Developing a user-centered
explainability tool to support
the NLP Data Scientist in

creating [LEM=based solutions:

MSc. Thesis
J. W. Nelen | July 2024

l_ N

]

.
TUDelft

Developing a user-centered
explainability tool to support

the NLP Data Scientist in
creating LLM-based solutions

by

J. W. Nelen

to obtain the degree of Master of Science in Computer Science
at the Delft University of Technology,
to be defended publicly on Monday July 8th, 2024 at 10:30 AM.

Student number 4567676
Project duration October 15, 2023 — July 8, 2024
Thesis committee Dr. J. Yang Assistant Prof. TU Delft, supervisor
Dr. C. Lofi Associate Prof. TU Delft, thesis advisor

Dr. J. van Gemert Assistant Prof. TU Delft
Company supervisor F.Hermsen MSc Head of Data Science at Elsevier
Daily supervisor L. Corti MSc PhD candidate TU Delft

Cover design by Claire den Boer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

.i.‘u Delft ‘\\(" { ELSEVIER

http://repository.tudelft.nl/

Abstract

With the advent of large language models (LLMs), developing solutions for Natural Language Processing
(NLP) tasks has become more approachable. However, these models are opaque, which presents
several challenges, such as prompt engineering, quality assessment, and error analysis. Explainability
methods can have several potential benefits, such as improving accuracy, increasing trust, and as-
sessing quality. However, limited research exists on how explainability techniques can be applied to
LLMs in practice, particularly using human-centred methodologies. Therefore, this study takes a user-
centered approach, investigating the needs and challenges of the NLP data scientist and developing an
explainability tool to address these needs. This approach is done by conducting a formative study to
deepen our understanding of the user, combined with relevant literature. The observations from the
formative study were used to develop a tool tailored to the user’s specific needs. This development was
done by creating requirements and a design based on the findings of the formative study, followed by a
proof of concept implementation. User satisfaction was assessed through practical interviews with a
fairness dataset, providing insights into the usefulness and usability of the explanation techniques and
the tool. The tool implements three explanation techniques: uncertainty, token-level feature attribution,
and contrastive explanations. These can be viewed using a web application separated from the Python
development environment, making it easy to interact with. Other key features are that it can be easily
integrated into the user’s existing workflow, is usable in practice and can be presented to different
stakeholders within the project. The evaluation concluded that the tool fits the workflow and does indeed
help the NLP data scientist to understand the model. However, the evaluation also showed that the
explainability techniques did not provide the necessary insights to achieve the user’s goal, mainly to
improve the model’s accuracy and make the error analysis actionable. More research should be done
to see which other explainability techniques could provide insights that would lead to objectively better
performance of these models. Finally, more explainability techniques should be developed that do
not focus on debugging the model but rather on revealing its behaviour and thus providing a better
understanding of how to improve it.

Preface

This thesis is the final part of my Master’s degree in Computer Science. Over the past few years, | have
discovered the fascinating and often challenging field of Al, not only in mathematics but also in terms of
how Al can be used in practice. In this thesis, | have contributed to the latter challenge by investigating
how explainability techniques can support data scientists in solving NLP tasks with Large Language
Models.

Writing this thesis has been challenging, and | would like to thank several key people for their support.
First, | thank Lorenzo for his weekly efforts to challenge my decisions, point to relevant literature and
provide feedback on my latest progress. Even at times of uncertainty, you provided the necessary
direction to move forward. Grazie mille, Lorenzo.

Additionally, | would like to express my gratitude to my other supervisors, Floris and Jie. Your guidance
and feedback throughout this project have been invaluable and much appreciated. It has been a very
interesting time, and | learned a lot about conducting research and the inner workings of a large company
such as Elsevier.

| would also like to thank my family for their support when | needed it most. You were always one
phone call away and gave me the strength | sometimes needed. To Ruth, who has always been there
to support and encourage me. Your positivity and discipline motivated me when my energy was low,
which helped me through some challenging times. Special thanks to Yoeri for his critical attitude and
for always being there to keep me focused. Our evening walks and dinners gave me the focus and
inspiration | sometimes needed to stay on track. Your feedback on the full document also proved to be
very valuable. Thank you for that.

To my (study) friends, thank you for the coffee breaks, study sessions, dinners, and always being there
to listen. Your presence made the long hours on the second floor of EWI much more bearable.

I would also like to thank my colleagues at Elsevier. Thank you for the insightful brainstorming sessions,
your willingness to participate in interviews, and, last but not least, the fun ping-pong matches. You
have made my time at Elsevier memorable.

Finally, to all the other friends who have supported me, thank you for being part of this thesis and my
academic career.

Jeroen
Delft, June 2024

11

Abstract

Preface

Abbreviations

1
2

7

Introduction
Background & Related Work

2.1 Explainable Artificial Intelligence
2.2 Evaluating XAl
2.3 Human-centred Explainable Artificial Intelligence
24 LlargelLanguageModels
2.5 Large Language Model Explainability techniques
26 Relatedwork

Formative Study

3.1 Method
32 Results
3.3 Conclusions

Development

41 Requirements.
4.2 Design.
4.3 Implementation Details HELMET

Evaluation

51 Method
52 Results
53 Conclusions

Discussion

6.1 Findings & Implications
6.2 Limitations
6.3 Futurework

Conclusion

Bibliography

A
B
Cc

Interview Protocol Formative Study
Codes

Implementation Details

C.1 Final folder structure
C.2 CodingExamples.

D Tool screenshots

Evaluation Questionnaires

E.1 Explanation Satisfaction Scale (ESS).
E.2 Fittingtheworkflow
E.3 User Experience Evaluation

11

contents

List of Figures

2.1 Interaction between the classified methods, as presented by Speith and Langer [113] . 5
2.2 Amount of publications that match the query in the title or abstract, created by Zhao et al.
[136] . . o o e 11
2.3 Decoder Transformer Architecture [98] 12
2.4 Overview of local XAl techniques, visualised by Zhao etal. [135] 14
2.5 Proposed architecture from IFAN[88] 19
3.1 Workflow of the Data Scientist as presented by Wang etal. [127] 32
3.2 Workflow of the NLP Data Scientist 32
4.1 DisplayingUncertainty e 39
4.2 Feature Attribution (by Ecco Alammar [6]) L. 40
4.3 Contrastive explanations (frominterpret-im [134]) 40
4.4 Designed architecture L 41
4.5 The sixviews designed forthe Ul oL 43
4.6 Final Implementation architecture L Lo 44
4.7 All custom argumentscanbeviewed 47
4.8 The code suggestion when the explanation is not computedyet 47
49 Thetooltipandicons e 47
410 Runspage e 48
4.11 Detailed page with XAl e 49
412 COmMPparison e e e e e 49
5.1 Results from the XAl Satisfaction Questionnaire for the uncertainty technique 53
5.2 Results from the XAl Satisfaction Questionnaire for the Feature Attribution. 54
5.3 Results from the XAl Satisfaction Questionnaire for the Contrastive Explanations 54
5.4 Comparison on the question on accuracy assessment 55
5.5 Comparison on the question on understanding 55
5.6 Comparison on the question of sufficientdetails 56
5.7 Comparison on the question of sufficientdetails 56
5.8 Results of UEQ compared to the benchmark 58
6.1 Proposed Architecture with extension of Closed-Source models 65
D1 Homepage 85
D.2 Detailed page without XAl 86
D.3 Resourcespage i i e e 86

v

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

5.1
5.2

B.1

List of Tables

Differences between traditional and user-centered practices [16] 8
The contexts accordingto Liaoetal. [72] 9
The desideratum for developers according to Langeretal. [63] 10
List of other XAl implementations 18
Overview of the participants 21
Identified themes and sub-themes 22
The themes and the list of observations for each sub-theme 23
Advantages and disadvantages for closed & open-source LLMs 29
Overview of the participants 51
The Alpha-Coefficientforeachscale 58
Various sub-themes with several examples of identifiedcodes 82

4.1
4.2
43
44
CA
C.2

Listings

Computing Explanations 44
Creating or getting project 45
Loading the Huggingface model 45
Example of how a run is stored inde database 46
Settingsforthemodel L 84
Promptingthe model 84

vi

Al
API
BERT
CoT
CSAT
CRUD
EM
FR
GDPR
HELMET
HCI
HCXAI
ICL
IG
LLM
ML
MLP
NFR
NLP
PoC
RAG
SME
UEQ
Ul
XAl
XT
XR

List of Acronyms

Artificial Intelligence 2
Application Programming Interface o Lo, 40
Bidirectional Encoder Representations from Transformers 1
Chain-of-Thought 12
Customer Satisfaction 31
Create, read, update anddelete 46
Evaluation Method 5
Functional Requirement 36
General Data Protection Regulation 1
Human-Evaluated large Language Model Explainability Tool 42
Human-Computer Interaction 2
Human-Centered eXplainable Al, 2
In-ContextLearning 12
Integrated Gradients 15
Large Language Model 1
Machine Learning L 29
Multilayer Perceptron 15
Non-Functional Requirement 37
Natural Language Processing i 1
Proofof Concept e 24
Retrieval-Augmented Generation Lo 28
Subject Matter Expert 27
User Experience Questionnaire 52
Userinterface e 38
eXplainable Artificial Intelligence 1
Explainability Technique 38
Explainability Requirement 35

vii

Introduction

In recent years, Large Language Models (LLMs) have gained significant attention because of their wide
range of applications and remarkable capabilities [136]. Most known at the moment is ChatGPT [95],
which revolutionised the accessibility of these language models, becoming the world’s fastest app by
reaching 100 million unique users in 2 months after launch .

While this was the first time most users heard about the term Large Language Models, for the Natural
Language Processing (NLP) community, the revolution started several years earlier with the introduction
of the transformer architecture [123]. This architecture significantly changed the field of NLP by making
models such as Bidirectional Encoder Representations from Transformers (BERT) [25] possible. Current
generative models use this architecture to predict the next token in a sequence with great performance
[136], especially on large sizes. Better computing power and more data allowed for bigger models with
models going into the hundreds of billions of parameters [136]. Extensive research showed how scaling
these models significantly improves the capabilities of these models [20].

Despite their widespread use today, these models present several challenges, such as opacity. The
inherent lack of interpretability of the transformer architecture combined with a large number of parame-
ters makes LLMs very opaque [53]. This raises several issues, including security [137], trust issues
[118], undetected biases that could lead to discrimination [34], and difficulties for developers to build
applications with these models [53].

For machine learning engineers or data scientists working with these models, there is a trade-off where
the best-performing models are also the least interpretable, and the less complex models tend to be
less accurate [11].

eXplainable Artificial Intelligence (XAl) can help to overcome these problems of interpretability and
is therefore becoming increasingly important and demanded by governments. Explainability was
mentioned in the 2016 EU regulations known as the General Data Protection Regulation (GDPR), where
it was formulated as "The right to explanation [101, 37]. More recently, the EU has also introduced the
Artificial Intelligence Act, which defines some rules for basic models that are LLMs trained on a large
set of unlabelled data [97]. However, it should be noted that eXplainable Artificial Intelligence (XAl) is
ill-defined [73] and involves many different definitions and notions [124].

For this study, explainable Al involves applying the method after the model has been trained to understand
the models’ behaviour [15]. Explainability is then defined as the degree to which an Al system can
explain the cause of its decisions and outputs [122, 85]. Often, interpretability is used as a synonym,
but they are different terms. Interpretability is about whether the user can make sense of the model’'s
behaviour, either through its internal mechanism or through the explanations. The difference will be
discussed in more detail later in this study.

Next to the opacity, XAl can also have different other potential benefits. Several improvements can
be made by understanding the language model’s behaviour. This includes improving the prompt,
hyper-parameter tuning, comparing models and gaining more trust in the model. Additionally, it could
help with debugging the model or better understanding the patterns found by the model. These are
some of the many reasons XAl is researched and still relevant today in the phase of LLMs [132].

For LLMs, (limited) explainability techniques exist but are difficult to use in practice. Research is primarily
concerned with designing and developing explainability techniques, not with how they can be used in

Twww.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app

1

www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app

practice [63]. Only a minority of research papers dealing with explainability approaches have evaluated
the proposed methods with users in practice [3, 94]. For the field of LLMs, several potential benefits of
XAl have been identified that, if properly implemented, could have a positive impact on the development
of and confidence in these models [132]. Wu et al. [132] presents seven strategies for using XAl to
improve the LLM. These include model diagnosis, adaptation, and debugging, as well as gaining trust in
terms of security, privacy, fairness, and honesty. Other improvements to XAl for LLMs are in prompting,
reducing hallucinations, and augmenting the model with data to produce more interpretable predictions
[132].

Given that we have explanation techniques at our disposal, how do we produce good explanations?
Developing XAl applications is challenging, partly because effective explanations are not intrinsic to the
model but lie in the perception and reception of the person receiving the explanations [47]. In other
words, a good explanation should be relatively faithful to how the model actually works, understandable
to the receiver, and useful for the receiver's end goals [70]. The question then becomes, does the
user understand the explanation, and what is his specific goal? Answering these questions requires a
multidisciplinary approach involving the XAl and the Human-Computer Interaction (HCI). This brings
us to the concept of Human-Centered eXplainable Al (HCXAI), which focuses on this very interaction
by creating tools that are effective and usable by the intended audience. The first contribution to this
multidisciplinary field was made by Miller in 2019, who took a social science perspective on explainability
[83]. Miller argued that explanations are part of a conversation between the Atrtificial Intelligence (Al)
and the user and are, therefore, a social phenomenon. Based on this theory, several influential studies
have been carried out to investigate how different stakeholders interact with explanations and what their
needs for explanations are [117].

Current XAl tools for LLMs are not developed with HCXAI principles in mind. Later in this study, it
can be seen that all explainability tools for LLMs are not very user-friendly and are not evaluated by
the targeted user. It should be recognised that creating a user-friendly tool for such a large, complex
system as LLMs is challenging. Understandably, experts focus on developing new algorithms and
methods to better understand LLMs without focusing on usefulness and usability. Another reason these
human-centred tools do not yet exist could be that these XAl techniques do not provide enough useful
information. However, it could also be that the existing XAl techniques are not being used enough.
Therefore, this research will investigate if the existing explainability methods can satisfy the user’s
needs. The user is defined as the NLP Data Scientist to ensure the target user is involved in the process.
Further scoping is done by focusing on open-source LLMs because the internal weights of these models
are accessible, giving more possibilities in terms of post-hoc explainability techniques. This leads us to
the main research questionl.

Research Questions
The main research question is defined as follows:

Main Research Question

How can a user-centered explainability tool be developed to assist NLP Data Scientists in creating
Large Language Model-based solutions?

To answer this question, the following sub-questions (SQ) have been established.

SQ1 What specific needs and challenges do NLP Data Scientists face when developing LLM-based
solutions?

SQ2 What are a tool’s explainability and functional requirements to support these needs?

SQ3 Based on the requirements, how should the system and Ul design of an explainability tool be
structured?

SQ4 How can the tool be implemented to integrate seamlessly into the workflow of the NLP Data
Scientist?

Main contributions
1. HCI approach: Using qualitative research methods and literature, this study offers the needs and
requirements of an explainability tool for users developing solutions using LLMs. The formative
study provided additional insight into their perspectives on LLMs and XAl, thus contributing to the
HCXAI community.

2. Explainability & Functional Requirements: A set of requirements for the tool and explanations
derived from the formative study & relevant literature.

3. Design: A visual design of how such a tool should look like. This is done by creating designs for
the explanations, the Ul and the system architecture.

4. Implementation: HELMET is a proof of concept implementation of the explainability tool. This open-
source tool, designed to meet the requirements, is being evaluated with practitioners, from which
further learning will be derived. This open-source tool works with real data and open-source LLMs.
It can be used as inspiration for new tools and to contribute to explainability & transparency for the
open-source LLM community. The code is available at https://github.com/jwnelen-elsevier/
helmet

Structure

The structure of this thesis is as follows. First, the background and related work is discussed in chapter 2,
which provides an overview of the various terms, techniques and existing tools relevant to the rest of
this thesis. This is followed by a discussion of the study’s first phase, the formative study (chapter 3).
The observations of this formative study will be used to develop the tool as presented in chapter 4. The
requirements are presented first, followed by the design and final implementation. The implementation
will be used to evaluate and validate the requirements and design, which is presented in chapter 5.
The results are used to answer the research questions in the discussion in chapter 6, together with the
limitations and future work. The conclusion can be found in the chapter 7.

https://github.com/jwnelen-elsevier/helmet
https://github.com/jwnelen-elsevier/helmet

Background & Related Work

To better understand the scope of this research, it is necessary to understand and define several
concepts. To reiterate, XAl is the notion of making Al systems more understandable to humans by
elucidating the models’ behaviour [15]. This section will explain the different concepts of XAl, followed
by an overview of the various dimensions of HCXAI relevant to this research. Then, an overview of how
large language models work and which XAl techniques exist for LLMs is given. Lastly, an analysis of
the existing tools is presented.

2.1. Explainable Artificial Intelligence

It must be noted that many different definitions have been proposed and used. Additionally, some terms
such as interpretable and explainable and transparent are often used interchangeably [38, 52, 111, 78,
27,71, 3,49, 2, 85, 11, 139, 15, 138]. This section will present the definitions used for the remainder of
this research.

Explainability The term explainability, often called post-hoc explainability, involves applying a method
after the model has been trained to understand the models’ behaviour [15]. These explanations are
typically derived from the input-output combination and should clarify the cause of its outputs [124, 73].

Interpretability Interpretability is defined by Tomsett et al. [122] as "the understanding gained by the
user regarding the cause of output, which can be presented with an explanation”.

Interpretable models |Intrinsically interpretable (or directly interpretable) refers to models humans can
understand without needing additional explainability methods [7]. For instance, decision trees output a
clear set of rules that the user can comprehend without additional methods [124].

Transparency Transparency differs from interpretability and explainability by focusing more on which
parts of the model are provided to the user. This is information such as internal architecture, and the
data it has been trained with [73].

Model-agnostic Model-agnostic techniques refer to interpretability techniques not specific to particular
model classes. These typically work by analysing the input features and do not access internal weights
or structural information [86]. Agnostic methods often rely on model simplification, feature relevance
estimation, and visualisation techniques, as described by Barredo Arrieta et al. [11].

Model Specific Techniques In contrast, model-specific techniques often use the internal structure of
the model. Consequently, they can only be applied to specific model classes, such as linear models,
neural networks, or LLMs.

Local Explanations Explanations can be given on a few different scopes. Local methods explain
an individual prediction or data point and provide insight into why a specific prediction was made and

which factors influenced that particular output [73].

4

2.2. Evaluating XAl 5

Global Explanations Conversely, global explanations aim to provide a holistic understanding of the
model's behaviour across the entire dataset. Rather than focusing on individual predictions, global
explanations analyse overarching patterns and relationships in the model. This sheds light on the overall
decision-making process of the machine learning model [26]. In the context of LLMs, local and global
methods exist, which will be further elaborated in section 2.5.

2.2. Evaluating XAl

From the concepts given in the previous section, it is now possible to explore how explainability can be
evaluated. This section provides an overview of the different strategies and metrics that can be used to
evaluate the quality of the explanation technique. It should be noted that evaluation for XAl within LLMs
is still very new and challenging [71]. This is partly because of the generative nature of these models,
where they should be evaluated more semantically instead of syntactically. Secondly, it is challenging
due to their emergent capabilities, which will be discussed in section 2.4.

2.2.1. Classification on the 'what'

An important classification is made according to the aspects of the XAl process that they target. Speith
and Langer [113] introduce three categories of Evaluation Methods (EMs): 1) Explanatory information
EMs, Understanding EMs and Desiderata EMs. The interaction between these methods is visualised in
Figure 2.1, followed by a description of each category. This visualisation presents a way of thinking that
helps answer the question of what explainability approach can be taken.

[Explainability 1 feeds back to (Desiderata]

Approach J L Satisfaction
A
provides affects
Y
Explanatf)ry 1 — :f Understanding
Information J facilitates L

Figure 2.1: Interaction between the classified methods, as presented by Speith and Langer [113]

Multiple methods are presented for each of these Evaluation Methods (EMs). These are further
categorised into objective metrics and human-centered methods.

Explanatory Information The first category captures whether the recipients find the explanatory
information useful and understandable. It should successfully facilitate understanding, as shown in
Figure 2.1. An example to assess this is the Explanation Satisfaction Scale by Hoffman et al. [44]. This
is a short but effective questionnaire of seven questions that provides information about how helpful
the explanations are. An important objective metric for assessing the quality of explanations is fidelity,
which means that the explanatory information provided provides insight into the actual decision process
[113]. The notion of fidelity will be elaborated later in this section.

Understanding The second category examines whether the explanation helped people understand
certain aspects better. Objective measures here include the model’s size, as larger models are challeng-
ing to understand. Human-centered understanding EMs ask how it works, which was done in a study
by Kaur et al. [54]. The Explanation Satisfaction Scale by Hoffman et al. [44] could also be used here.

Desiderata Satisfaction The final category of Evaluation Methods (EMs) focuses on evaluating the
success of the explainability approach by directly measuring important outcome variables such as trust
or performance. These are examples of desiderata, defined as the user’s needs. This will be further
explored in the Human-Centered XAl section in section 2.3.

According to Speith and Langer [113], there are no objective ways to evaluate the desiderata EM, but
several human-centered EM have been found. For example, usefulness has been assessed in [61],

2.2. Evaluating XAl 6

and usability could be evaluated using the The System Causality Scale (SCS) [46] or The Explanation
Satisfaction Scale (ESS), which is presented by Hoffman et al. [44].

There are limitations to the use of desiderata EMs as they do not reveal why an explainability approach
has or has not achieved a desideratum. This is due to the assumption that successful approaches lead
to increased understanding, which then affects these outcome variables such as trust [89].

2.2.2. Grounding the evaluation method

There are different approaches to evaluating the method. Three evaluation strategies can be distin-
guished: application-based, human-based & functional-based. For each approach, two dimensions are
important: context realism and human requirement realism [71]. The strategies are presented now and
sorted according to how specific the approach is and the costs involved [26]:

1. Application-grounded Evaluation: Real humans, real tasks
2. Human-grounded Evaluation: Real humans, simplified tasks
3. Functionally-grounded Evaluation: No humans, proxy tasks

Application-grounded evaluation

Application-grounded evaluation involves conducting a human experiment within an actual application.
This is most useful when the XAl is designed for a concrete application, where the evaluation is carried
out with the target user doing the relevant task. This will ensure the system performs its intended task
[26]. This can be done by creating a baseline with human-produced explanations and comparing the
XAl to this baseline.

Human-grounded evaluation

Human grounded evaluation involves running a simpler experiment but retaining the essence of the
target application. One advantage is that the pool of subjects is larger, as it does not require the domain
experts needed for application-grounded evaluation. This evaluation approach should focus on the
quality of the explanations, regardless of the correctness of the associated prediction [26]. An example
is Binary Forced Choice, where people are presented with pairs of explanations and have to choose the
one they think is of higher quality [26].

Functionally-grounded Evaluation

Functionally-grounded evaluation does not require human experiments, instead it should use formal
(often mathematical) definitions of quality [113]. A significant advantage of this approach is how time
and cost-efficient it is compared to human-based and application-based evaluation [26]. However, it
should also be acknowledged that defining them obijectively is also a challenging task, and in some
cases not possible [138].

2.2.3. Properties of Explanations

An explanation and its technique can be described in terms of several properties. Molnar [86] makes
the distinction between the properties of the method and the individual explanations. Depending on the
focus of the evaluation, these properties can be evaluated individually or together as was done by Liao
etal. [72].

Properties of explanation methods

Expressive power defines the language or structure of the explanation the method can generate. This
could be, for example, a decision tree, a number or a natural language explanation [86].
Translucency describes the extent to which the explanation relies on the internals of the model. High
translucency means that much internal information is used for the explanation, while low translucency
implies that the explanation relies only on the inputs. Depending on the model and the use case, different
levels of translucency are desirable.

Portability is defined as the range of ML models to which this particular method can be applied. In
general, there are methods with low translucency and higher portability because the model is treated as
a black box. Methods only applied to a specific ML model have low portability.

Algorithmic Complexity mainly refers to computational complexity. This should be measured by the
time or computation required to generate an explanation.

2.2. Evaluating XAl 7

Robustness measures how much the explanation is prone to change when the input changes. It should
be consistent. Otherwise, the user will lose trust, as discussed by Chen et al. [18].

Properties of individual explanations
Fidelity assesses the ability of the explanation to reveal the true underlying decision-making of the
model. This is often desirable because a good explanation aims to reveal to the user the true reasoning
and decision-making of a complex model. If this is not done correctly, it can influence decision-making,
which is particularly unfavourable in high-risk scenarios [18]. In other contributions, fidelity is referred to
as faithfulness [86] or soundness [112].

Consistency fries to capture whether the explanation is similar when used with different models trained
on the same task and with the same output. If the explanations are similar, the method can be considered
consistent. Note that it may well be that the different models use different features for prediction and
still produce the same output. In this case, inconsistency is desirable, as they have reached the same
conclusion using different reasoning [86].

Comprehensibility is defined as how well humans can understand the explanations. While this is
difficult to define and measure, it is essential to get it right [86]. The definition of comprehensibility is
very similar to interpretability as defined in this study.

Certainty (communication) reflects the certainty or confidence in the Al system [15]. This is important
to ensure appropriate trust in the Al [72].

Completeness assesses the extent to which the explanation covers all the components used by the
Al system. This metric is considered a complementary property to fidelity, which together accurately
reflects the underlying model [72].

Contextfullness assess to what extent the explanation also provides knowledge about its limitations.
Understanding all necessary conditions for the explanations to hold and their similarities to other cases
[112].

Human Friendly Properties

Another perspective on evaluation is how human-friendly the explanation is. The most extensive survey
in this area is done by Miller [83], which defines several properties from a social science perspective. It
argues that most research and practitioners in Al are in 2019 not aware of these desired properties.
More information about Human-Centered Al will be discussed in section 2.3. The relevant desired
properties of human-friendly explanations are given now.

Contrastivity The first observation was that explanations are contrastive. In other words, people think
of these explanations as counterfactual cases. People do not ask why a particular event happened, but
instead why it happened instead of something else. Thus, for explanations to be human-friendly, the
instances need to be compared to some other cases [86].

Selectivity People do not expect an explanation that consists of the complete cause of an event.
Instead, only a few reasons are given to explain the cause. In machine learning, it is advised to keep
the number of explanations to a maximum of 3.

No probabilities Another suggestion by Miller [83] is that probabilities do not matter. Referring to
probabilities is not as effective and satisfying as referring to causes. This should also be taken into
account when designing human-friendly explainability techniques.

Social Explanations are part of a conversation or interaction and thus need to be presented relative to
the explainee’s belief. The social context needs to be understood and used to determine the content
and nature of the explanations [86]. Therefore, it is important to know how people interact regarding
explanations.

2.3. Human-centred Explainable Artificial Intelligence 8

Truthful Defined by Molnar [86] as explanations that are true in reality, it is proven that good explana-
tions need to be faithful. For machine learning, this is similarly defined as fidelity, as explained in the
previous section.

Actionability The explanation should help users decide what to do next to achieve their main goal. In
this case, the explanations can act as a kind of guideline for users to achieve their desired goal [112].

Interactivity: The granularity of an explanation should be adaptable to the user’s experience and
background knowledge [69]. This could be done by being able to ask follow-up questions based on
the result [112] or through customizability by the user. This makes the communication between the
explainer and the explained bidirectional.

2.3. Human-centred Explainable Artificial Intelligence

As mentioned before, building explainable Al is a multi-disciplinary field. To create explanations that
give users additional insights, they must be at the centre of the research. This is called Human-Centered
eXplainable Al (HCXAI). The first mentioned goes back to 2017 by Doshi-Velez and Kim [26], which
was a big leap towards evaluating interpretability in machine learning. The official term was introduced
in 2020 by [30]. Since then, it has been explored more and more [31].

Different Approaches

To give a complete picture of HCXAI, Table 2.1 highlights the differences between traditional and
user-centred practices. For the purposes of this research, the focus will be on user-centred practices. To
do this, it is essential first to understand what factors should be considered when taking a user-centred
approach. This will be discussed now.

Table 2.1: Differences between traditional and user-centered practices [16]

Traditional practices User-centered practices
Technology/developer-driven User-driven

System component focus User solution focus
Individual contribution Multidisciplinary teamwork
Focus on internal architecture Focus on external attributes
Product quality Quality in use

Implementation before human validation Implementation based on user-validated feedback
Establishing the functional requirements Understanding the context of use

Various Users

To take full advantage of Al explanations, it is necessary to recognise that stakeholders are different
and therefore have different needs with respect to XAl [7]. Kim et al. [55] concluded that different
stakeholders, in their case clinicians and patients, have different motivations for seeking explanations.
It is therefore useful to classify the stakeholders involved, as done by Tomsett et al. [122]. They define
different roles, including creators, operators, executors, decision-makers, data subjects and examiners,
all of whom have different roles in building Al systems.

Hong, Hullman, and Bertini [47] presents another well-suited categorisation that defines only three
primary roles: Model Builders, Model Breakers and Model Consumers. Model Builders are responsible for
designing, developing and testing models and integrating them into the organisation’s data infrastructure.
Model Breakers have the domain knowledge to verify that models meet the desired goals and behave as
expected but may not necessarily have a professional level of knowledge about ML. On the other hand,
model consumers are the intended end users who rely on the information and decisions generated by
the models.

2.3. Human-centred Explainable Artificial Intelligence 9

2.3.1. Factors influencing the needs of XAl

Having concluded that stakeholders are different, the question is how to describe and study the target
user. Several frameworks try to understand which factors should be considered [85, 47, 11, 104, 5].
These include factors such as the user’s goals and needs, the context in which they need XAl, their
level of knowledge, and how they need to receive the explanations. These factors will now be discussed
in more detail.

Goals

The first factor to consider is the goals of the user, which will help to understand what XAl is being
used for. Barredo Arrieta et al. [11] identify a set of goals: trustworthiness, causality, transferability,
informativeness, confidence, fairness, accessibility, interactivity and privacy awareness. These goals
are mapped to the target audience. For data scientists, the goals are transferability, informativeness,
and confidence. Transferability is defined as clarifying the boundaries of the model. Informativeness
is the ability to relate the user’s decision to the solution provided by the model. Finally, confidence is
defined as a generalisation of robustness and stability, which assesses how reliable the model is [11].
There are certain goals where explainability can play a role. This is defined as context by Liao et al.
[72] and are presented in Table 2.2

Table 2.2: The contexts according to Liao et al. [72]

Context Description

Model Improvement Inspect how the model can be improved or verify that the model is be-
having as intended.

Capability Assess- Evaluate the capabilities of the model and its limitations
ment

Decision Support Understand the reasons to make an informed decision
Adapting Control Understanding how the Al system works with one’s data input to have
control over the desired system behaviour
Domain Learning To learn the patterns that the system extracted from historical data
Model Auditing To inspect whether biases comply with security and privacy requirements
Desiderata

The next factor that should be included is the desiderata of the user, proposed by Langer et al. [63]. This
concept combines stakeholders’ interests, goals, expectations, needs and requirements for Al systems.
Desiderata relate explainability approaches to the satisfaction of each stakeholder. It recognises that
explanatory information facilitates stakeholder understanding, which influences satisfaction. This study
attempts to understand and satisfy the desiderata of the target user, the NLP data scientist. Langer et al.
[63] defined them for the general developer, which is most relevant for the target user in this research.
These desideratum are presented in Table 2.3.

When

Next to the persona-related factors, another question that should be investigated is when is XAl needed?
The development phase of any Al system can be defined in multiple phases or stages, and all have
their contributors and corresponding goals and objectives. The phases are described by Suresh et al.
[117] and include Development, Deployment, Immediate Usage & Downstream impact. Downstream
impact is defined as the impact of the prediction on other system components.

Stages are also defined by Hong, Hullman, and Bertini [47], stating three stages. First, the Ideation
& Conceptualisation stage; second, the Building and Validation stage; and third, the Deployment,
maintenance, and Usage stage. It is important to recognise these phases for both the XAl needs and
the workflow of the NLP data Scientist.

2.3.

Human-centred Explainable Artificial Intelligence 10

Table 2.3: The desideratum for developers according to Langer et al. [63]

Desideratum Description

Accuracy Assess and increase a system’s predictive accuracy

Debugability Identify and fix errors and bugs

Effectiveness Assess and increase a system’s effectiveness; work effectively with a
system

Efficiency Assess and increase a system’s efficiency; work efficiently with a system

Performance Assess and increase the performance of a system

Robustness Assess and increase a system’s robustness (e.g., against adversarial
manipulation)

Security Assess and increase a system’s security

Transferability Make a system’s learned model transferable to other contexts

Verification Be able to evaluate whether the system does what it is supposed to do

Knowledge level

Another factor to consider is the level of expertise of the user. During the development of a tool,
discussing the level and type of background knowledge required to comprehend an explanation is crucial
[112]. In this research, it is assumed that NLP Data Scientists have a minimal understanding of ML and
NLP. However, domain knowledge regarding the solutions they are building might not always exist.

How
Lastly, the factor that needs to be considered in this study is the question of how does the user want to

have the explanations. This is investigated by discussing the workflow of the user and investigating

where in this workflow the best point is to incorporate the explanations.

2.3.2. HCXAI Principles
Previous studies have defined several principles that any HCXAI system how adhere to. One major
contribution is from Chromik and Butz [19], which defines four important principles

1.

Complementary Naturalness: Consider complementing implicit explanations with rationales in
natural language.

Responsiveness Through Progressive Disclosure: Consider offering hierarchical or iterative
functionalities that allow follow-ups on initial explanations.

Flexibility Through Multiple Ways to Explain: Consider offering multiple explanation methods
and modalities to enable explainees to triangulate insights.

Sensitivity to the Mind and Context: Consider offering functionalities to adjust explanations to
explainees’ mental models and contexts

Other principles are proposed by Cirqueira, Helfert, and Bezbradica [22], which sets out five different

prin

1.

ciples:
The explanation should provide prediction probabilities in order to observe the confidence and
limitations of the system.
The explanation should provide cases of similar and dissimilar predictions to understand the
prediction.
The explanation should give a level of importance to data instances to understand the global
behaviour of the model.
The explanation method should be given in human-readable rules and understandable visualisa-
tions.
The explanation method should provide the influence of features to grasp the notable attributes

within a local prediction quickly.

2.4. Large Language Models 1

2.4. Large Language Models

This study focuses on the use of Large Language Models (LLMs) to create solutions to NLP tasks. This
section explores the themes associated with these models. This is done by giving a brief background on
the model architecture, followed by related topics such as fine-tuning and prompting. The applications
are then discussed, followed by the challenges and problems of these LLMs.

2.4.1. History

Language modelling as a way of building NLP applications has been around for a while. In the early
days, it was done using statistical models followed by neural language models. Here, the field started
using word embeddings and bidirectional LSTM architectures [74]. However, the revolution really began
in 2017 with the emergence of the transformer model [123]. This transformer model, which uses a
multi-headed self-attention mechanism, was most revolutionary in terms of scalability. It made it possible
to create huge models (ranging from 1.5B parameters to 1.2T parameters [136, 53]) and thus increase
the performance of the model. From that moment on, it gained more and more traction in the scientific
community, as can be seen in Figure 2.2.

10000

8000

6000

4000

2000

Gpr1 GPT2

BERT

2018

2019 2020 2021 2022
Time

(a) Query="Language Model”

2023

1750

1500

1250

1000

750

500

250

GPT-4 ¢

LLaMA s
ChatGPT,
X

InstructGPT
Codex 4
.

2020 2021 2022 2023
Time

(b) Query="Large Language Model”

Figure 2.2: Amount of publications that match the query in the title or abstract, created by Zhao et al. [136]

The traditional model architecture was an encoder-decoder architecture consisting of two stacks; a
stack of encoder transformer layers and a stack of decoder transformer layers. For both stacks, each
layer contains a multi-head attention mechanism and a feed-forward neural network [74]. The attention
heads and feed-forward networks are connected with a normalisation step. A visual representation of
a transformer is presented in Figure 2.3. The latest models use so-called decoder-only architectures.
Unlike the encoder-decoder architecture, the decoder-only architecture focuses solely on the decoding
process [74]. This is done by sequentially generating new tokens using the previous tokens in the
sequence to generate the output.

2.4.2. Fine-tuning

Once a model has been pre-trained on a large corpus, it can be fine-tuned. The core concept is to tune
the model in a supervised way that improves its performance on a specific task. There are different ways
of doing this, such as alignment learning, instruction learning and parameter-efficient tuning. Alignment
learning tries to address the safety of the model by tuning it to be helpful, honest and harmless [74].
Instruction learning tunes the model to understand instructions and to respond effectively to user
requests. By giving the model an instruction-required-output pair, the model learns how to respond
effectively to the prompt and input [93].

Alignment and instruction learning are complete tuning methods because they change all the parameters
in the model. In contrast, parameter-efficient tuning uses only a subset of the parameters, leaving all
other parameters fixed. This significantly reduces computational and storage costs while maintaining
comparable performance improvements [74].

2.4. Large Language Models 12

12x

Text & Position Embed

Figure 2.3: Decoder Transformer Architecture [98]

2.4.3. Prompting

Once the model has been fine-tuned, it can generate new answers by issuing a query to the model,
called a prompt [93]. One important method here is zero-shot learning, where the model is able to
generate an answer to queries that it has not been trained on or added to the prompt. Few-shot learning,
also called In-Context Learning (ICL), is a method where multiple input-output examples are given
in the prompt to show the model the desired output (format). The last popular method is reasoning,
where the model is asked to generate answers to a logical problem by reasoning. An example of this is
Chain-of-Thought (CoT), where the model is asked to give its reasoning step by step. These methods
can significantly influence the performance of the model if used appropriately [93].

It is worth noting that the explanations can also help in the prompting paradigm. For example, these
models have emergent properties where they are able to perform well on tasks on which they have not
been trained. Investigating how these emerging abilities arise and what is needed can also be done
with explainability [135]

2.4.4. Evaluation

There are several ways in which the output of the LLM can be evaluated. A comprehensive overview
is provided by Tikhonov and Yamshchikov [121], but this thesis only provides an overview. There are
specific categories in which an LLM can be evaluated. For example, it could be text-specific, such as
word order or tokenisation. It could also be skill-specific, such as writing, reasoning, mathematics or
coding. Finally, it could be based on output attributes (also called personality traits) such as consis-
tency, readability and correctness. Tikhonov and Yamshchikov [121] notes that all current evaluation
approaches are not very effective and do not meet modern requirements, as they lack a precise and
formal definition.

2.4.5. Applications

Now that the relevant concepts have been described, it is useful to understand the applications and
challenges of these Large Language Models (LLMs). The introduction of generative models introduced
a whole new range of applications in various sectors. These are applications like chatbots, assisting
with programming, writing creative work and more [53].

In addition to this whole new field, these models also revolutionised the classical NLP tasks. This could

2.4. Large Language Models 13

be tasks like sentiment analysis, text classification, fact checking and machine translation, which can
now be solved with LLMs [100]. Concrete examples are data extraction, improving data quality by
reference checking multiple sources or classifying incoming emails.

2.4.6. Challenges
There are many different challenges associated with LLMs. These include issues such as cost, security,
technical challenges and more. The most relevant to the target user are described here.

Lack of Reproducibility When dealing with closed source models; lack of reproducibility of inference
due to stochastic APl in a black box environment; don’t know when changes are made, which model
versions are maintained and stochastic outputs even at low temperature [53].

Hallucinations Another challenge is that LLMs suffer from hallucinations. This means that it contains
inaccurate information that is difficult to detect due to the fluency of the text. This can be partly solved
by the technique of retrieval augmentation, where stored information is retrieved based on the prompt
and added to the model’s input. This is not always possible and, unfortunately, does not solve all
hallucinations [53].

Prompt Brittleness It has been found that the syntax of the prompt, such as length, words and
instructions, has a significant impact on the performance of the models. It has also been shown that
the order of examples within few-shot learning has a significant effect on performance, with some
permutations performing close to state-of-the-art and others performing virtually random guesses [75].
Therefore, creating the best possible prompt can be a challenging task.

Fairness Several types of bias can occur in the output of the model, resulting in unfair models. These
include social bias, where the model stereotypes, excludes social groups or misrepresents [34]. For
example, in a case of stereotype bias, "He is a doctor” is much more likely to be generated than "She is
a doctor” [68]. One study suggests that about 15% to 30% of attention is associated with stereotypes
[132]. These biases can arise from the data or during training and can be categorised as intrinsic and
extrinsic biases. Intrinsic means that the bias is encoded in the embeddings, whereas extrinsic bias
corresponds to the decision bias of the downstream tasks [67].

Privacy Privacy is a major concern. Recent studies have shown that models can leak training data
during generation. This means that sensitive data can be exposed and used for harmful purposes [132].
There are two main approaches to improve privacy: 1) prevent the model from storing sensitive data
and 2) ensure that it does not leak sensitive information during generation. In addition, to address this
challenge, explanatory techniques could be used to confirm whether LLMs have internalised certain
knowledge.

2.5. Large Language Model Explainability techniques 14

2.5. Large Language Model Explainability techniques

This section will give an overview of the different explainability techniques that are currently available
for Large Language Models (LLMs). This is done by first exploring the local explanation techniques,
followed by global explanations.

2.5.1. Local Explanations

Local explanations for LLMs are often categorised into four types: feature attribution analysis, analysis of
the individual components of the transformer like the attention mechanisms, example-based explanation
and natural language explanation [135]. The overview is also visualised in Figure 2.4. These will be
discussed below.

(a) Attention Visualization

Layer: |6 ~ | Attention: Santence A -> Sentence B ~
(d) Commonsense Reasoning

[cLs] the Question: While eating a hamburger with friends, what

the cat are people frying to do?.

. I ” Choices: have fun, tasty, or indigestion

o 2 i Explanation: Usually a hamburger with friends indicates

eat an Function- Matural a good time,

on the based Language

the rug * (e) Sentiment Analysis

Visualiza

mat ~ [SEP] ton attention CDU‘T:]”E: . Original text: It is great for kids (positive).

[SEF]] Negation examples: It is not great for kids
[negative)
. . Example-
(b) Question Answering Pertuiba based | Adversarial o
Context: In 1899, John Jacob Astor IV Invested tion Feature Example () Classification

100,000 for Tesla to further develop and produce a s Attribution
new lighting system, Instead, Tesla usad the money
fto fund his Celorado Springs experiments.

Original text The characters, cast in
. impossibly contrived situations, are fotally
estranged from reality (Negative),

Question: What eéd Tesla spend Astor’s money on? Gradient Decompos . P
Gonfidence: 0.78 —> 0.91 ition _Perturt_:sd tu;l. The _chﬁlaclels. cast in
Surrogate impossibly engineered circumstances, are fully
madel estranged from reality (Positive)

{c) Sentiment Analysis

Figure 2.4: Overview of local XAl techniques, visualised by Zhao et al. [135]

Feature Attribution Analysis

Feature attribution focuses on the relevance of each input feature to the model’s prediction. While
several computation methods exist, they all aim to highlight which tokens had a positive or negative
impact on the output. The three computational methods are perturbation-based, gradient-based, and
decomposition-based, and they will now be explained.

Perturbation-based Perturbation-based methods perturb the input by removing, masking or altering
input features and evaluating how this changes the output. Examples are leave-one-out [66], Input
Reduction and HotFlip [29]. An additional advantage is that they can measure the robustness of the
model [33].

This category includes methods such as LIME [103] and SHAP [76]. These methods also change
the input and see how this affects the output. However, they are not inherently usable for LLMs and
adaptations are needed. TransSHAP is an example that focuses on adapting SHAP to subword text
input and providing sequential visualisation explanations that are well suited to understanding how LLMs
make predictions. Note that this is adapted for BERT (encoder-only) models [58].

In addition, perturbation faces some challenges in terms of efficiency and reliability [77]. In reliability
due to model overconfidence [33]. For example, models can maintain high confidence predictions even
when the reduced inputs are nonsensical. However, this can be solved with regular examples, label
smoothing, and fine-tuning of model confidence [33].

Gradient based Gradient-based feature attribution determines the importance of each feature using
partial derivatives with respect to each input dimension. The magnitude of this derivative will reflect the
sensitivity of the output to changes in the input [135]. Examples are vanilla gradients [125] or integrated

2.5. Large Language Model Explainability techniques 15

gradients [116]. One challenge with Integrated Gradients (IG) remains the computational overhead
required to achieve high-quality integrals [110].

Decomposition-based Decomposition aims to decompose the relevance score into linear contribu-
tions from the input. This could be done by assigning relevance scores directly from the output layer to
the input [28]. Or it can be done by aggregating relevance scores layer by layer, as is done in layer-wise
relevance propagation [87]. These can be used to decompose relevance scores into contributions from
different model components, and have also been adopted to work with transformer models [17].

Analysis of Transformer components

In addition to the feature attributions, it is also possible to explain the output by utilising the internal
mechanisms of the model. As explained in section 2.4, each transformer block contains a multi-head
self-attention sublayer, followed by an Multilayer Perceptron (MLP) sublayer [123]. These sublayers
can be used individually to provide information about the prediction [74].

Attention-based The attention-based explanation makes use of the multi-headed attention heads of
the LLM. Intuitively, it captures meaningful correlations between intermediate levels that explain the
models’ prediction [135]. This can be visualised raw, where a heatmap can be used to visualise the
weight for each layer. However, raw is not enough to fully explain the prediction. To solve this, functions
such as Grad-SAM [10] or integrated versions of partial gradients [41] can be used. Grad-SAM works by
analysing self-attention units and using the attention matrices together with their gradients to produce a
ranking over the tokens. This identifies the input elements that best explain the model’s prediction. This
works better than visualising attention alone.

MLP-based The Multilayer Perceptron (MLP) layer, which is a layer of fully connected neurons with a
nonlinear activation function [123], can also be used to provide information about the prediction. This
can be done by viewing the token representation as a changing distribution over the vocabulary and the
output of each Feed Forward Network layer as an additive update to that distribution. Each update can
then be decomposed into sub-updates corresponding to a single vector that can be transformed back
into tokens that are interpretable by humans [35].

It should be noted that there is a big debate about whether attention maps can be used for explanation,
as they may not be faithful. Some argue that raw attention does not identify the most important features
for prediction [108, 50] or during code generation [60]. Others say they do not contribute as much to
prediction as assumed [84]. Some technical solutions have been explored but have not settled the
debate [136, 12].

Example based

The last local explanation category is Example-based. These explanations illustrate how the output of
the model changes with different inputs. This can be done in a number of ways, including adversarial
and counterfactual. Adversarial examples are based on changing the less critical components of the
input data to show how this changes the output. This is particularly useful for highlighting areas where
models fail and where the model can be improved in terms of robustness and accuracy. Counterfactuals
are a form of casual explanation where the input is perturbed in such a way that the output should
change. This is done in Polyjuice [131], for example, a Python tool that supports multiple permutation
types such as deletion, negation and shuffling. This is then used to create realistic counterfactuals [135].
It should be noted, however, that these methods are highly susceptible to hallucination.

2.5.2. Global Explanations

Explanations with a broader scope are called global explanability and aim to understand the LLM as a
whole. They are generally more focused on uncovering biases and privacy issues, and therefore more
focused on building more trustworthy models. The most studied techniques are probing techniques
and mechanistic interpretability. Probing techniques scrutinise model representations, and mechanistic
interpretability is a relatively new field that focuses on reverse engineering the inner workings of the
MLP.

2.5. Large Language Model Explainability techniques 16

Probing Probing techniques refer to methods used to understand the knowledge that the LLM has
captured and how that knowledge is represented. By probing the model it can discover paths within
the model [135, 111]. An example is provided by Clark et al. [23], who demonstrate an attention-
based probing technique using a classifier to show that syntactic information is captured within BERT’s
attention.

Mechanistic interpretability A relatively new approach is called mechanistic interpretability, which
examines the neurons of the model. This can be done by categorising or decoding concepts from
individual neurons [24, 92]. These can then be grouped together to further understand how different
neurons together perform a specific task, which is called circuit discovery [128]. While these methods
are difficult to scale to today’s largest LLMs, a very recent publication was able to scale them to the
Claude 3 LLM [119].

2.5.3. Challenges in Explainability for LLMs
Explaining the behaviour of LLMs poses several challenges. This is due to a number of factors, which
have been discussed by Liao and Vaughan [70]:

Complex and uncertain model capabilities and behaviour There is a very wide range of different
tasks that an LLM can perform well because of its immense flexibility. However, these emerging
capabilities also make it very unpredictable and unreliable. This non-deterministic behaviour makes the
response inconsistent and therefore difficult to generalise [70].

Massive & opaque architectures Today’s models are massive and complex, making it very difficult
to get a full picture of the knowledge reflected in a model or the reasoning used to produce its output.
Even when a closer look is taken at the different internal mechanisms, it is very hard to comprehend the
full behaviour of the model and can even create misleading explanations as they might be unfaithful
[70].

Proprietary Technology A more obvious reason is the inaccessibility of the model parameters. When
these models are used, they are often only accessible via API's. As a result, it is impossible to access
the inner workings of the model, which is often required to compute most post-hoc explanations. Not only
are the parameters not shared, but other details such as size, training data and number of parameters
are often hidden, creating even more opaque models [70].

Organisational pressure to move fast The final reason discussed by Liao and Vaughan [70] is the "Al
race”. As organisations are often under pressure to release products quickly to be the first, responsible
Al challenges this fast pace. Companies try to achieve breakthroughs to improve quality, which is
incentivised by the market, while transparent Al is not. As organisations are often under pressure to
release products quickly in order to be first, responsible Al conflicts with this goal. Companies try to
achieve breakthroughs to improve quality, which is incentivised by the market, whereas transparent Al
is not.

2.6. Related work 17

2.6. Related work

This section explores and examines the implemented tools that use explainability techniques for LLMs.
By reviewing existing implementations, a better understanding of the current state will be gained. A
brief overview of the tools is given, followed by some initial findings. First, a set of criteria is presented
to focus attention on only those tools that are relevant for the current scope.

2.6.1. Selection Criteria for Existing Explainability Tools
In order to narrow down the scope of all tools, several criteria have been established. These will now be
presented, together with the reasoning behind them.

» Uses at least one XAl technique. Since the focus of this tool is on explainability, it should use at
least one technique that gives insight into the behaviour of the model.

* Focus on decoder-only models. Given the differences in explainability techniques between
different model architectures, the scope is still large if all transformer architectures are considered.
Therefore, it was decided to include only auto-regressive models, which are currently becoming
increasingly dominant in the NLP field and are relatively unexplored in terms of their internal
behaviour. In addition, fewer tools were found that focus specifically on this family of models.

+ Compatibility with Open Source Models. Most explainability techniques use internal mech-
anisms to compute an explanation, either via the attention mechanism or the tightly coupled
feed-forward layer, so the tool should be able to access these weights.

» Open Source Implementation. In order to select only relevant tools, it was decided to consider
only open source implementations, as the implementation behind the tool is a relevant factor for
this section.

Together, these criteria will give a list of tools that are most relevant to this study and can also inspire
the development of a new tool.

2.6.2. Results

A wide range of implementations have been found that present an explainability technique for LLMs.
The result is presented in Table 2.4, together with additional information on the tool. For each tool, the
table describes if the tool is actively being developed or maintained, what technique is implemented
and if the explainability technique is evaluated using at least one evaluation metric. Lastly, it has been
investigated for each tool if they are user-evaluated using HCAI & HCXAI principles.

2.6.3. Design Frameworks

Contributions have been made to the design of a usable architecture. Two important contributions
are from Mosca et al. [88] and Lee et al. [65]. A pattern noted in these two designs is the use of an
external frontend where the visualisations are presented, and the user can interact with them. The
Interaction Framework for Artificial and Natural Intelligence (IFAN), proposed by Mosca et al. [88], is
presented in Figure 2.5. While this is originally created to satisfy the needs of multiple users, it is a
system architecture that will be used as inspiration during this study.

2.6. Related work 18
Table 2.4: List of other XAl implementations
Name Year Active Techniques XAl evaluated HCI eval-
dev uated

Feature Attribution

LLMCheckup [129] 2024 No Free-text rationalization Fluency No
Semantic Similarity Consistency
Counterfactual Generation
Feature Attribution Correctness

InterroLang [32] 2023 No Counterfactuals helpfulness Yes
Rationalization satisfaction

Inseq [105] 2023 Yes Feature Attribution No No
Feature Attribution Eaithfulness

Ferret [9] 2023 No Shap o No

. Plausibility

Lime

LM-Debugger [36] 2022 No FFN updates No No

PolyJuice [131] 2021 No Counterfactuals No Yes

Feat ttributi
Ecco [6] 2021 No eature atiribution No No
Neuron Activation

Transformer Lens 2021 Yes Neuron Activations No No
[91]
Transformers- 2021 No Feature Attribution No No

Interpret [99]
Feature Attribution

LIT [120, 8] 2020 Yes Attention maps No Yes
Counterfactuals

Captum [59, 82] 2020 Yes Feature Attribution Robustness No
Attenti

ExBert [48] 2020 No ention maps No No

Contextual representation

Year defines the year it was published, Active dev assesses if the github is still in active development. Techniques describes the
implemented explanation techniques and XAl evaluation describes whether the technique was evaluated and more specifically if
it was evaluated with humans

2.6.4. Insights

Given the overview given in Table 2.4, several observations can be made. First, it can be noted that all
implementations were primarily developed for research purposes. Their focus was on presenting one or
multiple novel explainability techniques rather than building an industry-ready tool. Consequently, it is
reasonable that these were not evaluated using human-grounded evaluation metrics and user studies.
There are some exceptions to this observation, including Polyjuice [131] and LIT [120]

Next, most use visualisation techniques over natural language. The visualisation tools commonly used
saliency maps of the tokens, either by highlighting tokens within the text or as a matrix where the input
is positioned on the Y-axis and the output on the X-axis. Furthermore, attention mechanisms are often
visualised using two columns of text and lines connecting the words to highlight the attention between
the connected words.

However, when looking at rationalisation, which is the technique of giving an explanation in text, the
most notable is InterroLang, by Feldhus et al. [32]. A comprehensive overview of other techniques can
be found in the survey by Gurrapu et al. [40].

2.6. Related work

19

{3}) Step 5: Retrain the model on
provided feedback.

IFAN Backbone @) FastAP| (&

docker

Datasets

+ dataset_train: dataset
+ dataset_validation: dataset
+ meta_data: json

+ get_samples_from_dataset(): List

Models

+ model: AutoModel
+ pipeline: TextClassificationPipeline
+ adapters: List

+ predict(): List

+ missclasssified_samples(): List
+ explain(): List

+ run_evaluation(): List

Step 1: Select a dataset

to sample texts.

Step 2: Select a
model to inspect.

Step 4: Provide the feedback
Qn the model's behaviour.

/
[IFAN UI

swsaipt Bootstrap

Local Feedback
‘You sample is toxic with prob. 99%

only a ret**d would think that

Step 3: Analyze model's
behavior with explanations.

Figure 2.5: Proposed architecture from IFAN [88]

Global Feedback

c*nt f*ggot n*gger wh*re f*cking

safety strong beauty amazing

Formative Study

This section describes the first phase of the research, a formative study. Before this could be done, the
target user of the tool needed to be decided. The target user was selected based on conversations with
employees within Elsevier. In total, 14 conversations were conducted to determine the final target user
for interviews and tools. The employees held positions such as data scientist, responsible Al expert,
data engineer, head of data science or manager. The conversations revealed that different roles within
the company have different definitions, knowledge levels, and perspectives on XAl. It also provided
a better overview of a suitable user for the tool. All these interviews were taken into account when
selecting the most appropriate target user.

Target user of this thesis: NLP Data Scientist

It was concluded that the NLP Data Scientist was the most appropriate target user. The NLP Data
Scientist is defined as a general data scientist with domain specific NLP knowledge and projects. This
decision was influenced by the fact that they were actively building LLM-based products and recognised
the benefits of a human-based explainability tool, thus indicating its potential.

The formative study followed, by interviewing the the NLP Data Scientist. This formative study provided
insights into the workflow and user needs required to gather the right requirements and implement
the human-centred tool. The outcome of this phase is a set of observations, which follows a similar
approach to other contributions, including a study by Gu et al. [39]. The method is described first,
followed by the results.

3.1. Method

A formative study was chosen to further deepen the knowledge of the NLP Data Scientist. This was done
by interviewing participants and discussing topics related to LLMs and explainability. The interviews
with the participants were divided into three parts: 1) What are the current challenges and desiderata of
the NLP Data Scientist, 2) What is the current workflow when developing an LLM-based product, and 3)
How do they use XAI? The questions can be found in Appendix A. It was chosen to not only talk about
explainability but also to gain knowledge about the general needs and challenges of the target user.
This ensured that no challenges were overlooked when selecting and building the explainability tool.
Each interview lasted approximately 45 minutes and was recorded in audio and video format. The
audio was automatically transcribed and then edited for clarity and accuracy to improve the transcript
processing.

Participants

Six NLP data scientists participated in the interviews using a self-selected convenience sample. They
were selected from three teams; all had at least two years of experience in data science and had
completed at least one project in the NLP domain. The interviews were voluntary, with their informed
consent and their manager’s approval. The participants are given in Table 3.1

20

3.1. Method 21

Table 3.1: Overview of the participants

Participant Position

Participant 1 Senior Data Scientist
Participant 2 Principal Data Scientist
Participant 3 Data Scientist
Participant 4 Senior Data Scientist
Participant 5 Manager Data Science
Participant 6 Data Scientist

Thematic Analysis

Based on the interview transcriptions, several steps were taken to distil the knowledge. These are
based on the steps described by Naeem et al. [90]. These steps include the creation of codes and their
collation with supporting data. The codes can then be grouped into themes. These themes and codes
can be revised if necessary. How the codes and themes were created is described in more detail below.

Coding Strategy

There are several ways to code transcripts for data analysis. A clear distinction is made between
inductive and deductive coding [13]. Inductive coding looks for patterns in the data to guide coding
and theme development. Deductive coding, on the other hand, examines data based on preconceived
frameworks and ideas. It is therefore, less flexible and more focused on what is already known to the
researcher.

A hybrid of the two approaches can also be used, as suggested by Naeem et al. [90]. We take this
approach because this research is based on literature, which is presented in chapter 2. This helps to
create the initial codes; however, certain patterns and considerations could not be included in any codes.
Therefore, these codes were created inductively by analysing the patterns between the transcripts. This
hybrid method allowed for a flexible set of codes that provided a well-defined basis for the requirements
of the tool.

Codes

In total, 312 quotations were highlighted, which created a total of 124 codes. The codes combine
pre-defined codes and newly found codes during the analysis. A sample of the codes created can be
found in Appendix B

Themes

Once the codes had been analysed, it was possible to create themes. A theme should represent a
patterned meaning within the data that informs the research questions [90]. These themes can be
created by grouping and categorising the different codes. This categorisation is also based on the
ideas and aspects presented in the background of this research. Sub-themes have been introduced
because each theme is still a broad range of topics. The defined theme and sub-themes are presented
in Table 3.2

3.2. Results

22

Table 3.2: Identified themes and sub-themes

Themes Sub-themes
Characteristics
Persona Goals
Desiderata
Challenges Persona Challenges

Technical Challenges

LLMs development in practice

Utilisation
Factors on model

Perspectives on XAl

Current view XAl
Potential benefits of XAl
Usage in practice

Workflow

Steps

Evaluation Strategies
Business practices
Technical Stack
Workflow desires

Distilling Observations supplemented by literature

Processing the themes allowed for the distillation of observations, which helped to create this tool in a
human-based way. In this research, observations are defined as conclusions drawn from the themes
with additional literature for comparison. This comparative approach provided more knowledge on
the current status and how it differs from the findings of this research. It should be noted that the
observations are high level, i.e. they provide direction. However, they do not provide insight into how

the observations can be solved in practice.

3.2. Results

This section presents the results of the formative study. First, an overview of all observations is given,
which can be found in Table 3.3. Here, the sub-themes, and observation conclusions are given, providing
an overview of the results that will be discussed. This table is followed by a section for each of the

themes, together with the relevant literature.

3.2. Results

23

Table 3.3: The themes and the list of observations for each sub-theme

Theme

Sub-theme

Observation

Persona

Characteristics

OB 1.1:

NLP Data Scientists are versatile

OB 1.2:

Responsible for working with multiple stakeholders

Goals

OB 1.3:

Model Visualisation & inspection is less important

OB 1.4:

Model tuning & selection keeps being important

OB 1.5:

Building Proof-of-Concepts is an important goal

Desiderata

OB 1.6:

Desiderata consistent with the general data scientist

OB 1.7:

Trust is not a desideratum

Challenges

Persona

OB 2.1:

Staying up to date is difficult

OB 2.2:

Performing an actionable error analysis is challenging

OB 2.3:

Creating reproducible results is challenging

OB 2.4:

Prompting is difficult

Technical

OB 2.5:

Setting up models is difficult

OB 2.6:

Comparing different models is challenging

LLM Utilisation

Utilisation

OB 3.1:

Compared to pre-LLM era

OB 3.2:

Generative use cases

OB 3.3:

Closed and open-source models are used

Factors

OB 3.4:

Cost vs Performance is a trade-off

OB 3.5:

Usability is an important factor

OB 3.6:

Controllability is an important factor

OB 3.7:

Format alignment is important

Perspectives on XAl

View

OB 4.1:

Different Definitions exist

OB 4.2:

Differences between classical ML & LLMs

Potential benefits

OB 4.3:

Understanding model behaviour

OB 4.4:

Better prompt engineering

OB 4.5:

Error Analysis

OB 4.6:

Improving Safety & Trust

OB 4.7:

Quality Assessment

Usage in practice

OB 4.8:

Unawareness as a reason for lack of adaptation

OB 4.9:

Perceived usefulness as a reason for lack of adaptation

OB 4.10: Fitting metrics as a reason for lack of adaptation

Workflow

Steps

OB 5.1:

Individual iterative steps

Evaluation Strategies

OB 5.2:

Performance Metrics

OB 5.3:

Subject Experts

Business practices

OB 5.4:

Company practices

OB 5.5:

Industry Metrics

Technical Stack

OB 5.6:

Used Tools

Workflow desires

OB 5.7:

Tracking experimental results

OB 5.8:

Verifying hypothesis

OB 5.9:

Easy collaboration

3.2. Results 24

3.2.1. Persona

The first topic concerns the characteristics of the target user. These observations will help create a tool
that supports this user’s specific needs. In order to digest further findings, several observations will be
compared with the literature, as discussed in the method section of this chapter.

The following sub-themes are discussed: the characteristics of the NLP data scientist, the goals and
needs of this user, and the questions the user has during his work.

Characteristics & Responsibilities
The first sub-theme concerns the characteristics of the NLP Data Scientist and the responsibilities of
the role.

Literature The literature survey on this topic revealed a significant gap since little research was found
on the characteristics and responsibilities of the NLP Data Scientist. However, in the general Data
Scientist, several contributions have been found. For example, Kim et al. [56] investigated into the
roles and types of Data Scientists within large tech companies. They found four topics involving a Data
Scientist: user engagement, software productivity and quality, domain-specific problems (such as NLP),
and business intelligence. Kim et al. [56] identified the responsibilities of a Data Scientist and observed
a significant difference across teams and domains. The roles included querying the data, preparing
the data, analysing the data and digesting insights. It sometimes included building a data platform or
machine learning solution.

This research focuses on domain-specific problems within Natural Language Processing (NLP), which
creates a new set of characteristics and responsibilities. When considering the roles defined by Tomsett
et al. [122], NLP data Scientists can be described as the 'operator’ of the project, as it often interacts
with the input & output. Additionally, they can be seen as the ’creators’ when they are fine-tuning the
models and processing the outputs.

Observations
Now that we have an understanding of the Data Scientist, we can compare the interview results to it.

Observation 1.1: NLP Data Scientists are versatile Compared to the traditional Data Scientist,
it can be concluded that NLP Data Scientists have a similar range of responsibilities. Participant 6
acknowledged that their role is quite versatile and can include many aspects of a project. They might
include being the data engineer, as mentioned by P4, by setting up the data processing pipeline to
ingest the data, even when their primary responsibility is doing a text classification task. Another task
included in this role is setting up the infrastructure necessary to fine-tune a model or set up a deployment
environment, as mentioned by P6.

Observation 1.2: Responsible for working with multiple stakeholders Various stakeholders are
involved in an NLP project. Understanding the business requirements and creating a solution that fits
the goals of the stakeholders is a significant part of their responsibility, as participants 2 and 4 mention.
However, it could also work the other way around, where the stakeholder is solving a part of the problem
of the Data Scientist. Business requirements often come from clients, who can be from inside or outside
the company and are very important to the NLP Data Scientist. The client will define the problem, the
task, and the business value and might even have a say in the performance metrics. It is difficult for the
data scientist to narrow the scope so that a Proof of Concept (PoC) can be built, which also satisfies the
stakeholders.

Goals

The second sub-theme in this theme is the goals of the NLP Data Scientist. As described in section 2.3,
it is important to understand the persona’s goals before building the Explainability Tool. First, literature
is presented to create the correct background knowledge to contextualise the observations.

Literature One scientific contribution investigating the goals of a Data Scientist is by Mohseni, Zarei,
and Ragan [85]. Two main goals were identified: 1) model visualisation & inspection and 2) model
tuning and selection. In this context, this would be visualising the attention heads, for example. These
will be compared to the insights from the formative interview.

3.2. Results 25

Observations

Observation 1.3: Model Visualisation & inspection is less important Model visualisation and
inspection were not mentioned during the interviews. This is also more challenging when dealing with
LLMs, as they are large, complex and challenging to visualise or inspect. While methods exist for
visualising attention heads, for example, these seem not useful for them. Additionally, the inspection
might be complex when using closed-source models, as no internal mechanisms can be inspected.

Observation 1.4: Model tuning & selection keeps being important In contrast, model tuning
and selection continue to be relevant. LLMs are often compared, primarily when a new model is
published. NLP Data Scientists frequently perform model tweaks, such as fine-tuning, to optimise model
performance for specific tasks or datasets. While the context and application differ, they are similar to
how a traditional data scientist operates.

Observation 1.5: Building Proof-of-Concepts is an important goal Another observation from the
interviews was the goal of building proof of concepts. This was often mentioned as a first step to get to
the first version of the product quickly. The aim of the PoC was to get feedback quickly and see where
improvements could be made. This was often done with a small amount of data and a smaller version
of the model.

Desiderata
As outlined in chapter 2, desiderata for XAl are the expectations, needs and demands combined. This
sub-theme revisits literature, followed by the observations extracted from the interviews.

Literature Langer et al. [63] describes the desiderata for XAl of the developer. These are the following
nine: Accuracy (1), Debugability (2), Effectiveness (3), Efficiency (4), Performance (5), Robustness
(6), Security (7), Transferability (8), Verification (9). These can now be compared to the findings of the
interviews.

Observations

Observation 1.6: Desiderata are consistent with the general data scientist First, all desiderata
remain valid for the NLP Data Scientist, though their importance may differ. In this section, all desiderata
will be placed into the context of the NLP Data Scientist. Additionally, each desideratum will be assessed
based on its importance.

In the context of model capabilities, improving accuracy (1) and assessing performance (5) remain
important to the NLP data scientist. 50% of respondents emphasised improving the accuracy and
performance of several aspects of the solution.This could be prompt engineering to evaluate which
model is best for the specific use case (P1).

Debuggability, while still important, appears to be less so given the focus on refining model performance
using pre-configured libraries and APIls. These pre-configured libraries from the model owner (e.g.
OpenAl) are preferred, as mentioned by Participant 1, who notes that tools like Langchain are helpful
but difficult to debug when an error occurs. Langchain will be further discussed in the workflow theme,
and the challenges will be discussed in more detail in subsection 3.2.2.

Effectiveness (3) is defined in this context as the degree to which they achieve their intended goal. This
is a valid desideratum of the revised persona. Similarly, several respondents highlighted effectiveness
(5) - finding solutions quickly and evaluating results - as still a primary goal for NLP data scientists.
Robustness (6) is not mentioned in the interviews and may be less relevant to them. This may be true
when building a model that interacts directly with users. However, when it is used to improve data
quality or to perform non-generative tasks, it may not be the most relevant. More research should be
done to further confirm or falsify this desideratum.

Security (7) is crucial for them, especially in terms of data security and privacy. When using closed-
source models, the data is often stored at the hosting company. During the interviews, the use of the
model focused on the company’s own data, which should not be stored elsewhere, as Participant 1
mentioned.

A possible solution is for the hosting company to offer a private version of the model hosting, as OpenAl
does, without storing the company’s data.

3.2. Results 26

Transferability (8) in the current context is about whether the LLM can be transferred to other contexts.
This desideratum seems less critical because the solution is often tuned for one task at a time.
Finally, verification is defined as checking that the system does what it is supposed to do. This can be
seen as evaluation, which is an important part of the persona’s role.

Observation 1.7: Trust is not a desideratum Within the list presented by Langer et al. [63], trust is
not mentioned as a concern for the developer. This is in line with the NLP Data Scientist, who is often
focused on performance and less on trust. This was discussed in the interviews. To quote P5: "Trust is
not a big concern for me: as long as they [OpenAl] do not use our data to train new models on”. This
quote refers to trust in the companies behind closed-source models and is consistent with the opinions
of other participants. The contract with OpenAl, which states that the company will not use their data,
creates enough trust in the use of closed-source models. In addition, the low stakes of the projects may
be a reason why trust is not an issue.

3.2.2. Challenges

To ensure we solve the right problem, we need to understand the user’s challenges. This is split into
two sub-themes: the challenges of an NLP Data Scientist and the technical challenges.

Challenges faced by NLP Data Scientist
First, the challenges related to the persona are presented. The relevant literature is presented first,
followed by the observations.

Literature Previous research has explored the challenges faced by the General Data Scientist. For
example, by Kim et al. [56], which identifies six problems faced by the general data scientist:

» Poor data quality

+ Data availability (missing values, delayed or incomplete data)
» Data preparation (putting it all together)

» Scale (it can take a long time to run the batch jobs)

» Machine learning related tasks (e.g. attribute mapping)

» Getting stakeholders on the same page

A number of other studies have been carried out that highlight the need for reproducibility in data science
projects as a challenge. It has been shown that data, packages, documentation and intermediate results
need to be preserved to address this reproducibility issue [80].

In addition, coordination, collaboration & communication are challenges faced by data scientists. Mar-
tinez, Viles, and G. Olaizola [80] divides them into:

1. Team management (collaboration, lack of transparent communication)
2. Project management (timelines, uncertain business goals)

3. Data & Information Management (lack of reproducibility, poor quality data, accumulation of knowl-
edge)

Observations
Now that the literature has been briefly explored, the observations from the interviews are presented
and compared with the literature where appropriate.

Observation 2.1: Staying up to date is difficult A challenge that was often mentioned was staying
up with the latest technology. The field of research on LLMs is developing rapidly, as P2 mentions,
making it difficult to be fully informed. This was also mentioned as a reason for not using XAl, as newer
XAl methods are often left aside despite their potential benefits.

3.2. Results 27

Observation 2.2: Performing an actionable error analysis is challenging In addition, several
participants acknowledged that error analysis is a difficult workflow phase and often consumes a lot of
time. This challenge can be attributed to many factors, including the observation that closed-source
models are often used, which do not provide additional information about how the model arrived at its
output. In addition, scoring metrics for NLP tasks require a lot of work to define. As described earlier,
this could be solved by asking the Subject Matter Expert (SME). While the SMEs can provide insights,
it is not a mathematically defined metric. This also makes it harder to move from erroneous outputs to
actionable insights on what needs to be changed. Diving into where the model went wrong is challenging
and often requires domain knowledge of the specific use case.

Observation 2.3: Creating reproducible results is challenging The challenge of reproducibility
was also confirmed during the formative study. Several factors make reproducibility difficult. One reason
is the structure of a (Jupyter) notebook, which is not a linear document. The non-linearity can make it
difficult to trace the sequences of code execution, which is not a challenge associated with the NLP
data scientist. Secondly, the randomness in the behaviour of the LLM during the experiment creates
additional difficulties in terms of reproducibility. Another reason is the random nature of these models.
The exact different prompts can give different outputs, making it very difficult to reproduce results.
Adjusting the temperature of the model is one way to minimise this.

Observation 2.4: Prompting is difficult Only NLP data scientists face the particular challenge of
prompting. P2 notes how difficult it can be to create the best possible prompt. P4 confirms this by
pointing out how small changes in the input can produce very different outputs. This sensitivity makes
prompt engineering a particularly challenging task. But it can also be challenging because of how
specific the prompt needs to be.

Technical Challenges
During the interviews, several technical difficulties specific to the NLP Data Scientist were mentioned
that complicate their workflow. These are now described.

Observation 2.5: Setting up models is difficult Setting up open source LLMs is difficult as it
requires in-depth knowledge of cloud infrastructure, model architectures, hosting platforms and other
prerequisites. P1 states that while several solutions address this, such as the Huggingface Platform ' ,
it still takes a considerable amount of time to load and configure the model correctly.

Observation 2.6: Comparing different models is challenging It can be difficult to decide objectively
which model is better than the other. There are several reasons for this. Firstly, there are no well-defined
metrics for comparing two text-generated outputs and deciding which is better. P2 confirmed this, noting
that all outputs were correct, but still needed to decide which model performed better.

Further complicating this task, Participant 6 observed that the behaviour of different versions of the
same ChatGPT snapshot was significantly different, making it even more difficult to decide which model
and version to use.

3.2.3. LLM utilisation in industry

The third theme identified is the use of LLMs. To deepen our knowledge on how XAl can be used, it
is important to understand how LLMs are currently being utilised in industry. This is divided into two
sections; 1) what tasks are being solved and 2) what models are being used and what influences this
choice.

LLM Utilisation

Observation 3.1: Compared to pre-LLM era There is a clear impact of Large Language Models
(LLMs). Before these powerful models existed, some NLP data scientists used BERT models or LSTM!s.
However, a few years ago, companies started to explore the latest LLMs, as mentioned by P4. In
addition, while some BERT models are still in use, P3 mentioned that some of these older models are
being replaced by LLMs. As well as replacing models, LLMs are now being used for traditional tasks
such as text summarization, entity extraction and classification.

"https://huggingface.co/

https://huggingface.co/

3.2. Results 28

Observation 3.2: Generative Use Cases In addition to replacing older language models, generative
models have introduced several new NLP tasks, such as chatbots, Retrieval-Augmented Generation
(RAG) and content generation. Despite these new use cases, most of the usage is still coming from
traditional NLP cases. NLP can be used to improve high-quality data, especially in a company that
focuses on it.

Observation 3.3: Closed and open-source models are used It can be observed that the most
popular models currently available are used by the NLP data scientist. Only the newest and well-tested
models are considered, such as Mistral [51], Llama [4], and Phi [1]. On closed source, ChatGPT, GPT-4
[96] & Claude were the most mentioned at the time of these interviews.

Factors for deciding which model to use

As mentioned above, both open-source and closed-source models are used. However, which one is
actually used depends on several factors. This sub-section makes some observations about which
factors are most important.

Observation 3.4: Cost vs Performance is a trade-off One of the most important trade-offs during
the experimentation phase is cost. Experimentation can be costly when using APIs from closed-source
models but usually results in better performance. For the time being, LLMs are being used internally to
improve data quality.

However, there is a specific point at which it is cheaper to host a large open-source model in-house.
Especially when fine-tuning the model, as P5 mentioned: "If the project is very large, with millions of
documents, it might be advantageous to use open source models.”

Observation 3.5: Usability is an important factor Libraries such as those offered by OpenAl and
Anthropic make it very easy to set up a model and start experimenting. These libraries provide instant
access to their state-of-the-art models, making them extremely fast to use. This is in contrast to open
source models, where the user has to build an infrastructure themselves. While there are platforms that
make this a minimal effort, it still requires more engineering knowledge than closed-source libraries.

Observation 3.6: Controllability is an important factor A disadvantage pointed out by one of
the participants was the opacity of updates and versions of closed-source models. These LLMs are
constantly updated, but the changes made are not fully disclosed. P6 mentioned: "[ChatGPT] is getting
lazy over time” and also noticed a big difference between the performance of different snapshots. So it
could be that the performance was good and changed significantly after an update. This is something
that cannot be controlled.

In relation to opacity, it has been noted that some closed-source models use pre-processing methods to
guide the model and apply post-processing to the output. While this generally produces a better output,
it is another part that is opaque and uncontrollable.

Observation 3.7: Format alignment is important One advantage of this post-processing is that the
output is formatted correctly. Currently, models like ChatGPT and GPT-4 easily output JSON!, which is
only sometimes the case for some open-source models.

All the advantages and disadvantages play, to a certain extent, a role in the decision of the NLP Data
Scientist. This can be summarised into a table, as is presented in Table 3.4

3.2.4. Perspectives on XAl

To further develop our understanding of NLP data scientists, this topic is related to perspectives on
XAl It is relevant to examine their current perspectives within the field. This section discusses these
perspectives in terms of their current view and the potential benefits identified.

3.2. Results 29

Table 3.4: Advantages and disadvantages for closed & open-source LLMs

Advantages Disadvantages

No control over updates and changes
Often better performance

Closed Source Limited customisation
Easy to setup . .
No ability to audit the performance

Have explainability Difficult to set up
Open Source More transparency Knowledge about infrastructure is needed
More customisation Often more latency

Practitioner's current view of Al

The first sub-theme describes the participant’s current view of the explainability of Al. Here, it was found
that most participants had different definitions of explainability. Secondly, it was interesting to note
a difference in the perspective of explainability in traditional Machine Learning (ML) and LLMs. This
sub-theme is based on the formative interviews only.

Observation 4.1: Different definitions exist When participants were asked about explainability,
some mentioned opaque model architectures and the inability to edit system prompts. They also noted
that closed-source models do not disclose the data on which they were trained. These points are more
related to transparency and less to explainability. However, more experienced staff were able to identify
them correctly. In this regard, P6 mentioned that "Experienced data scientists know how these models
were built. And as a by-product, they know how they will behave.”

Observation 4.2: Differences between classical ML & LLMs One interesting observation that can
be made from this is the significant difference in the way LLMs view XAl as opposed to traditional
Al. In the context of LLMs, they seem to accept the opaque nature of these models, whereas in the
conventional domain, they found XAl helpful. Participant 2 mentioned that feature importance was used
to present the model & results to stakeholders but has never used XAl when using LLMs. SHAP values
were also used in the traditional ML domain. The use of XAl correlated with experience, with the more
experienced data scientists having used more XAl in the past. However, they never used it in their
development of LLM-based solutions.

Potential benefits of having XAI

While most participants indicated that they did not see a direct use for explanations, they did recognise
potential benefits when asked about the hypothetical scenario of having explainable LLMs. One
participant emphasised that explanations should be implemented appropriately in order to be helpful,
which is in line with the focus of this research. This paper first reviews recent research in this area and
then discusses the potential benefits that emerged from the interviews.

Literature Previous studies have investigated why an NLP data scientist seeks interpretability. A
study by Hohman et al. [45] identified four reasons: 1) data understanding, 2) hypothesis generation, 3)
model building/improvement & 4) communication. One additional reason is given by Molnar [86], stating
that explanations can help understand the errors, as they often focus on the abnormal.

More specifically for Large Language Models, Sun et al. [115] suggests that data scientists could use
explainability to improve their prompts, have a better understanding of which prompts can and cannot
produce certain outputs, and how to produce more desirable outputs. The potential benefits have also
been recently explored by Wu et al. [132], who identify seven reasons why explainability can help. The
seven strategies are

1. LLM diagnosis using attribution methods: Feature attribution methods could help detect model
errors and serve as indicators of hallucinations.

2. Enhancement through model component interpretation: The self-attention and feed-forward
layers could be used to better understand different parts of the model.

3.2. Results 30

3. Debugging with pattern-based explanation: This is defined as methods that aim to trace
responses generated by the LLM back to specific training examples. This could be useful for
increasing confidence or debugging errors.

4. Credibility and alignment: Several explainability methods extract patterns in the model that
eliminate potential weaknesses in the model. This could be used to assess security. Furthermore,
privacy could be improved by preventing the model from storing sensitive data. Finally, by looking
at the attention heads, it may be possible to uncover biases in the model, for example because
some of them inherit stereotypes.

5. Explainable prompts: The use of Chain-of-Thought (CoT) prompts can reduce errors in reasoning
and provide adjustable interim steps.

6. Knowledge-based prompting: The use of RAG can also improve hallucination.

7. Data Augmentation Training: When data augmentation is used, explanations can be used to
delineate desired model behaviours or to identify existing deficiencies.

For most of the techniques mentioned above, it must be noted that while they may provide an explanation,
it can still be very difficult to make that explanation understandable and interpretable to humans. In
addition, some of these methods still lack high fidelity, making them misleading at times [132].

The potential benefits are also discussed in the LLM Explainability survey by Luo and Specia [77]. This
states that explainability can be used for the following purposes:

* Model editing: Changing the knowledge or behaviour of the LLM, such as locate-then-edit [81].

+ Enhance model capability: By understanding the underlying mechanisms of the model, con-
clusions can be drawn to improve the model. This can improve the use of long text and help to
improve the performance of ICL.

+ Explainable generation: The use of explainability can also help to reduce hallucination during
inference and ethical bias during training.

Observations

This can now be compared with the findings of the formative study. Explainability was cited as an
advantage over opaque, closed-source models. They acknowledge that it could be useful to them
if implemented and used correctly. Several even recognised the potential for customers and other
stakeholders. This recognises the potential of XAl in the area of LLM. When asked what the benefits of
explainability would be, the following four reasons were given.

Observation 4.3: Understanding model behaviour First it was mentioned that it could help to better
understand the model’s behaviour. Participant 5 wonders why the model gives a certain answer. In
addition, P1 & P3 also questioned the model’s behaviour. It could be useful to understand better how
the model works in order to use it better or to improve it.

Observation 4.4: Better prompt design Two participants mentioned better prompt engineering as
a potential benefit, especially if it can be used to see which parts are most important or to correlate
changes from input to output. This is in line with strategies one and five from the list above from Wu
et al. [132].

Observation 4.5: Fault Analysis Regarding the scenario in which it can be useful, it has been
mentioned that failure analysis is a potential stage. At this stage, it can be challenging to gain actionable
insights, as discussed in the theme on challenges in subsection 3.2.2. P3 stated that in this case,
understanding the underlying reasoning would help to investigate why the failure occurs.

Observation 4.6: Improving security & trust Another benefit described was improving the security
and trust of the models. This could reduce bias, as mentioned by P3, or try to detect hallucinations.
This observation is in line with point 4 of the list of usable XAl for LLMs mentioned above.

3.2. Results 31

Observation 4.7: Quality assessment The final potential benefit of XAl is to assist in the quality
assessment of the model. This involves assessing the capabilities of the model. As discussed in the
background, LLMs may have emergent capabilities that are difficult to find and evaluate. Explainability
should help the NLP data scientist to identify the strengths and weaknesses of the model. This will help
to ensure that it is used for the right applications and performs as expected for unseen data points.

XAlused with LLMs in practice
This sub-theme describes the use of explainability techniques in the industry. Firstly, the literature on
this topic will be presented, and then the results of the formative assessment will be discussed.

Literature A study by Kaur et al. [54] investigated how interpretability tools are used by data scientists
implementing machine learning solutions. Several conclusions were drawn from this study. First, they
showed that there is a mismatch between the interpretability tools that are intended to be used and the
data scientists, resulting in over- or under-use of the tool. Second, it showed that participants underused
the tool because they were not satisfied with its usefulness. Thirdly, it was found that the visualisations
can be misleading and confusing and do not follow usability guidelines. Finally, it was concluded that
XAl helped them to assess the readiness of a solution.

Observations

Although the participants recognised the potential benefits of XAl, the interviews revealed that explain-
ability was not being used in their current work. Several reasons were given for this, which will now be
discussed in more detail.

Observation 4.8: Unawareness as a reason for lack of adaptation A contributing factor to the lack
of adaptation of explainability techniques may be the lack of awareness of data scientists. It was noted
that participants were not fully aware of all current techniques, which is understandable given the fast
pace of research. P2 mentioned that it is difficult to keep up to date with techniques in this area.

Observation 4.9: Perceived usefulness as a reason for lack of adaptation Another contributing
factor may be the lack of valuable explanations. Several respondents commented that they did not see
a good use case for explainable LLMs. This does not mean that they did not see the potential, but they
did say that most of the current challenges would not be fully solved by explanations.

Observation 4.10: Fitting metrics as a reason for lack of adaptation In addition to unawareness
and usefulness, explainability was also mentioned as a secondary metric. Participants mentioned
only looking at performance metrics such as F1 or precision, or business metrics such as cost or
Customer Satisfaction (CSAT). The interpretability or explainability of the model is a secondary concern,
especially when the stakes are not very high. As one participant explains: "There is no real demand
from stakeholders; everyone seems to accept that they are black boxes, complex and opaque, as long
as the performance is good”.

3.2.5. Workflow

This section examines the workflow of the NLP Data Scientist. This will be done by providing an
overview of the different steps involved in the workflow and investigating evaluation strategies and
industry requirements. As a result, a tool can be built that is more in line with this workflow and the tools
used in this role. Firstly, the literature is reviewed, and then all the observations are given, after which
a diagram is shown to give a complete overview. Finally, an overview of the tools currently in use is
discussed to give an insight into the tools used in an industrial setting.

Steps
To further understand the workflow, it is necessary to examine the individual steps performed by a data
scientist. The literature will also complement this section and is presented first.

3.2. Results 32

Literature The steps are divided by Wang et al. [127] into three distinct phases. The first phase is
the preparation step, which includes data acquisition, cleaning, labelling and feature engineering. The
second phase is modelling, which includes a model selection step, a hyperparameter optimisation step,
an ensembling step and a model validation step. The final step is deployment, which involves deploying
the model, monitoring and finally improving the model if necessary. It is visualised in Figure 3.1.

Preparation Modeling
Data Acquisition Data Clea.nlng & Fgatur§] J Model Selection Hypetpa_ran?neter
Labeling Engineering I { Optimization
A
Deployment
r
Model Ruqtlme Model |= (Model Validation Ensembling
Improvement Monitoring Deployment I L

Figure 3.1: Workflow of the Data Scientist as presented by Wang et al. [127]

Observations

Observation 5.1: Individual iterative steps The steps involved in an NLP data science project can
be divided into team collaboration and individual efforts. The team, which typically includes several
data scientists, mainly revolves around the groundwork of the project. These steps include considering
different solutions, evaluating metrics, and setting up a common project structure. The steps are then
executed, often iteratively, to refine the performance.

When compared to the steps described by Wang et al. [127] and shown in Figure 3.1, it can be concluded
that they are similar when put in the right context. One notable difference is feature engineering, which
is a complex task for standard Data Science tasks but is straightforward for NLP tasks because the
tokenisers and embeddings are provided with the model.

There is also a similarity in the choice of models. In NLP tasks, different (open/closed-source) models
are tested, configured and possibly trained, similar to standard Data Scientists.

The use of LLMs is at a very early stage in the company. Not many NLP Data Scientist solutions are
in production yet. Therefore, this part has been left out of the visualisation. The final workflow of a
development cycle is shown in Figure 3.2, created from the formative interviews.

Use finetuned model Set Hyper parameter Prompt Engineering
Utilise model
Finetuned model
Choose LM
Closed/open source
Custom Finetuning
Evaluation
New prompts
Collect labeled Choose finetune 9
; Finetune
dataset option

Change Parameters
Unsatisfactory results
Another Finetune option

Choose other model Error Analysis

Figure 3.2: Workflow of the NLP Data Scientist

3.2. Results 33

Evaluation

During the interviews, the evaluation strategies used by data scientists were discussed. Evaluating
outputs can be difficult, mainly because it is often impossible to quantify what a good answer entails or
which is better. Here are some observations on evaluation metrics & strategies.

Observation 5.2: Performance metrics Performance metrics are highly dependent on the task at
hand. When the problem is classification, metrics such as precision, recall and F1 scores are used.
However, with the latest NLP problems, such as generative tasks, it is more difficult to use these
performance metrics. BLEU or ROUGE are used in these tasks, but participants acknowledged the
challenge of defining a good performance measure.

Observation 5.3: Subject Experts In practice, performance is assessed using several metrics. This
is partly done with the help of Subject Matter Experts (SMEs) who are (as the name suggests) experts
in the specific field of the project. These SMEs give feedback to the Data Scientist on the quality and
what parts of the solution can be improved.

Business practices

Observation 5.4: Company practices ltis interesting to have a high-level overview of the data process
at Elsevier. Within the company, several phases are defined: the design phase, the experimentation
and development phase, the productionisation phase and the maintenance & monitoring phase.

For each of these phases, the developer is asked specific questions. These include questions about
the decisions made in the project and whether these decisions are responsible and well-considered.
For example, data scientists might be asked if they are considering using interpretable Al or explaining
the results. It is interesting to note that from a business perspective, there is an incentive to think about
the explainability of the solution.

Observation 5.5: Industry metrics In industry, projects are initiated to improve business operations
in various ways. A business value needs to be defined within the project. Therefore, much weight
is given to what the stakeholders think is important, and the data scientist needs to understand the
business problem as part of the early stages of the project. The financial aspects of a project are also
related. It can take time to create a cost-effective solution.

Technical Stack

The fourth sub-theme identified during the analysis is the technical stack. It is important to understand
what tools the NLP Data Scientist uses in order to create a tool that will work in concert with the other
tools.

Observation 5.6: Tools used Several tools were mentioned in the interviews. As P6 also pointed
out, all users use different tools, so it is not set in stone what to use when. P6 also pointed out that
data scientists can often use any tool they want. However, some tools were mentioned several times,
making them more likely than others.

Several tools were used to load the LLM. For the closed-source models, most participants liked to use
the libraries provided by the company, such as OpenAl & Anthropic. Huggingface, a popular platform
for loading and publishing open-source models, was used for the open-source model.

For experimentation, Jupyter notebooks were often used locally or in AWS Sagemaker. These are
popular text block-based tools for exploratory data analysis.

Finally, other tools mentioned were MLFlow & Langchain. These are tools that help with querying
and building products around LLMs. MLFlow was often used to compare prompts and parameters,
which were logged and stored in a database. Langchain was most often used to create RAG-based
applications or to chain prompts.

Workflow desires
The final sub-theme relating to working practices is a set of additional wishes within a project. Several
observations were made about the desire for a tool within a project.

3.3. Conclusions 34

Observation 5.7: Tracking experimental results We can conclude that they want their experiments
to be tracked. Tools like MLFlow are used to track the experiments and give a good overview of the
different prompts and outputs. These are very useful for debugging and comparing different solutions
and models.

Observation 5.8: Verifying Hypotheses Most NLP data scientists start with a few hypotheses. These
formulate different solutions to the problem. If the hypothesis is wrong, debugging tools can be used to
understand what went wrong. Therefore, a tool should ideally present these insights.

Observation 5.9: Easy collaboration The final observation is the desire for easy collaboration. There
is a lot of collaboration between people, sharing approaches and results. This could be other data
scientists, but also other staff and managers. This part of the workflow is important to remember when
developing a tool, not specifically for explainability.

3.3. Conclusions

Several conclusions can be drawn from this formative study. First, the NLP Data Scientist has several
use cases where they now use LLMs for classic NLP tasks. In these tasks, they have difficulties with
error analysis, prompting and uncontrolled output. There are several factors that determine which model
the NLP data scientist uses. Opacity is one of them, but more important is the performance and usability
of the model. Because the closed-source models are easily accessible through an API or Python library,
this is often the preferred model.

XAl is considered useful for prompt engineering, model evaluation, and quality assessment. However,
no explainability methods are currently used. This is due to low business incentives, uncertainty about
the usefulness of the explainability method, or a lack of awareness of the potential methods. The lack
of awareness is understandable because of the fast pace of research in this area.

For a tool to be useful, it should work with the Huggingface platform and have a similar workflow
to MLFlow. Collaboration is often used, so the tool should support this. Lastly, it should be able to
reproduce the results, as this is one of the challenges.

Development

This section describes the tool’'s development process. This is done by first creating the requirements,
which are presented in section 4.1. These explainability and tool requirements can be used to create
a design, as discussed in section 4.2, followed by a Proof of Concept (PoC) that was developed
(section 4.3) and used for evaluation. The evaluation of the tool is discussed in chapter 5.

4.1. Requirements

This section presents the requirements derived from the observations. First, the requirements’ definition
is explained, followed by the final requirements.

Method

When defining software requirements, a common distinction is made between functional and non-
functional requirements. Chung et al. [21] defines functional requirements as a function that the software
(component) must be able to perform. On the other hand, non-functional requirements describe how
the software will do that. This can include performance requirements, how adaptable the software is, or
the usability of the system. High quality requirements have been created using the standards described
by Mall [79]. This standard states that requirements must be complete, consistent, specific, extensible
and traceable. In this study, it has been decided to create a separate section for the XAl requirements,
as this is the basis for this research. This will be a mapping between the observations and the available
explainability techniques, supplemented with relevant literature. These explainability requirements will
be described first, followed by the functional and non-functional requirements.

These requirements will be used to design the tool, and its implementation can then be used to evaluate
it. It should be noted that it is not feasible to assess all requirements properly. However, they will still be
defined as they are derived from the observations.

4.1.1. Explainability Requirements

Traditionally, explainability is used as a non-functional requirement [57, 16]. However, as the research
focuses on using the best XAl techniques currently available, it is presented separately. This is
done using the observations and supplementary literature. Several papers have discussed desirable
properties, including Ras, Gerven, and Haselager [102], Liao et al. [72], and Hohman et al. [45]. Liao
et al. [72] evaluates the metrics based on context and user, which for this research are chosen to be
Model Auditing, Overall and Capability Assessment.

It should be noted that each accountability requirement can potentially create tensions with others. An ML
engineer might find one property more important than a layperson [72]. Then, a trade-off should be made
between the two properties [18]. The properties are now listed as Explainability Requirements (XRs).

XR 1: High Fidelity Fidelity is the degree to which the explanation matches the input-output mapping
of the model. It is a synonym for fidelity, and it is argued that it is the most important property of an
explanation because it cannot generate valid explanations without being faithful. This is confirmed by
Liao et al. [72], which shows that fidelity is most important for model improvement. Finally, this is also
shown by Sokol and Flach [112], which also shows the importance from the explainee’s point of view.

35

4.1. Requirements 36

XR 2: High Interpretability The extent to which the user can actually gain insight into actionable
results is sometimes, therefore, called actionability [112]. It has been divided into two sub-properties: 1)
high clarity, meaning that the resulting explanation should be unambiguous, and 2) high parsimony,
meaning that the explanation is simple, selective and concise [83, 112]. Note that optimal parsimony
depends on the user’s skills.

XR 3: high explanatory power For the method to be effective, it should be able to explain many
different phenomena. This can also be expressed in terms of how many questions it answers for the
user [102].

XR 4: Interactivity Interactivity is also an important feature. As shown in Hohman et al. [45], users
could not fully comprehend static explanations but were able to understand them better when they could
interact with the explanations. This is also supported by Miller [83] and [112].

XR 5: Contextfullness Ensuring explainability can also provide an understanding of the limitations of
one’s own explanation. This will ensure that the user will better understand the conditions under which
the explanation is true [112].

4.1.2. Functional Requirements
This section presents the Functional Requirements (FRs) of the user-centric tool.

FR 1: Load an open-source LLM As mentioned earlier, open source models are required to be able
to apply explainability methods. Based on observations 3.3 and 5.6 regarding the models and tools
used, we can conclude that these models are primarily hosted and loaded via Huggingface. Therefore,
this tool should be able to load models from the Huggingface platform.

FR 2: Open to model configuration When the loaded models are used, practitioners configure them
in their own way. Therefore, the configurations must be configurable by the user. This is in line with
observation 5.1, which presents the individual steps. Here, users mentioned that they configure the
model according to their needs for each specific use case. Ensuring that this is possible also helps to
improve the usability of the model, which is a factor why users tend to use closed source models, as
discussed in observation 3.5.

FR 3: Scalable to large models If the infrastructure allows it (e.g. large GPUs), it should be possible
to use large models in this tool. This is because these are the models that are actually used in an
industrial environment. This is also in line with company practices (observation 5.4) and their industry
metrics (observation 5.5).

FR 4: Input-Output analysis It should be possible to see the input-output pairs of the model. Users
may have different hypotheses that they would like to test and see how the model responds. This is one
of the most important goals of the NLP Data Scientist, which this tool should support.

FR 5: Compare outputs Next to investigating input-output combinations, it should be possible to
compare different input and output pairs to get a better understanding of which inputs work and which
do not. This can help with the error analysis, as discussed in observation 2.2. Additionally, having
a different model and comparing them is observed in 2.6 as a difficult task, therefore comparing the
outputs of two models should also be possible.

FR 6: Define own metrics As discussed in observation 5.5, all tasks and projects have their own set
of metrics to evaluate the model. Therefore, it should be possible to let the user define its own metrics.
This can be done by returning the model’s output, which the user can then create their own metrics on.

4.1. Requirements 37

FR 7: Result tracking Another requirement discussed in observation 5.7 relates to tracking results.
By tracking results, the user can go back later and see their own results. This helps with the challenge
of reproducibility because you can show the different experiments that were done after the fact. This is
in line with the reproducibility challenge discussed in observation 2.2.

FR 8: Different organisational levels for results From observation 5.9 regarding the ease of
collaboration, it would be beneficial to have different organisational levels to organise the different
outcomes. This could be a project where each user has their own project. This would make it easier to
see only the user’s result, but still share it with colleagues.

FR 9: Presentable data As mentioned in 5.3, the NLP Data Scientist often works with SMEs and
other stakeholders such as the Responsible Al Expect. Therefore, the data generated by the model and
the explanations should also be presentable to these external parties. This means that it should also be
usable by other stakeholders who may want to investigate the results.

41.3. Non-Functional Requirements
This section presents the Non-Functional Requirement (NFR) of the tool. These are based on observa-
tions and software engineering principles.

NFR 1: Extensibility In order to be fully usable, the tool must be extensible in several ways. First, as
this tool could be used to replace older models, it is useful to be able to compare different models, as
stated in observation 3.1. It should therefore be possible to add other (older) models and even other
model architectures. In addition, new XAls may be introduced in the future, which may be better than
those currently decided. Therefore, the tool should be able to add additional explainability techniques
as needed. Finally, in terms of extensibility, the front end of the tool should be set up correctly to handle
different visualisations. Practitioners may need other visualisations, which they should be able to add
themselves.

NFR 2: Easy to learn Learning how to use a new tool can impose a cognitive load on the user. This
should be avoided by making the tool as easy to learn as possible. This means intuitive command
names, consistency across the platform, and a component-based interface [79].

NFR 3: Low costs According to observation 2.4 on cost vs. performance, the tool should be as cheap
as possible. This is also in line with observation 5.5 on industry metrics. This means using open-source
libraries and minimising resources such as cloud computing or databases.

NFR 4: Performance In line with observation 3.4 on cost versus performance, this tool should not
have a negative impact on performance metrics.

NFR 5: Speed It is required that the tool does not hinder development too much. It should be
recognised that calculating these explanations can be computationally slow, but it should not make de-
velopment too inefficient. This is discussed in observation 4.5 on industry metrics and, more importantly,
a user desideratum as discussed in 1.6.

NFR 6: Improved Documentation Well-written resources are an important requirement. This will
help the data scientist in several ways. First, it can help them understand what kind of techniques
are being implemented and how to interpret the explanations. User guides and online help are also
recognised by Mall [79] as useful.

Secondly, observation 2.1 noted that it is difficult to keep up to date with the latest technology. Having
resources will also help to give them information about the current state and where to find the latest
information. This could also help them with ignorance (observation 4.8).

4.2. Design 38

NFR 7: Easy installation As it should fit into the user’s workflow, it is important that it is compatible
with Python. It should also be easy to install and use. As the most commonly used tool according to
observation 5.6 is Jupyter Notebooks, it would make the most sense to implement it there. Additionally,
Pypi could be used to publish the package.

NFR 8: Visibility of functionalities and state Another non-functional requirement shown by Tomsett
et al. [122] is the visibility of all functionalities. This study showed that this is useful for the user and
gives an overview of what the system can do. In addition, Tomsett et al. [122] also mentioned that the
user should always be informed about the state of the system. This could be idle, loading, ready, etc
and should be visible from within the tool.

Conclusion

This section gave an overview of the system’s requirements. It first presented the explanations that
should be implemented, after which the tool requirements were described. Together, they give a good
overview of what the tool should be able to do to satisfy the needs of the NLP Data Scientist. These
requirements can now be used to create a useful to support the target user.

4.2. Design

A design will guide the implementation phase of this study. Two designs have been created: an
architectural design and a User Interface (Ul) design. The architecture gives an insight into the inner
workings of the tool and how the different components interact. The Ul is a visual representation of what
the front end of the tool will look like. The design is based on several sources. First, the requirements
were used as the main starting point. Then, various design principles presented in the literature were
used, which are discussed in this chapter. Finally, other implementations were used as a reference
point for what was possible and what was not. Together, these sources gave a complete picture of what
the tool should look like and what components should be included.

Regarding the tool’s design, the first and most important topic concerns the explanations. The decisions
regarding the techniques are presented together with their visualisation design. Then, the architectural
system of the components is described. Finally, the Ul views and components are presented.

4.2.1. Explainability Techniques

There are many different Explainability Techniques (XTs) and implementations, so a selection is made
based on requirements. The considerations are described first, and then the final three techniques are
presented.

Considerations

Several explanation techniques are potentially helpful to support the needs of the NLP user. Several
decisions could be made based on the formative study and the requirements.

Firstly, the visualisation of attention heads could be considered, but is not chosen at this time. This is
because there is a lot of debate about the fidelity of attention heads [136, 12]. Some argue that raw
attention does not identify the most important features for prediction [108, 50] or during code generation
[60]. Others say that attention mechanisms do not contribute as much to prediction as thought [84].
Since fidelity is one of the primary desired properties according to XR 1, these techniques are the most
appropriate. In addition, according to observation 1.3, visualisation of the model is less important to the
NLP data scientist. Therefore, it was decided not to include the visualisation of the attention mechanism.
The fidelity is also too low for immediate explanations like Chain-of-Thought (CoT). Experiments show
that CoT reasoning can contradict the output of the model, making it unfaithful. This was shown by
Bubeck et al. [14] and Wu et al. [132]. However, they concluded that performance was still improved. Itis
therefore recommended that data scientists keep this method in mind, even though it is not implemented
in this tool.

Finally, it should be noted that most data scientists in the evaluation phase examine data at a local
level, so the explanations should also work at a local level. As XR 2 states, explanations should also be
interpretable. Global explanations might be difficult to interpret and, therefore, not the most appropriate
technique.

4.2. Design 39

Final Explainability Techniques

Based on the above considerations, three techniques have been selected for this tool. The techniques
are visualisation of uncertainty, attribution of features at the token level & contrastive explanations. They
will now be described in more detail, after which the visualisations of these techniques will be presented.

XT 1: Model uncertainty Displaying the confidence of the model is the first XT. It will highlight parts
of the output where the model was uncertain, or give a general percentage of certainty. This is also
recognised by Cirqueira, Helfert, and Bezbradica [22], which notes that uncertainty can highlight the
limitations of the model. Furthermore, understanding the sources of uncertainty can provide insight into
biases and hallucinations in the model and will provide insight into the capabilities and limitations of the
model. This was also explored by Sun et al. [115], who concluded that uncertainty was useful, but that
uncertainty alone was not sufficient to satisfy their need for explanatory power. It should be noted that
there are concerns about the interpretability of uncertainty as it may not match people’s intuition about
what it means for a model to be uncertain [70].

Given XT 1, the uncertainty of the model should be visualised. This could be visualised by highlighting
tokens and colouring them according to uncertainty. To make this interpretable, certainty is divided into
three categories: High, medium, and low uncertainty, which are green, orange, and red, respectively. It
is left to the user to define their thresholds and ranges, giving them more flexibility based on the model
and use case. An example is shown in Figure 4.1, as demonstrated in a Huggingface Space .

4 Highlighted generation

p>=10% p>=1% p<1%

The cafeteriahad 23-20= 9 apples. They bought 9 + 6 = 13 apples. Therefore, the cafeteriahas9+13= 27 apples. T

herefore, the answer is 27.</s>
(a) Certainty Highlighting

Certainty Color Thresholds

High Certainty Threshold 90%
Medium Certainty Threshold 50% — 90%
Low Certainty Threshold 50%

(b) Configuring the different thresholds

Figure 4.1: Displaying Uncertainty

XT 2: Token-level Feature Importance The second technique is token level feature importance,
which highlights which tokens contributed positively and negatively to the predicted token. It can be
interpreted as where the model looked and which parts of the prompt contributed most to the predicted
token. This technique was chosen to help the NLP data scientists improve their prompts, which was a
challenge as described in observation 2.4

Based on XR 2, we need a way to visualise the feature importance of each token. This will allow us to
answer how much each token input contributed to the output produced. The visualisation of feature
importance is often done by using a saliency map over the different tokens. An example is shown in
Figure 4.2.

'Source: https://huggingface.co/spaces/joaogante/color-coded-text-generation

https://huggingface.co/spaces/joaogante/color-coded-text-generation

4.2. Design 40

airport is located in the city of London

Figure 4.2: Feature Attribution (by Ecco Alammar [6])

Since token importance is calculated for each generated token individually, there should be a way
to interact with the tokens to update the highlighting. Only then will it be easier to interpret, as it is
now more interactive which align with the requirements. This will be done by updating the colouring
depending on which token the mouse is hovering over. In addition, clicking on a token will freeze the
highlighting, making it easier to focus once an observation has been made.

XT 3: Contrastive Explanations The last required explanation should answer the question "Why not
Y instead of X?”, as this was mentioned as part of the error analysis in observation 2.2. This can be
answered with so-called contrastive explanations. Although this has a lower explanatory power (it only
answers one question), it is a question that was observed several times during the formative study. It
has also been shown by [134] that this is a useful explanatory style and an important question to ask.
Therefore, this explanation technique was chosen for implementation.

For XR 3, a similar visualisation can be used as for the feature importance. Figure 4.3 shows what the
contrastive explanations could look like. Here you have to give an additional word and it will calculate the
tokens that reflect why it did not produce the alternative token. In Figure 4.3, 1 is the feature attribution
and 2 is the contrastive explanations.

Input: Can you stop the dog from

Output: barking

1. Why did the model predict ‘“barking”?
Can you stop the dog [

2. Why did the model predict “barking” instead of “‘crying”?
Can you stop the dog from

Figure 4.3: Contrastive explanations (from interpret-lm [134])

4.2.2. Architectural Design

The next section presents the tool’s architectural design. This design is similar to [88], but then more
specific to LLMs. There are two main components. The Python package should be included in its
LLM development, often in a Jupyter Notebook environment. The second component is a Application
Programming Interface (API) responsible for storing and retrieving the model’s logs. This also includes
a frontend that can load the logs and provide more insight into the model and its output. An overview is
given in Figure 4.4. After that, each component is described individually.

The system architecture takes into account NFR 1 (extensibility) and NFR 7 (industry practices). By
creating a modular system, it is easier to extend with new functionalities and it is easier to comply with
industry practices, thus fulfilling these two Non-Functional Requirements (NFRs).

4.2.3. Component 1. Python Package

The Python package should have the following features. First, the package should be able to load Hug-
gingface models as described by FR 1. This is achieved by creating a wrapper around the Transformer
package. This will also make it possible to add custom configurations and scaling options, as described
by FR 2 & 3. The Python package is responsible for calculating the explanations. This should be done
in a standardised fashion. In addition, the models should be used in the Python environment, using
user-defined metrics, as presented in FR 6. When the model is used, the output should be logged and
sent to the API to ensure that it can be retrieved and viewed later (FR 7).

4.2. Design 41

Jupyter Notebook ul
Python Package API
Explainability Techniques Database

Figure 4.4: Designed architecture

Finally, the Python package should be installable, making it easy to set up, as stated in FR 7. This could
be done by publishing it to a package manager and making it fully open source.

4.2.4. Component 2: Web application

The web application will have two separate sub-components. Firstly an APl and secondly a frontend.
The API will act as a communicator between the Python package, the database and the frontend. The
Python package sends the logs to the API, which should store them in a database that satisfies functional
requirement 7. The API is also responsible for retrieving the logs to send to the Python package and
the web application frontend.

The Ul is responsible for interaction with the explanations, which satisfies functional requirement four
regarding input/output analysis. It should have an overview of all the experiments that have been
explored and provide the appropriate information about the experiment. In addition, the Ul should
visualise the explanations and provide the possibility to interact with them. The visual design of the Ul
will now be discussed.

Ul design

The User Interface (Ul), also called the frontend, should be able to display the runs and the details of
the explanations. It has been decided to use a conventional layout that is easily recognisable. This
means a navigation bar at the top of the Ul with clear titles and a clickable tool title that takes you to
the home page, which should help for NFR 2, meaning it should be easy to learn. In addition, the runs
are presented as a table, which gives additional recognition as this is similar to other tools such as MLflow.

As part of the non-functional requirements, it was desired to visualise all the functionalities of the tool
(NFR 8). This is done using Direct Manipulation Interfaces, i.e., icons, objects, and widgets such as
buttons [79]. This is done for all actions as well as the Compare button. This requirement also states
that the state of the system should be visible. As NFR 8 also specifies, the functionalities and states
of the system should be visible. Two types of states should be visible: 1) whether it is connected to
the APl and whether it is loading or idle, and 2) whether it is connected to the backend. The footer will
display the state of the API, giving information about whether it is connected or not. A loading spinner
should be used for the components that take longer to load. The final widgets, states and icons can be
found in the implementation section (4.3).

4.3. Implementation Details HELMET 42

The final design decision made is the use of projects. Projects will be a collection of runs, making it
easier to find the results for each user and project. This will help to organise the different runs and
experiments as defined in FR 8.

A total of six distinct pages have been developed. The visual design of these views is shown in Figure 4.5

(a) Home Page The home page, the first page the user sees. Links to all other pages are displayed
here.

(b) Projects page Where the various existing projects are displayed and where a new project can be
created. (FR 8)

(c) All Runs A list of runs within a specific project in a presentable format (FR 9)

(d) Detailed view The page where explanations are displayed and the user can interact with them. It
displays all the designs presented in the previous section.

(e) A Comparison View The page where multiple runs can be compared in a side-by-side view,
satisfying FR 5.

(f) Resources page The page where the user can read more information about the implemented
XAl techniques, satisfying FR 6 on improved documentation of XAl techniques.

4.3. Implementation Details HELMET

This section introduces the implementation, which is called Human-Evaluated large Language Model
Explainability Tool (HELMET). There are four separate entities in the final implementation, a Python
package, a API, a Ul and a database.

The Python package and the Ul are able to communicate with the API, which is a NodeJS server that is
able to save, load, update and delete runs. In addition, projects can be created from both the Ul and
the code. The API has access to the database, which is a non-relational database in MongoDB. More
information on this will be provided later. The final folder structure can be found in the Appendix C. In
addition, some features of the HELMET Python package and frontend are highlighted by a series of code
examples. The implemented methods and libraries used are shown in Figure 4.6.

The implementation is structured as a monolith repository, were the Python package and web application
are separated. The folder structure is given in section C.1

4.3.1. Python Package

The most important part of the implementation is the Python package. This is a wrapper around the
transformers library that is used to load the models. This is where the explainability techniques are
implemented, so these are discussed first. Other details will then be presented.

Implementation Explainability Techniques
For each of the three explainability techniques presented in the design, the implementation details are
now given.

Uncertainty The uncertainty is calculated from the transition scores using the compute_transition_scores
function in Huggingface. These are the log probabilities of this token conditioned on the log softmax of

the previously generated token, followed by a normalisation step. This is a convenient way to quickly

get the scores of the selected tokens at generation time, as mentioned in the library documentation.
This can be interpreted as the confidence in the model at each generation step. This method is always
calculated during the generation of the output, as this is the only time when this can be done efficiently
without saving all the logits.

Token level feature attribution It was decided to use the Input x Gradient Feature Attribution tech-
nique, originally proposed by Sundararajan, Taly, and Yan [116], as this was the most computationally
feasible. This is done by calculating the gradients and comparing them to a baseline to see which
tokens are different [109].

4.3. Implementation Details HELMET 43

(a) Home Page (b) Projects Page

(c) Runs Overview (d) Details single run

(e) Comparison view (f) Resources page

Figure 4.5: The six views designed for the Ul

B W N =

o

4.3. Implementation Details HELMET 44

Frontend

NEXT. 4 [l

Python Package

» Transformers Frontend Actions
+ create project
O PyTorch

+ fetch & delete runs
+ fetch XAL of run
+

Model/XAl Functions fetch status

+ helmet.from_pretrained()
+ model.feature_attribution() GET
+ model.contrastive_explainer()

Ci ication to API API
ommunication to
+ helmet.create_or_get_project() n \. de Oreas | JS
+ model.get_run() 1S) ress
+ model.get_project() «—>
+ model.update_run() GET API functions

POST + runs (GET, POST, UPDT, DEL)

+ projects (GET, POST)

!

Database

mongoDB

Databases
+ Collection for runs incl XAI
+ Collection for projects

Figure 4.6: Final Implementation architecture

Contrastive explanation Contrastive is computing the feature attribution and additionally computing
the gradients for another token. Then, the difference can taken to get an answer to the original
question of why not B instead of A. This technique is proposed by Yin and Neubig [134], from which the
implementation is taken as a reference.

Generate Explanations When a prediction is made, the output of the model is returned to the user
along with an ID. This ID can be used to compute additional explanations, as mentioned above. The
Listing 4.1 gives an example of code that queries the model and computes the explanations post hoc.

output, response_id = model.predict(prompt, generation_arguments)

attributions = model.feature_attribution(response_id)

constrastive_explanation = model.contrastive_explainer (response_id, "<new token>")
Listing 4.1: Computing Explanations

Features

Currently, all decoder-only architectures are implemented. Encoder and encoder-decoder architectures
are implemented in a shallow way to give an idea of how HELMET can be extended. This section highlights
the main features. Code examples are provided in Appendix C

Installing HELMET One of the requirements was that it should be easy to integrate into the workflow of
the NLP data scientist. The first step the user should take is to install the HELMET package. Fortunately,
this is easily done using Pypi 2, as it is published at https://pypi.org/project/helmet/. This is done
with the command pip install helmet. Poetry 2 is used as a dependency resolver to ensure that the
correct dependencies are installed.

nttps://pypi.org/
Shttps://python-poetry.org/

https://pypi.org/project/helmet/
https://pypi.org/
https://python-poetry.org/

Aw N =

o

N

4.3. Implementation Details HELMET 45

Loading a project The first thing you do when starting a project is to create a project or load an
existing one. This can be done from the Ul, but also from the Python page. This is based on the title
you provide, which returns a project ID from either an existing project or a newly created one. This is
shown in the Listing 4.2

from helmet import get_or_create_project

project_name = "Project Name"
platform_url = "https://api.example.nl"
task = "text_generation"

s| project_id = get_or_create_project(platform_url, project_name, task)

Listing 4.2: Creating or getting project

Loading a model Any model can be loaded using the model checkpoint name, which is the standard
way of referencing Huggingface models. A model can be loaded using helmet.from_pretrained(args).
This has similar arguments to the parallel Huggingface method, making it easy to load models. All
generative decoder models are currently supported. When the device is set to CUDA, the models are
automatically quantized. An example of how to load a model is given in the Listing 4.3

from helmet import from_pretrained
model = from_pretrained(checkpoint, model_type, embeddings, project_id,
device, platform_url, model_args)

Listing 4.3: Loading the Huggingface model

Using the model Prompting the model is as simple as running helmet.predict (prompt). Additional
arguments can be given here, such as the temperature or the maximum number of tokens. These
additional arguments are also stored in the run, making it easier to go back and see which arguments
performed best. A coding example is given in Listing C.2

Configuration of the model Several configurations can be set during inference or when loading the
model. These are needed to ensure that the inference techniques can use the embedding layer of the
model, for example. In addition, the type of model and the device are required. An example is given in
the Listing C.1

Data Classes Several data classes have been implemented. These are used to standardise parts
of the communication, creating a more type-safe communication between the different parts of the
application. The input and output is standardised within the Python package. This is to ensure that all
input is parsed correctly in the prompt, but also in the frontend. In addition, each run is stored in a class,
which is then stored in the database. This allows the class to be recreated when the run is reloaded
from the database.

Extensibility A major advantage of the current modular implementation is its extensibility, as desired by
NFR 1. The tool could be extended in many ways, such as new models or even new model architectures.
It could also potentially be extended to include closed source models. In this case, the runs would still
be stored. However, the degree of explicability is limited. It has been shown that some techniques do
not require internal mechanisms, so it is still possible to include certain explanations [114].

In addition to new models, it would be easy to add new explainability techniques and corresponding
visualisation techniques. With knowledge of both Python & JavaScript, it should also be easy to add
new features.

43.2. API

The second component of the finished application is the API. This is there to provide smooth communi-
cation between the Python package, the frontend and the database. It is a stateless NodeJS Express
server that is lightweight, fast and easy to deploy.

4.3. Implementation Details HELMET 46

Its main function is to process requests from the Python package and store them in the database. All
Create, read, update and delete (CRUD) operations are implemented for all runs. The API can be run
using NPM 4, with the command node server. js.

Two routes are defined, one for the projects and one for the runs; /project and /runs. These two
routes both use the GET, POST, PUT and DELETE conventions to retrieve, update, create and delete the
various documents in that particular collection.

4.3.3. Database

The database is a non-relational database that stores the projects and runs. A non-relational database
is chosen because different runs and explanations have different schemas. Therefore, a more standard
relational database would be complex. This database can be used locally or in the cloud. The API
makes it easy to connect to the database and store data.

The current implementation supports the storage of runs and projects, both in a separate collection.
The runs can be retrieved using the project ID, ensuring that only the runs of the corresponding project
are retrieved. An example of how it would look like in the MongoDB is given in Listing 4.4

{

{
"_id": "663b9357cf5ab2ab5c96£128"
"date": "2024-05-08T14:59:35.9547Z"
"model_checkpoint": "gpt2",
"tokenizer": "gpt2",
"model_type": "dec",
"input": {
"prompt": "Can you stop the dog from ",
"input_tokens": [tokens]
o
"output": {
"output_str": "urch",
"tokens": [
"urch"
]
Fo
"explanations": [
{
"explanation_method": "certainty",
"certainties": [
0.20173077285289764
]
}
1
"project_id": "66349e3bc969e501ab987£07",
"execution_time_in_sec": 0.2844071388244629,
"custom_args": {
"max_new_tokens": 1
}
}

Listing 4.4: Example of how a run is stored in de database

4.3.4. Frontend

The final component of the implementation is the User Interface (Ul). This is a web application developed
in NextJS °, a React-based web framework that focuses on easy development and deployment. This
section will highlight the main features. Screenshots from the Ul are can be found in Appendix D

“https://www.npmjs.com/
Shttps://nextjs.org/

https://www.npmjs.com/
https://nextjs.org/

4.3. Implementation Details HELMET 47

The main feature is that all runs can be viewed. They can be viewed in a list, giving an overview of
all the prompts that have been run. In addition, each run can be viewed in more detail, including the
explanations. Runs are searchable and can be deleted individually or all at once. When the detail page
is visited, all input, output and the custom arguments can be viewed as well, as shown in Figure 4.7

Model: gpt2
Run id: 663b9357cf5a52ab5¢c961128
Execution time: 0.284 sec

Input: Can you stop the dog from

Output: urch

Custom arguments: {"max_new_tokens":1}

Groundtruth: not provided

Figure 4.7: All custom arguments can be viewed

The explanations are interactive. The confidence thresholds can be edited, dynamically highlighting
where the model was confident and where it was not. Also, the feature attributions are dynamically
coloured depending on which token is hovered over. If the explanations are not yet computed, the code
to compute them is suggested. This code can be easily copied and run from the Jupyter notebook
where the model is loaded, as shown in Figure 4.8

Want to compute the Contrastive explainer? Copy the code and run it
This will give you feature importance for a specific token

model. contrastive_explainer("663b9357cf5a52ab5c967128", "<token>") (9

Figure 4.8: The code suggestion when the explanation is not computed yet

Resources Another feature is the documentation of the implemented explainability technique. This
page is located on the frontend, so it gives the user more information about the method if needed. This
should help with the interpretability of the methods as well as make them more aware of the possibilities
of XAl within LLM.

Familiar Elements The last of these are the familiar design elements. Some of this has already been
discussed in the design section, in section 4.2. Some notable features are the tooltips that appear when
the mouse is over a button, giving additional information about what to expect when you press it. The
icons have also been chosen to be familiar to most users. They are shown in Figure 4.9

Show Details

©

Figure 4.9: The tooltip and icons

4.3. Implementation Details HELMET

48

4.3.5. Ul Examples

To give a better overview of how the tool looks in practice, several Ul examples are presented. These
screenshots give the basic views that are implemented. These are:

* Runs page (Figure 4.10)

» Comparison page (Figure 4.12)
» Detailed Run with XAl (Figure 4.11)

HELMET * Platform

Runs (38)

Search inputs & Compare
Input Output Mode! Time Expl CO,FA) Actions
desadplon: Apecson n 1908 has e okowing Yes, tis lkely that the annual income of the person is greater than $50k, considering the occupational

attribute of ‘Other-service! which can have higher earning potential, and the highest education level of 9 which
attributes: age 19, workclass Private, final weight microsoft/Phi-3- .
suggests atleast P education, often higher incomes. However, 18:21:41 ®
192773, education HS-grad, highest education level 9, nini-gk-instruct
without specifc salary data, an exact determination cannot be made. Please note that this answer s based on
marital status Never-maried, occupation Othe,
general tendencies and correlations
description: A person in 1996 has the following Predicting an individual's annual income based solely on the provided attributes requires making an inference,
attrbutes: age 37, workclass Local-gov, final weight often supported by statstical anlysis or using machine learning models trained on relevant data. Howover, microsoft/Phi-3- o .
74194, education Assoc-voc, highest education level based on the common patters observed in real-world data, we can make an educated guess. Given the nini-gk-instruct <
11, marial status Married-civ-spouse, occupa. information: - Age: 37 - Education: Assaciate degree (level 11) - Occupation: Exec-managerial - Marial status
description: A person in 1996 has the following Predicting an individual's income based solely on the attrbutes provided is challenging without a specific
attributes: age 20, workclass Private, final weight model or algorithm, as there are muliple factors tht nfluence a person's annual income, and the corrlation
210444, education Some-college, highest education between these factors and income can vary greatly. However, we can make an educated guess using it 131435 S
level 10, maritl status Never-married, available data and common socio-economic trends up to 1996, Let's analyze the given information: - Age: 20
ocoupatio years old
dwscriphon: Aparson n 1898 has he olowig To predict whether the annual income of the person is greater than $50k based on the provided attributes, we
can consider various factors that generally influence income levels. However, it essental to understand that
attributes: age 64, workclass Without-pay, final weight microsoft/Phi-3- .
without concrete income data or a statstical model buit specificaly for prediction, this analysis involves 18:14:32
209291, education HS-grad, highest education level 9, mini-gk-instruct .
ot et Moo steuoe. oon educated guessing based on between demograpt and Given
rital status Married-civ-spouse, occu
P P attributes: - Age: 64 - Workclass: Without-pay - Education: HS
To predict whether the annual income of the person is greater than $50k based on the provided aftributes, we
description: A person in 1996 has the following P P M b P
an consider several factors that are often correlated with income levels. However, without a specific model or
attributes: age 44, workclass Private, final weight microsoft/Phi-3-
algorithm, we can only make an educated guess based on the given information. Key atiributes to consider: 1 13:14:28
230684, education HS-grad, highest education level 9, . " nini-gk-instruct
Education level: A "HS-grad" level education or higher can potentially increase income. In this case, the
marital status Married-civ-spouse, occupation.
highest education level is 9, which
description: A person in 1996 has the following Predicting an individual's annual income based on a few attrbutes without using an actual statistical model or
attributes: age 45, workclass Private, final weight machine learning algorithm can be challenging and may not yield accurate results. However, we can analyze s
169324, education 9th, highest education level 5, the provided attrbut to make an 1. Age: At 45 years old, the individual is it 11424
marial status Divorced, occupation Other- in the mid-Iife stage. Professionals in this age group might have higher incomes, depending on their career
service. longevity. 2. Work
doscripton: Aperson 1 1995 hee e olowhg Predicting whether the annual income of this individual i greater than $50k based solely on the provided
attributes involves a degree of speculation, as real-world income depends on a wide range of factors including
attributes: age 33, workelass Private, final weight nicrosoft/Phi-3- .
job performance, industry, economic conditions, and more. However, we can analyze the given attrbutes for 18:14:21 >
162572, education HS-grad, highest education level 9, ot ¢ nini-gk-instruct
potential insights: - **Age™*: At 33, this person is in their early 30s. This could suggest they have reached a
marital status Never-married, occupation Tran. .
Predicting whether an individual's annual income is greater than $50k based solely on the attributes provided
description: A person in 1996 has the following 9 g y P
from the 1996 data involves using machine learning classification models, which require a substantial amount
attributes: age 25, workclass Private, final weight nicrosoft/Phi-3-
of data for training to achieve relable predictions. However, considering historical data and common trends, 18:14:17
266062, education Prof-schoo, highest education level nini-gk-instruct
we can provide an educated guess. In 1996, a person with an age of 25, a private work class, a profession in
15, maritl status Never-married, occupation.
a specialty
While the provided information does ot directly correlate to specificincome, we can make an educated guess
description: A person in 1996 has the following ” Y - § 9
based on the attributes mentioned. 1. Age and Education: At age 35 with a Bachelor's degree (which is often
attributes: age 35, workclass Private, final weight nicrosoft/Phi-3-
considered the minimum requirement for a significant career), this individual may hold a specialized 18:14:18

122747, education Bachelors, highest education level
13, marital status Married-civ-spouse, occupat

professional job. Many professionals in this age range with this level of education tend to eam above average
salaries. 2. Work class: "Private" could indicate

Figure 4.10: Runs page

nini-ak-instruct

The second column from the left shows if any explanations have been calculated for that specific run; Contrastive (CO) and

Feature Attribution (FA)

4.3.6. Implementation Challenges

Implementing a tool like HELMET is quite a challenge. It should be recognised that several difficulties
are associated with the task of building such a tool. Firstly, it requires extensive knowledge of LLMs
and their internal mechanisms. Without this knowledge, it is difficult to know what to configure for the
tool and how to load the model correctly. This is also due to the fact that the transformers has a wide
range of arguments that can be provided. This steep learning curve should be taken into account.
Secondly, the computing power required to produce results in a reasonable time is high. Even with tiny
models loaded on the GPU, debugging is extremely difficult and will take a while, especially if no GPU
is available locally.

Finally, there is the implementation of the XAl techniques. As mentioned several times during the
research, other tools exist. Tools like Captum [59] could be used, but the experience from this study
is that they are really difficult to use. The input has to be in a very specific input and the output of the
calculation is very limited. Therefore it was decided to implement all XAl techniques within HELMET again.
For training and inference in a more mature environment, several other tools could be considered,
including DeepSpeed, Megatron-LM, JAX, Colossal-Al, FastMoE and BMTrain.

4.3. Implementation Details HELMET 49

HELMET * Platform

¢ Back Input: I'm going to watch Roland Garros. Where does it take place?

Output: Roland Garros, offiially known as the French Open, takes place at the Stade Roland Garros in Paris, France. It is one of the four Grand Slam tennis tournaments and is played on both red clay
and green clay courts. The tournament typically occurs between late May and early June, with the main events held indoors on the showcourt and the junior events taking place on the outdoor court, also
known as the “Court Simonne Mathieu."

Custom arguments: {"max_new_tokens":100, "temperature":1,"do_sample": true}

Groundtruth: not provided
Calculated Explanations

Certainty @
Roland Gar ros , officially known as the French Open , takes place at the St ade Roland Gar ros in Paris , France . It s one of the four Grand S lam tennis tournament s and is played on both red cl ay and
green cl ay courts . The tournament typically occurs between late May and early June , with the main events held ind o ors on the show court and the junior events taking place on the out door court , also
known as the " C ourt Sim onne Math ieu ."

Token Level Feature Importance @
Why did the model predict "Gar"?
1] M going to Watch Roland Gar fos . Where does it take place ? Roland G ros , officially known as the French Open , takes place at the St ade Roland Gar ros in Paris , France . It is one of the four
Grand S lam tennis tournament s and is played on both red cl ay and green cl ay courts . The tournament typically occurs between late May and early June , with the main events held ind o ors on the
show court and the junior events taking place on the out door court, also known as the * ourt Sim onne Math ieu .*

Contrastive Explainer @
Why not London instead of Foland?
1! m going to watch Roland Gar ros | Where does it take I8 ? EGdon Gar ros , officially known as the French Open , takes place at the St ade Roland Gar ros in Paris , France . Itis one of the four
Grand S lam tennis tournament s and is played on both red cl ay and green cl ay courts . The tournament typically occurs between late May and early June , with the main events held ind o ors on the
show court and the junior events taking place on the out door court, also known as the " C ourt Sim onne Math ieu ."

Figure 4.11: Detailed page with XAl

HeLMeT* Plattorm ([N

< Back

Model: microsoft/Phi-3-mini-4k-instruct
Run id: 6644b3fededbdd64652960bf
Execution time: 0.079 sec

Input: Answer the question below. Return your answer either 'YES' or 'NOdescription: A person in 1996 has the following
attributes: age 19, workclass Private, final weight 192773, education HS-grad, highest education level 9, marital status Never-
married, occupation Other-service, relationship Own-child, race White, sex Female, capital gain 0, capital loss 0, hours per week
24, native country United-States. predict whether the annual income of the person is greater than $50k:

Output: NO

Custom arguments: {"nax_new_tokens" :200, "temperature":1.5, "do_sample": true}

Groundtruth: not provided
Calculated Explanations

Certainty @
NO

Token Level Feature Importance @
Why did the model predict NO"?
Answer ffig question below . Return your answer either ' YES | 0f ' NO . description : _ A person in _1996 has the following
atiributes : age _19 , work class Private , final weight _192773 , education H S - grad , highest education level _9 , mar ital status
Never - mar ried , occupation Other - service , relationship O wn - child , race White , sex Fem ale , capital gain _0 , capital loss _0
, hours per week _24, native country United - St ates . <0x0A> predict whether the annual income of the person is greater than $5
ok:NO

Legenda
Impact Scores
Noimp
Selected Token
Currently selected
Certainty Color Thresholds

High Certainty Threshold 90%

Figure 4.12:

Model: microsoft/Phi-3-mini-4k-instruct
Run id: 6644b3f8dedbdd64652960be
Execution time: 0.080 sec

Input: Answer the question below. Return your answer either 'YES' or 'NO.description: A person in 1996 has the following
atiributes: age 19, workclass Private, final weight 192773, education HS-grad, highest education level 9, marital status Never-
married, occupation Other-service, relationship Own-child, race White, sex Female, capital gain 0, capital loss 0, hours per week
24, native country United-States. predict whether the annual income of the person is greater than $50k

Output: NO

Custom arguments: {"nax_new_tokens" : 200, "temperature":0.001, "do_sample": true}

Groundtruth: not provided

Calculated Explanations

Certainty @
NO

Token Level Feature Importance @
Why did the model predict NO"?

Answer fi question below . Return your answer either ' YES ! ot ' NO !, description : _ A person in _1996 has the following
atiributes : age _19 , work class Private, final weight _192773 , education H S - grad , highest education level _9 , mar tal status
Never - mar ried , occupation Other - service , relationship O wn - child , race White , sex Fem ale , capital gain _0 , capital loss _0
, hours per week _24 , native country United - St ates . <0x0A> predict whether the annual income of the person is greater than $5

k:NO

Legenda
Impact Scores
Noimp
Selected Token
Currently selected
Certainty Color Thresholds
a0%

High Certainty Threshold

Comparison

Evaluation

The tool should be evaluated to validate the requirements, design, and implementation. This is done
using a hands-on demo and survey. First, the evaluation method is described, followed by the results of
the individual parts of the evaluation.

5.1. Method

This evaluation phase captures the extent to which the explanations are helpful to the NLP data scientist
and whether the tool fits into the current workflow. By doing this, the requirements can also be validated.
This is done in a human-grounded way, i.e. with real people and a simplified task as described in the
background.

The process combines a qualitative evaluation and an exploratory analysis using open questions that
will be further elaborated. Where to focus our attention is based on the HCAI framework presented
by Xu, Gao, and Dainoff [133]. This framework describes, among other things, which primary design
goals are important in the HCAI implementation approach. For example, the main goal of Explainable
Al should be to create usable Al, while UX design should focus on the usability and usability of the tool.
The goal will be elaborated first, and then the approach will be explained.

Three main questions should be answered during the evaluation:

1. Does explainability give practical insights to an NLP Data Scientist?
2. Does the current implementation fit the NLP Data Scientist’s workflow?
3. Is the tool easy and intuitive to use?

The complete questionnaires can be found in the section E.1, section E.2 and section E.3 respectively.
The procedure will now be explained, after which the three parts will be discussed in more detail.

It was decided not to evaluate existing tools. This is because all the existing tools described in the
Table 2.4 are intended for research purposes. Their focus was not on implementing a user-friendly
tool but on eliciting a new technique. Therefore, the existing tools were only used as inspiration for the
current implementation where possible.

Procedure

A video was made to introduce the tool and its functionalities, which can still be found on Youtube .
This helped the participants to familiarise themselves with its features and setup. This was followed by
a hands-on session in which the participants worked through an example with the researcher. Here,
the participant was asked to complete a number of steps, such as creating a project, loading a model,
prompting the model and interacting with the explanations. A dataset was loaded to give the participants
more data to interact with. The whole session took about 25 minutes. After the session, the participants
were asked to fill in the questionnaires, which can be found in the Appendix E.

The task given to the user was to judge the fairness of the model based on the explanations. This is a
subset of the decodingTrust dataset, from Wang et al. [126]. The Fairness dataset was chosen because

Thttps://www.youtube . com/watch?v=z2zAmB6L7WU

50

https://www.youtube.com/watch?v=z2zAmB6L7WU

5.1. Method 51

it was assumed that the explanations would give an indication of how biased the model actually is by
highlighting parts of the input that are biased. This is a simpler task and not related to the tasks that
data scientists solve in practice. However, the focus was on interaction with the explanations and user
satisfaction, not on solving the task.

Participants

Nine NLP data scientists took part in this evaluation. They were selected from three teams within the
organisation. They ranged from junior to senior NLP Data Scientists, but all had experience with LLMs.
It should be noted that although their official title is Data Scientist, their main work currently involves the
use of LLMs. The overview is given in Table 5.1

Table 5.1: Overview of the participants

Participant Position

Participant 1 Intern

Participant 2 Senior Data Scientist
Participant 3 Senior Data Scientist
Participant 4 Data Scientist
Participant 5 Principal Data Scientist
Participant 6 Senior Data Scientist
Participant 7 Data Scientist
Participant 8 Data Scientist
Participant 9 Data Scientist

Evaluation Questionnaires

As mentioned before, the questionnaires were used to evaluate the tool. A suitable questionnaire is
chosen for each of the three questions described above. Here the three forms are explained in more
detail.

Part 1: Usefulness of the explanations The first part assesses whether the explanations add value
to the NLP data scientist. The Explanation Satisfaction Scale (ESS) presented by Hoffman et al. [44] is
used for this. More information about this scale can be found in the background, section 2.2. This is
a suitable scale to get a better understanding of how well the explainability techniques help the user
achieve their goals [43]. It has also been used in several other prominent contributions, such as [106].
As the focus is on human satisfaction and not on the quality of explanations, the ESS is preferred to the
System Causability Scale (SCS) by Holzinger, Carrington, and Miiller [46].

In the evaluation, we must be clear to the participant that this is an isolated questionnaire and should
only evaluate the usefulness of the techniques, not the tool itself.

Because the tool implements multiple explanation methods, the participants are asked to answer these
questions for each method they use. Thus, this result will also include whether one method is more
valuable.

Part 2: XAl in practice The second part of the evaluation questions will be a series of open-ended
questions that will help us to better understand whether the current solution fits their workflow. In
addition, observations suggest that the error analysis step of the workflow is most promising for useful
XAl so this will be explicitly asked about in this questionnaire. These open-ended questions will provide
additional insight into the described workflow. The questions are the following:

1. Do you think the setup of having an external platform next to the Jupyter Notebook/Sagemaker is
more or less usable?

2. Can this tool be easily integrated into your workflow when creating LLM-based products? Why
yes/no?

5.2. Results 52

3. Consider the task of error analysis and improving the prompt. Would this tool be helpful in that
phase?

4. Does this tool change your opinion on XAl for LLMs? If yes, in what way?

Part 3: Tool usability We use the User Experience Questionnaire (UEQ), a well established evaluation
survey by [64]. It is often used to test the usability of a tool and to determine how satisfactory the user
experience is, making it a good tool for assessing the usability of the implemented tool. An additional
advantage is that it is quick and gives a comprehensive impression of the usability.

The questionnaire consists of a set of 26 questions where the participant is asked to give their opinion
on a contrastive 7-point scale. The 26 questions are all related to attractiveness, but consist of 6 final
scales, of which attractiveness is one. The other five are divided into two qualities:

1. Pragmatic Quality, which means goal-oriented. This category includes efficiency, clarity and
reliability.
2. Hedonic Quality, meaning not goal-directed. This category includes Stimulation and Novelty

The analysis of the questionnaire data follows the standard procedure presented in [107]. In order to
digest the findings, the results are often compared with a benchmark. The UEQ offers such a benchmark,
which contains data from 452 product evaluations with the UEQ (with a total of 20190 participants in all
evaluations). The benchmark is updated once a year, [107]. A tool can be considered user-friendly if
10% of the results in the benchmark dataset are better than the tool and 75% of the results are worse
than the tool.

It should be noted that data may be excluded in certain instances. This may occur when a participant
has three or more critical inconsistencies, which indicates that multiple answers contradict each other.
Another reason for excluding data in this context is when a participant repeatedly answers with the
same number. This could be indicative of a lack of sufficient engagement with the questionnaire.

5.2. Results

This section is divided into three parts, corresponding to the three sub-questions above. Section
5.2.1 discusses the results on the usefulness of the implemented explainability techniques. Then
subsection 5.2.2 presents the results on the quality of the integration of the tool into the workflow. Finally,
the evaluation of the tool’s Ul is covered in subsection 5.2.3.

5.2.1. Usefulness XAl for LLMs
The three techniques evaluated are certainty, token-level feature importance & and contrastive explana-
tions. For each of them, we asked the following questions:

From the explanation, | understand how the LLM works

This explanation of how the LLM works is satisfying

This explanation of how the LLM works has sufficient detail

This explanation of how the LLM works seems complete.

This explanation of how the LLM works tells me how to use it.

This explanation of how the LLM works is useful to my goals.

This explanation of the LLM shows me how accurate the LLM is.

8. This explanation lets me judge when | should trust and not trust the LLM

N gk 0w~

Explanation satisfaction is defined here as the degree to which users feel they sufficiently understand the
Al system or process being explained to them [43]. This scale includes understandability, satisfaction,
detail preferences, completeness, usefulness, accuracy and trustworthiness. The results for each
technique are presented individually, followed by several general findings.

5.2. Results 53

Uncertainty

From the explanation, | | EEE Strongly disagree

understand how the LLM works Disagree
i Neutral
This explanatioq of hgw t_he i I Agree
LLM works is satisfying : EEm Strongly agree

This explanation of how the
LLM works has sufficient 1
detail

This explanation of how the |
LLM works seems complete.

This explanation of how the
LLM works tells me how to use

it.

This explanation of how the
LLM works is useful to my
goals. 1

This explanation of the LLM
shows me how accurate the LLM A

is.

This explanation lets me judge
when | should trust and not

trust the LLM

]
30% 20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of Responses

Figure 5.1: Results from the XAl Satisfaction Questionnaire for the uncertainty technique

Uncertainty

The first technique to be evaluated is Explanation Technique 1: Model Uncertainty. Figure 5.1 shows
the results of the questions related to this technique. For each question, it shows the percentage of
responses for each of the options. This is followed by an analysis of the results.

The overall sentiment of this technique is positive. The answers generally reflect a favourable view of
this technique, especially regarding understanding the LLM and trust. This is understandable for trust,
as it is easier to trust a model with a higher confidence. However, it can also be seen that the score on
sufficient detail is relatively low, which was also mentioned often during the hands-on session. Here, it
was mentioned several times it would be beneficial to show the percentages, instead of the colouring as
it is currently.

Additionally, a lower score on completeness can be seen. This could be due to the fact it is computed on
a token level, which was evaluated as not being very insightful. Participant 4 said: "One value would be
more intuitive. Suggested is an average over the individual uncertainties on output level or on sentence
level.”

Another relatively negative score was on the accuracy assessment. This is also reasonable, as the
uncertainty does not give any insights into the accuracy. In this light, one participant was not satisfied
with this technique, saying "It would be good to know what the problem is that it can solve.”, which is a
valid concern.

Token Level Feature Importance

The second technique that will be assessed is Explanation Technique 2: Token Level Feature
Attribution. Figure 5.2 presents the results from the questions regarding this technique.

This technique is also rated positively, especially for comprehensibility, concluding that it helps to better
understand how the LLM works. This could be due to an alignment between the user’'s mental model
and the explanation. That is, the way the method explains the reasoning of the model is consistent with
the way users reason.

However, the feature importance technique seems to be incomplete. One participant mentioned here
that "Single value would have been nice. Also it would be beneficial to remove stop words before
computing the value”, concluding that some sort of aggregation should be done to make it at sentence
or prompt level. This is a valid comment which could be a good further improvement to this technique.
In addition, one acknowledged that it can be useful for prompt engineering, as it provides insight into
which parts are most relevant to the prompt. Here, Participant 8 mentioned: "I think it helps identify
which parts of the question influence the model’s answer and which tokes attribute to it.”

However, the participant noted that this is highly dependent on the use case and the problem at hand.

5.2. Results 54

Feature Attribution

From the explanation, | | Strongly disagree

|
understand how the LLM works mmm Disagree
Neutral
This explanation of how the | B Agree
LLM works is satisfying [

Strongly agree

This explanation of how the
LLM works has sufficient 1
detail

This explanation of how the |
LLM works seems complete.

This explanation of how the
LLM works tells me how to use -

it.

This explanation of how the
LLM works is useful to my

goals. 1
This explanation of the LLM !
shows me how accurate the LLM A -

is.

I

This explanation lets me judge ’

when | should trust and not

trust the LLM

]
30% 20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Responses

Figure 5.2: Results from the XAl Satisfaction Questionnaire for the Feature Attribution

More research could be done on the specific cases where this particular method is most useful. Finally,
this technique is not useful for assessing the accuracy of the model and improving confidence. This is
reasonable as it does not provide metrics to support these goals.

Contrastive explanations
The last technique in this part of the evaluation is Explanation Technique 3: Contrastive Explanations.
Figure 5.3 presents the results from the questions regarding this technique.

Contrastive Explanations

From the explanation, | | N Strongly disagree
understand how the LLM works mm Disagree
Neutral
This explanation of how the | - mmm Agree
LLM works is satisfying —

Strongly agree

This explanation of how the
LLM works has sufficient
detail

This explanation of how the |
LLM works seems complete.

This explanation of how the
LLM works tells me how to use -
it.

This explanation of how the
LLM works is useful to my

goals.
This explanation of the LLM
shows me how accurate the LLM A -
is.
This explanation lets me judge
when | should trust and not
trust the LLM

]
40% 30% 20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Percentage of Responses

Figure 5.3: Results from the XAl Satisfaction Questionnaire for the Contrastive Explanations

The contrastive explanations were also rated positively, especially those explaining how the LLM works
and how to use it. During the evaluation sessions, most participants were also generally positive about
this explanation, as it is currently only implemented for the first generated token. This was often not the
token on which the participant wanted to compute the contrastive explanation. This could also be the
reason for the lower satisfaction score. They confirmed the potential of the technique if it could be done

5.2. Results 55

for other tokens as well.

In the current implementation, the contrastive token has to be given manually. However, it was mentioned
that it would be beneficial to let the model decide the token, for example by calculating it for the top_k
alternatives.

Finally, Figure 5.3 notes that this explanation did not contribute to the assessment of the model's
accuracy.

Comparative Analysis

Some general observations can be concluded from the data and hands-on guided demos that have
been performed. These are regarding accuracy, understanding, level of details and dependency on the
use case.

Accuracy assessment One conclusion from the results presented above is that all three explanations
do not help the NLP data scientist assess the accuracy of the model. The results were relatively
negative for all three explanations, as shown in Figure 5.4. This observation is unfortunate, as one of
the challenges identified in subsection 3.2.2 was the evaluation of the LLM. Here the assessment of
accuracy plays an important role. It could be concluded that explanations or quantitative metrics are
needed to fully assess the accuracy and performance of the LLM.

This explanation of the LLM shows me how accurate the LLM is.

Certainty - , | B Strongly disagree
1 .
Feature Attribution - : . Disagree
1
Contrastive Explanations A | Neutral
T T T T T T T T T Agree

40% 30% 20% 10% 0% 10% 20% 30% 40% 50% 60%

HE Strongly agree
Percentage of Responses

Figure 5.4: Comparison on the question on accuracy assessment

Useful for understanding how the LLM works All three explanations were rated positively in terms
of the informativeness of the LLM work, as shown in Figure 5.5. This is interesting because it does
not show internal mechanisms such as attentional mechanisms. Obviously, this is unnecessary and
post-hoc calculated explanations are useful for a better understanding of the LLM.

From the explanation, | understand how the LLM works

Certainty 1| I mEm Strongly disagree
L)
Feature Attribution4{ ¢ I Disagree
1
Contrastive Explanations A : I Neutral
T Agree
0,

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Il Strongly agree
Percentage of Responses

Figure 5.5: Comparison on the question on understanding

Satisfaction One of the important parts of this evaluation is the users’ satisfaction. The data presented
in Figure 5.6. While a few participants are neutral or disagreeing, most are agreeing that working with
the explanations was satisfying. This could be because of the interactive features implemented, it
indeed gave additional insights or have other reasons.

Level of detail For the uncertainty and feature attribution, it was often mentioned that the level of detail
was too low. Especially with the certainty, showing the percentages was often requested. Additionally,
it was requested what the feature attribution numbers were, which was also not shown in the Ul. The
data presented in Figure 5.7, which softly confirms this.

5.2. Results 56

This explanation of how the LLM works is satisfying

Certainty 1 i — B Strongly disagree
1 .
Feature Attribution - : | Disagree
1
Contrastive Explanations A | | Neutral
Agree

20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% -

Strongly agree
Percentage of Responses

Figure 5.6: Comparison on the question of sufficient details

This explanation of how the LLM works has sufficient detail

Certainty 1 i _— B Strongly disagree
1 .
Feature Attribution - i I Disagree
1
Contrastive Explanations | I Neutral
T Agree

20% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% puum

Strongly agree
Percentage of Responses

Figure 5.7: Comparison on the question of sufficient details

Use-case dependency Several participants mentioned that the usefulness of the XAl was highly
dependent on the use case. For the fairness assessment use case, such as the demo dataset, it was
confirmed to be useful in several ways. For example, one participant stated that it would also be useful
for classification and other classic NLP tasks. However, it cannot be concluded that these explanations
are helpful in other use cases. More research needs to be done on other generative tasks, such as
chatbots or RAG-based systems.

Conclusions on user satisfaction

It can be concluded that the explanations satisfy the user in understanding how the model works. All
three provided insights helpful for that particular purpose. However, for understanding the accuracy of
the model or evaluating the model, all explanations were not sufficient. Here, the use-case, level of
detail and visualisation technique play a role.

In general, Token-level Feature attribution has the most potential, as it was proven to be useful towards
the goal of the user.

5.2.2. Integrating HELMET into the existing workflow

This section presents the results from the second part of the questionnaire and answers the question
whether the current implementation fits the workflow of the user, which is part of SQ4.

The overall response to the HELMET tool was very positive. During the hands-on demonstration, all
participants expressed satisfaction with the setup and were able to rapidly comprehend the workflow.
100% of the participants agreed that the tool integrated seamlessly with their existing workflow and
was straightforward to set up. Furthermore, 78% recognised that it facilitated troubleshooting and rapid
engineering.

External platform setup

Having an external web application was rated very positively. It was acknowledged that the modular
setting helped them to keep the Jupyter Notebook clean and still have all the visualisations they needed.
To quote P1: "The web application helps a lot with the analysis and gives more freedom than doing the
visualisations inside the notebook”. In addition, it was nice because the web application could be easily
shared with non-technical colleagues and still give them a good overview of the runs without having
to set up a Jupyter notebook. This was mentioned by P5 who said: "It is very useful and it helps to
interact more freely with the results without the clutter of the code, and it makes it easier and "cleaner”
to provide explanations to project partners.”

In addition, it was felt that the capabilities of the Python package and the web application were clear.
Most found it intuitive to use both parts of HELMET and to switch between them.

5.2. Results 57

Integration

The integration was also evaluated positively, were 78% was positive. One big advantage mentioned
was how easy it was to install the HELMET Python package. Furthermore, participants commented on
the choice of creating a wrapper around the Huggingface platform as a good choice, as this is often
used and will make it easier to use and configure LLMs from Huggingface. To cite P7: "The connection
between the model invocation and webapp is straightforward to set up. The webapp is intuitive to use.”

Error Analysis

Error analysis was identified as one of the challenges of the NLP Data Scientist and was therefore
specifically asked about in the evaluation questionnaire. 8 of the 9 participants confirmed that it is helpful
to have a platform to dive into the different explanations. In this context, participant 2 mentioned “for the
trial and error phase when the user optimises his prompt”. Only one participant was not convinced of
the usefulness of these features in the tool for error analysis and prompt improvement.

Change the opinion on explainability

There were mixed feelings about how XAl could benefit them. Some participants admitted that they were
now more aware of the possibilities of integrating XAl into their LLM-based solutions. In contrast, others
mentioned that they were not convinced that this tool would help them significantly. They mentioned
that the tool is a nice package, but their opinion did not change after using it. Finally, one participant
mentioned that HELMET makes the explainability clearer and more defined, but also shows how much
work still needs to be done in the area of XAl to better understand LLMs.

Improvements

The final question on this evaluation form was about future improvements. Several were mentioned.
One interesting suggestion was to create "insights & suggestions” in the details of the input-output
analysis. This could present the user with an LLM-generated passage with some useful suggestions
based on the interpretation of the explanation.

Secondly, support for multi-modal was an interesting suggestion. It could be very interesting to have this
implemented as well and to see how a saliency map over an image could be integrated into this tool.
Finally, there was a request for some level of organisation. This means that runs could be grouped into
experiments, which could be grouped into a project. This would give more structure to the long list of
runs that are currently implemented.

5.2.3. User Experience

This section presents the findings from the User Experience Questionnaire (UEQ). The UEQ is meant as
a measure of user-friendliness through six scales and 26 statements. The six scales are aftractiveness,
perspicuity, efficiency, dependability, stimulation & novelty, where attractiveness is its own dimension.
The other five are categorised in one of two aspects, which are pragmatic & hedonic. Pragmatic Quality,
focussing on goal-directed attributes includes efficiency, perspicuity & dependability. Secondly, Hedonic
Quality, meaning not goal-directed, includes stimulation & novelty. The results will now be presented.

One participant had three critical inconsistencies. Moreover, this participant was close to the critical
limit of repeated answers. Thus, this data point is excluded from the results, leaving eight participants
left in this analysis.

Consistency in scales

Before analysing the results, it is necessary to assess the reliability of the scales. This can be achieved
by computing the Cronbach’s Alpha-Coefficient, which is a measure of the consistency of a scale.
There is no universally accepted rule regarding the target value, however a reasonable target for this
coefficient is >0.65, which will be used for this study. Table 1 presents the scales and associated values.
It can be concluded from this that all scales are reliable, with the exception of the dependability scale.
Consequently, this scale may be interpreted incorrectly by multiple participants, a point that will be
discussed in the results section.

Results

Figure 5.8 presents the overall results based on the six scales. The black diamonds present the mean
of each scale. The bars are the benchmarks which the results can be compared with. Based on this, an
impression of the attractiveness of the Ul can be concluded.

5.2. Results 58

Table 5.2: The Alpha-Coefficient for each scale

Scale Alpha

Attractiveness 0.92
Perspicuity 0.70
Efficiency 0.91
Dependability 0.03
Stimulation 0.92
Novelty 0.89

2,50
2’00 .
1,50 - m Excellent

s Good

1,00 S
Above Average

0,50 Below Average
0,00 mm Bad

-0,50 amgu=\ean

-1,00 T r T T T

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

Figure 5.8: Results of UEQ compared to the benchmark

Analysis

From Figure 5.8, it can be concluded that the overall score is quite good. Often, a new product is defined
as sufficiently user-friendly when it scores at least in the good category in all scales. From the results, it
can be concluded that it scored good or excellent in attractiveness, efficiency and stimulation

There is room left for improvement in three categories. Perspicuity and Novelty have the lowest score,
being above average. Furthermore, dependability does not score high in the Good, which could,
therefore, also be improved. More investigation was conducted into the data to see potential reasons
for these outcomes.

Attractiveness To start with the positive scales, attractiveness has been evaluated as excellent.
This aligns with the participants’ initial responses during the evaluation interviews, which suggest that
the users found the interface visually appealing. Looking at the individual parts that make up the
attractiveness, it could be seen that the actual attractiveness could be improved but that is scored well
on friendliness and pleasantness dimension.

Perspicuity A lower rating was assigned to perspicuity, which is defined as the difficulty level in
becoming familiar with the product. Upon further examination of the responses, it became evident that
the lowest score was attributed to the statement "difficult to learn.” Additionally, during the hands-on
evaluation, it was mentioned on multiple occasions that the tool had a steep learning curve.

Unfortunately, it is not possible to determine which aspect of the tool is causing the learning difficulties.
Since the workflow and integration are evaluated positively, as mentioned in subsection 5.2.2, it could
be the Ul is not intuitive at first sight. This could be because interpreting the XAl is complex or the app
is challenging to learn. In all cases, further improvements should be made to improve the perspicuity.

Novelty In terms of novelty, the tool is scored high on being conventional. This can be expected
because parts of the user interface were inspired by other web applications. Furthermore, the focus of
this tool was not to be novel but to make it usable for new users. Therefore, its conventionality can be
seen as a positive attribute.

5.3. Conclusions 59

Dependability First, it should be noted that this scale’s reliability did not score high. Therefore, the
results might not be representative of the participants’ opinions.

Diving into the results, it was noticed that the Ul performed relatively well on the how supportive the
tool was. Additionally, it was meeting the expectations of the participants. It score a bit less on the
predictable side, which could mean it was not always clear what steps are the tool could perform.

5.3. Conclusions

It can be concluded that HELMET definitely has potential. The tool provides multiple explanation
techniques to the NLP Data Scientist, mainly to gain insights into how the Language Model works
and how to use it.

Nevertheless, it remains to be proven that these explanations are indeed useful. The results indicate
that they are not as effective as desired in terms of assessing accuracy and usefulness in achieving their
intended goal. In order for the explanations to be fully useful, they must be more helpful in assessing
the model’s accuracy. The explanations provided insights into the model’s behaviour, which could
lead to a more accurate model.

When better explanations exist and are implemented, HELMET has proven to be a usable tool. The tool
can be easily integrated into the workflow because of its modular architecture and easy installation
procedure using Pip. Using the two parts of the tool was evaluated as giving them better structure
within the Jupyter Notebook without sacrificing visualisation possibilities. While more details
could be given within the explanations, the separation of the Python package and web application was
positively reflected.

The UL, in general, was user-friendly considering the results of the User Experience Questionnaire
(UEQ). However, it should be acknowledged that the tool has a steep learning curve, which makes it
less useful for novice users, particularly those with a less technical background. It is recommended that
greater attention be given to making HELMET less difficult to learn, by making the Ul more intuitive and
providing more information on how to interpret the explainability techniques.

Discussion

This chapter will reflect on the key findings from the observations and evaluation. From this, implications
can be derived for different research areas, including eXplainable Atrtificial Intelligence (XAl), Human-
Centered eXplainable Al (HCXAI) and XAl techniques for LLMs. The findings integrate the observations,
requirements, design, implementation, and evaluation of the tool to better understand XAl’s practical
utility for the NLP Data Scientist.

First, the findings and implications are presented. This is followed by the limitations, which provide
a critical assessment of the methodology and results. From this, future research is recommended,
highlighting areas that can be further investigated.

6.1. Findings & Implications

Based on the observations and evaluation results, several important findings can be derived. These will
be presented here by answering the research question and some implications that can be derived from
it.

SQl: What specific needs and challenges do NLP data scientists face when devel-
oping LLM-based solutions?

The formative study identified several general points. In practice, there is a significant difference
between the data scientist and the NLP data scientist working with Large Language Models (LLMs).
Their workflow is quite different and involves different steps. Feature engineering is less important,
while the task of prompt engineering becomes quite essential.

LLMs are used for many applications, including entity/word extraction, summarisation and RAG applica-
tions. Here accuracy is the primary goal for the user.

In addition to accuracy, another requirement is efficiency. This is a significant desideratum, especially
in model selection, prompt engineering and model tuning. This could be addressed by well-designed
tools to help set up different models and metrics to help compare input-output combinations.

In addition, the importance of trust is lower than found in the literature: Trust is not a big issue for the
NLP data scientist creating solutions to classical NLP tasks. However, trust plays a role in generative
tasks such as chatbots.

Challenges Several challenges have been identified in this study. The first is actionable error analysis,
where the user needs to understand why a particular error was made by the model. This can be
challenging due to the complexity and black-box nature of these models.

What has also been discussed is prompting. This is timely as it is often difficult to know why the model
is failing at that particular prompt. In addition, a small change in the input can have a large impact on
the output, making it difficult to predict the output.

Another challenge was evaluation. There are many different evaluation techniques available within NLP.
However, these metrics and strategies are not always consistent with the business case.

Finally, it was discussed that it is quite difficult to communicate these results to stakeholders. Reproducing
the results and presenting them correctly to stakeholders was mentioned as a need.

60

6.1. Findings & Implications 61

Potential of explainability From the formative study and evaluation, it was found that explainability
has potential benefits. Explanations can help better understand the model and, therefore, help with
prompt engineering or error analysis. Although these benefits were recognised in this study, the current
explainability techniques did not meet the above mentioned needs. Explanations should provide more
insight into the limitations of the model and how parts of the pipeline should be improved.

Implications These findings can be used in a number of ways. Firstly, new tools using open-source
models should consider these needs and challenges when creating an LLM-based tool, not just when
using explainability techniques. Addressing these needs will greatly benefit the tool’s usefulness and,
therefore, user satisfaction.

Second, vendors of closed-source models should adapt their tools to support the challenges. As
found in the formative study, there is a trade-off between open-source and closed-source models,
with controllability and opacity being a major disadvantage for closed-source models. However, these
models score higher in terms of performance and usability. Therefore, model vendors should include
explainability techniques and other supporting techniques in their output. This will solve part of the
trade-off and help the model user with guidance and error analysis.

SQ2: What are the explainability and functional requirements for a tool to support

these needs?

In terms of explainability needs, there is a need to elucidate model behaviour in order to assess
performance. Although explainability is not currently used by the practitioners interviewed in this study,
there is potential.

The most important explainability requirements are interpretability and explanatory power. Interpretability
will help to gain insight into how the prompt should be changed and how the model arrived at its current
output. Secondly, explanatory power is important because it was found in this study that the low level of
detail was rated negatively. This study found that the more complete the explanations, the better.
From the chosen explanation techniques, it could be seen that the participants were positive about all
three: uncertainty, feature importance and contrastive explanations. However, this research did not
prove that it was worth adding this extra layer of complexity by hosting an open source model and using
tools such as HELMET.

All of the available techniques, such as perturbation, CoT prompting, global explanations or mechanistic
interpretability, were not fully suited to the user’s needs. More research should be done on how to make
Transformer models more explainable, especially for the needs of the NLP data scientist.

Finally, fidelity was considered important, but it is unclear whether this was helpful. More research
should be done to confirm this particular need.

Tool Requirements For any new tool, several requirements will improve the usability of the tool.
Firstly, ensuring that it can work with all open source models was considered positive. It should be easy
to configure which model to use and to add custom parameters such as temperature. The tool should
also be able to compare and evaluate input-output combinations based on user-defined metrics.
Second, the tool should be modular. The combination of a Python environment was found to be
consistent with the NLP data scientist’'s working environment, but not the most appropriate for the
visualisations. An external platform where the results can be examined is recommended here.

Third, it should be clear how the tool works. This should apply to the features, by providing good
documentation and examples. But it should also be clear how to interpret the explanations. This could
be done in the Ul of the tool, as is done in HELMET, but it could also be done in other places.

Another important requirement is to solve the reproducibility problem. Reproducing results within LLMs
is considered difficult, so a tool should include the ability to save the logs and parameters to be able to
come back to these results later. This was also rated very positively.

Finally, the usability of the tool is very important. As well as being easy to set up with custom models,
this should also mean that the user interface is easy to use. This can be achieved by ensuring that the
Ul is clear and that the state of the system is visible. Tooltips can also be helpful here.

6.1. Findings & Implications 62

SQ3: Based on the requirements, how should the explainability tool look like?
Visualising explainability techniques is difficult, mainly because the explanation may still be difficult
to interpret. For example, token highlighting can be considered difficult for humans to interpret. The
evaluation showed that it helped a little to understand the model, but it still raised a lot of questions
about what it then actually meant. This was also the case for the certainty visualisation, which raised
questions about what it means when the model is uncertain. Creating interpretable explanations is
therefore still an unresolved area.

Tool design implications The tool should incorporate the modular structure described above. This
could be done by creating a separate web application to interact with the outputs and explanations.
For the model usage, this could be done by creating a wrapper around the Transformers library. This
has been very well received and will give a lot of implementation freedom, making it a great option for
calculating the explanations. HELMET and other tools use the features provided by this library, so itis a
good candidate for such a tool.

The web application should be able to be hosted online or locally. This was seen as positive as it made
it easier to collaborate and share results with others. Multiple levels of organisation will make it easier to
group users, experiment, and run them together.

It is recommended that logs of most actions be kept. This will greatly improve the reproducibility of
results and help with the interactivity of the Ul and the details page for each run.

A conventional layout is recommended for the User Interface (Ul), making it easier to understand
all the functionalities and to navigate through the application. Another factor is the use of the Direct
Manipulation Interface, where it is very clear what each button does and what can be expected after the
action is performed.

SQ4: How can the tool be implemented to integrate seamlessly into the workflow

of the NLP Data Scientist?

The current workflow of the NLP Data Scientist has been described in this research. After the use case
and data are available, the experimentation phase starts, where several hypotheses are created. Based
on this, solutions are explored and an evaluation pipeline is created. This will help evaluate the different
solutions using the same metrics. The most likely solutions are then implemented. This includes the
selection of the model, possible fine-tuning of the model, setting the hyper-parameters and immediate
engineering. Finally, the model is evaluated, from which new actions should be derived.

Transformers Library Most open-source tools are accessed through Huggingface using the Trans-
formers library. For any LLM-based tool to integrate well, it should therefore be based on this library. In
addition, the Python Jupyter notebooks are widely used, making the transformers library an appropriate
choice. Finally, having a Python package that can be installed via Pypi will also make the tool more
useful.

Python & JavaScript combination Creating a separate application for model use and explanation
interactions made it easier to implement and use. It created two distinct focuses, depending on the stage
of implementation. When models were being used, HELMET provided the tools needed to configure,
use and evaluate the model. When error analysis began, the web application could be set up to dive
deeper into potential errors and solutions.

Use HELMET as inspiration It can be concluded that the setup of the proof-of-concept created in
this study is fitting the NLP Data Scientists’ workflow. While limited explainability techniques can be
computed in the current implementation, the tool’s architecture does make it possible to use most of the
features of the web application. New visualisation techniques and features in the web application could
be implemented, making it an excellent tool for developing new techniques. It can be integrated with
other tools and resources, making it attractive to use.

6.2. Limitations 63

6.2. Limitations

It is challenging to research explainability for LLMs in a practical setting. While several measures have
been taken to create reliable and insightful results, limitations still exist. This section will state several
limitations in the methodology and findings of this thesis.

6.2.1. Methodological Limitations

While much time was invested in creating a well-designed methodology, the current approach has
several limitations. This section enumerates these limitations and presents how they were minimised or
mitigated as much as possible.

Biased evaluation Because of the way the evaluation was set up, multiple biases could arise. First,
using the Likert scale is often susceptible to positive response biases by social desirability or acquiescent
responding [62]. This can compromise parts of this research in terms of fairness and validity. Additionally,
it should be acknowledged that all participants from the evaluation were aware of the background of the
thesis and thus might have given the preferred answer instead of the honest answer. This is avoided
as much as possible by stressing that they should answer genuinely. In addition, all participants were
deliberately not updated on some parts of the development progress to further limit the risk of telling
only what the researcher wanted to hear.

Quantitative measures for evaluation The evaluation utilised qualitative measures, providing valu-
able insights, but also introduced a limitation regarding the evidence. The evaluation proved explainability
could be useful. However, this was based on self-evaluation, not using quantitative measures. More
investigation is needed to get quantitative measures of the tool’s effectiveness, such as improved model
performance or efficiently getting the correct result. Future evaluations should compare the quantitative
measures against a baseline to understand the possible gain of explainability fully.

Limitations of UEQ The User Experience Questionnaire (UEQ) provides insights into which aspects
of the User Interface (Ul) could be improved. However, it does not give a very clear direction on what to
solve concretely and how to achieve this. This thesis did not ask for an important measure, such as
the Importance-Performance Analysis (IPA) [42]. It might have been interesting to include one to get a
clearer picture of which scales are most important to improve.

6.2.2. Research limitations
The results of this study must be seen in the light of some limitations, which will now be presented.

Assumption of fidelity One of the desired properties of explainability, described in section 4.1,
describes the importance of fidelity. One might ask how far this applies to LLMs. For example, Sun et al.
[115] showed how the attention mechanism and CoT prompting were useful to the user in the context of
writing code. Repeating the research without this assumption might yield different and possibly better
results.

Generalisability In the formative study, only a limited number of practitioners were interviewed. This
limits the generalisability of this research in terms of its observations and conclusions, especially given
that NLP data scientists all work quite differently. This is acknowledged and taken into account by
supplementing the observations with research and literature by others.In addition, the in-depth interview
for the observations provided saturated insights as it was.

It should also be noted that this thesis was conducted within a single company, mostly located in North
Europe. While this provided a controlled environment for the experiment, it may limit its applicability
to other companies. Data science practices are highly context dependent and can vary significantly
between organisations. It also depends on factors such as the size of the organisation and the scope of
the NLP data scientist’s responsibilities.

6.3. Future work 64

6.3. Future work

This section outlines several potential future research directions, including explainability techniques and
recommended improvements to the current implementation of HELMET.

New explainability technique to improve model accuracy An interesting avenue of research could
be to develop a technique that provides insight into model accuracy beyond the current evaluation metrics.
Current explainability techniques do not provide enough information to improve model performance
and do not help to assess accuracy. Such new explanation techniques should focus on creating causal
relationships, which makes it easier to understand how the input and output are related. Inspiration can
be drawn from Ras, Gerven, and Haselager [102]

XAl better with better performing models Heuristically, it was found that better performing models
also made the XAl more meaningful. Within this thesis, the largest model used was 7B parameters. It
would be very interesting to see what 70B or even larger would do. If the XAl would be more useful
because it makes more sense to us/is closer to our reasoning.

Quantify the increased performance Another interesting research topic would be whether the current
implemented explainability techniques or other techniques can help increase the model’s performance.
This should be done by first setting a baseline and then asking participants to improve the quality of the
output using XAl. By comparing the results to the baseline, a quantitative measure of the performance
increase can be obtained.

Use-case dependent XAl It depends” was mentioned often during the evaluation. The potential of
explainability is acknowledged; the techniques were fairly useful, but they are still very much dependent
on the use case. More research on XAl for LLMs in different NLP tasks should be done, just like the
scenario-based approach by Wolf [130]. Acknowledged that it is situation-specific is done by Chazette
and Schneider [16]

Mental Model Reasoning To deepen one’s understanding of the persona, one can investigate the
user's mental model, sometimes called the theory of mind [83]. Understanding mental reasoning makes
it easier to create explanations that fit their reasoning. By studying their reasoning in more detail, better
explanations could be added to tools like HELMET.

Extending the implementation with closed source models To some extent, the tool could be
extended to work with closed-source models. An architecture is proposed in Figure 6.1, which would
make it easy to extend the tool. This would make the tool even more useful, especially when making
comparisons between particular models. Of course, the vendor should implement the explanations in
order to use them.

Implementation improvements Multiple improvements could be made to the implementation of the
tool. Here, a couple of suggestions are given, drawn from the evaluation.

First, an improvement for the contrastive explanations. This uses a reference token, which should now
be chosen manually. Some more information could be presented here, or even further, the token should
be suggested based on alternative words or Al suggestions. Regarding the other explanations, it would
also be better to have a single value for uncertainty and feature attribution. This would improve the
usefulness of the explanation.

Secondly, more built-in metrics should be implemented. This will make it easier to use the tool to
evaluate the output of the model.

Regarding the web applications, some additional improvements are suggested now. First, it would be
helpful to customise the level of detail that is presented. This will help to give the user to be able to dive
deeper into the explanation when needed. Additionally, it would be beneficial to be able to compare
more than two runs at the same time, as was suggested during the evaluation.

6.3. Future work 65

Model vendors with
APl accessable LLMs

HELMET WEBAPP

lGET

API ——
GET,
¢ POST
MongoDB

Runs
Projects

Vendors

Figure 6.1: Proposed Architecture with extension of Closed-Source models

Lastly, the steep learning curve is one part of HELMET that needs further improvement. During the
evaluation, it was concluded that the tool is difficult to learn, making it score low on the functional
requirements. Improvements should be made in this area to make it easier to start using the tool.

Conclusion

This thesis aimed to develop and evaluate an explainability tool to assist users’ needs. This was done by
conducting a formative study followed by building requirements and a design. Then, a proof of concept
was built, which was used to evaluate multiple parts of the tool, giving additional insights into the NLP
Data Scientist and its need for explainability.

The first step was to narrow down the user, which was decided to be the NLP data scientist working in
industry with Large Language Models (LLMs). A formative study was carried out to investigate their
needs, revealing user desiderata, their workflow and different perspectives on XAl. It was concluded that
NLP Data Scientists overlap with general Data Scientists; however, more focus was placed on prompt
engineers and less on feature engineers. In addition, the NLP Data Scientist did not use explainability,
which contrasts with some uses in other Data Scientist domains.

In addition, the formative study identified several areas where explainability could help with parts of the
development of LLM-based solutions. The potential benefits were to help with prompt engineering or
error analysis or do a better quality assessment. If explainability could help in these areas, it could be
seen as a major advantage over the closed-source models that are currently more widely used. This
decision is currently based on performance and cost, but explainability could be added as an additional
factor if the techniques provide sufficient insight.

Based on the observations and literature from the formative study, requirements could be defined.
These were divided into explainability requirements, formulated as desired characteristics, and tool
requirements. The requirements helped to create a usable tool that was aligned with the user’s workflow,
while the explainability requirements were aligned with the challenges. The most important explainability
requirements were interactivity, explanatory power and interpretability. Fidelity (also called faithfulness)
was considered as a desired property, but it turned out not to be an important requirement for the user.
A design was then created, including an architectural design and a Ul. Based on the desired properties of
explainability, it was decided which explainability techniques should be implemented. Three techniques
were implemented: uncertainty, token-level feature attribution and contrastive explanations. Uncertainty
was visualised by creating three categories into which a given token falls, highlighted by different colours.
In addition, the architectural design proved to be successful, as the modular system of the Python
package and the web application were positively evaluated.

The design was then implemented as a proof of concept, which could be used to evaluate the require-
ments and design decisions. The proof of concept, branded as a Human-Evaluated large Language
Model Explainability Tool (HELMET), gave more insights into the needs of the NLP data Scientist and
how they work.

HELMET was evaluated using guided hands-on sessions, after which participants reflected on the use-
fulness of the explanations, the degree of potential integration into their workflow, and the usability of
the interface. The results showed that the implemented explainability techniques were useful in some
cases, but did not fully satisfy their primary need for improved accuracy. It was also concluded that the
explanations were difficult for the user to interpret as they did not mean much to them. The tool was
found to fit well into their workflow due to its modular design and easy to install Python package.

The contribution of this thesis is threefold: A human-centred approach is taken to define and understand
the NLP data scientist, thereby contributing to the HCl community. Secondly, a well-considered list
of requirements and design has been made, including desired properties for explainability. Finally,

66

67

evaluation through creation has been used, resulting in an implemented open source tool for others to
use, as well as insightful data on what needs to be improved in further research.

Future directions include new explainability techniques that follow user needs and adhere to the
desired properties of explainability. Secondly, using the helpful feedback from the evaluation, future
improvements to the implementation could make HELMET an even better product.

In conclusion, HELMET demonstrates the potential of explainability techniques for LLMs and provides
valuable insights and tools for NLP data scientists. While there are areas for improvement, the foundation
laid by this research provides a robust design for developing more effective and user-friendly explainability
tools in the future.

(1]

(2]

(3]

[4]

(5]

(6]

[7]

8]

(9]

[10]

Bibliography

Marah Abdin et al. Phi-3 technical report: a highly capable language model locally on your
phone. en. arXiv:2404.14219 [cs]. Apr. 2024. DOI: 10.48550/arXiv.2404.14219. URL: http:
//arxiv.org/abs/2404.14219 (visited on 05/14/2024).

Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y. Lim, and Mohan Kankanhalli. “Trends and
Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda”.
en. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
Montreal QC Canada: ACM, Apr. 2018, pp. 1-18. ISBN: 978-1-4503-5620-6. DOI: 10.1145/
3173574 .3174156. URL: https://dl.acm.org/doi/10.1145/3173574.3174156 (visited on
09/28/2023).

Amina Adadi and Mohammed Berrada. “Peeking Inside the Black-Box: A Survey on Explain-
able Artificial Intelligence (XAl)”. In: IEEE Access 6 (2018). Conference Name: IEEE Access,
pp. 52138-52160. ISSN: 2169-3536. DOI: 10 . 1109 / ACCESS . 2018 . 2870052. URL: https :
//ieeexplore.ieee.org/document/8466590 (visited on 09/28/2023).

Al@Meta. “Llama 3 model card”. In: (2024). URL: https://github.com/meta-1llama/llama3/
blob/main/MODEL_CARD.md.

Qurat Ul Ain, Mohamed Anime Chati, Mouadh Guesmi, and Shoeb Joarder. “A multi-dimensional
conceptualization framework for personalized explanations in recommender systems 11-23". In:
1UI workshops. 2022. URL: https://api.semanticscholar.org/CorpusID:248301731.

J Alammar. “Ecco: An Open Source Library for the Explainability of Transformer Language
Models”. In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing: System
Demonstrations. Ed. by Heng Ji, Jong C. Park, and Rui Xia. Online: Association for Computational
Linguistics, Aug. 2021, pp. 249-257. DOI: 10.18653/v1/2021 .acl-demo . 30. URL: https:
//aclanthology.org/2021.acl-demo. 30 (visited on 11/02/2023).

Vijay Arya et al. “One Explanation Does Not Fit All: A Toolkit And Taxonomy Of Al Explainability
Techniques”. en-US. In: Oct. 2021. URL: https://research.ibm.com/publications/one-
explanation-does-not-fit-all-a-toolkit-and-taxonomy-of -ai-explainability-

techniques (visited on 11/22/2023).

Narges Ashtari et al. “From Discovery to Adoption: Understanding the ML Practitioners’ Inter-
pretability Journey”. In: Proceedings of the 2023 ACM Designing Interactive Systems Conference.
DIS '23. New York, NY, USA: Association for Computing Machinery, July 2023, pp. 2304-2325.
ISBN: 978-1-4503-9893-0. DOI: 10.1145/3563657 .3596046. URL: https://dl.acm.org/doi/
10.1145/3563657.3596046 (visited on 02/22/2024).

Giuseppe Attanasio, Eliana Pastor, Chiara Di Bonaventura, and Debora Nozza. “ferret: a Frame-
work for Benchmarking Explainers on Transformers”. In: Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics: System Demonstrations.
Ed. by Danilo Croce and Luca Soldaini. Dubrovnik, Croatia: Association for Computational
Linguistics, May 2023, pp. 256—-266. DOI: 10.18653/v1/2023 . eacl-demo.29. URL: https:
//aclanthology.org/2023.eacl-demo .29 (visited on 01/02/2024).

Oren Barkan et al. “Grad-SAM: Explaining Transformers via Gradient Self-Attention Maps”. In:
Proceedings of the 30th ACM International Conference on Information & Knowledge Management.
CIKM '21. New York, NY, USA: Association for Computing Machinery, Oct. 2021, pp. 2882—-2887.
ISBN: 978-1-4503-8446-9. DOI: 10.1145/3459637.3482126. URL: https://doi.org/10.1145/
3459637 .3482126 (visited on 10/10/2023).

68

https://doi.org/10.48550/arXiv.2404.14219
http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2404.14219
https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1145/3173574.3174156
https://dl.acm.org/doi/10.1145/3173574.3174156
https://doi.org/10.1109/ACCESS.2018.2870052
https://ieeexplore.ieee.org/document/8466590
https://ieeexplore.ieee.org/document/8466590
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:248301731
https://doi.org/10.18653/v1/2021.acl-demo.30
https://aclanthology.org/2021.acl-demo.30
https://aclanthology.org/2021.acl-demo.30
https://research.ibm.com/publications/one-explanation-does-not-fit-all-a-toolkit-and-taxonomy-of-ai-explainability-techniques
https://research.ibm.com/publications/one-explanation-does-not-fit-all-a-toolkit-and-taxonomy-of-ai-explainability-techniques
https://research.ibm.com/publications/one-explanation-does-not-fit-all-a-toolkit-and-taxonomy-of-ai-explainability-techniques
https://doi.org/10.1145/3563657.3596046
https://dl.acm.org/doi/10.1145/3563657.3596046
https://dl.acm.org/doi/10.1145/3563657.3596046
https://doi.org/10.18653/v1/2023.eacl-demo.29
https://aclanthology.org/2023.eacl-demo.29
https://aclanthology.org/2023.eacl-demo.29
https://doi.org/10.1145/3459637.3482126
https://doi.org/10.1145/3459637.3482126
https://doi.org/10.1145/3459637.3482126

Bibliography 69

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAl): Concepts, taxonomies,
opportunities and challenges toward responsible Al”. In: Information Fusion 58 (June 2020),
pp. 82—115. ISSN: 1566-2535. DOI: 10.1016/j.inffus.2019.12.012. URL: https://wuw.
sciencedirect.com/science/article/pii/S1566253519308103 (visited on 11/06/2023).

Jasmijn Bastings and Katja Filippova. “The elephant in the interpretability room: Why use attention
as explanation when we have saliency methods?” In: Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks for NLP. Online: Association for
Computational Linguistics, Nov. 2020, pp. 149-155. DOI: 10.18653/v1/2020.blackboxnlp-
1.14. URL: https://aclanthology.org/2020.blackboxnlp-1. 14 (visited on 10/04/2023).

Virginia Braun and Victoria Clarke. Thematic analysis: a practical guide. OCLC: on1247204005.
London ; Thousand Oaks, California: SAGE, 2022. ISBN: 978-1-4739-5324-6.

Sébastien Bubeck et al. Sparks of artificial general intelligence: early experiments with GPT-
4. en. arXiv:2303.12712 [cs]. Apr. 2023. DOI: 10 . 48550/ arXiv . 2303 . 12712. URL: http:
//arxiv.org/abs/2303.12712 (visited on 11/02/2023).

Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. “Machine Learning Interpretability:
A Survey on Methods and Metrics”. en. In: Electronics 8.8 (Aug. 2019). Number: 8 Publisher:
Multidisciplinary Digital Publishing Institute, p. 832. ISSN: 2079-9292. DOI: 10.3390/electroni
cs8080832. URL: https://www.mdpi.com/2079-9292/8/8/832 (visited on 11/21/2023).

Larissa Chazette and Kurt Schneider. “Explainability as a non-functional requirement: challenges
and recommendations”. en. In: Requirements Engineering 25.4 (Dec. 2020), pp. 493-514. ISSN:
1432-010X. DOI: 10.1007/s00766-020-00333-1. URL: https://doi.org/10.1007/s00766~
020-00333-1 (visited on 11/20/2023).

Hila Chefer, Shir Gur, and Lior Wolf. “Transformer Interpretability Beyond Attention Visualization”.
en. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Nashville, TN, USA: IEEE, June 2021, pp. 782-791. ISBN: 978-1-66544-509-2. DOI: 10.1109/
CVPR46437.2021.00084. URL: https://ieeexplore.ieee.org/document/9577970/ (visited
on 09/19/2023).

Zixi Chen, Varshini Subhash, Marton Havasi, Weiwei Pan, and F. Doshi-Velez. “What Makes
a Good Explanation?: A Harmonized View of Properties of Explanations”. In: Nov. 2022. URL:
https ://www . semanticscholar . or