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Summary 

To study interaction between ice and sloping structures, numerical models are required that 

can predict failure of the ice based on physical ice properties, deformations and structural 

shape and size. An important element of these models is the set of failure criteria that is 

applied, as failure limits the loading of the ice on the structure. Failure in interaction with a 

sloping structure can occur in multi-directional tension, compression, bending, splitting or 

a combination of these, making it important to capture and combine all failure conditions 

in a single model. In this thesis, a lattice model is developed to simulate an ice plate and 

failure criteria are derived for the model, linked to field measurements and failure 

envelopes. Fracture patterns generated with the lattice model compare well with those 

observed in basin tests. 

Lattice models are successfully used in modelling of fracture of brittle materials. To date, 

most of the lattice multi-dimensional (2D and 3D) models describe either in-plane or three-

dimensional mechanics of the materials. Only a few lattice models are available in the 

literature for the description of the out-of-plane mechanics of plates. However, the 

parameters of those lattice models have not been linked to those of the classical plate 

models, such as Mindlin-Reissner plate theory, which is based on the classical continuum 

theory. To be able to simulate out-of-plane deformations of a plate, thereby enabling 

physically correct simulation of ice-structure interaction, a 2-dimensional lattice model is 

developed that reproduces the out-of-plane dynamics of a shear-deformable plate in the 

low frequency band. The developed model is composed of masses and springs whose 

morphology and properties were derived to match the out-of-plane deformations of thick 

plates as described by the Mindlin-Reissner theory. Bending, shear and torsion are taken 

into account. The eigenfrequencies and the steady-state response of the model to a 

sinusoidal-in-time point load are computed and compared to those of a corresponding 

continuum plate. It is proven that the developed lattice predicts the same dynamic 

behaviour as the corresponding continuum plate at relatively low frequencies, which are 

dominant in ice-structure interaction processes. At higher frequencies deviations occur. 

These are discussed in terms of the dispersion, anisotropy and specific boundary effects of 

the lattice model. 

A lattice model for in-plane vibrations of a plate in plane strain conditions is described in 

literature and is adjusted in the current work to plane stress conditions and to reproduce 

the Poisson effect. Combined with the lattice model for out-of-plane deformations a single 

model is formed, which captures in- and out-of-plane deformation of a shear deformable 

plate under the assumption of small deformations. 
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Failure criteria were developed for the lattice model which are linked to field measurement 

data of ice. The deformation and failure criteria in the lattice model are based on first 

principles, enabling physically sound simulation of deformation and fracture processes of 

the ice plate material. Failure in compression, tension, bending and splitting are simulated 

with the lattice model, providing a complete set of failure scenarios relevant to study 

interaction between ice and sloping structures. It is shown that the criteria have minimal 

dependence on cell size and orientation and are applicable for multi-directional loading 

conditions. By means of numerical assessment, a multitude of structures and loading 

conditions can be analysed and structural shapes can be optimized for interaction with ice 

at reasonable costs. 

Validation of the model against field measurements for ice in complex loading conditions of 

combined bending, shear and torsion as well as basin tests show that fracture location and 

fracture patterns can be predicted well with the lattice model. A 3-dimensional model, 

which would reduce computational efficiency, is required to accurately simulate out-of-

plane shear and spalling failure of the ice, however in engineering applications these are 

often not governing over bending and tensile failure. Inclusion of ice rubbling and clearance 

processes as well as improving the simulation of the contact with a structure would further 

improve the model and ice load predictions. 
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Samenvatting 

Om interactie tussen ijs en schuin aflopende constructies te bestuderen zijn numerieke 

modellen vereist, waarmee het breken van het ijs kan worden voorspeld, gebaseerd op 

fysieke eigenschappen en vervormingen van het ijs en de vorm en afmetingen van de 

constructie. Een belangrijk element van deze modellen zijn de criteria die worden toegepast 

voor het breken van het ijs, gezien dit de interactie-krachten tussen het ijs en de constructie 

limiteert. Het falen van ijs in interactie met een schuin aflopende constructie kan 

voorkomen in multidirectionele trek, druk, buiging, splijting of een combinatie hiervan, 

waardoor het belangrijk is om alle condities waarin het ijs kan falen in één model te 

combineren. Een raster-model is ontwikkeld in dit proefschrift, waarmee een ijsplaat kan 

worden gesimuleerd. Criteria voor het breken zijn ontwikkeld voor het model en gelinkt aan 

meetdata uit het veld en breuk-diagrammen. De breekpatronen die met het raster-model 

worden gegenereerd komen goed overeen met patronen die in modeltesten zijn 

geobserveerd.  

Rastermodellen zijn succesvol gebruikt voor het modelleren van het breken van brosse 

materialen. Tot nu toe beschrijven de meeste multidimensionele (2D en 3D) modellen de 

mechanica van de plaat ofwel in het vlak van de plaat, ofwel in drie dimensies. Slechts een 

klein aantal rastermodellen zijn beschikbaar in de literatuur waarmee de mechanica uit het 

vlak van de plaat wordt beschreven. De parameters van deze rastermodellen zijn echter niet 

gelinkt aan die van klassieke plaat modellen, zoals de Mindlin-Reissner theorie die 

gebaseerd is op klassieke continuüm theorie. Om vervormingen uit het vlak van de plaat te 

kunnen simuleren, zodat interactie tussen ijs en constructies op fysisch correcte wijze kan 

worden gesimuleerd, is een 2-dimensionaal rastermodel ontwikkeld, dat de dynamica van 

een in afschuiving vervormbare plaat kan reproduceren voor lage frequenties. Het model 

bestaat uit massa’s en veren waarvan de morfologie en eigenschappen zijn afgeleid zodat 

de vervormingen uit het vlak van een dikke plaat, zoals beschreven in de Mindlin-Reissner 

theorie, worden geëvenaard. Buiging, afschuiving en torsie zijn hierin meegenomen. De 

eigenfrequenties en reactie van het model op een puntbelasting die sinusvormig is in tijd 

zijn berekend en vergeleken met die van een overeenkomstige continue plaat. Het is 

bewezen dat het ontwikkelde rastermodel hetzelfde dynamische gedrag voorspelt als het 

continue model bij relatief lage frequenties, welke dominant zijn in de interactie tussen ijs 

en constructies. Bij hogere frequenties treden afwijkingen op. Deze worden besproken in 

termen van dispersie, anisotropie en randeffecten in het rastermodel.  
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Een rastermodel voor het simuleren van vibraties in het vlak van een plaat is beschreven in 

literatuur en aangepast in dit proefschrift om een ijsplaat te simuleren en om het Poisson 

effect te kunnen reproduceren. Gecombineerd met het rastermodel voor vervormingen uit 

het vlak van de plaat, is een model gevormd dat zowel vervormingen in het vlak als uit het 

vlak van een in afschuiving vervormbare plaat beschrijft, voor condities met relatief kleine 

vervormingen.  

Criteria voor het breken van ijs die gelinkt zijn aan meetdata uit het veld zijn ontwikkeld in 

dit onderzoek. De vervorming en breek-criteria in het rastermodel zijn gebaseerd op 

basisprinciepen, waardoor fysisch correctie simulaties van vervormingen en breek-

processen van de ijsplaat kunnen worden uitgevoerd. Breken in druk, trek, buiging en 

splijten worden gesimuleerd met het rastermodel, zodat een complete set van breek-

scenario’s die relevant zijn om interactie tussen ijs en een schuin aflopende constructie te 

bestuderen wordt geleverd. De breek-criteria hebben een minimale afhankelijkheid van de 

afmetingen en oriëntatie van de cellen in het rastermodel en zijn toepasbaar in 

multidirectionele belastingscondities. Door middel van numerieke simulatie kan een 

meervoud aan constructies en belastingscondities worden geanalyseerd en kan de 

vormgeving van een constructie worden geoptimaliseerd voor interactie met ijs tegen 

redelijke kosten.  

Validatie van het model met veld-metingen van ijs in complexe belastingscondities van 

gecombineerde buiging, afschuiving en torsie en met schaalmodel-testen laten zien dat de 

locatie en breukpatronen van ijs goed kunnen worden voorspeld met het rastermodel. Een 

3-dimensionaal model, wat de efficiëntie van de berekening zou reduceren, is nodig om 

afschuiving uit het vlak en afsplintering op accurate wijze te kunnen simuleren. In praktische 

toepassingen zijn deze condities echter veelal niet maatgevend vergeleken met breken in 

buiging en trek. Het toevoegen van het afbrokkelen van ijs en afvoer rondom de constructie 

en het verbeteren van de simulatie van het contact met een constructie zouden het model 

en voorspellingen van belasting door het ijs verder verbeteren.  
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1 
1 Introduction 

 

1.1 Background 

In the past decades energy companies have been interested to build structures in Arctic 

environments due to the hydrocarbon potential. Since recent years, building structures in 

areas with potential presence of ice has become of interest to the offshore wind industry. 

Not only the energy industry is interested in building structures in (sub-) Arctic regions. Ice 

loads on for example bridges, piers, lighthouses and coastal protection should be accounted 

for in the design in areas where ice occurs. Structures in (sub-) Arctic environments are 

often designed with a sloping waterline shape to reduce ice loading compared to that on a 

vertical structure. The slope causes ice to fail in bending and as such limits the failure load 

of ice and with that the loading on the structure. Observations from model tests and full 

scale interaction show a combination of bending and splitting failure near the structure (Lu, 

2014). To reduce risk of damaging and building costs of these structures it is desired to 

improve the prediction of ice loads acting on them.  
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ISO19906 (ISO, 2010), an internationally used design standard for Arctic offshore structures, 

describes the following methods to determine ice actions: full scale measurements, model 

experiments and theoretical methods (analytical or numerical). Limited full-scale 

measurements on sloping structures are available due to the complexity and costs to obtain 

these. Examples are the Kemi I lighthouse (Hoikkanen, 1985), the Confederation  Bridge 

cone (Brown et al., 2010), platform JZ20-2 in the Bohai Bay (Li et al. 2003), the sloping 

barrier in the Caspian Sea (Croasdale et al., 2011) and circular drillship Kulluk (Wright, 2001). 

As model tests are less complicated and less costly than full scale measurements, quite a 

number of model test campaigns have been executed (for example Irani and Timco, 1993; 

Lau, 1999; Sodhi, 1995). Comfort et al. (1999) collected and analysed general trends of an 

extensive dataset of ice model tests for floating, moored structures for different ice 

conditions, test techniques and structure types. Theoretical models are often used in design 

as they are quick and inexpensive to apply. A review of  differences in theoretical models 

that are prescribed by codes and standards for determination of level ice and ice ridge loads 

on sloping offshore structures was made by Bruun and Gudmestad (2006). Analytical 

models include the model developed by Croasdale (1980) which is based on an elastic beam 

on an elastic foundation. Later this model was modified to include three-dimensional effects 

as well as in-plane compression (Croasdale and Cammaert, 1994). Ralston (1977) used 

plastic analysis to determine the forces on a conical structure. Terms in the formulation are 

related to breaking of the ice sheet and broken ice pieces sliding over the surface of the 

cone. A model for wedge-shaped beams failing adjacently based on continuum theory of a 

semi-infinite plate resting on an elastic foundation was developed by Nevel (1992). 

Several research institutes and companies have developed numerical assessment tools to 

study breaking of ice in interaction with sloping structures, in the form of 1D, 2D or 3D 

models. Aksnes (2010) and Wille, Kuiper, & Metrikine (2011) simulated bending failure of 

ice in interaction with a downward sloping conical structure using a beam model. As beam 

models are 1-dimensional, multi-directional loading cannot be simulated and the models 

are inaccurate in the prediction of loading frequencies and breaking length of the ice in case 

of circular or ship-shaped structures. Izumiyama et al. (1993) presented a numerical method 

to compute the ice forces on a faceted conical structure.  Lubbad and Løset (2011) adopted 

the model of wedge-shaped beams by Nevel (1992) to simulate real-time ice-structure 

interaction. Ice failure was modelled in a similar manner in the SIBIS simulator by Metrikin 

et al. (2015) to study ice interacting with a floating drillship. Bonnemaire et al. (2014) 

employed a semi-empirical model to simulate the response of a moored floating structure 

in ice and Shi et al. (2016) applied a semi-empirical model to study dynamic ice–structure 

interaction of an offshore wind turbine in drifting level ice. A 1D finite element model with 

non-linear Timoshenko beam elements by Paavilainen et al. (2009) was extended to 2D by 
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Lilja et al. (2017b). In this model, a cohesive fracture model prevents stress singularities near 

the crack tip. It is used to simulate crack formation and propagation. Sand and Fransson 

(2006) used finite element analysis to determine ice loading on an upward sloping structure. 

Models based on discrete elements were applied in simulation of ice structure interaction 

and ice clearance around structures (Hansen and Løset, 1999a, 1999b; Herman, 2016; 

Hopkins, 2004; Lau, 2001; Ji et al. 2015; Liu and Ji 2017).  

By using numerical models, loads on structures of various shapes and sizes and in different 

ice conditions could be assessed in a timely manner and at low costs compared to basin 

tests or full-scale measurements. An important step in improving numerical ice load 

prediction is to further develop the simulations of the breaking processes of the ice. Most 

of the models developed so far focus on correctly simulating one failure mode, for example 

bending or splitting. None of the models include failure criteria that correctly simulate 

failure of the ice in multi-directional loading. In addition, failure in discrete models could be 

dependent on the size or orientation of the cells of the mesh (Chen et al., 2014; Monette 

and Anderson, 1999). To enable accurate simulation of interaction between ice and sloping 

structures it is desired to develop a numerical model that can simulate in-plane as well as 

out-of-plane deformations and predict fracture based on physical ice parameters that can 

be measured in the ice field.  

 

1.2 Development of a lattice model for multi-directional ice-

fracture simulation 

In this thesis, a lattice model is developed to simulate deformation and fracture of an ice 

plate in interaction with a structure. First, a lattice model for out-of-plane deformation of a 

shear-deformable plate is derived, with which the bending deformation and vibration of a 

thick ice plate in interaction with a structure can be simulated. An existing lattice model for 

in-plane vibrations of a plate in plane-strain conditions is adjusted to plane stress conditions 

and combined with the lattice model for out-of-plane deformations to a single model that 

captures in- and out-of-plane deformation under the assumption of geometrical linearity. 

Then failure criteria are developed for the lattice model which are applicable in multi-

directional loading in compression, tension, bending and splitting, and which result in 

fracture behaviour with minimal dependence on cell-size and -orientation. The model and 

failure criteria are validated by simulating a basin test of interaction between ice floes of 

different size and shape and a sloping structure.   
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A lattice model was selected to simulate the ice because of its simplicity and properties that 

are advantageous for fracture simulation. In contrast to a continuum model, where stress 

and strain describe responses to structural loading, the cells in the lattice model consist of 

a single layer of masses and springs, which form connections to neighbouring cells and, by 

assigning particular mass and spring stiffness, represent the reactivity to loading or 

deformation of a material. Stress singularities that occur near the crack tip in a continuum 

model (see for example Sih (1977)) cannot occur in the lattice structure. Simulation of 

failure is done by removing connections from the lattice model, such that re-meshing is not 

required.  

Development of lattice models starts with Hrennikoff (1940), who used a framework of 

elastic bars to describe two-dimensional stress problems and static bending of thin plates. 

Woźniak (1970) analysed a framework of beams, taking account of curvature change of 

spring bond connections between the nodes. Later, lattice models based on bar and beam 

connections between nodes were applied in fracture mechanics studies of, for example, 

particle composites that are loaded in uni- or multi-axial tension or compression (Bolander 

et al., 1996; Herrmann and Roux, 1990; Lilliu and van Mier, 2007; Schlangen and van Mier, 

1992; van Mier, 1986). Ostoja-Starzewski (1997) applied a two-dimensional spring network 

model to analyse damage patterns and constitutive responses of matrix-inclusion 

composites.  

The advantage of using springs in the lattice model rather than beams or bars is that 

bending, torsion and shear are decoupled. Ostoja-Starzewski (2008) presented an overview 

of basic concepts and applications of spring network models. Edvardsson and Uesaka (2010) 

and Attar et al. (2014) used one-dimensional lattice-spring models to study dynamics of the 

open-draw section in a paper machine and a cracked beam respectively. Suiker et al. (2001a 

and 2001b) used a lattice-spring model to study response to harmonically vibrating loads in 

the ballast layer of a railway track. This model was adopted in this thesis to plane stress 

conditions to simulate in-plane deformations of the ice plate. In Suiker et al. (2001c), a 

method is described to study the correspondence of a two-dimensional discrete lattice-

spring model to a Cosserat continuum in the long wave approximation. Only a few lattice 

models are available in the literature for the description of the out-of-plane mechanics of 

plates and the parameters of those lattice models have not been linked to those of the 

classical plate models, such as Mindlin-Reissner plate theory, based on the classical 

continuum theory. To close this gap, in this study a lattice model is developed for out-of-

plane vibration of a shear-deformable plate, to be applied in the analysis of mechanics of 

floating ice sheets. The model is verified by comparison of deflection and rotation to 

analytical results obtained for a simply supported plate on a Kelvin foundation under a 

sinusoidal point load.  
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In the past, lattice models have been successfully applied to simulate fracture of various 

materials, such as rock (Potyondy and Cundall, 2004) and concrete (Cusatis et al., 2003; 

Schlangen and Garboczi, 1997; van Mier et al., 2002). Several criteria for failure of the lattice 

elements have been used in these models, based on energy, force or strain. Jirasek and 

Bazant (1995) described different constitutive laws for breaking links in a lattice. Herrmann 

et al. (1989) derived a criterion for breaking lattice beams that was based on Von Mises’ 

yielding criterion. The force stretching the bond and moments acting on the two ends 

contribute to the criterion. Dai and Frantziskonis (1994) used a failure stress criterion in 

connecting bars in a lattice structure to simulate fracture of brittle materials. In Attar et al. 

(2014) the effects of transverse open cracks in a lattice model of a Timoshenko beam, 

consisting of masses, rotational springs and shear springs, were modelled by decreasing the 

stiffness of the rotational springs at crack locations. Schlangen and Garboczi (1997) studied 

the influence of the type and orientation of lattice elements in application to fracture 

simulation of concrete. 

To simulate sea-ice fracture, lattice models have been applied in in-plane and out-of-plane 

loading conditions. Sayed (1997) and Sayed and Timco (1998) used elastic and visco-elastic 

bonds in normal direction between the masses and applied a force limit as fracture 

criterion. Dorival, Metrikine, & Simone (2008) developed a lattice model to simulate ice 

crushing against a structure and used critical spring deformation as criterion for the onset 

of failure. A 3-dimensional lattice model to simulate deformation of ice in in-plane as well 

as out of plane loading conditions was presented by Van den Berg (2016), using translational 

and rotational springs in six degrees of freedom. None of the existing models accounts for 

failure in multi-directional tension, compression, bending and splitting at the same time. 

Therefore, new failure criteria are derived for the lattice model in this thesis. 

The failure criteria that are derived in this study for a 2D lattice model for sea-ice, consider 

both in-plane and out-of-plane deformations. Ice property measurements and tests of ice 

in multi-axial plate compression, splitting, beam bending and combined bending and torsion 

are used to derive failure criteria. The failure criteria are based on first principles, enabling 

physically sound simulation of failure processes that occur in ice-structure interaction 

processes. Dependency on directionality of loading and mesh size are given special 

attention. It is shown that when stress concentrations are accounted for, various in- and 

out-of-plane loading conditions, irrespective of orientation of the lattice cells and including 

conditions with concentrating stresses, can be simulated with the lattice model.  

To validate the lattice model and its failure criteria for simulation of ice-structure 

interaction, a bending test, a test with combined bending, shear and torsion, a splitting test 

and a basin test for ice floes of different shape and size in interaction with a downward 
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sloping conical structure are simulated. Fracture patterns are predicted well with the lattice 

model. Collection of ice rubble near the structure and clearance processes are not simulated 

and therefore the loading of the ice on the structure predicted by the lattice model is lower 

than the loading measured in basin tests. This research is limited to simulating deformation 

and fracture of the ice. To simulate ice clearance processes, it is recommended to link the 

lattice model to existing models, for example Discrete Element Method (DEM), which has 

been successfully used to simulate ice clearance processes around structures. 

Numerical simulations allow for assessment of a multitude of structural shapes and ice 

parameters at relatively low costs and time. With the development of the lattice model and 

failure criteria for ice-structure interaction in multi-directional loading conditions an 

important gap is closed in prediction of ice loading on a sloping structure. The lattice model 

properties and failure criteria are based on physical ice parameters that can be measured 

in the field, to enable physically sound simulation of fracture during ice-structure-

interaction processes.  

 

1.3 Thesis outline 

This thesis is structured as follows:  

Chapter 2 describes the derivation of the lattice model for out-of-plane vibrations of a 

shear-deformable plate, which is applied to model bending deformations of ice. The 

equations of motion of the cells in the lattice model and spring stiffness parameters were 

derived to match the continuum Mindlin-Reissner model in the long wave approximation. 

To verify the lattice model, its predictions are compared to analytical results obtained for a 

simply supported plate on a Kelvin foundation under a sinusoidal point load, with input 

parameters representative of a floating ice plate. Comparison is carried out in terms of the 

deflections and rotations. Eigenfrequencies of the lattice model are also studied and 

compared to the analytical figures based on the continuum theory. An expected discrepancy 

is observed at higher vibration frequencies, which is attributed to the dispersion, anisotropy 

and specific boundary effects of the lattice model. The dispersion and anisotropy are 

quantified by studying the angular-frequency characteristics of the wave propagation. 

In Chapter 3 parameters of the lattice model are derived to include in-plane deformations. 

Study of the Poisson effect show discrepancies between theory and deformations found 

with the lattice model. Alternative spring stiffnesses for the lattice model are derived based 

on the method presented by Hrennikoff (1940), resulting in proper capturing of the Poisson 

effect. By repeating the dynamic verification exercise from Chapter 2, it is shown that for 
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vibration frequencies associated with ice-structure-interaction the new parameters are 

equally well applicable to simulate deformations of the ice as those derived in Chapter 2. 

For Poisson’s ratio of 1/3, which is often applied for sea ice, both methods give the same 

parameters for the lattice model. This parameter is used for continuation of the research, 

while the new stiffness parameters derived in this Chapter are used to quantify effects of 

Poisson’s ratio. 

In Chapter 4 failure criteria for the lattice model are derived, considering both in-plane and 

out-of-plane deformations. The criteria are based on first principles, enabling physically 

sound simulation of failure processes that occur in ice-structure interaction. The failure 

criteria are linked to ice property measurements and failure envelopes are presented. Near 

a crack tip, strains concentrate. After deriving failure criteria for an intact plate, strain 

concentrations are studied and special failure criteria for application near crack tips are 

derived and linked to field measurements, completing the set of failure criteria that is 

required to simulate ice-structure interaction scenarios. It is shown that the failure criteria 

give behaviour with minimal dependence on cell-size and -orientation. Field tests of splitting 

and bending failure of an ice plate are simulated to validate the failure criteria and to 

demonstrate how the criteria are applied.  

In Chapter 5, the onset of failure is analysed for complex loading conditions: combined 

bending, shear and torsion, using the failure criteria derived in Chapter 4. To keep the 

number of nodes and that of the equations in the model limited, there is only one layer of 

particles in out-of-plane-direction of the plate. As a consequence of this, out-of-plane 

spalling failure under high confinement, which is described in literature, cannot be 

accurately simulated and a limiting failure cap is set for this failure mode in Chapter 4. Shear 

springs are present in the lattice model with which shear deformation in out-of-plane 

direction is simulated. In Chapter 5, it is shown that in case of dominating out-of-plane shear 

deformations, the level of strain in the out-of-plane shear springs could be used to define 

the onset of shear failure.  

To further validate the lattice model and the failure criteria, interaction between ice and a 

downward sloping conical structure is simulated with the lattice model in Chapter 6 and 

compared with observations from basin tests. Fracture patterns in interaction with ice floes 

of different size and shape as well as failure loads are analysed, confirming the applicability 

of the lattice model for fracture simulation in interaction with a structure and indicating the 

requirement to simulate ice rubble and clearance processes as well as to further develop 

the contact simulation with the structure to improve the ice loading predictions.  

In Chapter 7 the main findings of this study are summarized.    
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2 
2 Derivation and verification of a lattice model for 

bending vibration of a plate1 

 

2.1 Introduction 

In this Chapter, a lattice model for out-of-plane vibrations of a shear-deformable plate is 

derived, which is used to model bending deformations of ice. To verify the lattice model, its 

predictions are compared to analytical results obtained for a simply supported plate on a 

Kelvin foundation under a sinusoidal point load. Comparison is carried out in terms of the 

deflections and rotations. Eigenfrequencies of the lattice model are also studied and 

compared to the analytical figures based on the continuum theory. An expected discrepancy 

is observed at higher vibration frequencies, which is attributed to the dispersion, anisotropy 

                                                                 

This chapter has been published in ZAMM 432, 23 (2017) (van Vliet and Metrikine, 2017a). Parts of 

the publication have been moved to other Chapters for consistency.  
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and specific boundary effects of the lattice model. The dispersion and anisotropy are 

quantified by studying the angular-frequency characteristics of the wave propagation in the 

plate. 

 

2.2 Governing equations 

A plate is modelled with a square lattice of particles of mass M . Each particle is connected 

to eight neighbouring particles with bending, shear and torsional springs. This configuration 

is depicted in Figure 2-1. Three types of particles can be distinguished, namely (i) the inner 

particles, situated in the interior of the plate, (ii) the boundary particles, situated at the free 

edges and (iii) the corner particles, situated at the corners of the plate. For all three types 

of particles the equations of motion are derived in this section, considering the continuum 

limit, similar to previous work for various infinite lattice systems (Askar, 1985) and for in-

plane vibrations of a finite layer of discrete particles (Suiker et al., 2001a, 2001c).  

 

Figure 2-1: Rectangular plate, modelled with a square lattice of particles (masses). Spring connections between 

the masses are displayed as connecting lines 

 

2.2.1 Equations of motion for an inner particle 

Figure 2-2 shows an inner particle of the lattice. The particle position is characterized by 

indices ( , )m n as indicated in Figure 2-2. Each particle is connected via axial springs to the 

nearest particles on the same horizontal and vertical axes, numbered 1 to 4 in Figure 2-2 



25 

 

and via diagonal springs to the nearest particles on the same diagonal axes, numbered 5 to 

8 in Figure 2-2. Axial distance between the particles is d ; diagonal distance is 2d . ,s axi
K ,

,r axi
G  and ,t axi

G  are the stiffnesses of the axial shear, bending and torsional springs 

respectively. ,s dia
K , ,r dia

G  and ,t dia
G are the stiffnesses of the diagonal shear, bending and 

torsional springs, respectively. The lattice structure and the axial and diagonal connections 

are depicted in Figure 2-3 and in Figure 2-4. The particles have three degrees of freedom: 

deflection w  in the out-of-plane z-direction and rotations about the x-axis and y-axis 

 ,
y x

  .  

 

Figure 2-2: Node and connection numbering of the inner particle and its neighbouring particles 
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Figure 2-3: Structure of the lattice model; the circles represent lumped masses and the lines the connections 

between masses 

 

Figure 2-4: Axial and diagonal connections between the nodes in the lattice model, consisting of bending, shear 

and torsional springs (A-A’ and B-B’ in Figure 2-3) 
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Equations of motion for the particles in the plate will be obtained using the Lagrangian 

formalism. For the adopted lattice structure the Lagrangian function for the inner particle 

( , )m n  and its connections can be written as:  

 

     , , ,
,

m n m n m n

kin pot
L E E   (2.1) 

 

with the kinetic energy
 ,m n

kin
E and the potential energy

 ,m n

pot
E . The potential energy for the 

inner particle is: 

 
      

      

4
, 2 2 2

, , ,

1

8
2 2 2

, , ,

5

1
Δ Δ Δ

2

1
Δ Δ Δ ,

2

m n

pot s axi r axi t axii i i

i

s dia r dia t diai i i

i

E s K r G p G

s K r G p G





  

  




 

 

 

(2.2) 

 

where  Δ
i

s  is the elongation of shear spring i ,  Δ
i

r  is the rotation of the rotational spring 

i and  Δp
i

 is the twist of the torsional spring i . The above-introduced deformations of the 

springs, in the linear approximation, can be described as: 
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The kinetic energy of the inner particle, 
 ,m n

kin
E  is: 

          2 2 2
, , , ,1 1 1

,
2 2 2

m n m n m n m n

yxkin
E M w I I   ɺ ɺɺ  (2.6) 

where M   is the mass of the inner cell, 
 ,m n

wɺ  is the velocity of the inner cell in the out-of-

plane direction, I  is the mass moment of inertia of the inner cell, 
 ,n

x

mɺ  is the angular 

velocity of the inner cell around the y-axis and
 ,m n

y
ɺ  is the angular velocity of the inner cell 

around the x-axis. Substitution of the above-defined Lagrange function into the Euler-

Lagrange equations gives the following equations of motion for the inner particle: 

 

 
( , ) ( 1, ) ( , 1) ( 1, ) ( , 1)

,

, ( 1, ) ( 1, ) ( , 1) ( , 1)

( , ) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

( 1, 1) (

,

8 2 2 2 21

2

8 2 2 2 2
1

2

m n m n m n m n m n

m n

s axi m n m n m n m n

x x y y

m n m n m n m n m n

m n m

s dia x x

w w w w w
Mw K

d d d d

w w w w w

K d d

   

 

   

   

       

  

    
        

   

  

ɺɺ

1, 1) ( 1, 1) ( 1, 1)

( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

n m n m n

x x

m n m n m n m n

y y y y

d d

d d d d

 

   

    

       

 
 

  
     

 
(2.7) 

 

 

   

, ( 1, ) ( 1, ) 2 ( , ) 2 ( 1, ) 2 ( 1, )

,

( , ) ( 1, ) ( 1, ) ( , ) ( , 1) ( , 1)

, ,

( 1, 1) ( 1, 1) ( 1,

,

1 1 1

2 2 2

1 1
4 2 2 4 2 2

2 2

1

2

m n m n m n m n m n m n

x s axi x x x

m n m n m n m n m n m n

r axi x x x t axi x x x

m n m n m n

s dia

I K dw dw d d d

G G

dw dw dw

K

   

     

   

   

    

       
 

     

 



ɺɺ

1) ( 1, 1) 2 ( , )

2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1)

2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1)

( , ) ( 1, 1)

,

2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

41

2

m n m n

x

m n m n m n m n

x x x x

m n m n m n m n

y y y y

m n m n

x x

r dia

dw d

d d d d

d d d d

G



   

   

 

  

       

       

 

 
  
 
    
 
 
    
 

 


( 1, 1) ( 1, 1) ( 1, 1)

( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

( , ) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

, ( 1, 1) ( 1, 1) ( 1, 1) ( 1,

41

2

m n m n m n

x x x

m n m n m n m n

y y y y

m n m n m n m n m n

x x x x x

t dia m n m n m n m

y y y y

G

  

   

    

   

     

       

       

      

  
      

   


    1)n

 
  
 

 
(2.8) 

 

 



30 

 

 

   

, ( , 1) ( , 1) 2 ( , ) 2 ( , 1) 2 ( , 1)

,

( , ) ( , 1) ( , 1) ( , ) ( 1, ) ( 1, )

, t,

( 1, 1) ( 1, 1) ( 1,

,

1 1 1

2 2 2

1 1
4 2 2 4 2 2

2 2

1

2

m n m n m n m n m n m n

y s axi y y y

m n m n m n m n m n m n

r axi y y y axi y y y

m n m n m

s dia

I K dw dw d d d

G G

dw dw dw

K

   

     

   

   

    

       
 

     

  



ɺɺ

1) ( 1, 1) 2 ( , )

2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1)

2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1) 2 ( 1, 1)

( , ) ( 1, 1)

,

2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

41

2

n m n m n

y

m n m n m n m n

x x x x

m n m n m n m n

y y y y

m n m n

y x

r dia

dw d

d d d d

d d d d

G



   

   

 

  

       

       

 

 
  

 
    
 
 
    
 




( 1, 1) ( 1, 1) ( 1, 1)

( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

( , ) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

, ( 1, 1) ( 1, 1) ( 1, 1) ( 1

41

2

m n m n m n

x x x

m n m n m n m n

y y y y

m n m n m n m n m n

y x x x x

t dia m n m n m n m

y y y y

G

  

   

    

   

     

       

       

      

   
 
     

   


    , 1)n

 
 
 
 

 
(2.9) 

 

In the equations above,  ,m n
wɺɺ is the acceleration of particle ( , )m n  in the out-of-plane 

direction, whereas  
 ,m n

x
ɺɺ  and 

 ,m n

y
ɺɺ are the angular accelerations of the particle about 

the y-axis and x-axis, respectively. 

 

2.2.2 Equations of motion for a boundary particle 

Deriving the equations of motion for the boundary (excluding the corner) particles is done 

in a similar manner as deriving the equations of motion for the inner particles. At the top 

boundary  1n  , for example, particle  ,1m  is connected via springs 1, 3, 4, 7 and 8 as 

shown in Figure 2-5. The stiffness of the springs on the boundaries is half of the stiffness of 

inner connections. Accordingly, the potential energy for the boundary particle  ,1m  is 

given as: 
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Figure 2-5: Connections of a top boundary particle 

The mass M  and mass moment of inertia I  of the boundary particle are half the mass and 

mass moment of inertia of the inner particle. Accordingly, the kinetic energy of the 

boundary particle at the top edge of the plate,
 ,1m

kin
E  reads: 

          2 2 2
,1 ,1 ,1 ,1

4

1 1

4

1

4
x

m m m m

kin y
E M w I I   ɺ ɺɺ  (2.11) 

Application of the Euler-Lagrange equations gives the equations of motion for the boundary 

particle  ,1m . Equations of motion for the particles on the other edges of the plate are 

derived in the same manner. 

 

2.2.3 Equations of motion for a corner particle 

The derivation of the equations of motion for the corner particles is again done in a similar 

manner. At the top left corner, for example, particle  1,1 is connected via springs 1, 4 and 

8 as shown in Figure 2-6. The stiffness of the springs on the boundaries is half of the stiffness 

of the corresponding inner connections. The potential energy for the corner particle  1,1

is, therefore, given as: 
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s axi r axi t axi s dia r dia t di

pot

a

s K r G p G

s K r G p G s K r

E

G p G

 
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
 (2.12) 
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Figure 2-6: Connections of the top left corner particle 

The mass M  and mass moment of inertia I  of the corner particle are a quarter of the mass 

and mass moment of inertia of the inner particle. The kinetic energy of the top left corner 

particle, 
 1,1

kin
E , is: 

          2 2 2
1,1 1,1 1,1 1,1

8 8 8

1 1 1
kin x y

E M w I I    ɺɺ ɺ  (2.13) 

Applying Euler-Lagrange equations one obtains the equations of motion for the corner 

particle. Equations of motion for the other corner particles are derived in the same manner. 

 

2.3 Lattice parameters as functions of those of corresponding 

continuum plate 

The lattice model has to be consistent with a corresponding continuum plate model in the 

long-wave limit, in which the scale of deformations, i.e. the wavelength corresponding to 

the process that is simulated, is much larger than the dimension of the lattice cell. In this 

section, relations are derived between parameters of the lattice and those of the Mindlin-

Reissner plate, which assure this consistency.  
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2.3.1 Spring stiffness of the connections 

To make the lattice model consistent with the isotropic Mindlin-Reissner plate in the long-

wave limit, the lattice is continualized assuming the following Taylor series based relations 

between the generalized displacements of the nodes of the lattice: 
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(2.14)

Substituting (2.14) into (2.7) to (2.9) and disregarding terms of the order higher than 
2

d one 

obtains the continualized equations of motion of the lattice which are valid in the long wave 

limit: 
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The spring stiffness of the connections ,s axi
K , ,r axi

G , ,t axi
G , ,s dia

K , ,r dia
G and ,t dia

G  and the 

inertia coefficients M  and I  are determined by relating (2.15) - (2.17) to the equations of 

motion of the Mindlin-Reissner theory for continuum plates, given, for example, by Rao 

(2007):  
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ɺɺ  (2.20) 

where   is the mass density of the plate, h  is the thickness,  3 2
12 1D Eh    is the plate 

bending stiffness, E  is Young’s modulus,   is Poisson’s ratio,  2
5 6k    is the shear 

correction factor of a rectangular cross-section and   2 1G E    is the shear modulus. 

Equations (2.15) - (2.17) and (2.18) - (2.20) are in agreement when the following properties 

are assigned to the parameters in the lattice model: 

2
M hd  (2.21) 
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2.3.2 Kelvin foundation 

The prior analysis was carried out under assumption that the plate is unsupported. In many 

engineering applications including sea-ice, which is considered in this thesis, the plate is 

supported by a fluid or solid medium. A simplistic way to account for this is by means of the 

visco-elastic Kelvin foundation. This foundation is included in the model (see Figure 2-7) by 

adding a term 
   , ,m n m n

Kelvin Kelvin
k w c w  ɺ to the right hand side of equation (2.7) for out-of-

plane deflection inertia. In the case of floating sea ice 
2

Kelvin w
k gd  is the foundation 

stiffness, where 
w
  is the water density and g  is the gravitational acceleration. 

Kelvin
c is the 

damping coefficient, representing effective hydrodynamic dissipation by geometrical 

radiation.  

 

Figure 2-7: A Kelvin foundation is included in the lattice model, representing buoyancy and hydrodynamic 

dissipation under a sheet of sea-ice 
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2.3.3 Material damping 

Part of the energy of a material in motion will be converted to heat and dampen the material 

response. To account for this effect, damping proportional to the bending, shear and torsion 

rates of the plate are included in equations (2.18) - (2.20), giving: 
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Where   is the damping coefficient. In the lattice model, the same effect is captured by 

including dampers in parallel with the springs. The new connections are depicted in Figure 

2-8. 

  

Figure 2-8: Damping is included in the axial and diagonal connections between the nodes in the lattice model, 

now consisting of springs and dashpots in bending, shear and torsional direction (A-A’ and B-B’ in Figure 2-3) 
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The dashpot coefficients are set proportional to the spring stiffness by damping coefficient

 : 

 , , , ,2 2
s axi s dia s axi s dia

C C K K    (2.30) 

, ,r axi r axi
C G  (2.31) 

, ,t axi t axi
C G  (2.32) 

 , , , ,r dia t dia r dia t dia
C C G G    (2.33) 

,s axi
C , ,r axi

C and ,t axi
C  are the coefficients of the axial shear, rotational and torsional dampers, 

respectively. ,s dia
C , ,r dia

C  and ,t dia
C  are the coefficients of the diagonal shear, rotational and 

torsion dampers respectively. 

 

2.4 Wave dynamics and vibrations of the lattice  

In this section, the wave propagation in the lattice is analysed. The wave propagation 

characteristics are compared to those of the corresponding isotropic continuum plate 

model. This analysis allows to distinguish the underlying reasons for the differences in the 

responses at higher frequencies and attribute those to the dispersion and anisotropy in the 

lattice model. Analogously, the analysis of wave dispersion characteristics of a lattice-spring 

model in comparison with classic elastic continuum theory were carried out previously in 

1D (Askar, 1985) and 2D (Suiker et al., 2001a). Wave dispersion characteristics and 

anisotropy were studied for a lattice-spring model in comparison with a Cosserat continuum 

in Suiker et al. (2001c). 

The dispersion of plane harmonic waves in the lattice is compared to the wave dispersion 

in the Mindlin-Reissner plate. The displacements of the lattice nodes ,w  
x

  and y
  in a 

plane wave can be described as: 

  i( )( , ) We x yt k ma k nam n
w t

    (2.34) 

  i( )( , ) e x yt k ma k nam n

x x
t

    (2.35) 

  i( )( , ) e ,x yt k ma k nam n

y y
t

    (2.36) 

where W , 
x

  and y
 are the complex wave amplitudes,   is the angular frequency and 

x
k and y

k are the wave numbers in x- and y-direction, respectively. Substituting (2.34)-(2.36) 
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in the equations of motion of the lattice model (2.7)-(2.9) one obtains the following system 

of three algebraic equations: 
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where ,s axi
M K   is a dimensionless angular frequency and 

x x
K k d  and y y

K k d  are 

dimensionless wavenumbers in x-and y-direction, respectively. 

For the continuum model, the plane waves in the plate are described as: 

  i( )
, , We x yt k x k y

w x y t
    (2.40) 

  i( )
, , e x yt k x k y

x x
x y t

    (2.41) 

  i( )
, , e ,x yt k x k y

y y
x y t

    (2.42) 

where W , 
x

 and y
 are the complex wave amplitudes,   is the angular frequency, 

x
k

and y
k are the wave numbers in x- and y-direction respectively.  

Substituting (2.40)-(2.42) into the equations of motion for the continuous plate (2.18)-(2.20) 

gives a system of three algebraic equations: 
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where 
2

/
b

G k G  ,  
3

6 / ( h )
b

D D  and 0
/ ( h)

s
k  .  

The two systems of equations (2.37) - (2.39) and (2.43) - (2.45) have non-trivial solutions if 

and only if the determinants x y
( ,K ,K )   for (2.37) - (2.39) and x y

( ,k ,k ) for (2.43)-(2.45) 

are equal to zero, giving the dispersion relations of the lattice and continuum system 

respectively. 

For computation of the dispersion curves that are presented in Figure 2-9, input parameters 

in Table 2-1 are used, representing a floating ice plate with thickness of 1.5m. Dispersion 

curves are plotted for various magnitudes of the interparticle distance, both larger than, 

equal to and smaller than the plate thickness.  

The graphs in Figure 2-9 show dependencies of the wave frequency of the bending and 

rotational waves on the normalized wave number 
x

k d  under the assumption that 0
y

k  . 

Each graph in Figure 2-9 contains six curves. The continuous lines correspond to the 

continuum model, whereas the dashed ones correspond to the lattice model. The lines 

marked with triangles represent the waves which primarily involve the out-of-plane 

deflection of the plate (note that all waves in each model are coupled, hence these are 

defined with reference to the primary motion at low wavenumbers). These waves are 

referred to as deflection waves. The lines marked with diamonds are related to the waves 

in which the primary motion is rotational and parallel to the propagation direction of the 

wave (hereafter referred to as longitudinal rotational waves). Finally, the lines marked with 

circles are related to the waves in which the primary motion is rotational and perpendicular 

to the propagation direction of the wave (hereafter referred to as transversal rotational 

waves). 

As expected for long waves, 1
x

k d  , the dispersion curves of the waves in the lattice 

match very closely with those of the continuum plate. The shorter the waves (the higher 

the wave number) the worse the correspondence. These results are fully in line with the 

expectations. Yet these results are of importance for the developed model as they show (i) 

that the lattice model matches the continuum one in the long-wave limit and (ii) for every 

lattice cell size there is a specific value of the frequency/wavenumber starting from which 

the lattice response to a load will be different from that of the continuum plate due to the 

difference in the dispersion characteristics. 
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Figure 2-9: Dispersion curves for the Mindlin-Reissner continuum and the lattice model. a) Cell size 0.1mx0.1m. 

b) Cell size 1mx1m. c) Cell size 1.5mx1.5m (cell size equals plate thickness). d) Cell size 10mx10m 
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Table 2-1: Input parameters of an ice plate, used for comparison of the lattice model with the continuum 

Mindlin-Reissner plate 

Parameter Symbol Quantity Unit 

Poisson’s ratio    0.3 - 

Plate density    900 kg/m3 

Load F   10 kN 

Young’s modulus E   3.E+9 N/m2 

Plate thickness h   1.5 m 

Water density  
w
   1025 kg/m3 

 

In addition to the differences in wave dispersion, the lattice is also anisotropic in contrast 

to the isotropic continuum plate model at hand. To discover the frequencies at which the 

anisotropy plays a role, contours of constant frequency are plotted in Figure 2-10 and in 

Figure 2-11 in the x y
k d k d  plane in accordance with the dispersion equations.  An 

interparticle distance of 1m is used to produce the contours. For angular frequencies up to 

2000 rad/s only the deflection wave (the wave in which the particles deflect out-of-plane 

and little rotation of the particles takes place) is present. Figure 2-10 shows that up to 

approximately 500 rad/s the deflection waves are nearly isotropic which corresponds to 

almost circular contours in the plot. 

For lower-frequency deflections of 500 rad/s there is good agreement between the 

dispersion curves for the models. For higher frequencies deviation can be observed and the 

effects originating from the anisotropy of the lattice become visible as the curves start losing 

their circular shape. As can be seen in Figure 2-10, the curves remain quasi-circular up to 

2000 rad/s. At higher frequencies, as Figure 2-11 shows for 3000 rad/s, the wave 

propagation in the lattice becomes significantly anisotropic. One can also see that the 

number of curves per frequency in Figure 2-11 is tripled with respect to the number of those 

in Figure 2-10. This is because the frequencies represented in Figure 2-11 are above the cut-

off frequency of the rotational waves. At 3000 rad/s the deflection wave in the continuum 

model and that in the lattice model are significantly different. 
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Figure 2-10: Directional characteristics of deflection and rotational waves propagating through the Mindlin-

Reissner continuum (solid lines) and the lattice of cell size a=1m (dashed lines) for various wave frequencies 

 

Thus, the anisotropy of the lattice contributes to the reduced agreement between the 

lattice model and the Mindlin-Reissner continuum for higher angular frequencies. The 

larger the interparticle distance, the lower the frequency at which the anisotropy starts to 

play a role. The effects of the anisotropy simulated in the range of higher vibration 

frequencies are not realistic for ice, since the structure of the ice, which does not have a 

clear internal length scale, is not modelled with the lattice. 

According to Figure 2-9, the angular frequency of the waves in the continuum plate model 

tends to infinity as the wavenumber increases. The lattice model allows for wave 

propagation only up to a certain frequency, depending on the cell size of the lattice. The 

maximum frequency in the lattice is achieved at a normalised wave number kd  . The 

slope of the dispersion curve, which represents the group velocity, is zero at this this 

wavenumber, resulting in a standing wave in the lattice.  Wavelengths smaller than two 

times the cell size cannot be described with the lattice model.  
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Figure 2-11: Directional characteristics of deflection and rotational waves propagating through the Mindlin-

Reissner continuum (solid lines) and the lattice of cell size a=1m (dashed lines) for a wave frequency of 3000 

rad/s. Longitudinal rotational waves are marked with diamonds and transversal rotational waves are marked 

with circles 

 

2.5 Verification against analytical solution of a rectangular plate 

under sinusoidal load 

To verify the predictive capabilities of the lattice model, the steady-state plate response to 

a harmonic out-of-plane point load is investigated. The response of the continuum model is 

found analytically, whereas the lattice response is found by means of solving numerically 

the governing equations in the frequency domain. A rectangular plate on Kelvin foundation, 

simply supported at the edges is used for this verification study as shown in Figure 2-12, 

Figure 2-13 and Figure 2-14. The eigenfrequencies, deflection and rotations are analysed. 

The effect of the number of particles in the lattice model as well as the effect of the 

hydrodynamic (modelled as viscous damping on the Kelvin foundation) and material 

damping coefficients are studied.  
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Figure 2-12: Rectangular plate supported by a Kelvin foundation, simply supported at the edges and loaded by 

a sinusoidal point load in out-of-plane direction 

 

 

Figure 2-13: Cross section A-A'  

 

Figure 2-14: Cross section B-B'  
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2.5.1 Analytical solution 

Equations (2.18) - (2.20) are the governing analytical equations of free vibrations of a thick 

plate according to Reissner-Mindlin theory. Buoyancy effects, external load and material 

damping are added to the equations of motion, resulting in: 
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where 
s w

k g   is the stiffness of the Kelvin foundation, 
s

c is the hydrodynamic damping 

coefficient, F  is the amplitude of the load,   is the angular frequency of the loading on 

the plate and ( …) is the Dirac delta function. Boundary conditions for the simply 

supported plate are: 

At 0x    and 
x

x L : 

0w   (2.49) 

0
y
   (2.50) 

1 0,
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where 
xx

m is the bending moment about the y-axis. 
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At 0y    and y
y L : 

0w   (2.52) 

0
x

   (2.53) 
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 (2.54) 

where yy
m  is the bending moment about the x-axis. The analytical solution for the response 

of the plate is derived in Appendix 1. 

 

2.5.2 Comparison of results of the undamped lattice model and 

analytical solution 

The eigenfrequencies, deflection and rotations, evaluated both with the lattice and 

continuum model are compared in this section. Input for the analysis is based on sea ice 

properties and summarised in Table 2-1 in the previous section. In addition, the dimensions 

of the plate 
x

L  and y
L  are 60m and 100m respectively. Hydrodynamic and material damping 

are initially set to zero. 

The deflected shape of the plate under static loading is shown in Figure 2-15. Both the 

continuum model and the lattice model give the same deflected shape. 

The eigenfrequencies of the continuum model are compared to the eigenfrequencies of the 

lattice model for three different cell sizes: 19 nodes in x- and 31 nodes in y-direction, 31 

nodes in x- and 51 nodes in y-direction and 61 nodes in x- and 101 nodes in y-direction. 

Results are presented in Table 2-2. 

For low frequencies (up to mode 6), the eigenfrequencies of the 19x31 nodes lattice and 

continuum model correspond very well. For higher frequency vibrations a finer mesh is 

required to assure the correspondence. Some differences remain even in the case of the 

smallest cell size. These can always be minimized by making the lattice finer.  
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Figure 2-15: Deformation of the simply supported plate on Kelvin foundation under static load F 

 

The deflection amplitude at the loading point normalized by the static deflection is plotted 

for different excitation frequencies in Figure 2-16. The continuum model response is 

displayed with a solid line, whereas the lattice response is shown by the dashed lines. At 

the natural frequencies the deflection of the node approaches infinity as no damping is 

accounted for. Results obtained with the lattice model for two different mesh sizes are 

plotted: 19 nodes in x- and 31 nodes in y-direction and 31 nodes in x- and 51 nodes in y-

direction. The lattice model predictions correspond to those of the continuum model very 

well for low excitation frequencies. For higher frequencies (starting from about 6 Hz) a 

smaller cell size is required to predict the resonance frequencies more accurately. It can be 

noted that a number of eigenmodes, for example mode 2, cannot be identified from this 

graph due to the fact that the modal shape for these eigenmodes have a node right at the 

loading point (this corresponds to zero amplitude in the graph). 
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Table 2-2: Eigenfrequency [Hz] of the lattice model for three different cell sizes compared with those of the 

continuum model 

Mode Continuum Lattice 

19x31 

Lattice 

31x51 

Lattice 

61x101 

1 0.655348 0.655400 0.655460 0.655486 

2 0.981122 0.980178 0.980844 0.981126 

3 1.586581 1.586147 1.586449 1.586592 

4 1.627973 1.632654 1.629670 1.628438 

5 2.003042 2.001152 2.002364 2.002905 

6 2.465026 2.470323 2.466879 2.465510 

7 2.633494 2.622802 2.629628 2.632550 

8 3.378501 3.409284 3.389306 3.381193 

9 3.519075 3.500945 3.512461 3.517431 

10 3.603406 3.624535 3.610731 3.605226 

11 3.757975 3.772677 3.762984 3.759215 

12 4.389615 4.379851 4.385800 4.388645 

13 4.655891 4.636690 4.648665 4.654066 

14 4.991826 5.044982 5.010098 4.996319 

15 5.271395 5.232394 5.256989 5.267768 

16 5.829436 5.933866 5.865418 5.838279 

17 6.038309 6.030671 6.034657 6.037315 

18 6.205250 6.280565 6.230735 6.211467 

19 6.399836 6.331901 6.374797 6.393525 

20 6.621979 6.730615 6.658921 6.631006 
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Figure 2-16: Amplitude of the deflection at the point under the load, normalized by the deflection of the same 

point under static load as function of the loading frequencies for various cell sizes 

 

Figure 2-17:  Normalized amplitude of the rotation in x-direction at the loading point as function of the loading 

frequency for various cell sizes 
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The amplitude of rotation under the load in x-direction of the plate normalized by the static 

rotation is plotted for different excitation frequencies in Figure 2-17. Similar 

correspondence is found as for the amplitude of the displacement of the plate.  

To confirm the influence of the mesh size of the lattice model, the directional characteristics 

of the deflection wave propagating through the continuum and the lattice structure are 

presented in Figure 2-18. For low frequency waves there is no difference between the lattice 

model and the continuum model. For higher loading frequency, in Figure 2-18b, the lattice 

model of cell size 1m (61x101 nodes) is in good agreement with the continuum solution. For 

larger mesh size, the results obtained with the lattice model start deviating from the results 

obtained with the continuum solution and the influence of the lattice anisotropy becomes 

clear from the loss of circular shape of the lattice solution. The variations originating from 

anisotropy in the lattice model are small and the clear differences between the lattice and 

continuum response at >5Hz loading frequency (31rad/s) in Figure 2-16 and in Figure 2-17 

are mainly attributed to boundary effects of the lattice model, amplifying the small 

differences originating from anisotropy in the finite lattice model. 

 

Figure 2-18: Directional characteristics of deflection waves propagating through the Mindlin-Reissner continuum 

(solid lines) and the lattice model (dashed lines) for various cell size for angular frequency of a) 5rad/s and b) 

66rad/s 

 

2.5.3 Comparison of results with hydrodynamic damping 

The influence of the hydrodynamic damping coefficient on the response amplitude of 

deflection and rotation of the plate is studied in this subsection. Three damping coefficients 
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were applied and set proportional to the mass of the plate and the stiffness of the Kelvin 

foundation. Results are presented in Figure 2-19 for deflection and in Figure 2-20 for 

rotation in x-direction. The mesh size of the lattice model was 19x31 nodes in all cases. The 

continuum response is displayed with a solid line, dashed line and dash-dotted line for 

various damping coefficients, whereas the lattice response is for all damping coefficients 

indicated with a dotted line, which starts deviating from the corresponding continuum 

curve at higher frequencies.  

 

 

Figure 2-19: Amplitude of the deflection at the point under the dynamic load, relative to the deflection of the 

same point under static loading for various loading frequencies. Different line styles represent different 

hydrodynamic damping coefficients. The dotted lines show the predictions of the lattice model. 
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Figure 2-20: Amplitude of the rotation in x-direction at the point under the dynamic load, relative to the 

deflection of the same point under static loading for various loading frequencies. Different line styles represent 

different hydrodynamic damping coefficients. The dotted lines show the predictions of the lattice model. 

For the lower frequencies the lattice model predicts the response amplitudes very well in 

all cases. For the higher frequencies the lattice of 19x31 nodes gives difference in results, 

when compared to the analytical solution. In cases with high damping this difference is not 

observed. 

 

2.5.4 Comparison of results with material damping 

The influence of the material damping coefficient on the response amplitude of deflection 

and rotation of the plate is studied in this subsection. Stiffness proportional damping is 

applied in this study, where the damping force is proportional to the rotational and 

translational velocity of the particles. For sea ice, a representative stiffness-proportional 

damping coefficient was not found in literature. Marchenko and Cole (2017) described 

three physical mechanisms of energy dissipation in sea ice: an-elastic and viscous 

deformations, friction loss due to migration brine and friction on the ice-water interface. 

The assumption that the energy dissipation is directly proportional to the velocity of 

deformations in the lattice is a simplification. It is expected that the material damping has 
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a negligible effect compared to the hydrodynamic damping in case of out-of-plane 

deformations.  

Results for three different damping coefficients are presented in Figure 2-21 for deflection 

and in Figure 2-22 for rotation in x-direction. The mesh size of the lattice model was 

19x31nodes in all cases. The continuum response is displayed with a solid line, dashed line 

and dash-dotted line for various material damping coefficients, whereas the lattice 

response is for all damping coefficients indicated with a dotted line, which starts deviating 

from the corresponding continuum curve at higher frequencies.  

 

Figure 2-21: Amplitude of the deflection at the point under the dynamic load, relative to the deflection of the 

same point under static loading for various loading frequencies. Different line styles represent different material 

damping coefficients in the continuum model. The dotted lines show the predictions of the lattice model. 



55 

 

 

Figure 2-22: Amplitude of the rotation in x-direction at the point under the dynamic load, relative to the 

deflection of the same point under static loading for various loading frequencies. Different line styles represent 

different material damping coefficients in the continuum model. The dotted lines show the predictions of the 

lattice model. 

Again, for the lower frequencies the lattice model predicts the response amplitudes very 

well in all cases. For the higher frequencies the lattice of 19x31 nodes gives difference in 

results, when comparing to the analytical solution. In cases with high damping this 

difference is not observed. 

For low-frequency motions, the material damping has limited effect in case 
3

10   is 

selected. This is applied in further examples in this document, where in most cases the out-

of-plane deformations are governing and loading frequencies are low. 

 

2.6 Conclusions 

For the first time a lattice model for the out-of-plane dynamics of a shear-deformable plate 

has been formulated. The model is composed of masses and springs whose morphology and 

properties were derived to match, in the long-wave approximation, the out-of-plane 

deformations of thick plates as described by the Mindlin-Reissner theory.  
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The model can be applied in various fields of engineering, but is discussed taking example 

of an ice sheet, as it was derived with the intention to simulate ice-structure interaction. 

Focussing upon linear dynamics of the model, consistency with a continuum plate theory in 

the low frequency band is shown and differences emerging at higher frequencies are 

attributed to the dispersion, anisotropy and specific boundary effects (in case of finite 

dimensions) of the lattice model.  

Wave dispersion analysis shows that for long waves the dispersion curves of the waves in 

the lattice match very closely with those of the continuum plate. For shorter waves with a 

higher wave number correspondence reduces. These results are in line with expectations, 

yet they show that for every lattice period there is a specific value of the 

frequency/wavenumber starting from which the lattice response to a load will be different 

from that of the continuum plate due to the difference in the dispersion characteristics.  

A study of directional characteristics of propagating waves in the lattice model shows good 

correspondence between the lattice model and continuum plate for long waves. The 

agreement between the lattice model and the Mindlin-Reissner continuum solution 

reduces for higher angular frequencies due to the anisotropy of the lattice. The larger the 

interparticle distance, the lower the frequency at which the anisotropy starts to play a role. 

Wavelengths smaller than two times the cell size cannot be described with the lattice 

model. 

The eigenfrequencies and the steady-state response of the lattice model, representing a 

simply supported plate of ice of finite dimensions, to a sinusoidal in time point load are 

computed and compared to those of a corresponding continuum plate. It is proven that at 

low frequencies the developed lattice predicts the same dynamic behaviour as the 

corresponding continuum plate. For larger lattice period, the results obtained with the 

lattice model start deviating from those obtained using the continuum theory. The 

deviations originating from anisotropy in the lattice model are small at these frequencies 

and the differences between the lattice and continuum response are attributed to boundary 

effects of the lattice model. Effects of hydrodynamic and material damping have been 

effectively included in the model and have shown good correspondence with the continuum 

solution. 

The advantage of using springs in the lattice model rather than beams or bars is that 

bending, torsion and shear are decoupled. Compared to a continuum model, the lattice 

model has advantages regarding modelling of fracture. This makes the lattice model an 

enabler for material modelling in various fields of engineering, one of which is simulation of 

ice-structure interaction. 



57 

 

 

3 
3 Spring stiffnesses for in- and out-of-plane 

deformations and resulting Poisson effect 

 

3.1 Introduction 

As presented in Chapter 2, the equations of motion of the cells in the lattice model and 

spring stiffness parameters were derived to match the continuum model of a shear-

deformable plate in the long wave approximation. A study of dynamic behaviour, wave 

dispersion and directional characteristics of propagating waves in the lattice model showed 

good correspondence between the lattice model and continuum plate for long waves. In 

this Chapter, parameters of the lattice model are derived to include in-plane deformations. 

Alternative spring stiffnesses for the lattice model were derived based on the method 

presented by Hrennikoff (1940). Study of the Poisson effect showed discrepancies between 

expected deformations and deformations found with the lattice model, when applying 

stiffness parameters with the original method, but not when applying stiffness parameters 
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derived with the method based on the work by Hrennikoff (1940). The dynamic verification 

exercise from Chapter 2 was repeated to test the applicability of the new stiffness 

parameters in simulating dynamic behaviour of an ice plate. For Poisson’s ratio of 
1

3
    , 

which is often applied for sea ice, both methods give the same parameters for the lattice 

model.  

 

3.2 Equations of motion for in-plane deformations of the lattice 

model 

In a similar manner to the derivation of the equations of motion for out-of-plane 

deformation of a shear deformable plate in Chapter 2, the equations of motion for the inner 

cell were derived for in-plane deformations in literature (Suiker et al., 2001a). The 

continualised equations of motion from this work are used here. This gives, for the axis 

system presented in Figure 2-2 and connections presented in Figure 3-1: 
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where ,nip axi
K  and ,sip axi

K  are the axial and shear stiffness respectively of the springs in axial 

in-plane direction and ,nip dia
K  and ,sip dia

K  are the axial and shear stiffness respectively of the 

springs in diagonal in-plane direction. 
x

uɶ  and y
uɶ  follow from the Taylor approximations of 

the continuous field variables 
( , )m p n q

x
u

 
 and 

 ,m p n q

y
u

 
 for in-plane deformation in x- and y-

direction respectively.  
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Figure 3-1: Axial and diagonal connections between the nodes in the lattice model for in-plane deformations, 

consisting of  normal and shear springs (A-A’ and B-B’ in Figure 2-3) 

 

Equations of motion for a shear deformable plate loaded in in-plane and out-of-plane 

direction, assuming plane stress state, excluding thermal effects and assuming small strains 

and rotations, are presented in, for example, Reddy (1999): 
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Equations (3.5) to (3.7) are matched in the long-wave approximation for the lattice model 

for out-of-plane deformations, as shown in Chapter 2. Equations (3.3) and (3.4) are matched 

by assigning the following parameters to the in-plane connections of the plate: 
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0

s dia
K   (3.11) 

These stiffnesses will be referred to in this document as the stiffnesses derived with the 

“Equations-matching” method. The mass of the cells is the same as for the out-of-plane 

equations, derived in Chapter 2. 

 

3.3 Alternative method of deriving stiffness parameters for the 

lattice model 

Hrennikoff (1940) presented a method to replace a solid medium by a framework of 

articulated elastic bars. For a lattice with the same pattern as that considered in Chapter 2, 

the parameters of the axial springs are given via 
EA

K
L

   where K   is the spring stiffness 

A   is the bar area and L  is the length. For a framework of springs with layout presented in 

Figure 2-2 and connections presented in Figure 3-1, this would result in: 
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The framework equation for shear is only satisfied if 
1

3
    in plane stress condition. This 

problem can be overcome by using shear springs on the axial connections. The shear spring 

stiffness for these connections is: 

, 2
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1 1
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
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 (3.14) 
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The shear spring stiffness is positive for 
1

3
 

 
. 

For bending of thin plates the framework parameters are found via 
EI

G
L

  , where G   is 

the stiffness of the bending spring, I  is the moment of inertia of the beam in the framework 

and L  is the length of the beam. For a framework of springs with layout presented in Figure 

2-2 and connections presented in Figure 2-4, this would result in: 

 ,
1

r axi
G D   (3.15) 

,t dia
G D  (3.16) 

Torsion conditions are only satisfied for 
1

3
   . An axial torsion beam is included to resolve 

this with the stiffness:  

 ,
1 3

t axi
G D   (3.17) 

The axial torsion spring stiffness is positive for 
1

3
 

 
. These stiffnesses will be further 

referred to in this document as the stiffnesses derived with the “Hrennikoff” method. 

 

3.4 Study of the Poisson effect by different parameter sets 

Poisson’s ratio of a material is the ratio between transverse and axial strain when stretched 

or compressed. For a square lattice cell in a plate model that is loaded in in-plane condition 

by distributed load f  at two opposing edges, as shown in Figure 3-2, it is expected that the 

axial strain in the connections between nodes 1 and 2 and 3 and 4 is three times higher than 

the contraction in the connections between nodes 1 and 3 and 2 and 4. Appendix 2 explains 

how the strains in the connections of the lattice are calculated for these loading conditions. 

For Poisson’s ratio of 
1

3
 

 
, the stiffnesses of the lattice cells are the same for both the 

“Equations-matching” and the “Hrennikoff” method and the strain and contraction in the 

connections is as expected.  
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If Poisson’s ratio of 
1

4
    is applied, the contraction of the plate in y-direction is expected 

to be 0.25  times the elongation in x-direction. However, for a square lattice cell with 

stiffness parameters obtained with the “Equations-matching” method, a length increase in 

x-direction of 0.32 times the length increase in y-direction is found. When stiffnesses are 

applied that are obtained with the “Hrennikoff” method, the ratio between strain in x- and 

y- direction is as expected. Similarly, substituting Poisson’s ratio 0    should give zero 

diagonal spring stiffness, such that there is no deformation in y-direction. This is only the 

case for the spring stiffnesses derived with the “Hrennikoff” method.  

 

Figure 3-2: Square lattice cell in uni-axial stress condition. F is the load that is transferred to the lattice cell 

Only the parameters derived with “Hrennikoff” method result in the expected Poisson’s 

effect in the lattice model. To check the applicability of these parameters to simulate 

dynamic behaviour of an ice plate, the dynamic verification exercise from Chapter 2 is 

repeated, where a simply supported plate under cyclic loading conditions was studied. 

Hereto, the stiffness parameters of the lattice connections are changed from values 

obtained with the “Equations-matching” method to values obtained with the “Hrennikoff” 

method. Stiffnesses from the “Hrennikoff” method are associated with a thin plate and 

therefore do not include out-of-plane shear stiffness. This is included as per “Equations-

matching” method (equation (2.23)). A grid of 19x31 masses and Poisson’s ratio of 0.15    

was selected to generate results. Other parameters are reported in Sections 2.4 and 2.5. 

For comparison, the same simulation is done with the stiffnesses from “Equations-

matching” method and reduced Poisson’s ratio of 0.15  . 

Normalised deflection and rotation at the loading point for varying frequency are presented 

in Figure 3-3 and Figure 3-4 respectively. For low loading frequency, there is good 

agreement between lattice model and continuum response, for stiffnesses derived with 
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both methods. For higher frequencies, the results obtained with the lattice model deviate 

from the continuum results and the deviation is slightly larger and observed at lower 

frequencies with the lattice model with “Hrennikoff” stiffnesses.  

 

 

Figure 3-3: Amplitude of the deflection at the point under the load, normalized by the deflection of the same 

point under static load as function of the loading frequencies for a continuum and a lattice with stiffness 

parameters derived with the “Equations-matching” and the “Hrennikoff” method 
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Figure 3-4: Normalized amplitude of the rotation in x-direction at the loading point as function of the loading 

frequency for a continuum and a lattice with stiffness parameters derived with the “Equations-matching” and 

the “Hrennikoff” method 

The most relevant processes in failure of ice interacting with sloping structures are 

associated with the lower frequencies, where both methods provide good agreement with 

the continuum. The parameters obtained with “Hrennikoff” method result in proper 

inclusion of the Poisson effect in the lattice cells. Therefore, the parameters derived with 

this method are used for further study of sea ice fracture in this thesis: 

2
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,
(1 )

r axi
G D   (3.24) 

, (1 3 )
1

 with 
3

t axi
G D    (3.25) 

,t dia
G D  (3.26) 

For 
1

3
    the stiffness parameters derived with both methods are in agreement. This is a 

typical value for sea ice and therefore this value is used in practical examples in this 

document.  

 

3.5 Discussion 

The Poisson effect cannot be captured with the lattice model that was derived in Chapter 

2. This could mean that a lattice model with a regular mesh and only closest neighbour 

interactions is only applicable for modelling of a shear deformable plate loaded in-plane 

and out-of-plane in case Poisson’s ratio equals  
1

3
    .  

The limit of Poisson’s ratio is a known problem in lattice models composed of translational 

springs with central forces based on distance alone (Donzé and Magnier, 1995; Hrennikoff, 

1940; Pan et al., 2018). Different Poisson's ratios can arise from deviations, such as non-

central forces between particles in the solid, forces which do not depend on distance alone, 

or anisotropy (Lakes, 1991). 

One of the solutions described in literature is the inclusion of shear springs (Kawai, 1978; 

Zubelewicz and Bažant, 1987; Zhao et al., 2011), giving a similar model to that derived with 

the “Hrennikoff” method in this Chapter. These models are not directly linked to those of 

the classical plate models, such as Mindlin-Reissner plate theory, which is the case with the 

model derived in Chapter 2. Other solutions to the limit of Poisson’s ratio of lattice models 

described in literature include addition of an energy term for the resistance to volume 

change of the lattice cell (Grassl et al., 2006), introducing an extra fourth-dimensional 

interaction to the lattice (Zhao, 2017), inclusion of angular springs (Ostoja-starzewski, 2002) 

and introducing anisotropy (Kot and Nagahashi, 2017). 

A lattice model that corresponds with classic continuum theory could perhaps be created 

by including additional degrees of freedom, dimensions, or active energy supply. With a 
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lattice model with a regular mesh and only closest neighbour interactions a corresponding 

model is limited to Poisson’s ratio  
1

3
   . 

 

3.6 Conclusions 

Parameters of the lattice model are derived to include in-plane deformations, such that, 

combined with the work presented in Chapter 2, in the long-wave limit the lattice dynamics 

reduces to the plate equations of a shear deformable plate loaded in in-plane and out-of-

plane direction.  

Alternative spring stiffnesses for the lattice model were derived based on the method 

presented by Hrennikoff (1940). A study of the Poisson effect showed discrepancies 

between theory and deformations found with the lattice model, when applying stiffness 

parameters obtained with the original method, but not when stiffness parameters derived 

with the method based on the work by Hrennikoff (1940) were used.   

The steady-state response of the lattice model, representing a simply supported plate of 

ice, to a sinusoidal in time point load is computed and compared to that of a corresponding 

continuum plate, using original stiffnesses and those derived with the method based on 

Hrennikoff (1940). For low loading frequency, there is good agreement between lattice 

model and continuum response, for stiffnesses derived with both methods. For higher 

frequencies, the results obtained with the lattice model deviate from the continuum results 

and the deviation is slightly larger and observed at lower frequencies with the lattice model 

with “Hrennikoff” stiffnesses. 

The most relevant processes in failure of ice interacting with sloping structures are 

associated with the lower frequencies, where both methods provide good agreement with 

the continuum. The parameters obtained with “Hrennikoff” method result in proper 

inclusion of the Poisson effect in the lattice cells. Therefore, the parameters derived with 

this method are used for further study of sea ice fracture.  

For Poisson’s ratio of 
1

3
   the stiffness parameters derived with both methods are in 

agreement. This is a typical value for sea ice and therefore this value is selected for practical 

examples of ice failure in the next Chapters of this document.  
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The limit of Poisson’s ratio is a known problem in lattice models composed of translational 

springs with central forces based on distance. A lattice model that corresponds with classic 

continuum theory could perhaps be created by including additional degrees of freedom, 

dimensions, or active energy supply. With a lattice model with a regular mesh and only 

closest neighbour interactions a corresponding model is limited to Poisson’s ratio  
1

3
   . 
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4 
4 Failure criteria for simulation of sea-ice fracture in 

interaction with a sloping structure2 

In this Chapter, failure criteria are derived to simulate ice failure in interaction with sloping 

structures. In the second and third Chapter, the lattice model for in- and out-of-plane 

deformations of a shear deformable plate is described and it is shown that the equations of 

motion of the plate match the Mindlin Reissner equations in the long wave approximation. 

By linking the lattice model to continuum theory following the method by Hrennikoff (1940), 

the Poisson effect is accounted for.  

The main focal area of this chapter is the derivation of failure criteria for a 2D lattice model 

for sea-ice, considering both in-plane and out-of-plane deformations. The criteria are based 

on first principles, enabling physically sound simulation of failure processes that occur in 

                                                                 

This chapter is submitted to Cold Regions Science and Technology to be considered for publication. 

Parts have been moved to other Chapters for consistency. 



70 

 

ice-structure interaction. The failure criteria are linked to ice property measurements and 

failure envelopes are presented. Near a crack tip, strains concentrate. After deriving failure 

criteria for an intact plate, strain concentrations are studied and special failure criteria for 

application near crack tips are derived and linked to field measurements, completing the 

set of failure criteria that is required to simulate ice-structure interaction scenarios. It is 

shown that the failure criteria have a minimal dependence on cell-size and -orientation. The 

lattice model and failure criteria are further validated in Chapter 5 and 6 by simulation of 

field and basin tests. 

 

 

4.1 Failure criteria for a continuous ice plate 

For cells in an intact mesh, i.e. for those that are not located near a crack-tip or other 

discontinuities where stresses concentrate, failure criteria are derived in this section. First, 

the failure criteria for in-plane deformations are derived and linked to multi-axial 

compression and tension measurement data. Then the failure criteria for out-of-plane 

bending deformations are derived and linked to measurement parameters. By translating 

deformation in bending into corresponding strain at the outer fibre of the plate, bending 

and tensile deformations can be combined into a single failure criterion.  Near 

discontinuities the mesh size influences the magnitude of local deformations and special 

failure criteria are required. For the latter conditions failure criteria are derived in Section 

4.2.    

 

4.1.1 In-plane tensile and compressive failure 

Failure of sea-ice plates in in-plane loading has been studied by Richter-Menge and Jones 

(1993) for tensile loading and by Schulson et al. (2006) for multi-axial compressive loading. 

Results were presented in a combined failure envelope in the latter study, and copied here 

for reference in Figure 4-1. Square shaped ice plates were loaded in two directions with 

stresses 
11

  and 
22

  and failure load combinations are indicated with dots. Compressive 

loading has a positive sign in the figure. Different loading conditions resulted in different 

failure modes in the tests: splitting under unconfined loading, Coulombic shear friction 

under lower confinement and spalling under higher confinement. Figure 4-1 shows the 

effect of multi-axial loading: under low confinement the compressive loading in one 

direction influences the magnitude of the load that gives failure in the other direction.  
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The objective of this section is to define failure criteria for tensile and compressive loading 

of an ice plate, such that the different failure modes are captured and the effects of multi-

axial loading are accounted for. The failure envelope in Figure 4-2 is achieved, which, when 

compared with Figure 4-1, captures well the tensile failure and multi-axial compressive 

failure under low confinement. To simulate spalling failure under higher confinement, 

where cracks parallel to the plate surface are created, a 3-dimensional model is required 

for accurate simulations. In this study, a 2-dimensional model is considered and a limiting 

failure criterion is defined to approach the failure envelope in spalling conditions.  

 

Figure 4-1: Comparison of the brittle failure envelopes 

at -10°C for first-year sea ice and freshwater ice [from 

Iliescu and Schulson (2004)] of similar grain size and 

growth texture. From: Schulson et al. (2006). Note that 

tension is negative in this figure and compression 

positive 

 Figure 4-2: Failure envelope for the lattice model  

 

Compressive failure criterion 

Figure 4-3 shows a plate with an internal lattice cell, which has orientation   with respect 

to the x- axis. The plate has free boundaries and is loaded in its plane, with stresses 
xx

  in 

x-direction and yy
  in y-direction. Tensile loading is of positive sign. Appendix 1 explains 

how the axial and shear strains of the connections in the lattice cell under these loading 

conditions are calculated under varying angle  .  
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Figure 4-3: Plate loaded in multi-axial tension with internal lattice cell oriented with rotation α relative to the x-

axis 

 

Figure 4-4 presents Mohr diagrams for the axial 
11
  versus shear strain 

12
  in the axial 

connections, multiplied by Young’s modulus over load ratio  /
xx

E  , for varying 

orientation of the lattice cell from 0 to 180° and varying ‘confinement’ (relative magnitude 

of yy
   compared to 

xx
 ). Uni-axial loading is represented with the solid curve. Poisson’s 

ratio of 
1

3
   was selected as a representative value for sea ice. Each orientation    of the 

lattice cell has a corresponding point on the Mohr circle. The radius and centre point of the 

circle are not affected by the orientation of the lattice cell. 

The radius of the Mohr diagram for axial and shear strain in the axial connections reduces 

with increasing confinement (dashed and dash-dotted curve). This characteristic is used to 

capture the increasing capacity of the plate with increasing confinement in multi-axial 

compressive loading; a failure criterion for compressive loading is therefore based on axial 

and shear deformation of the axial connections. 
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Figure 4-4: Mohr diagram of normal strain and shear strain for uni-axial and multi-axial compressive loading.  

 

Figure 4-5: Failure occurs if the point on the Mohr diagram at 2x27° with the tensile direction exceeds the linear 

threshold curve (dashed line). The solid lines indicate Mohr diagrams for different loading conditions: for the 

larger circle σxx=-30MPa and σyy=-6MPa and for the smaller circle σxx=-5MPa and σyy=-0. For this plot σc=E=5MPa 
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Applying a Mohr-Coulomb type failure criterion (Coulomb, 1776) would impose failure to 

occur if the Mohr diagram for stress would exceed a curve with a given slope and intercept 

parameter. A similar type of failure criterion is applied in the lattice model. In compressive 

loading conditions under low confinement, the ice failed in Coulombic shear faulting mode 

in the tests by Schulson et al. (2006). The macroscopic plane of the fault had an angle of 

27 4� � with respect to the main loading direction. Failure is set to occur if the point in the 

Mohr diagram corresponding to an angle of 27° with respect to the least-loaded direction 

(2x27° in the Mohr diagram) exceeds the threshold curve, indicated by the dashed line in 

Figure 4-5.  

From the strains in the connections of a lattice cell, mean (
mean
 ) and radius ( R ) of the 

Mohr circle can be derived that define the deformations at the location of that cell, 

independently of its orientation:  

11 22

2
mean

 



  (4.1) 

 

 

2 2

11 12

2 2

22 21
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mean

mean

R

R





  

  

  

  

 (4.2) 

These parameters are used to find the shear strain 12;  at orientation 27   , under 

which failure was observed in the tests: 

12;
sin2R    (4.3) 

Here 
11
  and 

22
  are the axial strain and 

12
 and 

21
 are  the shear strain in local xɶ  - and yɶ

-direction of the lattice cell respectively. 

The slope and intercept parameter of the dashed failure curve in Figure 4-5 were fitted to 

the measurement data presented in the paper by Schulson et al. (2006): 3.548 and 

0.747 c

E


 respectively, where 

c
  is the critical compressive stress in unconfined (uni-axial 

loading) condition; ~5MPa in the tests.  
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The critical shear strain is the shear strain at which the Mohr diagram crosses the failure 

curve: 

 12;
3.548 cos2 0.747 c

mean
R

E
 


       (4.4) 

The criterion for compressive failure is: 

 sin2 3.548 cos2

0.747

mean c
R R

E

     
  (4.5) 

 

Tensile failure criterion 

The tests reported by Schulson et al. (2006) showed splitting under unconfined loading. 

Schematic sketches of the failure modes of columnar-grained ice are presented in Schulson 

(2001) and are linked to different places in the failure envelope. In the tensile and tensile-

compression quadrants the ice fails perpendicular to the main loading direction in case of 

dominating tensile loading, or in-line with the main compressive direction in case of 

dominating compression load. The transition to Coulombic shear faulting mode where the 

macroscopic plane of the fault had an angle of 27 4� � with respect to the main loading 

direction takes place around the change in loading condition from the tensile-compressive 

to the compressive quadrant.   

Figure 4-6 provides a zoom-in of the tensile part of the failure envelope that was established 

for the lattice model. In line with observations, the tensile failure criterion applies to the 

tensile and tensile-compressive quadrant and transition to the compressive failure mode, 

where the orientation of the fault plane changes, takes place at the transition to the 

compressive quadrant.  
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Figure 4-6: Failure envelop with a zoom-in on the tensile failure part. Tensile failure is indicated with the solid 

lines and compressive failure and spalling with the dashed lines.  

 

Figure 4-4 shows Mohr diagrams for uni-axial tensile and compressive loading of magnitude 

of the tensile and compressive strength of the ice. Under compressive loading, depending 

on the amount of confinement, there are tensile strains present in the material due to the 

Poisson effect and part of the circle is on the positive side of the horizontal axis, which could 

result in a tensile failure plane perpendicular to the compressive loading direction if the 

strains would exceed a certain threshold.  Under tensile loading conditions, the circle is for 

the largest part on the positive side of the horizontal axis, corresponding with a tensile 

failure plane in-line with the tensile loading direction, if the strains would exceed a certain 

threshold.  

For the tensile condition, again a similar-to-Mohr-Coulomb type of failure criterion is 

applied in the lattice model, however now failure is set to occur if the point in the Mohr 

diagram in the tensile strain direction corresponding to an angle of 0° with respect to the 

tensile strain direction exceeds the threshold curve, indicated by the dashed lines in Figure 

4-7.  
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The failure criterion for tensile failure is: 

1

2

1

2

with

1
1

1
1

1
1

1
2

1

mean t

c
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F E
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F

 



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


 










 

     
  
 

 (4.6) 

where 
mean
  and R are the mean and radius of the Mohr circle respectively. In the previous 

section on compressive failure it is explained how these are derived. Factors 
1

F   and 
2

F  

define the shape of the failure envelope (Figure 4-6) and depend on the ratio between the 

crushing strength and tensile strength and Poisson’s ratio.  

 

Figure 4-7: Failure occurs if the point on the Mohr diagram in the tensile direction exceeds the threshold (dashed 

lines). The solid lines indicate Mohr diagrams for different loading conditions: for the larger circle σxx=-5MPa and 

σyy=0MPa and for the smaller circle σxx=0.6MPa and σyy=0MPa. E =5MPa was used to construct this figure.  
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The tensile failure criterion results in the same failure mode for loading in the tensile and 

tensile-compressive quadrant, corresponding with observations from tests. The shape of 

the failure envelope is similar to that of the stress states that were measured in the winter 

sea ice cover on the Arctic Ocean by Richter-Menge et al. (2002) and plotted in the principal 

stress space by Weiss et al. (2007). 

In case Poisson’s ratio is set to t

c




, which equates to 0.12  with the compressive and 

tensile strength from Schulson et al. (2006),  the factors  
1

F   and 
2

F  are both 1 and the 

failure criterion reduces to: 

t

mean
R

E



    (4.7) 

In this case it is not necessary to assume Mohr-Coulomb like behavior to follow the failure 

envelope for tension. Studies of Poisson’s ratio of ice are summarized by Timco and Weeks 

(2010). It is concluded that the Effective Poisson's ratio for sea ice is still very poorly 

understood and that it is influenced by many factors such as loading rate, temperature, 

grain size, grain structure, loading direction, state of microcracking, etc. There is no clear 

evidence that Poisson’s ratio for ice should be 
1

3
  , which is often used in models and 

calculations. However, Poisson’s ratio for the current study is kept to 
1

3
  , in line with 

other studies, as it is not proven that Poisson’s ratio is linked to the failure envelope and 

there are no other recommended values for ice.  

 

Spalling failure criterion 

The deformations in the diagonal connections under multi-axal in-plane loading are derived 

in Appendix 1. When the deformations in the two diagonal connections (
1D

  and 
2D

 ) in the 

lattice cell are added-up, the total deformation depends on the applied loading, but not on 

the orientation of the lattice cell: 

   1 2 1 1
yy

D D

xx xx

E 
  

 

 
    

 
 (4.8) 
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The deformations of the diagonal connections show opposite behaviour to the 

deformations of the axial connections. In case a cell is for example loaded in tension in both 

x- and y- direction, the tension in both directions will contribute to tensile strain in the 

diagonal connections of the lattice cell. The axial connections on the other hand will 

experience a tensile strain from the tensile loading in the direction of the connection, but 

will compress due to tensile loading in the opposite direction. Due to this compression, the 

capacity to withstand additional tensile loading increases for the axial connections. The 

capacity of the diagonal connections on the other hand reduces as the load in both 

directions contributes to strain in the same direction in the diagonal connections. In the 

failure envelope the behaviour of the diagonal connections results in a negative slope of the 

failure curve, whereas the behaviour of the axial connections gives a positive slope. This 

characteristic of the diagonal connections is used to derive the spalling failure criterion. 

The ice tested in multi-axial compressive loading under higher confinement failed in 

spalling, across the columns, in through-thickness direction and cracks were created that 

ran roughly parallel to the plate surface. Spalling failure cannot be accurately simulated with 

the two-dimensional lattice model as the crack location with respect to the plate thickness 

is not simulated. However, a failure criterion for high confinement can be included to set a 

limit to the loading. The deformation in the diagonal connections in the lattice model is used 

here to define the failure criterion: 

   1 2
1 ,

spall

D D
E


      (4.9) 

where spall
  is a parameter that defines the spalling limit under highly confined compressive 

loading. 

 

Failure envelope for tensile and compressive failure 

By applying the failure criteria that were defined in this section (using deformation in axial 

connections for compressive failure under low confinement and tensile failure and 

deformation in the diagonal connections to define onset spalling failure under high 

confinement), the failure envelope in Figure 4-2 is obtained. The following critical stresses 

were used as input for this figure: 5
c

   MPa, 0.6
t

  MPa and 28
spall

   MPa. 

Comparison with the failure envelope in Figure 4-1 shows that for lower confinement and 

tensile loading the failure envelope corresponds with measured data. For higher 

confinement conditions, some discrepancies are present, but the overall trends of failure 
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under confined loading and the spalling limit are captured. A 3-dimensional model is 

required to simulate the spalling behaviour correctly. 

 

4.1.2 Out-of-plane bending failure  

Timco and Weeks (2010) describe the cantilever beam test and the simple beam test as the 

options for flexural strength analysis of ice. To find the flexural strength from these tests, it 

is assumed that the ice forms a homogeneous beam and deforms in a linear-elastic manner 

such that the failure stress is present at the outer fibre of the material. Similar to the 

assumptions that are made for the flexural strength measurements, the lattice model 

behaves linear-elastically prior to failure. It is assumed that the highest bending strains are 

present at the outer fibre of the material and that both compressive and tensile failure can 

occur at these locations, like in the in-plane failure modes. Strains from both upward and 

downward bending conditions are considered.  

 

Figure 4-8: The failure envelope for bending (right) and its relation to the failure envelope for in-plane loading 

conditions (left). To construct this Figure, it was assumed that tensile and flexural strength as well as 

compressive strength and strength in bending-induced compression have the same value. 

 

The failure envelope for bending that is constructed is presented in Figure 4-8, where it is 

compared to the failure envelope for in-plane loading. Bending contributes to strains at 

both top and bottom of the ice sheet and therefore the failure envelope is symmetrical 
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about the line 
11 22

   . Similar to the case of in-plane tensile failure, for bending failure 

a failure criterion for the axial springs is derived. No appropriate test data for multi-axial 

bending failure was found, and therefore the shape of the failure envelope was based on 

the failure envelope for in-plane deformation. In the next section, it is shown how the in-

plane and out-of-plane failure criteria can be combined and how the difference between 

tensile and flexural strength can be captured. 

 

Tensile failure due to bending 

Figure 4-9 shows a plate with an internal lattice cell, which has orientation   with respect 

to the x- axis. The plate has free boundaries and is loaded in out-of-plane bending, by 

moment per unit length 
xx

m  in x-direction and yy
m  in y-direction. Appendix 3 explains how 

the bending and torsional deformations of the connections in the lattice cell under these 

loading conditions are calculated for varying angle  . The bending and torsional rotation 

in the lattice cell are normalised with the cell size and multiplied by half the plate thickness, 

to find the strain at the outer material fibre. 

 

Figure 4-9: Plate loaded in multi-axial shear and bending with internal lattice cell oriented with rotation α 

relative to the x-axis 
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Figure 4-10 presents Mohr diagrams for the axial strain in the rotational spring 
11
  versus 

strain in the torsional spring
12
 , multiplied by 

2

h
 to find the strain at the outer fibre of the 

material and multiplied by Young’s modulus over load ratio, for varying orientation of the 

lattice cell from 0 to 180° and varying ‘confinement’ (relative magnitude of ;yy bending
   

compared to ;xx bending
 ). The bending stress is given by ; 2

6
xx

xx bending

m

h
   and 

; 2

6
yy

yy bending

m

h
  . Poisson’s ratio of 

1

3
 was selected as a representative value for sea ice. 

 

Figure 4-10: Mohr diagram for normal and torsional bending of the axial connections for multi-axial loading 

conditions on the tensioned side of the plate 

 

The Mohr diagram for bending, Figure 4-10, corresponds very well to the diagram for in-

plane loading, Figure 4-4, only it is mirrored about the vertical axis as the bending diagram 

is shown for the tensioned side of the plate. The failure criterion for bending can be derived 

in a similar manner to the failure criterion for tension in in-plane loading conditions. In 

addition, it allows to combine in-plane and bending failure into one failure criterion, which 

is further explained in section 3.3. 
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The mean 
mean
  and radius R  of the Mohr circle for the stress state associated with 

bending deformations are determined by:  

11 22

;
2 2

mean top

h 



   (4.10) 

2 2

; 11 ; 12
2 2

top mean top

h h
R             

   
 (4.11) 

for the top of the ice plate and  

11 22

;
2 2

mean bottom

h 



  (4.12) 

2 2

; 11 ; 12
2 2

bottom mean bottom

h h
R           

   
 (4.13) 

 

for the bottom of the ice plate. 

The failure criterion for bending follows by substituting 
mean
  and radius R  for top and 

bottom of the plate, multiplied by 
2

h
 for 

mean
  and R as well as substituting flexural 

strength f
  for tensile strength 

t
  in equation (4.6): 

1

2

2 2
mean

f

h h
F R

F E

 
  (4.14) 

The failure envelope for bending failure in the lattice is presented in Figure 4-8. The 

following critical stresses were used as input for this figure: 0.6
f

  MPa and ;
5

crit bending
 

MPa.   
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Separate upward and downward failure criteria 

A separate criterion for positive and negative bending could be included to account for 

differences in upward and downward bending that could be caused by inhomogeneous 

material properties of the ice over the thickness. In that case the failure criterion would be: 

1 ; ;
;

2

2 2
mean bottom bottom

f upward

h h
F R

F E

 
  (4.15) 

for upward bending and 

1 ; ;
;

2

2 2
mean top top

f downward

h h
F R

F E

 
  (4.16) 

for downward bending, where ,f downward
  and ,f upward

 are the flexural strength in downward 

and upward bending respectively.  

 

4.1.3 Combined bending and tensile deformations 

In this section, it is discussed that linear-elastic, homogeneous properties are a simplistic 

assumption for sea ice. In measurements of engineering properties of sea ice, a distinction 

is made between tensile and flexural strength. For combined bending and tensile loading 

conditions, the failure criteria that were derived for bending and tension are combined into 

a single criterion that accounts for both deformations. The bending deformation is hereto 

scaled with the ratio between flexural and tensile strength of the ice.  

A description of typical first year sea ice by Palmer and Croasdale (2013) is summarised 

here. Sea ice has a complex structure, which is dependent on its history, temperature and 

influence of salt. Snow often, but not always, forms a top layer. Below the snow sits a layer 

of ice that formed first, consisting of small and randomly oriented grains. Below that layer, 

the ice consists of columnar grains, which are elongated vertically, and are much larger than 

those closer to the surface. Vertical brine channels and pockets are present between the 

columnar grains, some of which connect the pocket to the sea beneath, leading brine to 

drain out. 

Timco and Weeks (2010) describe columnar and granular ice and differences in first-year 

and multi-year ice. Granular ice is usually isotropic. Columnar ice comes in two varieties. In 
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one, the ice properties in the horizontal plane are independent of direction. In the other, 

properties measured parallel to and perpendicular to the alignment direction can be quite 

different and reflect the mean current direction beneath the ice. There are differences 

between first year ice and multi-year ice which survived a summer melt season. In contrast 

to first-year ice, multi-year ice usually has a very low salinity. As such, there is little porosity 

in the ice and it is considerably stronger than first-year sea ice.  

The structure of sea ice is complex, consists of different layers and the parameters depend 

on the age, and influences of brine channels. The different micro-structures within the ice 

have different stiffness and strength, which is further affected by the presence of brine 

drainage channels. As such, it is simplistic to assume ice as a linear-elastic, homogeneous 

material.  

Measurements of engineering properties of ice usually combine the behaviour of the 

different layers and structures in the ice in stiffness and strength parameters of the ice 

sheet. Tensile strength and bending strength parameters are not necessarily the same for 

the same ice sheet and are measured with different methods. To be able to account for 

these engineering properties, this section shows how different values for tensile and 

bending strength can be incorporated in the lattice model.  

Tensile failure due to in-plane loading and out-of-plane bending is combined by evaluating 

the mean strains at the top and bottom of the plate, ;mean top
  and ;mean bottom

 : 

11 22 11 22

;
2 2 2

t

mean top

f

h    



 

    (4.17) 

11 22 11 22

;
2 2 2

t

mean bottom

f
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


 

   (4.18) 

as well as the radius of the Mohr diagram at the top and bottom of the plate, ;top
R and 

;bottom
R :  

2 2

; 11 11 ; 12 12
2 2

t t

top mean top

f f

h h
R

 
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 

   
            

   
 (4.19) 

2 2

; 11 11 ; 12 12
2 2

t t

bottom mean bottom

f f

h h
R

 
    

 

   
          

   
 (4.20) 
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The failure criteria for combined axial and bending deformation in tensile mode is now 

found by substituting ;mean top
 and ;top

R or ;mean bottom
 and ;bottom

R for 
mean
  and  R  in 

equation (4.6). 

In case of dominating in-plane compression, failure may take place due to a combination of 

in-plane compression and bending induced compression. The failure criteria for combined 

axial and bending deformation in compression mode for this condition are found by 

substituting ;mean top
 and ;top

R or ;mean bottom
 and ;bottom

R for 
mean
  and  R  in equation (4.5). 

 

4.2 Failure criteria at discontinuities 

Near a crack-tip or other discontinuities in a material, stresses and strains concentrate and 

the failure criteria derived in the previous section do not correctly predict failure at these 

locations. In this Chapter, the mesh dependency of strain concentrations in the lattice 

model is studied, using data from splitting and bending tests. Failure criteria with minimal 

dependence on cell size are derived for splitting and bending of a discontinuous plate, which 

replace the tensile failure criterion for cells next to a crack-tip.  

 

4.2.1 Tensile strain concentrations – Splitting 

Splitting of brittle materials is analysed using Linear Elastic Fracture Mechanics (LEFM) 

theory, developed by Griffith (1921). LEFM is applicable if non-linear material deformation 

is limited to a region around the crack tip that is small relative to the crack length. For ice 

plate sizes of engineering interest splitting can be accurately described with LEFM (Lu et al., 

2015b). Near the melting temperature creep has significant influence on ice behaviour and 

LEFM is no longer applicable (Mulmule and Dempsey, 1999). In case there is significant 

plastic deformation at the crack tip, application of LEFM would under-predict the strength 

of the ice, which could lead to non-conservative ice loading when applied in engineering 

solutions. Mulmule & Dempsey (2000) provide size requirements for ice specimen for which 

LEFM is applicable. Ice dimensions for ice-structure interaction are large and it is assumed 

that the strongest ice, giving governing loads, has temperatures lower than the melting-

point and therefore LEFM can be applied.  

A typical problem in fracture mechanics of ice is that of an edge-cracked elastic square plate 

with a crack of length a  loaded with force F   at the crack mouth, as shown in Figure 4-11. 

Field tests for an edge-cracked ice plate have been described in Adamson and Dempsey 
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(1998) and Lu et al. (2015a). Using the method derived by Westergaard (1939), the normal 

stress near the crack tip, is given by: 

2

I

n

K

r



  (4.21) 

where 
n

    is the normal stress at distance r  from the crack tip and 
I

K   is the stress intensity 

factor of the opening mode (see for example Anderson (1991)).  

 

Figure 4-11: Edge-cracked elastic square plate loaded at the crack mouth  

This problem was analysed by Potyondy and Cundall (2004) with a bonded-particle model 

for rock and is  studied with the lattice model in a similar manner. The lattice cells are 

presented in Figure 4-12. A failure criterion for the axial connections in the first cell in front 

of the crack tip is derived in this section. Deformations in the connections of the lattice cell 

represent average deformations that occur at the location of that lattice cell. The 

representative normal stress ;n d
  in the first cell is found by integrating the normal stress 

over the length of the lattice cell and dividing by this length: 

;

0

21 1

2

d

I I

n d

K K
dr

d r d


 
   (4.22) 
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For a uniform load, the failure criterion for in-plane tensile deformation is derived in the 

previous section, equation (4.6). Substituting ;n d
  for 

t
  gives the failure criterion for the 

lattice cell near the cracktip: 

1

2

2 1mean IC
F R

F E

K

d






  (4.23) 

where 
IC

K  is the critical stress concentration factor that determines whether a crack 

propagates or not, which can be obtained from measurements.  

 

Figure 4-12: Splitting test with the lattice model of 60x60 nodes. a/L=0.3 

For these loading conditions, the deformation of connection 1-2 as indicated in Appendix 2, 

is not the same as that of connection 3-4 and the same holds for connection 1-3 and 2-4. 

mean
  is calculated by averaging the axial strain in all axial connections in the lattice cell:  

11,1 2 22,1 3 11,3 4 22,2 4

4
mean

   
      

  (4.24) 
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Radius R is the average radius from the deformations of the axial connections in the lattice 

cell:  

   

   

2 22 2

11,1 2 12,1 2 11,3 4 12,3 4

2 22 2

22,1 3 21,1 3 22,2 4 21,2 4

/ 4
mean mean

mean mean

R

     

     

   

   

        
       

 (4.25) 

 

In these equations the subscripts 1-2, 3-4, 1-3 and 2-4 indicate the connection for which the 

strain is calculated when using equations (A.2.13) to (A.2.16). For bending, which is 

discussed in the next section, mean and radius of the Mohr diagram are evaluated by 

averaging over the different connections in a similar manner.  

 

Validation 

To confirm the applicability of the splitting criterion, comparison is made to analytical 

prediction of crack propagation. Dempsey et al. (1995) derived weight functions for finite 

edge cracked geometries. Parameters for a square plate are provided in Mulmule & 

Dempsey (1998). The applied load on the edge cracked plate is normalized using the stress 

intensity factor, plate thickness and length, giving the normalised load Fɶ : 

I

F
F

tK L
ɶ  (4.26) 

The analytical normalised load for different initial crack lengths is compared to results 

obtained with the lattice model in Figure 4-13. A ratio of 5
t

c



  was applied. For / 0.3a L   

the results obtained with the lattice model compare well with those obtained analytically. 

For smaller crack length, the solution obtained with the lattice model deviates slightly from 

the analytical solution, especially for very short crack lengths. The width of the crack is 

assumed equal to one cell size and this could cause the differences, which are larger for a 

larger cell size. The relative crack length for which unstable crack propagation occurs (the 

top of the curve) is predicted well with the lattice model, for both cell sizes.  
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Figure 4-13: Analytical normalised load for different initial crack length of the edge-cracked plate that was 

obtained using the weight functions from Dempsey et al. (1995) and parameters from Appendix 1 of Mulmule 

and Dempsey (1998) , compared to results obtained with the lattice model 

 

Full scale test simulation  

As an example, an ice splitting test that was executed by Dempsey et al. (1999) at Resolute, 

N.W.T. in April/May 1993, is simulated with the lattice model. In the testing campaign, 

square plate specimens with dimensions of 0.5mx0.5m to 80mx80m were cut out of the ice 

and an initial crack was made in the plate from the midpoint of a side towards the centre of 

the plate. A hydraulic flatjack was used to apply a load at the crack mouth. Displacement of 

the crack mouth and the original crack tip were registered. A schematic drawing of the test 

set-up is presented in Adamson & Dempsey (1998). A test with a relatively large specimen 

size of 30x30m was selected to simulate with the lattice model as the larger dimensions are 

representative for ice-structure interaction on full scale and crack opening displacement 

versus flatjack pressure was reported in detail for this test in Mulmule & Dempsey (1999). 

An overview of the ice properties that were used to simulate the test with the lattice model 

are presented in Table 4-1. A schematic overview of the structure of the 60x60 nodes lattice 

model during the splitting test is presented in Figure 4-12. 
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Table 4-1: Parameters used to simulate ice splitting test with the lattice model 

Parameter Symbol Quantity Unit 

Plate dimensions Lx x Ly 30 x 30 m 

Ice thickness t 1.8 m 

Initial crack length a 9 m 

Loading rate  dF/dt 303 N/s 

Young’s modulus ice E 8.7 GPa 

Poisson’s ratio ν 0.33 - 

Critical stress intensity factor  KIC 238 kPa√m 

 

For one of the 30x30m test specimen, crack initiation occurred at approximately 1000 s, 

followed by a period of stick-slip stable crack growth. Unstable fracture occurred at 1350s. 

This behaviour was seen for only one of the 30m specimens tested; the other ones failed by 

unstable crack growth after crack initiation (Mulmule and Dempsey, 1999).  

For all simulations in this thesis an adaptive double precision ordinary differential equation 

solver for Fortran, DVODE_F90, was used, with a specified relative tolerance criterion of    

10-8 and an absolute error tolerance of 10-10. Therefore, the timestep was not continuous 

over the simulations, up to the moment of failure. Upon failure, the timestep was manually 

defined as it was found the solver did not adapt appropriately to simulate the crack 

propagation. A small timestep compared to the duration of the interaction process was 

selected and it was confirmed by variation of the timestep that there was a negligible 

influence of the timestep on the results. The lattice cells in the system are only connected 

to their direct neighbours, resulting in a sparse stiffness matrix, which was specified in the 

solver settings. Once the failure criterion in one of the lattice cells was met, this cell was 

removed by setting the stiffness of the diagonal connections to zero and by removing half 

of the original stiffness of the axial connections. Upon removal of the cell, the next time 

step was started assuming that the positions and velocities of the particles are continuous 

functions of time. The time step was not refined around the moment of failure as it would 

elongate the computations significantly. This approach introduces an error at every failure 

event as the exact moment of failure is not captured. It was found, however, that the crack 

pattern was repetitive for different values of timestep and tolerance. Based on this 

observation it was concluded that the adopted procedure is acceptable. A timestep of 

3.810-4 s was applied for the simulation of this splitting test during crack propagation. A 
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hydrodynamic damping coefficient of 0.1
s

k h   was applied as well as a material damping 

coefficient of 10-3. Effects of material damping and hydrodynamic damping of the applied 

magnitude on the results of the simulations are very small. Damping is further discussed in 

Chapter 3. 

Results from the tests with the lattice model are presented in Figure 4-14. Crack Mouth 

Opening Displacement (CMOD), Crack Opening Displacement (COD) in the middle of the 

crack and Crack Tip Opening Displacement (CTOD) are plotted against loading time. The 

crack initiation occurred at 1186s and unstable crack growth followed, which can be seen 

by the slope change to almost vertical in the graph. This is in line with expectations; in Figure 

4-13 the a/L-ratio of 0.3 results in unstable crack propagation as this point is beyond the 

peak of the graph. CMOD at crack initiation was 1250µm in the test and 722µm in the 

simulation with the lattice model. CTOD was 35 µm in the test and 19µm in the simulation 

with the lattice model. A Modulus of 8.7GPa was computed by Dempsey et al. (1999), from 

the CMOD and used in the simulation. Application of a lower Modulus (5GPa) would result 

in displacements close to the measured displacements (1255µm for CMOD and 33 µm for 

CTOD). This is in line with typical values for the Effective Modulus of ice, which are often 

ranging between 1 and 5 GPa (Timco and Weeks, 2010). Changing the modulus does not 

affect the time of crack initiation.  

 

Figure 4-14; Crack Mouth Opening Displacement (CMOD), Crack Opening Displacement (COD) in the middle of 

the crack and Crack Tip Opening Displacement (CTOD) from the simulation with the lattice model 

This example shows that the time of onset of crack propagation can be approximated with 

the lattice model, when applying the failure criteria for splitting. In the field, 
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inhomogeneities are present in the ice, resulting in discrepancies with numerical 

simulations, such as the period of stick-slip stable crack growth in this example. 

When a crack propagates in the lattice, an entire cell is assumed to break out near the tip 

of a crack, lengthening the crack with the cell length. Therefore the length of the cell was 

chosen to average the deformation. The crack path studied in this section follows a straight 

line through the lattice cells. The failure criterion that is derived for splitting conditions, 

determines based on local deformations of the cell and the cell size whether or not the cell 

will fail and therefore whether or not the crack will propagate and in which direction. The 

stress distribution near the crack tip and with that the local load distribution over the lattice 

cells is determined by the overall loading condition and crack shape. Strains in the lattice 

cells in multiple directions are considered to determine the onset of failure, by making use 

of the Mohr diagram. The effects of orientation of the cell relative to the crack propagation 

direction are therefore considered small.  

 

4.2.2 Bending strain concentrations – Flexural strength test 

Flexural strength is an important parameter for determining ice loading on sloping 

structures as fracture due to bending is often a governing failure mode. As described in the 

international standard for Arctic offshore structures engineering ISO19906 (ISO, 2010), the 

flexural strength of ice is either estimated by an in situ beam test or derived from 

measurements of the physical properties temperature and salinity which in turn give the 

brine volume of the ice. Timco and Weeks (2010) describe the cantilever beam test and the 

simple beam test as the options for flexural strength analysis.  

Figure 4-15 shows an in-situ cantilever beam test. Two long sides and one short side of a 

beam are cut free from the ice and one short side is left attached. A load of increasing 

magnitude is applied at the free end until the beam fails. The failure load and often also 

displacement is recorded. For further information, a standardized testing method for in-situ 

cantilever beam tests is described by Schwarz et al. (1981). Stress concentrations can be 

prevented by drilling stress relief holes near the beam root (Frederking and Svec, 1985). To 

study strain concentrations in bending, a flexural strength test is simulated with the lattice 

model in this section and the concentration of strains near the beam root is analysed. In the 

numerical simulation, no stress relief holes are applied.  

Karulina et al. (2013) describe cantilever beam tests that were executed at Van Mijen Fjord. 

Ice parameters obtained from these tests are used as a basis for simulation of the flexural 

strength tests with the lattice model. Parameters used are presented in Table 4-2.  
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Figure 4-15: Students perform an in-situ beam test in Svalbard to measure the flexural strength of the ice (Photo: 

T.S. Nord) 

Table 4-2: Parameters used to simulate with the lattice model tests executed by Karulina et al. (2013) 

Parameter Symbol Quantity Unit 

Ice thickness h 0.39 m 

Beam length Lb 2.30 m 

Beam width w 0.46 m 

Salinity ice S 2.7 ppt 

Flexural strength ice  σf 0.186 MPa 

Loading rate F’ 236 N/s 

Temperature ice  T -1.6 °C 

Young’s modulus ice E 1.3 GPa 

Poisson’s ratio ν 0.33 - 

Ice density Ρice 920 kg/m3 

Sea water density ρwat 1025 kg/m3 

Compressive strength ice  σc 5 σf MPa 
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To estimate the Young’s modulus of the ice, a similar process is used as described in the 

paper by Karulina et al. (2013). First the brine volume is determined from the salinity and 

temperature of the ice using the Frankenstein and Garner (1967) equation: 

  49.185
0.532

b
v ppt S

T

 
   

 
, -22.9<T<-0.5°C. Then the Young’s modulus is determined 

using the Vaudrey (1977) equation, which is based on beam tests executed in Antarctica 

and Alaska in the 1970ies:   5.316 0.436
b

E MPa v  .  Because Poisson ratio, ice density 

and seawater density were not measured, typical values were used for these parameters 

and a ratio of 5
t

c



  was applied. 

A plate of finite size, 4.6x4.6m was modelled and clamped at the edges to simulate support 

of a large ice plate. Figure 4-16 shows the deformed shape of the beam, as simulated with 

the lattice model of different mesh size. The horizontal dimensions x and y and vertical 

deflection w  are not plotted on the same scale. The global deformed shape of the beam is 

the same for all mesh sizes. The deflection of the beam tip is 2.0 mm.  

 

a b 

Figure 4-16: Deformed shape of the ice during the flexural strength test, simulated with the lattice model of a) 

5x21 nodes beam and b) 9x41 nodes beam cut out. Horizontal x- and y- and vertical w dimensions are shown on 

different scales.  



96 

 

Locally there are differences in the results obtained with different mesh sizes. Deformations 

near the beam root are relatively large; comparable with stress concentrations near the 

crack tip in the splitting test of the previous section. For the beam test it is often assumed 

that the bending stress at the beam root at the moment of failure can be determined based 

on the stress at the root of a clamped beam: 

; 2

6
c b

f beam

F L

wh
   (4.27) 

where 
c

F  is the failure load, 
b

L is the length of the beam w  is the width of the beam and h  

the thickness. Like for the un-cracked plate in bending in section 4.1.2, the deformation of 

the axial connections is multiplied by plate thickness to find equivalent strain in the outer 

fibre of the material.  

The failure criterion for bending that was derived in section 4.1.2 is repeated here: 

1

2

2 2
mean

f

h h
F R

F E

 
  (4.28) 

Substituting ;f beam
 for  f

 and bringing all variables to the left-hand side of the equation 

gives: 

21

2

2 2 1
6

mean

c b

h h
F R

Ewh

F F L

 
  (4.29) 

Figure 4-17 shows the left-hand side of equation (4.29) for different location x, normalised 

by half the beam width, along the root of the beam (i.e. the first row of lattice cells on the 

beam near the connection to the rest of the plate), for different cell sizes of the beam in the 

lattice plate. The deformation in the axial springs near the edge of the beam follows the 

curve defined by the following equation: 

21

2

1 1 12 2

6 2 2 2
1 1

mean

c b

h h
F R

Ewh
f

F F L x x

w w


 

  
  
 

  
 

 (4.30) 

where f  is a factor that depends on the shape and size of the beam.  
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Figure 4-17: Scaled deformation of the axial connections along the root of the bending beam, at location x from 

the centre of the root, for various cell sizes. 

The highest strain is located near the edge of the beam root, where the centre of the lattice 

cell is located at 
2

w d
x


 . Substituting this in equation (4.30) gives the failure criterion: 

1

2

2

6 1 1 12 2

2
2

mean
b

h h
F R

FL
f

F Ewh d d

w w


 

  
  
 

 
 

 (4.31) 

The failure predicted with this criterion shows minimal dependence on the mesh size, for 

the mesh sizes studied in the example. These are the mesh sizes that would typically be 

applied to define the failure criterion in bending conditions with strain concentrations. A 

smaller mesh size of three nodes (two cells) over the beam width would not follow the curve 

as deformations in the centre of the beam root and deformations near the corners would 

be captured with the same cells. Much larger mesh sizes are considered not to be practical 

for the simulation that is intended with the results, as it is not expected that the cell size 

selected for an analysis is much smaller than 1/8th of the width of the beam-test that is used 

to define the onset of failure.  

The sensitivity of factor f   to the beam dimensions is studied to show which parameters 

are of influence to its value and how significant their influence is and results are presented 

in Table 4-3. Factor f  depends on the width and the height of the beam and approaches 
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0.9 for large thickness or small width; conditions in which 2D effects disappear and the 

behaviour is approximated well by the beam model.  

Table 4-3: Sensitivity study of factor f 

L (m) h (m) E (GPa) W (m) Case f 

2.3 0.39 1.3 0.46 Base case 0.80 

3.45 0.39 1.3 0.46 1.5 x original length, to fall 

within recommendation of 7-

10xh by Schwarz et al., (1981) 

0.80 

2.3 0.78 1.3 0.46 2 x original thickness 0.84 

2.3 0.39 2.6 0.46 2x original Youngs Modulus 0.80 

2.3 0.39 1.3 0.23 0.5x original width 0.88 

 

Deriving the failure criterion based on full scale test simulation 

In 1977, a series of cantilever beam tests without stress relief holes were carried out in 

Isfjorden, Spitsbergen (Frederking and Häusler, 1978). Parameters of one of the tests are 

presented in Table 4-4. The test is simulated with the lattice model and at the time of failure 

it is found that 
4

5.73 10
mean
    and 

4
R 3.11 10

    m-1 near the beam root. Substituting 

this and the parameters from Table 4-4 in equation (4.31) gives 0.8f  . The failure criterion 

near the crack tip, for cell size d  becomes: 

1

9 2

2

1

2

0.44 0.44

6 1900 4.04 1 1 12 2 0.8
22.3 10 0.67 0.44

2
0.67 0.67

with

1
1
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F
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 (4.32) 
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The time versus deflection curves at three locations w1 at 3.8m from the beam root, w2 at 

2.0m from the beam root and w3 at 0.1m from the beam root are presented in Figure 4-18. 

The force applied in the lattice model was a linearly increasing function of time and 

continued to build-up upon failure. A timestep of 1.910-7 s was used for the simulation, 

during crack propagation. The deflections at the time of failure (0.7s) are of the same order 

of magnitude as the field measurements: 4.7mm at location w1 (~5mm in the field test), 

1.9mm at location w2 (~2mm in the field test) and 0.18mm at location at location w3 

(~0.1mm in the field test). After failure, the beam tip and centre moved downward, while 

the point near the root of the beam moved upward, showing as negative deflection in the 

plot for the lattice model. Deflection change after failure is more gradual than in the splitting 

test as the movement is resisted by the buoyant force of the water, which is simulated with 

a Kelvin foundation.  

This example shows how an in-situ beam test where no stress relief holes were drilled can 

be used to define the failure criterion for bending near a crack tip.    

 

Table 4-4: Parameters used to simulate with the lattice model tests executed by (Frederking and Häusler, 1978) 

Parameter Symbol Quantity Unit 

Ice thickness h 0.44 m 

Beam length Lb 4.04 m 

Beam width w 0.67 m 

Failure load F 1900 N 

Loading rate F’ 2714 N/s 

Young’s modulus ice E 2.3 GPa 

Poisson’s ratio ν 0.33 - 

Ice density Ρice 920 kg/m3 

Sea water density ρwat 1025 kg/m3 

Compressive strength ice  σc 5 σf MPa 
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Figure 4-18: Deflection of three points along the beam during the simulation with the lattice model: w1 near the 

tip, w2 in the center and w3 near the root of the beam 

 

4.3 Conclusions 

Failure criteria have been developed and discussed for a numerical plate model of sea ice 

that account for failure in multi-directional tension, compression, bending and splitting at 

the same time and are linked to ice property measurements taken in the field. The failure 

criteria are implemented into a single model, making an important step forward in 

development of numerical models that enable physically sound simulation of failure 

processes that occur in ice-structure interaction. 

In ice plate failure tests described in literature, different loading conditions resulted in 

different failure modes: splitting under unconfined loading, Coulombic shear friction under 

lower confinement and spalling under higher confinement. Mohr-Coulomb type failure 

criteria are derived, in which tensile, compressive and in-plane shear deformation of the 

connections of the lattice are used to find the strain state of the lattice cell. The radius of 

the Mohr diagram for axial and shear strain in the connections reduces with increasing 

confinement. This characteristic is used to capture the increasing capacity of the plate with 

increasing confinement in multi-axial compressive and tensile loading. The splitting and 

Coulombic shear friction failure modes are captured by linking the criterion for onset of 

failure to the corresponding fault orientation observed in tests. Similarly, a criterion is 



101 

 

derived for tensile conditions that may occur at the outer fibre of the ice plate, near the 

surfaces, due to tension induced by bending and torsion. Deformation due to in-plane 

tension and out-of-plane bending can be added-up and applied in a single failure criterion 

while accounting for differences in tensile and flexural strength as well as potential 

differences in flexural strength in upward and downward bending. 

The deformations of the diagonal connections show opposite behaviour to the 

deformations of the axial connections; the strain in the diagonal connections increases with 

increasing confinement, such that the capacity is reduced in multi-axial loading of the same 

sign, compared to uni-axial loading, when diagonal strain is used to define onset of failure. 

This characteristic is used to derive failure criteria for spalling failure under higher 

confinement.  

The resulting failure envelope from the failure criteria that were derived in this Chapter 

captures two types of failure modes that were observed in literature: Coulombic shear 

failure under an angle with the loading direction and tensile and tensile-compressive failure 

perpendicular to the loading direction in case of dominating tension or in-line with the 

loading direction in case of dominating compression. In addition, a spalling failure limit is 

set.  

Near a crack-tip or other discontinuities in the ice, stresses and strains concentrate and the 

failure criteria for continuous ice do not correctly predict failure in the lattice model. A 

separate failure criterion is developed for application near crack-tips for in-plane and out-

of-plane deformation. For in-plane deformation, it is shown that the crack propagation load 

and onset of unstable crack propagation can be predicted well with the lattice model, when 

comparing to analytically obtained results. For bending deformations, it is shown that an in-

situ beam test where no stress relief holes were drilled can be used to find the critical 

concentrated bending strain that gives onset of crack propagation.  

With the failure criteria for an ice plate in compression, tension and bending and strain 

concentrations near discontinuities, a complete set of failure criteria is derived that is 

required to simulate ice-sloping-structure interaction scenarios in multi-directional loading 

conditions. It is shown that the failure criteria have a minimal dependence on cell-size and 

orientation. 
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5 
5 Applicability of the lattice model to simulating ice 

failure in complex loading conditions 

In Chapter 4, it was shown that the deformation of the springs in the different orientations 

in the plane of the lattice can be combined to define the strain state in the lattice and to 

check whether the ice fails. In this Chapter, the onset of failure is analysed for complex 

loading conditions: combined bending, shear and torsion. The strain state as a consequence 

of bending and torsional deformations studied, similar to the bending beam simulation in 

Chapter 4.  

To keep the number of nodes in the model, and therefore the number of equations, limited 

there is only one layer of particles in z-direction of the plate. As a consequence of this, out-

of-plane spalling failure under high confinement as described in Schulson et al. (2006) 

cannot be accurately simulated. A limiting failure cap is set for this failure mode in Chapter 

4. To capture out-of-plane shear deformations, shear springs are present in the lattice in 

out-of-plane direction. In this Chapter, it is shown that in case of dominating out-of-plane 
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shear deformations, the strain in the out-of-plane shear springs could indicate that this 

failure mode is likely to occur. 

 

5.1 L-beam tests 

The L-beam test is described by Murdza et al. (2016) to investigate ice failure under complex 

loading conditions, consisting of bending, shear and torsion. An L-shaped beam was cut in 

the ice, leaving the toe end of the L attached to the ice plate. Loading was applied at the 

free end. Three L-beam tests were performed during fieldwork in Wahlenbergfjorden, 

Nordaustlandet on Svalbard in April 2015, three on fast ice of Van Mijen Fjord (Spitsbergen) 

in March 2016 and three on fresh water lake ice in Longyearbyen in November 2014 and 

2015.  

The shape and dimensional parameters of the L-beam tests are shown in Figure 5-1. Five of 

the nine tests gave failure patterns similar to the pattern indicated with dashed line number 

1. Cracks ran from a place at a distance c from corner B that varied between 0 and 8 cm. 

The angle relative to the beam root varied between 9.2 and 33.8°. The failure surfaces were 

inclined relative to the in-plane direction. Finite element simulations indicated that torsion 

components influenced the location at which failure started. In four of the tests a failure 

pattern indicated with dashed line number 2 was observed. Murdza et al. (2016) explain 

this by the length of the toe end, L2, being relatively long for the mechanical ice properties 

in the field, resulting in a dominating bending failure component.  

The L-beam test is simulated with the lattice model to study failure under complex loading 

conditions in more detail. Parameters of one of the tests at Wahlenbergfjorden are applied 

and summarised in Table 5-1. The calculated Young’s modulus using Frankenstein and 

Garner (1967) and Vaudrey (1977) equations is 1.4GPa. Flexural strength was based on 

beam tests performed at Wahlenbergfjorden as part of the same testing campaign; a value 

of 0.339MPa was found using simple beam method (Ryghseter et al., 2015). 

The failure pattern for this test is indicated in Figure 5-1 with dashed line number 1. The 

crack runs from a point at 6c   cm from the beam root at corner B and progressed towards 

the opposite edge of the L under an angle of 26.6°.  
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Table 5-1: Input parameters for L-beam test simulations 

Parameter Symbol Quantity Unit 

Length toe end of L L1  1.05  m 

Length free end of L L2   1.95  m 

Width at free end a  0.55  m 

Width at root b  0.55  m 

Ice thickness h 0.565 m 

Loading rate  dF/dt 500 N/s 

Failure load F 6 kN 

Young’s modulus ice E 1.4 GPa 

Poisson ratio ν 0.3 - 

Flexural strength ice  σf 0.339 MPa 

Ice density ρice 920 kg/m3 

 

Figure 5-1: L-shaped beam indicating dimensional parameters and crack patterns that were observed in field 

tests by Murdza et al. (2016) 
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5.2 Bending and torsional strain 

Figure 5-2 shows the lattice model for the L-beam test. A load of 6kN was applied to the 

free end of the L and the strains in the deformed state were recorded. In Chapter 4, the 

criterion for bending failure was derived as a function of the mean of the strain state due 

to bending and torsion 
mean
  as well as the associated radius of the Mohr diagram R  and 

the compressive 
c

  and flexural strength f
  of the ice and Poisson’s ratio  :  
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 (5.1) 

 

Figure 5-3 shows the magnitude of the left-hand side of equation (5.1) for the first three 

rows of cells near the root of the lattice. These rows are indicated in Figure 5-2. The failure 

criterion is exceeded for all cells (the value on the vertical axis exceeds 1); the flexural 

strength may have been higher than the strength applied in the simulation. Strain 

concentrations are found near corner A. No stress relief holes were simulated with the 

lattice, while in field tests these holes prevent the high bending strains near the beam root. 

Near corner B, the strain state has approximately the same relative magnitude for the first 

three rows, such that due to local material variations the onset of fracture could occur 

further away from the corner, as observed in the field experiment. The highest strain state 

in the L-beam is found in the cell indicated with “Bending failure” Figure 5-2 such that 

bending failure with a pattern similar to that indicated with number 2 in Figure 5-1 occurs. 

When rounding off the corner in a smoother manner, the strains near the corner could 

reduce and the strains at the root would become governing, resulting in a failure pattern 

similar to that indicated with number 1. 
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Figure 5-2: L-beam test simulated with the lattice model. Rows for which data is presented as well as the location 

of bending failure are indicated in the figure. 

 

 

 Figure 5-3: Strain state due to bending and torsion deformation normalised by the flexural strength over the 

first three rows of the L-beam near its root in the lattice model. x=0 corresponds with the centre of the root.  

 

5.3 Shear strain 

Figure 5-4 shows the shear deformation in the out-of-plane shear springs, normalised by 

the shear modulus and shear strength for the first three lattice cell rows near the L-beam 
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root. εs is the maximum out-of-plane shear strain, normalised by the cell size, of the four 

axial connections surrounding a cell. The figure indicates that high shear strains are present, 

even at some distance from the corner, which is where the ice failed in some of the field 

tests.  Timco and Weeks (2010b) describe shear strength values from the ‘more reliable 

tests’ in a range from 400 to 700kPa for granular ice and 550 to 900kPa for columnar sea 

ice, however shear is one of the least understood properties of sea ice. A shear strength of 

700kPa was used to normalise the shear strain in this example. Extremes in shear stress 

with the same order of magnitude as the shear strength could indicate that the shear 

component may play a role in failure.  

  

Figure 5-4: Shear deformation normalised by the shear strength over the first three rows of the L-beam near its 

root in the lattice model 

In all field tests the failure surface was inclined with respect to the vertical plane, which 

cannot be reproduced with a 2D plate model. Since shear failure cannot be accurately 

modelled with the lattice model, it is recommended to use a 3D model to study the L-beam 

tests if detailed failure simulation is required. The lattice model can give an indication of 

shear loads and the location of shear failure. In engineering applications shear failure is 

usually not governing over bending and tensile failure. Therefore, the 2D plate model is 

appropriate in many applications.  
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5.4 Conclusion 

The failure criterion derived in Chapter 4 could explain the locations of fracture that were 

observed in an L-beam tests, described in literature, where complex loading conditions of 

combined bending and torsion were present. In addition to bending and torsion, shear could 

have played a role in the onset of fracture. Out-of-plane shear failure cannot be modelled 

in detail over the thickness of the ice with the lattice model, however the lattice model can 

give an indication of high shear loads and indicate the location of shear failure. In 

engineering applications shear failure is often not governing over bending and tensile 

failure. Therefore, the 2D plate model is appropriate in many applications. 
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6 
6 Simulation of interaction between ice and a 

conical structure3 

This Chapter describes a number of test cases that were simulated with the lattice model 

to verify its applicability in simulating ice-structure interaction and to validate the fracture 

criteria that were derived in Chapter 4.  The test cases are based on physical model tests for 

a rigid downward breaking conical structure interacting with ice floes of various sizes that 

were done as part of a Joint Industry Project and are described by Bruun et al. (2011). 

Fracture in bending, splitting and combinations of these were observed in the tests and 

simulated with the lattice model. Interaction with ice floes of different sizes and shapes are 

studied.  

                                                                 

Parts of this chapter have been published in Proceedings of the 24th International Conference on 

Port and Ocean Engineering under Arctic Conditions, 2017 (van Vliet and Metrikine, 2017b). 

Optimization of the models’ failure criteria after the publication has led to updated simulation 

results in the current work. 
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6.1 Description of the basin tests 

A number of basin tests from the testing campaign described in Bruun et al. (2011) were 

simulated with the lattice model. In these tests, a conical structure was moved through an 

ice field with ice floes of various sizes. The structure was rigidly connected to the carriage 

and moved at a velocity of 0.1 m/s. The structure is depicted in Figure 6-1 where its main 

dimensions are shown. An overview of the ice floe distribution before start of the tests is 

provided in Figure 6-2 for larger and smaller floe sizes.  

Ice properties are provided in Table 6-1.  

 

Figure 6-1: Dimensions of the structure that was used during the ice basin tests. The waterline diameter was 

30m. (HSVA, 2010a) 

Basin test results in this Chapter are reported with full scale quantities, in line with the 

presentation of the results in test reports. Froude scaling with a scaling factor of 36   was 

used. Appendix 4 shows that the calculations performed with the lattice model are in 

agreement with Froude scaling laws and therefore that there is no difference in results 

when comparing full scale lattice model results with model test results that were scaled 

with Froude scaling laws, compared to comparing results obtained and simulated on model 

scale. There are differences between basin ice and natural ice and it is not possible to scale 

all strength and stiffness parameters correctly at the same time. These differences are not 
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addressed in this work, but should be considered when using basin test results to design 

full-scale structures. 

 
a       b 

Figure 6-2: Overview of the floe distribution in the ice basin a) large floes and b) smaller floes (HSVA, 2010a) 

Table 6-1: Input parameters for ice-structure interaction simulations with the lattice model, based on model test 

input parameters. Froude scaling with scaling factor 36 was used for full scale quantities.  

Parameter Quantity 

basin 

Quantity full 

scale 

Unit 

Ice thickness  0.083  3  m 

Flexural strength  20.8  750  kPa 

Young’s modulus 0.24  8.7  GPa 

Ice density  846  846  kg/m3 

Water density  1006  1006  kg/m3 

Waterline diameter of the cone 0.83 30  m 

Velocity of the cone 0.017 0.1  m/s 

Compressive strength 0.11 4  MPa 

Tensile strength  20.8 750  kPa 

Friction coefficient  0.1 0.1 - 
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The Young’s modulus was determined in the basin by using the plate method, where the ice 

cover is loaded at some locations along the centreline of the ice tank with a weight of 100g. 

The deflection of the ice cover at the load is measured and from this deflection the Young’s 

modulus is calculated. Measurements were performed on an intact ice sheet, before the 

broken ice was created for the test. The average Modulus of Elasticity of the measurements 

at three locations was 242 MPa, corresponding with a value of 8.7 GPa on full scale. 

Measurements at the timing of the simulated tests are not available and therefore a 

Modulus of Elasticity of 8.7 GPa is applied for the simulations. 

Ice density was measured by submerging a 120x120x83mm ice floe and measuring the 

displaced water and buoyant force. The average density of 5 ice samples was used for the 

numerical simulations: 846kg/m3. The water density in the basin was 1006kg/m3. 

The uniaxial compressive strength was measured by a test frame with a hydraulic piston 

which applied a uniform pressure to the specimen samples of size 83x167x333mm. The 

flexural strength of the ice was increased to 40 to 70kPa model scale for this test (1440 to 

2520kPa) as lower strength ice could not be handled. The relation between bending and 

compressive strength was used to evaluate the compressive strength in the basin with the 

ice of lower flexural strength. A ratio of 4.3 to 10.9 times the flexural strength was found in 

the measurements. A compressive strength of 5.3 times the flexural strength, 4MPa was 

selected for the numerical simulations. A value on the lower side of the reported crushing 

strength range was used, assuming the crushing strength is relatively low for basin ice with 

low flexural strength.  

The flexural strength was determined in the basin by a cantilever beam test. Strength 

measurements were taken in the level ice, of which the broken ice sheet was made. The 

target flexural strength was 750kPa. The flexural strength was measured at several 

moments in time before starting of the test using beams of 500x166x83mm model scale; 

18x6x3m full scale. The measured flexural strength was reducing from 1080kPa 7 hours 

before the test to 792kPa 3 hours before the test. The target flexural strength was used for 

the numerical simulations of the basin test as the measured strength was declining towards 

the target strength of 750kPa before commencement of the test. During or after the test 

the flexural strength was not measured.  

A flexural strength of 750kPa corresponds to a failure load of 375kN, using equation (4.25) 

for a clamped beam.  The beam test is simulated with the lattice model and a factor f=0.75 

is found for the failure criterion in equation (4.29). The right-hand-side of equation (4.29) is 

populated with parameters from the beam test done in the basin and gives the failure 

criterion for bending near discontinuities.  
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No splitting test was done. Therefore, the strain in bending and tension is added up as 

described in Section 4.1.3 and the failure criterion is applied to the combined deformation.  

A tensile strength test was not performed. Therefore, the tensile strength in the simulations 

was based on the parameters and results of the flexural strength test. The tensile strength 

is the stress at the root of the clamped beam when applying the failure load, giving a value 

of 750kPa using equation (4.25). 

A friction coefficient between the cone and the ice of 0.1 was measured and applied in the 

simulations. 

Shear strength of the ice was not measured in the basin. A shear strength of 700kPa was 

applied, the same as the shear strength selected in Chapter 5. Failure in shear was not 

observed in the results generated with this shear strength value.  

 

 

6.2 Description of the numerical ice floes and contact with the 

structure 

For the simulations with the lattice model the input parameters from the basin tests (Table 

6-1) were directly applied by substituting Young’s modulus, ice density and ice thickness in 

the mass and stiffness parameters of the lattice. Numerical ice floes of different shape and 

size (165x165m, 55x55m and 34x68m) were generated. Confinement was applied at the 

back of the ice floes, representing confinement from the other ice floes in the basin. 

Fracture criteria that were derived in Chapter 4 were used; the ice strength parameters 

were changed to those measured in the basin.  

To simulate the contact load between the lattice and the conical structure, a simplified 

contact algorithm was applied. This algorithm works as follows: at each time step of the 

simulation the amount of overlap between the ice and the structure is determined, based 

on the structural shape, its indentation and the deflection and rotation of the ice. From this 

overlap, the contact area, acrush in Figure 6-3, is determined. Please note that Figure 6-3 is a 

side view of the overlap and that contact forces are calculated in three dimensions. The 

force from the structure on the ice, which is a linear function of the contact area and the 

contact strength of the ice, and works perpendicular to the structure, is calculated and 

applied to the ice. A friction force acts along the slope of the structure and is related to the 
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contact force via a friction coefficient. Initially a contact strength parameter of 200kPa was 

used.  

 

Figure 6-3: Side view indicating important parameters in determining the contact load: Rind is the radius of the 

cone, α is the slope of the cone, L* is the distance between the centre of the ice edge and the cone, w is the 

deflection of the ice, ϕ is the tip rotation of the ice, h is ice thickness, acrush is the contact length between the ice 

and the structure, Fcrush is the crushing load, perpendicular to the structure and Ffriction is the friction load, directed 

opposite to the motion of the ice along the structure. 

The square lattice structure that is used in the simulations has a straight edge where the 

conical structure encounters the ice. When the cone encounters the edge, only one or two 

lattice cells are loaded and therefore the load is applied very locally. With a high contact 

strength parameter, the load at the edge builds up relatively quickly and does not distribute 

further over multiple cells at the lattice model edge, but results in failure near the edge. In 

the basin ice, the edges of the ice are not perfectly straight in the simulated cases and the 

shape of the ice edge distributes the contact load over the ice edge. With a lower value of 

the contact parameter, the ice loading is distributed over multiple cells at the lattice model 

edge, simulating the load distribution in the basin. A relatively small contact parameter 

compared to the crushing strength was therefore chosen for the simulations and a 

sensitivity study (increasing the contact strength parameter) was performed to investigate 

the effect of the contact on the failure of the ice in Section 6.3.2. The contact parameter 

used in the simulations is purely artificial and a more sophisticated boundary element, 

for example the one described by Hendrikse et al. (2018), should be used in order to 
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account for the proper redistribution of stresses at the ice edge in contact with the 

structure. The latter development is beyond the scope of this thesis. 

 

6.3 Interaction with a large square-shaped ice floe 

In the basin tests the structure was pulled through the centre of a large ice floe of 

165x165m. First a piece of ice failed in bending, showing a circumferential breaking pattern 

(Figure 6-4a). This is referred to as the first encounter. Shortly after the structure 

encountered the new broken edge of the ice, a long crack appeared along the centre of the 

ice floe and the ice failed close to the structure in combined radial and circumferential 

fracture as shown in Figure 6-4b. This is referred to as the second encounter. During the 

remaining encounters between the structure and the ice floe, splitting and circumferential 

and radial fracture alternated. 

 
a          b 

Figure 6-4: Encounter between the structure and a large ice floe of 165x165m; images from model test video a) 

Fracture pattern at first encounter b) fracture pattern at second encounter (HSVA, 2010b) 

The load on the structure that was measured during the model test campaign from the start 

of the encounter between the structure and the ice floe up to the moment of 

circumferential fracture shown in Figure 6-4b, is presented in Figure 6-6. The dashed line 

named Ftot in the figure is the total resultant force, Fx, Fy and Fz are the forces in x- y- and 

z-direction respectively, according to the axis system presented in Figure 6-5. The duration 

of the loading build-up is similar during both interactions, about 10s. The failure load during 

the second encounter is about 30% higher than at the first encounter. Upon failure, the 

slope of the loading curve changes in the basin tests, but the load does not immediately 
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drop to zero. An explanation for this is that the crack can still transfer load in compression 

and frictional shear and the ice rubble that is present in front of the structure, as shown in 

Figure 6-8 keeps loading the structure. Only when the ice starts clearing away alongside the 

structure, the load reduces.  

 

Figure 6-5: Structure axis system, left: top view, right: side view 

 

 

Figure 6-6: The load on the structure that was measured during the model test campaign from the start of the 

encounter between the structure and the ice floe up to the moment of circumferential fracture 
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Figure 6-7: Zoom-in on the load build-up stage during interaction with a 165x165m ice floe 

 
a.                                                                                       b. 

Figure 6-8: Ice rubble accumulates near the structure, beneath the ice, images from model test video. a) At the 

start of encounter with the ice floe b) At the time of circumferential failure at the second encounter (HSVA, 

2010a) 

A comparable situation to the stages where the load builds up, up to the moment of 

circumferential failure, is simulated with the lattice model. One of these stages is indicated 

with the boxed section in Figure 6-6 and a zoom-in on this stage is provided in Figure 6-7.  

The lattice model was developed to simulate breaking of ice and clearance of ice around 

the structure is not modelled. 
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The resulting fracture patterns of the simulations with the lattice model are presented in 

Figure 6-9 for two different mesh sizes. The fracture patterns consist of a long crack forming 

in the centre of the ice floe and a circumferential crack near the structure, which formed 

after the long crack. This is comparable with the fracture pattern that was observed during 

the second encounter between the structure and the ice in the model tests (Figure 6-4b). 

The loading curve is presented in Figure 6-10 for the finer mesh and in Figure 6-11 for the 

coarser mesh. There is almost no difference between the graphs for the different cell sizes. 

Failure occurred at a load of 7MN (5.4MN in x- and 4.6MN in z-direction), which is 

significantly lower than the 24MN measured during the second encounter in the basin tests. 

A timestep after failure of 10-5 s was applied for the simulations. Further details of the 

numerical simulations are provided in Section 4.2.1. 

Of the ice parameters that were measured in the basin, the tensile and flexural strength 

have the most influence on the breaking load. The actual flexural strength in the basin tests 

was close to the target strength. This parameter was used to determine failure near a crack 

tip. Splitting and circumferential failure did not initiate close to a crack tip and therefore 

initial failure load is determined from the tensile strength parameter. The tensile strength 

was derived from the stress at the root in the beamtest. Stress concentrations near the 

edges at the beam root were not accounted for and therefore it is likely that the tensile 

strength in the basin was in reality higher than the parameter that was used for the 

calculations. Frederking and Svec (1985) describe an increase of 25-33%. It is therefore not 

expected that the stress concentrations could explain the factor 3.5 difference in loading 

between simulations and basin tests. It is recommended to measure tensile strength of the 

ice in basin tests. Further differences in load levels could be related to the rubble that built-

up in front of the structure during the model tests as well as rotation and sliding of the ice 

and this is discussed further in Section 6.3.1. 

The duration of the load build-up simulated with the lattice model is three times longer than 

in the basin tests. The contact model in the lattice model may not be exactly representative 

for the contact in the basin. This could also explain why the split in the finer mesh is slightly 

longer: the load distribution near the structure is smoother in case of the fine mesh as there 

are more nodes in contact with the structure. The effect of the contact model is further 

discussed in Section 6.3.2. 
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Figure 6-9: Fracture pattern from lattice model simulation of interaction between a 165x165m ice floe and a 

sloping structure. The lattice model was built-up from a) 60x60 masses b) 40x40 masses 

 

Figure 6-10: Build-up of the load until the moment of fracture during lattice model simulations of interaction 

between a 165x165m ice floe and a sloping structure – mesh of 60x60 masses 
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Figure 6-11: Build-up of the load until the moment of fracture during lattice model simulations of interaction 

between a 165x165m ice floe and a sloping structure – mesh of 40x40 masses 

The fracture criterion for combined bending and in-plane loading was derived in Chapter 4 

as a function of the mean strain 
mean
   at the top or bottom of the plate as well as the 

associated radius of the Mohr diagram R  at the top or bottom of the plate and the 

compressive 
c

   and flexural strength  f
  of the ice and Poisson’s ratio  :  
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 (6.1) 

The mean versus radius of the strain states in the lattice model, multiplied by the Young’s 

modulus are plotted in Figure 6-12 for all lattice cells, up to and including the moment of 

fracture. Strain states at the top of the lattice are indicated with blue dots, while strain 
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states at the bottom of the lattice are represented by grey dots. Strain states causing failure 

of the cell are indicated with orange dots. The failure envelope that follows equation (6.1) 

is indicated with a dashed line. The axes where the principle stresses are zero 
11

0   and 

22
0   are indicated with arrows. These axes provide the boundaries of the different 

quadrants of the loading regime, which are indicated with letters T-T for Tensile-Tensile 

quadrant, T-C for Tensile-Compressive quadrant and C-C for Compressive-Compressive 

quadrant. The figure can be mirrored about the horizontal axis. Tensile-Compressive strain 

is dominant and important for the simulation of failure. Unfortunately, there is no 

measurement data available to define the Tensile-Compressive part of the failure envelope 

of ice.  

Bending failure was governing over shear failure in the simulation with the lattice model. A 

critical out-of-plane shear stress of 0.7MPa was set in the model. 

  

Figure 6-12: Mean and radius of the Mohr diagram for strain, multiplied with Young’s Modulus, for the cells in 

the lattice model during the simulation of ice-structure interaction at the top and bottom of the lattice. The 

strain state at the moment of failure is indicated with orange dots. Tension-tension (T-T), Compression-

Compression (C-C) and Tension-Compression (T-C) quadrants are indicated with letters. 
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6.3.1 Loads in rotating and sliding phases 

The failure load in the lattice model simulation was significantly lower than the load 

measured in the basin tests. This could be related to the rubble that built-up in front of the 

structure during the model tests as well as rotation and sliding of the ice that contributed 

to the loading and is analysed further in this section.  

In the analysis report of the basin tests (Lu and Løset, 2010), the ice loads were calculated 

with methods from ISO19906 (ISO, 2010) and similar to the results obtained with the lattice 

model, it was found that the ISO code underestimated the actual ice loads. Three interaction 

phases are described in the report, following Kämäräinen (2007): breaking phase, rotating 

phase and sliding phase. In the breaking phase, ice is loaded in interaction with the 

structure, until the ice strength is exceeded and a piece or multiple pieces of ice break off. 

After breaking, in the rotating phase, the ice pieces close to the structure are rotated to 

align with the structure’s slope, while the area on top of the ice floe gradually fills with 

water. When rotated and surrounded by water, broken ice pieces pile up ahead of the 

structure, before clearing around the structure, loading the structure in the sliding phase. 

Reference is made to Valanto (2001) who showed that for a bay-class ice breaker the loads 

in the rotating and sliding phases contribute significantly to the total load on a structure.  

Only the breaking phase is simulated with the lattice model. To find an explanation for the 

discrepancy between the loads measured in the basin and the loads found in simulations 

with the numerical model, estimates of the loads in the rotating and sliding phase are made 

in this section for the scenario simulated with the lattice model. 

 

Figure 6-13: Side view of ice floe and broken ice pieces during rotating phase 
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Figure 6-14: Top view of ice floe and wedge-shaped broken ice pieces 

Figure 6-13 and Figure 6-14 present an overview of the loading on a broken piece of ice, 

during the rotating phase. It is assumed that the broken piece is rigid and wedge shaped 

and pushed downward at the tip. The curved side has broken off from the ice floe, but due 

to frictional shear forces it remains in contact with the intact part of the ice floe and this 

contact is simulated by a moment-free connection. The downward forces 
down

q  on the ice 

floe consist of the mass 
mass

q   and the backfill backfill
q  on the flow, which are calculated with:  
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L  is the radius of the broken ice piece and x  is the distance from the connection to 
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where 
1

x  is the distance from the connection where the backfill reaches to and   is the 

rotation of the ice floe. The backfill works perpendicular to the ice floe and the mass works 

in vertical z-direction. The upward forces  up
q  on the ice floe consist of initial buoyancy, 
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which is already working on the ice floe before rotation starts, and additional buoyancy that 

increases with the rotation of the piece of ice; both acting perpendicular to the piece of ice: 

   0 0sin
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water ice

buoyancy

water

g
q h L x x L x
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
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 (6.4) 

The resulting forces on the structure are a resulting force 
res

F  perpendicular to the structure 

and a frictional force friction
F  parallel to the structure, where  

friction res
F F  (6.5) 

and   is the friction coefficient between the ice and the structure. The resulting force on 

the structure can now be calculated by setting the sum of the bending moments at the 

connection with the ice floe to zero.  Parameters from Table 6-1 are used for the calculation. 

Figure 6-15 presents the resulting force on the structure for a broken wedge of 10m radius 

and a wedge of 20m radius, with and without backfill. Both the length of the broken wedge 

and the amount of backfill have significant influence on the magnitude of the loading on 

the structure. The load is plotted for a single wedge. In the simulation two wedges broke of, 

doubling the load. With a breaking length of around 20m and assuming no complete backfill, 

the loading on the structure could reach about 10-20MN, corresponding with 8-16MN in x-

direction and 6-13MN in z-direction. The duration of load build-up in the basin test however 

is around 18s, allowing for a rotation of 10 degrees of the 10m long ice floe and 5 degrees 

of the 20m long ice floe, giving a maximum load on the structure of 3MN.  

There are additional effects that could increase the loading during the rotational phase. 

Loads associated with the acceleration of the mass and viscous damping of the ice floe when 

submerged could increase the total loading. These dynamic effects are expected to be small 

for the low interaction velocity in the test. The bending moment at the beam root is in 

reality not zero, which would result in higher interaction loads and a gradual transition from 

breaking to rotating phase.  

In addition, rubble beneath the broken pieces (Figure 6-8) increases the downward 

resistance on the broken pieces of the ice floe and with that the interaction loads. Figure 6-

8a shows the rubble ahead of the structure at the start of the encounter with the ice floe, 

that built-up in interaction with other ice in the basin. A volume of 3000m3 of ice is 

estimated, giving an extra upward force of 4.7MN.  

The loading in the sliding phase depends on the rubble that is present near the structure.  

This clearance takes place continuously during the basin test and the magnitude can be 
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estimated from the time signal of the load measurements (Figure 6-6) as the non-zero load 

between the load peaks, where no breaking and rotating occurs. The load due to sliding has 

a magnitude of about 2-10MN and is also present during the breaking and rotating phase, 

resulting in further increased loading on the structure.  

It is expected that the difference in loading between the basin test and the lattice model is 

associated with rotation and sliding of ice floes in combination with broken pieces of ice 

and rubble providing resistance to the rotation and sliding and applying further loads on the 

structure. With the lattice model only the breaking phase was simulated and therefore 

much lower loading was found. 

To simulate ice clearance, it is recommended to link the lattice model to existing models, 

for example discrete element models, which have proven to be successful in simulation of 

ice rubbling and clearance (Hopkins, 2004; Liu and Ji, 2017). 

 

 

Figure 6-15: Resulting force on the structure for a broken wedge of 10m radius and a wedge of 20m radius, 

with and without backfill during rotating phase 

 

6.3.2 Effect of the contact parameter on ice loading 

To investigate the sensitivity to the contact loading, the contact strength parameter was 

changed to 2000kPa (10x higher) and the same simulation was performed with the lattice 

model. The resulting fracture pattern is presented in Figure 6-16. The increased contact 

strength gave a smaller crushed area of the ice in interaction with the structure and the ice 
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deformed more in bending locally near the structure, while the load built up quicker and 

was distributed over less lattice cells. The failure pattern changed and a piece of ice broke 

off close to the structure.  

This situation is comparable to the piece of ice that broke off during the first encounter of 

the ice with the structure in the basin tests. Figure 6-17 shows that the duration of the load 

build-up stage reduced significantly and is of similar order as in the basin tests. The failure 

loads remained of the same order of magnitude: 4.8MN in x- and 4.0MN in y-direction and 

are significantly lower than the 19MN in x- and 17.5MN in z-direction measured during the 

first encounter with the ice in the basin tests.  

After the first encounter with the ice floe in the basin tests, the damaged edge of the ice 

floe had a curved shape. This was not simulated with the lattice model, but could result in 

a better load distribution between the ice and the structure, compared to a straight edge. 

This loading distribution could be achieved in the lattice model by the reduced contact 

stiffness parameter, giving a failure pattern comparable to that of the second encounter in 

the basin tests.  

The contact parameter, and with that the way in which the loading is transferred from the 

structure to the ice, influences the failure pattern and the duration of the load build-up. In 

the simulations in this thesis a simplified contact model was applied, with which failure 

patterns observed in the basin tests could be simulated. To further improve the prediction 

of the duration of the loading build-up, it is recommended to further develop the contact 

model, taking into account locally deformed or damaged shape of the ice floe.   

 

Figure 6-16: Fracture pattern after lattice model simulations of interaction between a 165x165m ice floe and a 

sloping structure with a relatively high contact strength parameter 
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Figure 6-17: Build-up stage of the load until failure during lattice model simulations of interaction between a 

165x165m ice floe and a sloping structure with a relatively high ice strength at the edge 

 

 

6.4 Interaction with a smaller square ice floe 

During interaction with a smaller ice floe of 55x55m in the basin, first a piece of ice broke 

off circumferentially. During the second encounter with the structure, the square floe split 

apart as shown in Figure 6-18. The time series of the load around the time of bending failure 

is presented in Figure 6-19. The loading on the structure is lower than for the larger ice floe 

of 165x165m and the build-up time is longer. The loading around the time of splitting failure 

is presented in Figure 6-20. The loading in z-direction hardly changes and most of the 

loading is in x-direction. The high loading in x-direction could be explained by the ice floes 

being confined by other ice floes in the basin. The rubble beneath the structure (Figure 6-21) 

could prevent the ice from sliding downwards along the slope, such that the resulting load 

in z-direction on the structure is limited.  
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Figure 6-18: Encounter between the structure and a small square ice floe of 55x55m; image from model test 

video a) Fracture pattern at first encounter b) fracture pattern at second encounter (HSVA, 2010b) 

 

 

Figure 6-19: Time series of the load around the time of bending failure near the corner of the 55x55m ice floe 



131 

 

 

Figure 6-20: Time series of the load around the time of splitting failure of the 55x55m ice floe 

 

 

Figure 6-21: Image from underwater video just after splitting of the 55x55m ice floe (HSVA, 2010b) 

Two situations are simulated with the lattice model, one where the structure encounters 

the ice near one of the corners and one where the structure encounters the ice floe in the 

centre. Fracture patterns are depicted in Figure 6-22. In case the structure encounters the 

ice floe near the corner, a radial crack occurs, that turns towards the ice edge. In the basin 

tests, also a part of the corner broke off, although with cracks that were more inclined 
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compared to the ice floe edges. This could be a result of the locally irregular shape of the 

ice in the basin tests. When the structure encountered the ice floe at the centre, the ice floe 

split in two, similar to what was observed in the basin. A timestep after failure of 210-5 s 

was applied for this simulation. Further details of the numerical simulations are provided in 

Section 4.2.1. 

 

Figure 6-22: Fracture pattern from lattice model simulation of interaction between a 55x55m ice floe and a 

sloping structure. The structure encountered the ice plate a) near the corner b) in the centre 

 

Figure 6-23: Time signal of the load from start of interaction up to the moment of failure for encounter near the 

edge of a 55x55m ice floe 
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Figure 6-24: Time signal of the load from start of interaction up to the moment of failure for encounter at the 

centre of a 55x55m ice floe 

Time series of the interaction load between the structure and the 55x55m ice floe are 

provided in Figure 6-23 for encounter near the corner and Figure 6-24 for encounter in the 

centre. In case the ice is loaded near the corner, the corner breaks off after 20.7s at a load 

of 3.3MN in x- and 2.8MN in z-direction. The duration of load build-up is similar to that 

observed in the basin. 

When the ice floe is encountered in the centre, the ice floe splits at a load of 3.2MN in x- 

and 2.7MN in z-direction. A higher load and shorter duration of load build-up was observed 

in the basin tests. In the simulation with the lattice model, the load component is z-direction 

is higher than in the model tests, most likely because there is no rubble accumulation in 

front of the structure in the lattice model.  
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Figure 6-25: Mean and radius of the Mohr diagram for strain, multiplied with Young’s Modulus, for the cells in 

the lattice model during the simulation of ice-structure interaction near the corner of a 55x55m ice floe at the 

top and bottom of the lattice. The strain state at the moment of failure is indicated with orange dots. Tension-

tension (T-T), Compression-Compression (C-C) and Tension-Compression (T-C) quadrants are indicated with 

letters. 

The mean versus radius of the strain states in the lattice model, multiplied by the Young’s 

modulus are plotted in Figure 6-25 for encounter near the corner and Figure 6-26 for 

encounter in the centre, for all lattice cells, up to and including the moment of fracture. 

Similar to the results for interaction with the 165x165m ice floe, the Tensile-Compressive 

strain is dominant for deformations and fracture for interaction between the structure and 

the 55x55m ice floe.  
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Figure 6-26: Mean and radius of the Mohr diagram for strain, multiplied with Young’s Modulus, for the cells in 

the lattice model during the simulation of ice-structure interaction in the center of a 55x55m ice floe at the top 

and bottom of the lattice. The strain state at the moment of failure is indicated with orange dots. Tension-

tension (T-T), Compression-Compression (C-C) and Tension-Compression (T-C) quadrants are indicated with 

letters. 

 

6.5 Interaction with a smaller rectangular ice floe 

In interaction with a 34x68m ice floe in the basis tests, the ice floe split apart and two 

triangular-shaped pieces of ice broke off as shown in Figure 6-27. The time series of the 

loading on the structure, measured in the basin around the time of failure is presented in 

Figure 6-28. The loading on the structure is less than for the 165x165m ice floe. The time 

series does not show a clear load reduction upon failure. Some cyclic behaviour with a 

period of about 5s is observed. 
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Figure 6-27: Image from model test video. Encounter between the structure and a small rectangular ice floe of 

69x34m (HSVA, 2010b) 

 

 

Figure 6-28: Time series of the load around failure of the rectangular ice floe, measured during basin tests 

In the simulation with the lattice model, a similar failure pattern is observed as shown in 

Figure 6-29. The ice splits in two at the centre and two pieces break off in a shape that is 

wider near the structure and narrower near the intersection with the central crack. A 
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timestep after failure of 210-5 s was applied for this simulation. Further details of the 

numerical simulations are provided in Section 4.2.1. 

 
Figure 6-29: Fracture pattern from lattice model simulation of interaction between a 55x55m ice floe and a 

sloping structure 

 

 

Figure 6-30: Time signal of the load from start of interaction up to the moment of failure for encounter of a 

34x68m ice floe 

The load signal of the interaction is presented in Figure 6-30. The split in the ice occurred at 

18.5s at a load of 2.7MN in x-direction 2.3MN in z-direction and circumferential failure took 

place at 63.8s at a load of 5.5MN in x-direction 4.6MN in z-direction. After splitting, cyclic 

behaviour with a period of about 6s was observed. The load level upon fracture was closer 
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to that of about 8MN measured in the basin, compared to the ice floes of other sizes, 

however there is still a discrepancy in load level between the simulations and the basin 

tests, where loads in the lattice model are structurally lower.  

The mean versus radius of the strain states in the lattice model, multiplied by the Young’s 

modulus for the 34x68m ice floe is plotted in Figure 6-31. Also for this floe size the Tensile-

Compressive strain is dominant for deformations and fracture.  

 

  

Figure 6-31: Mean and radius of the Mohr diagram for strain, multiplied with Young’s Modulus, for the cells in 

the lattice model during the simulation of ice-structure interaction of a 34x68m ice floe at the top and bottom 

of the lattice. The strain state at the moment of failure is indicated with orange dots. Tension-tension (T-T), 

Compression-Compression (C-C) and Tension-Compression (T-C) quadrants are indicated with letters. 

 

6.6 Conclusions and recommendations 

Interaction between ice floes of different sizes and a sloping structure has been simulated 

with the lattice model and compared to basin tests. Deformation and failure criteria in the 

2-dimensional lattice model are based on first principles, enabling physically sound 
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simulation of deformation and fracture processes of the ice plate material. The input 

parameters to the lattice model are measured ice and structural properties. 

Fracture patterns are comparable between basin tests and lattice simulations, for different 

floe sizes. Both circumferential and splitting fracture, which were observed in the basin, 

were observed in simulations with the lattice model. The load distribution at the interface 

between the structure and the ice has an influence on the velocity with which the load on 

the structure builds up and on the failure pattern that is observed. A simplified contact 

model was applied in the simulations. It is recommended to further develop the contact 

model, taking into account the locally deformed or damaged shape of the ice floe.    

Failure loads in simulations with the lattice model are smaller than those measured in the 

basin. It is expected that the higher loading that was observed in the basin tests is to some 

extent associated with a likely underestimation of the tensile strength adopted in the 

numerical model and for the largest part with the rotating and sliding phases of the ice, 

where the ice pieces close to the structure are rotated to align with the structure’s 

slope. Rotation and sliding of ice floes in combination with broken pieces of ice and rubble 

providing resistance to the rotation and sliding and applying further loads on the 

structure could result in the load levels that are observed in the basin tests. With the lattice 

model only the breaking phase was simulated and therefore significantly lower loading was 

found. To simulate ice clearance, it is recommended to link the lattice model to existing 

models, for example discrete element models, with proven success in simulation of ice 

rubbling and clearing. It is also recommended to measure tensile strength of the ice in basin 

tests. 

The strain state of the lattice cells during the simulations was analysed and most of the 

deformations were in combined tension and compression. The Tensile-Compressive part of 

failure diagram is most important in simulating interaction between ice and a conical 

structure. However, no measurement data is available to define this part of the failure 

envelope. It is recommended to focus ice strength measurements on combined tensile and 

compressive multi-axial loading conditions.   
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7 
7 Conclusions 

In this thesis, a lattice model is developed to simulate deformation and fracture of an ice 

plate in interaction with a structure. This will facilitate the design of sloping structures for 

(sub-)Arctic environments. In-plane and out-of-plane vibrations in the lattice plate model 

correspond with those of a shear deformable plate in the long-wave approximation. The 

failure criteria, which have a minimal dependence on the size and orientation of the mesh, 

are linked to field measurement data of the ice. The deformation and failure criteria in the 

lattice model are based on first principles, enabling physically sound simulation of 

deformation and fracture processes of the ice plate material. Failure in compression, 

tension, bending and splitting are simulated with the lattice model, providing a complete 

set of failure scenarios relevant to study interaction between ice and sloping structures. By 

means of numerical assessment, a multitude of structures and loading conditions can be 

analysed and structural shapes can be optimized for interaction with ice at reasonable costs. 

To enable simulation of out-of-plane deformations of the ice, a lattice model for the out-of-

plane dynamics of a shear-deformable plate has been formulated. The model is composed 

of masses and springs whose morphology and properties were derived to match, in the 



142 

 

long-wave approximation, the out-of-plane deformations of thick plates as described by the 

Mindlin-Reissner theory. A lattice model was selected to simulate the ice plate because of 

its simplicity and properties that are advantageous for fracture simulation: stress 

singularities do not occur in the lattice and simulation of failure is done by removing 

connections from the lattice model, such that re-meshing is not required. 

The application of the lattice model is not limited to ice. However, the intention of this study 

is simulation of ice-structure interaction and therefore verification was done using 

parameters of an ice sheet. Focussing upon linear dynamics, the model is consistent with a 

continuum plate theory in the low frequency band. Differences emerging at higher 

frequencies are attributed to the dispersion, anisotropy and specific boundary effects (in 

case of finite dimensions) of the lattice model. Wavelengths smaller than two times the cell 

size cannot be described with the lattice model. Wavelengths relevant for simulation of ice-

structure interaction processes are relatively long and therefore the discrepancy between 

the continuum and the lattice model in the high frequency band does not form a limitation 

for the intended purpose. Effects of hydrodynamics and material damping have been 

effectively included in the model and have shown good correspondence with the continuum 

solution. 

A lattice model for in-plane vibrations of a plate in plane strain conditions is described in 

literature and is adjusted in the current work to plane stress conditions. Combined with the 

lattice model for out-of-plane deformations a single model was formed, which captures in- 

and out-of-plane deformations of a shear deformable plate under the assumption of small 

deformations. 

A study of the Poisson effect showed discrepancies between expected plate deformations 

and those found with the lattice model. Stiffness parameters were adjusted based on a 

method described in literature. The steady-state response of the lattice model with original 

and adjusted spring stiffness parameters showed good agreement with continuum 

response in a dynamic simulation of the response of a simply supported plate. For higher 

frequency loading, the deviation obtained with the lattice model with the adjusted spring 

stiffness parameters was slightly larger than with the original spring parameters. The most 

relevant processes in interaction between ice and sloping structures are associated with the 

lower frequencies, where both methods provide good agreement with the continuum. The 

adjusted parameters resulted in proper inclusion of the Poisson effect in the lattice cells 

and have therefore been used for further study of sea ice fracture. The stiffness parameters 

that were derived with both methods are in agreement for a Poisson ratio of 1/3, which is 

a typical value for sea ice. This value was used for practical examples of ice failure. 
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In ice plate failure tests described in literature, different loading conditions resulted in 

different failure modes: splitting under unconfined loading, Coulombic shear friction under 

lower confinement and spalling under higher confinement. Mohr-Coulomb type failure 

criteria were derived for the lattice model, in which tensile, compressive and in-plane shear 

deformation of the connections are used to find the strain state of the lattice cell. The radius 

of the Mohr diagram for axial and shear strain in the connections reduces with increasing 

confinement. This characteristic is used to capture the increasing capacity of the plate with 

increasing confinement in multi-axial compressive and tensile loading. The splitting and 

Coulombic shear friction failure modes are captured by linking the criterion for onset of 

failure to the corresponding fault orientation observed in tests. Similarly, a criterion is 

derived for tensile conditions that may occur at the outer fibre of the ice plate, near the 

surfaces, due to tension induced by bending and torsion. Deformation due to in-plane 

tension and out-of-plane bending can be added-up and applied in a single failure criterion 

while accounting for differences in tensile and flexural strength as well as potential 

differences in flexural strength in upward and downward bending. 

The deformations of the diagonal connections in the lattice show opposite behaviour to the 

deformations of the axial connections; the strain in the diagonal connections increases with 

increasing confinement, such that the capacity is reduced in multi-axial loading of the same 

sign, compared to uni-axial loading, when diagonal strain is used to define onset of failure. 

This characteristic is used to derive failure criteria for spalling failure under higher 

confinement. 

The resulting failure envelope captures two types of failure modes that were observed in 

literature: Coulombic shear failure under an angle with the loading direction and tensile and 

tensile-compressive failure perpendicular to the loading direction in case of dominating 

tension or in-line with the loading direction in case of dominating compression. In addition, 

a spalling failure limit is set. 

Near a crack-tip or other discontinuities in the ice, stresses and strains concentrate and the 

failure criteria for continuous ice do not correctly predict failure in the lattice model. A 

separate failure criterion is developed for application near crack-tips for in-plane and out-

of-plane deformation. For in-plane deformation, it is shown that the crack propagation load 

and onset of unstable crack propagation can be predicted well with the lattice model, when 

comparing to analytically obtained results. For bending deformations, it is shown that an in-

situ beam test where no stress relief holes were drilled can be used to find the critical 

concentrated bending strain that gives onset of crack propagation. 
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With the failure criteria for an ice plate in compression, tension, bending and strain 

concentrations near discontinuities, a complete set of failure criteria is derived that is 

required to simulate ice-sloping-structure interaction scenarios in multi-directional loading 

conditions. It is shown that the failure criteria have a minimal dependence on cell-size and 

orientation. 

An L-beam test was simulated with the lattice model, where complex loading conditions of 

combined bending, shear and torsion were present as described in literature. The failure 

criteria derived for the lattice model, which use bending and torsion deformation to define 

the strain state in the lattice and compare it to the critical strain state, explain the locations 

of fracture observed in the field. In addition to bending and torsion, shear could have played 

a role in the onset of fracture. Out-of-plane shear failure cannot be accurately modelled 

with the lattice model and it is recommended to use a 3D model to study the L-beam tests 

if detailed failure simulation is required. The lattice model can give an indication of high 

shear loads and indicate the location of shear failure. In engineering applications shear 

failure is often not governing over bending and tensile failure, therefore the 2D plate model 

is appropriate in many applications, such as interaction between ice and sloping structures. 

To further validate the lattice model, interaction between ice floes of different sizes and a 

sloping structure has been simulated and compared to results from basin tests. Fracture 

patterns are comparable between basin tests and lattice simulations, for different floe sizes. 

Both circumferential and splitting fractures, which were observed in the basin, were found 

in simulations with the lattice model. The load distribution at the interface between the 

structure and the ice has an influence on the velocity with which the load on the structure 

builds up and failure pattern that is observed. A simplified contact model was applied in the 

simulations. It is recommended to further develop the contact model, taking into account 

the locally deformed or damaged shape of the ice floe.    

Failure loads in simulations with the lattice model are smaller than those measured in the 

basin. It is expected that the higher loading that was observed in the basin tests is to some 

extent associated with a likely underestimation of the tensile strength adopted in the 

numerical model and for the largest part with the rotating and sliding phases of the ice, 

where the ice pieces close to the structure are rotated to align with the structure’s 

slope. Rotation and sliding of ice floes in combination with broken pieces of ice and rubble 

providing resistance to the rotation and sliding and applying further loads on the 

structure could result in the load levels that are observed in the basin tests. With the lattice 

model only the breaking phase was simulated and therefore significantly lower loading was 

found. To simulate ice clearance, it is recommended to link the lattice model to existing 

models, for example discrete element models, with proven success in simulation of ice 
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rubbling and clearing. It is also recommended to measure tensile strength of the ice in basin 

tests. 

The strain state of the lattice cells during the simulations of the basin tests was analysed 

and most of the deformations were in combined tension and compression. The Tensile-

Compressive part of the failure diagram is most important in simulating interaction between 

ice and a conical structure. However, no measurement data is available to define this part 

of the failure envelope. It is recommended to focus ice strength measurements on 

combined tensile and compressive multi-axial loading conditions. 
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Appendix 1: analytical solution for the response 

of a rectangular plate to sinusoidal loading 

The analytical solution of the rectangular plate, supported by a Kelvin foundation over the 

complete area, simply supported at the edges and loaded by a sinusoidal point load in out-

of-plane direction is derived in this appendix.   

Applying Navier’s method, w  
x

  and y
  are represented in the form of a double 

trigonometric series which satisfy the boundary conditions at all-time. These series are 

substituted in equation system (2.27) - (2.29): 

1 1
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m n x y
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w x y t e A m n
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which results in the following system of equations: 
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Multiplying both left-hand and right-hand side of the system of equations with  

0 0sin sin ,
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integrating over the interval  0,
x

L  with respect to x and 0,
y

L    with respect to y gives, 

using the orthogonality principle: 
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From equations (A.1.8) to (A.1.10)  ,
w

A m n ,  ,
x

A m n  and  ,
y

A m n  are determined. 
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Appendix 2: Deformations of a lattice cell in multi-

axial in-plane loading 

 A lattice cell with orientation    relative to the orientation of the bi-axial in-plane loading 

xx
   in x- and yy

   in y-direction in a square plate is analysed, as depicted in Figure 4-3. The 

loads on the lattice cell are shown in Figure A2-1 and applied as nodal loads to the lattice 

cell, as depicted in Figure A2-2. 

 

Figure A2-1: Tensile loads working on the 

lattice cell 

Figure A2-2: Tensile loads transferred to the nodes of the 

lattice cell 

 

The nodal loads follow from the loads on the lattice cell by multiplying the stress working 

at the lattice cell location with the area of the lattice cell that faces in the direction of that 

stress: 

 cos
A xx

F hd   (A.2.1) 

 sin
B xx

F hd   (A.2.2) 

 cos
C yy

F hd   (A.2.3) 

 sin
D yy

F hd   (A.2.4) 
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The nodal loads are equally distributed over the masses at both ends of the connection. The 

displacements of the lattice cell nodes are found by solving the equilibrium of external loads 

on the lattice cell and lattice cell deformation:  
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The lattice cells are numbered 1-2 on the top row and 3-4 on the bottom row as shown in 

Figure A2-2. ,x i
u
ɶ

 and ,y i
u
ɶ

 are the deformation in xɶ - and yɶ - direction of node i respectively, 

in the local axis system, which is orientated under an angle   with respect to the global 

axis system. The strain in xɶ  - and yɶ -direction over the axial connections is normalised by 

the cell size. Parallel connections have the same strain in the applied loading conditions. 

This gives:  

,2 ,1 ,4 ,3

11

x x x x
u u u u

d d


 
 ɶ ɶ ɶ ɶ

 (A.2.13) 

,2 ,1 ,4 ,3

12

y y y y
u u u u

d d


 
 ɶ ɶ ɶ ɶ

 (A.2.14) 
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y y y y
u u u u

d d
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 (A.2.15) 
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x x x x
u u u u

d d


 
 ɶ ɶ ɶ ɶ

 (A.2.16) 

where 
11
  and 

22
  are the normalised axial strain and 

12
 and 

21
 are  the normalised shear 

strain in xɶ  - and yɶ -direction respectively. The strain in the diagonal connections is 

evaluated as follows: 

 ,4 ,1 ,4 ,1
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2

2
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x x y y

D

u u u u

d
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(A.2.17) 
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u u u u

d

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

ɶ ɶ ɶ ɶ

 
(A.2.18) 

where 
1D

 is the strain in the connection between node 1 and node 4 and 
2D

 is the strain 

in the connection between node 2 and node 3. 
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Appendix 3: Deformations of a lattice cell in multi-

axial bending 

A lattice cell with orientation   relative to the x-axis of a plate in bi-axial bending is 

analysed, as depicted in Figure 4-9. The bending loads on the lattice cell are shown in Figure 

A3-1 and translated to nodal loads in the lattice, as depicted in Figure A3-2.  

 

Figure A3-1: Bending and shear loads 

working on the lattice cell 

Figure A3-2: Bending and shear loads transferred to the nodes 

of the lattice cell 

 

xx
m  and yy

m  are the global bending moment per unit length of the plate in x- and y- 

direction respectively.   is the orientation of the lattice cell relative to the x-axis.  

, ,  and 
A B C D

M M M M  are the bending moments working on the lattice cells at different 

connections and directions, as depicted in Figure A3-2. These are evaluated as follows: 

 cos
A xx

M m d   (A.3.1) 

 sin
B xx

M m d   (A.3.2) 

 cos
C yy

M m d   (A.3.3) 

 sin
D yy

M m d   (A.3.4) 

The rotation of the lattice nodes can be found by solving the equilibrium bending loads for 

the four nodes of the lattice cell: 
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 (A.3.12) 

 

The lattice cells are numbered 1-2 on the top row and 3-4 on the bottom row as shown in 

Figure A3-2. ,x i

ɶ

 and ,y i

ɶ

 are the deformation in x ɶ  and y ɶ  direction of node i 

respectively, in the local axis system, which is orientated under an angle   with respect to 

the global ( , )x y  axes system. In this loading condition the deformation in the parallell 

connections is the same. The resulting rotational deformation in the lattice connections is 

normalized by the mesh size: 

,2 ,1 ,4 ,3
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x x x x

d d

   


 
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 (A.3.13) 
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y y y y
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 (A.3.14) 

The same is done for the torsional deformations: 
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y y y y
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 (A.3.15) 

x,3 x,1 x,4 x2

21
d d

   


 
 ɶ ɶ ɶ ɶ

 (A.3.16) 

where 
11
  and 

22
  are the normalised rotational axial deformation and 

12
 and 

21
 are  the 

normalised rotational shear deformation in xɶ  - and yɶ -direction respectively. 

The loading in the diagonal connections is normalized by the connection length: 
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(A.3.18) 

 

where 
1D

  is the bending deformation, normalised by the cell size, in the diagonal 

connection between node 1 and node 4 and 
2D

  is the bending deformation, normalised 

by the cell size, in the diagonal connection between node 2 and node 3. 
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Appendix 4: Dimensionless form of equations and 

scaling 

To improve accuracy of the numerical calculation and study scaling effects, the equations 

of motion (equation 2.7-2.9 in this theses and the equations of motion presented by Suiker 

et al., 2001a) are rewritten in dimensionless form, such that all relevant parameters are of 

similar order of magnitude. The following dimensionless constants are hereto introduced, 

using scaling parameter b : 

w
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(A.4.1) 

x
u

u
b

 
 

(A.4.2) 

y
u

u
b

 
 

(A.4.3) 

x

b
 

 
(A.4.4) 

y

b
 

 
(A.4.5) 

, ,2
s axi s dia

K K
t

M





 

(A.4.6) 

d
b

d
ɶ

 
(A.4.7) 

2

I
I

a M
ɶ

 
(A.4.8) 

,

,

, ,
2

nip axi

nip axi

s axi s dia

K
K

K K



ɶ

 
(A.4.9) 

,

,

, ,
2

sip axi

sip axi

s axi s dia

K
K

K K



ɶ

 
(A.4.10) 

,

,

, ,
2

nip dia

nip dia

s axi s dia

K
K

K K



ɶ  (A.4.11) 

,

,

, ,
2

sip dia

sip dia

s axi s dia

K
K

K K



ɶ  (A.4.12) 



168 

 

,

,

, ,
2

s axi

s axi

s axi s dia

K
K

K K



ɶ  (A.4.13) 

,

,

, ,
2

s dia

s dia

s axi s dia

K
K

K K



ɶ  (A.4.14) 

,

, 2

, ,
( 2 )

r axi

r axi

s axi s dia

G
G

b K K



ɶ  (A.4.15) 

,

, 2

, ,
( 2 )

r dia

r dia

s axi s dia

G
G

b K K



ɶ  (A.4.16) 

,

, 2

, ,
( 2 )

t axi

t axi

s axi s dia

G
G

b K K



ɶ  (A.4.17) 

,

, 2

, ,
( 2 )

t dia

t dia

s axi s dia

G
G

b K K



ɶ  (A.4.18) 

 

This dimensionless form of the equations of motion, using these parameters is: 
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The Kelvin foundation is included by adding the term 

Kelvin
k  ɶ   to the right-hand side of 

equation (A.4.21). Where: 

, ,2

Kelvin

s axi

Kelvi

s i

n

d a

k

K K
k 


ɶ

 
(A.4.24)

 

The effect of scaling can be studied with the dimensionless form as starting point. 

Simulations on different scales would be obtained by multiplying results of solving the 

dimensionless equations of motion with a different scaling parameter b . The effects of 

scaling are compared in this Appendix with Froude scaling factors, which are presented in 

Table A4-1. 

. 
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Table A4-1: Froude scaling factors 

Parameter Scaling factor 

Length    

Time    

Force  3  

Moment 4  

Mass 3  

Angle  1 

Modulus of Elasticity   

 

All length parameters in the dimensionless form are scaled with factor b , in line with 

Froude scaling if scaling factor   is substituted for b . 

Stiffnesses of normal and shear springs scale with factor , ,
2

s axi s dia
K K , which according to 

equation 2.23 in the main body of the thesis is 
2

k Gh . h  is a length parameter and scales 

with factor b . k  is dimensionless and  / 2 1G E   . This parameter scales with the same 

factor as the modulus of elasticity,   , and therefore with factor b  if   is substituted for 

b . The stiffnesses of normal and shear springs therefore scale with factor 
2

b  . With the 

same logic, the stiffnesses of rotational and torsional springs scale with factor 
4

b . 

Time scales with a factor related to the square root of  , ,
2

s axi s dia
K K , which scales with factor 

2
b , divided by M . Here 

2
M hd . No scaling is applied on density and therefore M  scales 

with factor 
3

b , due to the length parameters h  and d . Scaling of time is therefore with 

factor b  , in line with Froude scaling if scaling factor   is substituted for b .  

Force is made dimensionless in the numerical model as follows:  

 , ,
2

s axi s dia

F
F

b K K



ɶ

 
(A.4.25) 

And scales therefore with a factor 
3

b  , again in line with Froude scaling if scaling factor   

is substituted for b . 
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Moment is made dimensionless in the numerical model as follows: 

�

 2 2

, ,
2

s axi s dia

om
Mom

M
b K K a I


 ɶɶ

 (A.4.26) 

 

And using the same logic as for the other parameters scales with a factor b4, in line with 

Froude scaling if scaling factor   is substituted for b  

The Kelvin foundation scales with factor 
2

b . The density of water and gravity keep the same 

value and the cell size d   adjusts with the scaling factor that is used, agreeing with scaling 

factor 
2

b .  

In this Appendix it is shown how the equations of motion of the lattice model are translated 

in dimensionless form. Based on this dimensionless form, it is shown that the behaviour of 

the lattice model is in agreement with Froude scaling laws. Therefore, there is no difference 

in results when comparing full scale lattice model results with model test results that were 

scaled with Froude scaling laws, compared to comparing results obtained and simulated on 

model scale.  
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