometric mean of the solving time (in seconds) over 30 instances and 5 random-
ization seeds (lower is better). Reduction time is not included, but we report it in
Table 3.

Instance Original AHL AHLD AHLlow KP

struct_s > 3600 0.04 0.03 0.04 0.04
struct_b > 3600 0.06 0.05 0.06 0.07

nostruct_s 21.74 0.12 0.10 0.11 0.10
nostruct_b 6.62 0.61 0.45 1.02 0.53

MS 37.98 0.81 - 2.40 1.64
GAP 3.77 1.05 - 1.11 1.39
CA 3.41 4.68 - 28.23 3.99

Table 3
Average reduction times (in seconds) of the multi-row instances. The reduction time
of single-row instances is negligible.

Instance AHL AHLlow KP

Market split 2 · 10−3 3 · 10−3 2 · 10−3

Generalized assignment problem 21.4 21.2 2.5
Combinatorial auctions 172.6 168.6 3.0

yield a basis with n −2 relatively short vectors and one long vector.
In contrast, nostruct_s and nostruct_b are composed of instances
with coefficients of the same order of magnitude as struct_s and
struct_b, yielding a lattice determinant of the same order of mag-
nitude, but with no special encoded structure. For all single-row
instances, the right-hand side coefficient is the Frobenius num-
ber [17], which makes them infeasible. Market split (MS) instances
have been shown to benefit from the AHL reformulation in past
work, see [2]. Generalized assignment problems (GAP) and combi-
natorial auctions (CA) have not been tested in this context before.

In our computations, LLL-reductions were performed using the
NTL library [21] using a reduction coefficient y = 0.99 in all cases
except AHLlow where we used y = 0.3. Each instance is solved 5
times with different randomization seeds. We use the solver SCIP
[20] version 8.0.1 with default parameters. This means that we do
not provide the solver with information about which variable to
branch on in the reformulations, even though we have reason to
believe that the last coordinate directions should be preferred. We
set a time limit of one hour. Timeouts are indicated with the sym-
bol ‘>’. We refer to the online supplement for extended results.

4.2. Experiments with single-row instances

We compare the original formulation with four reformulations:
the AHL reformulation (AHL), AHL-reformulation with low quality
reduction (AHLlow), the AHL reformulation with B = D−1 B̂ and B̂
a reduced basis of ker�1 (AHLD), and the Krishnamoorthy-Pataki
reformulation (KP).

We report the averaged number of branch-and-bound nodes
and solving time in the first four rows of Table 1 and Table 2,

K. Aardal, L. Scavuzzo and L.A. Wolsey Operations Research Letters 51 (2023) 401–407

Table 4
Average logarithm of the volume of the smallest box, oriented in the coordinate directions, that contains the LP-relaxation of the
respective reformulation. We calculate this by maximizing and minimizing the value of each variable over the LP relaxation. The last
column shows the logarithm of the bound in (10), split into two terms: (i) the logarithm of the first factor and (ii) the logarithm of
the remaining factors.

Instance Original AHL AHLD AHLlow KP Theorem 2

struct_s 62.35 50.84 46.37 50.21 53.57 20.0+50.0
struct_b 412.91 449.40 401.72 447.19 449.79 2697.2+464.0

nostruct_s 25.39 17.57 14.48 17.17 18.51 20.0+16.8
nostruct_b 56.25 85.65 77.05 76.35 86.39 2697.2+110.9
respectively. The results per instance can be found in Tables 8–11
in the online supplement. Each of the reformulations yields a re-
markably easier problem. This is particularly apparent for struct_s
and struct_b, which go from being unsolvable within the time limit
to being remarkably easy. Notice that with higher dimension, the
Frobenius number decreases quite substantially resulting in rela-
tively easier instances.

For the structured instances, AHLD gives the best results, both
in terms of nodes and time. All reductions, however, work well,
even AHLlow, so it does not pay off significantly to spend time on
a high-quality reduction. Finally, we observe that the large struc-
tured instances become trivial for all reformulations, with most of
them being solved without branching, see Table 10.

For the non-structured instances the results change depend-
ing on the instance size. For the smaller instances, AHLD yields
the smallest trees, followed by AHLlow and AHL. For the larger in-
stances the results indicate that KP gives the lowest average num-
ber of nodes, but AHLD is faster. We also observe that, in particular
for the smaller instances, AHLlow yields sparser matrices than AHL,
due to a smaller number of column operations on the basis ma-
trix. Yet, they are both able to find the overall best direction (see
Section 4.4). The computational results indicate that the solver is
not always able to make use of the higher-quality basis provided
by AHL and in fact a sparser constraint matrix can be beneficial.

Tables 1 and 2 suggest that the effect of the dimensional-
ity reduction provided by all AHL variants is more pronounced
for lower-dimensional problems, whereas in higher dimension the
shape transformation is the main driver of improvements. This is
also supported by the volume results reported in Table 4. Here we
show the average logarithm of the volume of the smallest box, ori-
ented in the coordinate directions, that contains the LP-relaxation
of the respective reformulation. AHLD yields the smallest volume
for all but the larger non-structured instances. For these instances
it is in fact the original formulation that has the smallest relaxation
volume. This means that the improvements in Table 1 can only be
a consequence of the transformed shape. Table 4 also shows that
the bound in Theorem 2 is far from being tight, due to the con-
stant arising from the worst-case performance of LLL.

4.3. Multi-row instances

We test the same formulations as in Section 4.2, except for
AHLD , which is only valid for single-row problems. Results are
shown in Tables 1 and 2, last three rows, see Tables 12–14 in the
online supplement for results per instance.

The market split instances are non full-dimensional instances
with a dense constraint matrix with integer entries between 0 and
100. All reformulations perform significantly better than the origi-
nal formulation, with AHL being the best. This can be an indication
that dimension-reduction plays a role. We can also conclude that
for these instances the quality of the reduction matters.

The GAP instances, in contrast, are 0-1, full-dimensional, and
part of the constraint matrix contains numbers that are differ-
ent from 0 and 1. This may result in an LP-relaxation having a
“non-regular” shape. Again we see that all reformulations perform
405
Table 5
Is the last coordinate direction a short lattice vector in the Lovász-Scarf sense? (✓)
yes, (✗) no and it is a combination of many variables. If the answer is no, but the
short vector is a simple combination of variables, we indicate that combination.
Notice that the last λ-index is n − m.

Instance AHL AHLD AHLlow KP

struct_s_1 ✓ ✓ ✓ 19λn − 30λn−1

struct_b_1 ✓ ✓ ✓ −9λn + 10λn−1

nostruct_s_1 ✓ ✓ ✓ ✗

nostruct_b_1 ✓ ✓ ✓ ✗

MS_1 λn−m − λn−m−5 - ✓ ✗

GAP_1 ✓ - ✓ ✓

CA_1 ✓ - ✓ ✓

better than the original formulation. This supports the idea that
constraint branching can be beneficial even for (some types of) 0-
1 instances. It is surprising that both AHL-reformulations perform
much better than KP, since one would expect that AHL and KP
would perform more or less equally well. The only difference be-
tween the two in practice is that AHL reduces (A, a0), whereas
KP reduces only A, see also Section 3.2 and the appendix.

The CA instances are full-dimensional and have 0-1 entries in
the constraint matrix. Here we observe that the original formu-
lation performs the best, even though both KP and AHL perform
reasonably well in comparison. So, with no dimension reduction
and a combinatorial problem structure there seems to be no gain
in reformulating.

In Fig. 1 (online supplement) we present, for all instance types,
an overview of the performance per instance over randomized
seeds.

4.4. Comparison with Lovász-Scarf

The generalized basis reduction algorithm of Lovász and Scarf
gives us an approximation of a direction in which the LP relax-
ation is thin, see Section 2.2. The reformulations we study can be
regarded as a heuristic way of obtaining thin directions. In partic-
ular, by construction, the last coordinate direction should indicate
such a direction. We run the generalized basis reduction algorithm
on the polytope Xλ , where the polytope is generated by the refor-
mulations AHL, AHLD , AHLlow and KP, to investigate if indeed this
last coordinate direction coincides with the direction given by the
Lovász-Scarf (LS) algorithm. Results are shown in Table 5. A check
mark indicates that the last coordinate direction coincides with the
first LS-direction. A cross indicates that the two directions are far
from coinciding, and the expressions involving λ j s indicate that
the directions are close to coinciding and give the precise relation
between the LS-direction and the output of the reformulations.
These results show that AHL, in all its variants, is successful in
finding such direction in many cases, and when it does not, it finds
a close direction. In contrast, KP is in most cases unable to find the
Lovász-Scarf direction, especially when the problem at hand is not
full dimensional.

K. Aardal, L. Scavuzzo and L.A. Wolsey Operations Research Letters 51 (2023) 401–407
Table 6
Vanilla SCIP. We report the geometric mean of the number of nodes over 30 in-
stances and 5 randomization seeds when deactivating presolve, cutting, conflict
analysis and primal heuristics. We compare the original formulation with the four
proposed reformulations.

Instance Original AHL AHLD AHLlow KP

struct_s > 107 37.70 22.83 32.67 82.96
struct_b > 107 2.67 2.10 2.84 43.18

nostruct_s 141,377 197.3 129.9 193.5 293.1
nostruct_b 76,081 1,400 915.2 1,238 1,517

MS 1,041,742 989.5 - 6,493 2,101
GAP > 378,502 308.0 - 354.6 > 3,541
CA 21.08 26.39 - 100.2 27.19

4.5. Computational experiments with vanilla SCIP

We repeat the experiment presented in Table 1 with a vanilla
version of SCIP: presolve, cutting, conflict analysis and primal
heuristics are deactivated. This allows us to isolate the effect of
branching. These additional results, shown in Table 6, confirm the
findings discussed in Section 4. Additionally, we see that the ben-
efits of AHLD and the dimensionality reduction in single-row in-
stances are more apparent under these settings. Here, of all the
reformulations, KP is the most affected by the lack of additional
solver components.

5. Discussion

While the theoretical results of Lenstra [12] and Lovász and
Scarf [15] tell us to branch on general disjunctions, most IP solvers
implement single-variable branching schemes. Some reasons are
that (i) theoretically strong disjunctions are computationally costly
to find and difficult to implement into standard branch-and-bound
schemes, and (ii) not all instance types benefit from using them.
In this paper, we have studied problem reformulations for which
the resulting variables can be viewed as hyperplanes in the orig-
inal formulation. These methods can be seen as heuristic ways
to obtain good branching disjunctions. Through our computational
study, we observed that the reformulations studied can be effec-
tive in finding strong disjunctions, with substantial improvements
in the case of non full-dimensional instances (even 0-1). The refor-
mulations also yield better performance for 0-1 instances in which
the constraint matrix is not combinatorial. This shows that general
disjunctions can be useful in practice even in the 0-1 case, where
single-variable disjunctions already provide theoretically “thin di-
rections”.

In our study, we solve the reformulated instances by standard
variable branching, which is mathematically equivalent to branch-
ing on general disjunctions in the original space. However, in prac-
tice, other solver components have an impact on the performance.
As an additional experiment to isolate the effect of branching we
turned off presolve, cutting, heuristics and conflict analysis. These
experiments support once again our findings that the reformulated
variables provide good branching directions.

Overall, our results point to the great potential of the AHL
and KP reformulations for tackling problems where single-variable
branching fails. Still, applying basis reduction can be computation-
ally expensive as the number of variables grows (see Table 3).
Future directions of research can be to identify a subset of con-
straints to reformulate, and to test reformulations on a collection
of instances with more diverse structures.

Data availability

Data will be made available on request.
406
Acknowledgements

This research is financed in part by The Netherlands Organisa-
tion for Scientific Research, NWO, Grant OCENW.GROOT.2019.015.

Appendix A

A.1. Additional background on lattices

The determinant of a full-dimensional lattice L, d(L), is equal to
det(B), where det(.) denotes the determinant, and where B is any
basis for L. If L is not full-dimensional we can compute d(L) as
d(L) =

√
det(B T B), where B again is any basis for L.

Let L be a lattice in a Euclidean vector space E with dim E =
rk L. Then the polar lattice L∗ of L is defined as follows: L∗ = {x ∈
E : 〈x, L〉 ⊂ Z}. For a lattice L and its polar L∗ we have rk L = rk
L∗ , L∗∗ = L, and

d(L) = 1

d(L∗)
. (14)

Let L be a lattice in a Euclidean vector space E , and let K be
a subgroup of L. If there exists a subspace D of E such that K =
L ∩ D , then K is called a pure sublattice. Suppose that K is a pure
sublattice of the lattice L. Then, the following holds:

d(L) = d(K) · d(L/K) . (15)

Let L be a lattice with polar L∗ , and let K be a pure sublattice
of L. Then K ⊥ = {x ∈ L∗ | 〈x, K 〉 = 0}, and we can write

K ⊥ = (L/K)∗ . (16)

A thorough treatment of this topic can be found in [13].

A.2. Equivalence between the AHL- and KP-reformulations in the
full-dimensional case

We demonstrate this equivalence on a set with only upper
bounds, but adding lower bounds follows easily. Consider the sys-
tem Ax ≤ a0. We add slack variables and obtain Ax + I s = a0. The
AHL-reformulation now needs, as a starting point, a vector (x̄, ̄s)T

satisfying Ax̄ + I s̄ = a0 and a basis for the lattice kerZ(A I). We
may choose (x̄, s̄)T = (0, a0) and the lattice basis(

I
−A

)
. (17)

Reducing the basis (17) yields the AHL-reformulation, which is also
precisely what Krishnamoorthy and Pataki do.

A.3. Instance models

This section presents a more in-depth description of the in-
stances used in the computational study. For a summary of their
characteristics see Table 7.

Table 7
Instance collections used in our computations.

Name Number n m Ref

struct_s 30 10 1 [1]
nostruct_s 30 10 1 [1]
struct_b 30 100 1 [1]
nostruct_b 30 100 1 [1]
MS 30 30 4 [5]
GAP 30 600 606 [7]
CA 30 500 100 [14]

K. Aardal, L. Scavuzzo and L.A. Wolsey Operations Research Letters 51 (2023) 401–407
Single-row instances
For a given number of variables n, find a vector x ∈ Zn≥0 that

satisfies ax = a0. The number a0 is chosen to be the Frobenius
number corresponding to a. This number is computed follow-
ing the procedure described in [1]. For the structured instances,
a is generated as a = M p + Nr, with M ∈ [10000, 20000], N ∈
[1000, 2000], p ∈ [1, 10]n and r ∈ [−10, 10]n sampled uniformly.
In the case of instances with no structure, the vector a is sampled
uniformly in [10000, 15000]n .

Market split (MS)
For a given number m of constraints and n = 10 · (m − 1)

variables, we solve the feasibility problem of finding a vector in
{x ∈ {0, 1}n|Ax = a0}. We generate the coefficients of A uniformly
at random in the range [0, 99] ∩Z and we set (a0)i = 1

2

∑n
j=1 Ai j .

Generalized assignment problem (GAP)
Given n items with respective prices {p j}n

j=1 and weights
{w j}n

j=1, and m knapsacks with capacities {ci}m
i=1, the generalized

assignment problem consists in placing a number of items in each
of the knapsacks such that the price of the selected items is maxi-
mized, while the capacity of the knapsacks is not exceeded by the
total weight of the items therein. Formally:

maximize
m∑

i=1

n∑
j=1

p jxi j

subject to
n∑

j=1

w jxij ≤ ci, i = 1, ...,m

m∑
i=1

xij ≤ 1, j = 1, ...,n

xij ∈ {0,1} ∀i, j

where each variable xij represents the decision of placing item j
in knapsack i.

Combinatorial auctions (CA)
For m items, we are given n bids {B j}n

j=1. Each bid B j is a sub-
set of the items with an associated bidding price p j . The associated
combinatorial auction problem is of the following form:

maximize
n∑

j=1

p jx j

subject to
∑

j:i∈B j

x j ≤ 1, i = 1, ...,m

x j ∈ {0,1} j = 1, ...,n

where x j represents the action of choosing bid B j .

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .orl .2023 .05 .001.

References

[1] K. Aardal, A.K. Lenstra, Hard equality constrained integer knapsacks, Math.
Oper. Res. 29 (3) (2004) 724–738. Erratum: Math. Oper. Res. 31 (4) (2006) 846.

[2] K. Aardal, C.A.J. Hurkens, A.K. Lenstra, Solving a system of linear Diophantine
equations with lower and upper bounds on the variables, Math. Oper. Res.
25 (3) (2000) 427–442.

[3] T. Achterberg, T. Koch, A. Martin, Branching rules revisited, Oper. Res. Lett.
33 (1) (2005) 42–54.

[4] W. Cook, T. Rutherford, H.E. Scarf, D. Shallcross, An implementation of the gen-
eralized basis reduction algorithm for integer programming, ORSA J. Comput.
5 (2) (1993) 206–212.

[5] G. Cornuéjols, M. Dawande, A class of hard small 0-1 programs, INFORMS J.
Comput. 11 (2) (1999) 205–210.

[6] S. Elhedhli, J. Naoum-Sawaya, Improved branching disjunctions for branch-and-
bound: an analytic center approach, Eur. J. Oper. Res. 247 (2015) 37–45.

[7] A.S. Fukunaga, A branch-and-bound algorithm for hard multiple knapsack
problems, Ann. Oper. Res. 184 (1) (2011) 97–119.

[8] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi, Exact combinatorial opti-
mization with graph convolutional neural networks, NeurIPS 32 (2019).

[9] M. Karamanov, G. Cornuéjols, Branching on general disjunctions, Math. Pro-
gram. 128 (2011) 403–436.

[10] B. Krishnamoorthy, G. Pataki, Column basis reduction and decomposable knap-
sack problems, Discrete Optim. 6 (3) (2009) 242–270.

[11] A.K. Lenstra, H.W. Lenstra Jr., L. Lovász, Factoring polynomials with rational co-
efficients, Math. Ann. 261 (4) (1982) 515–534.

[12] H.W. Lenstra Jr., Integer programming with a fixed number of variables, Math.
Oper. Res. 8 (4) (1983) 538–548.

[13] H.W. Lenstra Jr., Lattices, in: Algorithmic Number Theory: Lattices, Number
Fields, Curves and Cryptography, in: Math. Sci. Res. Inst. Publ., vol. 44, Cam-
bridge Univ. Press, Cambridge, 2008, pp. 127–181.

[14] K. Leyton-Brown, M. Pearson, Y. Shoham, Towards a universal test suite for
combinatorial auction algorithms, in: Proceedings of the 2nd ACM Conference
on Electronic Commerce, 2000, pp. 66–76.

[15] L. Lovász, H.E. Scarf, The generalized basis reduction algorithm, Math. Oper.
Res. 17 (3) (1992) 751–764.

[16] S. Mehrotra, Z. Li, Branching on hyperplane methods for mixed integer linear
and convex programming using adjoint lattices, J. Glob. Optim. 49 (4) (2011)
623–649.

[17] J.L. Ramírez Alfonsín, The Diophantine Frobenius Problem, OUP, Oxford, 2005.
[18] L. Scavuzzo, F.Y. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, K. Aardal,

Learning to branch with tree mdps, NeurIPS 35 (2022).
[19] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Se-

ries in Discrete Mathematics and Optimization, Chichester, UK, 1986.
[20] SCIP, Solving constraint integer programs, https://www.scipopt .org/.
[21] V. Shoup, NTL – a library for doing number theory, https://libntl .org/.
[22] Y. Yang, N. Boland, M. Savelsbergh, Multi-variable branching: a 0-1 knapsack

problem case study, INFORMS J. Comput. 33 (4) (2021) 1354–1367.
407

https://doi.org/10.1016/j.orl.2023.05.001
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibF6275D38A5052B9C9E5B1F95811593D3s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibF6275D38A5052B9C9E5B1F95811593D3s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibB2F1FBED74216B5B1EAA5C9A65E7A303s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibB2F1FBED74216B5B1EAA5C9A65E7A303s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibB2F1FBED74216B5B1EAA5C9A65E7A303s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib2EA3EDA94FDF8A66369DFE43DBC4362Bs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib2EA3EDA94FDF8A66369DFE43DBC4362Bs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib39D24D37CFF1B85490AB8084A9FBD97Es1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib39D24D37CFF1B85490AB8084A9FBD97Es1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib39D24D37CFF1B85490AB8084A9FBD97Es1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib2D50C33C10C5D3B5117E125B0FF40327s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib2D50C33C10C5D3B5117E125B0FF40327s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibCA7E95DD822E7FE7850008F6B22D89FEs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibCA7E95DD822E7FE7850008F6B22D89FEs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibFFAAAD77C97CF6DE9033BCD77E3E20AAs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibFFAAAD77C97CF6DE9033BCD77E3E20AAs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6FBBD63F653F5284186C29BDE32D59C0s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6FBBD63F653F5284186C29BDE32D59C0s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibDF87C81FC796648DBC6F3084D7DBD142s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibDF87C81FC796648DBC6F3084D7DBD142s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibDA2BE3F8B1640DE6534FEA0E9744CCCBs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibDA2BE3F8B1640DE6534FEA0E9744CCCBs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibCBC3E21FC60BC1BEB4C298F23D75CCB5s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibCBC3E21FC60BC1BEB4C298F23D75CCB5s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibF48E3A7B2465DE5BB9FD051D8FC065CBs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibF48E3A7B2465DE5BB9FD051D8FC065CBs1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6BFBACED7279A01F5EB807B519E7D873s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6BFBACED7279A01F5EB807B519E7D873s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6BFBACED7279A01F5EB807B519E7D873s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibEC20F30F3C285B4A21FD205989971790s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibEC20F30F3C285B4A21FD205989971790s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibEC20F30F3C285B4A21FD205989971790s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibE8280907C8D32D5AF0F36E5442E84A34s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibE8280907C8D32D5AF0F36E5442E84A34s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6CD20CFF0DC784CF931602377B1DC13Es1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6CD20CFF0DC784CF931602377B1DC13Es1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib6CD20CFF0DC784CF931602377B1DC13Es1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib754CAD17FDDA0588A0B80BBF193B1AA0s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibDBF2084C0F7F6421D5D2DD50D16021A8s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bibDBF2084C0F7F6421D5D2DD50D16021A8s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib51F9F376B4F12179C48F658D5BBF5123s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib51F9F376B4F12179C48F658D5BBF5123s1
https://www.scipopt.org/
https://libntl.org/
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib2422F0F0806E2D3DAFF5FCD971BE38F1s1
http://refhub.elsevier.com/S0167-6377(23)00065-2/bib2422F0F0806E2D3DAFF5FCD971BE38F1s1

	A study of lattice reformulations for integer programming
	1 Introduction
	2 Mathematical background
	2.1 Lattices and basis reduction
	2.2 Determining the direction d when branching on hyperplanes

	3 Lattice-based reformulations
	3.1 Single-row reformulations
	3.2 The Aardal-Hurkens-Lenstra and the Krishnamoorthy-Pataki reformulations

	4 Computational study
	4.1 Instances and setup
	4.2 Experiments with single-row instances
	4.3 Multi-row instances
	4.4 Comparison with Lovász-Scarf
	4.5 Computational experiments with vanilla SCIP

	5 Discussion
	Data availability
	Acknowledgements
	Appendix B Supplementary material
	References

