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Chapter 1

Introduction

Dislocations are linear defects in the crystal structure of metals, they are largely
responsible for the material’s permanent deformation via their motion and mul-
tiplication. Elaborate interactions between the defects in the crystal structure
lead to complex forms of mechanical behaviour, often a reminder of a phrase at-
tributed to Frank: “Crystal defects are like people, it is the defects in them that
make them interesting” [1]. In spite of the scientific interest and technological im-
portance, a single formulation describing plasticity phenomena from nanometric
to macroscopic scales is lacking, even for pure metals. As early as 1953, Cot-
trell pointed out that “work hardening was the first problem to be attempted by
dislocation theory and may well prove to be the last to be solved” [2].
Modern industrial applications demand the design and optimisation of new al-
loys, improving their mechanical performance during plastic deformation. Dif-
ferent microstructures are introduced to achieve these requirements. However,
the complexity of their interrelations also increases, posing a challenge to our
understanding.

1.1 Deformation mechanisms in metals

The most important deformation mechanisms occurring in metals are deformation
by dislocation slip and twinning [3]. They can occur for different processing
conditions and crystal structures. Another important deformation mechanism
in fine–grained alloys is grain boundary sliding, where displacement of adjacent
grains occurs. These mechanisms determine the material’s mechanical behaviour.

1



CHAPTER 1 INTRODUCTION 2

1.1.1 Deformation by slip

Plastic deformation on a microscopic scale consists of the movement of large
numbers of atoms in response to an applied stress. Dislocations allow materials
to deform without disturbing their crystal structure at stresses below that at
which the atomic planes would slip if they were not present [4]. They accumulate
and slip in the material to accommodate strain as plastic deformation continues.
The Burgers vector b describes the magnitude and direction of the lattice dis-
tortion induced by a dislocation. Dislocations can attract or repel each other
depending on their orientation. If two dislocations with opposite Burgers vector
encounter in the same slip plane, they will annihilate each other [5]. This process
is defined as recovery.
Dislocation annihilation occurs more frequently when a dislocation can switch
from one slip plane to another; two mechanisms occurring at various tempera-
tures are responsible: at low temperatures (T < 0.3Tm, where Tm is the absolute
melting temperature), the governing dislocation annihilation process is cross–slip,
driven by thermally activated glide [6, 7]; at high temperatures (T > 0.6Tm), an-
nihilation is driven by vacancy–assisted dislocation climb [8]; and at intermediate
temperatures (0.3Tm < T < 0.6Tm) both processes take place, exhibiting a mixed
behaviour. These limits are only an estimate for face–centred cubic metals, but
their presence is well established from experiments in other crystal structures.
The balance between dislocation storage and annihilation determines the mate-
rial’s work hardening behaviour. Deformation by slip occurs in face–centred cubic
(FCC) metals with medium and high stacking fault energy (χ); body–centred cu-
bic (BCC) metals at medium and high temperatures, and at low strains for low
temperatures; and hexagonal–closed packed (HCP) metals at low strains or high
temperatures [3].

1.1.2 Deformation twinning

Deformation twinning occurs when dissociation of dislocations into partials occurs
due to localised stress concentrations in the material [9]; dislocation dissociation
can be induced by dislocation pile–up at crystal defects (including themselves
and solute atoms) or at grain boundaries [10], or by homogeneous lattice shear
in a region of high stress concentrations [9]. Stress accumulation arise around
them, becoming energetically favourable for dislocations to split into partials and
nucleate twin boundaries [3]. Twinning has been recognised to be an important
deformation mechanism in recent years for technological applications [11, 12].
Twinning takes place in several crystalline materials for various reasons: HCP
metals have fewer slip systems1, leading to earlier pile-up saturation [9]; when

1See table 2.1



CHAPTER 1 INTRODUCTION 3

BCC and FCC metals with low stacking fault energy are deformed at low tem-
peratures, dislocation cross–slip is more difficult to occur, limiting the material
capacity to change its shape (through dislocation motion), and the pile-up con-
centration rate is increased [3]. Figure 1.1 shows the twinning evolution in pure
magnesium under compression at room temperature. Twin density (volume frac-
tion) and thickness increase with strain [13].

Figure 1.1: Microstructure of pure magnesium after deformation at (a) strain of 0.5% and

(b) strain of 5.0% shows the increase of both twin density and size (dark plates) with the

increase of strain. Adapted from Li and Enoki [13].

The formation of coherent nanoscaled twins (boundaries) in relatively large grain
sizes prior to deformation has been possible in pure copper [11]; nanotwin bound-
aries increase the material’s yield strength by 7–10 times with respect to their
coarse-grained version, while preserving good ductility limits. These microstruc-
tures are obtained by employing a pulsed electrodeposition technique [11].

1.1.3 Grain boundary sliding

Plastic deformation in ultra–fine–grain materials (with grain sizes of a few mi-
crons or less) is usually controlled by grain boundary sliding (GBS) [14], where
adjacent grains displace with respect to each other to accommodate strain. De-
formation by slip is hindered by the reduced space for dislocation generation in
the grain interiors. Grain boundary sliding usually occurs at relatively elevated
temperatures (∼0.5Tm

2 and above, with Tm being the melting point). This pro-
cess is particularly important for superplastic forming of metals and ceramics,
where high tensile elongations can be reached, ranging from 200 up to a few
thousands percent [15].

2These limits are only an estimate from experimental observations.
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Two major mechanism are involved in GBS [15, 16]: The first mode is driven by
the movement of intragranular dislocations, facilitating boundary displacement;
the second mode involves grain elongation through stress–directed vacancy dif-
fusion. The former usually takes place at medium temperatures (T ≤ 0.6Tm),
whereas the latter is present above them.
Meyers et al. [14] have pointed out that grain boundary sliding can play a
significant role in the development and exhibition of novel properties of UFG and
nanostructured materials. Moreover, Van Swygen et al. [17, 18] have shown that
GBS is the primary deformation mechanism in nanocrystalline materials and that
such sliding mechanism results in a build–up of stress across neighbouring grains.
This deformation mechanism will not be considered in this thesis. However, it
can be shown that the main outputs from this work can be applied to describe
cavitation kinetics and grain boundary sliding behaviour in superplastic alloys
[19].

1.2 Modelling plastic deformation in metals

Materials modelling has emerged as a field of research with unique features, most
notably the ability to analyse and predict a wide range of physical phenomena
[20]. Stemming from atomic interaction descriptions up to macroscopic stress
distributions in a deformed specimen, many approaches have been proposed to
describe and understand the material’s mechanical properties. Some of the most
common modelling techniques are discussed in Chapter 2.
Engineering alloys often display an elaborate composition and undergo sophisti-
cated thermal processing schedules. Their ability to withstand load stems from
the combination and interaction of elements in their internal microstructure. Dis-
locations are central to determine alloy mechanical properties during plastic de-
formation. Their evolution and interactions with other crystal defects determine
the material’s ability to accommodate strain. For instance, at high temperatures,
dislocation annihilation (reduction in material’s strength) is mainly controlled by
the climb of dislocations, a process controlled by the diffusion of vacancies; de-
formation twinning requires the dissociation of dislocations into partials and the
formation of twin boundaries3.
Developing a theoretical tool for describing dislocation evolution and concomi-
tant interactions with other defects in terms of composition, loading conditions
and microstructure can be crucial for designing new alloys with improved me-
chanical properties. Isolated contributions of dislocation interactions with other
crystal defects, such as vacancies [8] or twins [21, 22], have been considered in

3A consequent increase in the material’s strength is driven by twin growth and their inter-
action with dislocations.
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previous work. However, several parameters, such as the critical stress for twin
nucleation or the critical resolved shear stress for slip, are difficult to estimate
from experiments. A number of constitutive or phenomenological relations are
introduced for each material at different loading conditions. These relations usu-
ally remain valid for limited loading and compositional ranges, impeding their
extension to predict new scenarios. Moreover, various interactions between crys-
tal defects and microstructural features are difficult to isolate for characterising
their contribution; for instance, quantitative analysis to solid solution effects in
HCP alloy’s twinning behaviour and work hardening is not clear yet, as simul-
taneous twin nucleation and grow, and dislocation accumulation occurs during
straining. Thus, developing a theoretical tool able to incorporate all these effects
into a single formulation represents a major challenge for material scientists.

1.3 Scope and outline of the thesis

This work aims to describe plastic deformation and microstructure evolution of
metals at various scales in terms of dislocation behaviour. The theory is based
on statistical thermodynamics, where the entropy ∆S is proposed to incorporate
the possible paths for dislocation motion. Other than estimating the velocity
gradients a dislocation may reach, the number of possible paths (configurations)
that are favourable in terms of free energy at a given temperature and strain rate
are considered in ∆S.
It will be demonstrated that ∆S features strongly in plasticity: 1) Its descrip-
tion supplies a physical foundation to the Kocks–Mecking formulation across the
scales at a variety of deformation conditions for FCC, BCC and HCP metals, by
identifying the activation energy for dislocation annihilation. 2) The transitions
from low, medium and high temperature dislocation annihilation mechanisms are
physically explained. 3) It aids in describing the conditions for the formation of
dislocation cells and their average size, as well as the work hardening behaviour
at large strains in FCC and BCC metals. 4) Deformation twinning in HCP,
FCC and nano–twinned copper can be described. 5) The transition tempera-
tures where different twin modes predominate in HCP metals are predicted. 6)
The dynamic recrystallisation behaviour in pure and multicomponent FCC sys-
tems can be described; the critical conditions for recrystallisation occurrence are
obtained in terms of alloy’s composition and deformation parameters. 7) Solid
solution effects in work hardening can be identified. All these results allow to
describe various plasticity phenomena in terms of a single parameter: the average
dislocation density.
Succinct expressions for the dislocation generation, dynamic recovery and re-
crystallisation rates in the dislocation evolution equation are obtained with this
approach. These terms are expressed in terms of a number of physical parameters
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(such as shear modulus, stacking fault energy, vacancy formation and migration
energy), temperature, strain rate, and chemical composition. This aids to reduce
the number of constitutive relations and parameters to be identified for each
material during deformation, by thermodynamic–based descriptions that can be
employed in several systems.
The outline of this thesis is as follows: in Chapter 2, basic dislocation properties
are reviewed, some of the most relevant dislocation arrangements in metals are
described, the entropy of a dislocation and modern modelling techniques describ-
ing plastic deformation and dislocation behaviour at various scales are discussed.
Special emphasis is made on the Kocks–Mecking equation.
Chapter 3 presents the main body of the theory for FCC metals; stastitical
entropy is defined in terms of dislocation kinetics at various temperatures. This
allows to describe: 1) Dynamic recovery (DRV) at low and high temperatures,
which is obtained by performing an analysis on a dislocation segment undergoing
annihilation. 2) Dislocation cell formation and misorientation, where entropy
accounts for the dislocation displacement energy to form cells. 3) Nanotwinning,
where twin and grain boundaries act as barriers for dislocation motion. The
model results are applied to pure copper, nickel, aluminium and silver.
The theory is extended in Chapter 4 to describe plasticity in body–centred cubic
(BCC) metals, where additional crystallographic features are present.
Deformation twinning in pure hexagonal–cubic (HCP) metals (Ti, Mg and Zr) is
described in Chapter 5.
In Chapter 6 the theory is extended to model dynamic recrystallisation (DRX)
in FCC pure metals, where grain nucleation and growth occurs from high–angle
(sub)grain boundaries (due to strong dislocation accumulation).
Multicomponent effects in the theory are introduced in Chapter 7; high temper-
ature deformation (DRV+DRX) in FCC single phase multicomponent systems
is reviewed; an application to the hot forming of low alloy steels is presented;
work hardening of twinning–induced plasticity (TWIP) steels is also delineated.
Following this, concluding remarks and a summary of this thesis are presented.
The theory is able to describe plastic deformation in 12 pure elements (Cu, Ni,
Al, Ag, Fe, Mo, Ta, V, W, Ti, Mg and Zr) and 28 alloys (including more than
20 steels). This thesis covers dislocation evolution in temperature ranges from
very low up to near–melting point, and for up to 7 orders of magnitude in strain
rates.



Chapter 2

Background

General properties of dislocations are presented in this chapter. The strain energy

induced by a dislocation segment is defined; the dislocation dissociation process and

stacking fault formation are discussed. Basic characteristics for dislocation motion are

introduced; dislocation cross–slip and vacancy–assisted dislocation climb are briefly

summarised. Dislocation thermodynamics and entropy effects on dislocation formation

are discussed. The dislocation arrangements that are analysed throughout this thesis

are defined: Low–angle grain boundaries, dislocation cells and nano–twins. The most

relevant modelling techniques for describing dislocation motion and population evolu-

tion at various scales are presented. Special emphasis is made on the Kocks–Mecking

equation, as modifications of this approach will be employed in the following chapters

for describing several deformation mechanisms.

2.1 Basic dislocation theory

A dislocation is defined as a crystal defect with atoms being misaligned around the
dislocation line. The misalignment is with respect to the otherwise perfect crystal
structure, smaller than one interatomic distance, and vanishes with distance from
the dislocation line. There are two main dislocation types: edge and screw. An
edge dislocation can be described as the result of an extra half–plane of atoms
inducing planar distortion around it. A screw dislocation can be seen as the result
of an atomic plane being sheared, inducing a spiral distortion on its surroundings.
In real crystals, dislocations form in many different ways. For example, they can
appear by shearing along crystal planes, or by condensation of interstitials (extra
atoms in the lattice) or vacancies (empty atomic sites) [5]. The Burgers vector b
of an edge and screw dislocation are normal and parallel to the dislocation line,
respectively. Figure 2.1(a) and (b) shows the atomic arrangement around an edge

7



CHAPTER 2 BACKGROUND 8

and screw dislocation in a simple–cubic crystal, respectively; the Burgers vector
orientation is also show for both cases. In real materials, dislocations are usually
found of mixed mode. Figure 2.1(c) schematically shows a curved dislocation
with an edge orientation at one end (on the left) and a screw orientation at the
other end (on the right).

Figure 2.1: Schematic representation of the atomic arrangement around an (a) edge and (b)

screw dislocation, with their respective b orientation; and a (c) curved dislocation with mixed

modes. Adapted from [23].

The strain energy per unit length induced around a screw dislocation is described
by [5]

E =
µb2

4π
ln

(
Rcore
rcore

)
, (2.1)

where µ is the material’s shear modulus and b is the magnitude of the Burgers
vector, Rcore and rcore are the upper and lower cut–off radii that define the
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limit of the dislocation’s elastic zone, respectively. The strain energy of an edge
dislocation is similar to the previous equation, but an additional factor 1/(1− ν)
is introduced, where ν is the Poisson ratio. rcore is usually taken between b
and 5b [3], and Rcore depends on the presence of other dislocations. If only an
approximate value of the dislocation energy is required, the previous equation
can be simplified to [3]:

Ed =
1

2
µb2. (2.2)

This equation is expressed in terms of the energy per unit length. The dislocation
density in a material, ρ is expressed as the total dislocation length per unit
volume.
Dislocations glide if an applied force reaches a critical resolved shear stress. They
slip along preferred planes and directions. The planes spanned throughout a
dislocation line and b are called the slip planes; and the direction of movement
is called the slip direction. The combination of slip plane and direction define
a slip system [5]. Table 2.1 shows the most common slip systems observed for
several FCC, BCC and HCP metals [5]; it is worth noting that different systems
may operate as well, as will be introduced in the following chapters.

Table 2.1: Slip systems for FCC, BCC and HCP metals.

Metal Crystal Slip plane Slip direction Number of
structure slip systems

Cu, Al, Ni, Ag, Au FCC {111} 〈110〉 12
Fe, Mo, W, Ta BCC {110} 〈111〉 12
Fe, W, Ta, V BCC {112} 〈111〉 12

Fe, Cr BCC {123} 〈111〉 24
Ti, Zr HCP {1010} 〈1120〉 3

Mg, Zn, Co HCP (0001) 〈1120〉 3
Ti, Mg HCP {1011} 〈1120〉 6

Plastic deformation results from the motion of dislocations, and the average dis-
location velocity 〈v〉 can be related with the macroscopic axial strain rate ε̇, via
the Orowan equation [5, 24]:

ε̇ = bρm〈v〉. (2.3)

where ρm is the mobile dislocation density. 〈v〉 depends on the deformation
conditions [25], however it is not possible to obtain a specific velocity distribution,
as dislocation motion is highly erratic [26], as will be discussed in Chapter 3.
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2.1.1 Partial dislocations and stacking faults

Closed–packed structures (e.g. FCC and HCP metals) are formed by stacking
atomic planes in specific periodic structures. For instance, a FCC structure
is formed by periodically stacking three different atomic planes (A, B and C);
Figures 2.2a-c show a schematic representation of the stacking process [25]. The
stacking sequence for this structure is ABCABCABC.

Figure 2.2: FCC stacking process: (a) a reference atomic plane A is defined, (b) an additional

plane B is placed on top of the interatomic spaces of A, and (c) a plane C is added on top of

the interatomic spaces of B, being not coincident with atoms of A. (d) Typical stacking fault

sequence is formed on a FCC structure by shifting atoms from B to C position.

Stacking faults originate from shifting the atomic arrangements in the sequence,
or by a swapping the stacking order. For instance, the sequence
ABCACABC carries a fault by the omission of a B plane (by shifting B to C
atom positions). Figure 2.2d shows a schematic representation of this fault in
the FCC lattice projected on the (111) plane.
The modified stacking sequence is delimited by a pair of partial dislocations with
Burgers vector that does not equal a lattice vector, and a lower strain energy
(equation 2.2) [5, 27]. The width of the fault is a consequence of the balance
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between the repulsive force between the partial dislocations and the stacking
fault energy χ. The stacking fault energy per unit area is inversely related to
rpart [27]

χ =
(2 + ν)µb2

24π(1− ν)rpart
, (2.4)

where rpart is the equilibrium distance between partials. The stacking fault en-
ergy determines the extent to which perfect dislocations dissociate into partials
to lower the strain energy around the dislocation.

2.1.2 Dislocation cross–slip

In general, dislocations glide on a unique slip plane. However, screw dislocations
can switch from one slip plane into another with relative ease, as their Burgers
vector is parallel to the dislocation line [25]. In contrast, edge dislocations require
the addition or disappearance (through diffusion) of atoms at the core, making
this process energetically less favourable than in screw dislocations [25]. This
mechanism is called cross–slip.
Cross–slip frequently occurs when dislocations split into partials, as they propa-
gate along the most densely packed planes, which are at a certain angle adjacent
to the primary slip plane. Figure 2.3 shows a schematic representation of this
process.

Figure 2.3: Elementary cross–slip process in a FCC metal. A dislocation partial switches

from (111) to (111) plane. Adapted from W. Puschl [7].

Cross–slip is thermally activated and its frequency decreases with temperature
[7, 25, 28]. It is one of the most important dislocation mechanisms of plastic
deformation; it strongly features in dislocation generation, annihilation (dynamic
recovery), and pattern (cell) formation [7]. This mechanism is more difficult to



CHAPTER 2 BACKGROUND 12

activate in metals with low stacking fault energy, as dislocation dissociation is
less favourable (equation 2.4).

2.1.3 Vacancies and dislocation climb

Point defects affect the performance of several material properties, such as ther-
mal conductivity, creep and work hardening [28]. Particularly, vacancies have
a major importance in dislocation theory, as their mutual interaction provokes
dislocations to undergo climb from one slip plane into another, increasing the
number of dislocation encounters for annihilation [8].
A vacancy can be formed by thermal fluctuations in the lattice, inducing atom
vibrations and local displacements; “empty” sites result from this process, whose
concentration increases with temperature. Vacancies undergo diffusion [28], hence
following a random walk. They move through the crystal structure from one
atomic site to the next at an average frequency ϑ

ϑ = ϑD exp

(
− Em
kBT

)
, (2.5)

where ϑD = 1013 s−1 is the Debye frequency, and Em is the vacancy migration
energy. The vacancy concentration at equilibrium ceq equals [4]:

ceq = exp

(
− Ef
kBT

)
, (2.6)

where Ef is the vacancy formation energy.
The chemical potential µv induced by the formation of a number of vacancies is
[4]

µv = kBT ln
cconc
cm

, (2.7)

where cconc is the actual vacancy concentration, cm is a reference vacancy con-
centration at the melting point, kB is the Bolztmann constant, and T is the
temperature.
Vacancies are easily adsorbed around a neighbouring edge dislocation. The
“empty” site formed by a vacancy is filled by an atom at the dislocation’s
core; this cancel’s the dislocation’s local distortion, shifting the distortion by
half atomic plane (up or down). Thus, the dislocation “climbs” to an adjacent
slip plane. Argon and Moffatt [8] have developed a hard sphere model to visualise
the climb mechanism of an edge dislocation. From this analysis, they proposed a
model for the dislocation climb velocity vc, being controlled by vacancy emission
around a dislocation. Under an applied stress σ, vc equals:

vc = 2bϑDncoord

(
b

d

)2

exp

(
− Qself

kBT

)(
exp

(
σΩ

kBT

)
− 1

)
, (2.8)
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where ncoord is the crystal structure’s coordination number (this model was de-
veloped for FCC metals), d is the stacking fault width, Qself is the atomic self
diffusion energy (Qself = Ef + Em) and Ω is the atomic volume. This equa-
tion shows that dislocation climb mainly occurs at high temperatures due to an
increased vacancy concentration and motion.

2.2 Entropy and dislocation thermodynamics

In Cottrell’s classical work [29], the free energy for dislocation formation ∆Gdis
is estimated. ∆Gdis contains the strain energy ∆Udis induced by atomic dis-
placements when a dislocation is introduced and entropy contributions from the
possible locations (configurations) of a dislocation in the material ∆Sconfig, and
from atom vibrations due to thermal oscillations ∆Svib:

∆Gdis = ∆Udis − T∆Sconfig − T∆Svib. (2.9)

A configurational entropy exists because the dislocation can be arranged in the
crystal in various ways. By assuming the dislocation line to be straight, the
number of possible positions ndis of a dislocation in the crystal (if the specimen’s
area normal to the line is A) is ndis ' A/a2, where a is the atomic spacing. The
configurational entropy of a dislocation per atomic plane along the line of length
L equals [29]

∆Sconfig = − a
L
kB lnndis = − a

L
kB ln

(
A

a2

)
. (2.10)

This value was found to be in the range of ∼ 10−6kB (8.6× 10−11 eV/K)[29, 30,
31]. The vibrational entropy ∆Svib is obtained by combining a linear oscillator
model for N atoms with the total atomic displacement (due to the presence of
a dislocation). ∆Svib was found to be in the range of ∼ 3kB per atom plane.
Cottrell concluded that entropy contributions to the free energy of formation are
very low with respect to the strain energy.
This analysis was employed for dislocation formation only, and was not extended
for the possible configurations for dislocation glide. ∆Svib is not expected to
change significantly when a dislocation glides, passing through the atom lattice
[5, 32]. However, the configurational entropy contribution when dislocations glide
can become relevant, as ∆Sconfig will account for the energy (dissipation) at every
moment, continuously increasing the number of possible paths during the glide
process. Thus, if it is desired to model plastic deformation when strain increases,
this term has to be taken into account.
The use of thermodynamics for describing dislocation evolution in plastic defor-
mation has been widely employed by different methods. For instance, Ryu et
al. [33] have recently revisited the entropy effect on dislocation nucleation via
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molecular dynamics simulation (Section 2.4.1). They have compared the nucle-
ation rate when a constant strain γ and stress σ are considered, respectively. The
dislocation nucleation rate Idis at a given strain γ is

Idis = ν0 exp

(
− Fc(T, γ)

kBT

)
, (2.11)

where Fc is the activation free energy, and ν0 = kBT/h is a frequency, and h is
Planck’s constant. Fc is defined as Fc(T, γ) = Ec(γ) − TSc(γ), where Ec and
Sc are the activation energy and entropy, respectively. On the other hand, the
activation free energy for a constant stress σ can also be obtained by applying
the Legendre transform Gc = Fc − σγV , where V is the volume of the ensemble.
They found large activation entropy values for both scenarios: The activation
entropy contribution at constant strain is caused by thermal expansion, with
negligible contribution from the vibrational entropy, whereas the activation en-
tropy at constant stress is significantly larger than that at constant strain, as a
result of thermal softening and vibrational effects. They concluded that entropy
effects are important for describing dislocation nucleation rate at an atomic scale.
Langer et al. [34] have postulated a thermodynamics–based approach to describe
dislocation evolution by writing equations of motion for the flow of energy and
entropy associated with dislocations. They propose an equation of motion for the
average dislocation density ρ that is based on the second law of thermodynamics
and energy conservation. An effective temperature T̃ defined as the stored energy
(due to dislocations) variation with respect to the configurational entropy (of
atomic displacements and rearrangements). The second law requires ρ to relax
towards its most probable (equilibrium) value at the steady state ρSS depending
on the effective temperature T̃ . The evolution equation has the form: dρ

dε =
k
[
1 − ρ

ρSS

]
, where k is a constant depending on material type and deformation

conditions. More importantly, they concluded that dislocation entropy is an
essential ingredient of a theory of dislocation–mediated deformation. However,
no dislocation arrangements nor additional crystal defects are taken into account
(e.g. vacancies at high temperatures). Although the flow stress response is
recovered for various temperatures and strain rates in pure copper, a considerable
number of parameters (six) were fitted.
Rivera and Huang [35] have employed irreversible thermodynamics theory as a
framework to describe plastic deformation in pure metals and alloys. In their
approach, the total entropy production equals the contribution of the entropy
generation of the system of all irreversible processes (dislocation generation,
glide and annihilation) and the entropy flux rate between the system and the
surroundings. Expressions describing the average dislocation density at various
deformation conditions are obtained, as is presented in Section 2.4.4.
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2.3 Dislocation arrangements

2.3.1 Low angle grain boundaries: Tilt boundaries

Grain boundaries are interfacial defects created between two grains that have
different crystallographic orientation. When the misorientation between adjacent
grains is small, typically below 10–15◦[3], it is customarily refereed to as a low–
angle grain boundary (LAGB). When the angle of misorientation is large (above
15◦), the boundary is referred to as a high–angle grain boundary (HAGB).
The simplest LAGB is a tilt boundary ; this structure can be described in terms
of dislocation arrays, consisting of a wall of parallel dislocations stacked perpen-
dicular to the slip plane as illustrated in Figure 2.4.

Figure 2.4: Schematic description of a tilt boundary.

The average misorientation angle (θ) equals [4]:

θ = sin

(
b

lw

)
≈ b

lw
, (2.12)

where lw is the average dislocation spacing at the boundaries. If θ is small, the
energy of a tilt boundary per unit area can be approximated by [3]:

γs ≈
µb2

2lw
=

1

2
µbθ. (2.13)

HAGBs have a higher energy content; dislocations cannot traverse the boundaries
during deformation, provoking dislocations to pile–up and stack around them.
However, their effect on dislocation behaviour and plasticity is less understood
[3, 36].
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2.3.2 Dislocation cells

In early stages of deformation, dislocations multiply and gather to form networks.
In such process, dislocations glide, slip and undergo cross–slip, intersecting each
other and forming cellular structures [7, 37]. Experimental results show that dis-
location cells are formed under specific circumstances: FCC metals with medium
and high stacking fault energy, as well as BCC metals at medium and high tem-
peratures, due to the high cross–slip rate [38, 7].
Compared with a dislocation forest, cellular structures represent an effective
means to reduce the stored energy due to deformation [3, 39]. Figure 2.5 shows an
example of dislocation cell arrangements in copper at room temperature initially
strained to 10% at different strain rates [40].

Figure 2.5: Dislocation cell morphology (dark regions) after 1 day at room temperature of

tensile test specimens initially strained to 10% at different strain rates: (a) 0.05 s−1, (b)

0.005 s−1, (c) 0.0005 s−1 and (d) 0.00005 s−1. Adapted from Kuo and Lin [40].

Determining the conditions for the formation and evolution of cells and subgrains
in engineering alloys remains a topic of fundamental importance in the theory of
metallurgy. Cell size and misorientation are highly dependent on temperature,
strain and strain rate. Such parameters are at the centre of metal processing
conditions in the advanced alloys industry, and their prediction can have a great
influence in the control and improvement of mechanical properties. An eloquent
example is the formation of subgrain boundaries in high temperature alloys, when
grain nucleation and growth occurs from HAGB containing an elevated density
of dislocations [3], triggering recrystallisation and causing microstructural degra-
dation (such as grain coarsening), decreasing service life [3, 27].
Many authors have pointed out that the average cell size (dc) is inversely propor-
tional to the square root of the average dislocation density (ρ) [41, 42, 43, 44, 45]:
dc = κc/

√
ρ, and the average misorientation angle (θ) follows a power–law depen-

dence of the applied strain (γ) [46]: θ = κθγ
2/3. The proportionality coefficients

κc and κθ are obtained by fitting to experimental data to describe the behaviour
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under specific deformation conditions. On the other hand, it has also been found
that the cell size and misorientation angle distributions follow a master function
characterised only by their average values [46, 47, 48]. Such relations simplify
the problem of finding the actual distributions across the material by focusing on
their average values only. There is no theory able to predict the kinetics of cell
size and misorientation evolution during processing and operation.

2.3.3 Nano–twin boundaries

In recent years, nanocrystalline materials have been developed aimed at enhanc-
ing the strength and ductility of alloys. The introduction of coherent nanoscaled
twins (TB), typically between 15 and 100 nanometers, for ultra–fine grained cop-
per of grain size typically between 400 and 1500 nanometers, has shown to induce
excellent properties in both strength and ductility [11]. Figure 2.6 shows trans-
mission electron microscopy (TEM) images of pure copper composed of nanoscale
twin lamellae of different thickness [49].

Figure 2.6: TEM images of as-deposited Cu samples with various mean twin thicknesses:

(a) 96 nm, (b) 15 nm, and (c) 4 nm. Average grain size ∼450 nm. Adapted from Shen et al.

[49].

Nanotwins in fine grains are synthesised in high–purity copper by using a pulsed
electrodeposition technique from an electrolyte of CuSO4 [11]. The incorporation
of nanotwins and microscopic grains allows the material to increase in ductility,
with respect to its nanograined version. Coherent twin boundaries are as effective
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as grain boundaries in material strengthening. Moreover, nanotwinned structures
are energetically more stable than nanograined counterparts. Their mechanical
response improves when the strain rate increases [50]; however, You et al. [51]
have observed that microhardness decreases when the material is rolled at 77 K
with respect to a specimen rolled at room temperature. This effect suggests the
effect of different underlying deformation mechanisms.

2.4 Modelling techniques

2.4.1 Molecular dynamics

Molecular dynamics (MD) simulations reproduce atomic interactions employing
classical Newton equations with semiempirical potentials that describe atomic
interactions [52, 23]. A method to generate a dislocation is by deviating lattice
positions of adjacent atoms. The characteristic velocity (or mobility) of such
dislocation segments has been studied for very short time periods, typically in
the range of 1 ps [53, 54, 55, 56].
Several microstructural features can also be examined with these simulations. For
instance, the vacancy formation and migration energy is obtained by removing
atoms in the arrangement [57, 58]; the stacking fault energy is reproduced by
modifying the stacking sequence in the lattice [59]; grain boundary migration
can be described [60, 61]. Dislocation interactions with other defects can also
be reproduced. However, MD simulations are limited to short time deformation
periods (up to ∼10−6 s) and number of atoms in the arrangement due to the
prolonged computing times. Thus, their application is limited to problems at a
small length scale and few crystal defects. Atomic potentials have to be developed
for different alloys.

2.4.2 Discrete dislocation dynamics

Discrete dislocation dynamics (DDD) describes the collective behaviour of a set
of dislocations under an external stress σapp [20, 62]. Each dislocation line is
represented explicitly; it is composed by a succession of elementary segments of
straight edge or screw type dislocations. Long–range interactions are determined
from elasticity theory (equation 2.1), and constitutive rules are introduced for
their nucleation, mobility, annihilation and short–range interactions [23].
The force per unit length F acting locally on a dislocation is given by the Peach–
Koehler equation [28]

F =
(
(σint + σapp) · b

)
⊗ ξ, (2.14)

where σint is the stress induced by other dislocations, ⊗ is the vector product,
and ξ is the unit vector of the dislocation line direction. Most of the computing
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time of the simulation is employed to solve this equation. A relation between the
dislocation velocity and the applied stress is usually represented by an Arrhenius
[63], or by a proportionality relation (drag–force type) [64, 65]. Some authors
also employ a differential equation for the velocity vector v that accounts for an
inertia term, a drag term and a driving force vector [20]

msv̇ +
1

Ms
v = Fs, (2.15)

where ms is the effective dislocation segment mass, Ms is the dislocation mobil-
ity that depends on the temperature and applied stress, and Fs represents the
external forces acting on a dislocation. The Orowan equation (2.3) is applied to
obtain the strain rate effect on each slip plane.
The dislocation generation and annihilation rate is obtained by estimating the
dislocation density on each slip system ρi with the equation [66]:

dρi

dγ
=

1

b

(√∑
j kjρ

j

Kddd

)
− yρi, (2.16)

where ρj is the dislocation density of other slip planes; kj and Kddd are dislocation
generation constants that depend on the specimen orientation, applied stress and
dislocation interactions; and y is the dynamic recovery term. These constants
are fitted for each slip system, temperature and material.
Discrete dislocation dynamics aim at describing microstructure formation, dis-
location interactions, density, stored energy and local stresses in the material.
However, the evolution of discretised segments requires long computing times,
and singularities in the elastic equations may occur. This method can describe
low dislocation densities only, due to long computing times for equation solving;
thus, the deformation conditions tackled by this method are usually far from
those for industrial applications [20, 23].

2.4.3 Crystal Plasticity/ Finite Element Method

Crystal Plasticity (CP) modelling is based on continuum mechanics and varia-
tional principles; an equilibrium solution is obtained between the applied external
forces and the compatibility of internal displacements (depending on the mate-
rial’s mechanical resistance) in a volume element (polycrystal) to undergo plastic
deformation. This volume is discretised into finite elements (FE) and their equa-
tions of motion are solved [67]. A dimensionless strain tensor F is defined by
comparing element displacements induced by an external force with respect to
the unstrained material. Plastic flow evolves according to the velocity gradient
[68]: L = ḞF−1 [s−1], where Ḟ is the derivative of F with respect to time. This
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tensor is composed by an elastic Le and a plastic Lp response. The former is
related to the elastic elongation that is restored once the external stress is re-
moved. Lp is induced by dislocations provoking an irreversible distortion. LP is
equal to the sum of shear rates on all slip systems:

Lp =
∑
i

γ̇αmα ⊗ nα, (2.17)

where mα and nα are unit vectors describing the slip direction and the normal
direction to the slip plane in the slip system α, respectively; and γ̇α is the shear
rate on that same system. Finite Element Method (FEM) is employed to solve
these equations.
Phenomenological equations are defined to relate γ̇α with an applied shear stress
τα (on the slip system α) and critical resolved shear stress ταc to activate the slip
system α: γ̇α = f(ταc , τ

α), where f is usually a power–law expression. A number
of parameters are fitted for each system.
The variation of ταc in time (τ̇αc ) depends on the shear strain contribution and
critical resolved shear stress of other slip systems. Empirical relations are fitted
to capture micromechanical dislocation interaction in different slip systems.
Equation 2.17 describes plasticity in terms of the critical resolved shear stress for
each slip plane only, and it lacks microstructural information. An extension can
be made to relate the dislocation evolution to the effective stress on every slip
system. For instance, mesoscale methods describe the average dislocation density
evolution of each slip plane with simple relations1 [69, 70, 71]; on the other hand,
discrete dislocation dynamics have been employed to describe specific dislocation
arrangements [72, 73].
Deformation twinning can be directly incorporated into this methodology by in-
serting an additional twinning distortion term in equation 2.17 [74, 75]. Once
again, additional phenomenological relations are required to describe twin evolu-
tion with deformation.
Another approach at the continuum scale is based on combining the von Mises
criterion for plastic flow, and postulating the stress tensor variation σ̇ in terms
of the strain rate tensor [76]: σ̇ = C(ε̇− ε̇p), where C is a constant tensor, and ε̇
and ε̇p are the total and plastic strain rate tensors, respectively. This approach is
widely employed in industry for describing the macroscopic flow stress response
in various directions.
These methodologies incorporate orientation effects in plasticity and are is able
to describe the macroscopic material response. However, a number of semiem-
pirical or phenomenological relations for the critical resolved shear stress, strain
rate and temperature are introduced with several fitting parameters. Additional
techniques are required to describe microstructure evolution.

1See Section 2.5.
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2.4.4 Mesoscale approaches

Several approaches at the mesoscale (typically accounting for microstructure evo-
lution occurring between 10−8–10−5 m) have been proposed. These methods
focus on describing plasticity as a function of one or more internal state vari-
ables. One of the most employed phenomenological models at the mesoscale is
the Kocks–Mecking (KM) formulation, which accounts for the competition be-
tween dislocation generation and annihilation, describing the evolution of the
average dislocation density ρ during deformation [6]. This formulation is further
analysed in Section 2.5.
Another approach has been proposed by Huang et al. [77, 35], where plasticity
is described by means of an irreversible thermodynamics framework. Dislocation
motion is considered as the main energetic contributor to plastic deformation.
This theory is based on Prigogine’s concept of entropy S in irreversible processes
[78]. It is postulated that the total entropy change dS is null in a stationary
state and all state variables are independent of time: the entropy production
rate in the system diS is compensated by the entropy flux of the system to the
surroundings deS

dS

dt
=
diS

dt
+
deS

dt
= 0. (2.18)

Three major irreversible processes take place during deformation: dislocation
generation, glide and annihilation. diS is expressed in terms of these effects as:

diS =
dWgen

T
+
dWgl

T
+
dWan

T
, (2.19)

where dWgen, dWgl and dWan are the mechanical work required for the gen-
eration, glide and annihilation of dislocations, respectively. The instantaneous
dislocation–density variation dρ equals the difference between the instantaneous
generation dρ+ and annihilation dρ−: dρ = dρ+ − dρ−. dWgen and dWan are
assumed to be proportional to dρ+ and dρ−, respectively: dWgen = 1

2µb
2dρ+

and dWan = 1
2µb

2dρ−. The energy dissipated due to dislocation glide dWgl is

expressed as [35]: dWgl = τbldρ+, where τ is the applied shear stress and l is the
average dislocation spacing.
The external entropy deS is related to the heat loss dQ to the surroundings by:
deS = dQ

T . According to the energy conservation law dQ is approximated by
the difference between the internal energy increase dU = 1

2µb
2dρ (due to the

dislocation storage) and the mechanical work conducted into the metal by the
external loading dW = τdγ [35], where τ = αµb

√
ρ is the applied stress, and α

is a constant:

deS =
dQ

T
=
dU − dW

T
=

1
2µb

2dρ− αµb√ρdγ
T

. (2.20)
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The total entropy variation with time has been proposed to be proportional to
the work hardening rate [35]:

dS

dt
= γ̇

dS

dγ
= γ̇

C

T

b

l

dτ

dγ
, (2.21)

where γ̇ is the strain rate, and C is a proportionality constant. Combining the
previous equations, the evolution of the dislocation density with strain can be
obtained:

dρ

dγ
=

(
2α

2 + 2α− Cα

)
1

b

√
ρ− 2 + 2α

2 + 2α− Cα
dρ−

dγ
, (2.22)

where dρ−

dγ is the dislocation annihilation rate. As the annihilation of individual

dislocations is a thermally activated process (driven by dislocation glide), Rivera
and Huang express this rate as [35]:

dρ−

dγ
=
ν0

γ̇
exp

(
− ∆G

kBT

)
ρ, (2.23)

where ν0 is the atomic vibration frequency, and ∆G is the activation energy
for dislocation annihilation. Inserting this expression into equation 2.22, the
dislocation evolution equation becomes:

dρ

dγ
=

(
2α

2 + 2α− Cα

)
√
ρ−

(
2 + 2α

2 + 2α− Cα

)
ν0

γ̇
exp

(
− ∆G

kBT

)
ρ. (2.24)

Grain boundary and precipitation hardening effects can be incorporated in this
formulation by including additional stress terms in τ [35, 79].
A very interesting aspect of this approach is the ability to recover the Kocks–
Mecking equation [35]. The previous equation was derived on a thermodynamics
basis. Moreover, Rivera and Huang [35] have demonstrated that the energy bar-
rier for dislocation annihilation ∆G is the key parameter strongly controlling

plasticity via dρ−

dγ ; however it was fitted for each specific material and the model
showed to be very sensitive to ∆G variations, also the model is very sensitive to
strain rate variations. A more fundamental description of ∆G (and the disloca-
tion annihilation rate) is required.

2.4.5 Multiscale modelling

The combination of different modelling approaches allows to describe plastic de-
formation at various scales. For instance, Zhu et al. [80] have combined MD with
Finite Element Methods (FEM) to model nanoindentation in copper single crys-
tal; short–range interactions are described around the indenter, whereas FEM
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is employed for the long–range effects at higher length scales. Groh et al. [81]
have combined MD, DDD and CP to describe plasticity at various scales in alu-
minium single crystals; MD is employed to describe dislocation mobility; DDD
determines the work hardening rate on each system; and CP incorporates the
previous results to describe the macroscopic material response. Other interesting
contributions include CP coupled with DDD only [82, 83]. Lee et al. [70] have
combined CP with the evolution of a single dislocation density, but a number
of fitting parameters are incorporated for various orientations. Sundararaghavan
and Zabaras [84, 85] have combined the FEM and CP to forging; in their work the
macroscopic deformation gradient is represented purely in terms of the motion
of the exterior boundary; strain rate effects are incorporated in the form of an
Arrhenius equation, to account for dislocation slip to be thermally activated pro-
cess. Sundararaghavan and Kumar [86] have further added a probability density
function to prescribe the most likely crystal orientations.
All in all, these approaches are able to describe plasticity at various scales. They
demand ad hoc relationships between dislocation motion and evolution due to
dissimilar scales in length and time; these are usually fitted and phenomenologi-
cally determined, particularly as a function of strain, strain rate and temperature.
However, incompatibilities due to the lack a unique variable become present, lead-
ing to a limited range of applications. Moreover, as stated by McDowell [87], the
transition and hierarchy between methods describing different scale ranges needs
further examination, as incompatibilities due to the lack of a unique variable
become present.

2.5 Kocks-Mecking equation

The Kocks-Mecking equation accounts for the evolution rate of the average (ho-
mogeneous) dislocation density ρ with strain γ. It is composed of a dislocation

storage (dρ
+

dγ ) and annihilation (dρ
−

dγ ) rate, respectively:

dρ

dγ
=
dρ+

dγ
− dρ−

dγ
. (2.25)

This approach has been directly applied to obtain the flow stress during plas-
tic deformation or it is incorporated into more complex techniques such as the
methods previously described, providing the material’s hardening behaviour via
the average dislocation density [88, 89], the dislocation development on different
slip systems [70, 69, 71, 90], and the temperature and strain rate effects on plas-
ticity [21, 91]. Examples of the use of KM approach as input to other modelling
techniques are listed in Table 2.2.
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Table 2.2: Modelling approaches employing Kocks-Mecking (KM) formulation as
input: crystal plasticity (CP), finite–element method (FEM), discrete dislocation
dynamics (DDD), and mesoscale/internal-state-variable (ISV).

Modelling Physical Phenomena Reference
technique

CP Deformation in single crystals [70]
CP Pyramidal indentation in FCC metals [69]
CP Softening kinetics in polycrystalline nickel with

different sample thicknesses and grain sizes [71]
FEM Multiscale modelling of nanocrystalline materials [88]
FEM Static and dynamic recrystallisation in copper [92]
FEM Twinning-induced plasticity in steels [89]
DDD Thin-film plasticity [90]
ISV Temperature effects of twinning in zirconium [21]
ISV Twinning hardening in magnesium [91]
ISV Dynamic recrystallisation in a two-phase Ti alloy [93]

A number of fitting parameters are introduced in this equation to describe the
behaviour of specific alloys and deformation phenomena (temperature, strain
rate, orientation and microstructure), thereby lacking a generalised formulation
that would provide more information on how to improve the alloy properties by
modifying material parameters. These could be achieved with a physics–based
approach that would be able to incorporate microstructural and processing effects
on the dislocation generation and annihilation rates.
Estrin and Mecking [94] have shown that dislocation storage involves the addi-
tions of the inverse dislocation mean free path Λ, accounting for 1) dislocation-
dislocation interactions (Λ−1

dis), and 2) microstructural obstacles impeding disloca-
tion motion. The effect of grain boundaries, twins and solute atoms on dislocation
evolution are described in this thesis. The storage contribution of each barrier
then equals the inverse mean free path of the respective obstacle:

dρ+

dγ
=

1

b

(
1

Λdis
+

1

ΛT
+

1

ΛSS
+

1

ΛGB

)
, (2.26)

where ΛT is the average twin thickness, ΛSS is the average dislocation mean
free path in the presence of solute strengtheners, and ΛGB is the average grain
boundary spacing. Λdis has been obtained by Kocks and Mecking [6]: Λdis =

1
k1
√
ρ , where

k1 =
1

30

(
µ

µ0

)2

(2.27)
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is a constant, and µ0 is the shear modulus at 0 K. The temperature dependence
of k1 is implicitly described in µ. Although only a phenomenological description
of this equation is available, it will be shown that it is valid for several crystal
structures and deformation conditions.
The dislocation annihilation term accounts for the contributions of 1) dynamic
recovery (DRV), due to dislocation interactions and interactions with other crys-
tal defects; and 2) dynamic recrystallisation (DRX), where grain nucleation and
growth occurs. DRX occurs at high temperatures and/or low strain rates, and a

critical (incubation) strain is required. dρ−

dγ equals [6, 77, 95]:

dρ−

dγ
= fDRV ρ+ fDRXρDRX , (2.28)

where fDRV is the dynamic recovery coefficient, fDRX is the dynamic recrystalli-
sation coefficient, and ρDRX is the dislocation density in the growing grains.
Kocks and Mecking obtained an empirical relation for the dynamic recovery coef-
ficient in pure FCC metals that incorporates temperature and strain rate effects
[6]:

fKMDRV =
µ

µ0

1

100τν0

(
1−

√
1

g0

kBT

µb3
ln
ε̇KM0

ε̇

)−2

, (2.29)

where τν0 and g0 are material–dependent constants, and ε̇KM0 is a constant gener-
ally considered to be equal to 107 s−1 for FCC crystals. However, these constants
are identified for different materials and remain valid for a limited temperature
range [6].
Combining equations 2.26, 2.27 and 2.28, the Kocks–Mecking equation becomes:

dρ

dγ
=

1

b

(
k1
√
ρ︸ ︷︷ ︸

(A)

+
1

ΛT︸︷︷︸
(B)

+
1

ΛSS︸︷︷︸
(C)

+
1

ΛGB︸ ︷︷ ︸
(D)

)
− fDRV ρ︸ ︷︷ ︸

(E)

− fDRXρDRX︸ ︷︷ ︸
(F )

. (2.30)

It is worth noting that each term features under specific circumstances: (B) is
only considered for HCP metals, FCC with low stacking fault energy and nano–
twinned copper; (C) is not present for pure materials; (D) is neglected for single
crystals and coarse–grain polycrystals; and (F ) is active only at high tempera-
tures. k1

√
ρ and fDRV ρ are present for all plasticity scenarios, but their values

change for different deformation conditions and crystal structures. Analytical ex-
pressions for these terms are provided in this thesis. This offers a physical basis
of the parameters involved in the Kocks–Mecking equation.
Finally, the Taylor relation depicts the macroscopic (axial) stress σ with the
average dislocation density [6]:

σ = σ0 + αMµb
√
ρ, (2.31)
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where σ0 is the friction stress induced by lattice resistance, grain boundary or
solid solution strengthening [96]; α = 0.3 is a constant; and M is the Taylor
orientation factor. M is generally considered to equal 3 [6], except for HCP metals
where orientation severely affects the material’s work hardening behaviour, and
a relationship in terms of the deformation orientation is introduced in Chapter
5.



Chapter 3

A thermostatistical theory
for plastic deformation

A new theory for describing dislocation evolution in metals is presented in this chap-

ter. The novelty of the approach stems from obtaining an expression for the dynamic

recovery term in the Kocks–Mecking equation. A thermodynamic analysis on an anni-

hilating dislocation segment is performed to determine the energy barrier for dislocation

annihilation. The statistical entropy associated to energy dissipation of energetically

favourable dislocation paths during deformation is introduced. It is demonstrated that

statistical entropy features strongly in modelling plasticity at low and high tempera-

tures. This approach is successful in quantifying: (1) The transition between low to

intermediate, and intermediate to high temperature dislocation annihilation regimes are

delimited by transitions in the number of microstates. (2) The average dislocation cell

size and misorientation angle evolution as a function of strain, strain rate and tem-

perature, which are obtained by performing an energy balance between the dislocation

forest and the cellular structure formation, expressing the slip energy to form the latter

in terms of the statistical entropy. Employing only input parameters obtained from

experiments, the new theory is able to reproduce the experimental saturation stress,

stress-strain relationships, and average cell size evolution at wide temperature ranges

for pure FCC metals at a variety of strain rates.

3.1 Introduction

Quantitative understanding of dislocation motion is essential to describe plastic-
ity in crystalline materials. Dislocation mobility controls the material’s ability to
accommodate strain and modify its microstructure [25]. The velocity of a disloca-

27
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tion segment (at a given time) depends on several parameters such as the crystal
structure, the resolved shear stress, the interaction with other crystal defects,
temperature and strain rate [25, 76, 97].
Every modelling approach requires the introduction of specific relations to de-
scribe dislocation kinetics; these relations or “constraints” depend on the model
scale and variables. For instance, molecular dynamics describes the interaction of
atoms, where interatomic potentials constrain the lattice distortion (dislocation)
behaviour. Discrete dislocation dynamics require the introduction of a velocity
vector for every dislocation segment (variable) in two or three dimensions, by the
presence of a constraining driving force and their motion is limited to specific
slip planes (when pure slip occurs). In contrast to the former techniques, average
dislocation density descriptions present no constraints on the dislocation average
velocity or spatial distribution; however, this leads to loss of microstructural in-
formation. The Orowan equation (2.3) is a relation between the average velocity
〈v〉 and the macroscopic strain rate that may represent an additional physical
constraint.
Only approximations have been obtained for 〈v〉, such as power–law equations
in terms of the applied stress [25, 98, 99, 100], or Arrhenius-type equations with
energy barrier descriptions [101, 26]. Cai and Bulatov [54, 23] have expressed the
dislocation velocity in terms of a mobility term Mdis and an applied (driving)
force Pdis on the segment for discrete dislocation dynamics 〈v〉 = MdisPdis. The
former is usually fitted to an Arrhenius equation. Some discrete dislocation
dynamics approaches employ a first order differential equation for the velocity
vector evolution in time (similar to a Newton equation of motion) [20], a number
of parameters are fitted for specific deformation conditions (see equation 2.15).
Although a velocity (probability) distribution for a single dislocation (or a group
of them) is required, describing the effects involved in the dislocation velocity
evolution poses a big challenge.
If it is wished to assign probabilities to different dislocation velocities that are
subjected to specific model constrains (e.g. atom interactions, slip planes, num-
ber of dislocations, applied stress, etc.), the probability distribution p that best
describes this problem should maximise the information content by the given
model relations [102, 103], i.e. it is able to predict the dislocation velocity values
for the given model characteristics. Such is obtained when the function

H(p) = −
∑
i

pi ln(pi) (3.1)

reaches its maximum value, where pi is the probability of a dislocation to reach
a (discrete) velocity vi; H is called the information entropy [102]. The entropy
is a measure of the average uncertainty in the dislocation velocity. This criterion
is called the maximum entropy principle; it aids to provide the best probability



CHAPTER 3 THERMOSTATISTICAL THEORY 29

distribution that reflects the model constraints associated to a problem. If no
constrains are defined, the events are assigned equal probabilities and a uniform
(velocity) distribution is able to describe dislocation kinetics [102, 104].
This approach suggests more attention is to be paid to mesoscale approaches,
where less constraints are defined. However, there is no physics–based approxi-
mation able to link dislocation kinetics with the average dislocation density evo-
lution yet. Although the Orowan equation relates the macroscopic strain rate
with the mobile dislocation density, it does not provide further description on
the dislocation density evolution with strain.
Nevertheless, a natural correspondence between the maximum entropy principle
and statistical thermodynamics is arguable [105, 106]: the statistical entropy can
be explained in terms of the possible states a physical system can reach. Thus,
describing dislocation kinematics in a thermostatistical framework allows to esti-
mate the energy loss due to different migration paths of a dislocation, instead of
describing its instantaneous velocity at every moment. This allows to incorporate
dislocation kinematics into the energy barrier for dislocation annihilation, cell for-
mation, misorientation, grain nucleation and growth. These cases are explored
in the following sections.
In a recent review, McDowell [87] stated that, in the context of plasticity, “ther-
modynamic and kinetic relations are at the core of evolution equations for mi-
crostructure”. On the other hand, Cottrell’s seminal work [29] on dislocation
nucleation estimates a small effect from the configurational entropy (due to the
possible initial dislocation locations); this term has been usually neglected in
modern literature. However, configurational effects become important when con-
sidering dislocation glide configurations; at every moment (time step) a dislo-
cation can move any number of atoms (limited by the speed of sound [29, 5]),
increasing the number of possible configurations as deformation evolves. This
effects are considered for modelling dislocation behaviour during deformation.

3.2 Dislocation kinetics: Statistical entropy

When a dislocation glides, the magnitude of its velocity v is limited by the speed
of sound c in the material [5]; it can also remain immobile for a given time (v = 0).
Thus, v can take values in the range 0 ≤ v < c [5].
A microstate, or a specific configuration j, is defined as the number of inter-
atomic distances nj a dislocation glides during an arbitrary time step ∆t (given
in multiples of the magnitude of the Burgers vector) along the slip direction [104]

nj =

[
vj
b

∆t

]
, (3.2)

where [ ] is the integer–part function and vj is the dislocation instantaneous
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velocity during ∆t. Note that, to simplify the analysis, the values of vj are
discrete. It is worth noting that the microstate definition is made in terms of
atomic displacements to preserve the thermostastitics formalism [107], however
this analysis can be modified by defining a microstate in terms of the dislocation
velocity, obtaining the same result.
The microstates dictate the slip possibilities for a dislocation segment. If a dislo-
cation would glide at the speed of sound (c), the equivalent number of subunits
it moves is

N =

[
c

b
∆t

]
. (3.3)

It is worth noting that 0 ≤ nj < N for all j. This microstate ensemble defines a
set of

{nj}Mvel
j=1 (3.4)

possible distances a dislocation can glide during ∆t, where Mvel is an arbitrary
number that depends on the scale of the description (atomic, mesoscale, or mi-
croscopic) and its constrains. Figure 3.1 shows a schematic representation of
this ensemble. Equation 3.4 represents the set of possible distributions for dis-
location displacement (velocity) during ∆t. This analysis is consistent with the
microcanonical formalism in statistical mechanics [107, 104].

Figure 3.1: Schematic representation of the possible dislocation atomic displacements. Atoms

are represented by circles. The arrows represent the trajectory from the initial state (prior to

deformation) to the possible atomic displacements for the given velocities.

When the average dislocation density is considered and no restrictions are im-
posed, the previous ensemble (equation 3.4) is reduced to a set containing multi-
ples of the average dislocation displacements [104]

〈n〉 =

[
〈v〉
b

∆t

]
(3.5)
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that is limited by N and it contains Mvel =
[
N
〈n〉
]

elements.

The total number of microstates Ωdis is then equal to [102, 104, 107]

Ωdis = Mvel =

[
N

〈n〉

]
≈ c

〈v〉
. (3.6)

This result remains valid only when average displacements are considered; how-
ever this formalism can be extended to other scales with their respective con-
strains. For instance, molecular dynamics requires the use of statistical mechan-
ics to express microscopic information in terms of macroscopic observables, by
introducing additional energy constraints [20].
The previous equation can be expressed in terms of strain rate via the Orowan
equation. The value of ρm in equation 2.3 is obtained from the dislocation density
consistent with yield point (ρY ), as this determines an equivalent dislocation
population at the onset of plastic deformation [104]. Note that 〈v〉 accounts for
mobile and immobile (v = 0) dislocations, as no distinction between dislocation
types is being considered. Equation 3.6, in terms of the strain rate, becomes:

Ωdis =
c

〈v〉
=
bρmc

ε̇
≈ bρY c

ε̇
=
ε̇0

ε̇
, (3.7)

with
ε̇0 = bρY c. (3.8)

ε̇0 estimation

The temperature range where additional crystal defects such as vacancies only
moderately alter dislocation slip is 0 < T < 0.6Tm [6], where Tm is the melting
point temperature. Figure 3.2 shows a) the values of ε̇0 in terms of the homolo-
gous temperature Th = T/Tm for Cu, Al, Ni and Ag, and b) the average values
of ε̇0 as a function of the temperature in the range of application, via the mean

value theorem: ε̇avg0 = 1
0.6Tm

∫ 0.6Tm

0
(bcρY (T ))dT (in the case of Ni, the lower

limit of integration was taken as 250 K to avoid a critical point as Th → 0 and
the formula for σY diverges, see Appendix A). The dislocation density consistent
with the yield point is approximated by employing the Taylor relation (equation

2.31) with σ0 = 0 [6]: ρY =
(
σY /(αbMµ)

)2
. The material parameters are shown

in Appendix A.
The fitted value employed originally by Kocks and Mecking ε̇KM0 = 107 s−1 to
describe the experimentally observed saturation stress of Cu, Ni, Al and Ag is
shown with a dotted line (equation 2.29), and a value employed by Follansbee
[108] ε̇0 = 108 s−1 for Fe is shown to be an upper bound. It is remarkable to
notice that all the average values computed here, and stemming from the speed
of sound assumption, approach the value for ε̇0 employed by Kocks and Mecking
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(equation 2.29). Thus, the model is able to provide physics–based justification
for this constant.

0.0 0.2 0.4 0.6
106

107

108

Cu     5.81x107

Al      3.62x107

Ni      5.33x106

Ag     3.42x107

(b)

ε 0 (s
-1
)

Th

 KM constant
 Cu
 Al
 Ni
 Ag

ε0
avg (s-1)

(a)

Figure 3.2: (a) Values for ε̇0 as function of temperature and (b) average values of ε̇0 for Cu,

Al, Ni and Ag.

3.2.1 Vacancy-dislocation kinetic contribution

When temperature increases, vacancy–dislocation interaction becomes promi-
nent, provoking dislocations to undergo climb, increasing dislocation displace-
ment events, including those leading to annihilation. Consequently, an additional
term in equation 3.7 is required. A microstate is defined in terms of dislocation
slip paths; however vacancies migrate through the material via diffusion [4], be-
ing this mechanism of a different nature [5], consequently they cannot be directly
combined and a common reference system has to be defined [107, 109].
Both mechanisms are compared with the average distance between two disloca-
tions l = 1/

√
ρ to define a common migration length. The number of interatomic

distances between two dislocations is defined as l̄/b. The additional number of
microstates due to the vacancy–dislocation interaction Ωv−d is the ratio between
the average maximum vacancy occupancy n̂v in l, and the average slip fraction
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nd a dislocation glides with respect to l [109].
Analogous to the speed of sound for dislocation slip in equation 3.7, n̂v defines
an upper boundary for vacancy–assisted climb. Figure 3.3 shows a schematic
representation of the vacancy–dislocation interaction system. Although vacancy–
dislocation interaction takes place in three dimensions, this involves complex
calculations and the inclusion of additional equations; to simplify the analysis,
the average interaction effect is assumed to occur in one dimension.

Figure 3.3: One–dimensional representation of the vacancy–dislocation interactions. Vacan-

cies are represented by squares and atoms by circles. During a time step ∆t, nv is the number

of interatomic distances a vacancy can move, and nd is the number of interatomic distances a

dislocation can glide. The curved line represents the number of atomic jumps.

A vacancy can migrate an average of nv = ϑ∆t sites during ∆t, where ϑ is the
migration frequency (equation 2.5); the units of ϑ is atomic sites per unit time.
Note that nv is proportional to the total vacancy migration length path (ϑ∆t)
to measure all possible vacancy–dislocation encounters.
The maximum number of vacancies that can migrate within two average dislo-

cations separated by a distance l is
[
l
b

]
. Thus, the maximum vacancy occupancy

during ∆t becomes:

n̂v = nv

[
l

b

]
= ϑ∆t

[
l

b

]
' ϑ∆t

l

b
. (3.9)

On the other hand, when a dislocation glides at 〈v〉 during ∆t, the reduced glide

length within l is nd = 〈v〉
l

∆t. Combining the previous expressions, Ωv−d leads

to [109]

Ωv−d =
n̂v
nd

=
ϑ∆t

(
l/b
)

〈v〉∆t/l
=

ϑl
2

b〈v〉
=

ϑ

b〈v〉ρ
=
ϑ

ε̇
, (3.10)

where the mobile dislocation density has been equated with the total dislocation
density to account for both mobile and immobile dislocations. Ωv−d is a measure
of the weighted contribution of the ability of a vacancy to drift as a response to
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thermal activation, with respect to the migration of a dislocation as a response
to strain.
The total number of microstates Ωpure for dislocation motion becomes

Ωpure = Ωdis + Ωv−d =
ε̇0

ε̇
+
ϑ

ε̇
. (3.11)

Finally, the statistical entropy equals [107]

∆S = kB ln Ωpure = kB ln

(
ε̇0

ε̇
+
ϑ

ε̇

)
. (3.12)

This equation incorporates the effect of dislocation glide and vacancy–assisted
climb only; additional effects altering dislocation motion, such as solute atoms,
grain boundaries and nanotwins are introduced in the following sections.
The Orowan equation is employed to describe dislocation kinetics for dynamic
plastic deformation, however this methodology can be applied to static condi-
tions such as static recovery, static recrystallisation or creep by introducing the
respective relations for 〈v〉.

3.2.2 Transition temperatures

It is possible to obtain the transition points where different dislocation annihila-
tion mechanisms prevail (Section 1.1.1) with equation 3.11 [109]:

1. If Ωv−d < 1, ϑ < ε̇ and no microstates are available for vacancy–dislocation
interaction, leading to cross–slip domination.

2. If Ωv−d > Ωdis, ϑ > ε̇ and the vacancy–dislocation interaction is dominant
over dislocation slip as there are more microstates available for dislocation
motion due to the presence of vacancies, dislocation climb becoming the
prevailing migration mechanism.

3. If 1 < Ωv−d < Ωdis, both processes are present and a mix of cross–slip and
climb take place.

The transition boundaries can be described as Ωv−d = ϑ
ε̇ = 1, and Ωv−d =

Ωdis ⇒ ϑ = ε̇0. Such limits are expressed in terms of temperature and strain
rate (equations 2.5 and 3.8) [109]:

T0 =
Em

R ln
(
ϑD

ε̇

) ,
Tf =

Em

R ln
(
ϑD

ε̇0

) , (3.13)
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where T0 and Tf are the transition temperatures for the low, medium and high
regimes, respectively.
Tables 3.1 and 3.2 show a comparison of these values with the experimental
ranges obtained from the literature where transitions occur for Cu, Al, Ni and
Ag. The homologous temperature Th = T/Tm is also shown. As experimental
measurements usually do not show a sharp transition point, results are shown
within the ranges where the transitions occur. The experimental values for Al
are estimated when the charts for the activation energy for creep and activation
area for glide change their curvature, respectively; for pure Cu the values are
obtained when the shape of the shear stress plot at the stage V of deformation
(approximately 40% of strain) is changed. For Ni and Ag, no experimental values
were found. For T0, a strain rate of 4×10−4 s−1 is assumed when no experimental
data were found.

Table 3.1: Lower limit temperature. E stands for experimentally determined and
M for model results.

Material ε̇ (s−1) TE0 (K) Ref TM0 (K) Th
Cu 4× 10−4 - 276 0.20
Al 2× 10−5 250-290 [110] 176 0.18
Ni 4× 10−4 - 430 0.24
Ag 4× 10−4 - 255 0.2

Table 3.2: Upper limit temperature. E stands for experimentally determined and
M for model results.

Material ε̇0 (s−1) TEf (K) Ref TMf (K) Th
Cu 7.1× 106 773-900 [111] 882 0.65
Al 2.6× 106 450-520 [110] 474 0.5
Ni 1.3× 106 - 1025 0.6
Ag 1.8× 107 - 728 0.58

The results show good agreement with the experimental ranges. The lower and
upper limits lay within the ranges of 0.2−0.24Tm for T0, and 0.5−0.65Tm for Tf ,
which are consistent with the ranges usually reported in the literature. T0 is lower
than 0.3Tm; this can be due to the vacancy concentration at these temperatures
is very low, and the transition becomes observable at higher temperatures when
vacancy concentration increases.
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To confirm that the theory is consistent with microstructural observations
(vacancy–dislocation interactions), the vacancy accumulation at Tf is compared
against the effective dislocation interaction length. At a given temperature there
are ceq/b

3 vacancies per unit volume in the material, where ceq is the vacancy
concentration at equilibrium, so that the mean spacing of neighbouring vacancies

is Λvac = b/c
1/3
eq (equation 2.6) [25]. On the other hand, as explained in Section

3.3, the interaction range of a dislocation with other crystal defects is given by its
distortion length l∗ = 12.5b. In the framework of this theory, l∗ accounts for the
effective distance for a dislocation to ensure its interaction with other defects such
as vacancies or solute atoms. Furthermore, the initial dislocation population (in
terms of their average spacing) can be approximated by the average dislocation
spacing at the yield point (lY = 1/

√
ρY ). Thus, an effective interaction length

Λv−d can be defined as the distortion field length of the initial dislocation spacing:

Λv−d = l∗ lYb . Table 3.3 shows a comparison between Λvac and Λv−d for Cu, Al,
Ni and Ag. Both lengths have the same order of magnitude at this temperature,
implying that above Tf at least one vacancy may jump within a dislocation’s
distortion field length to interact and undergo climb. Although these results are
consistent with the experimentally observed transition points, σY variations may
cause fluctuations in Λv−d.

Table 3.3: Vacancy mean spacing (Λvac) vs. initial dislocation interaction length
(Λv−d).

Material Ef (kJ mol−1) Tf (K) Λvac (nm) Λv−d (nm)
Cu 97 882 21 9
Al 67 474 81 59
Ni 135 1025 49 77
Ag 106 728 99 16

3.3 Dislocation annihilation: Dynamic recovery
and cell formation

An expression for the dynamic recovery coefficient (fDRV ) in equation 2.30 is
presented for pure FCC single crystals, where dislocation slip is the main defor-
mation mechanism and no dynamic recrystallisation is present (only terms (A)
and (E) are present in equation 2.30).
Dislocation annihilation due to dynamic recovery occurs by the encounter of dis-
locations with opposite signs. This rate is related to the characteristic (average)
velocity 〈v〉 of a dislocation [35]. The derivations in this section rest on three
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assumptions [104]:

i) The displacement (velocity) of a dislocation segment leading to annihilation
is thermally activated.

ii) Once dislocations are in close proximity to each other, their strain fields
screen their neighbours’ and impinge on each other; this alters 〈v〉.

iii) The energy necessary for a dislocation segment to migrate in a cross-slip
annihilation event is proportional to the macroscopic yield stress of the ma-
terial (σY ). For uniaxial loading conditions, σY is directly related to the
critical resolved shear stress to initiate dislocation slip [76].

Assumption i) leads to an expression for the average velocity of a dislocation
segment such that annihilation takes the form of an Arrhenius law [26, 104]

〈v〉 = c exp

(
− 〈∆G〉

kBT

)
, (3.14)

where 〈∆G〉 is the energy barrier to overcome in order to reach 〈v〉. The velocity
is a function of several parameters such as temperature, strain rate and chemical
composition, which dependency is incorporated into 〈∆G〉.
Consider a dislocation segment of length l that undergoes annihilation under an
applied stress. The volume of this (thermodynamic) system is delimited by the
dislocation segment length (l) multiplied by the distortion field length (l∗) and
the magnitude of the Burgers vector, i.e. the volume of substance per dislocation
that is not dislocated after a certain strain increment

Vsys = l∗bl. (3.15)

l∗ delimits the boundaries within which annihilation occurs, and it is determined
by the point beyond which more than 98% of the strain vanishes away from the
dislocation core. It was found to be l∗ ' 12.5b for different metals [112, 113, 114].
〈∆G〉 is composed by [104]: (1) a dislocation formation energy term, Uform,
this is approximated by the strain energy around the segment; (2) a dislocation
migration energy term, Umig, that initiates glide towards annihilation; (3) a
vacancy energy contribution at higher temperatures (T > T0), Uvac, induced by
the vacancy chemical work around the segment; and (4) the entropy, T∆SDRV ,
that dictates the degree of disorder in the system due to the different dislocation
velocities:

〈∆G〉 =
b

l

(
Uform + Umig + Uvac − T∆SDRV

)
, (3.16)

where the factor b/l scales the energy contributions to the number of atoms along
the dislocation line participating in the annihilation process [104].
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The strain energy around the segment is approximated by equation 2.2:

Uform =
1

2
µb2l. (3.17)

The migration energy term (assumption ii)) is considered to be the product of
the yield stress σY (mechanical work), which is the initial point for slip, the
activation area Aactb

2 for cross–slip [7], where Aact is a dimensionless, multiplied
by the length of the segment:

Umig = σYAactb
2l. (3.18)

The chemical stress σv induced in the crystal structure by the inclusion of a
vacancy is equal to the chemical potential (equation 2.7) divided by its volume:

σv =
µv
b3
. (3.19)

The chemical work induced on the dislocation segment (Vsys) becomes:

Wv = −σvVsys = − l
∗l

b2
µv. (3.20)

Wv increases with temperature (equation 2.7), however the contribution of va-
cancies to dislocation annihilation below T0 is null and consequently their energy
contribution as well. To incorporate such behaviour, a function δ(T ) is defined
[109]:

δ(T ) =


0 if T < T0
T−T0

Tf−T0
if T0 ≤ T < Tf

1 if Tf < T,

(3.21)

and combined with equation 3.20 to incorporate the energy contribution Uvac of
vacancies for dislocation annihilation

Uvac = δ(T )Wv =
l∗l

b2
δ(T )

(
Ef + kBT ln cm

)
, (3.22)

where the vacancy concentration in the chemical potential has been approximated
by the equilibrium concentration (equation 2.6).
When vacancies are included in the system, the average annihilation velocity is
increased and equation 3.14 is modified to include this effect, which in terms of
the strain rate and vacancy migration frequency (equations 2.3 and 2.5) becomes(

〈v〉
c+ cint

)
=

(
ε̇

ε̇0 + ϑ

)
= exp

(
− 〈∆G〉

kBT

)
, (3.23)
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where cint is an equivalent increase in the annihilation velocity due to the pres-
ence of vacancies (ϑ = bρY cint) [109]. Equation 3.23 offers an expression for the
microstates, which can be readily input to equation 3.12 to obtain the statis-
tical entropy. The role of dislocation impingement, however, needs first to be
examined.

Dislocation impingement

When dislocations are in the proximity of each other they screen the deformation
field of their neighbours. The impingement length is defined as the maximum
distance between two dislocations when their strain fields screen each other. Once
dislocation impingement takes place, the average annihilation velocity is altered
along with the total number of microstates in the system. By defining i =
1, 2, ..., Nd − 1 as the dislocations impinging with a reference dislocation i =
0, where Nd is the number of dislocations within an interaction volume, then
the additional number of microstates introduced by impingement, considering
independent events, is determined by a multiplication factor [104]

Ωimp =
(
Ω1 · Ω2...ΩNd−1

)1/3
= (Ωpure)

1
3 (Nd−1) (3.24)

where the exponent 1/3 in the equation is due to the fact that the number of
microstates can only increase unidimensionally: an annihilating dislocation seg-
ment can only “see” neighbours along its slip direction. Note that if dislocations
are far away from each other, impingement will not occur and Nd = 1, Ωimp = 1.
The number of microstates then becomes

Ω = Ωpure · Ωimp =
(
Ωpure

)N
, (3.25)

where N = 1 + 1
3 (Nd − 1) when Nd > 1 and N = 1 when Nd ≤ 1.

The modified entropy for dynamic recovery becomes

∆SDRV = kB ln Ω = kB ln

(
ε̇0

ε̇
+
ϑ

ε̇

)N
. (3.26)

On the other hand, if impingement takes place, the number of microstates in
equation 3.25 is modified; this alters also the value of 〈v〉 in equation 3.23 [109]:(

〈v〉
c+ cint

)N
=

(
ε̇

ε̇0 + ϑ

)N
= exp

(
− 〈∆G〉

kBT

)
. (3.27)

Combining equations 3.16, 3.17, 3.18, 3.22, 3.26 and 3.27 leads to(
ε̇

ε̇0 + ϑ

)N
= exp

(
− 〈∆G〉

kBT

)
〈∆G〉 =

b

l

(
1

2
µb2l + σYAactb

2l +
l∗l

b2
δ(T )

(
Ef + kBT ln cm

)
− T∆SDRV

)
.
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l is obtained with the previous equations:

l = b

(1)︷ ︸︸ ︷
T∆SDRV

1

2
µb3︸ ︷︷ ︸
(2)

+σYAactb
3︸ ︷︷ ︸

(3)

+
l∗

b
δ(T )

(
Ef + kBT ln cm

)
︸ ︷︷ ︸

(4)

−kBT ln
(
ε̇0+ϑ
ε̇

)N , (3.28)

where l is the decrease in the dislocation length per dislocation at a given temper-
ature and strain rate. This expression incorporates the effects of dislocation (1)
kinetics (via the entropy term), (2) formation, (3) migration and (4) interactions
with vacancies. These terms allow to describe temperature, strain and strain rate
variations in the dislocation annihilation rate, providing a physical basis for this
process during plastic deformation.

3.3.1 Dynamic recovery coefficient

The dynamic recovery coefficient can be defined as the fraction of substance
undergoing dislocation annihilation per dislocation [104]: fDRV = NA

wa
(ρaVsys),

where NA is Avogadro’s number, wa is the atomic weight of the material, and ρa
is the density of the material. The dynamic recovery coefficient equals

fDRV =
NAρab

2l∗

wa

T∆SDRV
1
2µb

3 + σYAactb3 + l∗

b δ(T )
(
Ef + kBT ln cm

)
− kBT ln

(
ε̇0+ϑ
ε̇

)N .
(3.29)

Number of impinging dislocations

The number of dislocations Nd impinging with a reference dislocation will be the
ratio of the critical distance for impingement r∗ divided by half distance between
dislocations when impingement is ignored rNI = 1/(2

√
ρNI), where ρNI is the

average dislocation density in the absence of impingement:

Nd =
r∗

rNI
. (3.30)

If r∗ < rNI , Nd is less than 1, implying that N = 1 [104].
Impingement takes place when the strain field of the annihilating dislocation
segment screens its neighbours’. The minimum radius for such screening is con-
sidered to be that at which it can dissociate into partials, which is determined by
the stacking fault energy. Based on the treatment by Howie and Swann [115] to
obtain the stacking fault energy, a formula to estimate whether the impingement
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reaction becomes energetically favourable by directly comparing the line tension
of a dislocation against the stacking fault energy χ is given by [104]

χ =
1

l∗
µb2

4π
ln

(
r∗

r0

)
, (3.31)

where r0 is the distance between partials in the cross–slip plane and r∗ is the
critical radius between dislocations that will favour dislocation dissociation over
impingement. From this equation, the critical radius for impingement equals

r∗ = r0 exp

(
l∗4πχ

µb2

)
. (3.32)

On the other hand, in the absence of impingement, equation 2.30 (terms (A)
and (E)) can be solved for N = 1 in the dynamic recovery coefficient (equation
3.29) to obtain the equivalent average dislocation density. This is denoted by the
subscript “NI ” (not impinged) in:

dρNI
dγ

=
k1

b

√
ρNI − fNIρNI , (3.33)

where fNI has the value (equation 3.29):

fNI =
NAρab

2l∗

wa

kBT ln
(
ε̇0+ϑ
ε̇

)
1
2µb

3 + σYAactb3 + l∗

b δ(T )
(
Ef + kBT ln cm

)
− kBT ln

(
ε̇0+ϑ
ε̇

) .
(3.34)

Activation area for annihilation

The activation area Aa for cross–slip is assumed to be the region where the
distortion field of a dislocation is present, multiplying the distance r0 between
partials in the cross–slip plane by the half distortion distance:

Aa = Aactb
2 =

l∗

2
r0. (3.35)

Figure 3.4 shows a schematic representation of this area.
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Figure 3.4: a) Schematic representation of the activation area for annihilation. b) Activation

area in cross-slip process. Figure adapted from Puschl [7].

3.3.2 Dislocation cell size

Dislocation cell structures are formed when metals of medium to high stacking
fault energies are moderately deformed; this results in the reduction of energy
stored in the material and further plastic deformation can be undertaken [3,
39]. Taking this into consideration, this section is developed under an additional
assumption [116]:

iv) The formation of dislocation cells occurs when the energy of the disloca-
tion forest (Eforest), plus the energy required for the glide of dislocations
towards the cell walls (Edisp), equal the energy of dislocations arranged in
the cell walls (Ecell).

This leads to the energy balance equation:

Eforest + Edisp = Ecell, (3.36)

from which the cell size can be obtained.
Consider a forest of n homogeneously distributed dislocations ρ = 1/l

2
. The

average value of the volume delimited by the forest is:

Vforest = nl
3
. (3.37)

The strain energy per unit volume of a dislocation population equals (equation
2.2):

Edis =
1

2
µb2ρ =

1

2

µb2

l
2 . (3.38)
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Combining equations 3.37 and 3.38, the average energy value for a forest of n
dislocations is expressed by:

Eforest = EdisVforest =
n

2
µb2l. (3.39)

Edisp represents the energy absorption to form the cell walls from gliding dislo-
cations. From Section 3.2, the energy per unit volume associated to the glide of
a dislocation is taken to equal the statistical entropy per unit volume (equation
3.12) multiplied by T [116]:

Eslip =
1

bl
2T∆S. (3.40)

Combining equations 3.37 and 3.40, the displacement energy for a forest of n
dislocations leading to cell formation is

Edisp = EslipVforest =
nl

b
T∆S. (3.41)

According to Puschl [7], cross–slip triggers the formation of cellular structures as
dislocations dissociate into partials on the cross–slip planes. By approximating
the cell shape to be cylindrical, the area surrounding the walls is equal to its
perimeter (composed by 2n partials) multiplied by its length (dc):

Acell = 2nrpartdc, (3.42)

where rpart is the distance between partials. The energy of the cell (Ecell) equals
the energy around Acell (equation 2.4). Combining equations 2.4 and 3.42, the
average energy value in the forming cell becomes:

Ecell =
1

2
χAcell =

n(2 + ν)µb2

24π(1− ν)
dc, (3.43)

where the factor 1/2 accounts for the shared effect of the walls in adjacent cells.
Combining equations 3.36, 3.39, 3.41 and 3.43, the energy balance becomes

n

2
µb2l +

nl

b
T∆S =

n(2 + ν)µb2

24π(1− ν)
dc, (3.44)

which leads to the average size of a cell to be

dc =
24π(1− ν)

(2 + ν)

(
1

2
+
T∆S

µb3

)
l =

κc√
ρ
, (3.45)
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with

κc =
24π(1− ν)

(2 + ν)

(
1

2
+
T∆S

µb3

)
. (3.46)

Equation 3.45 recovers the form of the classical relation reported in the literature
(Section 2.3.2) and supplies an expression for κc. Table 3.4 shows a comparison
of the values of κc obtained from equation 3.46, and the experimental values
reported in the literature. The physical parameters employed in the computa-
tions are shown in Appendix A. The model displays mixed agreement. However,
cell size and dislocation density measurements were obtained from microscopy
experiments where error bars are usually wide (in the range of 0.5 to 2 times the
size measurement [117, 41], hence the experimental values for κc can differ, as
it shown for Ni and Al results. Nevertheless, the model results are in the same
order of magnitude.

Table 3.4: Comparison of the constant in the cell size evolution. E stands for
experimentally determined and M for model results.

Metal Ref T (K) ε̇ (s−1) κc (E) κc (M)
Cu [42] 298-973 10−4 16 14.2–26
Al [43] 298 10−3 14 14.5
Al [44] 298 6.6× 10−2 20 14.2
Ni [44] 298 10−2 20 12.4
Ni [45] 298 3.3× 10−4 13 12.7

Once cells have formed, the misorientation across the cell boundaries increases
with strain as deformation continues (stages III and IV) [3].

3.3.3 Cell misorientation angle

Consider two adjacent cells C1 and C2 and define a cartesian reference system
fixed to C1 (Figure 3.5a). These cells are misoriented an angle θ and are brought
into coincidence by rotating C2 an angle θ about the z axis. For the purposes
of this work, the orientation of C1 with respect to the xyz reference system is
assumed to be fixed, and the geometrical misorientation is assumed to equal
the crystallographic misorientation1. Symmetry along z axis is assumed, so that
misorientation is defined on the xy plane. As strain is increased, the misorien-
tation angle between the adjacent cells increases due to the slip and storage of
dislocations within the walls.

1This assumption is explained in the following sections.
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Figure 3.5: Schematic representation of (a) two adjacent cells with a misorientation angle θ;

(b) a dislocation j gliding in a volume Vj located at the wall; (c) the projection of n onto the

surface ∂Vd; the solid arrows represent n and the dashed arrows represent nd; (d) variation of

the total dislocation density at stage IV, where the ratio x/l represents the strain localisation

at the wall due to dislocation slip.

The Young–Laplace equation describes the pressure build–up (∆P ) across the
interface (cell walls) between two curved surfaces [118]

∆P = −γs∇ · n, (3.47)

where γs is the interfacial energy per unit area and n is a vector normal to the
surface. The equation can be applied to describe the residual stress (∆P ) across

subgrain/cell boundaries. γs is approximated by equation 2.13: γs = µb2

2lw
= 1

2µbθ,

where θ and lw are the average misorientation angle and dislocation spacing on
the walls, respectively.
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The vector normal to the walls can be expressed as (Figure 3.5a)

n =
(
n̂x, n̂y

)
=

(
1,−dxw

dyw

)/√
1 +

(
dxw
dyw

)2

, (3.48)

where dxw

dyw
measures the shape change along the walls (yw direction). The mis-

orientation angle is defined as

tan θ =
dxw
dyw

. (3.49)

If θ is small, tan θ ≈ θ = dxw

dyw
and ∇ · n ≈ −d

2xw

dy2w
= − dθ

dyw
. In order to avoid the

inclusion of specific orientations across the microstructure, the divergence term is
expressed in terms of average angle values (θ), which leads to the approximation
[116]

∇ · n ≈ − dθ

dyw
= − dθ

dxw

dxw
dyw

≈ − dθ

dxw
θ. (3.50)

Turning our attention to a smaller scale, and considering a cell–wall dislocation
j to be confined within a volume Vj = ∆Lj ljdj that may glide a distance xj as
shown in Figure 3.5b. The strain εj induced by that dislocation is

εj =
xjb

∆Lj lj
. (3.51)

The total strain induced in the walls is then

εw = b
∑
j

dj
∆Lj ljdj

xj = b
∑
j

ρjxj = bρwxw, (3.52)

where ρj is the length of a dislocation segment per unit volume (within Vj , Figure
3.5b), ρw is the average dislocation density on the walls and xw is the average
dislocation displacement in the walls. This formula is analogous to the Orowan
equation but accounts for glide effects produced by dislocations on the walls.
Considering small changes of ρw along xw (θ is small), equation 3.47 is approxi-
mated in terms of the strain induced in the walls (equations 3.50 and 3.52) by

∆P ≈ γsθ
dθ

dxw
≈ γsθ

dθ

dεw
bρw. (3.53)

Accompanied by a macroscopic strain, dislocations glide towards the cell walls
and pressure builds up across them. Similar to the cell formation balance (equa-
tion 3.36), the energy produced by dislocation slip is equal to the statistical en-
tropy multiplied by T . Thus, the pressure difference ∆P per dislocation around
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the walls becomes [116]:

∆P =
T∆S

∆V
, (3.54)

where ∆V is the volume surrounding a cell–wall dislocation (Figure 3.5a) and is
defined as the volume delimited by the average cell size dc, the average dislocation
spacing in the walls lw, and ∆L the average length for dislocation interaction
approaching one side of the wall:

∆L =
lw
2

l

x
, (3.55)

where l/x represents the range of interaction for a dislocation in the slip direction.
From the Orowan equation2 ε = bρx and equations 3.45 and 3.55, ∆V equals3

∆V = dclw∆L =
κcl

2
l
2

w

2x
=

κcb

2ρwε
. (3.56)

Combining equations 3.54 and 3.56 the pressure difference becomes

∆P =
2ρw
κc

ε

b
T∆S. (3.57)

Finally, combining equations 2.13, 3.53 and 3.57 leads to the equation

θ
2 dθ

dεw
=

4T∆S

κcµb3
ε = αθε, (3.58)

where αθ = 4T∆S
κcµb3

. In order to relate εw and ε, Gauss’ theorem [119] is applied

on the normal vector to the cell walls over the volume Vd = l
2

wdc containing one
dislocation as illustrated in Figure 3.5c∫

Vd

∇ · ndV =

∮
∂Vd

(
− n · nd

)
dSd, (3.59)

where ∂Vd is the surface enclosing the volume Vd, and nd is the vector normal to
∂Vd. The negative sign is due to the normal vector being defined in the clockwise
direction while the integration path is defined in the counterclockwise direction.
The variation of n in Vd is produced by dislocation glide on the horizontal direc-
tion, remaining unchanged in the y and z directions (see Figure 3.5c). Thus, the
dot product on the right hand side of the previous equation is approximated by

n · nd ≈ ‖np2 − np1‖ ≈
(
∂n

∂xw

)
∆xw, (3.60)

2The average dislocation displacement and macroscopic strain are considered instead of the
average velocity and strain rate.

3∆V accounts for the average value of ∆Vj .
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where ∂n
∂xw

=
(
∂n̂x

∂xw
+

∂n̂y

∂xw

)
. Differentiating equation 3.48 with respect to xw and

neglecting the second order terms it follows that:

∂n̂x
∂xw

+
∂n̂y
∂xw

≈ − ∂θ

∂xw
. (3.61)

If average variations are considered in Vd and with the definition of θ = b/lw

the previous expression is simplified: ∂θ
∂xw

≈ ∂θ
∂xw

≈ b/l
2

w and ∆xw is approxi-
mated by the average dislocation displacement in the walls xw. Combining these
expressions with equations 3.60 and 3.61 results

n · nd ≈
(
∂n

∂xw

)
∆xw ≈ −

∂θ

∂xw
∆xw = − b

l
2

w

xw = −bρwxw = −εw. (3.62)

Note that the integration path on the right hand side of equation 3.59 features
only on the xz plane. Combining these results with equations 3.47 and 3.59 leads
to the relation

∆P

γs
l
2

wdc =
∆P

γs
Vd ≈

∫
Vd

∇ · ndV =

∮
∂Vd

(
− n · nd

)
dSd ≈

∫ p2

p1

εwdSd = εw
(
lwdc).

(3.63)
This equation is combined with equations 2.13 and 3.57 to relate εw and ε:

εw =
4T∆S

κcµb3
ε = αθε. (3.64)

Applying the chain rule to equation 3.58 and using the previous expression, the
evolution of the average misorientation angle in terms of the total strain is de-
scribed by

θ
2 dθ

dε
= α2

θε. (3.65)

The previous equation is expressed in terms of the shear strain by using the
Taylor relation γ = Mε [6] and it is integrated with respect to γ. Setting the
initial conditions θ = 0 when γ = 0 results in

θ =

(
3

2

)1/3(
αθγ

M

)2/3

= κθγ
2/3, (3.66)

with κθ =
(

3
2

)1/3( 4T∆S
κcµb3M

)2/3
. Note that initial conditions may in actuality

be different from zero, as prior misoriented cells may be present due to earlier
forming processes [27].
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3.3.4 Work hardening evolution: Stage IV

As deformation continues, dislocation generation or annihilation reach equilib-
rium and only dislocation rearrangement is occurring. Variations in cell size and
misorientation become the main contributors to the dislocation density evolution
[120, 121]. At this stage, Kocks–Mecking equation fails to describe such evolution
and a new formulation is required. Such situation is referred to as stage IV, where
the evolution of the dislocation density can be obtained from the Young–Laplace
equation. The expression for divergence in equation 3.50 is modified by applying
the chain rule in terms of the vertical axis direction yw:

−∇ · n =
dθ

dyw
=

dθ

dρIV

dρIV
dyw

≈ dθ

dρIV

∆ρIV
∆yw

. (3.67)

The variation of dislocation density along a single direction is approximated by
(Figure 3.5d) [116]:

∆ρIV =
x

2ld2
c

, (3.68)

where a factor of 2 divides the distribution of dislocations between the adjacent
cells. The ratio x/l is proportional to the accumulation of strain at the cell wall
only, and the factor 1/d2

c distributes the strain within the area contained by each
cell. The variation ∆yw is approximated by the average dislocation spacing in
the walls: ∆yw ≈ lw. Combining this result with equations 3.55 and 3.67, the
divergence of the normal vector becomes:

−∇ · n =
dθ

dρIV

x

2ld2
c lw

=
dθ

dρIV

1

4d2
c∆L

. (3.69)

The evolution of the dislocation density for stage IV is obtained by combining
equations 3.47, 2.13, 3.54, 3.56 and 3.69

dρIV

dθ
=

1

4dcb

1
2µb

3

T∆S
=

√
ρ
IV

8κcb

µb3

T∆S
=
kIV
b

√
ρIV , (3.70)

where kIV = 1
8κc

µb3

T∆S . The solution is

ρIV =

(√
ρ∗0 +

kIV
2b

(
θ − θ∗0

))2

︸ ︷︷ ︸
(A′)

, (3.71)

where ρ∗0 and θ∗0 are the dislocation density and misorientation angle at the onset
of stage IV respectively. The initial conditions (γ∗0 , θ

∗
0 , ρ
∗
0) for the transition to

the stage IV are obtained when equations 2.30 and 3.71 are equal

dρIII
dγ

=
dρIV
dγ

. (3.72)
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3.3.5 Results

Results for copper single crystals (terms (A) and (F ) in equation 2.30) at different
temperatures and strain rates are shown in Figure 3.6 for (a) the saturation
shear stress (dρ/dγ = 0) in terms of the homologous temperature Th = T/Tm,
and (b) the shear stress–shear strain curves for different temperatures and shear
strain rates (γ̇ = Mε̇), and their comparison with experimental data obtained
from [122, 123, 124, 125]. The physical parameters employed in the model are
shown in Appendix A. cm equals 2.1×10−4, 4.2×10−4, 9.4×10−4 and 1.7×10−4

for Cu, Ni, Al and Ag, respectively; these values are obtained from [97]. It is
worth noting that the additional softening behaviour shown in the experiments
at 673 K is due to dynamic recrystallisation [123], an effect that is introduced
in Chapter 6. Figure 3.6(c) and (d) shows the model results for the average cell
size in polycrystalline copper as a function of temperature and shear strain; the
experimental results were obtained from [42] and [126], respectively. The average
dislocation density is calculated using equations 2.30 and 3.71 for stages I–III,
and IV ((A′) in equation 3.71), respectively. Large deformation behaviour of
polycrystalline copper is shown in Figure 3.6(e) for the shear stress–shear strain
curves when deformed at room temperature, showing the transition between stage
III and IV [126]. The experimental measurements are plotted in dots, whereas the
model results are shown as lines. The dotted line shows the error to be incurred
had stage IV been ignored. This curve is the corresponding stress response to the
cell size evolution shown in Figure 3.6(d). Figure 3.6(f) shows the evolution of
the average misorientation angle at different temperatures obtained from [127].
A low initial dislocation density ρ0 = 1011 m−2 is employed for all cases as no
previous deformation is assumed in the bulk. ρ0 modifications do not display
a clear variation in the results as long as ρ0 ≤ 1011 m−2. The model results
show remarkable accuracy in the flow stress as well as the average cell size and
misorientation for various deformation conditions.
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Figure 3.6: Deformation phenomena at various scales in copper. Milimetre: (a) single

crystals saturation shear stress, (b) shear stress–shear strain curves. Micrometre: average

dislocation cell size variation with (c) temperature and (d) shear strain. Submicrometre: (e)

Severe deformation strains and (f) their corresponding cell misorientation angles [109, 116].

Figure 3.7 shows additional results for pure nickel for (a) the saturation shear
stress in terms of the homologous temperature and its comparison with exper-
imental data obtained from [122, 128]; (b) the shear stress–shear strain curves
for different temperatures and shear strain rates and experimental measurements
for 〈111〉 Ni single crystals and for coarse grained Ni (225-230 µm) that were
obtained from [129] and [128, 130], respectively; (c) the average cell size in nickel
and the experimental measurements of the average boundary spacing of geomet-
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rically necessary (cell) boundaries in cold rolled polycrystalline Ni with average
grain size 100 µm, where the data was obtained from [131]. Figure 3.7(d) shows
the model shear stress–strain curves for large strains where stage IV occurs and
the comparison with polycrystalline Ni with average grain sizes between 80–100
µm, data obtained from [132]. Figure 3.7(e) shows the average cell misorienta-
tion angle evolution in cold rolled Ni [46]. The model displays good accuracy in
the flow stress for various deformation conditions; the cell size shows an initial
value lower than the experimental measurements, however, at higher strains the
model approximates well the experimental cell size; a lower misorientation angle
is predicted at large strains, with a maximum discrepancy of 8◦; this difference
can be ascribed to the high strain rate conditions from the experimental data.
It is interesting to understand how the misorientation angle described by equation
3.66 varies with strain, strain rate and temperature. Figure 3.7(f) shows the
variation of temperature with strain rate at which misorientation angles of θ =
5, 6, 7◦ are formed for γ = 0.9 in pure Ni. An experimental value obtained from
[133] for a nickel superalloy with an induced misorientation angle of 8◦ that crept
at 1223 K with a steady state rate approximately of 2× 10−5 s−1 is included in
the Figure showing a difference of approximately 1.5◦ at the same conditions for
pure nickel.
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Figure 3.7: Deformation phenomena at various scales in nickel: (a) polycrystals saturation

shear stress, (b) shear stress–shear strain curves, (c) average dislocation cell size variation

with shear strain (d) severe deformation strains (refining the microstructure to submicromet-

ric scales) and (e) cell misorientation angle; (f) variation in temperature and strain rate at

different misorientation angles [109, 116].

The model is also applied to describe the deformation behaviour in pure Al and
Ag. Figure 3.8(a) shows the saturation shear stress and its comparison with
experimental measurements for Al and Ag single crystals; the experimental data
were obtained from [122, 134] for Al, and from [122, 135] for Ag. The shear stress–
strain response is shown in Figure 3.8 for (b) Al and (c) Ag single crystals; the
experimental points are obtained from [136] for 〈111〉 Al single crystals, and [135]
for Ag polycrystals (20 µm). Figure 3.8 also shows (c) the average dislocation
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cell size variation with shear strain, (e) flow stress response at stage IV and
(f) cell misorientation angle evolution in pure Al. The model results show good
agreement with the experimental data; however, the saturation shear stress shows
lower values than experimental observations in Ag at low temperatures, this
discrepancy can be due to deformation twinning, as silver undergoes twinning
due to its low stacking fault energy [3]; Al presents a higher work–hardening rate
in stage IV than the one observed in experiments at 77 K.
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3.4 Nanotwinning

When nano twinning is present on deformation, dislocations laterally expand
within the twin boundary (TB) when piling up, reducing the sites available for
further dislocation storage [137]. An additional term (B) accounting for disloca-
tion storage if nanotwins are present impeding dislocation’s motion is considered
in equation 2.30 [94, 138, 139]:

1

ΛT
=

NnT
bDTB

, (3.73)

where DTB is the average nanotwin–boundary thickness and NnT is the disloca-
tion storage term due to the presence of nanotwins.
The storage coefficient NnT is the product of the average number of effective slip
sites available for dislocation pile up in the TB (nslip) [139], multiplied by the
fraction of dislocations not stored in the twin and grain boundaries (1− dfrac):

NnT = nslip(1− dfrac). (3.74)

The variation of nslip with respect to the TB thickness depends on the perimet-
rical fraction per grain available for TBs to form, dictating their density distri-
bution within the grains; if the grains are assumed to have a two dimensional
hexagonal shape with diameter DGS (average grain size), this fraction equals to
PGS/AGS = 8/(

√
3DGS), where PGS = 3DGS and AGS = 3

√
3D2

GS/8 are the
perimeter and area of a grain, respectively. The evolution equation is proposed
to be [139]

dnslip
dDTB

= 2
8√

3DGS

nslip, (3.75)

where the factor of 2 accounts for the parity of the TB.
The ability of boundaries to store dislocations depends on the slip plane distri-
bution per grain, which is delimited by a circular region around each slip plane
2πλsp where dislocations approach the boundaries on the perimetrical fraction,
where λsp is the mean spacing between slip planes at the boundaries [140]. Fol-
lowing the treatment by Bouaziz et al. for dislocation storage at grain boundaries
[138], dfrac is described by the equation [139]

ddfrac
dγ

= 2πλsp
2PGS
AGS

= 2πλsp
16√

3DGS

(1− dfrac). (3.76)

It has been found experimentally that the maximum strength of nanotwinned
copper is reached when the average twin thickness is equal to D0=15 nm [141];
below this critical value the work hardening rate is reduced as there is less space
available for dislocations to pile up at the boundaries; in light of this result, nslip
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reaches its minimum when the TBs reach this value (nslip(D0) = 1). Assuming
that no dislocations are initially at the TBs (dfrac(0) = 0), NnT is equal to [139]:

NnT = exp

(
16√

3DGS

(DTB −D0)

)
exp

(
− 32πλsp√

3DGS

γ

)
. (3.77)

On the other hand, a nano–TB can absorb dislocations letting them glide with
more freedom [137] increasing the average number of possible dislocation slip
paths as its thickness is increased. Moreover, if the grain size is increased, the
absorption rate is lowered. These effects are incorporated in equation 3.11 via
an additional number of microstates ΩTB , which depend on the TB thickness
(DTB/b), and grain size (λsp/DGB , where λsp incorporates the slip plane multi-
plicity on the grain) [139]:

ΩTB = ΩDTBλsp/4bDGB
pure , (3.78)

where the factor of 4 is to reduce the multiplicity of adjacent twin boundaries
(2) and to project the two–dimensional spread of the TB onto one dimension (2).
Combining equations 3.12 with 3.78, the entropy for nano twinning takes place
equals [139]

∆STB = kB ln
(
Ωpure · ΩTB

)
= kB ln Ωpure · ΩnnT

pure = kB ln

(
ε̇0 + ϑ

ε̇

)(1+nnT )N

,

(3.79)

where nnT =
DTBλsp

4bDGS
. Note that dislocation impingement is also affected, as twins

are present prior deformation and imply modifications in the dislocation velocity
effect [139]; term (B) in equation 2.30 is included in equation 3.33. Nanotwinning
also affects the average velocity formula (equation 3.27), by replacing (1 + nnT )N
in the velocity exponent (instead ofN ) [139]. Equation 3.79 is combined with 3.12
to obtain the dynamic recovery coefficient with nanotwin and grain boundaries:

fTBDRV = NAρab
2l∗

wa

T∆STB

1
2µb

3+σY Aactb3+ l∗
b δ(T )

(
Ef+kBT ln cm

)
−kBT ln

(
ε̇0+ϑ

ε̇

)(1+nnT )N ,

(3.80)
which can be compared with equation 3.29.
Finally, a friction stress (σ0) is inserted in equation 2.31 to account for twin

and grain boundary strengthening [77, 139]: σ0 = 0.3
dfrac

DTB
µb, where the 0.3 is a

geometry constant depending on the grain shape and grain size distribution.

3.4.1 Results

Figure 3.9 shows the twinning deformation model results for the axial stress–
strain curves for pure copper deformed at room temperature, in this case also
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featuring the term (B) in equation 2.30 for (a) TBs of different average thickness
with DGS=420 nm and for the case of coarse grain (CG) polycrystals4 (terms
(A) and (E) are only present in equation 2.30), and (b) at different average grain
sizes and TBs thickness, and their comparison with experimental values obtained
from [11, 142]. The yield stress variation with the TB thickness was obtained
from [143], and was fitted to the formula σY = 113043/

√
DTB [MPa] to simplify

calculations. λsp = 150 nm was obtained from [140]. The model shows good
agreement in the stress–strain response for different average twin boundary’s
thicknesses and grain sizes.

0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

( A ) + ( E )

( A ) + ( B ) + ( E )

C G

 M o d e l
 E x p e r i m e n t

σ (
MP

a)

ε

( A ) + ( B ) + ( E )

0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 2
0

2 0 0

4 0 0

6 0 0

D G S = 4 2 0  n m

2 9 8  K ,  ε = 6 x 1 0 - 3  s - 1

D G S = 4 6 0  n m ,  D T B = 5 7  n m

D G S = 1 5 0 0  n m ,  D T B = 6 2  n m

D T B = 1 0 0  n m

D T B = 3 0  n m

D T B = 1 5  n m

( b )

σ (
MP

a)

ε
( a )

Figure 3.9: Stress–strain curves of pure copper for different average (a) twin boundary thick-

ness and coarse grain polycrystal, and (b) grain sizes with different twin boundaries thickness.

3.5 Conclusions

The “classical” approaches to the modelling of multiscale plasticity demand ad
hoc relationships between dislocation motion and evolution, usually fitted and
phenomenologically determined, particularly as a function of strain, strain rate

4Equation 3.29 is employed for the dynamic recovery coefficient.
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and temperature. Moreover, as stated by McDowell [87], the transition and hi-
erarchy between methods describing different scale ranges in plasticity modelling
needs further examination, as incompatibilities due to the lack of a unique vari-
able become present. The interplay between dislocation storage and annihilation
describes the progress in dislocation density with strain, which can be employed
as a unique parameter for describing multiscale plasticity.
Shortcomings of this theory include that only average values are described, and
the model cannot reproduce microstructural development in two– or three– di-
mensional systems displaying texture. It does not provide more detailed infor-
mation on dislocation interactions with other crystal defects, and only energy
contributions are accounted for. The statistical entropy describing the energy
loss due to possible dislocation slip and climb paths does not predict the actual
velocity distribution of a dislocation. This analysis is defined under the assump-
tions that the dislocation velocity is limited by the speed of sound, and that
the dislocation density consistent with the yield point represents an equivalent
dislocation population when dislocation slip commences. Other effects occurring
at high rates, such as phonon–drag effects are not considered [144]. The total
number of microstates can be related to the macroscopic strain rate (via the
Orowan equation). However, for static cases, such as creep and static recovery
and recrystallisation, additional modifications have to be made.
Dislocation entropy features strongly in plasticity across the scales, and has an
essential effect when temperature and strain rate effects are included. Expres-
sions for the entropy for dislocation annihilation and rearrangement (in the form
of cells) are derived from statistical mechanics concepts. The characteristic mi-
crostates associated to the possible dislocation velocities, and their interaction
with vacancies and twins are accounted for. The exceptional stress–strain be-
haviour displayed by nanotwinned materials is recovered by incorporating the pa-
rameters describing its progressive refinement with strain, increasing the number
density of barriers for dislocation glide by the presence of nanotwin boundaries,
and the capacity to store dislocations at the grain boundaries without undergo-
ing failure. The progressive refinement of the microstructure as dislocations are
formed with strain, combined with the increase in the number of microstates due
to the twinning process of dislocation absorption are responsible for such unique
behaviour. It is demonstrated that complex properties may be described with-
out a detailed description of the slip systems participating in plasticity, but by
thermostatistically describing their energetically favourable paths instead.



Chapter 4

Plastic deformation theory
for body–centred cubic
metals

This chapter extends the theory presented in Chapter 3 for describing plastic deforma-

tion in body–centred cubic (BCC) metals. The distinctions between FCC and BCC

stem primarily from the possible directions and planes for dislocation slip and cross–

slip, as well as from the presence of the kink–pair mechanism for dislocation migration

in BCC, which are incorporated to the mathematical formulation of the model. The

theory presented in this chapter is unique in describing the stress–strain response for

pure iron, molybdenum, tantalum, vanadium and tungsten employing physical param-

eters as input; the description is made for wide ranges of temperature and strain rate.

Additionally, succinct equations to predict dislocation cell size variation with strain,

strain rate and temperature are provided and validated for pure iron.

4.1 Introduction

Plastic deformation of body–centred cubic (BCC) metals occurs by dislocation
slip driven by thermally activated kink–pair migration [5, 26], leading to dislo-
cation cross–slip for both generation [145] and annihilation [7]. Moreover, the
presence of vacancies aids the annihilation of dislocations via their segregation
around the dislocation’s core enhancing dislocation mobility and climb [142]. At
higher temperatures vacancy–assisted dislocation climb becomes the dominant
annihilation mechanism [5, 146]. A modified version of the FCC model for work
hardening and dislocation cell evolution for single crystal/coarse grained BCC

59
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metals at low and medium temperatures is presented in this chapter. Section
4.2.4 outlines the main differences between BCC and FCC deformation. Dy-
namic recovery is the main dislocation annihilation mechanism, and only terms
(A) and (E) are present in the Kocks–Mecking equation (2.30) presented in this
chapter for BCC metals.

4.2 Kocks–Mecking formulation

Owing to the multiplicity of slip systems, dislocation cross–slip rate is increased
in BCC materials compared to FCC [5]; dislocations with 〈111〉 Burgers vector
may undergo cross–slip on 48 slip planes1 (Table 2.1): 12 {110}, 12 {112}, and 24
{123} planes, whereas for FCC metals there are only 12 planes for the most likely
cross–slip direction, it follows that cross–slip events are more frequent in BCC
than in FCC metals. Moreover, the number of possibilities for dislocation interac-
tion in BCC metals is lower than for FCC materials as their coordination number
(number of possible dislocation interaction directions) is 8 and 12, respectively.
These crystallographic characteristics modify the capabilities of BCC materials
for dislocation storage and annihilation, increasing the dislocation’s mean free
path and dislocation annihilation rate by a factor of (48/12)︸ ︷︷ ︸

(1)

· (8/12)︸ ︷︷ ︸
(2)

= 8/3 [147],

where (1) incorporates the additional dislocation cross–slip rate, and (2) the vari-
ation in dislocations self interactions. Therefore, it is proposed that in order to
describe dislocation evolution for BCC materials, the (Kocks–Mecking) equation
2.30 is modified by increasing the dislocation mean free path (inverse dislocation
storage term) and the dislocation annihilation rate by a factor of 8/3 [147]:

dρ

dγ
=

3

8

dρ+

dγ
− 8

3

dρ−

dγ
=

3k1

8b

√
ρ︸ ︷︷ ︸

(A)

− 8

3
fBCCDRV ρ︸ ︷︷ ︸

(E)

. (4.1)

4.2.1 Statistical entropy

A key feature in this theory is the introduction of the statistical entropy ∆S (from
previous chapter) that incorporates the possible paths for dislocation motion in
terms of the total number of microstates: Ωpure = Ωdis + Ωvac (equation 3.11),
where Ωdis = ε̇0

ε̇ and Ωv−d = ϑ
ε̇ are the number of microstates due to dislocation

slip and to vacancy–dislocation interactions, respectively; ε̇ is the axial strain
rate; ε̇0 = cbρY is the limiting value for the strain rate, a constant related to the

1Although dislocations have preferred slip planes for gliding, cross–slip may take place in
any closed–packed direction.
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speed of sound in the material (c); ρY =
(
σY /αMµb

)2
is the dislocation density

consistent with the yield point σY , α = 0.3 is a constant, M is the Taylor factor;
and ϑ = ϑD exp

(
− Em

RT

)
is the vacancy migration frequency, and ϑD = 1013 s−1

is the Debye frequency and Em is the vacancy migration energy.
The transition temperatures where different dislocation annihilation mechanisms
prevail are obtained by comparing Ωdis and Ωvac (equations 3.13): For deforma-
tion temperatures below T0 = Em

R ln(ϑD/ε̇)
no vacancy effect is present; at defor-

mation temperatures higher than Tf = Em

R ln(ϑD/ε̇0) , vacancy–assisted dislocation

climb prevails and becomes fully present, and at temperatures between T0 and Tf ,
vacancy–dislocation interaction enhances the kink-pair mechanism for dislocation
motion.
T0 values for pure iron, molybdenum, tantalum, vanadium and tungsten are
shown in Table 4.1 for different strain rate conditions; they are compared with
experimental values where the curvature of the flow stress (Fe, Mo), yield stress
(Ta, V) and critical resolved shear stress (W) charts significantly change with
temperature, decreasing the stress value with increasing temperature, with a cor-
responding increase in the dislocation annihilation rate. As experimental mea-
surements usually do not show a sharp transition point, some results are shown
within temperature ranges where the transitions are observed. Physical input
parameter values are listed in Appendix A. The modelled homologous tempera-
ture Th = T0/Tm is also shown. The values of T0 are in good agreement with the
corresponding experimental values (TE0 ) for Fe, Mo and W; for the case of Ta
and V the model predictions are below those experimentally measured by ∼100
K.

Table 4.1: Lower temperature limit

Material ε̇ (s−1) TE0 (K) Ref T0 (K) Th
Fe 8.5× 10−4 250 [148] 245 0.13
Fe 4× 10−5 200-300 [149] 226 0.12
Mo 8.5× 10−4 400-425 [150] 374 0.13
Ta 1.2× 10−6 270-320 [151] 191 0.06
V 2.55× 10−4 500-550 [152] 396 0.18
W 7× 10−6 550-650 [153] 614 0.16

Table 4.2 shows the estimated values for Tf and the respective homologous tem-
perature. However, no experimental information was found in the literature to
compare these values.
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Table 4.2: Upper temperature limit.

Material Fe Mo Ta V W
Tf (K) 500 1160 685 1625 1260
Th 0.28 0.4 0.2 0.74 0.34

Christian has pointed out [154] that the flow stress in BCC metals features three
regimes with respect to temperature variations, being the transition points be-
tween these ranges ∼0.15Tm and ∼0.33Tm, whereas the model predicts the tran-
sition temperatures to be 0.06Tm ≤ T0 ≤ 0.16Tm and 0.2Tm ≤ Tf ≤ 0.4Tm for
the tested metals, except for vanadium where Tf = 0.74Tm. This difference can

be due to the extrapolation of σ
Tf

Y (Appendix A), an exponential formula was
fitted for T ≤ 293 K, and its values significantly increase at higher temperatures.
This may overestimate the value of ε̇0, increasing Tf value.

4.2.2 Number of microstates for BCC

The motion of a dislocation in a BCC metal is composed of the migration of
two thermally activated kinks; this determines the migration rate necessary for
a dislocation to glide [5]. If independent events are considered, this behaviour
induces a double kinetic effect for a dislocation to slip, i.e. the total number of
microstates (ΩBCC) for BCC metals is squared [147]

ΩBCC = Ωpure · Ωpure = Ω2
pure. (4.2)

This equation incorporates the necessary conditions for kink–pair formation, trig-
gering dislocation glide. The statistical entropy incorporating the dislocation’s
kinetic effect then becomes [147]:

∆SBCC = kB ln ΩBCC = kB ln

(
ε̇0 + ϑ

ε̇

)2

. (4.3)

4.2.3 Dynamic recovery coefficient

The multiplicity of dislocation slip paths discussed previously leads to an expres-
sion for the average dislocation velocity 〈v〉 for annihilation (expressed in terms
of the strain rate) equal to (equation 3.23) [147]:(

〈v〉
c+ cint

)2

=

(
ε̇

ε̇0 + ϑ

)2

= exp

(
− 〈∆G〉

kBT

)
, (4.4)
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where 〈∆G〉 is the energy barrier for dislocation annihilation, and cint = ϑ/bρY
is an equivalent increase in the annihilation velocity due to the presence of va-
cancies [109]. 〈∆G〉 is obtained by performing a thermodynamic analysis on a
dislocation segment lBCC that undergoes annihilation; 〈∆G〉 accounts for (equa-
tion 3.16): the formation and migration energy of a dislocation, the vacancy
chemical work around a dislocation at higher temperatures (T > T0) and the
statistical entropy that accounts for the energy loss due to the variation in the
slip(+climb) dislocation paths. The energy for a dislocation to migrate depends
on the critical resolved shear stress τCRSS (for uniaxial loading conditions, σY is
directly related to τCRSS), which barrier increases in BCC metals; this effect is
included in 〈∆G〉 (equation 3.18). The same analysis outlined in Section 3.3 is
followed to obtain lBCC :

lBCC =
bT∆SBCC

1
2µb

3 + σYAactb3 + l∗

b δ(T )
(
Ef + kBT ln cm

)
− 2kBT ln

(
ε̇0+ϑ
ε̇

) . (4.5)

The impingement effect that accounts for the favourable conditions of dislocations
to split into partials and alters the dislocation velocity is not included for BCC
metals.
The dynamic recovery term fBCCDRV is defined as the fraction of substance undergo-
ing dislocation annihilation per dislocation around the volume of substance that
is not dislocated after a certain strain increment (Vsys)[104, 109]. By employing
Vsys = bl∗lBCC (equation 3.15), the recovery coefficient equals

fBCCDRV =
NAρaVsys

wa
(4.6)

=
w−1
a NAρab

2l∗T∆SBCC
1
2µb

3 + σYAactb3 + l∗

b δ(T )
(
Ef + kBT ln cm

)
− 2kBT ln

(
ε̇0+ϑ
ε̇

) .
This formula is similar to the recovery coefficient for FCC metals (equation 3.29),
except for the 2 factor multiplying T∆SBCC and the logarithmic term in the
denominator (coming from equation 4.4).
In addition to the stress contribution from dislocations during deformation, a
frictional stress σ0 due to the lattice resistance (Peierls barrier) is required to
ignite dislocation motion in BCC metals [155]; it is assumed to be equal to σY
[147]; this term is strongly dependent on temperature and strain rate. The Taylor
equation becomes equal to:

σ = σY + αµMb
√
ρ. (4.7)

4.2.4 BCC vs. FCC

Table 4.3 summarises the principal differences between both models.
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Table 4.3: Differences between FCC and BCC thermostatistical models.

Item FCC BCC Eq. Description
1 1 8/3 4.1 Prefactor to the inverse dislocation storage

and annihilation rates
2 1 2 4.3 Exponent in the number of microstates
3 N 2 4.4 Exponent in the thermally activated average

velocity
4 0 σY 4.7 Incorporation of the friction stress in σ

Referring to Table 4.3, item 1 is introduced to account for the increase in the
number of cross–slip events, as well as to account for the decrease in number
of nearest neighbours for dislocations to interact with each other. Cross–slip
is well accepted to be a major dislocation annihilation process, however it also
contributes to dislocation generation via a double cross–slip process, as pointed
out by Galkin et al. [145]. The kink–pair driven dislocation motion requires that
the probability (Ω−1

pure in equation 3.11 [104]) for each event occurs simultaneously
(joint probability), increasing the multiplicity in the number of microstates by a
factor of two as shown in item 2. The expected velocity of a dislocation is also
affected as the two joint–kink migration events are needed to ignite dislocation
motion (item 3). Item 4 incorporates additional frictional stress required to ignite
dislocation motion.

4.3 Results

The evolution of the average dislocation density is obtained by solving equa-
tion 4.1 with the modified dynamic recovery coefficient (equation 4.7). At large
strains, where dislocation generation and annihilation reach equilibrium, addi-
tional work hardening takes place due to dislocation rearrangement [121, 116];
this is defined as stage IV and the evolution of the dislocation density is depicted
in Section 3.3.4. The evolution of dislocation density at this stage is described by
equation 3.71 and it is denoted by term (A′). The model results combine both
equations to describe dislocation evolution at large strains. An initial dislocation
density ρ0 is taken to be equal to 1011 m−2 in all studied cases. The dislocation
storage coefficient is obtained from equation 2.27. Figure 4.1 shows the values of
the lower–yield stress obtained from the experimental stress–strain curves that
were used to compare with the model as a function of the reduced temperature:
kBT ln

(
(ε̇0 + ϑ)/ε̇

)
/µb3.
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Figure 4.1: Yield stress for pure Fe, Mo, Ta, V and W.

The BCC model is tested against experimental stress–strain results reported in
the literature for pure Fe, Mo, Ta, V and W. The physical parameters were
obtained from the literature and are listed in Appendix A. The vacancy concen-
tration at the melting point is estimated with the formula
cm = exp(−∆Sform/R) exp(−Ef/RT ), where ∆Sform is the vacancy formation
entropy, and ∆Sform/R is approximately equal to 1.5 [156], except for Mo where
cm = 0.000013 was obtained from [97].
The values of Aactb

2 for the studied BCC metals are shown in Appendix A. Aactb
2

is inversely proportional to the stacking fault energy (equation A.1). Assuming
that the prevailing slip planes for iron, molybdenum, vanadium, tungsten and
tantalum are those present at low temperature, the relevant (close–packed) slip
planes respectively become {110}, {123} and {112} [5]. A generalised Peierls–
Nabarro model can then be applied to determine the values of the stacking fault
energies on these planes. Following Watanabe [157], Segall et al. [158] and Hart-
ley [159], the associated minimum fault energies are for the systems {110}〈111〉
in Fe, {110}〈111〉 in Mo, {110}〈111〉 in Ta and {112}〈111〉 in W, which respective
stacking fault energies are listed in Appendix A. For Mo and Ta, the atomic dis-
placement for the formation of the stacking fault was taken as 0.25b (maximum
theoretical atomic displacement) [155]. For the case of vanadium, no calculations
were found in the literature and this value was fitted.
Results of the stress–strain curves for pure iron single crystals deformed at 77
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K and ε̇ = 5 × 10−4 s−1 [160], and for coarse–grained pure iron deformed at
different conditions [161, 162] are plotted in Figure 4.2(a) (terms (A) and (E)
are present in equation 4.1, as can be compared to equation 2.30), and at large
strains, equation 3.71 is also incorporated (term (A′)). The model shows good
agreement for very wide temperature and strain rate ranges. Figure 4.2(b) shows
the model predictions for the average cell size evolution and its respective stress–
strain curve for pure polycrystalline iron with an average grain size of 150 µm
deformed at room temperature and ε̇ = 4.2× 10−4 s−1, and its comparison with
the experimental measurements obtained from [163]; additional measurements
are shown for the average cell size are shown in pure iron single crystal deformed
in the [110] direction at room temperature and at 2×10−4 s−1. These values were
obtained from [164]. It is worth noting that experimental measurements show
discrepancies of ∼2 µm at low strains (ε ≤ 0.175), whereas they converge at large
strains. This discrepancy can be ascribed to the dislocation density present before
the material had been deformed. At low strains the model shows intermediate
cell size values with respect to experiments; and the average cell size evolution
is successfully recovered after a strain of ∼0.175, being in good agreement with
the size reduction behaviour, as well as with the respective stress–strain curve
exhibiting stage IV of deformation.
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Figure 4.2: Model comparison with experimental data for pure Fe at different conditions: (a)

Stress–strain curves and (b) average cell size.

Figure 4.3 shows the model results for different temperatures for pure polycrys-
talline molybdenum deformed at 10−1 s−1 and 10−3 s−1 and its comparison with
the experimental data obtained from [165]. The model results show good agree-
ment.
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Figure 4.3: Model comparison with experimental data for pure Mo.

Figure 4.4 shows a comparison for different deformation conditions of pure poly-
crystalline tantalum [166], tungsten [167], and vanadium, the latter having an
average grain size of 260 µm [168]. The model shows good agreement for the
three materials when it is compared with experiments at different temperatures
and low strain rates (approximately below ε̇ ∼1 s−1). For the case of Ta, it
shows discrepancies for high strain rate values (≥ 2600 s−1) are observed, this is
probably due to other factors limiting dislocation slip [169].
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Figure 4.4: Model comparison with experimental data for pure a) Ta, b) W, and c) V.

The modifications incorporated in the present model and summarised in Section
4.2.3 can be regarded as the compactation of the non–close–packed structure
inherent to BCC metals, leading to an equivalent close–packed counterpart. This
also justifies the use of a generalised value of χ (on the close–packed directions),
to obtaining the activation energy for cross–slip Aactb

2 (equation A.1).

4.4 Conclusions

The thermostatistical theory describing plastic deformation has been extended
in this chapter to describe work hardening and dislocation cell evolution in BCC
metals. It has been demonstrated to apply for wide temperature and strain rate
ranges. Additional crystallographic features and deformation modes character-
istic of BCC metals have been incorporated. Using input physical parameters
reported in the literature, such as the shear modulus, the vacancy formation
and migration energy, it was possible to accurately describe the stress–strain be-
haviour for Fe, Mo, Ta, V and W for various temperatures and strain rates, as
well as the average cell size evolution for pure Fe.
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Vacancies aid the dislocation annihilation process by arranging along the dis-
location’s core enhancing kink motion, or by aiding dislocation climb at high
temperatures. The onset value for vacancy-dislocation interaction T0 is com-
pared with the transition points (ranges) where the curvature of the flow stress
curves with respect to the temperature changes, showing good agreement for iron,
molybdenum and tungsten, and fair agreement for vanadium and tantalum.
Other than coefficients accounting for the differences in crystal structure, it is
important to note that no additional fitting parameters were introduced in the
current formulation, and that the entire stress–strain curve is described via the
average dislocation density only. Shortcomings to the model include a strong
dependency on the yield stress (friction force), which is the onset for plastic de-
formation. The value of the high temperature transition Tf could not be validated
with experimental measurements as no data were found in the literature. The
extrapolation of the fitted yield stress may not describe accurately the material’s
behaviour at very high temperatures, and its dependence with strain rate has
been neglected.



Chapter 5

Deformation twinning in
hexagonal close packed
metals

Deformation twinning in HCP metals is described in this chapter. The aim of this work

is to capture the overall twinning behaviour in terms of a single dislocation density, pre-

dicting its occurrence for various temperature and strain rate ranges. Thermodynamic

descriptions for the critical conditions for twin nucleation and growth are respectively

derived. This is obtained by accounting for the competition between the strain energy

in the material from local stress concentrations and dislocation slip. Deformation by

dislocation slip, at strains before twinning occurs, is described by the theory derived

in Chapter 3 and now applied to HCP materials without additional considerations.

An average and homogeneous dislocation density is considered, remaining a pseudo-

continuum approach with only one parameter evolution. A dislocation generation term

accounting for twin propagation is added to the evolution equation. Such term becomes

active once a critical strain for twin nucleation is reached. Only physical parameters

are employed as input. The new theory is successful in describing work hardening and

twin volume fraction evolution of Ti, Zr and Mg. The transition temperatures where

tensile or compressive twin modes dominate in Ti, Zr and Mg are also described.

5.1 Introduction

Hexagonal closed–packed (HCP) alloys are good candidates for modern industrial
applications. For instance, automotive industry demands lighter materials while
preserving or increasing their strength, leading to an increased interest in Mg–

71
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based alloys; aerospace and nuclear power generation industries require good
mechanical performance (strength, creep and corrosion resistance) at elevated
temperatures, where Ti and Zr–based alloys display excellent properties.
HCP metals present fewer slip systems in comparison to other crystal structures
such as face centred–cubic (FCC) or body centred–cubic (BCC), due to the re-
duced symmetry in their atomic arrangement. They are highly anisotropic, and
their mechanical response variation is stronger under different crystallographic
orientations. When they are plastically deformed, slip planes quickly saturate
from dislocation glide and cross–slip, leading to the decomposition of dislocations
into partials and twin formation. Deformation twinning is one of the principal
modes of plastic deformation in crystalline solids [3]. Although HCP metals have
been under investigation for many years, specific deformation mechanisms tak-
ing place at various temperatures and deformation orientations are not entirely
understood yet.
When an HCP specimen is deformed under compression perpendicular to the
basal poles, i.e. in–plane compression (IP), an additional hardening contribu-
tion is observed from twinning in a predominant mode. However, under different
compression orientations, various twin and slip modes may take place at different
temperatures; under through–thickness (TT) compression in magnesium at room
temperature, basal and non–basal slip takes place and the twinning contribution
to work hardening is lower with respect to IP compression [170, 171]; although
a predominant twin mode is observed, the activity ratio of other twin and slip
modes is higher. Figure 5.1 shows a schematic representation of IP and TT com-
pression orientations. Many authors have found that under tensile deformation
parallel to the cHCP –axis, these metals exhibit a “normal” work hardening be-
haviour by dislocation slip, as almost no twin modes are favoured [172, 173, 13].
However, work hardening rate and yield stress are increased.

Figure 5.1: Schematic representation of (a) in–plane, and (b) through–thickness
compression orientations.
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There are two types of twin modes: tensile and compressive; they differ in their
ability to accommodate strain during deformation. The interaction of dislocations
with tensile {1012} twins in Ti, Mg and Zr is repulsive1, as a local stress con-
centration is produced due to pile–up at the interfaces [9]. Compressive {1122}
twins have an opposite effect, as they tend to contract the crystalline structure,
and attract additional dislocations [9].
Table 5.1 summarises the experimentally observed predominant slip and twin
modes in pure Mg, Ti and Zr at various temperatures and deformation orien-
tations. Tensile twins predominate in pure magnesium at higher temperatures
(T ≥ 298 K); compressive twins in titanium prevail at and below room temper-
ature, Zeng et al. [174] observed tensile twins dominate at high temperatures
(T ≥ 673 K) for moderate strains (ε ≤ 0.36)2. In zirconium, compressive twins
prevail at low temperatures (T ≤ 300 K). However, McCabe et al. [175] found
that compressive twins dominate at 77 K at medium strains (ε = 0.25), whereas
tensile twins are present at room temperature and at 77 K at low strains (ε < 0.1)
instead. Note that the work from Song and Gray [176], shows opposite results for
Ti and Zr in IP compression, although the compression orientation direction was
not specified. Moreover, Morris et al. [177] performed atomistic calculations in
Ti and Zr, finding that {1122} compressive twin nucleation rate is higher at low
temperatures, whereas {1012} tensile twins are easily nucleated at higher tem-
peratures. However, the transition temperatures where each mode predominates
have not been described. For Mg alloys with moderate concentrations in Al and
Zn (≤ 3 wt%), the deformation mechanisms are similar to those for pure Mg
[178, 179].

1Same effect occurs for other tensile twins.
2They also found that at large strains (ε = 0.96) {1011} compressive twins are formed and

almost all tensile twins have been annihilated, however this deformation range lies beyond the
scope of the present work.
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Table 5.1: Slip and twin modes found in Mg, Ti and Zr for various deformation
conditions.

Material Temp. (K) Def. mode Slip mode Twin mode Twin system Ref.
Mg 298-580 IP Comp. Basal Tensile {1012}〈1011〉 [180]
Mg 298-423 IP Comp. Basal Tensile {1012}〈1011〉 [181]
Mg 298-580 Tension Basal & Non-basal No twinning - [182]
Mg 298 TT Comp. Basal & Non-basal Tensile {1012}〈1011〉 [170]
Mg 77-298 Tension Pyramidal No twinning - [183]
Ti 76-298 IP Comp. Prismatic Compressive {1122}〈1123〉 [184]
Ti 298 IP Comp. Prismatic Compressive {1122}〈1123〉 [185]
Ti 298 cHCP -axis rolled Prismatic Compressive {1122}〈1123〉 [186]
Ti 673-973 IP Comp. Prismatic Tensile {1012}〈1011〉 [174]

Ti, Zr 76, 300 Compression Prismatic Tensile {1012}〈1011〉 [176]
Zr 4.2-300 IP Comp. Prismatic Compressive {1122}〈1123〉 [187]
Zr 298 IP Comp. Prismatic Tensile {1012}〈1011〉 [175]
Zr 76 IP Comp. Prismatic Tensile {1012}〈1011〉 [175]

(0.04 ≤ ε ≤ 0.1)
Zr 76 (ε = 0.25) IP Comp. Prismatic Compressive {1122}〈1123〉 [175]
Zr 298 TT Comp. Prism. & Pyram. No twinning - [175]
Zr 76 TT Comp. Prismatic Compressive {1122}〈1123〉 [175]

(0.04 ≤ ε ≤ 0.1)
Zr 76 (ε = 0.25) TT Comp. Prismatic Tensile {1012}〈1011〉 [175]

Crystal plasticity and/or finite element modelling have been frequently employed
to describe deformation twinning in hexagonal metals [188, 189, 74, 178], as
these methodologies can incorporate deformation gradients on specific slip and
twin planes, and account for deformation orientation effects. Constitutive rela-
tions are introduced for the critical stress to activate each respective slip or twin
mode. Texture distributions can be mapped with these approaches. Mesoscale
models have been employed in magnesium [190] and titanium alloys [191, 192]
to describe temperature and strain rate variations during work hardening. Bey-
erlein and Tomé [21], and Oppedal et al. [22] have developed a dislocation–
based thermally–activated hardening model for pure Zr and Mg, respectively,
for different temperature and orientation conditions: the evolution of the dis-
location density of each slip mode follows a Kocks–Mecking evolution equation;
a dislocation–twin hardening constitutive relationship is defined. The previous
methods require the definition of empirical or phenomenological relations to ac-
count for temperature and strain rate variations, and for the activation conditions
of the respective slip and twin modes. Moreover, quantitative analysis on solid
solution effects in alloy’s work hardening and twinning behaviour is not clear yet.
The objective of this chapter is to present a thermostatistics–based description of
deformation twinning in HCP metals. Concomitant interactions of dislocations
with twins are studied with a single parameter description [193]. The novelty
of this approach stems from mapping the critical conditions for twin nucleation
and growth by expressing the favourable energy conditions for their occurrence.
Central to this analysis is the introduction of a statistical entropy term that
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accounts for the possible dislocation migration paths. This allows to postulate
thermodynamic descriptions between the strain energy induced by local stress
concentrations in the material and the dissipation effect from moving dislocations;
the latter is crucial to be considered, as dislocation slip always precedes twin
nucleation and growth [194]. As a result from these balances, the transition
temperatures for predominant twin modes are successfully described.
This approach aids to reduce the number of parameters to be identified for each
material; this is achieved by employing physics–based expressions that can be
applied in several systems. This is demonstrated by applying the model (with the
same set of equations) to describe work hardening, where pure slip and twinning
occur, and twin volume fraction evolution for different temperature, strain rate
and orientation conditions in pure Ti, Mg and Zr.
An incentive for introducing this approach is that several parameters, such as the
critical stress for twin nucleation or the critical resolved shear stress for slip, are
difficult to estimate from experiments [9, 195], and a number of constitutive or
semiempirical relations, including several fitting parameters, are introduced for
each material at different temperatures and strain rates. Furthermore, continuous
dislocation and twin interactions represent a challenge for describing their isolated
contributions. This makes difficult to make further predictions or extensions for
designing new systems within the same formulation. Such complexities are not
required in this theory, as it is based on estimating the energy production rate
in the material, rather than characterising the specific mechanics of deformation
twinning and dislocation slip.

5.2 Twinning formulation

Based on the previous discussion, the current model is defined on the following
assumptions:

i) Only uniaxial loading conditions are being considered at moderated strains
for pure materials.

ii) A single twinning and slip mode predominate for a given temperature and
strain rate.

iii) An average macroscopic Taylor factor is predominant for a given deforma-
tion orientation. In–plane compression is set as the reference deformation
orientation.

The introduction of assumption ii) is inspired by the experimental observations
listed in Table 5.1, where in nearly all cases no more than one twin mode pre-
dominates. Table 5.2 shows the slip and twin modes considered in the model3;

3The transition temperatures where each mode predominates are provided in Section 5.2.3.
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secondary twin modes are not considered in this work. Assumption iii) follows
from ii), as different slip mode/twin mode combinations lead to different orien-
tation factors [196]. This assumption is also supported by the work from Cáceres
and Lukác [197], where they estimated the Taylor factors from the stress-strain
curves of pure magnesium with different texture conditions. These assumptions
are valid at a macroscopic level only; at a polycrystalline level, stress variations
occur on different orientations. Moreover, the Taylor factor can be defined at
a macroscopic level. Solute atom contributions to twinning behaviour are not
considered in this thesis, however they can be included in the current formation.
This can be found in [193]. Coarse–grained materials are considered, as for rela-
tively large grain sizes (≥ 15 µm), material’s work hardening behaviour remains
constant [198]. An interesting aspect of these observations is that, although twins
can be formed at grain boundaries, their possible formation do not contribute to
the material’s macroscopic behaviour.

Table 5.2: Slip and twin systems considered in the model.

Material twinning type Ti, Zr Mg
Slip system {1010}〈1120〉 (0002)〈1120〉
Twin mode Tensile {1012}〈1011〉 {1012}〈1011〉
Twin mode Compressive {1122}〈1123〉 {1122}〈1123〉

Additional work hardening occurs once twin nucleation and propagation occurs.
Twins act as barriers for dislocation slip, inducing an additional dislocation gen-

eration term
(dρ+T
dγ

)
in the Kocks–Mecking equation (term (B) in equation 2.30):

dρ
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− dρ

−

dγ
=
k1

b

√
ρ+

dρ+
T

dγ
−fDRV ρ =

1

b

(
k1
√
ρ︸ ︷︷ ︸

(A)

+
1

ΛT︸︷︷︸
(B)

)
−fDRV ρ︸ ︷︷ ︸
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, (5.1)

where γ is the shear strain, k1 is the dislocation storage coefficient [6], and ΛT
is the average twin boundary spacing of the predominant twin mode. This term
becomes active once twin nucleation takes place.
Twin nucleation involves the dissociation of dislocations into partials due to lo-
calised stress concentrations [9]. This effect can be induced by dislocation pile–up
at crystal defects (these include encountering other dislocations from adjacent slip
planes, solute atoms or grain boundaries) [10], or by homogeneous lattice shear
in a region of high stress concentrations [9]. Irrespective of the occurring mecha-
nism, a critical strain energy is required to nucleate partial dislocations and drive
twin propagation [194]. The twin nucleation and growth process being considered
in this work is:
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a) At an initial state (γ = 0), the material contains a low dislocation density
(ρ0).

b) Plastic deformation takes place under the critical strain at which twin nucle-
ation occurs (γ < γ∗Twin): dislocations form and slip in the crystal.

c) Critical stress concentration occurs and partials are formed (by any of the
previous mechanisms) at γ = γ∗Twin to nucleate twins; these twins contain an
equivalent very low dislocation density ρT (twin boundaries+interiors); it is
assumed that ρT ∼ ρ0.

d) As plastic deformation continues (γ > γ∗Twin), twin propagation occurs and
the dislocation density of the twins ρT increases (ρT adds more dislocations
to ρ).

Figure 5.2 shows a schematic description of this process. Arrows in Figure 5.2(b)
point out where critical stress concentrations may occur, leading to twin forma-
tion (from dislocation self–interactions). A homogeneous dislocation density is
described in equation 2.25: ρT at γ > γ∗Twin equals ρ at γ−γ∗Twin [95]. Although
a number of twins are also nucleated below γ∗Twin, they do not contribute macro-
scopically to dislocation hardening [191]. This criterion is consistent with the use
of a uniform dislocation density.

Figure 5.2: Schematic representation of twin nucleation and growth process.
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An important aspect of this approach is that, as only the average dislocation
density is considered, ρ contains both perfect dislocations and twins. This allows
to simplify the number of parameter for identification and physical relations. For
instance, no local considerations of the mechanisms driving partial formation are
initially required, as the overall critical strain energy is considered for the ther-
modynamic analysis. Moreover, no critical resolved shear stress for slip and for
twin nucleation are needed to be identified for different temperatures. However,
further considerations need to be taken into account for orientation effects and
for separating twin and dislocation contributions (via obtaining the twin volume
fraction). This is addressed in Sections 5.2.4 and 5.2.5, respectively.

5.2.1 Twin nucleation strain

Following the previous considerations, it is proposed that twin nucleation occurs
when the dislocation forest energy (Eforest), accounting for the overall stress ac-
cumulation in the material, equals the strain energy to form a twin boundary
embryo (Enucl) and the excess strain energy propagate it (Eexs); these terms are
reduced by the energy dissipation from dislocation migration (Edisp), as disloca-
tion glide tends to reduce local stress accumulation. The balance becomes:

Eforest = Enucl + Eexs − Edisp. (5.2)

Twin growth is not thermally activated, hence its occurrence is driven by the
excess strain accumulation in the material only; Eexs accounts for such effect.
This thermodynamic analysis for nucleation is similar to the balance employed
in Chapter 3 for dislocation cell formation [116], where Arrhenius–type equations
are not valid.
The energy of a dislocation forest equals [116, 3]

Eforest =
nf
2
µb2l, (5.3)

where nf is the number of dislocations in the forest and l is the average dis-
location spacing. In the previous section, the statistical entropy concept has
been introduced to account for the energy dissipation from possible dislocation
slip paths for given deformation conditions. Edisp is approximated by T∆S per
dislocation [116, 95, 139] (Section 3.3.2),

Edisp = nf
l

b
T∆S. (5.4)

Enucl represents the strain energy around a newly formed twin embryo, inducing
n∗nuc dislocations to split into Shockley partials:

Enucl =
n∗nuc

2
µb2l. (5.5)
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n∗nuc is a fraction of nf . This number should account for the lattice distor-
tion effects induced by a newly formed twin and for the possible sites for stress
concentrations by dislocation self–encounters (no grain boundary or solute atom
effects are added). Thus, n∗nuc is approximated by I) the ratio between the area
surrounded by a twin embryo with an initial boundary length xTwin (per dislo-
cation) and thickness b, and the equivalent area of the forest in the absence of

twins (l
2
); and II) the ratio between the possible encounters of a twin plane and

a dislocation gliding in a given slip plane:

n∗nuc =
2xTwinb

l
2︸ ︷︷ ︸
I)

λTwin
λslip︸ ︷︷ ︸
II)

nf , (5.6)

where the 2 factor accounts for the duplicity in twin boundaries; and λTwin
and λslip are the number of twin and slip planes on an unit cell, respectively.
λTwin/λslip represents the frequency of newly formed twins encountering dislo-
cations on different slip planes. Additional terms can be included in n∗nuc to
account for dislocation pinning around solute atoms or grain size variations that
increase local stress concentrations [193].
Eexs equals the energy fraction of the forest surrounding the embryo (ST ):

Eexs = STEforest. (5.7)

If a twin embryo is assumed to have a circular cross–section, with the distance be-
tween partials (rpart) being its diameter, ST can be approximated by the perime-
ter of the embryo per unit area

ST =
3PT b

8AT
=

3πrpartb

8πr2
part/4

=
3b

2rpart
(5.8)

where PT and AT are the perimeter and area of the embryo, respectively, and 3/8
is a geometry constant accounting for the coherency between the twin embryo and
the forest; this value was adjusted. The latter represents the effective dislocation
storage rate as twins propagate in a different direction. Combining equations
5.3–5.8, equation 5.2 becomes

nf
2
µb2l =

λTwinxTwinb

λslipl
2 nfµb

2l +
3nfb

4rpart
µb2l − nf

l

b
T∆S (5.9)

The distance between partials equals rpart = (2+ν)µb2

24π(1−ν)χ [27], where χ is the stack-

ing fault energy and ν is the Poisson ratio. Rearranging the previous expressions
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and substituting rpart, the critical strain γ∗Twin for twin nucleation can be ob-
tained

γ∗Twin = xTwinbρ = xTwinb
1

l
2 =

λslip
λTwin

(
1

2
+
kBT ln

(
ε̇0+ϑ
ε̇

)
µb3

− 18π(1− ν)χ

(2 + ν)µb

)
,

(5.10)
where γ∗Twin = bxTwinρ being an Orowan–type equation. γ∗Twin represents the
strain at which twins of an initial length xTwin are nucleated. Once γ∗Twin is
reached, the twinning deformation term Λ−1

Twin in the dislocation density evolu-
tion equation is active for the rest of the deformation process.

5.2.2 Twinning growth coefficient

Additional strain accumulation is required to grow twin embryos up to a critical
size before commencing propagation [9]; this strain energy must be greater than
that for dislocation migration and additional dislocation formation. Moreover,
Beyerlein and Tomé [21] have pointed out that dislocations in the twin interiors
are highly active and they are responsible for twin growth. Based on this, it
is proposed that the stored energy Estored induced in the twin to commence
propagation, equals the energy of an additional number n∗prop of dislocations
being accumulated at the boundaries [193]:

Estored = n∗prop(Eadd − Eprop), (5.11)

where Eadd is the strain energy from dislocations screened into the twin bound-
aries and Eprop is the slip energy from dislocations moving towards twin bound-
aries [194]. This balance prevails for both twin modes (tensile and compressive),
however the energy terms vary for each case. Estored corresponds to the strain
energy of nTB twin dislocations:

Estored =
nTB

2
µb2lT , (5.12)

where lT = 1/
√
ρT accounts for an equivalent average dislocation spacing of the

twins (interiors+boundaries).
Similar to the previous section, n∗prop represents a factor of nTB . It is approxi-
mated by I) the ratio between the average twin spacing of the respective mode

Λ
T/C
Twin cos θT/C

4 and l 5, to account for the effective spacing available for twin
growth, where cos θT/C is the projection of the dislocation’s slip direction (from
the forest) onto the twinning growth direction (tensile or compressive); and II)

4ΛT
Twin and ΛC

Twin stand for the average tensile and compressive twin spacing, respectively.
A similar case occurs for cos θT and cos θC , respectively

5This length includes both twins and dislocations.
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the ratio between the possible encounters of a twin plane and a dislocation gliding
in a given slip plane; and:

n∗prop =
Λ
T/C
Twin cos θT/C

3l︸ ︷︷ ︸
I)

λTwin
λslip︸ ︷︷ ︸
II)

nTB , (5.13)

where the 3 factor is a geometry constant accounting for the coherency between
the twin embryo and the forest. Term I) in the previous equation accounts for
the effective fraction of dislocations inducing additional stress concentration at
twin boundaries. cos θT/C accounts for the effective dislocation–twin boundary
interaction directions. This projection has also been employed by other authors,
for instance in the work by Capolungo et al. [199].
Eadd equals the strain energy of a dislocation arriving at the boundaries

Eadd = 4 cos θT/C
1

2
µb2l (5.14)

where the 4 factor accounts for the multiplicity in the twin–dislocation interac-
tions (twin interiors+forest), and cos θT/C accounts for the projection from the
twin growth direction onto the slip direction (forest).
Similar to the previous section, the magnitude of Eprop equals Edisp. However,
twins can attract or repel dislocations under compressive or tensile modes, re-
spectively. This can reduce or increase the driving force for twin growth [9].
Thus, a sign function is introduced to account for this effect:

Eprop = sign(Twin)Edisp = sign(Twin)
l

b
T∆S, (5.15)

where sign(Twin) is equal to −1 or 1 if the twin mode is tensile or compres-
sive, respectively. If dislocations are attracted (compressive twins), less energy is
required to be overcome, whereas the opposite occurs for tensile twins.

Combining the previous expressions, and rearranging equation 5.11, 1/Λ
T/C
Twin

equals:

1

Λ
T/C
Twin

=
λTwin cos θT/C

3λsliplT

(
4 cos θT/C − sign(Twin)

2kBT ln
(
ε̇0+ϑ
ε̇

)
µb3

)
=
k
T/C
Twin

lT
,

(5.16)

with k
T/C
Twin =

λTwin cos θT/C

3λslip

(
4 cos θT/C − sign(Twin)

2kBT ln
(

ε̇0+ϑ
ε̇

)
µb3

)
, is the twin-

ning coefficient of the tensile (T) or compressive (C) mode. The twinning coeffi-
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cients for each mode become:

kT
Twin =

λTwin cos θT
3λslip

(
4 cos θT −

2kBT ln
(
ε̇0+ϑ
ε̇

)
µb3

)
kC
Twin =

λTwin cos θC
3λslip

(
4 cos θC +

2kBT ln
(
ε̇0+ϑ
ε̇

)
µb3

)
. (5.17)

It is worth noting that if kTen
Twin ≤ 0, then it is fixed to 0 and no deformation

twinning takes place. Following assumption ii), the additional hardening effect
in equation 2.25 is equal to the predominant twin mode, i.e. the twin mode with
higher growth rate, induced by a higher number of stored dislocations for twin
propagation (equation 5.13). This occurs for the twin mode with higher (lower
inverse) average spacing values; Λ−1

Twin equals [193]:

1

ΛTwin
= min

(
1

ΛT
Twin

,
1

ΛC
Twin

)
= min(kT

Twin, k
C
Twin)

1

lT
= kTwin

√
ρT . (5.18)

5.2.3 Twin mode transition temperatures

The transition temperatures where each twin mode dominates can be obtained
from equations 5.17. The physical parameters are shown in Appendix A. Figure
5.3 shows a comparison of twin predominant modes for (a) Ti, (b) Zr and (c)
Mg with the experimental observations summarised in Table 5.1 for IP compres-
sion. The black and red curves represent the twinning coefficient for the tensile
and compressive twin modes, respectively. The predominant modes are shown
in the boxes (the twinning coefficient with lower values). Titanium shows that
compressive twins are predominant at temperatures below ∼350 K; at this point
a transition from compressive to tensile twins occurs; above ∼950 K, deforma-
tion twinning is no longer present; these ranges are in good agreement with the
experimental data reported in the literature. Compressive twins predominate
in zirconium for temperatures up to ∼320 K; between 320 and 750 K, tensile
twins predominate, whereas above this temperature, no deformation twinning is
present; Akhtar [200] observed a transition from deformation twinning to pure slip
at ∼800 K; the model shows good agreement for these transition ranges. Tensile
twins in magnesium predominate from ∼180 K up to ∼570 K, where a transition
to pure slip occurs, being in good agreement with experimental observations.
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Figure 5.3: Twinning modes transition temperatures for (a) Ti, (b) Zr and (c) Mg and their

comparison with experimental observations. The red and black curves represent the twinning

coefficient for {1122} and {1012} twin modes, respectively. The model predictions of predomi-

nant twin modes are shown in the boxes. (d) Twin nucleation strain for various temperatures.

In order to obtain the projection of the slip and twinning directions, the dot
product between the preferred slip and twin directions is obtained6: cos θT/C =
bs·bT

|bs||bT| , where bs is the Burgers vector of the slip direction and bT is the vector

on the twin propagation direction. The cHCP -axis values for Ti, Mg and Zr
equal 1.59b, 1.593b and 1.623b, respectively [25]. Table 5.3 shows the values of
the projection effect for Ti, Zr and Mg. Table 5.3 also shows the values of λslip
and λTwin.

6These calculations are displayed to cartesian coordinates
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Table 5.3: Twinning-slip orientation parameters. cos θT and cos θC stand for the
slip projections on tensile and compressive twins, respectively.

Material Ti Zr Mg
Slip system {1010} {1010} (0001)

λslip 6 6 2
Slip direction (bs) 〈1120〉 〈1120〉 〈1120〉

Tensile twin {1012} λTwin 6 6 6
Twin direction (bT) 〈1011〉 cos θT 0.26 0.26 0.26

Compressive {1122} λTwin 6 6 6
Twin direction (bT) 〈1103〉 cos θC 0.2 0.2 0.2

Magnesium displays low ductility due to the early twin activation, whereas ti-
tanium and zirconium are considered to be ductile, due to their late twinning
activation [9]. Figure 5.3d shows the twin onset strain γ∗Twin for Ti, Zr and Mg
at various temperatures. Deformation twinning in magnesium occurs at lower
strains in comparison to titanium and zirconium, being this result in good agree-
ment with the twinning activation ranges.

5.2.4 Orientation effect

Specific deformation orientations accommodate strain in different twin modes,
inducing different texture distributions. The Schmid factor m is employed to
analyse the most likely slip and twin modes taking place at specific deformation
orientations [196]. It relates the critical resolved shear stress for slip in a given
plane with the applied stress direction. On the other hand, the Taylor factor M is
defined as the ratio between the flow stress in a polycrystal and the CRSS in the
single crystal [201], and it is used to express the macroscopic strain in terms of
the algebraic sum of crystallographic shears. m and M are inversely related, and
the Taylor factor can incorporate the macroscopic effect of different deformation
orientations. Thus, a function θor is defined to estimate the orientation variation
of M :

M = 3θor, (5.19)

where 3 is a reference value [6]. θor = 1 when the material is deformed at in-
plane compression (reference orientation, assumption i)) and it is maximum when
the material is tension deformed, when no twinning takes place and higher flow
stress is observed. θor accounts for the activity of additional twin and slip modes.
Ono et al. [182] obtained a Taylor factor of 6.5 for tension in pure magnesium,
where various slip modes occur; θor = 2 is employed in the current calculations.
On the other hand, twinning contribution to work hardening is also affected:
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When θor = 2, no deformation twinning is present (tensile deformation) and
Λ−1
Twin → 0; whereas for θor = 1, the hardening contribution equals the inverse of

the predominant twin spacing (Λ−1
Twin) and a single slip mode dominates. Thus,

a linear extrapolation of θor multiplying Λ−1
Twin is proposed to account for this

effect. Combining these results, the dislocation density evolution becomes [193]7:

dρ[γ]

dγ
=

1

b

(
k1

√
ρ[γ]︸ ︷︷ ︸

(A)

+ (2− θor)kT
√
ρ[γ − γ∗Twin]︸ ︷︷ ︸

(B)

)
− fDRV ρ[γ]︸ ︷︷ ︸

(E)

. (5.20)

For different deformation orientations, θor ≤ 2 displays different values (preferred
textures). Table 5.4 shows the values of θor used for the present calculations. It
is worth noting that θor depends on the slip and twin modes taking place during
deformation only, and does not depend on the material type.

Table 5.4: θor values employed in the model.
Deformation orientation Twin mode θor

IP Compression Tensile 1
IP Compression Compressive 1
TT Compression Tensile 1.75
TT Compression Compressive 0.7

Tension - 2

Cáceres and Lukáv [197] have concluded that the Taylor factor in polycrystalline
Mg is higher for prismatic and basal slip, whereas it decreases when pyrami-
dal slip is present; from equation 5.19, textural features can be depicted from
θor. For instance θor = 1.75 in TT compression (tensile twins dominating) rep-
resents a mixed activity of basal and prismatic slip, with a low twin activity;
these results are in agreement with other modelling results [22]. θor = 0.7 in TT
compression (compressive twins dominating at low temperatures) can represent
an increased activity from pyramidal slip, and a higher twin activity from addi-
tional compressive twins. Ando et al. [202] have found pyramidal slip activity
when Mg is deformed at 77 K, where compressive twins dominate, hence θor for
this condition is also consistent with experimental observations. Although this
parameter shows good qualitative agreement with experimental and theoretical
results, further analysis on texture development by combining other techniques
can be implemented to obtain specific values θor.

7[ ] denotes functional dependence in γ.
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5.2.5 Twin volume fraction

Equation 5.20 accounts for the average dislocation density ρ containing both
perfect dislocations and twins; if term Λ−1

Twin is not considered, the equation
describing pure slip behaviour is reduced to:

dρslip
dγ

=
k1

b

√
ρslip − fDRV ρslip, (5.21)

where ρslip is the average dislocation density if deformation by slip is the only de-
formation mechanism. fv can be obtained by comparing the stress contributions
by slip+twinnig σT+s (via ρ) and pure slip σs (via ρslip). The can by obtained
by the Taylor relation [6] for pure slip σs = αMµb

√
ρslip and for twining+slip

σT+s = αMµb
√
ρ, where α is a constant:

fv =
σT+s − σs
σT+s

= 1−
√
ρslip
ρ

. (5.22)

This allows to separate twin and dislocation contributions to material’s mechan-
ical response. This relation follows a similar consideration than the softening
fraction equation being employed for recrystallisation evolution [203].

5.3 Results

The HCP model is compared to experimental axial-stress strain curves for Ti, Zr
and Mg obtained from the literature, at different temperatures and deformation
orientations. The dislocation density is obtained by solving equation 5.20, using
the value of k1 from equation 2.27; and the value of fDRV shown in equation
3.29. It is worth noting that no modifications are required for these parameters.
Physical parameter values are listed in Appendix A. The vacancy concentration at
the melting point equals cm = exp(−∆Sform/R) exp(−Ef/RT ), where ∆Sform
is the vacancy formation entropy, and ∆Sform/R is approximately equal to 1.5
[156]. The lower (T0) and higher (Tf ) transition temperatures where different
dislocation annihilation mechanisms occur are listed in Table 5.5 (see Section
3.2.2); these values are obtained with equations 3.13. An experimental value for
T0 in pure Ti was obtained from [204], when a maximum peak in the flow stress
is observed. Tf for Mg was obtained from [205], where the value of the activation
energy for plastic deformation changes. The model shows good agreement for
these values. However, no experimental data was found for Zr.
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Table 5.5: Lower and higher temperature limits. E and M stand for experimental
and model values, respectively.

Material ε̇ (s−1) TE0 (K) Ref. TM0 (K) TMh TEf (K) Ref. TMf (K) TMh
Ti 10−3 400 [204] 409 0.21 1096 0.56
Mg 10−3 220 0.24 560-620 [205] 555 0.6
Zr 10−3 252 0.11 635 0.3

The axial stress is obtained from the Taylor relation [6] σ = σY +αMµb
√
ρ, where

M holds different values, according to the deformation orientation (equation 5.19
and Table 5.4), and σY accounts for the friction stress. Figure 5.4 shows the yield
stress values measured from the experimental stress-strain curves at different
deformation conditions that were obtained from [191, 21, 206, 207, 13, 208, 182];

the horizontal axis is expressed in terms of the reduced temperature kBT ln(107/ε̇)
µb3 .
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Figure 5.4: Experimental yield stress employed in the model.

Figure 5.5 shows the model results for IP compression (θor = 1) and their com-
parison with experimental data at different temperatures and strain rates for (a),
(c) commercially pure titanium, previously extruded, with average grain size of
40 µm [191], (b) pure rolled zirconium with average grain size of 20 µm [21],
and (d) commercially pure magnesium (rolled prior deformation) [207], and pure
magnesium (previously extruded) with average grain size of 50 µm [208]. The
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arrows show where the (axial) twin nucleation strain ε∗Twin = γ∗Twin/M occurs.
The model results for Ti show good agreement in the twinning onset range and
work hardening behaviour; however, at 77 K it shows additional work hardening
after ε∼0.15; for temperatures above 473 K at 10−3 s−1 the experiment observa-
tions show higher flow stress response at large strains (ε > 0.2); this discrepancy
can be due to the presence of impurities in the material as pointed out by Biget
and Saada [209]. They observed that the flow stress for various temperatures in a
titanium specimen with 50 and 100 ppmw O and Fe, respectively, was ∼60 MPa
higher than other specimen with 30 and <10 ppmw O and Fe, respectively. The
experimental samples shown in Figure 5.5(a) and (b) present a concentration of
270 ppmw O, 2 ppm Fe, and additional impurities [191]. The model results for
pure zirconium show good agreement with experiments, except at 150 K where
at strains above 0.15, the model presents a higher work hardening rate. The
results for magnesium show good agreement at room temperature and at 373 K
for strains up to 0.04; above this value the experimental stress shows additional
work hardening behaviour. This discrepancy may be due to reorientation effects
in the specimen.
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Figure 5.5: IP compression of pure (a),(c) Ti, (b) Zr and (d) Mg. The arrows show the strain

where twinning begins. Items (A), (B) and (E) are present in the Kocks–Mecking equation.
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Figure 5.6 shows the model results for tensile (θor = 2) and IP (θor = 1) com-
pressive deformation, and their comparison with experimental data for (a) com-
mercially pure titanium [206, 191]; (b) pure zirconium [21]. Figure 5.6(c) shows
the through–thickness (TT) compression behaviour of pure zirconium at different
temperatures; the experiment results were obtained from [210, 21] (at 300 K, a
value of θor = 1.75 was employed instead, to consider tensile twins as shown in
Table 5.1). Figure 5.6(d) shows the deformation behaviour of pure magnesium
deformed in tension, TT and IP compression [13, 208, 207, 182, 22]. The ma-
genta line represents tensile deformation at 77 K. Red arrows show where twin
nucleation occurs. The model shows good agreement for these materials at vari-
ous deformation conditions, except for Mg deformed at TT compression, as the
model shows a higher work hardening rate with respect to the experiments at
strains above 0.04. This discrepancy can be due to a late activity from addi-
tional slip modes that are were not considered in the model and that may alter
the θor values.
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Figure 5.6: Deformation of pure (a),(c) Ti, (b) Zr and (d) Mg at different orientations.

The arrows show the strain where twinning begins. Items (A), (B) and (E) are present in the

Kocks–Mecking equation.
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Figure 5.7(a) shows the volume fraction evolution fv with strain for IP com-
pression in previously rolled Mg, with its respective flow stress curve, and their
comparison with experimental data obtained from [22]. The error bars display
the limits between the estimated upper– and lower– volume fraction from neu-
tron diffraction measurements. The model shows agreement in the evolution rate
with respect to the experimental data, however it displays lower values than the
measured ranges. It is worth noting that as the model accounts for deformation
twinning that becomes macroscopically observable, below the critical strain for
twin nucleation ε∗Twin, the twin volume fraction is null. Figure 5.7(b) shows the
compressive twins volume fraction evolution for pure (rolled) Zr being deformed
at 76 K and 10−3 s−1 in IP and TT compression, and their comparison with ex-
perimental measurements; their corresponding flow stress curves are also shown;
the experimental data was obtained from [211]. The model shows good agreement
for both orientation conditions.
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Figure 5.7: Twin volume fraction evolution with its respective flow stress curve
for (a) Mg and (c) Zr at IP and TT compression at 76 K and at 10−3 s−1.
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5.4 Discussion

A new approach describing deformation twinning in HCP metals has been pre-
sented. Dislocation slip behaviour and accompanying interactions with growing
twins are studied with a single parameter equation. A thermodynamic description
of the favourable conditions for twin nucleation and growth have been presented.
The balance between the strain energy induced by local stress concentrations in
the material, and the dissipation effect from moving dislocations prior twin for-
mation has been postulated to obtain the critical strain energy to form a twin
embryo. The relatively good ductility of Ti and Zr with respect to Mg can be
explained in terms of the critical strain for twin nucleation γ∗Twin, showing lower
values in Mg, where the critical strain energy from local stress concentrations is
reached before than in Ti and Zr (Figure 5.3). Solid solution effects have also
been incorporated in this approach; these results can be found in [193].
Further stress concentration from dislocation storage drives twin growth; such
depends on the competition between dislocations storing at twin boundaries and
their dissipation effect from slip. The previous expressions incorporate crystallo-
graphic features of twins to account for their dissimilarities with respect to the
matrix. From this balance, tensile and compressive twin growth rates are com-
pared to obtain the temperature regimes where each twin mode predominates.
The dominant mode displays the higher the growth rate. Additional twin modes
can be incorporated into the analysis.
An additional dislocation generation term in the dislocation evolution equation
is introduced; this term equals the inverse average twin spacing of the predomi-
nant mode Λ−1

Twin. It contains a strain delay γ∗Twin due to the prior strain energy
required for twin nucleation. Both parameters are obtained from the thermody-
namic balance (equations 5.2 and 5.11).
The dislocation evolution equation when only slip occurs has been derived in
Chapter 3 for FCC metals, and it is applied to HCP metals without additional
alterations. The dislocation generation and dynamic recovery rates are expressed
in terms of physical parameters and remain valid for different materials. For
strains below ε∗Twin = γ∗Twin/M , where deformation by slip dominates, the model
showed good agreement with the experimental observations.
An essential consideration of this theory is the introduction of a statistical entropy
term that estimates the energy dissipation due to different dislocation migration
paths. This term incorporates the temperature and strain rate effects on disloca-
tion kinematic behaviour. It strongly features in the analysis, as it is related to
the energy loss by dislocation slip prior to twin nucleation (equation 5.2) and for
twin growth (equation 5.11). It also allows to determine the transition temper-
atures in which cross–slip and dislocation climb control dislocation annihilation
(Table 5.5). These limits were validated for Ti and Mg.
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The thermodynamic equations for twin nucleation and growth are equivalent
to introduce a number of constitutive relations for the critical stress for twin
nucleation and growth, and their evolution with strain. For instance, Oppedal et
al. [22] have obtained the critical stress to nucleate or initiate twinning activity
in their Visco–Plastic Self–Consistent (VPSC) model to equal 15 MPa in Mg,
whereas the present model predicts that twining commences (γ = γ∗Twin) at ∼18
MPa above the friction stress. Moreover, the transition temperatures for the
dominant twin modes are a direct consequence of the present analysis, showing
good agreement with respect to experimental observations. The model couples
slip and twinning contributions to the material’s mechanical response; this allows
to simplify the thermodynamic analysis, as only one parameter is considered.
Moreover, as only average energy values are employed, no specific twin nucleation
and growth mechanisms need to be identified, as only thermodynamic variables
are required, such as the strain energy from local stress concentrations and the
entropy dissipation from dislocation slip.

5.4.1 Orientation effects and twin volume fraction

Different deformation orientations induce specific texture distributions, produc-
ing different macroscopic behaviours. An orientation function θor has been pro-
posed to reproduce specific orientation and texture configurations described by
the Taylor factor. M is an average orientation factor which accounts for the
material’s texture and crystallographic nature of the slip systems [201]. Cáceres
and LuKác [197] have delineated a methodology to describe the Taylor factor as
a function of the work hardening behaviour. Schmid factor estimations for dif-
ferent slip and twin systems aid in describing θor for other orientation conditions
[196]. θor has been identified for specific orientation conditions (IP and TT com-
pression, and tension); however, further analysis is required to characterise this
parameter with specific texture evolution. Other modelling approaches can be
employed to determine these values. Additional texture variations are reflected
also in the yield stress behaviour; however, the current approach focuses on work
hardening only.
The assumption that one predominant slip and twin mode occurs is well sup-
ported by experimental evidence for IP compression (Table 5.1); this is also in
agreement with theoretical findings by other modelling approaches [21, 22, 178].
For instance, Zhang and Joshi [74] have pointed out that non–basal slip modes
and compressive twins in pure Mg show negligible presence in the initial stages
and become discernible only at the later stages of the deformation (without major
contributions). However, this consideration has to be further validated for other
orientation conditions.
The twin volume fraction is obtained by comparing the stress contributions from
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pure slip and when slip and twinning are coupled. To illustrate this, Figure 5.8
shows the stress contributions in pure Mg deformed at (a) IP (θor = 1) and (b)
TT (θor = 0.7) compression obtained with the model results. The former shows
that before the critical strain for twin nucleation takes place (ε ∼0.035), pure
basal slip occurs, whereas above this value, twins contribute to work hardening;
at a volume fraction (red line) of∼0.5, tensile twinning contribution (dotted green
line) overtakes slip contribution (dashed and dotted purple line) and continues
increasing at a higher rate. For TT compression, a higher slip activity takes place,
being caused by the activation of additional slip modes (prismatic); twinning
activity becomes active at earlier stages, however its stress contribution decreases
with respect to IP compression, due to a combined activity from compressive and
tensile modes. This behaviour is in good agreement with previous experimental
observations [170, 171].
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Figure 5.8: Stress contribution for different deformation mechanisms in pure Mg
deformed at room temperature and at 10−3 s−1 for (a) IP and (b) TT compres-
sion, respectively.
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5.4.2 Summary of the current approach

In summary, the present work proposes a different perspective for describing
deformation twinning in hexagonal materials. It aids to reduce the number
of constitutive relations and parameters to be identified for each material, by
thermodynamic–based descriptions. This is inspired by the fact that it is usu-
ally difficult to describe the initial stress and strain states when twins feature
(with their respective temperature and strain rate variations); in addition, dislo-
cation evolution laws are not fully characterised for various processing and mi-
crostructure variations. Moreover, concomitant dislocation and twin interactions
represent a challenge for describing their isolated contributions. This approach
has been shown to be a good alternative to describe both dislocation and twin
evolution, as it was applied to three metals without further modifications.
The model was tested against experimental stress–strain curves (where pure slip
and twinning occur) and twin volume fraction evolution for different temperature,
strain rate and orientation conditions in pure Ti, Mg and Zr. Only physical
parameters and crystallographic features are employed as input.
This approach can be complemented by other modelling techniques. For instance,
crystal plasticity can describe texture evolution; the evolution equation 5.20 can
be divided to account for contributions from each slip and twinning mechanism.
This methodology would also allow to identify the orientation parameter θor,
or for introducing texture features in the model more explicitly. Moreover, the
combination of these approaches would allow to define the critical conditions
for slip and twinning in terms of microstructure (dislocation density) evolution.
Further crystallographic considerations in the thermodynamic analysis can be
introduced to include additional twin modes.
Shortcomings to the model include the description for coarse–grained metals only
and no grain size effect is included in twinning behaviour (although for grain sizes
≥ 15 µm the main hardening contribution lies on the yield strength). The pres-
ence of additional microstructural defects, such as precipitates may significantly
alter twinning behaviour; a similar case occurs for impurities and interstitial so-
lute atoms; such effects were not included in the model. Their consideration may
require the introduction of additional energy terms in the conditions for twin
nucleation and growth.

5.5 Conclusions

A new approach for describing deformation twinning in HCP metals has been
presented. This theory is able to describe:

1. Dislocation slip behaviour before twinning takes place.



CHAPTER 5 TWINNING IN HCP METALS 95

2. Deformation twinning for different temperature and strain rate conditions.

3. The temperature ranges where different twin modes predominate, and the
temperature at which transitions between them occur.

4. Twin volume fraction evolution with strain

5. Orientation behaviour for in–plane and through–thickness compression, and
tension by varying the macroscopic Taylor factor (via an orientation factor
θor).

The model describes the flow stress behaviour of pure Ti, Zr and Mg by employing
only physical and crystallographic parameters as input. This allows to describe
plastic deformation in HCP metals with a single–parameter formulation, incorpo-
rating temperature, strain rate and orientation effects. Further extensions, such
as the inclusion of grain size and precipitation hardening effects can be incor-
porated in future work. The current approach can be input to other modelling
techniques such as crystal plasticity or discrete dissociation dynamics, to describe
detailed texture distributions.
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Chapter 6

Hot deformation in metals:
Dynamic recrystallisation

Extension of the theory to describe dislocation evolution in FCC metals undergoing

dynamic recrystallisation is presented. Similar to the previous chapter, the overall re-

crystallisation behaviour is described in terms of an average dislocation density. An

additional softening effect in the Kocks–Mecking equation is incorporated, which be-

comes active once a critical strain for grain nucleation is achieved. With this approx-

imation, the use of the grain boundary mobility concept can be circumvented, and

mobility fitting parameters are not required. The theory reproduces the stress oscilla-

tions with strain and its values as the steady state is approached; and captures well

the temperature–strain rate dependency of dynamic recrystallisation. This allows to

map the conditions under which dynamic recrystallisation occurs. The model results

are successfully validated with data for Cu and Ni.

6.1 Introduction

Predicting the conditions for the occurrence of dynamic recrystallisation (DRX)
during hot deformation of metals remains a problem of great technological im-
portance as alloy mechanical properties become severely affected by this phe-
nomenon. At high temperatures and/or low strain rates, dislocation–free grains
nucleate and grow from high–angle subgrain boundaries (originated by significant
dislocation accumulation at their boundaries), decreasing the total dislocation
density [3]. This process occurs once a critical strain is reached.
Many efforts have been proposed to describe DRX. Won Lee and Im [212] com-
bined a cellular automata model to predict grain coarsening and refinement with

97
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the Kocks–Mecking equation describing the dislocation evolution in pure copper.
Okuda and Rollett [213] have employed the Monte Carlo simulation method to
investigate the growth behaviour (misorientation and mobility) of a grain nu-
cleus when particle pinning takes place in steels. Takaki et al. [214, 215] have
modelled dynamic recrystallisation with a multi phase field modelling approach,
defining each growing grain as a phase field; the dislocation evolution is obtained
by employing the Kocks–Mecking equation and it is combined with the phase-
field simulation to estimate the recrystallisation effect. Brown and Bammann
[92] combined a strain gradient method with thermodynamics to describe the
evolution of static and dynamic recrystallisation in oxygen-free high conductiv-
ity (OFHC) copper; once again, a Kocks–Mecking–type equation is introduced
to describe the dislocation evolution in the material, and an empirical function
of the recrystallisation volume fraction and the interfacial area between recrys-
tallised and unrecrystallised grains is introduced; this relation is combined with
an expression for grain boundary mobility to obtain the recrystallisation fraction
evolution; these equations are solved together to obtain the flow stress response.
Fan and Yang [93] have proposed an internal-state-variable model to describe dy-
namic recrystallisation in a two-phase titanium alloy; the description of the dis-
location density is given by the Kocks-Mecking equation, where the annihilation
coefficient is expressed in the form of an Arrhenius equation. An additional term
is introduced to the equation to account for dynamic recrystallisation softening;
this term is null until a critical (incubation) strain is reached, and is function
of the grain boundary velocity and the grain boundary area per unit volume;
an evolution equation is proposed for the latter including the contributions of
grain nucleation, growth and impingement. Additional secondary phase effects
are also considered in the constitutive equations. On the other hand, Cram et al.
[216, 217] have postulated a polycrystal mean-field model where the evolution of
each grain is described and embedded into an average medium, a Rayleigh prob-
ability distribution describes the subgrain size patterning, where a critical size
for grain nucleation is taken as the condition for grain nucleation. Grain growth
evolution is postulated to be proportional to the grain boundary mobility and
the difference between the total dislocation density and the dislocation density of
the growing grain. The total dislocation density equals the surface-area-weighted
dislocation average over all grains. The macroscopic stress is equated to the
volume average of the stress over all grains.
Although these methods provide a description of DRX, phenomenological or em-
pirical relations between the internal microstructure evolution and deformation
conditions are introduced, and a number of parameters are fitted for each mate-
rial, impeding their extension to more complex systems.
This chapter extends the approach presented in Chapter 3 to describing the con-
ditions for dynamic recrystallisation and its evolution in pure FCC metals. Dy-
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namic recrystallisation introduces an additional annihilation term in the Kocks-
Mecking equation containing a delay (incubation), which increases as deformation
continues. The dynamic recrystallisation coefficient fDRX and critical strain for
grain nucleation γ∗DRX are obtained by applying the thermodynamic principles
derived Chapter 3 for obtaining the activation energy for grain growth and the
favourable energy conditions for grain nucleation. The model is tested for pure
copper and nickel, describing well their characteristic stress–strain curves, as well
as their steady state flow stress after recrystallisation takes place. The transitions
for the occurrence of dynamic recrystallisation as a function of temperature and
strain rate for a number of systems are precisely predicted.

6.2 Theory

At high temperatures and/or low strain rates, DRX decreases the dislocation
density as dislocation-free grains nucleate and grow from highly dislocated sub-
grains (cells). This effect induces an additional annihilation term (F ) in equation
2.30. An incubation strain γ∗DRX is required for the formation and migration of
high-angle grain boundaries (HAGBs) igniting grain nucleation and growth. Fig-
ure 6.1 shows a schematic representation of the dynamic recrystallisation process
during deformation: (a) The initial state (γ = 0) has a low dislocation density
(ρ0); (b) plastic deformation takes place under the critical strain at which DRX
occurs (γ < γ∗DRX), and subgrains are formed (blue polygons) with dislocations
in their interiors; (c) high-angle (sub)grain boundaries are formed in certain sites
at γ = γ∗DRX , leading to grain nucleation and growth (red polygons); the new
grains contain a very low dislocation density (ρDRX); it can be assumed that
ρDRX ∼ ρ0; (d) as plastic deformation continues (γ > γ∗DRX), the dislocation
density inside the grains ρDRX increases and grain growth continues on heavily
deformed regions; ρDRX replaces ρ at those areas. The Kocks-Mecking equa-
tion accounts for the average dislocation density only, and does not distinguish
between recrystallised and unrecrystallised regions. To preserve the dependence
on a homogeneous dislocation density, the density inside the recrystallised region
ρDRX is postulated to evolve at the same rate than when the material was initially
deformed, i.e. ρDRX [γ] = ρ[γ − γ∗DRX ]1 [95]. The capacity for dislocation–free
grains to occupy the highly deformed matrix is proportional to ρDRX . Thus, the

dislocation annihilation rate due to DRX (
dρ−DRX

dγ ) is proportional to ρDRX , with
the proportionality constant fDRX being equal to the capability for recrystallised
grains to grow and occupy the deformed regions. Although grain nucleation oc-
curs from local strain concentrations, it is considered that at a macroscopic level,
recrystallisation takes place when the overall stored energy reaches a critical

1[ ] denotes functional dependence in γ.
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value.

Figure 6.1: Schematic representation of dynamic recrystallisation process: (a) γ = 0: the

material has a low dislocation density (ρ0); (b) γ < γ∗DRX : subgrains are formed (blue poly-

gons); (c) γ = γ∗DRX : grains nucleate at high-angle (sub)grain boundaries, the dislocation

density inside these grains (ρDRX) is low (∼ρ0); (d) γ > γ∗DRX : the dislocation density inside

these grains (ρDRX) increases (∝ ρ[γ − γ∗DRX ]).

A uniform dislocation density is prescribed by the Kocks–Mecking equation; the
development of dislocation density in the recrystallised grains (ρDRX) is equal to
the development of ρ at γ − γ∗DRX . Finally, term (F ) in equation 2.30 becomes
[95]

fDRXρDRX = fDRXρ[γ − γ∗DRX ]. (6.1)

Note that this term is active only when γ ≥ γ∗DRX .

6.2.1 Dynamic recrystallisation coefficient

The dynamic recrystallisation coefficient measures the capability for recrystallised
grains to grow and occupy the deformed regions. Such efficiency can be approx-
imated by the ratio between the potential sites for growth and the number of
growing grains Ngrowth (blue polygons in Figure 6.1b). The former is given by
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the difference between the total number of subgrains Ntotal from which grain
growth could occur, and the number of growing grains Ngrowth (red polygons in
Figure 6.1c):

fDRX =
Ntotal −Ngrowth

Ngrowth
=

Ntotal
Ngrowth

− 1. (6.2)

Grain growth is a thermally activated process. Ngrowth can be expressed as [3]:

Ngrowth = Ntotal exp

(
− QDRX

kBT

)
, (6.3)

where QDRX is the energy barrier and is composed by:

1. The driving force to induce grain boundary motion (Edisp); and

2. the strain energy at the boundaries once high-angle grain boundaries form
(EHAGB).

The latter reduces the energy barrier to be overcome, as it features as a driving
force for grain growth. QDRX is proportional to the available sites Ssub for grain
nucleation on preexisting subgrains [77, 203], thus QDRX becomes:

QDRX = Ssub(Edisp − EHAGB). (6.4)

For coarse–grained materials, it can be assumed that subgrain boundaries are
approximated by dislocation cells. Thus, Edisp is approximated by the energy
induced by moving dislocations on the boundaries (equation 6.5):

Edisp = nGB
l

b
T∆S, (6.5)

where nGB is the number of dislocations comprising the boundaries.
The strain energy to drive grain growth is reduced by dynamic recovery, hence
EHAGB is proposed to be a fraction λ of the total strain energy stored in the
boundaries [3, 116, 216]:

EHAGB = nGB
λ

2
µb2l. (6.6)

Assuming subgrains of cylindrical shape with diameter and depth equal to dc,
and employing equation 3.45, Ssub is equal to the subgrain boundary surface per
unit volume per dislocation [77]

Ssub =
Asub
Vsub

b

nGB
=
πd2

c + 2πd2
c/4

πd3
c/4

b

nGB
=

6

dc

b

nGB
=

6b

nGBκcl
, (6.7)

where Asub and Vsub are the area and volume of a subgrain, respectively.
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Combining equations 6.4, 6.5, 6.6 and 6.7, QDRX is expressed as:

QDRX = Ssub(Edisp − EHAGB) =
6

κc

(
T∆S − λ

2
µb3
)
. (6.8)

Finally, by combining equations 6.2, 6.3 and 6.8, the dynamic recrystallisation
coefficient becomes:

fDRX =
Ntotal
Ngrowth

− 1 = exp

(
6

κckBT

(
T∆S − λ

2
µb3
))
− 1. (6.9)

When fDRX ≤ 0, no dynamic recrystallisation is present and fDRX is set to
zero. Such values are reached at low temperatures and/or high strain rates; the
transition ranges are discussed in the following sections.

6.2.2 Critical shear strain for grain nucleation

The onset for dynamic recrystallisation occurs when high-angle grain bound-
aries (HAGBs) form via the accumulation of dislocations in the boundaries lead-
ing to grain nucleation [3]. In analogy to the analysis for cell formation, re-
crystallisation is considered to start when the stored energy at the boundaries
(Esub=nGB

1
2µb

2l) equals the addition of three contributions: (i) the strain en-
ergy to nucleate dislocation-free grains (Egrain); (ii) the displacement energy for
boundary-dislocations to onset grain growth Edisp; and (iii) the equivalent en-
ergy of dislocations migrating from the grain interior to the boundaries (Eint)
[3]:

Esub = Egrain + Edisp + Eint. (6.10)

If tilt boundaries are initially formed, Egrain is approximated by the tilt bound-
ary energy per unit area (equation 2.13) [3] around the area delimited by the
boundaries of new grains Amig:

Egrain = EtiltAmig =
nGBµb

2

2l
(bxgrain), (6.11)

where xgrain represents the boundary length of the cross section of an incipient
grain. Note that the average dislocation spacing in the forest (l) is considered
instead of the average spacing at the boundaries (lw), as the new grains contain
a very low density.
Eint equals the displacement energy of nint dislocations in the subgrain interiors
migrating towards the boundaries [95]:

Eint = nint
l

b
T∆S (6.12)
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The ratio between nint and nGB can be approximated by taking the ratio between
the average dislocation spacing on a dislocation forest (subgrain interiors) and
the average cell size (subgrain boundaries):

nint
nGB

=
l

dc
=

1

κc
. (6.13)

Combining the previous expressions, equation 6.10 becomes:

nGB
2

µb2l =
xgrainnGBµb

3

2l
+ nGB

l

b
T∆S + nint

l

b
T∆S. (6.14)

Rearranging the previous expression, the equivalent critical shear strain to initiate
DRX is obtained:

γ∗DRX =
b

l
2xgrain = bρxgrain = 1− 2

(
1 +

1

κc

)
T∆S

µb3
. (6.15)

If γ∗DRX ≤ 0, then γ∗DRX = 0. Once γ∗DRX is reached, the dynamic recrys-
tallisation term fDRXρ[γ − γ∗DRX ] in equation 2.30 is active for the rest of the
deformation process.

6.2.3 Results

The model for recrystallisation is compared with experimental axial stress results
obtained from the literature for pure copper and nickel. Terms (A), (E) and (F )
are present in equation 2.30. The physical parameters employed in the model
have the same values from previous sections and can be found in Appendix A.
The value of λ is assumed to equal 0.6 for all tested materials, indicating that only
60% of the stored energy is required to drive grain growth as dynamic recovery
is contributing to the dislocation annihilation process. A justification of this
assumption for FCC metals is presented in Section 6.2.6.
Figure 6.2 shows the model results for the stress-strain curves for pure poly-
crystalline coarse-grain (300 µm) 7N copper deformed at different temperature
and strain rate conditions, and their comparison with the experimental results ob-
tained from [218]. The values of ε∗DRX = γ∗DRX/M are shown for each curve. The
model results show good agreement in the dynamic recrystallisation onset range
and the stress when approaching steady state for strain rates below 2.7×10−1 s−1.
Above this value, the recrystallisation onset is well predicted, however the exper-
imental measurements show a stronger softening effect. This effect can be due
to the presence of impurities, as they affect dramatically the kinetics of dynamic
recrystallisation as pointed out by Gao et al. [218]. For instance, they found that
the difference between the maximum stress for 4N Cu and 7N Cu can be up to
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40 MPa when it is deformed at 773 K and at 0.2 s−1 and the oscillation behaviour
is reduced as the impurity concentration increases. However, the temperature and
strain rate dependence of steady state flow stresses during hot deformation for
different purities is nearly the same. The incubation strain takes place before
reaching the first peak stress as the dislocation density inside the growing grains
increases until it equilibrates with the total dislocation density. Moreover, Ya-
magata et al. [219] found that the stress oscillation behaviour also changes as
a function of the impurity concentration in pure aluminium. The incorporation
of dilute solution concentrations and interstitial atoms into the analysis can also
explain dissimilarities between the model results and experiments.
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Figure 6.2: Stress-strain curves for 7N Cu deformed at (a) 2 × 10−3 s−1 for different tem-

peratures, and (b) 773 K for different strain rates. Terms (A), (E) and (F ) are present in

equation 2.30.

Figure 6.3(a) shows the model’s steady state stress for Cu of the same purity
(7N) and initial grain size, at strain rates spanning four orders of magnitude and
at different temperatures. The model results also show good agreement in the
saturation stress for different temperatures and strain rates below 2.7×10−1 s−1.
Above those values the model shows a weaker softening behaviour with respect
to the experimental measurements. It is worth noting that no recrystallisation
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takes place at stresses above ∼200 MPa for these deformation conditions (next
subsection). Figure 6.3(b) shows the model predictions and their comparison
with experimental results for pure polycrystalline nickel with 99.9% of purity
and an initial grain size 78 µm [220], showing good agreement with experiments.
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Figure 6.3: (a) Steady state stress for 7N Cu deformed at different temperatures and strain

rates. (b) Dynamic recrystallisation evolution in pure nickel. Terms (A), (E) and (F ) are

present in equation 2.30.

When ε∗DRX ∼ 0, the flow stress oscillations disappear. This occurs at higher
temperatures and/or lower strain rates (equation 6.15). A physical interpretation
of this transition is that the energy required to nucleate dislocation-free grains
is very low (equation 6.11) as the grain boundary displacement energy (Edisp)
increases, provoking grain boundary migration to occur rapidly.

6.2.4 Discussion

The delay term in the Kocks–Mecking equation can induce oscillatory solutions
as the eigenvalues of the characteristic equation display complex roots [221]; this
depends on the values of γ∗DRX and fDRX . The concept to describe dynamic
recrystallisation by using a delay differential equation was first proposed by J. K.
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Lee [222]; however, the parameters of the Kocks-Mecking equation (fDRX , fDRV
and γ∗DRX) were obtained empirically, and no further physical explanation was
supplied. Also, other authors such as Fan and Yang [93] have employed similar
delay relations in KM equation.
To illustrate the softening contribution of dynamic recrystallisation in the flow
stress response, Figure 6.4 shows a comparison of the model for pure copper
including dynamic recovery and recrystallisation (solid lines), and when only dy-
namic recovery (without stage IV) is considered (dotted lines). At 573 K, the
recrystallisation contribution to dislocation annihilation is low (fDRX = 0.11)
with respect to dynamic recovery (fDRV = 3.7). At 673 K, the dynamic re-
crystallisation contribution increases (fDRX = 3.47) and is almost equal than
dynamic recovery (fDRV = 3.9); the stress reduction due to recrystallisation at
the steady state is ∼75 MPa. At 773 K, dynamic recrystallisation is the dominant
softening mechanism (fDRX = 9.65) over dynamic recovery (fDRV = 4.33); the
stress reduction due to recrystallisation at the steady state is ∼90 MPa.
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Figure 6.4: Comparison of the DRX and DRV softening effect for various deformation tem-

peratures in copper.

The recrystallisation model describes the evolution of the average dislocation
density. However, it cannot reproduce the spatial distribution of the alloy’s mi-
crostructure in its actual form, such as grain distribution; and no texture evolu-
tion can be described. Nevertheless it can be input to other modelling techniques
that are able to describe texture variation such as crystal plasticity, as it is able
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to describe dislocation evolution for various temperatures, strain rates. Another
shortcoming of the model is that the effect of the initial grain size on the critical
strain for grain nucleation is not included; only the coarse-grain/single crystal
case is described, however grain size refinement increases the grain nucleation
rate [3]. This effect can explain discrepancies in the model for pure Cu at higher
strain rates, as an additional effect of dislocations being stored at grain bound-
aries should be incorporated into the entropic term, accounting for the decrease
on the dislocation’s expected velocity. Additional softening effects may have been
ignored. For instance, dislocation mobility is increased when grain growth occurs.
These phenomenon induces additional number of microstates in the entropy as
well, leading to an increase in the dislocation annihilation rate.

6.2.5 Condition for the occurrence of dynamic recrystalli-
sation

The critical condition for the occurrence of dynamic recrystallisation is fDRX = 0
(equation 6.9), which is it satisfied when the temperature, strain rate and solute
composition follow the relation (equations 3.12 and 6.8):

ε̇ = (ε̇0 + ϑ) exp

(
− λµb3

2kBT

)
. (6.16)

Figure 6.5 shows the dynamic recrystallisation transition maps for pure (a) cop-
per and (b) nickel, and their comparison with experimental data obtained from
the literature. The boundaries are obtained from equation 6.16. The shad-
owed regions represent deformation conditions for the occurrence of DRX and
the white regions span the conditions where no recrystallisation takes place. The
experimental points were directly measured from the stress-strain curves where
the curves fluctuated and/or eventually decreased confirming the occurrence of
dynamic recrystallisation [3]. The black dots represent the experiments where dy-
namic recrystallisation takes place and the white dots represent the experiments
where only dynamic recovery occurs. The data for coarse-grained materials were
obtained from [123, 223] for polycrystalline copper, from [224] for 6N copper, and
from [218] for 7N copper. For pure nickel the data were obtained from [129] for
〈111〉 single crystals, from [225] for polycrystalline nickel with an initial average
grain size of 60 µm, from [220, 226] for nickel with 99.9% degree of purity with
an initial average grain size of 78 µm. The results show good agreement in the
transition regimes for both metals at different deformation conditions.
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Figure 6.5: Transition map for the occurrence of dynamic recrystallisation and their com-

parison with experimental results for (a) Cu, and (b) Ni. The experimental data were obtained

from [123, 223, 218, 224] and [129, 225, 220, 226] for Cu and Ni, respectively.

6.2.6 Grain boundary mobility

In order to obtain information on the value λ = 0.6 employed in the model, the
strain energy at grain boundaries EHAGB is related to the grain boundary self
diffusion energy in this section.
In the classical literature, grain boundary velocity vGB is determined by the grain
boundary mobility MGB and the driving force for recrystallisation F via the rela-
tion vGB = MGBF [3]. Experimental evidence confirms that grain boundary dif-
fusion and mobility are closely related [31]. Moreover, theoretical descriptions for
dynamic recrystallisation include a grain boundary diffusion term to incorporate
mobility [216, 93, 77, 203]: MGB = αGB

δDGBVm

b2RT , where αGB is a constant, δ is the

grain boundary thickness, Vm is the molar volume, and DGB = D0
GB exp

(
− QD

RT

)
is the grain boundary diffusivity, where D0

GB is a pre-exponential factor and QD
is the boundary self diffusion activation energy. Figure 6.6 shows a comparison
between QD and the values of the stored energy at grain boundaries ẼHAGB per
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boundary and dislocation (equation 6.6):

ẼHAGB = EHAGB
b

nGBl
=
λ

2
µb3, (6.17)

with λ = 0.6, for pure (a) Ni and Au, and (b) Cu and Al, for temperature ranges
between 0.5Tm and Tm. Physical parameters of these materials are shown in
Appendix A. For the case of gold, the Burgers vector was obtained from [227] and
equals bAu = 0.288 nm; the experimental values of shear modulus were obtained
from [228] and were adjusted to the formula µAu = (29.57−1.3×10−3T −6.5×
10−6T 2) GPa. The results are expressed in terms of the homologous temperature
Th = T/Tm. The solid lines represent the model calculations and the dotted lines
represent the values of QD that were obtained from [3, 229, 230, 231]; for the
case of Ni, different values for QD were found and a region where these values
lie is plotted instead in Figure 6.6a. Table 6.1 shows the average values of the
energy to drive grain growth per dislocation EavHAGB between 0.5Tm and Tm, and
the experimental values of QD. For high temperature ranges (where dynamic
recrystallisation is likely to occur), the model results for the four materials are
therefore very close to those values fitted for the grain boundary self diffusion
when λ = 0.6, justifying the use of this parameter.
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Figure 6.6: Grain boundary self diffusion energy and ẼHAGB with λ = 0.6 as a function

of the homologous temperature (Th = T/Tm) for (a) nickel, gold, (b) copper and aluminium.

(c) Boundary displacement constant variation with temperature for misorientations of 18◦ and

32◦ for Cu [232].

Table 6.1: Grain boundary self diffusion energy comparison.

Metal QD (kJ/mol) Ref. ẼavHAGB (kJ/mol)
Cu 104 [3] 96
Al 84 [3] 79
Ni 170-187 [229, 230] 183
Au 91 [231] 94

On the other hand, Viswanathan and Bauer [232] used a bicrystal technique to
measure the mobility of high angle boundaries in 5N copper inducing high misori-
entation angles of 18◦ and 32◦ about a [001] tilt boundary. They found that the
grain boundary displacement (a) follows a parabolic relation a2 = KT f(θGB)t,
where KT is a boundary displacement constant that depends on temperature
only, f(θGB) is a magnification function that depends on the misorientation an-
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gle θGB , and t is time. KT is related to the grain boundary mobility via the
relation KT = 2Mξ, where ξ is the surface boundary tension [3, 232]. They
found that KT follows an Arrhenius equation. Thus, KT is proposed to be:

KT = A exp

(
− ẼHAGB

RT

)
, (6.18)

where A is a material dependent constant that was fitted to 2×10−5 m2/s. Figure
6.6c shows the measured values of KT and their comparison with the model when
λ = 0.6 for different temperatures and misorientation angles. The model shows
good agreement with respect to the experimental measurements.
A justification of the value of λ = 0.6 has been presented, showing that the energy
to drive grain growth ẼHAGB is closely related to grain boundary migration and
self diffusion rates, and their respective activation energies [3, 36]. The value of
λ remains valid for all the modelled FCC metals; however, it may differ for other
crystalline structures.

6.3 Conclusions

An extension of a previous theory describing dynamic recrystallisation in pure
FCC metals has been presented. The theory is successful in describing a number
of metallurgical parameters essential for dynamic recrystallisation, these include:

1. The incubation strain to initiate dynamic recrystallisation.

2. The grain size of coarse–grain metals at the steady state, which is shown
to be dependent on the initial grain size prior to deformation.

3. The oscillations in stress–strain space which appear prior to reaching the
steady state.

4. The steady state stress when dislocation generation and annihilation reach
equilibrium.

5. The temperature and strain rate dependence of all the above, which allows
to create maps for the occurrence of dynamic recrystallisation in strain
rate–temperature space.

The statistical entropy accounts for the driving energy for grain boundary mi-
gration during grain growth. It was also shown that the stored energy at grain
boundaries EHAGB is related to the grain boundary self diffusion energy. Thus,
no grain boundary mobility fitting parameters are required. The same set of
experimentally determined physical parameters used in previous chapters have
been successfully employed in the model validation.
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Chapter 7

Application of the theory to
multicomponent metals

Multicomponent effects are incorporated to the theory to account for solid solution

strengthening, dislocation annihilation, and twinning–induced–plasticity effects. Dislo-

cation pinning around solute atoms offer equivalent dislocation generation terms, and

extra slip configurations for the entropy, due to their average velocity reduction. They

alter the activation energy barrier for dislocation recovery, grain nucleation and growth;

and feature in the interactions with twins. Concentrated solution effects are initially

considered in the hot deformation of Ni30Fe, Ni21Cr, Fe30Ni, Fe18Cr8Ni, Fe25Cr20Ni

and Ni21Cr8Mo3Nb. The model is extended to describe effects of dilute concentrations

of substitutional and interstitial atoms; hot deformation of 15 low alloy steels is de-

scribed for wide ranges in composition, temperature and strain rate. Maps for dynamic

recrystallisation occurrence are defined in terms of loading conditions and composi-

tion. An application to describe work hardening of twinning–induced–plasticity steels

for different C and Mn concentrations at room temperature is additionally made by

combining twinning and solid solution contributions in dislocation generation. Input

to the model are only physical parameters and thermodynamic information from well

accepted databases.

7.1 Introduction

Extensive experimental and theoretical work has been made to characterise hot
deformation and recrystallisation kinetics in steels with different alloying elements
[233, 234, 235, 236, 237, 238]. However, microstructural interactions during pro-
cessing have not been fully understood yet. For instance, carbon–dislocation

113
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interactions in α–iron have been widely explored at various scales. Clouet et
al. [239] studied carbon atom interactions with screw and edge dislocations by
employing the embedded atom method, as well as molecular statics1 to obtain
the binding energy of a carbon atom and a dislocation. They also obtained sim-
ilar results by employing a elasticity theory model, simplifying the calculations.
Krempaszky et al. [240] have used the interaction energy between a carbon atom
and a dislocation to calculate the diffusion process of carbon atoms to both edge
and screw dislocations. They found that the elastic energy of a crystal is reduced
by the interaction of carbon atoms with dislocations, which is the driving force
for the diffusion of carbon atoms towards dislocations, and the reason for pinning
of dislocations by many carbon atoms. Queyreau et al. [241] have employed dis-
location dynamics simulations for describing dislocation–dislocation interactions
in α–iron with small carbon additions. Carbon effects in solid solution are incor-
porated in a friction stress τF , required to trigger dislocation slip. τF was fitted
for different carbon concentrations. In spite of these findings, limited information
is available for carbon and dislocation interactions in γ–iron. On the other hand,
modelling techniques to describe low alloy steel’s mechanical response at a macro-
scopic scale are usually based on semiempirical equations that require constitutive
relations, such as the Zener equation, to account for temperature, strain rate and
composition effects [234, 235, 242, 243]. Zurob et al. [203] have coupled existing
models for precipitation, recovery and recrystallisation, with their respective in-
terdependencies, to describe the microstructural evolution for static conditions.
All these approaches introduce fitting parameters for each specific steel grade,
remaining valid for limited processing and compositional ranges. This impedes
their extension to predict new scenarios. This impedes their extension to predict
new compositional and heat treatment scenarios.
Another challenge for plasticity theory are high manganese twinning–induced–
plasticity (TWIP) steels; these alloys have become one of the most attractive
materials for structural applications in automotive industry due to their unique
mechanical properties [12]. High manganese steels have low stacking fault ener-
gies inducing a high dislocation dissociation rate; as deformation continues, the
glide of partial dislocations leads to the formation of twin boundaries, inducing
an exceptional work hardening response due to the interaction of dislocations
with these barriers. The response of TWIP steels depends on chemical composi-
tion, and their behaviour is most interesting for medium and low temperatures,
as their processing takes place in these conditions.
This chapter extends the theory previously presented to deformation of single–
phase multicomponent FCC alloys by incorporating solid solution effects on dis-
location storage and annihilation in Sections 7.2 and 7.3, respectively; the model

1Molecular statics employs analogous atom interactions than Molecular Dynamics (Section
2.4.1), however only steady state (no time dependency) configurations are analysed.
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is validated for several face-centred multicomponent cubic systems with concen-
trated solutions (3 Fe– and 3 Ni–based alloys) in Section 7.4. The model is then
extended to characterise dilute solution effects in work hardening evolution and
dynamic recrystallisation kinetics of 15 low–alloy steels in Section 7.5. Results
include the variation in composition of five substitutional (Mn, Nb, Si, Cr and
Ti) and two interstitial (C and B) solute elements. Finally, combined effects of
deformation twinning and solid (dilute and concentrated) solution strengthening
are employed in Section 7.6 for describing work hardening behaviour of TWIP
steels at room temperature.

7.2 Dislocation generation: dρ+/dγ

For a coarse–grain multicomponent system, the dislocation storage coefficient
equals the inverse dislocation mean free path in a pure metal Λ−1

dis = k1
√
ρ (term

(A) in equation 2.30), accounting for dislocation-dislocation interactions, as well
as for the inverse dislocation mean free path in the presence of solute strength-
eners Λ−1

SS (term (C) in equation 2.30) [95]:

dρ+

dγ
=

1

b

(
k1
√
ρ︸ ︷︷ ︸

(A)

+
1

ΛSS︸︷︷︸
(C)

)
. (7.1)

where the value of k1 is depicted in equation 2.27.
Substitutional and interstitial atoms induce different dislocation generation rates.
Substitutional atoms usually take positions occupied by a solvent atom, whereas
interstitials locate in the interspaces of the solvent and/or substitutional lat-
tices, allowing them to move more freely in the crystal lattice. Moreover, in
order to reduce the lattice misfit energy, interstitials migrate towards dislocation
lines with a higher rate than substitutionals; this is reflected by displaying much
higher diffusion rates than substitutional atoms [244]. Thus, a stronger effect
from dislocation–interstitial interactions can be expected [244, 245]. Λ−1

SS can
be divided to include contributions of dislocation pinning around substitutional
Λ−1
subs and interstitial Λ−1

inter atoms [95, 246]:

1

ΛSS
=

1

Λsubs︸ ︷︷ ︸
(C1)

+
1

Λinter︸ ︷︷ ︸
(C2)

. (7.2)

7.2.1 Substitutional atoms

A dislocation in a randomly arranged solute configuration is subjected to isotropic
interaction forces from its neighbouring atoms [96]. This effect depends on the
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solvent–solute mixture arrangement (atomic landscape) in the alloy. By con-
sidering dislocation–solute atom interactions to be thermally activated [96], the
respective magnitude of the energy barrier for a dislocation to pin around a substi-
tutional is proposed to equal the Gibbs free energy of the alloy (mixture) ∆Gsys,
accounting for the possible atomic arrangements in the lattice [247]. Λsubs is
postulated to be [6, 95]:

Λsubs =
λSS

ΦSSb3
exp

(
∆Gsys
RT

)
1
√
ρ
, (7.3)

where λSS is a constant, the sign in the exponential formula accounts for the
negative values of ∆Gsys [247], and

ΦSS =
∑
i

xi/b
3 (7.4)

is the solute atom concentration per unit volume, 0 ≤ xi < 0.5 is the atom
fraction of the i solute element; the 1/(ΦSSb

3) factor in equation 7.3 accounts
for the solute spacing per unit volume [25]. It follows that

∑
i xi + xsolvent =1,

where xsolvent is the solvent’s concentration. −∆Gsys represents the free energy
barrier for dislocations to interact with solute and solvent atoms, which effect is
reduced to solute–dislocation interaction by incorporating the factor 1/(ΦSSb

3)
[95]. The previous equation is defined for concentrated solutions, where no special
distinction in the spatial arrangement for dislocation–solute interaction is needed.
ΦSSb

3 is employed in the following sections (instead of simplifying its value to∑
i xi), as this parameter is replaced for dilute systems (Section 7.5).

7.2.2 Interstitial atoms

Due to their reduced size, interstitial atoms are located in interstices in the face–
centred cubic crystal structures. In the case of C in Fe these are octahedral sites.
They tend to diffuse (at a higher rate than substitutionals) into lattice defects
offering energetically more favourable sites than those in the undisturbed lattice
[97, 245]. In FCC crystal structures, they have a substitutional–like interac-
tion with dislocations, as isotropic (hydrostatic) strains are induced around them
[244]. The strain fields around misfitting interstitial atoms interfere with the
motion of dislocations; the interaction incidence depends directly on the encoun-
tering frequency [96, 245]. Thus, it is proposed that Λ−1

inter equals the probability
Pinter of encountering interstitial atoms (located in interstitial sites) along a given
slip direction, multiplied by the inverse dislocation mean free path (in the pure
material) to account for the total dislocation encounter frequency [94]. If only

carbon is considered, Pinter = x
1/3
C , where xC is the carbon atom concentration,
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and x
1/3
C accounts for the interstitial concentration per unit length [25]. Λ−1

inter

then becomes:
1

Λinter
= Pinter

1

Λdis
=

x
1/3
C

Λpure
. (7.5)

The analysis in the following sections considers carbon effects only. However,
other elements can be analysed by adding up their respective concentrations; for
instance, if boron is also added, then Pinter = (xC + xB)1/3.

7.3 Dislocation annihilation: dρ−/dγ

This section incorporates multicomponent effects in fDRV , fDRX and γ∗DRX via
the number of microstates for dislocation motion (slip+climb), and the solute
energy contribution to dislocation annihilation.

Multicomponent statistical entropy

Dislocation slip is altered under the presence of (substitutional and interstitial)
solute atoms reducing its expected velocity and increasing the number of mi-
crostates (Section 3.2). If independent events are considered, this effect can be
incorporated in the total number of microstates Ω (equation 3.11) by a factor
ΩSS = Ωsubs · Ωinter, stemming from the presence of solute atoms [95]. Ω then
becomes:

Ω = Ωpure · ΩSS = Ωpure · Ωsubs · Ωinter. (7.6)

Ωpure measures the degrees of freedom due to the possible dislocation paths
during deformation in the absence of solute atoms, defining a characteristic num-
ber of atoms between a dislocation-slip initial point and N (maximum atomic
displacement of a dislocation) [104, 95]. Within this range there will be an av-
erage of nx = ΦSSb

3N =
∑
i xiN substitutional atoms and affecting the slip

behaviour in every microstate with respect to pure material case. The number of
possible substitutional arrangements amounts to

(
Ωpure

)nx
, the total expected

substititutional–dislocation interactions of nx solute atoms within a set of N
atoms. This number is normalised by N to account for the effect of nx per
atom, giving the additional degrees of freedom due to substitutional–dislocation
interaction Ωsubs [95]:

Ωsubs = Ω
nx
N
pure = ΩNsubs

pure = ΩΦSSb
3

pure =

(
ε̇0 + ϑ

ε̇

)Nsubs

, (7.7)

where
Nsubs = nx/N = ΦSSb

3. (7.8)
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Dislocation kinetics is severely altered by encountering interstitial barriers in the
lattice with respect to the substitutional case. At high temperatures, the high
diffusion rate of interstitial atoms allows them to continuously interact with mov-
ing dislocations, whereas at lower temperatures, a higher dislocation population
can induce interstitial migration towards the dislocation core lines, in spite of
the diffusion rate being lower [244]. The probability of a dislocation to encounter
one or more interstitials within N atoms (maximum atomic displacement of a

dislocation) at a given time and slip direction is x
1/3
C N . If the N arrangement

contains substitutional atoms, they will tend to interact with interstitials, either
by attracting or repealing them [248, 249]; carbon atoms migrate towards ener-
getically favourable sites, and additional dislocation–interstitial interactions may
occur. Such is obtained by estimating the probability of interstitial and sub-

stitutional atoms encountering each other within the N arrangement: x
1/3
C nx.

Thus, the total expected interstitial–dislocation interactions within a set of N

atoms scales with (Ωpure)
(x

1/3
C N+x

1/3
C nx), where x

1/3
C N and x

1/3
C nx account for

pure dislocation and substitutional interactions, respectively. Similar to the sub-
stitutional case, the previous encounters are normalised by N to account for the
configurational effects per atom. Ωinter becomes [246]:

Ωinter =
(
Ωpure)

(x
1/3
C N+x

1/3
C nx)/N

=
(
Ωpure)

x
1/3
C (1+Nsubs) =

(
ε̇0 + ϑ

ε̇

)x1/3
C (1+Nsubs)

. (7.9)

Ωinter induces a stronger effect with respect to Ωsubs, as Ωsubs accounts for the
possible atomic arrangements in the lattice affecting dislocation motion, never-
theless remaining immobile, whereas Ωinter accounts for the possible dislocation
encounters with a number of moving interstitials. It is worth noting that this
analysis accounts for the possible interactions from a configurational viewpoint,
and a further analysis is needed to incorporate solute atom diffusivities.
Combining equations 7.6, 7.7 and 7.9, the statistical entropy under the presence
of solute atoms ∆Ssol becomes:

∆Ssol = kB ln Ω = kB ln Ω

(
1+x

1/3
C

)
(1+Nsubs)

pure = kB ln

(
ε̇0 + ϑ

ε̇

)(1+x
1/3
C )(1+Nsubs)

.

(7.10)
The statistical entropy for dynamic recovery that incorporates impingement effect
becomes (equation 3.26):

∆SsolDRV = kB ln ΩN = kB ln

(
ε̇0 + ϑ

ε̇

)(1+x
1/3
C

)
(1+Nsubs)N

. (7.11)
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7.3.1 Multicomponent dynamic recovery

Dislocation mobility is affected by the presence of substitutional atoms, which
modify the energy barrier for dislocation annihilation 〈∆G〉, by adding USS in
〈∆G〉 (equation 3.16) to account for solute-dislocation interactions in the anni-
hilation process [95, 246]. The energy barrier 〈∆Gsol〉 then becomes:

〈∆Gsol〉 =
b

l

(
Uform + Umig + Uvac + USS − T∆SsolDRV

)
. (7.12)

The energy of a solid solution mixture per unit volume ŨSS is approximated by
the chemical work of solute atoms around a dislocation segment per unit volume
[25, 95]:

ŨSS =
1

b3

∑
i

xi∆Gsys. (7.13)

The solute energy contribution around a dislocation segment undergoing annihi-
lation (with volume Vsys, equation 3.15) becomes

USS = VsysŨSS = l∗lb
∑
i

xi∆Gsys. (7.14)

The velocity of a dislocation is reduced by its possible encounters with moving
interstitials. Similar to the effect produced by the number of microstates Ωinter,
the velocity for annihilation 〈v〉 (equation 3.27) is modified to account for its
reduction by moving interstitials, which is reflected by (1 + Pinter) [104, 246]:

(
〈v〉

c+ cint

)(1+Pinter)N

=

(
ε̇

ε̇0 + ϑ

)(1+Pinter)N

= exp

(
− 〈∆G

sol〉
kBT

)
. (7.15)

The scaling effect in the previous equation is included for interstitials only, as
they remain mobile; substitutional interactions with dislocations are accounted
in the energy barrier for annihilation (equation 7.12).
Following the same process delineated in Chapter 3, and combining equations 7.12
and 7.15, the dynamic recovery coefficient for multicomponent systems equals2:

fsolDRV =
NAρab

2l∗(w−1
a )T∆Ssol

DRV

1
2µb

3+σY Aactb3+ l∗
b δ(Ef+kBT ln cm)+l∗b2

∑
i xi∆Gsys−kBT ln

(
ε̇0+ϑ

ε̇

)(1+x
1/3
C

)
N

(7.16)

2The values of µ, b, c, wa and ρa are weighted with respect to composition. Details of these
calculations are presented in the results section.
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This equation describes the dynamic recovery rate during deformation in terms
of composition, temperature and strain rate. It is expressed in terms of physical
parameters that can be directly measured from experiments. Specific formulae of
fsolDRV for different cases (concentrated and dilute substitutional, and interstitial
solutions) are shown in the following sections.

7.3.2 Multicomponent dynamic recrystallisation

At high temperatures and/or low strain rates, DRX decreases the dislocation den-
sity as dislocation–free grains nucleate and grow from highly dislocated subgrains
(cells). This effect induces an additional annihilation term in the Kocks–Mecking
equation (item F in equation 2.30) equal to fDRXρ[γ−γ∗DRX ], where fDRX is the
dynamic recrystallisation coefficient, and γ∗DRX represents an incubation strain to
form high-angle grain boundaries (HAGBs) igniting grain nucleation and growth
(Section 6.2). The dynamic recrystallisation coefficient measures the capability
for recrystallised grains to grow and occupy the deformed regions (Section 6.2.1).
Such efficiency is estimated by the ratio between the potential sites for growth
and the number of growing grains. fDRX equals:

fDRX = exp

(
QDRX
kBT

)
− 1, (7.17)

where QDRX is the energy barrier for grain growth. It is worth noting that
QDRX also varies with temperature, and the inverse temperature variation for
fDRX does not mean that it will be lower at higher temperatures, as QDRX
usually displays stronger temperature variations (See 6.2.4).
For pure materials QDRX is composed by i) the driving force to induce grain
boundary motion Edisp (proportional to T∆Ssol), and ii) the strain energy at
the boundaries once high–angle grain boundaries form EHAGB . Multicomponent
systems require additional solute–drag energy to be overcome due to the segre-
gation of substitutional (Esol) and interstitial (Einter) atoms into the boundaries
[3, 95]. Thus, the energy barrier QsolDRX becomes:

QsolDRX = Ssub(Edisp − EHAGB − Esol − Einter), (7.18)

where Ssub is the subgrain area fraction per unit volume that accounts for the
possible sites for grains to grow (equation 6.7).
By defining the volume for boundary–dislocation interaction to be

VSS = l∗lb, (7.19)

where l∗ is the dislocation’s distortion length (l∗ = 12.5b), the substitutional–drag
energy is equal to the energy of the solution mixture per unit volume (equation
7.13) multiplied by VSS for nGB dislocations at the subgrain boundaries [95]:
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Esol = −nGB
2l

dc
VSSŨSS = −2nGBl

∗lb

κc
ŨSS = −2nGB

κc
l∗lbΦSS∆Gsys, (7.20)

where the factor l/dc accounts for the fraction of solute atoms arranged in the
boundaries, the 2 factor incorporates the drag–effect from adjacent subgrains,
and the negative sign accounts for the negative values of ∆Gsys.
Interstitial segregation at the boundaries impedes grain boundary migration dur-
ing dynamic recrystallisation, therefore increasing the energy barrier for grain
growth. Einter is given by the grain boundary energy χGB (to be overcome)
on the potential sites for carbon segregation at the boundaries. The latter can
be estimated by the probability of dislocations at the boundaries3 encountering
an interstitial atom: 2PinterπnGBlb, where πnGBl accounts for the perimeter
of a grain (assuming circular shape) and the 2 factor is to account for carbon
segregation in both sides of a boundary. Einter then equals [246]:

Einter = χGB

(
2PinterπnGBπlb

)
= 2πnGBx

1/3
C χGBlb. (7.21)

Combining equations 6.5, 6.6, 6.7, 7.20, and 7.21, QsolDRX becomes:

QsolDRX = Ssub([(1 +Nsubs)(1 + x
1/3
C )]−1Edisp − EHAGB − Esol − Einter)

= 6
κc

(
[(1 +Nsubs)(1 + x

1/3
C )]−1T∆Ssol − λ

2µb
3 + 2

κc
l∗b2ΦSS∆Gsys − 2πx

1/3
C χGBb

2

)
=

6

κc

(
kBT ln

(
ε̇0 + ϑ

ε̇

)
− λ

2
µb3 +

2

κc
l∗b2ΦSS∆Gsys − 2πx

1/3
C χGBb

2

)
.

(7.22)

where the factor
[
(1+Nsubs)(1+x

1/3
C )

]−1
is to neglect dislocation self–interactions,

as the boundaries become the main dislocation attractors [95, 246].
Finally, by combining equations 7.17 and 7.22, the dynamic recrystallisation co-
efficient for multicomponent systems fsolDRX becomes:

fsolDRX = exp

(
6

κckBT

(
kBT ln

(
ε̇0+ϑ
ε̇

)
− λ

2µb
3 + 2

κc
l∗b2ΦSS∆Gsys − 2πx

1/3
C χGBb

2

))
− 1.

(7.23)
When fsolDRX ≤ 0, no dynamic recrystallisation is present and fsolDRX is set to
zero. Once again, this equation describes the annihilation rate due to dynamic
recrystallisation in terms of alloy’s composition, temperature and strain rate.
Besides λ, no fitting parameters are required. A justification of λ = 0.6 for pure
FCC metas was shown in Section 6.2.5.

3Grain boundaries are considered to be formed by dislocation arrangement.
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7.3.3 Multicomponent critical strain for grain nucleation

The onset for dynamic recrystallisation occurs when high–angle grain boundaries
(HAGBs) form via dislocation storage [3]. Recrystallisation, via grain nucleation,
is considered to start when the stored energy at the boundaries Esub equals the
addition of [95]: (i) the strain energy to nucleate dislocation-free grains Egrain
(equation 6.11); (ii) the displacement energy for boundary–dislocations to onset
grain growth Edisp (equation 6.5); and (iii) the equivalent slip energy of dis-
locations migrating from the grain interior to the boundaries Eint for HAGB
formation, where nint is the number of dislocations in the subgrain interiors
[116]). The presence of solute atoms induces additional solute–drag energy terms
that contribute to Esub. When a grain boundary tries to migrate away from the
particles, the local energy increases and drag is forced on the boundary [244]. For
substitutional atoms, this term equals Esol (equation 7.20) [95]. On the other
hand, Ushioda et al. [250] have found that the nucleation rate of recrystallisation
increases with carbon concentration, and an additional interstitial–drag energy
Einter is also required. Thus, the energy balance becomes [95, 246]:

Esub + 9Einter + Esol = Egrain + Edisp + Eint, (7.24)

where 9 in Einter represents the number of directions for interstitial atoms to
interact with subgrain boundaries4.
Rearranging the previous expressions and following the same process delineated
in Chapter 6, the critical strain for grain nucleation becomes [246]:

γ∗DRX = bρxgrain = 1− 4lΦSSVSS∆Gsys
dcµb3

+
36πx

1/3
C χGB
µb

− 2

(
1 +

1

κc

)
T∆Ssol

µb3
.

(7.25)
If γ∗DRX ≤ 0, then γ∗DRX = 0.

7.3.4 Condition for the occurrence of dynamic recrystalli-
sation

The critical condition for the occurrence of dynamic recrystallisation is fsolDRX = 0
(equation 7.23), which is it satisfied when the temperature, strain rate and solute
composition follow the relation (equation 7.22):

ε̇ = (ε̇0 + ϑ) exp

(
−

λ
2µb

3 − 2
κc
l∗b2ΦSS∆Gsys + 2πx

1/3
C χGBb

2

kBT

)
. (7.26)

4If a FCC unit cell is considered, there are 3 adjacent directions in a slip line where inter-
stitials can be allocated. There are 3 possible forms to orient these directions. Thus, there
are 9 possible adjacent directions for interstitials to interact with a dislocation on a given slip
direction.
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7.3.5 Physical parameters estimation

In order to obtain the physical input parameters of each alloy, a mixture rule is
used for b, c, ρa, wa and µ [61, 109]:

P = (1−
∑
i

xi)P(1−
∑

i xi) +
∑
i

xiPxi
, (7.27)

where Pxi and xi represent the physical parameter and composition values of
the i-th element5, respectively. Appendix A shows the values of the physical
parameters of pure materials. It is worth noting that if

∑
i xi = 0, the original

expressions for pure metals are recovered [104, 109].
The model is tested against experimental data obtained from the literature in the
form of the stress-strain curves for 6 different alloys, deformed at intermediate
(T0 < T < Tf ) and high (T > Tf ) temperatures. Table 7.1 shows the chemical
composition of each alloy and their designations. For numerical modelling effects,
elemental contents lower than 3 wt% are ignored, leading to 3 binary, 2 ternary
and 1 quaternary alloy systems presented in this chapter. Carbon effects are
not included in this analysis as values for the grain boundary energy were not
found for these alloys. Dilute solutions and interstitial effects are considered in
following sections.

Table 7.1: Alloy composition in weight percent.

Alloy name Composition (wt%) Reference
Ni30Fe Ni-30Fe [251]
Ni21Cr Ni-21Cr-1.1Si-0.75Fe-0.31Al-0.08Ti-0.35Cr-0.05C [252]

[253]
Fe30Ni Fe-30.3Ni-1.67Mn-1.51Mo-0.19Si-0.092C-0.009P-0.003S [254]

Fe18Cr8Ni Fe-18.09Cr-8.35Ni-0.15Cu-0.13Mo-0.95Mn-0.7Si-0.058C [255]
Fe25Cr20Ni Fe-25Cr20Ni-2.05Si-0.1Mn-0.17Al-0.12C-0.014P-0.014S [256]

Ni21Cr8Mo3Nb Ni-21.32Cr-8.58Mo-3.73Nb- [257]
0.11Fe-0.01Mg-0.18Al-0.16Ti-0.04Mn-0.09Si-0.053C

The free energy values were obtained from Thermocalc software and were ad-
justed to polynomial expressions to simplify calculations. The corresponding
correlation coefficient R2 was in all cases greater or equal than 0.98. Table 7.2
shows the Gibbs free energy expressions as well as the temperature range (Trange)
where the values were taken from.

5weighted contributions are computed expressing xi in atom fraction
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Table 7.2: Free energy expressions.

Alloy ∆Gsys (kJ/mol) Trange (K)
Ni70Fe −(5.17 + 0.023T + 2.34× 10−5T 2) 773-1373
Ni21Cr −(2.08 + 0.031T + 1.9× 10−5T 2) 500-1173
Fe70Ni −(9.61 + 0.043T + 1.5× 10−5T 2) 973-1323

Fe18Cr8Ni −(1.69 + 0.013T + 3.1× 10−5T 2) 573-1223
Fe25Cr20Ni (4.73− 0.034T − 2× 10−5T 2) 1073-1573

Ni21Cr8Mo3Nb −(4.255 + 0.024T + 2.2× 10−5T 2) 1173-1473

Table 7.3 shows the additional physical parameters employed in the model. The
yield stress was measured directly from the experimental flow stress-curves and
expressed analytically to simplify calculations and to estimate the values of Tf
[109]; the stacking fault energy was obtained from the literature; the vacancy
formation and migration energies were adjusted as no values were found in the
literature, except for the Ni30Fe alloy. The melting point was obtained from
Thermocalc.

Table 7.3: Alloy physical parameters.

Alloy χ (mJ/m2) Ref Ef (kJ/mol) Em (kJ/mol) Ref
Ni30Fe 63 [258] 154.35 106.05 [259]
Ni21Cr 55 [260] 154.35 74.2 -
Fe30Ni 23 [258] 165 125.7 -

Fe18Cr8Ni 21 [260] 154.4 96.5 -
Fe25Cr20Ni 38 [260] 168.8 93.9 -

Ni21Cr8Mo3Nb 35 [261] 144.7 101.3 -

Alloy Tm (K) Tf (K) σY (MPa)
Ni30Fe 1731 1074 0.46T − 2.5× 10−4T 2 − 112
Ni21Cr 1693 854 397− 0.19T
Fe30Ni 1716 1270 301− 0.175T

Fe18Cr8Ni 1730 1055 −282.9 + 1.185T − 7.4× 10−4T 2

Fe25Cr20Ni 1690 995 112− 0.05T
Ni21Cr8Mo3Nb 1560 1105 1948− 2.316T + 6.9× 10−4T 2

The value of λSS was fixed to 1.6× 104 for all materials in the following sections
[95]. The vacancy concentration at the melting point is estimated from the for-
mula cm = exp(∆Sform/R) exp(−Ef/RTm) [156], where ∆Sform is the vacancy
formation entropy and ∆Sform/R ' 1.5 [156].
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7.4 Results

The same procedure outlined in previous chapters is followed: the average dis-
location density is estimated with the multicomponent Kocks–Mecking equation
when concentrated substitutional concentrations are being considered:

dρ[γ]

dγ
=

1

b
(k1 + kSS)

√
ρ[γ]− fsolDRV ρ[γ]− fsolDRXρ[γ − γ∗DRX ], (7.28)

where the values of kSS , fsolDRV , fsolDRX and γ∗DRX become [95]:

kSS =

∑
i xi

16, 000
exp

(
− ∆Gsys

RT

)
,

fsolDRV =
NAρab

2l∗(w−1
a )(1+

∑
i xi)NkBT ln

(
ε̇0+ϑ

ε̇

)
1
2µb

3+σY Aactb3+ l∗
b δ(Ef+kBT ln cm)+ l∗

b

∑
i xi∆Gsys−kBT ln

(
ε̇0+ϑ

ε̇

)N ,
fsolDRX = exp

(
6

κckBT

(
kBT ln

(
ε̇0 + ϑ

ε̇

)
− 0.3µb3 +

2l∗

κc

∑
i

xi∆Gsys

))
− 1,

γ∗DRX = 1− 4l∗

κcµb3

∑
i

xi∆Gsys − 2

(
1 +

1

κc

)(
1 +

∑
i

xi

)
kBT ln

(
ε̇0+ϑ
ε̇

)
µb3

.

(7.29)

At large deformations stage IV takes place and the dislocation density is obtained
with equation 3.71 (Section 3.3.4). If DRX takes place, stage IV is not considered.
The flow stress response equals [76]: σ = σY + αMbµ

√
ρ, where σY accounts

for the onset of plastic deformation (friction stress present due to solid solution
strengthening).
Figures 7.1(a) and (c) show the model results and their comparison with the ex-
perimental values for coarse grained (200 µm) Ni30Fe alloy deformed at different
temperatures and strain rates. Stage IV takes place after ε'0.3 when the material
is deformed at 973 and 1073 K and at 0.7 s−1; dynamic recrystallisation occurs
for temperatures above 1073 K, except when it is deformed at 70 s−1. The model
shows good agreement with experimental results, except for ε̇= 70 s−1. Suh et
al. [262] have reported the average cell size for this alloy with an initial grain size
of 140 µm and ε = 2.3, T = 1073 K at ε̇ =0.1 and ε̇ =10 s−1 to equal to 0.9 and
0.6 µm, respectively, whereas the model predicts an average cell size of 1.2 and
0.6 µm for the same deformation conditions, being in good agreement with the
reported measurements. Figures 7.1(b), (d), and (f) show the model results and a
comparison to experiments for polycrystalline Fe30Ni with an average grain size
of 120 µm deformed at different temperatures and strain rates. Stage IV occurs
when the material is deformed at 1123 K and 10 s−1, whereas recrystallisation
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occurs above this temperature and below this strain rate. The model is in good
agreement with experimental values, except for temperatures above 1223 K at
0.1 s−1, where the experiments show a stronger softening effect. Figure 7.1(e)
shows the model results and a comparison with experiments for polycrystalline
Fe18Cr8Ni (304 Austenitic stainless steel) with an average grain size of 25 µm
for different temperatures, deformed at ε̇ = 8×10−4 s−1. The model shows good
agreement with respect to experimental data. Belyakov et al. [255] conclude
that when the alloy is deformed at 1023 K, dynamic recrystallisation is already
present, whereas the model predicts the occurrence of dynamic recrystallisation
after 973 K. This minute difference can be due to the grain size effect has been
ignored in the present model.
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Figure 7.1: Stress-strain curves for Ni30Fe (a) and (c); Fe30Ni (b), (d) and (f); and (e)

Fe18Cr8Ni. The solid lines represent the model results and the dots represent the experimental

data.

Figures 7.2(a) and (c) show the model results and their comparison with experi-
mental curves for polycrystalline Fe25Cr20Ni deformed at different temperatures
and strain rates. Dynamic recrystallisation is already present for all deformation
conditions. At higher temperatures, the model shows a discrepancy of ∼50 MPa;
this difference can be due to the value of the yield stress formula employed in the
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model being higher than experimental measurements. Figure 7.2(b) shows the
model and experimental results for a Ni21Cr alloy with an average grain size of
80 µm deformed at different temperatures and at ε̇ = 7 × 10−4 s−1. The model
shows good agreement with the experimental stress-strain curves. Moreover, Du-
dova et al. [252] report the occurrence of dynamic recrystallisation of this alloy
to be between 873 and 973 K, and the model predicts the occurrence of dynamic
recrystallisation between 873 and 923 K, in precise agreement with the experi-
mental ranges. Figure 7.2(d) shows the model results and their comparison with
the experimental data for a Ni21Cr8Mo3Nb alloy (Inconel 625) with an average
grain size of 81 µm deformed at different temperatures and at ε̇ = 0.1 s−1. The
model shows good agreement for strains below 0.3 and temperatures above 1273
K; beyond this strain, the experimental data show additional softening kinet-
ics. At lower temperatures the experiments show a higher work-hardening rate.
These discrepancies can be due to the presence of carbides and precipitates as
well as the grain size effect, as pointed out by Guo et al. [257]; those effects are
not included in the present calculations. Nevertheless, they concluded that dy-
namic recrystallisation occurs at 1223 K (when deformed at ε̇ = 0.1 s−1), whereas
the model results show that dynamic recrystallisation is already present at the
same temperature for such strain rate. Experimental conclusions on the dynamic
recrystallisation occurrence from the previous results were usually depicted by
direct microstructural observations on the deformed samples.
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Figure 7.2: Stress-strain curves for the (a), (c) Fe25Cr20Ni, (b) Ni21Cr, and (d)

Ni21Cr8Mo3Nb alloys deformed at different temperatures. The solid lines represent the model

results and the dots represent the experimental data.

7.4.1 Design for dynamic recrystallisation

Figure 7.3 shows the transition maps for the occurrence of DRX for (a) Ni21Cr
and (b) Ni21Cr8Mo3Nb, and their comparison with experimental results in terms
of temperature and strain rate, showing the regions where recrystallisation takes
place and when only dynamic recovery is present. For concentrated effects, the
limits where DRX occurs are depicted by the equation:

ε̇ = (ε̇0 + ϑ) exp

(
−

0.3µb3 − 2l∗

κc

∑
i xi∆Gsys

kBT

)
. (7.30)

Good agreement is shown for both alloys.
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Figure 7.3: Transition map for the occurrence of dynamic recrystallisation and their compar-

ison with experimental results for (a) Ni21Cr, (b) Ni21Cr8Mo3Nb alloys; and (c) a comparison

of three Ni-based alloys.

To illustrate the use of this theory to design new alloys, the problem of increasing
the temperature for the occurrence of DRX is considered in Figure 7.3c. This
shows the transition limits (equation 7.30) for the previous alloys plus the addition
of a hypothetical grade with composition Ni21Cr8Mo (wt%) to compare the effect
that Mo and Nb have in the occurrence of recrystallisation. The values of b, µ and
c were obtained using equation 7.27; the values for Em and σY for this alloy were
taken from Ni21Cr, as no experimental data were found in the literature, and the
values of ∆Gsys and Tm = 1660 K were obtained from Thermocalc and adjusted
to the analytical expression (R2 = 0.99): ∆GNi21Cr8Mo

sys = −(0.76 + 0.027T +
2.1 × 10−5T 2) kJ/mol. As κc depends on strain rate, in order to simplify the
calculations in this case, it is fixed to be 20 for the three alloys [116]. For strain
rates above 10−3 s−1, the model shows an increase in the recrystallisation onset
temperature of ∼55 K when 8 wt% of molybdenum is incorporated to the Ni21Cr
alloy, and a further increase of ∼110 K if 3.7 wt% of niobium is additionally
incorporated. The onset of recrystallisation of Ni21Cr alloy is increased by ∼165
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K if both 8Mo and 3.7Nb (wt%) are added.

7.5 Dilute concentrations: Application to low al-
loy steels

For moderate concentrations, a dislocation in a randomly dispersed substitutional
solute atom field is subjected to interaction forces from the nearest effective so-
lute atoms, experiencing repulsive or attractive forces. This effect depends on
the solvent-solute mixture arrangement (atomic landscape) in the alloy, and no
special distinction was considered. However, at low concentrations, a dislocation
encounters only discrete and spread opposing obstacles (solute atoms), and their
interaction becomes similar to the non–deformable particles case (e.g. precipi-
tates acting as dislocation pins)[96, 27]. This strengthening effect is related to
the ability of dislocations to bow around the particles, depending on the average
particle spacing only, instead of spatial distributions [96]. A similar case occurs
for grain boundaries [3]. Thus, it is proposed that linear encounters between
substitutional atoms and dislocations are responsible for the strengthening and
annihilation process, other than describing volumetric interactions in the inverse
dislocation mean free path (Λsubs), dislocation motion (Nsubs), and effective vol-
ume for solute–drag grain boundary interaction (VSS): ΦSS (solute concentration
per unit volume) is replaced by the solute concentration per unit length [25]

ψSS =
∑

x
1/3
i /b, (7.31)

with their respective volume/length modifications in Λsubs and Nsubs. This in-
tensifies solute contributions when a discrete number of pinning obstacles are
available. Table 7.4 shows the terms that are modified for concentrated and
dilute solutions. On the other hand, for a given concentration xj of substitu-

tional j, the volume V jSS spanning the possible encounters of xj atoms with

subgrain boundaries equals the mean solute spacing in two dimensions
(
b/x

1/3
j

)2
(accounting for the surface extension of substitutional atoms), multiplied by half
the subgrain size dc/2, where the 2 factor accounts for shared interactions in
adjacent boundaries. The drag effect of element j in Esol is reflected by the
term Ũ jSS = −xj

b3 ∆Gsys (equation 7.13); then Esol equals the contribution of all
substitutional atoms:

Esol = − 2l

dc

∑
i

V iSSE
j
sol = − l

b

∑
i

x
1/3
i ∆Gsys. (7.32)
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Table 7.4: Concentrated vs. dilute solution effects.

Eq. Param. Concetrated Dilute Description

7.3 kSS
ΦSSb

3

16000 exp
(
− ∆Gsys

RT

)
ψSSb
16000 exp

(
− ∆Gsys

RT

)
Dislocation mean free path in the
presence of substitutional atoms

7.8 Nsubs ΦSSb
3 ψSSb Additional number of microstates

(interactions) for dislocation motion

7.19 VSS l∗lb V jSS = dcb
2

2x
2/3
j

Solute-drag volume around

subgrain boundaries

7.32 Esol −nGB 2l∗l
dcb

∑
i xi∆Gsys −nGB l

b

∑
i x

1/3
i ∆Gsys Solute–drag boundary energy

The previous modifications follow the assumption that particle spacing is more
relevant than spatial distributions for low solute concentrations [96]. These
are simple representations, as a detailed analysis in dislocation–solute atom be-
haviour is complex, and quantitative information (from physics–based descrip-
tions) in their effect on work hardening and dynamic recrystallisation is not
available yet.

7.5.1 Experimental procedure

Four different steels (Steels A-D) were subjected to uniaxial compression tests
for temperatures and strain rates in the range of 850–950 ◦C and 0.01–1 s−1,
respectively. Table 7.5 shows the chemical composition of each alloy and its des-
ignation. The materials were provided by ArcelorMittal Maiziéres. The samples
were austenitized at 1423 K for 120 s. Following this, they were cooled at rates of
20 K/s to the deformation temperature, and held for 30-45 s. Finally, the samples
were subjected to uniaxial compression of up to a true strain of 0.7. This process
was performed in a Gleeble 1500 thermomechanical simulator. The dimensions
of the samples were of diameter and length 10 mm and 12 mm, respectively.
Experimental information on the stress–strain curves for 9 low–alloyed steels
(Steels E-N) were additionally provided by ArcelorMittal Maiziéres to analyse
the effect of six elements (C, Mn, Nb, Si, Cr, Ti). Their chemical composition
and commercial designation is given in Table 7.5. The range of deformation
temperatures and strain rates was 850–1050 ◦C, and 0.1–100 s−1, respectively.
In addition to these data, experimental information for two low–alloyed steels was
obtained from the literature to observe boron effects on dynamic recrystallisation
[263]. Table 7.5 shows the chemical composition of these alloys referred to as Steel
N and O, respectively.
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Table 7.5: Tested alloys. Chemical compositions are shown in weight percent.
No. Steel C Mn Nb Si Cr Ti B
1 A 0.1 2 0 0 0 0 0
2 B 0.1 2 0.03 0 0 0 0
3 C 0.1 2 0.07 0 0 0 0
4 D 0.1 1 0.07 0 0 0 0
5 E 0.002 0.208 0 0.004 0.017 0 0
6 F 0.002 0.123 0.016 0.005 0.019 0.015 0
7 G 0.004 0.195 0 0.124 0.025 0.002 0
8 H 0.054 1.18 0 0.125 0.465 0 0
9 I 0.055 0.362 0.055 0.013 0.025 0.001 0
10 J 0.080 1.48 0.063 0.029 0.020 0.002 0
11 K 0.185 1.66 0.001 1.605 0.033 0.003 0
12 L 0.210 1.44 0.002 0.22 0.018 0.001 0
13 M 0.385 0.673 0 0.203 0.269 0.001 0
14 N 0.04 1.46 0 0.354 0 0 0.003
15 O 0.04 1.46 0 0.354 0 0 0.010

7.5.2 Results

For this case, dilute substitutional and interstitials concentrations are considered;
the evolution equation becomes [246]:

dρ[γ]

dγ
=

1

b
((1 + x

1/3
C )k1 + kSS)

√
ρ[γ]− fsolDRV ρ[γ]− fsolDRXρ[γ − γ∗DRX ], (7.33)

with:

kSS =

∑
i x

1/3
i

16, 000
exp

(
− ∆Gsys

RT

)
,

fsolDRV =
NAρab

2l∗(w−1
a )
(

1+x
1/3
C

)(
1+

∑
i x

1/3
i

)
NkBT ln

(
ε̇0+ϑ

ε̇

)
1
2µb

3+σY Aactb3+ l∗
b δ(Ef+kBT ln cm)+

∑
i xi∆Gsys−kBT ln

(
ε̇0+ϑ

ε̇

)(1+x
1/3
C

)
N
,

fsolDRX = exp

(
6

κckBT

(
kBT ln

(
ε̇0+ϑ
ε̇

)
− 0.3µb3 +

∑
i x

1/3
i ∆Gsys + 2πx

1/3
C χGBb

2

))
− 1,

γ∗DRX = 1− 2
µb3

∑
i x

1/3
i ∆Gsys + 36πx

1/3
C

χGBb
2

µb3 −
(

1 + 1
κc

)
2kBT
µb3 ln

(
ε̇0+ϑ
ε̇

)(1+x
1/3
C

)(
1+

∑
i x

1/3
i

)
,

(7.34)

where
∑
i x

1/3
i represents the sum of the atom concentrations of Mn, Nb, Si, Cr

and Ti, respectively. An initial dislocation density of 1011 m−2 was considered for
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all cases. The flow stress response is described by employing the Taylor equation:
σ = σY + 0.3Mµb

√
ρ. At large deformations stage IV of deformation is present.

If DRX takes place, stage IV is not considered.
The physical parameters employed in the present model are shown in Appendix
A, they were all obtained from the literature, except for the vacancy formation
and migration energies for γ–iron, whose values were fitted to Em = 1.28 eV
and Ef = 1.6 eV, as no information was found in the literature. The va-
cancy concentration at the melting point is estimated from the formula [156]:
cm = exp(1.5) exp(−Ef/RTm). It is considered that dislocation climb dominates
at the tested temperature range. This implies that the vacancy energy contri-
bution to dislocation annihilation is fully present and δ = 1 in equation 7.16.
χGB = 0.34 J/m2 was obtained from [3]. It is worth noting that the physical
parameters are not considered to depend on the chemical composition for dilute
concentrations. ∆Gsys values were obtained from Thermocalc and fitted to a for-
mula (with correlation factor of R2 = 0.99) to describe de temperature variation
∆Gsys = 16 − 0.045T − 1.4 × 10−5 kJ/mol; for the tested composition ranges,
as ∆Gsys did not vary significantly with composition (less than -2 kJ/mol), the
same formula was employed for all cases.
Figure 7.4(a) shows the yield stress experimental values, they were directly deter-
mined from experimental stress–strain curves. Figures 7.4(b-d) show the model
results and their comparison with the experimental data obtained in this work
for Steel A for different temperatures and strain rates. The model shows excel-
lent agreement on the work hardening rate and on recrystallisation onset and
softening kinetics for the tested temperatures.
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Figure 7.4: (a) Yield stress for the tested steels. Model stress–strain curves and their com-

parison with the experiments for steel A at different temperatures and at (b) 10−2 s−1, (c)

10−1 s−1 and (d) 1 s−1.

Figure 7.5 shows the model results and its comparison with the experimental
data for Steels B, C and D for different temperatures and strain rates. The
model shows good agreement in the absence of dynamic recrystallisation, how-
ever it predicts recrystallisation to take place before the experimental evidence.
An explanation of this behaviour is that these steels contain high Nb concen-
tration (0.03-0.07 wt%) that may cause NbC formation; this structure tends to
segregate at grain boundaries, preventing recrystallisation and grain growth to
occur prematurely [3]. Further extensions to the model to include this effect can
be explored in future work.
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Figure 7.5: Model stress–strain curves and their comparison with the experiments for steel

B, C and D at different temperatures and strain rates.

Substitutional and interstitial atoms effects on work hardening and recrystallisa-
tion kinetics are tested in Figures 7.6, 7.7, 7.8, 7.9 and 7.10. The model results
are compared with experimental stress–strain curves for 11 steels at different
temperatures and strain rates. The comparison shows a remarkable agreement
for such wide composition, temperature and strain rate ranges. However, the
model’s initial work hardening rates in steels with higher carbon concentrations
(Figures 7.11(c),(d) and 7.10(a),(b)) is lower than the ones displayed in experi-
ments. This discrepancy can be due to an increase in the friction stress, as carbon
segregates at the boundaries and a dynamic Hall–Petch effect is present at low
strains only [264]. Figures 7.10(c) and (d) show the effect of boron in Steels N
and O, the experiments show a small decrease in the friction (onset) stress when
boron concentration is increased, however similar work hardening behaviour is
displayed in both alloys; the model shows almost no variation in the flow stress.
This can be due to the reduced boron concentration in the steels.
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Figure 7.6: Model stress–strain curves and their comparison with the experiments for steel

E and F at different temperatures and strain rates.
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Figure 7.7: Model stress–strain curves and their comparison with the experiments for steel

G and H at different temperatures and strain rates.
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Figure 7.8: Model stress–strain curves and their comparison with the experiments for steel I

and J at different temperatures and strain rates.
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Figure 7.9: Model stress–strain curves and their comparison with the experiments for steel

K and L at different temperatures and strain rates.
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Figure 7.10: Model stress–strain curves and their comparison with the experiments for steel

M, N and O at different temperatures and strain rates.

Critical conditions for dynamic recrystallisation to occur can be obtained from
equation 7.26. For dilute substitutional and interstitial effects, this equation
becomes:

ε̇ = (ε̇0 + ϑ) exp

(
−

0.3µb3 −
∑
i x

1/3
i ∆Gsys + 2πx

1/3
C χGBb

2

kBT

)
. (7.35)

Figures 7.11(a) and (b) show the dynamic recrystallisation transition maps for
two steels with different compositions and their comparison with the experi-
mental data obtained form the literature. The boundaries are obtained from
solving equation 7.35 for T ; the shadowed and white regions represent deforma-
tion conditions for DRX occurrence and where no recrystallisation is favourable,
respectively. The experimental measurements were directly measured from the
stress–strain curves where softening eventually occurs. These conclusions where
confirmed by direct microstructural observation. The filled dots represent the ex-
periments where recrystallisation takes places, and the white dots represent the
experiments where only dynamic recovery occurs. The data for these steels were
obtained from [265, 266] with grain sizes in the range of 18-60 µm. For Figure
7.11(a), Cu, Al and Ni effects (as substitutionals) were also added. The model
shows good results with respect to the experimental data in Fig 7.11(a), except at
1223 K and 10−1, where it predicts DRX occurrence, whereas experiment shows
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only DRV at these conditions. This discrepancy can be due to the presence NbC
in the specimen, effect not incorporated in the model. For the steel with no Nb
(Fig. 7.11(b)), the model shows good results with respect to the experimental
measurements.
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Figure 7.11: Dynamic recrystallisation maps for low alloy steels with compositions (a)

0.084C-1.049Mn-0.026Nb-0.19Si-0.019Cr-0.003Ti (wt%) and (b) 0.092C-0.45Mn-0Nb-0.19Si-

0Cr-0.001Ti (wt%); the experimental data were obtained from [265] and [266], respectively.

(c) Transition map for the occurrence of dynamic recrystallisation for different carbon con-

centrations. (d) Dynamic recrystallisation incubation strain ε∗DRX predictions at different

temperatures and strain rates and their comparison with experimental results obtained from

[267, 268, 269].

This theory can be used to predict and design for austenite recrystallisation by
varying composition. To illustrate this, Figure 7.11(c) shows the DRX transition
maps for three hypothetical grades with compositions 0.002C-2Mn, 0.020C-2Mn
and 0.200C-2Mn to observe the carbon effect on recrystallisation kinetics. A
stronger effect of carbon variation can be observed (with respect to substitutional
atoms), as there is an increase in the recrystallisation temperature of ∼30 ◦C if
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0.018wt % of carbon is increased (with respect to 0.002C-2Mn) and a further
∼75 ◦C if 0.18 wt% of carbon is included in the steel. Figure 7.11(d) shows the
critical strain for grain nucleation (ε∗DRX) predictions at different temperatures
and strain rates, and their comparison with experimental data for two steels,
obtained from [267, 268]. The model shows good agreement at temperatures
between 1150 and 1275 K, however temperature variation shows a lower rate
with respect to the experimental measurements. It is worth noting that the
model predicts the strain where grain nucleation occurs, however grain embryos
can be small to be directly observed.

7.6 Combined effects: Twinning induced plastic-
ity of high Mn steels

7.6.1 Model

High manganese steels with low stacking fault energies present a high dislocation
dissociation rate. Similar to hexagonal metals (Chapter 5), the pile–up of dislo-
cations leads twin formation (by dislocation dissociation) as deformation evolves,
increasing the work hardening rate via additional dislocation generation. This
term contains a delay due to a strain required for twin nucleation γ∗T .
TWIP steels present a combined effect of solid solution and twinning induced
plasticity in the dislocation generation term. Items (A), (B) (C) for dislocation
generation are present in the Kocks–Mecking equation (equation 2.30)[79]:

dρ+[γ]

dγ
=

1

b

(
1

Λdis
+

1

ΛT
+

1

ΛSS

)
. (7.36)

The formation and distribution of twins depends on piling–up enough dislocations
to reach a critical strain for dissociation [270, 12]. Similar to HCP metals, ΛT is
considered to be proportional to the average dislocation spacing once the critical
strain for twin nucleation occurs (equation 5.18) [79]. Then Λ−1

T becomes:

1

ΛT
=
kT

l
= kT

√
ρ[γ − γ∗T ], (7.37)

where kT and γ∗T are constants related to the material, stacking fault energy and
deformation conditions. The previous term is present when γ ≥ γ∗T .
On the other hand, Λ−1

SS = Λ−1
subs+ Λ−1

inter accounts the hardening effect of substi-
tutional (Mn) and interstitial (C) atoms. The former is depicted in equation 7.3
with ΦSSb

3 = xMn, where xMn is the atomic concentration of manganese. On the
other hand, as twins are considered to be a dislocation arrangement, interstitials
also affect ΛT . Thus, following Section 7.2.2, Λ−1

inter is equal to the probability of
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encountering a carbon atom Pinter on a slip direction, multiplied by the inverse
dislocation mean free path in the pure material and the average twin thickness
(equation 7.5):

Λ−1
inter = Pinter(Λ

−1
dis + Λ−1

T ) = x
1/3
C

(
k1

√
ρ[γ] + kT

√
ρ[γ − γ∗T ]

)
. (7.38)

Combining the previous expressions, the evolution equation for TWIP steels be-
comes:

dρ[γ]

dγ
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1

b
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1

Λdis
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1

Λinter
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1
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− fsolDRV ρ[γ]

=
1

b

(
(1 + x

1/3
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(7.39)

with

kSS =
xMn

16, 000
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(7.40)

where a vacancy migration energy Em was assumed equal to 1.2 eV. In order to
avoid vacancy annihilation contributions, δ = 0 is set in equation 7.16. kT and
γ∗T can be obtained by performing a similar analysis shown in Chapter 5, for twin
nucleation and growth at different temperatures and strain rates. However, the
aim of this section is to show that the theory can combine twinning and solute
atom effects in the same formulation at room temperature. Linear relationships
are found for (low) carbon and (high) manganese effects in Section 7.6.2.

7.6.2 Results

The model is employed to describe the flow stress response in TWIP steels for dif-
ferent carbon and manganese concentration, by obtaining the dislocation density
from equation 7.39 and employing the Taylor equation: σ = σY +αMµb

√
ρ. The

physical parameters employed in the model were obtained from the literature;
µ = 65 GPa was obtained from [12]; ρa, wa, c were taken equal to those for pure
iron [227]. ∆Gsys = −8.4 kJ/mol was obtained from Thermocalc; due to its low
value, it was considered constant for different chemical compositions. Table 7.6
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shows the carbon and manganese concentration for the tested steels, and their
respective stacking fault energy and σY values; they were obtained from [271].

Table 7.6: Stacking fault energy and σY for different chemical composition. Val-
ues obtained from [271].

C (wt%) Mn (wt%) χ (mJ/m2) σY (MPa)
0 30 34 150

0.5 30 42 275
1 30 49 325

0.6 22 37 250
1.2 22 49 370
0.95 17 42 420
1.2 12 47 450

Table 7.7 shows the fitted values of kT and γT for different carbon and manganese
composition. These parameters show linear dependence in the carbon and man-

ganese concentration per unit length (x
1/3
C ) and volume (xMn), respectively; no

additional functional relations are required.

Table 7.7: Model parameters
Parameter Fitted formula

kT 0.08(x
1/3
C + xMn − 0.35)

γ∗T 1.75(xMn − 0.044)

Figure 7.12 shows the model results for different concentrations and their com-
parison with the experimental curves obtained from the literature [272, 271, 12];
tensile tests were performed at room temperature and an average strain rate of
ε̇ = 10−3 s−1. The model results show good agreement in the work hardening
rate for different chemical compositions. Moreover, for the Fe30Mn steel, no de-
formation twinning is observed [271], and cellular structures are formed, whereas
the value of kT ≈ 0. For the case of the Fe17Mn0.95C and Fe12Mn1.2C steels,
the model shows a lower work hardening rate with respect to the experiments;
this effect can be due to the transition to stage IV, which has been neglected.
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Figure 7.12: Stress-strain response in TWIP steels for different carbon and manganese com-

position at room temperature.

7.7 Discussion

This chapter incorporates effects of substitutional and interstitial atoms on dis-
location evolution and kinetics. Substitutional atoms induce isotropic distortion
in the lattice, which interactions with dislocations depend on their spatial ar-
rangement. The free energy of the mixture is taken to account for the interaction
induced by the possible solute atom arrangements in the alloy. This is included in
the activation energy for dislocation annihilation (equation 7.12), and for grain
growth during recrystallisation (equation 7.18), as well as in the energy bal-
ance for grain nucleation (equation 7.24). Additional number of microstates are
also considered to account for the velocity reduction when dislocations encounter
substitutional atoms, increasing the number of possible dislocation glide configu-
rations; this is obtained by scaling the number of microstates in the pure material
by the possible solute arrangements in the lattice. On the other hand, interstitial
atoms induce an additional dislocation generation term to account for dislocation
pinning around interstitials; it equals the fraction of dislocations pinning intersti-
tials and it is proportional to the inverse dislocation mean free path. Pinning also



CHAPTER 7 APPLICATION TO MULTICOMPONENT METALS 144

affects dislocation kinetics through the dislocation entropy ∆Ssol (depicted in the
increase of the number of miscrotates). The additional energy barriers for grain
nucleation and growth are estimated from the grain boundary energy in relation

to segregated carbon atoms. All these terms are found to be proportional to x
1/3
C

for the range of the tested alloys. However, saturation from carbon segregation
at grain boundaries may take place at higher concentrations [273].
The effect of dilute concentrations is introduced for both generation and an-
nihilation. Same energy contributions are present for concentrated and dilute
substitutional solutions. However, linear interactions are considered instead of
volumetric effects (Table 7.4); for low concentrations, a dislocation encounters
only discrete and spread solute atoms, representing a stronger interaction effect
than for concentrated solutions; the interaction effect concentrated solutions is
dispersed by the atomic distribution in the alloy. However, transition limits from
dilute to concentrated solutions need to be defined.
Substitutional atoms add–up effects on dislocation behaviour from the pure ma-
terial, whereas interstitials multiply such effects. For instance, substitutional
atoms linearly add hardening effects in dislocation generation (equation 7.2) by
kSS
√
ρ, whereas interstitial effects multiply the dislocation generation term in

the pure material by (1 + x
1/3
C )k1

√
ρ. A similar case occurs in the number of

dislocation migration paths, as the presence of substitutionals scale the num-

ber of slip configurations in the pure material Ωpure by (1 +
∑
i x

1/3
i ) (equation

7.7), whereas carbon atoms scale Ωpure by (1 +
∑
i x

1/3
i )(1 + x

1/3
C ) (equation

7.9). These results are in good agreement with the well established relationship
that interstitial atoms interactions with dislocations have a stronger effect than
substitutional solutions [244].
The model for hot deformation was tested against experimental stress–strain
curves for 6 alloys with concentrated substitutional solutions (3 Fe– and 3 Ni–
based); and for 15 steels containing different carbon concentrations and five ele-
ments acting as substitutional atoms (Mn, Nb, Si, Cr and Ti) in dilute concen-
trations. They were compared for very wide temperature and strain rate ranges.
Boron effects on DRX were also examined. Additional elements in the form of
solid solution can be readily included in the model.
Different elemental additions induce specific mechanical response, as they modify
the alloy’s Gibbs free energy of the mixture (∆Gsys), its physical parameters (e.g.
µ, b, Ef and Em), and the solute atom concentration available for dislocation
interaction. For instance, Mo displays a higher shear modulus than Cr at high
temperatures (Appendix A), then an alloy containing Mo will offer a higher shear
modulus than if it would contain the same Cr concentration [274]. However, local
lattice distortion induced by each element is neglected for dislocation pinning
effects. This analysis can be extended in future work.
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Maps can be drawn to observe temperature, strain rate and chemical composition
effects on the favourable conditions for dynamic recrystallisation when QDRX =
0. The model results were compared against experimental observations with good
agreement for various alloys.
A combined model containing solid solution and deformation twinning effects for
TWIP steels has also been presented. The most prominent feature in the TWIP
treatment is the inclusion of a delay effect in the evolution equation, that accounts
for twin formation. Twins will form once a critical strain is achieved. The twin
growth coefficient kT and the critical strain for twin nucleation γ∗T were fitted to

observe their variation with composition. Linear relationships between x
1/3
C and

xMn were obtained. However, a more fundamental analysis is required to justify
these parameters, and to incorporate temperature and strain rate variations.
Coefficient values in the dislocation evolution equation are expressed in terms
of temperature, strain rate and composition for each studied case: concentrated
solutions, low alloy and TWIP steels are shown in equations 7.29, 7.34 and 7.40,
respectively.
Shortcomings of the theory include the description for coarse–grained microstruc-
tures only, and no grain size effect is included in recrystallisation kinetics, and
the recrystallised grain size evolution. Also the presence of additional microstruc-
tural features such as Nb and Ti carbides that significantly alter recrystallisation
kinetics is not described. This may require the introduction of an additional en-
ergy term in the activation energy for grain growth (equation 7.18) to account
for this effect. Additional modifications on interstitial atom effects for body–
centered cubic alloys may be included, as their interactions with dislocations are
no longer isotropic and their solubility is severely reduced; a stronger interaction
takes place in the dominant direction of a dislocation strain field [244]. For con-
centrated solutions, the vacancy formation and migration energies were fitted,
however these may differ from the real values, as additional dilute elements were
neglected.
Although two parameters are fitted in the model, λ = 0.6 and λSS = 16000, they
remain constant for all tested alloys. For the former, a justification of this value
was presented in the previous chapter.

7.8 Conclusions

Multicomponent effects in deformation of FCC metals are introduced via several
contributions:

1. The dislocation mean free path (equations 7.2 and 7.36), which otherwise
would only be altered by the presence of the dislocation forest and the
formation of subgrains, grains or twins.
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2. The number of microstates for dislocation slip (equation 7.6), as solute
atoms in the crystal structure increase the number of thermally activated
paths available to dislocation segments.

3. The energy barrier for dislocation annihilation (equation 7.12). The pres-
ence of solute alters the work required for the dislocation line to migrate
towards an annihilation event.

4. The energy barrier to drive grain growth (equation 7.18). This is increased
by solute-drag effect on the subgrain boundaries, retarding dynamic recrys-
tallisation occurrence.

5. The strain required to initiate dynamic recrystallisation (equation 7.25), as
solute-drag effects alter the mobility of the recrystallisation front.

6. Physical parameters governing plasticity (equation 7.27), such as the mag-
nitude of the Burgers vector, the speed of sound in the material, its density
and shear modulus among others.

The present unified approach describes stages II, III and IV of deformation. The
latter can be substituted by dynamic recrystallisation when it becomes energet-
ically favourable at high temperatures. The average dislocation cell size is also
recovered. Work hardening in TWIP steels is predicted various compositions.
Notwithstanding its relatively simple analytical form, this theory successfully de-
scribes the hot deformation of Ni30Fe, Ni21Cr, Fe30Ni, Fe18Cr8Ni, Fe25Cr20Ni,
Ni21Cr8Mo3Nb, and 15 low alloy steels with composition variations in 7 different
elements in solid solution (C, Mn, Nb, Si, Cr, Ti and B). It has been demon-
strated that the design of alloys for tailored dynamic recrystallisation behaviour
is possible under such formulation. The only fitting parameters are λ = 0.6
(equation 6.6) and λSS = 16000 (equation 7.3). These parameters are employed
in all calculations, for both unary and multicomponent systems and for all sys-
tems considered in this thesis. The rest are physical parameters that can be
directly measured from experiments, such as shear modulus, melting point and
yield stress; the vacancy formation and migration energy, and the stacking fault
energy can be obtained from atomistic or first principles approaches.



Summary

Dislocation evolution and interaction with other crystal defects during plastic de-
formation is central to determine mechanical properties for metallic alloys. Engi-
neering alloys often display an elaborate composition and/or thermal processing
schedules. Their ability to withstand loads stems from the interactions between
crystal defects with the microstructure. Determining dislocation population and
kinematic behaviour along with interactions with other crystal defects is central
to this problem. Developing theoretical tools for describing such interactions in
terms of composition and loading conditions can be crucial for designing alloys.
The objective of this thesis has been to present a theory for dislocation evolution
based on statistical thermodynamics. The dislocation entropy ∆S is proposed
to incorporate the possible velocities for dislocation motion. Plastic deformation
is a highly dissipative process; over 90% of the energy needed to impose plastic
deformation is dissipated in the form of heat [31]. This study is focused on
providing succinct expressions for the average dislocation density evolution in
terms of physical parameters and loading conditions. Plastic deformation and
flow stress evolution in FCC, BCC and HCP metals are described along with
their concomitant deformation mechanisms.
Chapter 1 introduces the main deformation mechanisms in metals being covered
in this work; dislocations are shown to have specific contributions for each case:
1) deformation by slip is caused by accumulation and slip of dislocations to ac-
commodate strain. 2) Deformation twinning occurs when dislocations encounter
each other, creating self–barriers for the continuation of gliding; stress accumu-
lation arise around them, inducing dislocation dissociation and twin boundary
nucleation, reducing the strain energy around them; twins grow as strain evolves,
inducing additional dislocation generation. 3) Grain boundary sliding occurs in
ultra–fine–grain materials where adjacent grains displace with respect to each
other to continuously accommodate strain. Intragranular movement of disloca-
tions facilitates grain boundary displacement. This process allows materials to
reach high tensile elongations, ranging from 200 up to a few thousand percent
before failure.

147
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In Chapter 2, basic dislocation concepts are introduced; the dislocation ar-
rangements that are relevant for this work are presented, such as dislocation
cells, tilt boundaries and nanotwins. The formation entropy of a dislocation
and thermodynamic principles of dislocations are discussed; preliminary motiva-
tion for employing statistical thermodynamics to describe dislocation mobility is
depicted. This section is followed by presenting some of the most common mod-
elling techniques for describing plastic deformation and dislocation behaviour at
various scales. A special emphasis is made on the Kocks–Mecking equation; this
formulation characterises the dislocation population evolution with strain; it is
demonstrated in this thesis that this equation can be applied to describe mul-
tiscale plasticity under various scenarios, by employing the average dislocation
density evolution. However, an additional ingredient is required to predict dislo-
cation population: to describe dislocation kinetics in terms of composition and
loading conditions.
Quantitative understanding of dislocation motion is essential to describe plastic-
ity in crystalline materials. Dislocation mobility controls the materials ability to
accommodate strain and modify its microstructure. In Chapter 3 a thermo-
statistical framework is derived for describing dislocation kinetics and estimating
the energy loss due to different velocity distributions of a dislocation, instead of
describing its instantaneous velocity at every moment. In this chapter, the theory
is initially defined for pure FCC metals.
The statistical entropy ∆S associated to the energetically favourable dislocation
paths during deformation is introduced. A microstate (specific dislocation config-
uration) is defined as the specific velocity a dislocation will have during a time in-
terval6. A total number of microstates Ωdis for the total number of dislocation ve-
locity configurations is obtained. At high temperatures, the vacancy–dislocation
interaction becomes dominant, increasing the possibilities for dislocation migra-
tion paths via vacancy–assisted dislocation climb, and consequently additional
number of microstates are incorporated (Ωv−d). This gives a total number of
possible configurations for slip and climb to be equal to Ω = Ωdis+ Ωv−d. Statis-
tical thermodynamics can be applied to describe plasticity, as only average atomic
displacements (expressed in terms of a dislocation’s average velocity) are consid-
ered. Moreover, the speed of sound c limits the number of possible dislocation
configurations [29, 5].
The transition between low to intermediate (T0), and intermediate to high tem-
perature (Tf ) dislocation annihilation regimes are delimited by transitions in the
number of microstates. This is obtained by comparing Ωdis and Ωv−d; at low
temperatures dislocation slip/cross–slip dominates dislocation annihilation, and
Ωdis displays the highest values; at high temperatures, vacancy–assisted disloca-

6To be consistent with classical statistical thermodynamics concepts, the analysis is defined
in terms of atom displacements. They are directly related to the dislocation velocity.
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tion climb prevails, and Ωv−d dominates; at medium temperatures, a mixture of
slip/cross-slip and climb is present, as Ωdis and Ωv−d have the same order of mag-
nitude. The transition limits T0 and Tf are initially validated for FCC metals,
and later confirmed for BCC and HCP metals in Chapter 4 and 5, respectively.
This thermostatistical framework is applied to obtain an expression for the dy-
namic recovery term in the Kocks–Mecking equation. A thermodynamic analysis
on an annihilating dislocation segment is performed to determine the energy
barrier for dislocation annihilation 〈∆G〉. It is composed by (1) a dislocation
formation energy term, approximated by the strain energy around the annihilat-
ing segment; (2) a migration energy term, which is proportional to the critical
resolved shear stress to ignite slip; (3) a vacancy energy contribution to disloca-
tion annihilation at higher temperatures (via dislocation climb), induced by the
vacancy chemical work around the segment; and (4) a statistical entropy con-
tribution T∆S. Beyond a certain strain, dislocations start to interact as their
strain fields screen each other, inducing additional number of configurations Ωimp
in ∆S.
The average dislocation cell size is obtained by performing an energy balance
between the dislocation forest and the cellular structure formation, expressing
the slip energy required for cell formation in terms of T∆S. The Young–Laplace
equation is applied to obtain the cell misorientation angle at stages III and IV
of deformation. This equation is also applied to obtain an expression for the
dislocation density evolution at stage IV. The model reproduces experimental
saturation stress, stress–strain relationships, and average cell size and misorien-
tation evolution at wide temperature ranges for pure FCC metals at a variety
of strain rates. The same set of input physical parameters are employed for all
cases.
Chapter 4 extends the theory for describing plastic deformation to BCC met-
als. The distinctions between FCC and BCC stem primarily from the possible
directions and planes for dislocation slip and cross–slip, as well as from the oc-
currence of the kink–pair mechanism for dislocation migration in BCC, which
are incorporated to the mathematical formulation of the model. The motion of
a dislocation in a BCC metal is composed of the migration of two thermally
activated kinks; this behaviour induces a double kinetic effect for a dislocation
to slip, i.e. the total number of microstates Ω is squared. The model describes
the stress–strain response for pure iron, molybdenum, tantalum, vanadium and
tungsten, employing physical parameters as input; the description is made for
wide ranges of temperature and strain rate. Additionally, succinct equations to
predict dislocation cell size variation with strain, strain rate and temperature are
provided and validated for pure iron.
Deformation twinning in HCP metals is described in Chapter 5. A dislocation
generation term Λ−1

T accounting for twin propagation is added to the Kocks–
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Mecking equation, where Λ−1
T is the inverse average twin spacing. This term

becomes active once a critical strain γ∗T for twin nucleation is reached. γ∗T is
obtained by performing a balance between the dislocation forest, and the twin
formation and propagation energies; these terms are reduced by the dissipation
effects from dislocation slip. Additional dislocation storage drives further twin
growth; the corresponding driving force accounts for the additional number of
stored dislocations at twin boundaries increasing local stress concentrations; Λ−1

T

is obtained from this balance. The energy dissipated during twin formation and
growth is quantified as T∆S. Deformation by dislocation slip, at strains below
twin nucleation occurs, is described by the theory for FCC metals previously
derived in Chapter 3. The model describes work hardening and twin volume
fraction behaviour of Ti, Zr and Mg for various temperature and orientation
conditions. The transition temperatures where tensile or compressive twin modes
are dominant are also prescribed.
Extension of the theory to describe dislocation evolution in FCC metals undergo-
ing dynamic recrystallisation is presented in Chapter 6. An additional softening
effect fDRXρDRX in the Kocks–Mecking equation is incorporated, where fDRX
is the dynamic recrystallisation coefficient, and ρDRX is the dislocation density
inside the growing grains; this term becomes active once a critical strain for grain
nucleation is achieved. fDRX is directly related to the energy barrier QDRX for
grain growth. QDRX is composed by the competition between the boundary
displacement energy, acting as driving force for grain boundary motion, and the
strain energy (at grain boundaries) once high–angle grain boundaries form. The
boundary displacement energy is shown to be proportional to T∆S. With this
approximation, the use of the grain boundary mobility concept can be circum-
vented, and mobility fitting parameters are not required. The theory reproduces
the stress oscillations with strain and its values when steady state is approached;
and captures well the temperature–strain rate dependency of dynamic recrystalli-
sation. This allows to map the conditions under which dynamic recrystallisation
occurs. The model results are successfully validated with data for Cu and Ni.
The same set of experimentally determined physical parameters used in Chapter
3 is successfully employed in the recrystallisation model validation.
In Chapter 7, multicomponent effects are incorporated to the theory to account
for solid solution strengthening, recrystallisation, and twinning induced plasticity
effects. Dislocation pinning around solute atoms induces equivalent dislocation
generation terms in the Kocks–Mecking equation (Λ−1

SS) to account for this effect.
Moreover, the dislocation average velocity is also reduced by pinning around
solute atoms, and additional dislocation configurations are incorporated into Ω to
account for the presence of substitutional (Ωsubs) and interstitial (Ωinter) atoms.
Finally, additional energy barriers are incorporated into 〈∆G〉 and QDRX .
Concentrated–solution effects are initially considered in the hot deformation of



SUMMARY 151

Ni30Fe, Ni21Cr, Fe30Ni, Fe18Cr8Ni, Fe25Cr20Ni and Ni21Cr8Mo3Nb. The
model is later extended to describe dilute concentrations of substitutional and in-
terstitial atoms; hot deformation of 15 low alloy steels is described for wide ranges
in composition, temperature and strain rates. Maps for dynamic recrystallisation
occurrence are defined in terms of temperature, strain rate and composition. In-
put to the model are only physical parameters and thermodynamic information
from well accepted databases.
The description of work hardening of twinning–induced–plasticity steels for dif-
ferent C and Mn concentrations at room temperature is also made by combining
twinning (Λ−1

T ) and solid solution contributions (Λ−1
SS) in dislocation generation.

The dislocation entropy allows to define a “modular” approach for describing
dislocation evolution under various scenarios as 1) the number of possible dislo-
cation paths; 2) the barriers for the activation energies for dislocation annihilation
〈∆G〉 and for grain growth QDRX ; and 3) dislocation generation sources are mod-
ified when various crystal defects are present. The latter has been schematically
introduced in the Kocks–Mecking equation previously [94]. However, specific
expressions for each case are described in this thesis.
By employing the notation ⊥ for dislocations, ø for vacancies, ⊕ for substitu-
tional atoms and � for interstitial atoms, and by employing the notation ⊥·i to
denote the interaction of a dislocation with an i−defect, where i = ø,⊕,�, Table
S.1 schematically shows the contribution of other crystal defects to dislocation
population and kinetics for several systems. It is worth noting that Ω⊥·⊥, Ω⊥·ø
and Ω⊥·⊥ ·Ω⊥·ø, schematically represent Ωdis, Ωv−d and Ωdis+Ωv−d respectively;
in 〈∆G〉, the dislocation formation and migration energies are schematically rep-
resented by U⊥·⊥ = Uform + Umig, whereas the energy terms for QDRX are dis-
played with inverse signs (to preserve symmetry, see equation 7.18), and EHAGB
is schematically represented by U⊥·⊥ = EHAGB . Case 1 shows that when (single
crystal) pure metals are deformed at low temperatures (T < T0), the number of
microstates and energy barrier contributions are given by dislocation behaviour
only, also QDRX = 0; a Ni30Fe alloy being deformed at higher temperatures
(T > T0) is shown in Case 2, where dislocation interactions with vacancies and
substitutional atoms take place (no vacancy contribution to dislocation genera-
tion is considered); Case 3 presents a low alloy steel deformed at high temper-
atures (T > Tf ), where vacancies, substitutional and interstitial atoms modify
dislocation behaviour. This modular approach is validated by describing plastic
deformation and dislocation evolution in several materials, including pure metals
and alloys.
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Table S.1: Schematic representation of the modular effects in the number of
dislocation migration paths and energy barriers for various materials deformed
at different temperatures.

Case Material Def. Temp. Microstates
1 Pure metal T < T0 Ω⊥·⊥
2 Ni30Fe T > T0 Ω⊥·⊥ · Ω⊥·ø · Ω⊥·⊕
3 Low alloy steel T > Tf Ω⊥·⊥ · Ω⊥·ø · Ω⊥·⊕ · Ω⊥·�
4 Ni superalloy T > Tf Ω⊥·⊥ · Ω⊥·ø · Ω⊥·⊕ · Ω⊥·� · Ω⊥·�

Case Material Def. Temp. Barriers in 〈∆G〉 and QDRX
1 Pure metal T < T0 U⊥·⊥ − T∆S
2 Ni30Fe T > T0 U⊥·⊥ + U⊥·ø + U⊥·⊕ − T∆S
3 Low alloy steel T > Tf U⊥·⊥ + U⊥·ø + U⊥·⊕ + U⊥·� − T∆S
4 Ni superalloy T > Tf U⊥·⊥ + U⊥·ø + U⊥·⊕ + U⊥·� + U⊥·� − T∆S

Case Material Def. Temp. Dislocation generation

1 Pure metal T < T0 Λ−1
⊥·⊥

2 Ni30Fe T > T0 Λ−1
⊥·⊥ + Λ−1

⊥·⊕
3 Low alloy steel T > Tf Λ−1

⊥·⊥ + Λ−1
⊥·ø + Λ−1

⊥·⊕ + Λ−1
⊥·�

4 Ni superalloy T > Tf Λ−1
⊥·⊥ + Λ−1

⊥·ø + Λ−1
⊥·⊕ + Λ−1

⊥·� + Λ−1
⊥·�

This table illustrates where different microstructural features alter dislocation
behaviour. Furthermore, it schematically shows how additional features, such as
precipitates, compounds and grain boundaries, can be introduced in the theory
in future work. For instance, by employing the notation �, Case 4 in Table S.1
hypothetically shows that additional configurational effects (Ω⊥·�) and barriers
on 〈∆G〉 and QDRX (U⊥·�) can be introduced in the model for a (coarse–grained)
Ni–based superalloy deformed at high temperatures (T > Tf ), where intermetal-
lic precipitates induce dislocation–pinning around them, along with vacancy–
assisted climb and substitutional atom interactions; Λ⊥·� and Ω⊥·� may have a
dominant contribution to the alloy’s strength with respect to other terms [27].
However, this case has yet to be validated and the previous terms need to be
identified. A case for grain boundary strengthening in Fe has been developed in
previous work [274].
Configurational entropy effects for dislocation nucleation were initially derived
by Cottrell [29]; this was done by accounting for the possible locations of a
dislocation in the crystal lattice when it is nucleated (equation 2.10). This work
has gone one step further, as the possible configurations for dislocations slip
during strain are obtained. This theory not only allows to describe dislocation
spatial arrangements, e.g. forest density, cells and twins; but (via the strain rate)
it also incorporates their evolution during time.
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Possible directions in future work are: 1) to incorporate additional microstruc-
tural features at high temperatures. For instance, Nb and Ti carbides in Low
alloy steels delay dynamic recrystallization occurrence, inducing additional barri-
ers for grain nucleation and growth. Intermetallic precipitates in polycrystalline
Ni–based alloys increase their strength at high temperatures, inducing an addi-
tional generation term and barriers in dislocation annihilation and grain growth.
2) To describe the average grain size evolution when dynamic recrystallisation oc-
curs and the recrystallised volume fraction, as these are important variables when
designing new alloys; to modify the theory for intermediate and high carbon con-
centration effects in low alloy steels, where segregation saturation occurs at grain
boundaries. 3) To combine this framework with other modelling techniques, such
as crystal plasticity and finite element method, to describe microstructure spatial
arrangements, and characterise orientation and texture distributions for differ-
ent composition and processing conditions. 4) To extend the theory for static
recovery and recrystallisation (strain is fixed); the theory has to be modified, as
time (instead of strain) is the variable modifying the dislocation population and
kinematic behaviour; the Kocks–Mecking equation is no longer valid and a new
equation is required. Moreover, a microstate is defined for a fixed time inter-
val, the thermostatistical formalism then may be modified to account for time
increment for a fixed strain.
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Samenvatting

Inzicht in het dislocatieverloop en de interactie met andere kristaldefecten tijdens
plastische deformatie is onontbeerlijk voor het bepalen van mechanische eigen-
schappen voor metallische legeringen. Technische legeringen hebben vaak een
complexe samenstelling en ondergaan veelal een complexe warmtebehandeling.
Hun vermogen om mechanische belasting te weerstaan wordt bepaald door de
interacties tussen kristaldefecten en de microstructuur. Het bepalen van de dis-
locatiepopulatie en het kinematisch gedrag samen met de interacties met andere
kristaldefecten is centraal voor dit probleem. Het ontwikkelen van theorie voor
het beschrijven van zulke interacties in termen van samenstelling en mechanis-
che belasting kan zeer belangrijk zijn voor het ontwerpen van legeringen. Het
doel van dit proefschrift is om een theorie voor het verloop van de dislocaties,
die gebaseerd is op statische thermodynamica, op te stellen. We stellen dat
de dislocatieentropie ∆S de mogelijke snelheden voor dislocatiebeweging bevat.
Plastische vervorming is een zeer dissipatief proces; meer dan 90 % van de energie
nodig om plastische vervorming wordt gedissipeerd in warmte [31]. Deze studie
richt zich op het verstrekken van beknopte uitdrukkingen voor de gemiddelde dis-
locatiedichtheid als functie van fysische parameters en belasting. De plastische
vervorming en het vloeispanningsverloop in FCC, BCC en HCP metalen worden
beschreven met hun gelijktijdige vervormingsmechanismen.
Hoofdstuk 1 voert de belangrijkste vervormingsmechanismen in voor de met-
alen die hier behandeld worden; we laten zien dat dislocaties bepaalde bijdragen
hebben voor ieder geval: 1) glijvervorming wordt veroorzaakt door opéénhoping
en het glijden van dislocaties om de rek tegemoet te komen. 2) Vervormingstwin-
ning treedt op als dislocaties elkaar tegenkomen, waarbij ze zelf–barrieres voor het
vervolg van het glijden vormen; eromheen onstaat spanningsophoping, waarbij ze
aanleiding tot dislocatiedissociatie en tweelingsrandnucleatie geven, de rekenergie
eromheen verlagen; tweelingen groeien als de rek zich ontwikkelt, waarbij ze extra
dislocaties aanmaken. 3) Het glijden van korrelgrenzen vindt plaats in materialen
met ultra–fijne korrels waar naburige korrels zich verplaatsen ten opzichte van
elkaar om steeds de rek tegemoet te komen. Intragranulaire beweging van dislo-
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caties vergemakkelijkt verplaatsing van korrelgrenzen. Dit proces laat materialen
hoog rekbare verlenging te bereiken, met waarden van 200 tot een paar duizend
procent voordat falen optreedt.
In hoofdstuk 2 worden basis dislocatie concepten ingevoerd; de
dislocatierangschikkingen die belangrijk zijn voor dit werk, zoals dislocatiecellen,
gekantelde randen en nanotwins, worden ingevoerd. De vervormingsentropie van
een dislocatie en thermodynamische principes van dislocaties worden besproken;
een voorlopige motivatie voor het gebruik van statische thermodynamica om dis-
locatiemobiliteit te beschrijven wordt geschetst. Deze sectie wordt gevolgd door
het beschrijven van de meest gangbare modelleertechnieken om plastische defor-
matie en dislocatiegedrag te simuleren. De nadruk wordt gelegd op de Kocks–
Mecking vergelijking; deze formulering karakteriseert de dislocatie populatiedy-
namica met de rek; er wordt in dit proefschrift aangetoond dat deze vergelijk-
ing gebruikt kan worden om plasticiteit onder verschillende omstandigheden op
meerdere schalen te beschrijven door het gebruik van het verloop van de gemid-
delde dislocatiedichtheid te gebruiken. Een extra ingredient is echter vereist
om de dislocatie populatie te voorspellen: om dislocatiekinetiek in termen van
samenstelling en mechanische belasting te beschrijven. Kwantitatief begrip van
de beweging van dislocaties is van belang om plasticiteit in kristallijne materi-
alen te beschrijven. De mobiliteit van dislocaties bepaalt het vermogen van het
materiaal om rek te ondergaan en zijn microstructuur aan te passen. In hoofd-
stuk 3 wordt een thermodynamisch raamwerk afgeleid voor het beschrijven van
de dislocatiekinetiek en het energieverlies ten gevolge van verschillende snelhei-
dsverdelingen van een dislocatie te schatten, in plaats van de instantane snelheid
op ieder tijdstip te beschrijven. In dit hoofdstuk, wordt de theorie eerst ingevoerd
voor zuivere FCC metalen.
De statistische entropie ∆S, die bij de energetisch voordelige dislocatiepaden
tijdens vervorming hoort, wordt ingevoerd. Een microstate (specifieke dislo-
catieconfiguratie) wordt gedefinieerd als de specifieke snelheid van een dislo-
catie in een tijdsinterval7. Een totaal aantal microstates Ωdis voor het totale
aantal dislocatie snelheidsconfiguraties wordt verkregen. Op hoge temperatuur
wordt de vacature–dislocatie interactie belangrijk, wat het aantal mogelijkhe-
den voor dislocatiemigratiepaden met dislocatieklim behulp van vacatures ver-
meerdert, en daarmee wordt een extra aantal microstates opgenomen (Ωv−d).
Dit geeft een totaal aantal mogelijke configuraties voor slip en klim dat gelijk is
aan Ω = Ωdis+Ωv−d. Statistische thermodynamica kan worden gebruikt om plas-
ticiteit te beschrijven, als enkelt gemiddelde atomaire verplaatsingen (uitgedrukt
in de gemiddelde snelheid van een dislocatie) beschouwd worden. Bovendien

7Om consistent met het jargon van de klassieke statistische thermodynamische te zijn, wordt
de analyse gedefinieerd in termen van atomaire verplaatsingen. Deze zijn direct gerelateerd aan
de dislocatiesnelheid.
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beperkt de geluidssnelheid c het aantal mogelijke dislocatieconfiguraties [29, 5].
In de overgang tussen laag tot middelhoge (T0), en middelhoge tot hoge temper-
atuur (Tf ), worden de dislocatievernietigingsregimes afgebakend door overgangen
in het aantal microstates. Deze worden verkregen door het vergelijken van Ωdis en
Ωv−d; op lage temperatuur bepaalt dislocatie slip/cross–slip de vernietiging van
dislocaties, en Ωdis laat de hoogste waarden zien; op hoge temperatuur overheerst
dislocatieklim middels vacatures en Ωv−d domineert dan; op middelhoge temper-
aturen is een mengsel van slip/cross–slip aanwezig daar Ωdis en Ωv−d dezelfde
grootte–orde hebben. De overgangslimieten T0 en Tf worden eerst gevalideerd
voor FCC metalen, en later achtereenvolgens bevestigd voor BCC en HCP met-
alen in hoofdstukken 4 en 5. Dit thermostatistische raamwerk wordt gebruikt
om een uitdrukking te krijgen voor de dynamische herstelterm in de Kocks–
Mecking vergelijking. Een thermodynamische analyse aan een ternietdoenend
dislocatiesegment is uitgevoerd om de energiebarriere voor dislocatievernietiging
〈∆G〉 te bepalen. Deze bestaat uit (1) een dislocatie energieterm, die benaderd
wordt door de rekenergie rond het tenietdoende segment; (2) een migratie energi-
eterm, die evenredig is met de kritische afschuifspanning nodig om slip te bewerk-
stelligen; (3) een vacature energiebijdrage voor dislocatievernietiging op hogere
temperatuur (via dislocatieklim), bewerkstelligd door de vacature chemische ar-
beid rond het segment; en (4) een statistische entropiebijdrage T∆S. Boven een
bepaalde rek beginnen dislocaties op elkaar in te werken als hun rekvelden elkaar
voelen, daarmee wordt een extra aantal configuraties Ωimp in ∆S opgeleverd.
De gemiddelde celgrootte van dislocaties wordt verkregen door de energiebalans
tussen de dislocaties en de formatie van de celstructuur op te stellen, en door de
vereiste slipenergie voor celformatie uit te drukken in T∆S. De Young–Laplace
vergelijking wordt gebruikt om de cel misorientatie–hoek op stadia III en IV
van deformatie te verkrijgen. Deze vergelijking wordt ook gebruikt om een uit-
drukking te krijgen voor het verloop van de dislocatiedichtheid in stadium IV.
Het model reproduceert de experimentele verzadigingsspanning, spanning–rek
relaties, gemiddelde celgrootte en het misorientatieverloop voor een groot tem-
peratuurbereik voor zuivere FCC metalen in een wijd spectrum van reksnelheden.
Dezelfde set invoerparameters wordt gebruikt in alle gevallen.
Hoofdstuk 4 breidt de theorie voor plastische vervorming uit naar BCC met-
alen. De verschillen tussen FCC en BCC stammen in de eerste plaats af van
mogelijke richtingen en vlakken voor dislocatieslip en cross–slip, alsmede van de
aanwezigheid van het kink–pair mechanisme voor dislocatiemigratie in BCC, die
meegenomen zijn in het wiskundige model. De beweging van een dislocatie in
een BCC metaal bestaat uit de migratie van twee thermisch geactiveerde kinks;
dit gedrag levert een dubbel kinetisch effect voor een dislocatie aan de slip op,
ofwel het kwadraat van het totale aantal microstates Ω. Het model beschrijft
de spannings–rek gedrag voor zuiver ijzer, molybdenum, tantalum, vanadium
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en wolfraam, waarbij van natuurkundige parameters als invoer gebruikgemaakt
wordt; de beschrijving is gemaakt voor een groot temperatuurbereik en een groot
bereik van de reksnelheid. Verder worden er eenvoudige vergelijkingen om de
dislocatie celgroottevariatie met de rek, reksnelheid en temperatuur gegeven en
gevalideerd voor zuiver ijzer.
De vervormingstwinning in HCP metalen wordt beschreven in hoofdstuk 5. Een
dislocatie–aanmaakterm Λ−1

T voor twinpropagatie wordt toegevoegd aan de Kocks–
Mecking vergelijking, waarin Λ−1

T de reciproke gemiddelde twin–afstand is. Deze
term speelt een rol als een kritische rek γ∗T bereikt wordt. γ∗T wordt verkre-
gen door het opstellen van een balans tussen de verzameling dislocaties en de
twin–formatie en propagatieenergieen; deze termen worden verminderd door de
dissipatieeffecten van dislocatieslip. Verdere dislocatieopslag zorgt voor verdere
twin–groei.; de ermee gerelateerde drijvende kracht geeft het extra aantal opges-
lagen dislocaties op twin–randen die de plaatselijke spanningsconcentraties doen
toenemen; γ∗T wordt uit deze balans verkregen. De gedissipeerde energie tijdens
twin–formatie en groei wordt bepaald door T∆S. Vervorming door dislocatieslip
voor rekken onder twin–nucleatie, wordt beschreven middels de eerder afgeleide
theorie voor FCC metalen uit hoofdstuk 3. Het model beschrijft work hardening
en het gedrag van de volumefractie van twins van Ti, Zr, en Mg voor verschil-
lende temperaturen en orientatie. De transitietemperaturen, waarin rekbare of
samengedrukte twin–modes overheersen, worden ook beschreven.
Uitbreiding van de theorie om het dislocatieverloop te beschrijven in FCC met-
alen die dynamische rekristallisatie ondergaan wordt gegeven in hoofdstuk 6. Een
extra verzachtingseffect fDRXρDRX wordt meegenomen in de Kocks–Mecking
vergelijking, waarin fDRX de dynamische rekristallisatie coefficient is, en ρDRX
de dislocatiedichtheid in de groeiende korrels voorstelt; deze term speelt een rol
als een kritische rek voor korrelnucleatie bereikt wordt. fDRX is direct gere-
lateerd aan de energiebarriere QDRX voor korrelgroei. QDRX bestaat uit de
competitie tussen de grensverplaatsingsenergie die een drijvende kracht voor kor-
relgrensverplaatsing is, en de rekenergie (op korrelgrenzen) als korrelgrenzen met
grote hoeken ontstaan. We tonen aan dat de grensverplaatsingsenergie evenredig
is met T∆S. Met deze benadering kan het gebruik van de korrelgrensmobiliteit
vermeden worden, en mobiliteit fitting parameters zijn dan niet nodig. De theo-
rie reproduceert de spanningsoscillaties met rek en zijn waarden wanneer de sta-
tionaire toestand benaderd wordt; en vangt de temperatuur–rek afhankelijkheid
tijdens dynamische rekristallisatie goed. Dit laat het toe om de voorwaarden
waaronder dynamische rekristallisatie optreedt in kaart te brengen. De modelre-
sultaten worden met succes gevalideerd met gegevens voor Cu en Ni. Dezelfde set
experimenteel bepaalde natuurkundige parameters die gebruikt zijn in hoofdstuk
3 wordt met vrucht gebruikt voor de validatie van het model voor rekristallisatie.
In hoofdstuk 7 worden multi–component effecten toegevoegd aan de theorie om



SAMENVATTING 159

rekening te houden met vaste–oplossing versteviging, rekristallisatie, en twin-
ning geinduceerde plasticiteit. Dislocatie–pinning rond opgeloste atomen zorgen
voor gelijkwaardige dislocatiegeneratie termen in de Kocks–Meching vergelijking
(Λ−1

SS). Bovendien vermindert de gemiddelde dislocatiesnelheid door pinning rond
opgeloste atomen, en verdere dislocatieconfiguraties worden toegevoegd aan Ω om
rekening te houden met de aanwezigheid van substitutionele (Ωsubs) en intersti-
tionele (Ωinter) atomen. Tenslotte worden verdere energiebarrieres toegevoegd
aan 〈∆G〉 en QDRX .
Geconcentreerde oplossingseffecten worden eerst beschouwd in de warmvervorm-
ing van Ni30Fe, Ni21Cr, Fe30Ni, Fe18Cr20Ni en Ni21Cr8Mo3Nb. Het model
wordt later uitgebreid om lage concentraties van substitutionele en interstitionele
atomen te beschrijven; warmvervorming van 15 laag gelegeerde stalen wordt
beschreven voor grote spreiding in samenstelling, temperatuur en reksnelheid.
Kenmerken voor het plaatsvinden van dynamische rekristallisatie worden
gedefinieerd in termen van temperatuur, reksnelheid en samenstelling. De invoer
voor het model bestaat uit louter natuurkundige parameters en thermodynamis-
che informatie van gevestigde databases.
De beschrijving van work–hardening van twinninggeinduceerde plasticiteitsstalen
voor verschillende C en Mn concentraties op kamertemperatuur wordt ook ver-
wezelijkt door combinatie van twinning (Λ−1

T ) en vasteoplossing bijdragen (Λ−1
SS)

in de vorming van dislocaties. De dislocatieentropie laat een ’modulaire’ benader-
ing definieren voor het beschrijven van het dislocatieverloop onder verschillende
scenario’s als 1) het aantal mogelijke dislocatiepaden; 2) de barrieres voor de
activeringsenergieen voor dislocatievernietiging 〈∆G〉 en voor korrelgroei QDRX ;
en 3) dislocatievormings bronnen zijn aangepast als verscheidene kristaldefecten
aanwezig zijn. Het laatste is eerder schematisch geintroduceerd in de Kocks–
Mecking vergelijking [94]. De specifieke uitdrukkingen voor ieder geval worden
in dit proefchrift gegeven.
Door gebruik van de notatie ⊥ voor dislocaties, ∅ voor dislocaties, ⊕ voor substi-
tutionele atomen en � voor interstitionele atomen, en door het gebruik van ⊥ ·i
om de interactie van een dislocatie met een i–defect, met i ∈ {∅,⊕,�}, laat Tabel
S.1 schematisch de bijdrage van andere kristaldefecten op de dislocatiepopulatie
en migratieenergie voor meerdere systemen zien. We merken op dat Ω⊥·⊥, Ω⊥·∅
en Ω⊥·⊥ Ω⊥·∅ achtereenvolgens Ωdis, Ωv−d en Ωdis + Ωv−d voorstellen; in 〈∆G〉
worden de dislocatievorming– en migratieenergieen schematisch voorgesteld door
U⊥·⊥ = Uform + Umig, terwijl de energietermen voor QDRX weergegeven wor-
den door tegengestelde tekens (om symmetrie te behouden, zie vergelijking 7.18),
verder wordt EHAGB schematisch voorgesteld door U⊥·⊥ = EHAGB . Geval 1
laat zien dat als (enkel kristal) zuivere metalen vervormd worden op lage tem-
peratuur (T < T0), het aantal microstates en energiebarriere bijdragen bepaald
worden door enkel het dislocatiegedrag, verder geldt QDRX = 0; een Ni30Fe leg-
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ering die vervormd wordt op hogere temperatuur (T > T0), wordt getoond in
geval 2, waarin dislocatiewisselwerking met vacatures en substitutionele atomen
plaatsvindt (de bijdrage van vacatures aan aanmaak van dislocaties wordt niet
meegenomen); Geval 3 laat een laag gelegeerde staal zien die vervormd wordt
op hoge temperatuur (T > Tf ), waarin de vacatures, substitutionele en inter-
stitionele atomen het dislocatiegedrag beinvloeden. Deze modulaire benadering
wordt gevalideerd door het beschrijven van plastische vervorming en het ver-
loop van de dislocaties in verscheidene metalen, waaronder zuivere metalen en
legeringen.
Deze tabel illustreert waar verschillende microstructurele kenmerken het dislo-
catiegedrag veranderen. Verder laat het zien hoe extra kenmerken, zoals pre-
cipitaten, samenstelling en korrelgrenzen, ingebed kunnen worden in de theorie
voor vervolgstudie. Bijvoorbeeld, door gebruik van de notatie �, laat geval 4
in Tabel S.1 zien hoe extra configuratieeffecten (Ω⊥·�) en barrieres voor 〈∆G〉
en QDRX (U⊥·�) ingevoerd kunnen worden in het model voor de vervorming
van een (grofkorrelig) Ni–superlegering op hoge temperatuur (T > Tf ), waarbij
intermetallische deeltjes voor dislocatiepinning eromheen zorgen, met vacature–
geassisteerde klim en substitutionele atomaire wisselwerking; Λ⊥·� en Ω⊥·Box
kunnen een overheersende bijdrage hebben aan de sterkte van de legering ten
opzichte van de andere termen [27]. Dit geval is echter nog niet gevalideerd en
de vorige termen moeten worden bezien. Een geval van korrelgrensversterking in
Fe is ontwikkeld in vroeger werk [274].
Configurationele entropieeffecten voor dislocatienucleatie werden eerst afgeleid
door Cottrell [29]; dit werd gedaan door rekening te houden met mogelijke lo-
caties voor dislocaties in het kristalrooster waarin deze ontstaan (vergelijking
2.10). Het huidige werk gaat verder in de zin dat de mogelijke configuraties voor
dislocatieslip tijdens rek verkregen zijn. Deze theorie laat niet alleen dislocatie
plaatsordeningen beschrijven, bijv. dichtheid, cellen en twins; maar beschrijft
ook hun verloop (via de reksnelheid) over de tijd.
Mogelijke richtingen voor toekomstig werk zijn: 1) het meenemen van extra mi-
crostructuurkenmerken op hoge temperatuur. Nb en Ti–carbiden in laaggelegeerd
staal vertragen bijvoorbeeld dynamische rekristallisatie, waarin extra barrieres
voor korrelnucleatie en groei worden geinduceerd. Intermetallische precipitaten
in polykristallijne Ni–legeringen verhogen de sterkte op hoge temperatuur, waar-
bij een extra term en barrieres in dislocatievernietiging en korrelgroei geinduceerd
worden. 2) Het beschrijven van het verloop van de gemiddelde korrelgrootte
en de gerekristalliseerde volumefractie tijdens dynamische rekristallisatie. Dit
zijn namelijk belangrijke grootheden voor het ontwerpen van nieuwe legeringen;
Verder kan men de theorie aanpassen voor middelhoge en hoge concentraties kool-
stofconcentratie in laaggelegeerde stalen, waarin segregratieverzadiging op kor-
relgrenzen plaatsvindt. 3) Het combineren van dit raamwerk met andere mod-
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elleertechnieken, zoals kristalplasticiteit en de eindige elementen methode om
ruimtelijke rangschikkingen te beschrijven en de orientatie en textuurverdeling
voor verschillende samenstellingen en procesomstandigheden te karakteriseren.
4) Uitbreiding van de theorie naar statisch herstel en rekristallisatie (rek is vast);
hiervoor moet de theorie worden aangepast, omdat tijd (in plaats van rek) de
grootheid is die de dislocatiepopulatie en het kinematisch gedrag beinvloedt; de
Kocks–Mecking vergelijking wordt gedefinieerd voor een vast tijdsinterval, het
thermostatistische formalisme moet dan mogelijk worden aangepast voor het ti-
jdsverloop voor een vaste rek.
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Appendix A Physical
parameters

Tables A.1, A.2, A.3 and A.4 show the physical parameter values of all metals em-
ployed in this work; unless noted otherwise, they were obtained from the literature
and their sources are indicated respectively. The yield stress and shear modulus
were fitted to analytical formulae to simplify the model calculations. It is worth
noting that for BCC and HCP metals (Chapters 4 and 5), the yield stress formu-
lae were employed to estimate the upper transition temperature where vacancy–
assisted climb becomes the predominant dislocation annihilation mechanism (Tf )
only. The experimental values employed for describing the stress–strain curves
in these metals are shown in Figures 4.1 and 5.4.
Aactb

2 values for Cu and Al were obtained from experimental measurements [7].
In this case [104, 109], the relationship Aactb

2 = 1
2r0l

∗ applies and r0 accounts
for the experimental distance between partials in the cross–slip plane (see Section
3.3.1), and is used to obtain the critical radius for impingement in FCC metals
via equation 3.32. In BCC and FCC systems, measurements for Aactb

2 are not
available. Employing the distance between partials at equilibrium [27] req0 =
µb(2+ν)

24π(1−ν)χ , where χ is the stacking fault energy, it was found that the experimental

values for Aactb
2 for FCC can be recovered by substituting r0 = 4req0 . This factor

accounts for temperature variations above 0 K and the concomitant annihilation
process taking place. We therefore employed the relationship [147]:

Aactb
2 = 4req0

l∗

2
=
µ0bl

∗(2 + ν)

12π(1− ν)χ
. (A.1)

Although dislocation partials are not formed in BCC metals [5], a generalised
stacking fault energy on the principal slip directions can define the activation
area for cross–slip [147].

163



APPENDIX A PHYSICAL PARAMETERS 164

T
a
b

le
A

.1
:

P
h
y
si

ca
l

p
a
ra

m
et

er
s

em
p

lo
ye

d
in

th
e

th
eo

ry
.

M
at

er
ia

l
A
a
c
t
b2

(m
2
)

b
(n

m
)

c
(m

/s
)

E
f

(k
J
/
m

o
l)

E
m

(k
J
/
m

o
l)

ρ
a

(k
g
/
m

3
)

T
m

(K
)

w
a

(g
/
m

o
l)

A
g

61
3
b2

0
.2

8
9

2
68

0
10

6
6
4

1
04

90
12

3
4

10
7.

8

[2
2
7]

[2
2
7
]

[9
7
]

[9
7]

[2
27

]
[2

27
]

[2
27

]

A
l

50
b2

0
.2

8
6

5
00

0
6
7

6
0

2
70

0
9
33

26
.9

[7
]

[2
2
7]

[2
2
7
]

[2
7
5]

[2
7
5
]

[2
27

]
[2

27
]

[2
2
7]

C
r

0
.2

56
59

4
0

7
19

0
5
1.

9
9

[2
2
7]

[2
2
7
]

[2
2
7]

[2
2
7]

C
u

30
0
b2

0
.2

5
6

3
81

0
9
7

8
7

8
94

0
13

57
63

.5

[7
]

[2
2
7]

[2
2
7
]

[2
7
5]

[2
7
5
]

[2
27

]
[2

27
]

[2
2
7]

F
e

(B
C

C
)

1
45
b2

0
.2

4
8

5
12

0
20

5
7
3.

3
78

94
18

11
5
5.

8
45

[1
0
8]

[2
2
7
]

[4
]

[4
]

[2
27

]
[2

27
]

[2
27

]

F
e

(F
C

C
)

0
.2

58

[2
7
6]

M
g

50
b2

0.
32

4
9
40

2
02

.6
5
7.

5
17

3
0

92
3

2
4.

3

[2
5
]

[2
2
7
]

[9
7
]

[9
7]

[2
27

]
[2

27
]

[2
2
7]

M
o

68
b2

0
.2

7
2

5
40

0
27

0
13

0
.2

10
28

28
9
6

95
.9

6

[2
2
7]

[2
2
7
]

[9
7
]

[9
7]

[2
27

]
[2

27
]

[2
27

]



APPENDIX A PHYSICAL PARAMETERS 165

T
a
b

le
A

.2
:

P
h
y
si

ca
l

p
a
ra

m
et

er
s

em
p

lo
ye

d
in

th
e

th
eo

ry
.

M
at

er
ia

l
A
a
c
t
b2

(m
2
)

b
(n

m
)

c
(m

/
s)

E
f

(k
J
/m

o
l)

E
m

(k
J
/m

o
l)

ρ
a

(k
g/

m
3
)

T
m

(K
)

w
a

(g
/m

o
l)

N
b

0
.2

9
2

3
48

0
8
57

0
9
2
.9

[2
2
7]

[2
2
7]

[2
27

]
[2

2
7]

N
i

20
0b

2
0
.2

5
6

49
00

13
5

13
5

89
08

17
28

5
8.

7

[2
2
7]

[2
2
7]

[9
7
]

[9
7]

[2
2
7]

[2
27

]
[2

2
7]

T
a

60
b2

0
.2

8
6

34
00

30
0

6
7.

5
1
66

9
0

3
29

0
1
80

.9
4

[2
2
7]

[2
2
7]

[9
7
]

[9
7]

[2
2
7]

[2
27

]
[2

2
7]

T
i

54
b2

0
.2

9
50

90
20

2
.6

12
5.

4
4
50

00
1
94

1
4
7.

87

[2
2
7]

[2
2
7]

[2
77

]
[2

7
7]

[2
2
7]

[2
27

]
[2

2
7]

V
11

5b
2

0
.2

6
3

45
60

20
2

12
5
.4

60
00

2
1
83

50
.9

4

[2
2
7]

[2
2
7]

[2
78

]
[2

7
8]

[2
2
7]

[2
27

]
[2

2
7]

W
12

1b
2

0
.2

7
4

46
20

31
8

18
3
.3

1
92

5
0

3
6
95

1
83

.8
4

[2
2
7]

[2
2
7]

[9
7
]

[9
7]

[2
2
7]

[2
27

]
[2

2
7]

Z
n

0.
2
6
8

38
50

3
8.

5
48

.2
7
14

0
6
9
2.

5
6
5.

3
8

[2
2
7]

[2
2
7]

[9
7
]

[9
7]

[2
2
7]

[2
27

]
[2

2
7]

Z
r

60
b2

0
.3

2
38

00
14

4
5
7.

8
6
5
20

2
12

8
9
1
.2

2

[2
2
7]

[2
2
7]

[9
7
]

[9
7]

[2
2
7]

[2
27

]
[2

2
7]



APPENDIX A PHYSICAL PARAMETERS 166

T
ab

le
A

.3
:

P
h
y
si

ca
l

p
a
ra

m
et

er
s

em
p

lo
ye

d
in

th
e

th
eo

ry
.

F
o
r
σ
Y

a
n

d
µ

,
T

is
ex

p
re

ss
ed

in
K

.

M
at

er
ia

l
χ

(m
J
/
m

2
)

µ
(G

P
a
)

µ
0

(G
P

a
)

σ
Y

(M
P

a
)

A
g

1
6

3
0
−

0
.0

1
2
T
−

8
×

1
0
−

8
T

2
3
0

6
3
−

0.
0
5
T

[5
]

[1
2
0
]

[2
7
9
]

A
l

16
6

2
9.

4
−

0.
0
1
5
T

2
9
.4

1
0
0

ex
p
(−

6
.6

7
×

1
0
−

3
T

)

[5
]

[1
2
0
]

[2
8
0
,

2
8
1
,

1
3
6
,

2
8
2
]

C
r

1
1
8
−

0.
0
1
7
T

1
1
8

[2
8
3
]

C
u

4
7

4
7.

4
ex

p
(−

3
.9

7
×

1
0
−

4
T

)
4
7
.4

7
3

+
3
.5
×

1
0
−

3
T
−

1.
3
3
×

1
0
−

5
T

2

[5
]

[1
2
0
]

[2
8
4
]

F
e

(B
C

C
)

24
0

1
2
1.

9
−

0.
0
2T

1
2
1
.9

1
3
5
4

ex
p
(−

0
.0

0
9
7
T

)

[1
5
7
]

[2
8
5
]

[1
6
0
,

1
6
1
,

1
6
2
]

F
e

(F
C

C
)

8
5.

3
−

0.
0
3
4
T

8
5
.3

[2
7
6
]

M
g

1
2
5

1
8.

5
−

4.
5
×

1
0−

3
T
−

8
.7
×

1
0
−

6
T

2
1
8
.5

8
5

ex
p
(−

0.
0
0
2
3T

)

[3
]

[2
8
6
]

[1
8
3
,

1
3
,

2
0
7
]

M
o

64
0

1
3
9
−

0.
0
2
T

1
3
9

14
2
3

ex
p
(−

0
.0

0
2
4
T

)

[1
5
8
]

[2
8
7
]

[1
6
5
]



APPENDIX A PHYSICAL PARAMETERS 167

T
ab

le
A

.4
:

P
h
y
si

ca
l

p
a
ra

m
et

er
s

em
p

lo
ye

d
in

th
e

th
eo

ry
.

F
o
r
σ
Y

a
n

d
µ

,
T

is
ex

p
re

ss
ed

in
K

.

M
a
te

ri
al

χ
(m

J
/m

2
)

µ
(G

P
a
)

µ
0

(G
P

a
)

σ
Y

(M
P

a
)

N
b

3
8

38

[2
8
8
]

N
i

12
5

8
7.

4
−

0.
0
3
2
T
−

7.
9
×

1
0−

8
T

2
87

.4
1
3
.2

+
1
1
2
/(

1
+

ex
p

(−
(T
−

3
21
/7

9
))

)

[5
]

[1
2
0
]

[2
89

]

T
a

48
0

8
7.

3
−

2
0
8
0
/(
ex
p
(9

6/
T

)
−

1
)

8
7

55
4

ex
p

(−
0.

00
37
T

)

[1
58

]
[2

90
]

[1
66

]

T
i

32
0

5
2.

0
.0

3
T

52
3
3
5.

8
ex

p
(−

0.
0
03
T

)

[3
]

[2
9
1
]

[1
9
1]

V
15

0
5
5
.8

9
−

0.
0
1T

5
5
.8

9
9
4
7

ex
p
(−

0.
00

37
T

)

fi
tt

ed
[2

9
2
]

[1
6
8]

W
5
00

1
92
−

0.
0
1
7
T

1
9
2

20
13

ex
p

(−
0
.0

0
37
T

)

[1
5
9]

[2
9
3
]

[1
67

]

Z
n

14
0

47
.3

ex
p

(−
0.

0
0
3
(T
−

2
73

))
4
5.

9

[3
]

[2
9
4]

[2
95

]

Z
r

24
0

4
0
.7
−

0.
03

1
T

4
0
.7

2
3
9

ex
p

(−
0.

0
03

4T
)

[3
]

[2
9
1]

[2
1]



APPENDIX A PHYSICAL PARAMETERS 168



Bibliography

[1] A.P. Sutton. Electronic Structure of Materials. Oxford University Press,
1993.

[2] A.H. Cottrel. Dislocations and Plastic Flow in Crystals. Oxford University
Press, 1953.

[3] F.J. Humphreys and M. Hatherly. Recrystallization and related annealing
phenomena. Elsevier, 2004.

[4] R.E. Smallman and R.J. Bishop. Modern Physical Metallurgy and Materials
Engineering. Butterworth-Heinemann, 1999.

[5] J. Hirth and J. Lothe. Theory of dislocations. Wiley Interscience Publica-
tion, 1982.

[6] U.F. Kocks and H. Mecking. Physics and phenomenology of strain harden-
ing: the FCC case. Prog. Mater. Sci., 48:171–273, 2003.

[7] W. Puschl. Models for dislocation cross-slip in close-packed crystal struc-
tures: a critical review. Prog. Mater. Sci., 47:415–461, 2002.

[8] A.S. Argon and W.C. Moffatt. Climb of extended edge dislocations. Acta
Metall., 29:293–299, 1980.

[9] M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals.
Metall. Trans. A, 12A:409–418, 1981.

[10] D.G. Westlake. Twinning in zirconium. Acta Metall., 9:327–331, 1961.

[11] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu. Ultrahigh strength and high
electrical conductivity in copper. Science, 302:422–426, 2004.

[12] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier. High manganese
austenitic twinning induced plasticity steels: A review of the microstructure
properties relationships. Curr. Opin. Sold St. M., 15:141–168, 2011.

169



BIBLIOGRAPHY 170

[13] Y. Li and M. Enoki. Evaluation of the twinning behaviour of polycrystalline
magnesium at room temperature by acoustic emission. Mater. Trans.,
48:1215–1220, 2007.

[14] M.A. Meyers, A. Mishra, and D.J. Benson. Mechanical properties of
nanocrystalline materials. Prog. Mater. Sci., 51:427–556, 2006.

[15] TG Nieh, J Wadsworth, and OD Sherby. Superplasticity in metals and
ceramics. Cambridge University Press, 2005.

[16] T.G. Langdon. Grain boundary sliding revisited: Developments in sliding
over four decades. J. Mater. Sci., 41:597–609, 2006.

[17] H. Van Swygenhoven, M. Spaczer, and A. Caro. Microscopic description of
plasticity in computer generated metallic nanophase samples: A compari-
son between Cu and Ni. Acta Mater., 47:3117–3126, 1999.

[18] H. Van Swygenhoven and P.M. Derlet. Grain–boundary sliding in nanocrys-
talline fcc metals. Phys. Rev. B., page 224105, 2001.

[19] E.I. Galindo-Nava, G. Torres-Villaseñor, and P.E.J. Rivera-Dı́az-del-
Castillo. Thermostatistical theory of superplasticity in alloys. Under review.

[20] S. Yip. Handbook of materials modelling A. Springer. p. 565-611, 2005.
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Effects of texture, temperature and strain on the deformation modes of
zirconium. Phil. Mag., 86:3595–3611, 2006.

[176] S.G. Song and G.T. Gray III. Structural interpretation of the nucleation
and growth of deformation twins in Zr and Ti-II tem study of twin morphol-
ogy and defect reactions during twinning. Acta Metall. Mater., 43:2339–
2350, 1995.

[177] J.R. Morris, Y.Y. Ye, K.M. Ho, C.T. Chan, and M.H. Yoo. Structures and
energies of compression twin boundaries in hcp Ti and Zr. Phil. Mag. A,
72:751–763, 1995.

[178] H. Wang, P.D. Wu, J. Wang, and C.N. Tomé. A crystal plasticity model for
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