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Distributionally Robust Model Predictive Control:
Closed-Loop Guarantees and Scalable

Algorithms
Robert D. McAllister and Peyman Mohajerin Esfahani

Abstract—We establish a collection of closed-loop
guarantees and propose a scalable optimization algo-
rithm for distributionally robust model predictive control
(DRMPC) applied to linear systems, convex constraints,
and quadratic costs. Via standard assumptions for the
terminal cost and constraint, we establish distributionally
robust long-term and stagewise performance guarantees
for the closed-loop system. We further demonstrate that a
common choice of the terminal cost, i.e., via the discrete-
algebraic Riccati equation, renders the origin input-to-state
stable for the closed-loop system. This choice also en-
sures that the exact long-term performance of the closed-
loop system is independent of the choice of ambiguity
set for the DRMPC formulation. Thus, we establish condi-
tions under which DRMPC does not provide a long-term
performance benefit relative to stochastic MPC. To solve
the DRMPC optimization problem, we propose a Newton-
type algorithm that empirically achieves superlinear con-
vergence and guarantees the feasibility of each iterate. We
demonstrate the implications of the closed-loop guarantees
and the scalability of the proposed algorithm via two ex-
amples. To facilitate the reproducibility of the results, we
also provide open-source code to implement the proposed
algorithm and generate the figures.

Index Terms—Closed-loop stability, distributionally ro-
bust optimization (DRO), model predictive control (MPC),
second-order algorithms.

I. INTRODUCTION

MODEL predictive control (MPC) defines an implicit
control law via a finite horizon optimal control problem.

This optimal control problem is defined by the stage cost �(x, u),
state/input constraints, and a linear discrete-time dynamical
model

x+ = Ax+Bu+Gw

in which x is the state, u is the manipulated input, and w is the
disturbance. The primary difference between variants of MPC
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(e.g., nominal, robust, and stochastic MPC) is their approach to
modeling the disturbance w in the optimization problem.

In nominal MPC, the optimization problem uses a nominal
dynamical model, i.e., w = 0. Nonetheless, feedback affords
nominal MPC a nonzero margin of inherent robustness to dis-
turbances [1], [2], [3]. This nonzero margin, however, may
be insufficient in certain safety-critical applications with high
uncertainty. Robust MPC (RMPC) and stochastic MPC (SMPC)
offer a potential means to improve on the inherent robustness of
nominal MPC by characterizing the disturbance and including
this information in the optimal control problem.

RMPC describes the disturbance via a set W and requires that
the state and input constraints in the optimization problem are
satisfied for all possible realizations of w ∈ W. The objective
function of RMPC considers only the nominal system (w = 0),
and these methods are sometimes called tube-based MPC if the
constraint tightening is computed offline [4], [5].

SMPC includes a stochastic description of the disturbance
w ∼ P (w is distributed according to the probability distribution
P) and defines the objective function based on the expected
value of the cost function subject to this distribution [6], [7],
[8], [9]. The performance of SMPC, therefore, depends on the
disturbance distribution P. This stochastic description of the
disturbance also permits the use of so-called chance constraints.
While SMPC refers to a range of methods, characterized by
their use of a distribution in the optimization problem, we focus
specifically on SMPC for linear systems, quadratic costs, robust
constraints, and with expected value objective functions. We do
not consider chance constraints. Analogous to nominal MPC,
feedback affords SMPC a small margin of inherent distributional
robustness, i.e., robustness to inaccuracies in the disturbance
distribution [10]. If this distribution is identified from limited
data, however, there may be significant distributional uncer-
tainty. Therefore, a distributionally robust (DR) approach to the
SMPC optimization problem may provide desirable benefits in
applications with high uncertainty and limited data.

Advances in distributionally robust optimization (DRO) have
inspired a range of distributionally robust MPC (DRMPC) for-
mulations. In general, these problems take the following form:

min
θ∈Π(x)

max
P∈P

EP[J(x, θ,w)] (1)

in which x is the current state of the system, θ defines the
control inputs for the MPC horizon (potentially as parameters in
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 09,2025 at 10:24:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5687-6875
https://orcid.org/0000-0003-1286-8782
mailto:r.d.mcallister@tudelft.nl
mailto:P.MohajerinEsfahani@tudelft.nl
https://github.com/rdmcallister/drmpc


2964 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 5, MAY 2025

a previously defined feedback law), EP[·] denotes the expected
value with respect to the distribution P, and P is the ambiguity
set for the distribution P of the disturbances w. The goal is to
select θ to minimize the worst-case expected value of the cost
function J(·) and satisfy the constraints embedded in the set
Π(x). Note that SMPC and RMPC are special cases of DRMPC
via specific choices of P .

The key feature of all MPC formulations is that the finite hori-
zon optimal control problem in (1) is solved with an updated state
estimate at each time step, i.e., a rolling horizon approach. With
this approach, DRMPC defines an implicit feedback control law
κ(x) and the closed-loop system

x+ = Ax+Bκ(x) +Gw. (2)

The performance of this controller is ultimately defined by this
closed-loop system and the stage cost. In particular, we often
define performance based on the expected average closed-loop
stage cost at time k ≥ 1, i.e.,

Jk(P) := EP

[
1

k

k−1∑
i=0

� (φ(i), κ(φ(i)))

]
in which φ(i) is the closed-loop state trajectory defined by (2)
and P is the distribution for the closed-loop disturbance.

In this work, we focus on DRMPC formulations for linear
systems with additive disturbances and quadratic costs. We
note that there are also DRMPC formulations that consider
parameteric uncertainty [11] and piecewise affine cost functions
are also considered in [12]. In both cases, the proposed DRMPC
formulation solves for only a single input trajectory for all
realizations of the disturbance.

To better address the realization of uncertainty in the open-
loop trajectory, RMPC/SMPC formulations typically solve for
a trajectory of parameterized control policies instead of a single
input trajectory. A common choice of this parameterization is
the state-feedback law u = Kx+ v in which K is the fixed
feedback gain and v is the parameter to be optimized. Us-
ing this parameterization, several DRMPC formulations were
proposed to tighten probabilistic constraints for linear systems
based on different ambiguity sets [13], [14], [15], [16]. In these
formulations, however, the cost function is unaltered from the
corresponding SMPC formulation due to the fixed feedback gain
in the control law parameterization.

If the control law parameterization is chosen as a more flexible
feedback affine policy [see (7)], first proposed for MPC formu-
lations in [5], distributional uncertainty in the cost function is
nontrivial to the DRMPC problem. Van Parys et al. [17] proposed
a tractable method to solve linear quadratic control problems
with unconstrained inputs and a DR chance constraint on the
state. Coppens and Patrinos [18] considered a disturbance feed-
back affine parameterization with conic representable ambiguity
sets and demonstrated a tractable reformulation of the DRMPC
problem. Mark and Liu [19] considered a similar formulation
with a simplified ambiguity set and also established some
performance guarantees for the closed-loop system. Taşkesen
et al. [20] demonstrated that for unconstrained linear systems,
additive disturbances, and quadratic costs, a linear feedback law
is optimal and can be found via a semidefinite program (SDP).

Pan and Faulwasser [21] used polynomial chaos expansion to
approximate and solved the DRO problem.

While these new formulations are interesting, there remain
important questions about the efficacy of including yet another
layer of uncertainty in the MPC problem. For example, what
properties should DRMPC provide to the closed-loop system in
(2)? And what conditions are required to achieve these proper-
ties? Due to the rolling horizon nature of DRMPC, DR closed-
loop properties are not necessarily obtained by simply solving a
DRO problem. Moreover, if SMPC has an incorrect distribution,
the conditions under which DRMPC may provide closed-loop
performance benefits relative to this SMPC implementation are
not well understood.

One of the main contributions of this article is to provide
greater insight into these questions. The focus is on the per-
formance benefits and guarantees that may be obtained by
considering distributional uncertainty in the cost function (1).
Chance constraints are therefore not considered in the proposed
DRMPC formulation or analysis.

DRMPC is also limited by practical concerns related to the
computational cost of solving DRO problems. While these
DRMPC problems can often be reformulated as convex op-
timization problems, in particular SDPs, these optimization
problems are often significantly more difficult to solve relative
to the quadratic programs (QPs) that are ubiquitous in nominal,
robust, and stochastic MPC problems.

In this work, we consider a DRMPC formulation for linear
dynamical models, additive disturbances, robust (convex) con-
straints, and quadratic costs. This DRMPC formulation uses a
Gelbrich ambiguity set with fixed first moment (zero mean) as
a conservative approximation for a Wasserstein ball of the same
radius [22]. The key contributions of this work are (informally)
summarized in the following two categories.

1) Closed-loop guarantees:
1a) DR long-term performance: We establish sufficient con-

ditions for DRMPC, in particular, the terminal cost and
constraint, such that the closed-loop system satisfies a
DR long-term performance bound (see Theorem 3.1),
i.e., we define a function C(P) such that

lim sup
k→∞

Jk(P) ≤ max
P̃∈P

C(P̃) (3)

for all P ∈ P . This bound is DR because it holds for all
distributions P ∈ P .

1b) DR stagewise performance: If the stage cost is also
positive definite, we establish that the closed-loop sys-
tem satisfies a DR stagewise performance bound (see
Theorem 3.2), i.e., there exists λ ∈ (0, 1) and c, γ > 0
such that

EP[� (φ(k), κ(φ(k)))]≤λkc|φ(0)|2+max
P̃∈P

γC(P̃)

(4)
for all P ∈ P . Moreover, this result directly implies that
the closed-loop system is DR, mean-squared input-to-
state stable (ISS) (see Corollary 3.3), i.e., the left-hand
side of (4) becomes EP[|φ(k)|2].
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1c) Pathwise input-to-state stability: A common approach in
MPC design is to select the terminal cost via the discrete-
algebraic Riccati equation (DARE) for the linear system.
Under these conditions, we establish that the closed-loop
system is in fact (pathwise) ISS (see Theorem 3.4), a
stronger property than mean-squared ISS.

1d) Exact long-term performance: Given this stronger prop-
erty of (pathwise) ISS, we can further establish an exact
value for the long-term performance of DRMPC based
on this terminal cost and the closed-loop disturbance
distribution (Theorem 3.5), i.e.,

lim
k→∞

Jk(P) = C(P) (5)

for all distributions P supported on W. Of particular
interest is the fact that this result is independent of the
choice of ambiguity set P . Thus, the long-term perfor-
mance of DRMPC, SMPC, and RMPC is equivalent for
this choice of terminal cost (see Corollary 3.6).

2) Scalable Newton-type (NT) algorithm: We present a novel
optimization algorithm tailored to solve the DRMPC problem
of interest (see Algorithm 1). In contrast to Frank–Wolfe (FW)
algorithms previously proposed to solve DRO problems (see,
e.g., [23] and [24]), the proposed algorithm solves a QP at
each iteration instead of an LP. The NT algorithm achieves
superlinear (potentially quadratic) convergence in numerical
experiments (see Fig. 1) and reduces computation time by more
than 50% compared to solving the DRMPC problem as an
linear matrix inequality (LMI) optimization problem with the
state-of-the art solvers, i.e., MOSEK (see Fig. 2).

Organization: The rest of this article is organized as follows.
In Section II, we introduce the DRMPC problem formulation
and associated DRO problem. In Section III, we present the main
technical results on closed-loop guarantees. In Section IV, we
provide the technical proofs and supporting lemmata for these
results. In Section V, we discuss the DRO problem of interest
and introduce the proposed NT algorithm. In Section VI, we
study two examples to demonstrate the closed-loop properties
established in Section III and the scalability of the proposed
algorithm. Finally, Section VII provides the summary and
comparison.

Notations: Let R denote the reals and subscripts/superscripts
denote the restrictions/dimensions for the reals, i.e., R

n
≥0 is

the set of nonnegative reals with dimension n. The transpose
of a matrix M ∈ R

n×m is denoted by M ′. The trace of a
square matrix M ∈ R

n×n is denoted by tr(M). A positive
(semi)definite matrix M ∈ R

n×n is denoted by M 	 0 (M 

0). For M 
 0, let |x|2M denote the quadratic form x′Mx. A
function α : R≥0 → R≥0 is said to be in class K, denoted by
α(·) ∈ K, if α(·) is continuous, strictly increasing, and α(0) =
0. If P is a probability distribution (measure), P(A) denotes
the probability of event A. For any (Borel measurable) function
g : W → R≥0 of the random variable w with the distribution
P and support W, expected value is defined as the (Lebesgue)
integral EP[g(w)] :=

∫
W
g(w)P(dw). Let EP[· | x] denote the

expected value given by x. The random variables w, w, and w∞
(and functions thereof) represent specific realizations unless they
are found inside an operation such as expected value (i.e., EP[·])
or the probability of an event A (i.e., P(A)).

II. PROBLEM FORMULATION

We consider the linear system with additive disturbances

x+ = Ax+Bu+Gw (6a)

where x ∈ R
n, u ∈ U ⊆ R

m, and w ∈ W ⊆ R
q . We also con-

sider state/input constraints

(x, u) ∈ Z ⊆ R
n × U (6b)

and terminal constraint Xf ⊆ R
n that satisfy the following

assumption throughout this article.
Assumption 2.1 (Dynamics regularities): The system dynam-

ics (6a) and state–input sets (6b) satisfy the following.
i) Disturbance statistics: The disturbances w in (6a) are

zero mean random variables, independent in time, and
satisfy w ∈ W with probability one.

ii) Convex state–input constraints: The setsU,W,Z, andXf

in (6b) are closed, convex, and contain the origin. The sets
U and W are bounded and W contains the origin in its
interior.

Since we are permitting input constraints and open-loop un-
able systems, we require a bounded support W for the distur-
bance.1 While convex sets are not strictly required for some of
the following theoretical results, they are important for efficient
computation. To ensure constraint satisfaction, we use a distur-
bance feedback parameterization [5] as

u(i) = v(i) +

i−1∑
j=0

M(i, j)w(j) (7)

in which v(i) ∈ R
m and M(i, j) ∈ R

m×q. With this param-
eterization and a finite horizon N ≥ 1, the input sequence
u := (u(0), u(1), . . . , u(N − 1)) is defined as

u = Mw + v (8)

wherew := (w(0), w(1), . . . , w(N − 1)) is the disturbance tra-
jectory. Note that the structure of M must satisfy the following
requirements to enforce causality:

(M,v) ∈ Θ :=

{
(M,v)

∣∣∣∣ M ∈ R
Nm×Nq, v ∈ R

Nm

M(i, j) = 0 ∀j ≥ i

}
.

The state trajectory x := (x(0), x(1), . . . , x(N)) is therefore

x = Ax+Bv + (BM+G)w (9)

and the constraints for this parameterization are given by

Π(x) :=
⋂

w∈WN

⎧⎨⎩(M,v) ∈ Θ

∣∣∣∣ s.t. (8), (9)
(x(k), u(k)) ∈ Z ∀ k

x(N) ∈ Xf

⎫⎬⎭ .

That is, if (M,v) ∈ Π(x), then the constraints in (6b) are satis-
fied for all realizations of the disturbance trajectory w ∈ W

N .
We also define the feasible set

X := {x ∈ R
n | Π(x) = ∅}

1If we consider only open-loop stable systems and chance constraints, we can
potentially include unbounded disturbances.
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and note that, by definition, Π(x) is nonempty for all x ∈ X . To
streamline notation, we define

θ := (M,v) ∈ Π(x) .

Lemma 2.1 (Policy constraints): If Assumption 2.1(ii) holds,
then Π(x) is compact and convex for all x ∈ X , and X is closed
and convex.

See the Appendix for the proof. Note that Lemma 2.1 uses a
slightly different formulation and set of assumptions than in [5],
and we are therefore able to establish that Π(x) is also bounded.
Moreover, if Z and Xf are polyhedral and W is a polytope,
then Π(x) is also a (bounded) polytope, which can be easily
expressed via linear constraints [5, Example 7]. We consider
quadratic stage and terminal costs defined as

�(x, u) = x′Qx+ u′Ru and Vf (x) = x′Px

with the following standard assumption.
Assumption 2.2 (Positive semidefinite cost): The matrices Q,

R, and P are positive semidefinite (Q,R, P 
 0).
For a given input and disturbance trajectory, we have the

following deterministic cost function:

Φ(x,u,w) :=
N−1∑
k=0

�(x(k), u(k)) + Vf (x(N)).

If we embed the disturbance feedback parameterization in this
cost function, we have from Assumption 2.2

J(x, θ,w) := Φ(x,Mw + v,w)

= |Hxx+Huv + (HuM+Hw)w|2

with constant matrices Hx, Hu, and Hw. Let M(W) denote all
probability distributions of w with zero mean and w ∈ W with
probability one, i.e.,

M(W) := {P | EP [w] = 0, P (w ∈ W) = 1} .
For any distribution P ∈ M(WN ) of w with covariance Σ :=
EP[ww′], we have

L(x, θ,Σ) := EP [J(x, θ,w)] = |Hxx+Huv|2

+ tr ((HuM+Hw)
′(HuM+Hw)Σ) . (10)

Note that L(x, θ,Σ) is quadratic in θ and linear in Σ. In SMPC,
we minimize L(x, θ,Σ) for a specific covariance Σ and the
current state x.

For DRMPC, we instead consider a worst-case version of the
SMPC problem in which P takes the worst value within some
ambiguity set. To define this ambiguity set, we first consider the
Gelbrich ball for the covariance of a single disturbance w ∈ R

q

centered at the nominal covariance Σ̂ ∈ R
q×q with radius ε ≥ 0

defined as

Bε(Σ̂) :=

{
Σ 
 0| tr

(
Σ̂+Σ−2

(
Σ̂1/2ΣΣ̂1/2

)1/2
)
≤ ε2

}
.

To streamline notation, we define

Bd := Bε(Σ̂), where d :=
(
ε, Σ̂

)
.

This Gelbrich ball produces the following Gelbrich ambiguity
set for the distributions of w:

Pd := {P ∈ M(W) | EP[ww
′] = Σ ∈ Bd} .

We further assume that this Gelbrich ambiguity set is compatible
with W, i.e., all covariances Σ ∈ Bd can be achieved by at least
one distribution P ∈ M(W). For example, in the extreme case
that W = {0}, then M(W) contains only one distribution with
all the weight at zero, and the only reasonable Gelbrich ball
to consider is Bd = {0}. Formally, we consider only ambiguity
parameters d ∈ D with

D :=

{
(ε, Σ̂)

∣∣∣∣ d = (ε, Σ̂), ε ≥ 0, Σ̂ 
 0,
∀ Σ ∈ Bd ∃ P ∈ M(W) s.t. EP[ww

′]=Σ

}
.

Note that D depends on W, but we suppress this dependence
to streamline the notation. If d ∈ D, then for any Σ ∈ Bd, there
exists P ∈ Pd such that EP[ww

′] = Σ.
For the disturbance trajectory w ∈ W

N , we define the fol-
lowing ambiguity set that enforces independence in time:

PN
d :=

N−1∏
k=0

Pd =

{
P ∈ M(WN )

∣∣∣∣ EP[w(k)w(k)
′] ∈ Bd

w(k) are independent

}
.

We can equivalently represent PN
d as

PN
d =

{
P ∈ M(WN )

∣∣∣∣ EP [ww′] = Σ ∈ B
N
d

w(k) are independent

}
in which the set BN

d is defined as

B
N
d := {Σ = diag ([Σ0 · · · ΣN−1]) |Σk ∈ Bd ∀k} . (11)

The worst case expected cost is defined as

Vd(x, θ) := max
P∈PN

d

EP [J(x, θ,w)] = max
Σ∈BN

d

L(x, θ,Σ). (12)

The two maximization problems in (12) are equal because d ∈
D. We now define the DRO problem for DRMPC as

V 0
d (x) := min

θ∈Π(x)
max
P∈PN

d

EP [J(x, θ,w)] (13a)

= min
θ∈Π(x)

max
Σ∈BN

d

L(x, θ,Σ) (13b)

= min
θ∈Π(x)

Vd(x, θ) = Vd(x, θ
∗), θ∗ ∈ θ0d(x) (13c)

where the functionL in (13b) is defined in (10), and the set θ0d(x)
in (13c) denotes the solution set of the (outer) minimization of
the worst-case expected loss Vd(x, θ) := maxΣ∈BN

d
L(x, θ,Σ).

Note that SMPC (d = (0, Σ̂)) and RMPC (d = (0, 0)) are special
cases of the optimization problem in (13). Thus, all subsequent
statements about DRMPC include SMPC and RMPC as special
cases of d ∈ D. Fundamental mathematical properties for this
optimization problem are provided in the extended version [25,
Appendix C]. In the extended version, we establish existence
(but not uniqueness) of a minimizer for (13), continuity ofV 0

d (x)
w.r.t. x ∈ X , and measurability of (set-valued) mapping θ0d(x)
w.r.t. x ∈ X .
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III. CLOSED-LOOP GUARANTEES: MAIN RESULTS

A. Preliminaries and Closed-Loop System

We now define the controller and closed-loop system derived
from this DRMPC formulation. We assume state feedback and
the control law is defined as the first input given by the optimal
control law parameterization θ0d(x). Although θ0d(x)may be set-
valued, i.e., there are multiple solutions, we assume that some
selection rule is applied such that the control law κd : X → U

is a single-valued function that satisfies

κd(x) ∈
{
v0(0) | (M0,v0) ∈ θ0d(x)

}
.

With this control law, the closed-loop system is

x+ = Ax+Bκd(x) +Gw. (14)

Let the function φd(k;x,w∞) denote the closed-loop state of
(14) at time k ≥ 0, for the initial state x ∈ X and the disturbance
trajectory w∞ ∈ W

∞, i.e., a disturbance trajectory in the �∞

space of sequences. Define the infinity norm of the sequencew∞
as ||w∞|| := supk≥0 |w(k)|. Note that the deterministic value
of φd(k;x,w∞) for a realization of w∞ ∈ W

∞ is a function of
d ∈ D via the DRMPC control law.

The goal of this section is to demonstrate that the closed-loop
system in (14) obtains some desirable properties for the class
of distributions considered in Pd. We consider the set of all
distributions for the infinite sequence of disturbances w∞ such
that the disturbances are independent in time and their marginal
distributions are in Pd, i.e., we consider the set

P∞
d :=

∞∏
k=0

Pd =

{
P ∈ M(W∞)

∣∣∣∣ EP[w(k)w(k)
′] ∈ Bd

w(k) are independent

}
.

Note that we can also treat all P ∈ P∞
d as probability measures

on the measurable space (W∞,B(W∞)) in which B(W∞) de-
notes the Borel σ-algebra of W∞.

An important property for the DRMPC algorithm is robust
positive invariance, defined as follows.

Definition 3.1 (Robust positive invariance): A set X ⊆ R
n

is robustly positively invariant (RPI) for the system in (14) if
x+ ∈ X for all x ∈ X , w ∈ W, and d ∈ D.

Note that this definition is adapted for DRMPC to consider
all possible d ∈ D. If we choose D = {(0, 0)} (RMPC), then
this definition reduces to the standard definition of RPI found
in, e.g., [26, Def. 3.7]. Since the control law κd : X → U is
defined on only the feasible setX , the first step in the closed-loop
analysis is to establish that this feasible set is RPI. We define
the expected average performance of the closed-loop system
for k ≥ 1, given the initial state x ∈ X , ambiguity parameters
d ∈ D, and the distribution P ∈ P∞

d , as follows:

Jk(x, d,P) := EP

[
1

k

k−1∑
i=0

�(φd(i;x,w∞), κd(φd(i;x,w∞)))

]
.

B. Main Results and Key Technical Assumptions

The subsequent analysis uses concepts from nominal, robust,
min–max, and stochastic MPC, with a particular focus on re-
sults in [3], [5], and [27]. To establish desirable properties for

the closed-loop system, we consider the following assumption
for the terminal cost Vf (x) = x′Px and constraint Xf . This
assumption is also used in SMPC and RMPC analysis.

Assumption 3.1 (Terminal cost and constraint): The matrix
P 
 0 is chosen such that there exists Kf ∈ R

m×n satisfying

P −Q−K ′
fRKf 
 (A+BKf )

′P (A+BKf ). (15)

Moreover, Xf contains the origin in its interior and (x,Kfx) ∈
Z and (A+BKf )x+Gw ∈ Xf for all x ∈ Xf and w ∈ W.

Verifying Assumption 3.1 is tantamount to finding a stabiliz-
ing linear control law u = Kfx, i.e., A+BKf is Schur stable,
that satisfies the required constraints (x,Kfx) ∈ Z within some
robustly positive invariant neighborhood of the origin Xf . With
this stabilizing linear control law, we can then construct an
appropriate terminal cost matrix P by, e.g., solving a discrete
time Lyapunov equation.

With this assumption, we can guarantee that the feasible setX
is RPI and establishes the following DR long-term performance
guarantee. This performance guarantee is a DR version of the
stochastic performance guarantee typically derived for SMPC
(see, e.g., [6], [9], and [28]).

Theorem 3.1 (DR long-term performance): If Assump-
tions 2.1, 2.2, and 3.1 hold, then X is RPI for (14) and

lim sup
k→∞

Jk(x, d,P) ≤ max
Σ∈Bd

tr(G′PGΣ) (16)

for all x ∈ X , d ∈ D, and P ∈ P∞
d .

Assumption 3.1 is critical to Theorem 3.1 to ensure that the
terminal set is RPI with u = Kfx. Theorem 3.1 ensures that
DRMPC must perform at least as well as this terminal control
law in the long run, i.e., the right-hand side of (16). Note that
SMPC provides a tighter bound than DRMPC if Σ̂ = Σ, but this
bound does not necessarily hold for SMPC if Σ̂ = Σ.

Theorem 3.1, however, applies only to the average perfor-
mance in the limit as k → ∞. If we are also interested in the
transient or stagewise behavior of the closed-loop system at a
given time k ≥ 0, one can include the following assumption.

Assumption 3.2 (Positive definite stage cost): The matrix Q
is positive definite, i.e., Q 	 0. Moreover, the feasible set X is
bounded or Xf = R

n.
By also including Assumption 3.2, we can establish a DR

stagewise performance guarantee.
Theorem 3.2 (DR stagewise performance): If Assump-

tions 2.1, 2.2, 3.1, and 3.2 hold, then there exist λ ∈ (0, 1) and
c, γ > 0 such that

EP [�(x(k), u(k))] ≤ λkc|x|2 + γ

(
max
Σ∈Bd

tr(G′PGΣ)

)
(17)

in which x(k) = φd(k;x,w∞), u(k) = κd(x(k)) for all k ≥ 0,
x ∈ X , and d ∈ D, and P ∈ P∞

d .
Theorem 3.2 ensures that the effect of the initial condition

x on the closed-loop stage cost vanishes exponentially as fast
as k → ∞. The persistent term on the right-hand side of (17)
accounts for the continuing effect of the disturbance. We note,
however, that this persistent term is a constant that depends on
the design of the DRMPC algorithm and does not depend on
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the actual distribution P. Since Q 	 0, we can also establish the
following corollary of Theorem 3.2.

Corollary 3.3 (DR, mean-squared ISS): If Assumptions 2.1,
2.2, 3.1, and 3.2 hold, then there exist λ ∈ (0, 1) and c, γ > 0
such that

EP

[|φd(k;x,w∞)|2] ≤ λkc|x|2

+ γ

(
max
Σ∈Bd

tr(G′PGΣ)

)
(18)

for all k ≥ 0, x ∈ X , d ∈ D, and P ∈ P∞
d .

The ISS-style bound in (18) applies to the mean-squared
norm of the closed-loop state, a commonly referenced quantity
in stochastic stability analysis. Note that (18) also implies a
similar bound for EP[|φd(k;x,w∞)|] via Jensen’s inequality.
Theorems 3.1 and 3.2 and Corollary 3.3 subsume results for
SMPC via d = (0, Σ̂). However, the extension of these results
from SMPC to DRMPC is nontrivial due to the min–max opti-
mization problem (see Remark 4.1).

In MPC formulations, a common strategy is to choose the
terminal cost matrix P according to the DARE, i.e., the cost for
the linear–quadratic regulator (LQR) of the unconstrained linear
system.2 Specifically, we now consider the following stronger
version of Assumption 3.1.

Assumption 3.3 (DARE terminal cost): The matrices R and
P are positive definite (R,P 	 0), and we have

P = A′PA−A′PB(R+B′PB)−1B′PA+Q (19)

and Kf := −(R+B′PB)−1B′PA. Moreover, (x,Kfx) ∈ Z

and (A+BKf )x+Gw ∈ Xf for all x ∈ Xf and w ∈ W. The
terminal set Xf contains the origin in its interior.

With this stronger assumption, we can establish significantly
stronger properties for the DRMPC controller, similar to results
for SMPC reported in [29, Lemma 4.18]. In particular, we can
establish that the closed-loop system is (pathwise) ISS.

Theorem 3.4 (Pathwise ISS): If Assumptions 2.1, 2.2, 3.2,
and 3.3 hold, then for any d ∈ D, the origin is (pathwise) ISS
for (14), i.e., there exist λ ∈ (0, 1), c > 0, and γ(·) ∈ K such
that

|φd(k;x,w∞)| ≤ λkc|x|+ γ(||w∞||) (20)

for all k ≥ 0, x ∈ X , and w∞ ∈ W
∞.

The property of (pathwise) ISS in Theorem 3.4 is notably
stronger than mean-squared ISS in Corollary 3.3. The key dis-
tinction is that the persistent term on the right-hand side of (20)
is specific to a given realization of the disturbances trajectory
w∞, while the persistent term in Corollary 3.3 depends only
on the DRMPC design. If w∞ = 0, then (20) implies that the
origin is exponentially stable. By contrast, the weaker restriction
on the terminal cost in Assumption 3.1 does not ensure that the
closed-loop system is ISS. We demonstrate this fact in Section VI
via a counterexample.

We now consider a class of disturbances that are both indepen-
dent and identically distributed (i.i.d.) in time. We also require
that arbitrarily small values of these disturbances occur with

2This strategy minimizes tr(G′PGΣ). See [25, Appendix B].

nonzero probability. Specifically, we define the following set of
distributions:

Q :=

∞∏
k=0

{P ∈ M(W) | ∀ ε > 0, P(|w| ≤ ε) > 0} .

Note that Q includes most distributions of interest, such as
uniform, truncated Gaussian, and even finite distributions, with
P(w = 0) > 0. For this class of disturbances, we have the
following exact long-term performance guarantee.

Theorem 3.5 (Exact long-term performance): If Assump-
tions 2.1, 2.2, 3.2, and 3.3 hold, then

lim
k→∞

Jk(x, d,P) = tr(G′PGΣ)

with Σ = EP [w(i)w(i)′]
(21)

for all x ∈ X , d ∈ D, and P ∈ Q.
Note that (21) provides an exact value for the long-term

performance based on the distribution of the disturbance in the
closed-loop system. By contrast, (16) provides a conservative
and constant bound based on the design parameter d ∈ D.
Furthermore, the values of d ∈ D do not affect the long-term
performance in (21). By recalling that SMPC and RMPC are
special cases of DRMPC, we have the following corollary of
Theorem 3.5.

Corollary 3.6 (DRMPC versus SMPC): If Assumptions 2.1,
2.2, 3.2, and 3.3 hold, then the long-term performance of
DRMPC, SMPC (ε = 0), and RMPC (ε = 0, Σ̂ = 0) are equiv-
alent, i.e.,

lim
k→∞

Jk

(
x, (ε, Σ̂),P

)
= lim

k→∞
Jk

(
x, (0, Σ̂),P

)
= lim

k→∞
Jk (x, (0, 0),P)

for all x ∈ X , (ε, Σ̂) ∈ D, and P ∈ Q.
Corollary 3.6 provides notable insight into the potential ben-

efits of DRMPC relative to SMPC if SMPC has an incorrect dis-
tribution. Specifically, the additional requirements of Assump-
tion 3.3 ensure that DRMPC does not provide any long-term
performance benefit relative to SMPC (or RMPC) regardless
of the distrubance’s true distribution P. Thus, DRMPC can
provide a long-term performance benefit only in the case that
Assumption 3.3 does not hold and the covariance Σ̂ used in
SMPC is sufficiently inaccurate.

Although selecting P to satisfy (19) is a standard design
method in MPC, there are also systems in which one cannot
satisfy the requirements of Assumption 3.3 for a givenQ,R 	 0.
In particular, if the origin is sufficiently close to (or on) the
boundary of Z, then satisfying all of the requirements in As-
sumption 3.3 is typically not possible. In chemical process con-
trol, for example, processes often operate near input constraints
(e.g., maximum flow rates) to ensure high throughput for the
process. Thus, the terminal cost and constraint are chosen to
satisfy only the weaker condition in Assumption 3.1. In this
case, there is a possibility that DRMPC produces superior long-
term performance relative to SMPC if the covariance Σ̂ used
in SMPC is sufficiently different from the true covariance of
the disturbance, i.e., Σ̂ = Σ. We therefore focus on examples
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in Section VI that satisfy Assumption 3.1, but cannot satisfy
Assumption 3.3.

Remark 3.1 (Detectable stage cost): We can also weaken
Assumption 3.2 toQ 
 0 and (A,Q1/2) detectable. By defining
an input-output-to-state stability Lyapunov function, we can
apply the same approach used for nominal MPC in, e.g., [26,
Thm. 2.24], to establish Theorems 3.2, 3.3, 3.4, 3.5, and 3.6 for
DRMPC under this weaker restriction for Q.

IV. CLOSED-LOOP GUARANTEES: TECHNICAL PROOFS

A. DR Long-Term Performance

To establish Theorem 3.1, we begin by establishing that
feasible set X is RPI and providing a DR expected cost decrease
condition.

Lemma 4.1 (DR cost decrease): If Assumptions 2.1, 2.2, and
3.1 hold, then the feasible set X is RPI for (14) and

EP

[
V 0
d (x

+)
] ≤ V 0

d (x)− �(x, κd(x)) + max
Σ∈Bd

tr(G′PGΣ)

(22)
for all P ∈ Pd, d ∈ D, and x ∈ X .

Proof: Choose x(0) ∈ X and d ∈ D. Define (M0,v0) =
θ0 ∈ θ0d(x(0)). Consider the subsequent state x(1) = Ax(0) +
Bv0(0) +Gw(0) for some w(0) ∈ W. For the state x(1), we
choose a candidate solution

θ̃+(w(0)) =
(
M̃+, ṽ+(w(0))

)
(23)

such that the open-loop input trajectory remains the same
as the previous optimal solution, i.e., u(1) = v0(1) +
M0(1, 0)w(0) = ṽ+(1) and

u(k) = v0(k) +

k−1∑
j=0

M0(k, j)w(j)

= ṽ+(k) +
k−1∑
j=1

M̃+(k, j)w(j) (24)

for all k ∈ {2, . . . , N − 1} and w ∈ W
N . With this choice of

parameters, the open-loop state trajectories x(k) are also the
same for all k ∈ {1, . . . , N − 1} and w ∈ W

N . The candidate
solution is therefore

M̃+ =⎡⎢⎢⎢⎢⎢⎣
0 · · · · · · 0 0

M0(2, 1) 0 · · · 0 0
...

. . .
. . .

...
...

M0(N − 1, 1) · · · M0(N − 1, N − 2) 0 0

M̃+(N, 1) · · · M̃+(N,N − 2) M̃+(N,N − 1) 0

⎤⎥⎥⎥⎥⎥⎦

ṽ+(w(0)) =

⎡⎢⎢⎢⎢⎢⎢⎣

v0(1) +M0(1, 0)w(0)

v0(2) +M0(2, 0)w(0)
...

v0(N − 1) +M0(N − 1, 0)w(0)

ṽ+(N)

⎤⎥⎥⎥⎥⎥⎥⎦

in which that last rows of M̃+ and ṽ+(w(0)) are not yet defined.
We define these last rows by the terminal control law u(N) =
Kfx(N). Specifically, we have

Kfx(N) = ṽ+(N) +
N−1∑
i=1

M̃+(N, i)w(i). (25)

By definition of x(N), we have

x(N) = AN−1x(1) +

N−1∑
i=1

AN−1−i (Bu(i) +Gw(i)) .

We then substitute the values of u(i) for the candidate solution
in (24) to give

x(N) = AN−1x(1)+

N−1∑
i=1

AN−1−iB
(
v0(i)+M0(i, 0)w(0)

)

+

N−1∑
i=1

AN−1−i

⎛⎝ i−1∑
j=1

BM0(i, j)w(j)+Gw(i)

⎞⎠ .

With some manipulation, we can therefore define

ṽ+(N) = KfA
N−1x(1)

+
N−1∑
i=1

KfA
N−1−iB

(
v(i) +M0(i, 0)w(0)

)

M̃+(N, i) = Kf

⎛⎝ N−1∑
j=i+1

AN−1−jBM0(j, i) +AN−1−iG

⎞⎠
to satisfy (25). Note that M̃+ is independent of w(0) and
ṽ+(w(0)) is an affine function of w(0).

We first establish that this candidate solution is feasible
for any w(0) ∈ W and that X is RPI. Since (M0,v0) ∈
Π(x(0)), then (x(k), u(k)) ∈ Z for all k ∈ {1, . . . , N − 1}
and x(N) ∈ Xf for all w ∈ W

N . From Assumption 3.1, we
also have that (x(N),Kfx(N)) ∈ Z for all w ∈ W

N . There-
fore, (x(N), u(N)) ∈ Z and x(N + 1) = (A+BKf )x(N) +
Gw(N) ∈ Xf for all w(N) ∈ W by Assumption 3.1. Thus,
(M̃+, ṽ+) ∈ Π(x(1)). Since Π(x(1)) = ∅, we also know that
x(1) ∈ X for any w(0) ∈ W. Since the choice of x(0) ∈ X and
d ∈ D was arbitrary, we have that X is RPI.

Choose w = (w(0), . . . , w(N − 1)) ∈ W
N and define

w+ = (w(1), . . . , w(N)) with some additional w(N) ∈ W.
We have that

J(x(1), θ̃+(w(0)),w+)−J(x(0), θ0,w) =−�(x(0), v0(0))

+Vf (x(N + 1))−Vf (x(N))+�(x(N),Kfx(N)). (26)

We define

Σ+ = arg max
Σ∈BN

d

L(x(1), θ̃+(w(0)),Σ)

= arg max
Σ∈BN

d

tr
(
(HuM̃

++Hw)
′(HuM̃

++Hw)Σ
)

(27)

in which equality holds because |Hxx+Huv|2 is a constant
with respect to Σ and therefore does not affect the worst-case
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value ofΣ. Note thatΣ+ is independent ofw(0) because M̃+ is
independent ofw(0), which is crucial to the subsequent analysis.
We also define the distribution Q ∈ M(WN ) for w+ such that
EQ[(w

+)(w+)′] = Σ+. Note that such a Q exists because d ∈
D. For this distribution, we take the expected value of each side
of (26) to give

EQ

[
J(x(1), θ̃+(w(0)),w+)− J(x(0), θ0,w) | w(0)

]
=

EQ [Vf (x(N + 1))− Vf (x(N)) + �(x(N),Kfx(N)) | w(0)]
−�(x(0), v0(0)).

From Assumption 3.1 and the fact that x(N) ∈ Xf for all w ∈
W

N , we have that

EQ [Vf (x(N + 1))− Vf (x(N))+�(x(N),Kfx(N)) | w(0)]
≤ tr(G′PGΣN ) ≤ δd

in which ΣN = EQ[w(N)w(N)′] ∈ Bd and δd :=
maxΣ∈Bd

tr(G′PGΣ). From the definition of Σ+ and
optimality, we have

Vd

(
x(1), θ̃+(w(0))

)
= EQ

[
J(x(1), θ̃+(w(0)),w+) | w(0)

]
and therefore

Vd

(
x(1), θ̃+(w(0))

)
≤ EQ

[
J(x(0), θ0,w) | w(0)]

− �(x(0), v0(0)) + δd. (28)

Choose any P ∈ Pd for the distribution of w(0). From the
definition of P and Q, we have

EP

[
EQ

[
J(x(0), θ0,w) | w(0)]] ≤ Vd(x(0), θ

0) = V 0
d (x(0))

because θ ∈ θ0d(x(0)). We take the expected value of (28) with
respect to P and use this inequality to give

EP

[
Vd

(
x(1), θ̃+(w(0))

)]
≤ V 0

d (x(0))− �(x(0), v0(0)) + δd. (29)

By optimality, we have

V 0
d (x(1)) ≤ Vd

(
x(1), θ̃+(w(0))

)
.

We combine this inequality with (29) and substitute inx = x(0),
x+ = x(1), and κd(x) = v0(0) to give (22). Note that the
choices of P ∈ Pd, d ∈ D, and x(0) ∈ X were arbitrary and
therefore (22) holds for all values in these sets. �

The main difference between Lemma 4.1 and the typical
expected cost decrease condition for SMPC is that (22) holds
for all P ∈ Pd, i.e., the inequality is DR.

Remark 4.1 (Key distinction from SMPC analysis): In the
proof of Lemma 4.1, we show that for the candidate solution,
the worst-case covariance, defined asΣ+ in (27), is independent
of w(0). This independence is essential to establish Lemma 4.1
and is derived from the affine control law parameterization. As
such, these results may not hold for other (nonlinear) control
law parameterizations.

We can then apply Lemma 4.1 to prove Theorem 3.1.

Proof of Theorem 3.1: Choose x ∈ X , d ∈ D, and P ∈
P∞
d . Define x(i) = φd(i;x,w∞) and u(i) = κd(x(i)). From

Lemma 4.1, we have that X is RPI and

EQ

[
V 0
d (x(i+ 1)) | x(i)]

≤ V 0
d (x(i))−�(x(i), u(i))+max

Σ∈Bd

tr(G′PGΣ) (30)

for all Q ∈ Pd. Let δd := maxΣ∈Bd
tr(G′PGΣ) to streamline

notation. From the law of total expectation and (30), we have

EP[�(x(i), u(i))]≤ EP

[
V 0
d (x(i))

]−EP

[
V 0
d (x(i+ 1))

]
+δd.

We sum both sides of this inequality from i = 0 to i = k − 1
and divide by k ≥ 1 to give

Jk(x, d,P) ≤
EP

[
V 0
d (x(0))

]− EP

[
V 0
d (x(k))

]
k

+ δd.

Note that V 0
d (x(k)) ≥ 0. We take the lim sup as k → ∞ of both

sides of the inequality to give (16). �

B. DR Stagewise Performance

To establish Theorem 3.2, we first establish the following
upper bound for the optimal cost function.

Lemma 4.2 (Upper bound): If Assumptions 2.1, 2.2, 3.1, and
3.2 hold, then there exists c2 > 0 such that

V 0
d (x) ≤ c2|x|2 +N

(
max
Σ∈Bd

tr(G′PGΣ)

)
(31)

for all d ∈ D and x ∈ X .
Proof: For anyx ∈ Xf , we define the control law asu = Kfx

from Assumption 3.1. Therefore

u = Kfx, x = (I −BKf )
−1(Ax+Gw)

in which Kf := [IN ⊗Kf 0]. Note that the inverse (I −
BKf )

−1 exists because BKf is nilpotent (lower triangular
with zeros along the diagonal). We represent this control law
as θf (x) = (Mf ,vf (x)) so that

vf (x) = Kf (I −BKf )
−1Ax

Mf = Kf (I −BKf )
−1G.

(32)

We have from Assumption 3.1 that this control law ensures that
(x(k), u(k)) ∈ Z and x(k + 1) ∈ Xf for all k ∈ {0, . . . , N −
1}. Therefore, θf (x) ∈ Π(x) for all x ∈ Xf and d ∈ D. Choose
any x ∈ Xf and d ∈ D. Choose anyΣ ∈ B

N
d and corresponding

P ∈ PN
d such that EP[ww′] = Σ. From Assumption 3.1, we

have that

EP [Vf (x(k + 1))− Vf (x(k)) + �(x(k),Kfx(k))]

≤ tr(G′PGΣk) ≤ δd

in which x(k + 1) = (A+BKf )x(k) +Gw(k) for all k ∈
{0, 1, . . . , N − 1}, x(0) = x, and δd := maxΣ∈Bd

tr(G′PGΣ).
We sum both sides of this inequality from k = 0 to k = N − 1
and rearrange to give

L(x, θf (x),Σ) ≤ Vf (x(0)) +Nδd
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for all Σ ∈ B
N
d . Therefore

V 0
d (x) ≤ Vd(x, θf (x)) ≤ Vf (x) +Nδd ≤ λ̄P |x|2 +Nδd

in which λ̄P is the maximum eigenvalue of P for all x ∈ Xf . If
Xf = R

n, then the proof is complete because X ⊆ R
n. Other-

wise, we use the fact that X is bounded to extend this bound to
all x ∈ X . Define the function

F (x) = sup
{
V 0
d (x)−Nδd | d ∈ D}

.

Since W is bounded, D is bounded as well (See Lemma A.1
in the Appendix). Therefore, F (x) is finite for all x ∈ X . We
further define

r := sup
{
F (x)/(|x|2) | x ∈ X \ Xf

}
.

Note that since Xf contains the origin in its interior and F (x) is
finite for all x ∈ X , r exists and is finite. Therefore

V 0
d (x) ≤ F (x) +Nδd ≤ r|x|2 +Nδd

for all x ∈ X \ Xf . We define c2 := max{r, λ̄P } and substitute
in the definition of δd to complete the proof. �

With this upper bound, we prove Theorem 3.2 by usingV 0
d (x)

as a Lyapunov-like function.
Proof of Theorem 3.2: Since Q 	 0, there exists c1 > 0 such

that for all x ∈ X
c1|x|2 ≤ �(x, κd(x)) ≤ V 0

d (x).

Let δd = maxΣ∈Bd
tr(G′PGΣ). From (31), we have

−|x|2 ≤ −(1/c2)V
0
d (x) + (Nδd/c2).

We combine this inequality and the lower bound for �(x, κd(x))
with (22) to give

EQ

[
V 0
d (x

+) | x] ≤ λV 0
d (x) + (1 +Nc1/c2)δd (33)

in which λ = (1− c1/c2) ∈ (0, 1) and x+ = Ax+Bκd(x) +
Gw for all Q ∈ Pd, d ∈ D, and x ∈ X .

Choose x ∈ X , d ∈ D, and P ∈ P∞
d . Define x(k) =

φd(k;x,w∞) and u(k) = κd(x(k)). Since X is RPI for the
closed-loop system (see Lemma 4.1 of the Appendix),x(k) ∈ X
for all x ∈ X , d ∈ D, w∞ ∈ W

∞, and k ≥ 0. From (33), we
have

EQ

[
V 0
d (x(k + 1)) | x(k)] ≤ λV 0

d (x(k)) + (1 +Nc1/c2)δd

for all Q ∈ Pd. We take the expected value of this inequality
with respect to P and the corresponding Q to give

EP

[
V 0
d (x(k + 1))

] ≤ λEP

[
V 0
d (x(k))

]
+ (1 +Nc1/c2)δd.

By iterating, we have

EP

[
V 0
d (x(k))

] ≤ λkV 0
d (x(0)) +

1 +Nc1/c2
1− λ

δd.

Use the lower/upper bounds for V 0
d (·), rearrange, and define

c := c2/c1, γ := N + (c−1
1 +Nc−1

2 )/(1− λ) to give (17). �

C. Pathwise Input-to-State Stability

To establish Theorem 3.4, we first establish the following
interesting property for the DRMPC control law within the
terminal region Xf , similar to [29, Lemma 4.18].

Lemma 4.3 (Terminal control law): If Assumptions 2.1, 2.2,
3.2, and 3.3 hold, then

κd(x) := Kfx

for all x ∈ Xf and d ∈ D. Moreover, Xf is RPI for (14).
Proof: From the definition of P and Kf in Assumption 3.3

and any P ∈ M(WN ), we have

EP [Φ(x,u,w)] = |x|2P + EP

[|u−Kfx|2S
]
+ EP

[|w|2P
]

in which Kf := [IN ⊗Kf 0], S := IN ⊗ (R+B′PB) P :=
IN ⊗ (G′PG) (see [29, eq. (4.46)]). Using the control law
parameterization θ = (M,v), we have

EP [J(x, θ,w)] = |x|2P + |v −KfAx−KfBv|2S
+EP

[|(M−KfBM−KfG)w|2S
]
+ EP

[|w|2P
]
. (34)

We have that the optimal solution is bounded by

min
θ∈Π(x)

max
P∈PN

d

EP [J(x, θ,w)] ≥ |x|2P + max
Σ∈BN

d

tr (PΣ) (35)

for all x ∈ X . This lower bound is obtained by

vc(x) :=(I−KfB)−1KfAx Mc := (I −KfB)−1KfG

and θc(x) = (Mc,vc(x)) for anyP ∈ PN
d . Note that the inverse

(I −KfB)−1 exists becauseKfB is nilpotent (lower triangular
with zeros along the diagonal). By application of the matrix
inversion lemma, we have that θc(x) = θf (x) in (32). Therefore,
θc(x) = θf (x) ∈ Π(x) for all x ∈ Xf . Moreover, the solution
vc(x) is unique because S 	 0. Therefore

κd(x) = v0(0;x) = vc(0;x) = Kfx

is the unique control law for all x ∈ Xf . Since κd(x) = Kfx for
all x ∈ Xf and Xf is RPI for the system x+ = (A+BKf )x+
Gw, we have that Xf is also RPI for (14). �

Lemma 4.3 ensures that within the terminal region, the
DRMPC control law is equivalent to the LQR control law
defined in Assumption 3.3. Moreover, this controller is the same
regardless of the choice of d ∈ D and renders the terminal set
RPI. Therefore, once the state of the system reaches Xf , the
control laws for DRMPC, SMPC, RMPC, and LQR are the same.
We can now prove Theorem 3.4.

Proof of Theorem 3.4: Choose d ∈ D and x ∈ X . We define
(M0,v0) = θ0 ∈ θ0d(x) and the corresponding candidate solu-
tion (ṽ+(w), M̃+) = θ̃+(w) defined in (23). Recall that ṽ+(w)
is an affine function of w, i.e.,

ṽ+(w) = c+ Zw

in which c ∈ R
Nm and Z ∈ R

Nm×q are fixed quantities for a
given θ0. Let

x̂+ = Ax+Bκd(x) = Ax+Bv0(0).
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From the Proof of Lemma 4.1, we have that

EQ

[
Vd(x̂

+ +Gw, θ̃+(w))
]
≤ V 0

d (x)− �(x, v(0)) + δd

(36)
for all Q ∈ Pd in which δd := maxΣ∈Bd

tr(G′PGΣ). Define

Σ+ := arg max
Σ∈BN

d

L(x̂+ +Gw, θ̃+(w),Σ)

= arg max
Σ∈BN

d

tr
(
(HuM̃

+ +Hw)
′(HuM̃

+ +Hw)Σ
)

where the equality holds because |Hxx+Huv|2 is a constant
with respect to Σ. Note that Σ+ is independent of w because
M̃+ is independent of w. We also define P ∈ PN

d such that
Σ+ = EP[(w

+)(w+)′]. By applying (34), we have

L(x̂+, θ̃+(0), Σ̃
+
)− L(x̂+ +Gw, θ̃+(w), Σ̃

+
)

= |x̂+|2P + |c−KfAx̂+ −KfBc|2S − |x̂+ +Gw|2P
− |c+ Zw −KfA(x̂+ +Gw)−KfB(c+ Zw)|2S (37)

and note that the terms involving P and M̃+ in (34) do not
change with w and therefore vanish in this difference. By the
definition of Σ+ and optimality, we have that

V 0
d (x̂

+)− Vd(x̂
+ +Gw, θ̃+(w))

≤ L(x̂+, θ̃+(0), Σ̃
+
)− L(x̂+ +Gw, θ̃+(w), Σ̃

+
). (38)

We now define Σ := argmaxΣ∈Bd
tr(G′PGΣ) and choose Q ∈

Pd such that EQ[ww
′] = Σ. We combine (37) and (38) and take

the expected value with respect to Q

V 0
d (x̂

+)− EQ

[
Vd(x̂

+ +Gw, θ̃+(w))
]

= −tr(G′PGΣ)− EQ

[|Zw −KfAGw −KfBZw|2S
]

≤ −δd.

We combine this inequality with (36) to give

V 0
d (x̂

+) ≤ V 0
d (x)− �(x, v(0)) ≤ V 0

d (x)− c3|x|2 (39)

in which c3 > 0 because Q 	 0. Note that the choice of x ∈ X
was arbitrary, and therefore, this inequality holds for all x ∈ X .
Next, we define the Lyapunov function

H(x) := V 0
d (x)− max

Σ∈BN
d

tr(PΣ)

in which P := IN ⊗ (G′PG) from (35). Note that Vd(x, θ) is
convex by Danskin’s Theorem (see [30, Prop. A.3.2]). Thus,
V 0
d (x) is the partial minimization of a convex function and also

convex (see [30, Prop. 3.3.3]). Therefore, H : X → R≥0 is con-
vex because V 0

d (x) is convex. From (39), (35), and Lemma 4.2,
there exist c1, c2, c3 > 0 such that c1|x|2 ≤ H(x) ≤ c2|x|2 and
H(x̂+) ≤ H(x)− c3|x|2. Since H(x) is a convex Lyapunov
function, x+ = x̂+ +Gw, and X is compact with the origin in
its interior, we have from [29, Prop. 4.13] that (14) is ISS for
any d ∈ D. �

D. Exact Long-Term Performance

For the class of disturbances in Q, Munoz-Carpintero and
Cannon [31] established that ISS systems converge to the min-
imal RPI set for the system with probability one. By Assump-
tion 3.3, the terminal set must contain the minimal RPI set for
the system. Thus, we have the following result adapted from [31,
Thm. 5].

Lemma 4.4 (Convergence to terminal set): If Assump-
tions 2.1, 2.2, 3.2, and 3.3 hold, then for all P ∈ Q, d ∈ D,
and x ∈ X , there exists p ∈ [0,∞) such that

∞∑
k=0

P (φd(k;x,w∞) /∈ Xf ) ≤ p.

From Lemma 4.3 and the Borel-Cantelli lemma, Lemma 4.4
implies that for all x ∈ X , we have

P

(
lim
k→∞

φ(k;x,w∞) ∈ Xf

)
= 1.

In other words, the state of the closed-loop system converges
to the terminal set Xf with probability one. Once in Xf ,
the closed-loop state remains in this terminal set by applying
the fixed control law Kfx for all subsequent time step (see
Lemma 4.3). The long-term performance of the closed-loop
system is therefore determined by the control law Kf and, by
definition, the matrix P from the DARE in (19). We now prove
Theorem 3.5 by formalizing these arguments.

Proof of Theorem 3.5: Choose d ∈ D, x ∈ X , and
P ∈ Q. Define x(i) = φd(i;x,w∞), u(i) = κd(x(i)), Σ =
EP[w(i)w(i)

′], and

ζ(i) := |x(i+ 1)|2P − |x(i)|2P + �(x(i), u(i))− |Gw(i)|2P .
Recall that x(i) ∈ X for all i ≥ 0 because X is RPI. From
Lemma 4.3, we have that if x(i) ∈ Xf , then u(i) = Kfx(i),
and therefore, EP[ζ(i)] = 0. Therefore, we have

EP [ζ(i)] = EP [ζ(i) | x(i) /∈ Xf ]P (x(i) /∈ Xf ) .

Since X , U, and W are bounded, there exists η ≥ 0 such that
|ζ(i)| ≤ η. Thus

−ηP (x(i) /∈ Xf ) ≤ EP [ζ(i)] ≤ ηP (x(i) /∈ Xf ) .

By definition, it holds that

EP [�(x(i), u(i))] = EP

[|x(i)|2P − |x(i+ 1)|2P
]

+EP [ζ(i)] + tr(G′PGΣ).

We sum both sides from i = 0 to k − 1, divide by k ≥ 1, and
rearrange to give

Jk(x, d,P) =
|x(0)|2P − EP

[|x(k)|2P ]
k

+
1

k

k−1∑
i=0

EP [ζ(i)] + tr(G′PGΣ). (40)
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We apply the upper bound on EP[ζ(i)] in (40) and note that
|x(k)|2P ≥ 0 to give

Jk(x, d,P)≤ |x(0)|2P
k

+
η

k

k−1∑
i=0

P(x(i) /∈ Xf )+tr(G′PGΣ).

From Lemma 4.4, there exists p ∈ [0,∞) such that

Jk(x, d,P) ≤ |x(0)|2P + ηp

k
+ tr(G′PGΣ)

and therefore

lim sup
k→∞

Jk(x, d,P) ≤ tr(G′PGΣ). (41)

We apply the lower bound for EP[ζ(i)] in (40) and note that
|x(0)|2P ≥ 0 to give

Jk(x, d,P) ≥
−EP

[|x(k)|2P ]
k

− η

k

k−1∑
i=0

P (x(i) /∈ Xf )

+ tr(G′PGΣ).

From Lemma 4.4, there exists p ∈ [0,∞) such that

Jk(x, d,P) ≥
−EP

[|x(k)|2P ]− ηp

k
+ tr(G′PGΣ).

Since EP[|x(k)|2P ] is bounded from Corollary 3.3, we have

lim inf
k→∞

Jk(x, d,P) ≥ tr(G′PGΣ). (42)

We combine (41) and (42) to give (21). Since the choice of
d ∈ D, P ∈ Q, and x ∈ X was arbitrary, this equality holds for
all d ∈ D, P ∈ Q, and x ∈ X . �

V. SCALABLE ALGORITHMS

We assume for the subsequent discussion that ε > 0 and θ is
in a vectorized form, i.e., M is converted to a vector. We first
present an exact reformulation of the DRO problem in (13) and
then describe the proposed NT algorithm.

A. Exact Reformulation

Using existing results in [32, Prop. 2.8] and [33, Thm. 16],
we provide an exact reformulation of (13) via LMIs to serve as
a baseline for the NT algorithm.

Proposition 5.1 (Exact LMI reformulation): Let Assump-
tions 2.1 and 2.2 hold and x ∈ X . For any ε > 0 and Σ̂ 
 0,
the min–max problem in (13) is equivalent to the program

inf
M,v,Z,Y,γ

|Hxx+Huv|2 +
N−1∑
k=0

(cγk + tr(Yk)) (43)

s.t. γkI 
 Zk ∀ k ∈ {0, . . . , N − 1}[
Yk γkΣ̂

1/2

γkΣ̂
1/2 γkI − Zk

]

 0 ∀ k ∈ {0, . . . , N − 1}

[
Z (HuM+Hw)

′

(HuM+Hw) I

]

 0

(M,v) ∈ Π(x)

in which c = ε2 − tr(Σ̂) and Zk ∈ R
q×q is the kth block diag-

onal of Z.
Proof: Define Z̃(θ) = (HuM+Hw)

′(HuM+Hw) 
 0
and

Vd(x, θ) = max
Σ∈BN

d

tr
(
Z̃(θ)Σ

)
= min

Z
Z̃(θ)
max
Σ∈BN

d

tr (ZΣ) .

From the structure of Σ ∈ B
N
d , we have

max
Σ∈BN

d

tr (ZΣ) =

N−1∑
k=0

max
Σk∈Bd

tr (ZkΣk) (44)

in which Zk ∈ R
q×q is the kth block diagonal of Z. From [33,

Thm. 16] and [32, Prop. 2.8], we can write the dual of
maxΣk∈Bd

tr(ZkΣk) via an LMI. Substituting this dual formula-
tion into (44) and reformulating Z 
 (HuM+Hw)

′(HuM+
Hw) via the Schur complement gives (43). �

If Z, Xf , and W are polytopes, then this reformulation can be
solved as an LMI optimization problem with standard software,
such as MOSEK [34]. While this LMI optimization problem
can be solved quickly and reliably for small problems, larger
problems are unfortunately not practically scalable compared to
the usual QPs in linear MPC formulations.

Remark 5.1 (Saddle point): The set of saddle points (θ∗,Σ∗)
for the min–max problem (13b) is nonempty and compact for
any x ∈ X and d ∈ D. This fact is a classical result for the
convex–concave function L(x, ·) ensured by the convexity and
compactness of Π(x) (Lemma 2.1) and B

N
d [23, Lemma A.6],

see for instance [30, Prop. 5.5.7].

B. Newton-Type Saddle Point Algorithm

We introduce a new algorithm that exploits the structure of
the min–max problem (13b) through a Newton-type step. The
description is rather concise, and for additional information, we
refer interested readers to the extended version of work [25]. We
subsequently assume that Σ̂ 	 0. For notational simplicity, given
any (fixed) x ∈ X and d ∈ D, we use the shorthand notation for
the constraint θ ∈ Π := Π(x) and objective function Lx(·) =
L(x, ·) in (10) to rewrite the min–max (13b) concisely as

min
θ∈Π

{
f(θ) := max

Σ∈BN
d

Lx(θ,Σ)

}
. (45)

The structure of the set BN
d in (11) allows us to expand (45) as

f(θ) = Lx(θ,0) +
N−1∑
k=0

max
Σk∈Bd

tr (Zk(θ)Σk) (46)

where the matrix Zk(θ) ∈ R
q×q is the kth block diagonal of

(HuM+Hw)
′(HuM+Hw). Each maximization in (46) can

be solved in finite time using a bisection algorithm detailed
in [23, Algorithm 2, Thm. 6.4]. Hence, we assume to have access
to

Σ∗(θ) := arg max
Σ∈BN

d

Lx(θ,Σ). (47)
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Algorithm 1: NT Algorithm (FA Stepsize).

Since the solution to (47) is unique for Σ̂ 	 0 [23, Prop. A.2], we
have from Danskin’s theorem that f(θ) is convex and ∇f(θ) =
∇θLx(θ,Σ

0(θ)), i.e., the gradient of f at θ is given by the
gradient of Lx(·) with respect to θ, evaluated at (θ,Σ0(θ)). FW
algorithms that exploit this property of the min–max program
in (45) have shown promising results for DRO problems (see,
e.g., [23] and [24]). However, FW algorithms are often limited
to sublinear convergence rates for MPC optimization problems
(see Fig. 1 in the numerical section) because the constraint set
Π is not strongly convex (e.g., polytope) and the minimizer is
frequently on the boundary of Π. Thus, we propose a Newton-
type algorithm in which the search direction is determined by
using a second-order approximation of f around a given value
of θ and Σ∗(θ)

f̃(ϑ, θ) := ∇θLx(θ,Σ
∗(θ))′(ϑ− θ)

+
1

2
(ϑ− θ)′∇θθLx(θ,Σ

∗(θ))(ϑ− θ). (48)

With the above approximation, at each iteration, we solve

F (θ) := argmin
ϑ∈Π

f̃(ϑ, θ). (49)

When Π is a polytope, the oracle (49) is a QP. Recall that
our objective function Lx in (45) [originally defined in (10)]
is a quadratic function in θ, and therefore, F (θ) = argminϑ∈Π
Lx(ϑ,Σ

∗(θ)). The solution in (49) defines the search direction
for the iteration through the update rule

θt+1 = θt + ηt (F (θt)− θt) (50)

in which the stepsize ηt is chosen according to either the adaptive
or fully adaptive (FA) step-size rules determined by

ηt(β) = min

{
1,

(θt − F (θt))
′∇f(θt)

β|θt − F (θt)|2
}
. (51)

The parameter β in (51) is a conservative estimate of the global
smoothness parameter for the function f in (45). The FA step-
size, first proposed in [35], instead determines a local value of β
via backtracking line search and a quadratic sufficient decrease
condition. In Algorithm 1, we summarize the NT algorithm with
FA stepsize in pseudocode.

Remark 5.2 (NT algorithm): The following provides further
details on our view regarding the proposed algorithm.

1) Relation to classical FW: Neglecting the quadratic term
in (48) leads to a first-order approximation of f , which
yields the classical linear minimization oracle in FW.

2) Newton update rule: The proposed second-order ora-
cle (49) coincides with the Newton step for the function f
defined in (45) provided that the Hessian of f exists and
∇2f(θ) = ∇2

θθLx(θ,Σ
0(θ)).

3) Saddle-point computation: While θt converges to the
outer minimization function (45), the condition Σ̂	0
ensures that the inner maximizer Σ0(θt) is indeed
unique [23, Prop. A.2]. A classical result in the saddle
point literature ensures that Σt = Σ0(θt) also converges
to the optimizer of the dual problem [30, Sect. 5.5.2].

We close this section by noting three practical advantages of
the NT algorithm compared to solving the LMI in (43).

1) Per-iteration complexity and existing QP solvers: When
Π is a polytope, each iteration of (50) involves only
a QP. Therefore, no additional software is required to
implement this algorithm relative to other versions of
linear MPC, which already require the solution to a QP.

2) Anytime algorithm: Each iteration of (50) is guaranteed
to be a feasible solution of the optimization problem, i.e.,
θt ∈ Π for all t ≥ 0. Thus, (50) is the so-called “anytime
algorithm” in the sense that it can be terminated anytime
after the first iteration.

3) Speedup by warm-start: The algorithm can benefit from
a “warm-start,” i.e., an initial value of θ that is feasible
(θ ∈ Π) and potentially near the optimal solution. For
MPC applications in particular, a natural warm-start is the
solution to the optimization problem at the previous time
by applying the terminal control law in Assumption 3.1,
e.g., θ̃+ in (23).

VI. NUMERICAL EXAMPLES

We present two examples. The first is a small-scale (two state)
example that is used to demonstrate the closed-loop perfor-
mance guarantees presented in Section III and investigate the
computational performance of the proposed NT algorithm. The
second is a large-scale (20 state) example, based on the Shell oil
fractionator case study in [36, s. 9.1], that is used to demonstrate
the scalability of the proposed NT algorithm. All optimization
problems (LP, QP, or LMI) are solved with MOSEK with default
parameter settings [34].

A. Small-Scale Example

We consider a two-state, two-input system in which

A =

[
0.9 0

0.2 0.8

]
B = G =

[
1 0

0 1

]
.

We define the input constraintsU := {u ∈ R
2 | |u|∞ ≤ 1, u2 ≥

0}, and note that the origin is on the boundary of U. We
consider the disturbance set W := {w ∈ R

2 | |w|∞ ≤ 1} with
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the nominal covariance

Σ̂ =

[
0.01 0

0 0.01

]
and ε = 0.1 for DRMPC. We choose

Q =

[
0.1 0

0 10

]
R =

[
10 0

0 0.1

]
and define P 	 0 as the solution to the Lyapunov equation for
this system with u = 0, i.e., P 	 0 satisfies A′PA− P = −Q.
This DRMPC formulation satisfies Assumptions 2.1, 2.2, 3.1,
and 3.2, but not Assumption 3.3. Recall from Corollary 3.6 that
DRMPC formulations that satisfy Assumption 3.3 will produce
the same long-term performance as SMPC even if SMPC has an
incorrect disturbance distribution.

Computational performance: We solve the DRMPC problem
for this formulation using three different methods: 1) the LMI
optimization problem in (43) with MOSEK, 2) the FW algo-
rithm, and 3) the proposed NT algorithm in Algorithm 1. To
compare these algorithms, we use a fixed initial condition of
x0 = [1 1]′ and horizon length N = 10. We plot the conver-
gence rate in terms of suboptimality gap (f(θt)− f ∗) for the
FW and NT algorithms in Fig. 1. For this suboptimality gap,
we determine f ∗ via the LMI optimization problem in (43). For
both FW and NT algorithms, we consider the adaptive (A) and
FA step-size rules. We terminate when the duality gap is less
than 10−6.

First, we discuss the per-iteration convergence rate shown
in the top of Fig. 1. For the FW algorithm, the convergence
rate is sublinear for both step-size rules and does not converge
within 103 iterations. By contrast, the NT algorithm appears
to obtain a superlinear (perhaps quadratic) convergence rate
near the optimal solution. This behavior is also observed for
all other values of the initial condition and horizon length
investigated. In fact, the FA NT algorithm typically converges
in fewer than five iterations. The significant improvement in
per-iteration convergence rate ensures that the NT algorithm
requires less computation time than FW despite solving a QP at
each iteration (bottom plot of Fig. 1).

In Fig. 2, we compare the computation times required to
solve the small-scale DRMPC problem for difference horizon
lengths N via 1) the LMI optimization problem in (43) with
MOSEK and 2) the NT algorithm. For N ≤ 5, and therefore
fewer variables and constraints, solving the DRMPC problem as
an LMI optimization problem is faster. For N > 5, however, the
NT algorithm is faster than the LMI formulation. For N ≥ 15,
the computation time to solve the DRMPC problem as an LMI
optimization problem is more than twice the computation time
required for the NT algorithm.

Closed-loop Performance: We initialize the state at x(0) =
[1 1]′ and useN = 10. In the following discussion, we consider
three different controllers: DRMPC withd = (ε, Σ̂), SMPC with
d = (0, Σ̂), and RMPC with d = (0, 0).

To demonstrate some differences between DRMPC, SMPC,
and RMPC, we plot the first element of the closed-loop state
trajectory assuming the disturbance is zero, i.e., w = 0, in
Fig. 3. RMPC drives the closed-loop state to the origin. SMPC,

Fig. 1. Convergence of FW and NT algorithms with adaptive (A) and
FA stepsize calculations for a DRMPC problem (N = 10) in terms of
suboptimality gap as a function of iteration (top) and computation time
(bottom).

Fig. 2. Comparison of computation times for the NT algorithm (FA
stepsize) and LMI formulation solved by MOSEK for the horizon N .

however, does not drive the closed-loop state to the origin
even though the disturbance is zero. Since u2 ≥ 0, the SMPC
controller keepsx1 slightly below the origin to mitigate the effect
of positive values for w2. The amount of offset is determined by
the covariance of the disturbance. Since DRMPC considers a
worst-case covariance for the disturbances, the offset is larger.
Thus, for ||w∞|| = 0, the closed-loop state for DRMPC (SMPC)
does not converge to the origin. The origin is therefore not ISS
for DRMPC (SMPC), despite satisfying Assumptions 2.1, 2.2,
3.1, and 3.2. By contrast, these assumptions render the origin
ISS for the closed-loop system generated by RMPC [5, Thm.
23]. To summarize: SMPC and DRMPC are hedging against
uncertainty and thereby giving up the deterministic properties
of RMPC, such as ISS, in the pursuit of improved performance
in terms of the expected value of the stage cost, i.e., Jk(·).

We now investigate the performance of DRMPC relative
to SMPC/RMPC for a distribution P ∈ P∞

d . Specifically, we
consider w(k) to be i.i.d. in time and defined as w(k) =
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Fig. 3. Closed-loop trajectories (N = 10) with zero disturbance, i.e.,
x(k) = φd(k;x,0), for the first element of the state, denoted as x1(k).

Σ1/2ω(k), in which ω1(k) and ω1(k) are independently sam-
pled from a uniform distribution between [−√

3,
√
3] and

Σ =

[
0.01 0.01

0.01 0.035

]
.

Thus, w(k) ∈ W, is zero mean, and has a covariance of Σ. Note
that the covariance Σ̂ used in the SMPC formulation is different
than the covariance of the disturbance encountered in the closed-
loop system, i.e., Σ̂ = Σ.

We simulate S = 100 different realizations of the distur-
bance trajectory for each controller. For each simulation s ∈
{1, . . . , S}, we define the closed-loop state and input trajectory
xs(k) and us(k), as well as the time-average cost

J s
k :=

1

k

k−1∑
i=0

�(xs(k), us(k)).

In accordance with the results in Theorems 3.1 and 3.3, we con-
sider the sample average approximations of EP[|φ(k;x,w∞)|]
and Jk(x, d,P) defined as

ẼP

[|x(k)|2] := 1

S

S∑
s=1

|xs(k)|2 J̃k :=
1

S

S∑
s=1

J s
k .

In Fig. 4, we plot ẼP[|x(k)|2] and J̃k. For each algorithm,
we observe an initial, exponential decay in the mean-squared
distance ẼP[|x(k)|2] toward a constant, but nonzero, value.
These results for DRMPC are consistent with Corollary 3.3.
We note, however, that DRMPC produces the largest value of
Ẽ[|x(k)|2], i.e., the mean-squared distance between the closed-
loop state and the setpoint is larger for DRMPC than for SMPC
or RMPC. While this result may initially seem counter-intuitive,
the objective prescribed to the DRMPC problem is to minimize
the expected value of the stage cost, not the expected distance to
the origin. In terms of the expected value of the stage cost, i.e.,
J̃k, the performance of DRMPC is better than SMPC, which is
better than RMPC. This difference becomes more pronounced
as k → ∞.

We note that Σ ∈ Bd in this example is intentionally chosen
to exacerbate the effect of the disturbance on x2 and thereby
increase the cost of the closed-loop trajectory, i.e., a worst-case
distribution. Therefore, DRMPC produces a superior control law
relative to SMPC. If the ambiguity set, however, becomes too
large relative to this value of Σ, the additional conservatism of
DRMPC can produce worse performance than SMPC in terms
of J̃k for a fixed value of Σ. To demonstrate this tradeoff, we

Fig. 4. Sample averages of EP[|φ(k;x,w∞)|2] and Jk(x, d,P), de-

noted ẼP[|x(k)|2] and J̃k, for S = 100 realizations of the closed-loop
trajectory. Shaded regions show plus/minus one standard deviation.

Fig. 5. Sample average of the performance metric JT (x, d,P), de-
noted J̃T , for T = 500 as a function of the ambiguity radius ε for S = 30
realizations of the disturbance trajectory. The shaded region shows
plus/minus one standard deviation, and the dashed lines indicate the
min/max values of J̃ s

T for all s.

consider the same closed-loop simulation and plot the value of
J̃T at T = 500 for various values of ε and fixed Σ̂. In Fig. 5, we
observe that ε ≈ 0.11 achieves the minimum value of JT , with
an approximately 13% decrease in the value of J̃T compared
to ε = 0.01. For values of ε > 0.11, the value of J̃T increases
significantly until leveling off around ε = 1. For large values of
ε, DRMPC is too conservative because Σ is now well within the
interior of Bd.

Another interesting feature in Fig. 5 is that the range of
values for J s

T for each s ∈ {1, . . . , 30}, shown by the shaded
region, decreases as ε increases. This behavior might also be ex-
plained by the increased conservatism of DRMPC as ε increases.
As the value of ε increases, we might expect DRMPC to drive
the closed-loop system to an operating region that attenuates
the effect of all disturbances on the closed-loop cost at the
expense of nominal performance. Thus, the closed-loop system
becomes less sensitive to disturbances and thereby decreasesAuthorized licensed use limited to: TU Delft Library. Downloaded on May 09,2025 at 10:24:05 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Sample average of Jk(x, d,P), denoted Ĵk, for S = 30 real-
izations of the closed-loop trajectory.

the variability in performance at the expense of an increase in
average performance. In summary, we are left with the classic
tradeoff in robust controller design. If we choose ε too large,
the excessively conservative DRMPC may perform worse than
SMPC (ε = 0) even if the disturbance distribution used for
SMPC is incorrect. Thus, the design goal for DRMPC is to select
a value of ε that balances these two extremes.

B. Large-Scale Example: Shell Oil Fractionator

To demonstrate the applicability of the Newton-type algo-
rithm to control the problems of an industrially relevant size,
we now consider the Shell oil fractionator example in [36, s.
9.1] with n = 20 states, m = 3 inputs, and p = 3 outputs. We
include two disturbances (q = 2): the intermediate reflux duty
and the upper reflux duty.

We considerU := {u ∈ R
3 | |u|∞ ≤ 1, u3 ≥ 0} in which the

origin is again on the boundary of the input constraint U. The
disturbance set isW := {w ∈ R

2 | |w|∞ ≤ 1}with the nominal
covariance Σ̂ = 0.01I2 and an ambiguity radius of ε = 0.1.
The outputs y satisfy y = Cx, and we define cost matrices as
Q = C ′QyC and R = 0.1I3 in which Qy = diag([20, 10, 1]).
We then define the terminal cost matrix P 	 0 as the solu-
tion to the Lyapunov equation A′PA− P = −Q because A
is Schur stable. This DRMPC problem formulation satisfies
Assumptions 2.1, 2.2, and 3.1, and (A,Q1/2) is detectable
(see Remark 3.1). However, this formulation does not satisfy
Assumption 3.3 so the performance of DRMPC and SMPC may
differ (see Corollary 3.6).

We initialize the state at x(0) = 0 and use N = 10. We
consider the performance of the closed-loop system in which
w(k) is sampled from a zero-mean uniform distribution with
a covariance of Σ = diag([0.04, 0.01]). Note that Σ ∈ Bd but
Σ = Σ̂. We simulateT = 500 time steps forS = 30 realizations
of the disturbance trajectory. We plot J̃k in Fig. 6 for DRMPC,
SMPC, and RMPC. At T = 500, we observe an almost negli-
gible 0.2% decrease in J̃T for DRMPC relative to SMPC. The
standard deviation of the closed-loop performance is also nearly
identical for all three controllers. Longer horizons may increase
this difference, but we expect the overall benefit of DRMPC to
remain small and therefore not worth the extra computation.

TABLE I
COMPARISON BETWEEN R/S/DRMPC WITH ASSUMPTION 3.1

VII. SUMMARY AND COMPARISON

In Table I, we summarize some key observations from the
theoretical analysis, algorithm development, and numerical ex-
amples covered in this work if Assumption 3.1 holds, but As-
sumption 3.3 does not hold. If Assumption 3.3 also holds, then
SMPC and DRMPC guarantee ISS (see Theorem 3.4) but only
transient performance benefits are achievable regardless of the
value of Σ and Σ̂ (see Corollary 3.6). The key characteristics
of a control problem that may justify the extra computational
expense of DRMPC are: 1) the covariance of the disturbance is
large, but not well known, 2) the origin (target steady state) is
near input/state constraints, and 3) the performance in terms of
stage cost is more important than ISS.

APPENDIX A
ADDITIONAL TECHNICAL PROOFS AND RESULTS

Proof of Lemma 2.1: From [29, Thm. 3.5], we have that Π(x)
is closed and convex for all x ∈ X , and X is closed and convex.
We now establish that Π(x) is bounded. If (M,v) ∈ Π(x), then
Mw + v ∈ U

N for allw ∈ W
N . Since 0 ∈ W, we have that for

any (M,v) ∈ Π(x), v must satisfy v ∈ U
N Moreover, since

the origin is in the interior of W, there exists δ > 0 such that
Bδ := {w ∈ R

Nq | |w| ≤ δ} ⊆ W. Since U is bounded, there
exists b ≥ 0, such that |u| ≤ b for allu ∈ U

N . For any (M,v) ∈
Π(x), we have

|Mw| ≤ 2b ∀ w ∈ Bδ (52)

because v ∈ U
N . We have that (52) is equivalent to

‖M‖2 := sup {|Mw| | |w| ≤ 1} ≤ 2b/δ

and we can construct a bounded set for M as follows:

M ∈ M :=
{
M ∈ R

Nm×Nq | ||M||2 ≤ 2b/δ
}

for all (M,v) ∈ Π(x). Therefore, (M,v) ∈ Π(x) ⊆ M× U
N

for all x ∈ X . Since U and M are bounded, Π(x) is bounded as
well, uniformly for all x ∈ X . �

Lemma A.1: If W is bounded, then D is bounded.
Proof: Define the set S := {Σ = EP[ww

′] | P ∈ M(W)}
and note that S is bounded because W is bounded. By definition,
Bd ⊆ S for all d ∈ D. Since Σ̂ ∈ Bd for all d = (ε, Σ̂), then
Σ̂ ∈ S for all d ∈ D, and therefore, D ⊆ R≥0 × S.

Define ρ := supΣ∈S tr(Σ)1/2 < ∞. Therefore, S = B(ρ,0).

Choose any Σ̂ ∈ S. If Σ ∈ B(ρ,0), then

tr

(
Σ̂ + Σ− 2

(
Σ̂1/2ΣΣ̂1/2

)1/2
)

≤ tr(Σ̂) + tr(Σ) ≤ 2ρ2
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and therefore Σ ∈ B(2ρ,Σ̂). Thus, S ⊆ B(ρ,0) ⊆ B(2ρ,Σ̂). For all

(ε, Σ̂) ∈ D, we have B(ε,̂Σ) ⊆ S ⊆ B(2ρ,Σ̂) and therefore ε ≤
2ρ. Hence, D ⊆ [0, 2ρ]× S and D is bounded. �
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