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Also, you have given me many opportunities to present my work at conferences

around the world. I have appreciated this freedom and trust very much.

I am also very much indebted to my co-supervisor Dr. Alberto Morpurgo.

You have not only contributed a great deal to my understanding of physics, but
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up, you have also enhanced my knowledge of Italian curses substantially.
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in the group of Prof. J. Nitta has been the best period of my PhD. Nitta-san,

I thank you very much for skillfully teaching me the basics of Rashba spin-orbit

interaction, sample fabrication, and low-temperature measurements. You have

contributed greatly to my joy in physics during all the years that we know each

other. I also think back with great pleasure to all our dinner parties you organized,

and the mountain trips we made together. I am sure that you will also be a great
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people from QT have kept my C2H5OH-level high, especially Ronald (the next

Tiësto), Laurens (Okonomiyaki master), and Alexander (next prime minister).
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2 Chapter 1. Introduction

1.1 Introduction

Semiconductors form the foundation of today’s information age. They enable

and underlie virtually every system that is involved in the manipulation and

transport of information, from laptop computers to cellular phones and satellite-

based global communication networks. Semiconductor materials are nowadays

as vital to the worlds economic growth, or maybe even more vital, as were once

other materials such as stone, wood, coal and metals.

Ironically, semiconductors - which are neither highly conducting nor highly

insulating - were initially not believed to be particularly useful. The true poten-

tial of semiconductors was recognized after the discovery that their conductivity

is extremely sensitive to the addition of dopant atoms and the application of

electric fields. This characteristic resulted in the fabrication of the first gate volt-

age controlled switches and amplifiers: it was the birth of the transistor age [1].

The development of sophisticated growth techniques to manufacture high-quality

structures (higher electron mobility) and micro-patterning techniques (ongoing

miniaturization of transistors) over the last decades, allowed to achieve tremen-

dous improvements in the processing and calculation speed of transistors. These

developments extended their commercial applicability substantially.

1.1.1 III-V semiconductors

Silicon (Si) plays currently a dominant role in the world of microelectronics. This

is mainly due to the natural abundance of Si (beaches), and the fact that Si forms

a high-quality natural oxide, which is being used as a gate oxide in the transistor

technology. In the last decades, however, the large potential of another class

of semiconductors is being recognized. These are the so-called III-V compound

semiconductors, which consist of a mixture of elements of group III (e.g., Al,

Ga, In) and group V (e.g., As, P, Sb) of the periodic table, such as GaAs and

InGaAs. The applicability of this class of semiconductors is fuelled again by

the impressive improvements in epitaxial growth techniques, such as MBE and

MOCVD, resulting in an electron mobility that surpasses that of Si by far. This

has made III-V semiconductors ideal candidates for ultra-fast electronics. To date

there exist, for example, already InGaAs-based transistors operating at 560GHz,

although they are (still) more expensive than their Si-based counterpart.

In addition to their superior performance in high-speed, low-power electronic

applications, III-V semiconductors were also found to have excellent optoelec-

tronic properties. III-V semiconductors are in many cases direct bandgap ma-

terials, and are therefore particularly important for electroluminescense devices,



1.1 Introduction 3

such as light emitting diodes and lasers (high quantum efficiency). Moreover, the

bandgap of III-V quantum wells - and therefore the wavelength at which they

emit or detect radiation - can be engineered/tuned by the appropriate mix of

III-V compounds. This possibility has been exploited, e.g., to fabricate eye-safe

infrared-lasers for cash registers, has generated new methods for astrophysical re-

mote sensing, and is also being utilized in optical telecommunication applications:

tailor-made (InGaAs-based) lasers have been designed that emit at a wavelength

at which the losses in optical fibers is minimal, enabling/improving high-speed

broadband communication systems. Finally, epitaxial III-V semiconductors have

even demonstrated the highest efficiency of any type of solar cells (> 35%) [2].

Therefore, it is correct to state that the improved control over III-V semicon-

ductor crystal growth has powered a revolution in photonics and opto-electronics,

just as Si has done in microelectronics a decade earlier. Moreover, when III-V

compounds can be grown on cheap substrates in future [3], it might even become

commercial to let them replace Si in every-day microelectronics.

1.1.2 Fundamental research

The commercially driven activities described above have also had an offspring to

research in fundamental physics. The epitaxial growth of III-V semiconductor

layers and quantum wells, together with the improvements in microfabrication

techniques, have facilitated unprecedented possibilities for fundamental research.

In high-purity semiconductors and quantum wells electrons move ballistically,

and are phase-coherent over large distances at low enough temperatures (typi-

cally > 1µm at T ∼ 1K). In this regime, the classical Boltzmann description of

electron transport does no longer hold, and new theories were developed that take

the phase-coherent, i.e., the quantum mechanical (or wavelike) nature of electrons

into account. Experimentally, new interesting phenomena in high-quality struc-

tures were observed, which are generally not observable in metal systems, such

as Shubnikov-de Haas oscillations, the integer and fractional quantum Hall effect

[4], as well as quantized conduction [5]. It became also possible to fabricate and

study (phase-coherent) transport through fascinating structures, such as quan-

tum dots (artificial atoms) [6]. In fact, due to the tailor-made wafer design and

microfabrication it became possible to fabricate almost any desired 2D, 1D or

0D model system, which allowed to test the new theories and to obtain new

knowledge (”do it yourself quantum mechanics”).

Note that the obtained fundamental knowledge about quantum mechanics and

electron transport might, in return, also be beneficial for the applied community.

For example, due to the miniaturization of transistors, the physics in these devices
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will in the end also be determined by the quantum mechanical nature of elec-

trons, causing unpredictable fluctuations in essential design parameters. Hence,

a thorough understanding of the world of mesoscopic (phase-coherent) physics

will be necessary for the future transistor technology.

1.2 Spintronics

The functionality of modern semiconductor-based commercial devices relies only

on the control of the electronic charge: the spin degree of freedom of carriers

does not play a role, and is not being utilized in any way. This heavily con-

trasts the situation in modern metal-based devices and applications, in which

ferromagnetism - a macroscopic spin phenomenon - plays a central role.

The most important spin-dependent effect in metallic systems is the giant

magneto-resistance (GMR) effect, discovered in 1988 [7]. The resistance of metal-

lic multi-layer structures, consisting of alternating magnetic and non-magnetic

layers, was found to depend on the relative orientation of the magnetization di-

rections of the ferromagnetic layers. Specifically, the resistance is lowest (highest)

when the magnetic moments are aligned (anti-aligned) [8]. This property makes

that applying a small external magnetic field induces a significant change in resis-

tance of the multilayer, up to 20% at room temperature. Soon after its discovery,

the GMR effect found its application in information storage and reading, for

example in read heads for hard disks and MRAM memory [9].

Nowadays, the research (and user’s field) that aims at identifying, under-

standing, controlling, and finally utilizing spin-dependent phenomena, is known

as “Spintronics”.

1.2.1 Semiconductor spintronics

Motivated by the tremendous commercial success of spintronics in metallic sys-

tems, the electron spin degree of freedom has also become the center of interest

in semiconductor physics, both experimentally and theoretically. In contrast to

metals, however, in semiconductor spintronics essentially all device proposals and

potential applications are motivated by (or based on) the binary nature of a single

spin [10].

When the spin-direction of an electron is measured along an arbitrary axis it

can only be “up” or “down”, and could therefore represent “1” and “0”, respec-

tively. Hence, the electron spin could be utilized to transport digital information,

since it is attached to mobile conduction electrons. Moreover, the spin state can
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in principle be controlled by magnetic and electrostatic means, making it pos-

sible to perform elementary operations on the digital spin-bit. Hence, utilizing

the spin degree of freedom could open new possibilities to future spin-based data

processing and calculation schemes [10].

In this context we note that the phase-coherence time of electron spins is

generally much longer than that of charge states. This might offer the opportunity

to store and manipulate phase-coherence on relevant time scales, and to use

the spin as an elementary quantum bit for quantum computation. Currently,

experiments to entangle electron spins in coupled quantum dots and perform

qubit rotations are being performed, which might lead - in the far future - to the

realization of the revolutionary ideas in the field of quantum computation [11].

The application of the spin degree of freedom is not limited to quantum trans-

port. The spin might also play a role in quantum optics. The possibility to

engineer the coupling between spins and optical photons has already resulted in

proposals for a spin-based light emitting diode (spin-LED [12]) and spin-based op-

tical switches operating at terahertz frequency. More proposals and applications

are likely to follow.

So far, however, the field of semiconductor spintronics is far from any com-

mercial application. A lot of major fundamental issues and practical problems

need to be resolved before any widespread semiconductor spintronic device will

reach the market. In fact, at this emerging stage of semiconductor spintronics,

fundamental- and application-minded research are still going hand in hand.

1.2.2 Material systems

III-V semiconductors are also very suitable materials for future semiconductor

spintronic applications. This is because the control over the III-V semiconduc-

tor growth also offers the opportunity to engineer essentially all the relevant

parameters that determine the spin dynamics in these structures, including the

g-factor (Zeeman coupling) and the spin-orbit interaction strength [13]. This is

of vital importance for most spintronic applications, and is generally not possi-

ble in metallic systems. In addition, the control over parameters also offers, as

previously in the case of electronics, great opportunities to study fundamental

spin-dependent phenomena. Hence, spintronics can be seen as the extension of

traditional mesoscopic physics: the interest has shifted from the electron charge

and its coherence, to effects that are related to the spin and its coherence.

Narrow-gap III-V semiconductor quantum wells - based on InAs, InGaAs, or

InSb, for example - are particularly important for spintronics. The main reason is

that in these (appropriately designed) quantum wells the dominant type of spin-
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orbit interaction is tunable by electrostatic means, allowing to affect/control the

spin-dynamics in these quantum wells by applying gate voltages. This type of

spin-orbit interaction is known as Rashba spin-orbit interaction [14], and is the

central theme of this Thesis.

1.3 Spin-orbit interaction

As its name already implies, spin-orbit interaction (SOI) gives rise to a coupling

between the spin dynamics of an electron and its (orbital) motion in space. Below

we will give an intuitively picture of spin-orbit interaction. In Chapter 2 we will

present a more formal description of SOI, in particular of Rashba SOI.

If an electron is travelling through an electric field, it “sees” in its restframe

a moving electric field, i.e., moving charges. These moving charges - or electrical

current - give rise to an “internal magnetic field” in the restframe of the electron.

This “internal magnetic field” couples, in return, to the spin of the electron.

The magnitude and the direction of this internal magnetic field depend on the

velocity and travel direction of the electron in a material, i.e., SOI gives rise to

a k-dependent internal magnetic field, where k is the wavevector of the electron.

SOI is in many respects similar to the more familiar Zeeman coupling. SOI lifts

for example the spin degeneracy, and results in a (k-dependent) spin-splitting of

the conduction band [13]. Some of the important differences between SOI and

Zeeman coupling will be discussed in Chapter 2.

In solid state systems, SOI is generally caused by three different “sources”

of electric field: (1) impurities in the conduction layer, (2) lack of crystal inver-

sion symmetry, and (3) lack of structural inversion symmetry of the confinement

potential of electrons in a quantum well or heterostructure.

(1) The SOI due to the impurities is usually very weak in epitaxially grown

III-V quantum wells, and can be neglected in practice. It is, however, the main

source of SOI in metallic systems, since the other two mechanisms are absent.

(2) Most III-V semiconductors crystallize in the zinc-blende structure. In

contrast to silicon (diamond structure), the lattice of the zinc-blende structure

does not have inversion symmetry. Hence, electrons moving through this lattice

“feel” an asymmetric crystal potential. This effectively results in SOI, and the

corresponding spin-splitting of the conduction band, as was demonstrated theo-

retically by Dresselhaus. Hence, this type of SOI is known as Dresselhaus SOI

[15]. The strength of Dresselhaus SOI depends only on the atomic elements in

the crystal lattice. The Dresselhaus spin-split energy does, however, depend on

the Fermi wavevector.
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(3) When the motion of electrons is confined to two dimension, for example

in quantum wells, an asymmetric confinement potential forms another source for

SOI. The importance of this mechanism lies in the fact that the asymmetry in

the confinement potential can be varied by electrostatic means, allowing to tune

the SOI strength by an external gate voltage [16]. This type of SOI is known as

Rashba SOI [14]. For reasons that will be explained in Chapter 2, the strength

of Rashba SOI depends also on the crystal composition in the quantum well, and

is largest for narrow gap III-V semiconductors, such as InAs and InGaAs.

The total SOI in a sample, and hence the total internal magnetic field that

couples to the spin, is the sum of the above three contributions. The competi-

tion between these SOI mechanisms leads in general to complex behavior of the

spin dynamics. In narrow-gap III-V quantum wells, however, the Rashba SOI

is generally much larger than the other two mechanisms, which makes it often

an excellent approximation to neglect the contribution due to impurities and the

Dresselhaus mechanism [16]. In the rest of the Introduction and this Thesis we

will therefore mainly focus on the effects related to Rashba SOI.

1.3.1 Spin dynamics in the presence of Rashba SOI

As mentioned above, Rashba SOI gives rise to an internal magnetic field BSOI ,

which has the form BSOI = α(V g)|k| (k̂ × ẑ), i.e., the magnitude of BSOI is

proportional to the product of |k| and a voltage-dependent parameter, and it

is pointing in the direction perpendicular to both k and ẑ (with ẑ the growth

direction of the quantum well). In the absence of an externally applied magnetic

field, the spin will precess around this internal magnetic field BSOI , analogous to

Larmor-precession around an external magnetic field. The precession frequency

depends on the magnitude of the internal magnetic field |BSOI |, and hence can be

modified by applying a gate voltage [16]. This property has led to the proposal

of a Datta-Das “toy-model” [17], also known as the Datta-Das spin-transistor

(although its practical usefulness is far from obvious).

Datta and Das consider a ballistic transport channel with Rashba SOI, with

at either side of the channel a ferromagnetic lead (see Fig. 1.1). When a spin

is injected from one of the leads, it precesses around the internal Rashba field

BSOI until it arrives at the other ferromagnetic lead (the drain). The electron‘s

transmission probability into the drain depends on the relative alignment of its

spin with the drain‘s (fixed) magnetization. Since the total precession angle of

the spin during the travel to the drain can be controlled by a gate voltage, so

can the source-to-drain current (or conductance). Hence, this device is called a

“spin-FET”, since its operation relies on the field-effect.
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Figure 1.1: A schematic overview of the Datta-Das spin-FET. An injected spin on

the left is precessing around the Rashba field BSOI when it is moving to the right with

momentum p. The magnitude of BSOI can be tuned by the gate voltage, and hence

so can the total spin precession angle.

The importance of this Datta-Das “spin-transistor” is probably not its appli-

cability, but the intense scientific discussion it stimulated about the spin dynamics

in 2D electron gases with Rashba SOI. It has motivated the experimental and

theoretical investigation of the role of elastic scattering and dimensionality, for

example [18]. Moreover, it has also resulted in studies of the combined effect

of Rashba SOI and Dresselhaus SOI on the spin dynamics [19], as well as the

combined effect of Rashba SOI and Zeeman coupling [20, 21]. All these investi-

gations, in return, have led to the discovery of new spin-related effects and new

applications and devices. The paradigm of the Datta-Das device has therefore

had quite a broad impact on the field of spintronics.

From the example of the Datta-Das device it is clear that the spin dynamics

in a ballistic channel is rather simple: the spin is just precessing around the

internal Rashba field. The situation becomes more complicated in the presence

of elastic scattering (which is present in essentially all real systems). As outlined

above, the internal Rashba field BSOI is always pointing perpendicular to the

travel direction of the electron, i.e., perpendicular to k. Since elastic scattering

randomizes the travel direction, also the Rashba field - around which the spin is

precessing - changes direction after each scattering. This randomization of the

spin precession axis results in the loss of memory of the initial spin direction; i.e.,

elastic scattering leads to spin relaxation. This is the so-called Dyakonov-Perel

spin-relaxation mechanism [22] (for further details see Ch. 2).

Currently, there is an intense discussion whether the “inverse” effect is pos-

sible: if the spin-dynamics of an electron is determined by the orbital motion
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of the electron, could the orbital motion of the electron also depend on its (ini-

tial) spin-direction? Although the debate continues, experimental observations

of this so-called spin-Hall effect in solid state systems have already been reported

recently [23].

From an application point of view, the spin relaxation time and spin relax-

ation length are very important, since they determine the upper time- and length

scales on which proposed spintronic devices can operate. Increasing the spin re-

laxation time in experimental systems is of central importance, and several ways

to suppress the Dyakonov-Perel spin relaxation mechanism have been proposed.

Examples include the confinement of the electron motion to narrow quantum

wires [18], and applying additional Zeeman coupling [20, 21]. Below, these two

spin-lifetime enhancing mechanisms are explained in some more detail.

A characteristic of the Dyakonov-Perel spin relaxation mechanism is that the

spin relaxation time is inversely proportional to the elastic scattering time, i.e.,

heavy scattering slows down the spin relaxation process [22]. This is due to the

inability of the electron spin to follow the internal Rashba field BSOI when it

is varying its direction too rapidly. This characteristic implies that introducing

additional scattering, for example from the walls of the quantum wire, will en-

hance the spin relaxation time. Indeed, it has been demonstrated theoretically

that decreasing the width of the quantum wire below the spin precession length,

results in a large increase of the spin relaxation time [18].

The spin relaxation time can also be enhanced by adding Zeeman coupling

(see Ch. 7). In the presence of both Rashba SOI and Zeeman coupling the

spin will precess around the (vectorial) sum of the internal Rashba field and the

external Zeeman field. Since the direction of the external magnetic field does not

depend on the travel direction of the electron, its effect on the spin dynamics is

to “stabilize” the spin precession axis. If the external magnetic field (Zeeman

coupling) is large enough, the spins will stay aligned parallel or anti-parallel with

the external magnetic field, despite of the elastic scattering. Hence, Zeeman

coupling results in a (large) increase of the spin relaxation time [20, 21].

The spin dynamics in diffusive 2D electron gases with Rashba SOI and Zeeman

coupling seems to be quite complex in general. Parameters like the electron

density, elastic scattering time, Rashba spin-split energy, etc., could all play a

role. In Chapters 7 and 8 of this Thesis we will demonstrate, however, that

the spin dynamics - in particular the spin relaxation time - depends only on the

ratio of two energy scales; the Zeeman energy and a Rashba SOI related energy

scale (which is inversely proportional to the Dyakonov-Perel spin relaxation time)

[20, 21]. In this sense the spin-dynamics in 2D electron gases with Rashba SOI

is expected to be well-defined and “universal”.
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1.3.2 Effect of Rashba SOI on phase-coherent transport

In the previous section we discussed the spin-dynamics in 2DEGs with Rashba

SOI, when scattering and Zeeman coupling are present. The modification of the

spin-dynamics has also interesting consequences for phase-coherent phenomena,

and can lead to new spin-dependent, phase-coherent effects. Before discussing

those spin-effects, we first give a brief overview of some important concepts in

phase-coherent transport.

If the temperature is low enough (∼ 1K), inelastic scattering processes, such

as electron-electron interaction and electron-phonon scattering, weaken. What

remains is elastic scattering on impurities and defects, which do not change the

energy of the electron, and do therefore not randomize its phase (i.e the elec-

tron wavefunction stays phase-coherent). In this regime, the classical Boltzmann

transport theory does no longer hold, and new phase-coherent effects can be ob-

served. All these phase-coherent effects are essentially based on the quantum

mechanical law that the total probability of a certain process is given by the

absolute square of the sum over all possible (complex) amplitudes (see Ch. 2).

In general, this leads to interference effects between the complex partial proba-

bilities, and therefore often to non-classical behavior. A beautiful and appealing

example of this quantum mechanical principle is the Aharonov-Bohm effect [24],

which leads to magnetoconductance oscillations in a ring geometry.

Aharonov-Bohm (AB) oscillations belong to the class of so-called sample-

specific effects, since they depend on the details of the system, such as the radius

of the ring and the precise scattering configuration. Another example belonging

to this class are universal conductance fluctuations (UCF), which are caused by

the random interference of electronic waves (rather than the well-defined inter-

ference in a 1D ring structure). UCF is observable in systems with dimensions

smaller than the phase-coherence length, for example quantum dots [28]. The

typical characteristic of sample-specific effects is that they disappear upon en-

semble averaging: If one would measure, for example, the magnetoconductance

of many rings in series, the Aharonov-Bohm (“h/e”) oscillations would vanish.

The same holds true for UCF.

The other class of phase-coherent effects consist of phenomena that survive

ensemble averaging, and do not depend on the details of the system, such as

the scattering configuration. This class of effects is caused by the interference

of electronic waves travelling along time-revered paths. The phase-difference be-

tween these time-reversed partial waves is zero (assuming spinless particles, and

no magnetic field), since they “see” exactly the same electrostatic environment.

This results in positive interference, or coherent-backscattering, independent of
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the details of the followed scattering path. A small magnetic field modifies the

phase-difference between the time-reversed waves, however, and leads to h/2e os-

cillations in ring structures, and to the well-known logarithmic weak-localization

(WL) correction to the Drude conductivity in 2D systems, for example.

Rashba SOI has a significant effect on all the above mentioned sample-specific

and ensemble-averaged phase-coherent phenomena. Below we briefly discuss some

of the most important consequences; a more elaborate discussion of the effect of

Rashba SOI on phase-coherent transport will be given in Chapter 2.

The influence of Rashba SOI on the localization correction to the Drude con-

ductivity is known best, and has been studied extensively. It has been shown

that strong Rashba SOI - which affects the spin dynamics severely - results in a

sign change of the conductance correction, i.e., coherent back-scattering in the

absence of Rashba becomes coherent forward-scattering [25]. This positive cor-

rection to the Drude conductivity is known as weak anti-localization (WAL).

The tunability of the Rashba SOI in quantum wells has made it possibile to show

beautifully the crossover between WL (no Rashba) and WAL (strong Rashba) by

applying a gate voltage [26], as well as by changing the quantum well design [27].

In Chapters 7 and 8 we will show that “stabilizing” the spin-dynamics (fixing the

spin-precession axis by additional Zeeman coupling), also results in a crossover

from WAL to WL [21]. These experiments beautifully illustrate the role of the

spin-dynamics on coherent backscattering.

Spin-orbit interaction also affects the sample-to-sample conductance fluctu-

ations, referred to as universal conductance fluctuations (UCF) [28, 29]. The

average amplitude of the UCF does not depend on sample size or degree of dis-

order, but the mean amplitude does depend on the presence of a magnetic field

and/or SOI. Specifically, in the absence of magnetic fields and SOI their ampli-

tude is of the order of e2/h. If time-reversal symmetry is broken by a magnetic

field, their amplitude is reduced by a factor 2. In case the spin-rotational symme-

try is broken, e.g., by strong Rashba SOI, the amplitude of the UCF is reduced

by a factor 4. Moreover, in the presence of both a magnetic field and SOI, the

reduction is even a factor 8, as has been demonstrated within a random-matrix

description of quantum transport [29].

Finally, Rashba SOI is predicted to affect the (h/e and h/2e) Aharonov-Bohm

oscillations. In the presence of Rashba SOI and a magnetic field perpendicular

to the ring, the spin makes a solid angle as the electron is travelling around the

ring, which results in a spin-dependent phase-shift of the wavefunction (see Ch.

5). This Rashba-induced phase shift will have an observable effect in the Fourier

spectrum of the AB oscillations. Specifically, it predicted to lead to a splitting of

the characteristic h/e peak [30]. Moreover, the Rashba-induced phase shift is also
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predicted to give rise to fluctuations in the amplitude of the (ensemble-averaged)

h/2e peak in the Fourier spectrum [31]. The experimental observation of these

subtle effects is not trivial, however, as we will show in Chapter 6.

As the above examples illustrate, studying the effect of Rashba SOI on phase-

coherent phenomena is an interesting topic in itself, and allows to obtain a deeper

fundamental understanding of the role of the spin degree of freedom in mesoscopic

physics. For this purpose, the tunability of the Rashba strength and the flexibility

to affect/control the spin dynamics by the interplay with Zeeman coupling is

especially interesting, since it offers the possibility to study all kinds of crossovers

and to test newly developed theories.

In return, nowadays well-understood phase-coherent phenomena, such as WAL,

can also be utilized for the investigation of certain aspects of the spin dynamics

that are not yet fully understood, such as the effect of the competition between

Rashba SOI and Zeeman coupling (see Ch. 7 and 8 [21]). Note that this “ana-

lyzing technique” of the spin dynamics is very practical, because it involves only

simple transport measurement, in contrast to more elaborate optical techniques

[32]. Moreover, WAL measurements are also routinely used to extract the Rashba

SOI strength [16] and the electron g-factor (see Ch. 7 and [33]); it has become a

standard characterization tool for quantum wells and heterostructures.

On the applied side it is interesting to note that there exist proposals to

utilize phase-coherent, spin-dependent, phenomena for spintronic devices (see Ch.

5). For example, the possibility to control the phase shifts in a ring structure

by electrostatic means, has led to the proposal for a (spin-based) conductance

modulator, or spin interference device [34]. Moreover, it was demonstrated that

quantum interference in the presence of Rashba SOI can be utilized to produce a

spin filter [27], i.e. to create spin-polarized currents, which might be of paramount

importance for many potential future applications.

1.4 This Thesis

As outlined in the previous sections, Rashba SOI might play a crucial role in

spintronics, as far as controlling the spin dynamics is concerned. Especially the

tunability of the Rashba spin-orbit strength by electrostatic means, and by quan-

tum well design, offer new possibilities that did not exist in the old metal-based

counterpart. In addition, on a more fundamental level Rashba SOI is predicted

to give rise to interesting new phenomena, which cannot be (clearly) observed

in metallic systems investigated in the past. Studying systems with Rashba

SOI, and understanding the physics that those experiments reveal, is therefore
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of importance for the applied spintronic community, as well as for fundamental

reasons.

In this Thesis we address - partly theoretically and partly experimentally -

the following central questions: (1) What is the effect of Rashba SOI on phase-

coherent transport in mesoscopic systems, such as Hall bars and ring structures?

(2) How does the competition between Rashba SOI and Zeeman coupling affect

the spin dynamics in 2D electron gases? (3) What can be said about the breaking

of time-reversal symmetry in the 2D electron gas, in the presence of Rashba SOI

and Zeeman coupling?

In order to answer these questions we have developed and investigated quan-

tum wells with different, and tuneable, Rashba SOI strength. Also, we have

developed a quite unique experimental setup, where we can apply a magnetic

field perpendicular and parallel to the quantum well independently, in order to

create Zeeman coupling and study quantum interference at the same time.

1.4.1 Outline of this Thesis

This Thesis is written in such a way that all the Chapters can be read and

understood without having the knowledge of the foregoing Chapters. The amount

of redundancy is kept, however, to a minimum for those reading this Thesis from

the beginning to the end.

Chapter 2: In this Chapter we describe all the important theoretical concepts

that are at the basis of this Thesis. The main focus in the Chapter is on quantum

interference in the presence of Rashba SOI, and on the formal derivation of the

Rashba SOI strength in arbitrary quantum wells.

Chapter 3: We have studied different kinds of samples, fabricated out of

different kinds of heterostructures. In this Chapter the different heterostructures

and samples are characterized. We also briefly address the sample fabrication

procedure, as well as the our measurement system.

Chapter 4: In order to study theoretically the effect of Rashba SOI, model-

Hamiltonians are being used. Finding the physically correct Hamiltonian seems

trivial, but has resulted in ambiguities and errors in literature. For example,

a non-hermitean Hamiltonian has been used in literature to model a 1D ring

structure. In this Chapter we show in detail the procedure to derive the correct

Hamiltonian for electrons moving on a 1D ring in the presence of Rashba SOI

and a perpendicular magnetic field.

Chapter 5: In this Chapter we theoretically study a 1D ring in the presence of

Rashba SOI and a perpendicular field. In particular, we calculate its eigenfunc-

tions and eigenenergies, from which we find the (spin-dependent) phase-shifts in
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the wavefunction, when the electron is travelling around the ring. The phase

shift is found to depend on the Rashba SOI strength, which in return is tunable

by a gate voltage. We propose to utilize a ring structure with Rashba SOI as a

spin-based “conductance modulator”, or spin-interference device.

Chapter 6: From the theoretical 1D model it follows the wavefunction picks

up a spin-dependent geometrical phase - the Aharonov-Casher phase - when it

is travelling around the ring. This is predicted to result in a splitting of the h/e

peak in the Fourier transform of the magnetoconductance of the (1D) ring. In

this Chapter we show experimentally that sample-specific effects dominate the

Fourier spectrum in real (quasi-2D) ring structures, which impedes the possibility

to observe the Aharonov-Casher phase directly. We demonstrate that the sample-

specific features can be suppressed by ensemble averaging the Fourier spectra.

This allows us to observe a statistical significant splitting in the h/e peak in the

ensemble-averaged Fourier spectrum.

Chapter 7: In this Chapter we systematically investigate the how the com-

petition between Rashba SOI and Zeeman coupling affects the spin-dynamics,

in particular the spin-relaxation time. We demonstrate that this information

can be extracted from the magnetoconductance of a Hall-bar, as a function of

a perpendicular and parallel magnetic field. We find that the spin relaxation

time depends about quadratically on the ratio Zeeman energy/Rashba energy, in

agreement with recent theory. In this Chapter we also show that the competition

between Rashba SOI and Zeeman coupling result in breaking of time reversal

symmetry, and therefore introduces an upper cut-off time for the interference of

time-reversed waves which is shorter than the usual inelastic scattering time. In

addition, this analysis is shown to provide a new way to determine the g-factor

of electrons in the Hall-bar.

Chapter 8: The results in Chapter 7 are obtained in the limit that the Zeeman

energy is (much) smaller than the Rashba SOI energy, i.e. Zeeman coupling

can be considered as a small perturbation. In this Chapter we study the time-

reversal symmetry (TRS) breaking due to the competition between Rashba SOI

and Zeeman coupling for arbitrary values of their ratio. We find that the TRS

breaking saturates when the Zeeman energy (EZ) becomes comparable to the

Rashba energy (ESOI). Moreover, we find that this spin-induced TRS breaking

mechanism is a universal function of the ratio EZ/ESOI , within the experimental

accuracy.
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2.1 Introduction

In this Thesis we have investigated the influence of the Rashba SOI and Zeeman

coupling on phase-coherent electron transport, and on the spin dynamics in 2D

electron gases (2DEG). As we will outline in this Chapter, the spin dynamics

in diffusive 2DEGs depends critically on the interplay between Rashba SOI and

Zeeman coupling. It is the spin dynamics in turn, that determines many of the

phase-coherent transport properties of the electrons. This Chapter is therefore

organized as follows: First, we will give a very brief overview of the characteristics

of Rashba SOI, followed by a description of the spin dynamics in the presence of

Rashba SOI and Zeeman coupling, with a focus on the spin-relaxation process.

Then we will outline the concepts of quantum interference, and the role of the

spin dynamics in the interference process. Here, we will also discuss the influence

of the spin dynamics on (phase-coherent) Aharonov-Bohm oscillations in more

detail. Finally, we will go deeper into the microscopic origin of Rashba SOI, by

outlining the bandstructure calculations that allows to determine the Rashba SOI

strength in arbitrary quantum wells.

2.2 Rashba spin-orbit interaction

When electrons are confined to a thin layer (2DEG) by an asymmetric confine-

ment potential, their spin- and orbital degrees of freedom are coupled. This effect

is known as Rashba SOI. Its precise origin, and the strength of the Rashba SOI,

will be discussed in detail in Chapter 2.9. Here we just state that Rashba SOI is

described by the following Hamiltonian [1]

ĤR = α (p× σ) · ẑ (2.1)

where p = −i~∇ is the momentum operator, and σ = (σ̂x, σ̂y, σ̂z) is a vector of

the Pauli spin matrices. The value of α depends on details of the quantum well

(see Ch. 2.9). In the absence of Zeeman coupling and elastic scattering, the total

Hamiltonian of electrons is given by Ĥ = Ĥkin + ĤR, or explicitly

Ĥ =
p2

2m
+ α (p× σ̂) · ẑ =

p2x + p2y
2m

+ α (σ̂x py − σ̂y px) (2.2)

Diagonalizing this Hamiltonian yields the following energy spectrum:

E(k) =
~
2 k2

2m
± α |k| (2.3)

where the plus and minus sign correspond to the two possible spin directions

(the spin eigenstates are pointing perpendicular to k and in the plane of the
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Figure 2.1: The 1D dispersion relations of a degenerate electron gas in the presence

of Rashba SOI (left) or Zeeman coupling (right). The arrows indicate the spin-up and

spin-down states (for Zeeman coupling the spin-up state is pointing parallel to B, for

Rashba SOI it is pointing in the direction of k × ẑ). For a finite Fermi energy EF ,

Rashba SOI does not lead to spin-polarization, in contrast to Zeeman coupling.

2DEG). It follows that Rashba SOI leads to lifting of the spin-degeneracy in the

conduction band, even in the absence of an external magnetic field. Specifically,

Rashba SOI results in a spin-splitting ∆ = 2α |k|. The (1D) dispersion relation

is shown on the left side of Fig. 2.1. It consist of two parabolas that are shifted

horizontally with respect to each other. For comparison, the dispersion relation

in the presence of (only) Zeeman coupling is shown on the right hand side of

Fig. 2.1. In this case, the parabolas are shifted vertically with respect to each

other. This difference in shift-direction has an important consequence; Zeeman

coupling leads to spin-polarization of the electron gas (i.e., the number of spin-up

and spin-down electrons is different), whereas the presence of Rashba SOI does

not result in spin-polarization. The (mathematical) reason for this is that Rashba

SOI does not break time-reversal symmetry, in contrast to Zeeman coupling [2].

2.3 Dyakonov-Perel spin relaxation mechanism

From the above it follows, that Rashba SOI can be viewed as an internal magnetic

fieldBR acting on the spin, withBR = α
µ
(p×ẑ) (and µ is the magnetic moment).

The Rashba field BR is thus always pointing perpendicular to the momentum

direction p, and in the plane of the 2DEG. In a diffusive 2DEG the momentum

direction p of the electron changes frequently, and hence so does the direction

of BR around which the spin is precessing. Due to these random fluctuations of

BR in time - and the resulting random spin rotations in time - the spin looses

the memory of its initial spin direction, i.e., the fluctuations in BR results in
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spin relaxation. This mechanism is called the Dyakonov-Perel spin relaxation

mechanism [3, 4], and is the main cause of spin relaxation in (slightly) disordered

2DEGs with Rashba SOI (for other mechanisms see Ch. 2.3.1).

From the above picture of the Dyakonov-Perel (DP) mechanism, we can make

the following quantitative estimate of the resulting spin relaxation time. The spin

is initially precessing around a certain direction of BR with a typical frequency

ω and during a typical time τ (Here, ω is of the order µ|BR|/~ = ∆/~, and τ is

the typical elastic scattering time). After a time τ , i.e., after a scattering event,

the direction of BR changes randomly, and the spin starts precessing around

the new direction of BR. Hence, after a certain number of scattering events

there is no correlation anymore between the initial and final spin states. The

precise time-scale on which the spin looses its memory depends on the parameter

ωτ = ∆τ/~, which is the typical angle of spin precession between scattering

events. For ∆τ/~¿ 1, the precession angle between succeeding scattering events

is small, so that the spin vector experiences a slow angular diffusion. During a

time interval t, the number of random steps is t/τ . For uncorrelated steps in the

precession angle we have to sum the (random) squared precession angles (∆τ/~)2,

and hence the total squared precession angle after time t is (∆τ/~)2 t/τ . The

spin relaxation time τs can be defined as the time at which the total precession

angle becomes of the order of unity, and hence is given by 1/τs ∼= ∆2τ/~. A

more accurate calculation (assuming point-like scatterers) shows that 1/τs,x =

1/τs,y = 1/2τs,z = ∆2τ/2~, where τs,x,y,z are the relaxation time of the x, y, and

z component of the spin (see e.g. [5, 6]).

In the opposite limit, i.e., when ∆τ/~ À 1, the spin will rotate many times

around BR before the next scattering event takes place. This implies that the

spin projection transverse to BR is reversibly lost (on average) after time ~/∆,

while its projection along the direction of BR is conserved. When the electron

is scattered after time τ , the direction of BR is changed, and the initial spin

polarization will completely and irreversibly disappear. Hence, for this case we

have τs ∼= τ .

Summarizing, the DP mechanism is characterized by the following three char-

acteristics. First, the spin relaxation time becomes longer for shorter values of

the scattering time τ (assuming ∆τ/~¿ 1), i.e., in heavily diffusive systems the

DP spin relaxation mechanism is weakened. This feature makes it distinguishable

from the other spin relaxation mechanisms (see below). Secondly, note that the

spin diffusion length Ls is independent of scattering time τ , despite the fact that

the spin relaxation time is enhanced by increasing the scattering rate. We have

Ls =
√
D τs =

√

v2F τ τs/2 = ~ vF/∆ = ~
2/2m∗α. Hence, in 2DEGs the spin

diffusion length only depends on the Rashba SOI strength α (with ∆ = 2αkF ).
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Third, note that in pure 1D case the direction of BR (and hence spin rotation

axis) is fixed. Consequently, the DP spin relaxation mechanism is absent in 1D

systems. More general, it has been shown theoretically that the spin relaxation

time is enhanced substantially when the electron motion is confined to a wire

with a width that is smaller than the spin precession length Ls [7].

2.3.1 Other spin relaxation mechanisms

Another important spin relaxation mechanism in n-type semiconductors is the

Elliott-Yafet (EY) mechanism [8]. The EY mechanism originates from the Pauli

SO term which makes that the exact Bloch state is not a spin eigenstate but a

superposition of spin-states, i.e., Pauli SO leads to mixing of wavefunctions of

opposite spin (see Ch. 2.8). This results in a finite spin-flip probability when

the spatial part of the wavefunction experiences a transition through scattering,

even if the scattering process itself is spin-independent. Since spin-flip events are

induced by momentum scattering, the EY mechanism results in a spin relaxation

time that is proportional the (momentum) scattering time τ , i.e., τs ∝ τ . This

different dependent on τ makes the EY and the DP mechanisms experimentally

distinguishable, and reflects the fact that in the EY mechanism the spin rotation

occurs during scattering, whereas in the DP case the rotation happens between

scattering events (see also [9]).

In epitaxially grown quantum wells, with relatively long scattering times and

strong Rashba SOI, the Dyakonov-Perel mechanism is generally the dominant

cause for spin relaxation. Below, we will therefore mainly focus on the DP mech-

anism, and assume that the Elliot-Yafet mechanism can be neglected.

2.4 Effect of a magnetic field on spin relaxation

In the above discussion we have assumed that only Rashba SOI is present, and

that there is no additionally applied external magnetic field. When also an ex-

ternal magnetic field BR is applied, two things will change: (1) the spin will now

precess around the vectorial sum of the internal and external field (BR+B), and

(2) the electron motion will generally be affected by the external magnetic field

B. Both these effects have an impact on the spin relaxation process.

Since the spin precesses around the vectorial sum of the internal and external

field (BR + B), Zeeman coupling makes that the spin precession axis is less

randomized by elastic scattering, as compared to the case where B. Hence, the

spin relaxation time can be expected to become longer.
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In addition, when the external magnetic field B is applied perpendicular

to the 2DEG, the electron will move along circular orbits, with the cyclotron

frequency ωc = e|B|/m∗. For ωcτ À 1 the elastic scattering does not play a role

anymore, and consequently BR is always pointing in the radial direction. Since

the direction of BR is not randomized anymore but is now deterministic, the DP

spin relaxation mechanism will be suppressed [5, 6].

Theoretically, the effect of a magnetic field on the spin relaxation time is usu-

ally obtained by solving the kinetic rate equation for a spin-dependent density

matrix. For a 2DEG with Rashba SOI, which is subject to a large perpendicular

magnetic field, and with ∆2τ/~¿ EZ ¿ EF , the spin relaxation rates are given

by (assuming a negative g-factor) [6]

1

τs,z
=

∆2τ

~2

1

1 + (ωc + ωL)2 τ 2

(2.4)

1

τs,‖
=

∆2τ

2~2
1

1 + ω2c τ
2

where ωL is the Larmor frequency, and τs,z and τs,‖ are the relaxation times

of the spin components perpendicular to the 2DEG, and in the plane of the

2DEG, respectively. From the above expressions it follows that the orbital effect

enhances all spin relaxation times, whereas the Zeeman coupling enhances only

the relaxation time of the spin components along the applied magnetic field. Note,

that generally ωc À ωL, and hence the magnetic field has the largest impact on

the spin relaxation times via its effect on the orbital motion of electrons.

The situation is different when we apply the magnetic field B in the plane of

the 2DEG. For a thin enough quantum well the orbital effects due to the mag-

netic field are absent, and only the Zeeman coupling remains. For this case, and

in the limit that EF À ∆2τ/~ À EZ , the relaxation time of the perpendicular

spin component is calculated to be [10]

τs,z(B‖)

τs,z(0)
≈ 1 +

1

2
(EZ/ESOI)

2 (2.5)

where ESOI ≡ ~/τs(0) = ∆2τ/2~. The relaxation times of the other spin compo-

nents have not yet been examined. Hence, the spin relaxation time is determined

by the competition between only two energy scales; the Zeeman energy and the

a Rashba SOI related energy scale, and is independent of other details.
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2.5 Quantum interference (excl. spin-dynamics)

When the temperature is low enough (≈ 1K), the phase-coherence length of

electrons becomes much larger than the mean free path. In this limit, quan-

tum interference phenomena give rise to a deviation from the classical picture of

electron transport, that is characterized by the Drude conductivity. The sign of

the deviation depends on the spin dynamics. The study of these conductivity

corrections, known as weak(anti-)localization, can therefore provide valuable in-

formation about the spin dynamics in experimental systems. Below we outline

the important concepts, and will highlight the influence of the spin degree of

freedom, in particular the role of Rashba SOI and Zeeman coupling. For a more

complete review on this topic, and details, we refer the reader to Refs. [11, 12].

2.5.1 Conductivity correction in the absence of spin

Consider the quantum mechanical probability for an electron to go from A to

B. This probability is obtained by squaring the modulus of the sum of the all

probability amplitudes for an electron to pass along all possible paths (see Fig.

2.2). Neglecting the spin degree of freedom we therefore have

PA→B = |
∑

i

Ai|2 =
∑

i

|Ai|2 +
∑

i6=j
AiA

∗
j (2.6)

The first term is the classical probability to go from A to B, and the second

term is the quantum mechanical correction. To evaluate the value to the inter-

ference term, it is convenient to split the summation into two parts; paths that

do self-intersect, and paths that do not (see Fig. 2.2). The summation over non-

self-intersecting paths averages to zero, because the phase difference ∆φ between

each pair of scattering paths is large and random (the difference in length ∆L of

the paths results in a stochastic phase difference ∆φ ≈ kF∆L).

In contrast, the interference of self-intersecting paths does not average to zero.

Each self-intersecting path is characterized by a pair of probability amplitudes,

say A1 and A2, that correspond to the amplitude of passing the loop clockwise

and anti-clockwise. For these waves we have A1 = A2, independent of the length

of the loop, since the length of the two time-reversed paths is identical (∆L = 0).

Consequently, the probability to find a particle at the crossing X becomes

P = |A1 +A2|2 = |A1|2 + |A2|2 + 2|A1||A2| cos(φ1 − φ2) = 4 |A1|2 (2.7)
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A
B

X

Figure 2.2: A sketch of various semiclassical paths for an electron to go from A to B.

At point X the path is self-intersecting. The incoming wave at X will split into two

parts which traverse the loop in opposite directions (indicated by the arrows). The

interference between these time-revered waves will affect the return probability to X

and hence affects the total probability for a particle to go from A to B.

Hence, the probability of finding the particle atX is enhanced by a factor two, and

consequently the probability to find it at point B is reduced, i.e., the conductivity

is reduced below its classical value.

Since only the interference of time-reversed (or self-intersecting) paths affects

the conductivity, the magnitude of the conductivity correction depends on the

probability of an electron to return to its starting point. Assuming Brownian

motion [13], the dynamics is described by the diffusion equation

(

∂

∂t
−D

∂2

∂r2

)

W (r, t) = δ(r) δ(t) (2.8)

where W (r, t) denotes the probability of finding the particle at a position r from

the origin after a time-interval t. The solution of Eq. (2.8) is

W (r, t) =
1

(4πDt)d/2
exp

(

r2

4Dt

)

(2.9)

Hence, the return-probability after time t is (in d-dimensions) given by W (0, t) =

(4πDt)−d/2. To account for the fact that on time scales shorter or comparable

to the elastic scattering time τ the diffusion approximation does not hold, the

above value has to be multiplied by [1−exp(−t/τ)]. Furthermore, the interference

between time-reversed path must take place within the inelastic scattering time

τφ. This condition can be taken into account by an additional factor exp(−t/τφ).
Hence, the interference correction to the Drude conductivity is

∆σ = − e2

2π2~

∫

1

(4πDt)d/2
exp(t/τφ)[1− exp(t/τ)] dt (2.10)
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For 2D electron gases or thin metallic films we obtain from Eq. (2.10)

∆σ = − e2

2π2~
ln(τφ/τ + 1) (2.11)

2.5.2 Effect of a perpendicular magnetic field

A small magnetic field, applied perpendicular to the 2D electron gas, will not

affect the classical motion of electrons. It does change, however, the phase of the

probability amplitude of the paths. Specifically we have

A1 → A1 exp

(

i
e

~

∮

A · dl
)

= A1 exp

(

i
πB · S
Φ0

)

(2.12)

whereA is the vector potential, Φ0 = h/2e is the elementary quantum of magnetic

flux, and B · S is the magnetic flux Φ enclosed by the scattering path. For the

time-reversed path dl→ −dl, and hence the phase difference becomes ∆φ(B) =

2πΦ/Φ0; i.e., ∆φ does no longer vanish for all time-reversed paths, but depends

now on the enclosed flux. Consequently, the sum over all time-revered paths that

enclose roughly one flux quantum or more, will average to zero; i.e., a magnetic

flux suppresses the weak-localization correction.

The theoretical expression for the conductivity correction in the presence of

a magnetic field can be obtained by substituting p→ p+ eA, i.e.

[

∂

∂t
+D

(

−i ∂
∂r
− 2e

~
A(r)

)2

+
1

τφ

]

W (r, t) = δ(r) δ(t) (2.13)

For a 2DEG or thin film we consequently obtain (see e.g. [12, 11])

∆σ(B) = − e2

2π2~

{

Ψ

(

1

2
+
τB
τ

)

−Ψ

(

1

2
+
τB
τφ

)}

(2.14)

where Ψ(x) denotes the Digamma function, with Ψ(x) =
∑

n(n + x)−1, and

τB = ~/4eDB. This expression gives the magnetoconductance at small values of

B, and hence allows to determine τφ experimentally.

2.5.3 Effect of an in-plane magnetic field

Experimental systems always have a finite width and are not perfectly 2D. Hence,

an in-plane magnetic field B‖ does not only cause Zeeman coupling to the spin,
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Figure 2.3: An example of a time-reversed trajectories, where scattering events are

denoted by “s”. The topview of the trajectory is sketched in (a), whereas the electron

motion in the lateral direction is indicated in (b). The thickness of the sample is

denoted by “d”. The lateral electron motion results in enclosure of magnetic flux, and

hence causes dephasing of the time-reversed paths.

but also results in a magnetic flux through the quantum well or metal film, which

affects quantum interference.

Consider a thin metal film with thickness d in the presence of B‖ (see Fig.

2.3). The vector potential can then be chosen as A(r) = (0,−(z − d/2)B‖, 0).

Inserting this into Eq. (2.13), and noting that we can neglect the z-dependence

of W (r, t) for D ¿ lφ, we obtain the following effective 2D diffusion equation [12]

[

∂

∂t
−D

(

∂2

∂x2
+

∂2

∂y2

)

+
1

τφ
+

1

τB‖

]

W (r, t) = δ(r) δ(t) (2.15)

where 1/τB‖ is given by

1

τB‖
= D

(2e

~

)1

d

∫ d

0

dzA2(z) =
D

3

(ed

~

)2

B2
‖ (2.16)

Clearly, from Eq. (2.15) it follows that the in-plane magnetic field results in a

phase-breaking rate (∝ B2
‖), which adds to the inelastic rate 1/τφ.
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In the above derivation it was implicitly assumed that the electronic prob-

ability distribution is uniform over the thickness of the sample, and hence Eq.

(2.16) is only (approximately) valid for thin metal films. In narrow quantum wells

with perfect interfaces, electrons occupy well defined subbands Ψn(z), and hence

the center of mass of the electrons does not dependent on its motion in the xy

plane. In case of finite surface roughness, however, the motion in the along the

z-axis becomes coupled to its motion in the xy plane, similar as depicted in Fig.

2.6. Hence, surface roughness results in a non-vanishing dephasing rate. The

surface roughness can be characterized by two parameters ∆ and L, where ∆ is

the root-mean-square of the fluctuation height, and L is the distance over which

the fluctuations are correlated. For L ¿ ltr (with ltr is the mean free path), it

has been predicted that the dephasing rate is given by [14]

1

τB‖
≈
√
π
e2

~2
vF ∆2 LB2

‖ (2.17)

where vF is the Fermi velocity. Also in this case the dephasing rate is proportional

to B2
‖ , but it does not depend on the thickness d of the quantum well.

Apart from surface roughness, also other mechanisms can cause dephasing of

time-reversed waves, such as a z-dependence in the scattering potential [15], and

an asymmetric confinement potential of the electrons in the quantum well [15].

In practice, however, surface roughness is often the dominant mechanism.

From the above it follows that B‖ enhances the effective dephasing rate of

time-revered waves (1/τφ → 1/τφ + 1/τB‖), and hence suppresses quantum inter-

ference, analogous to a perpendicular field. As we will show in Chapter 2.6.3,

the competition between Rashba SOI and Zeeman coupling adds another term

to the dephasing rate.

2.6 Quantum interference (incl. spin-dynamics)

In the above discussion we have neglected the spin degree of freedom. If we

would take into account also Zeeman coupling - but no Rashba SOI - the above

results would be identical (for EZτ/~ ¿ 1). This is because in the presence of

(only) Zeeman coupling the spin is a good quantum number, and interference

takes place within each spin subband separately. Hence, the phase-shift in the

wavefunction due to the Zeeman energy is equal for both time-reversed waves.

Zeeman coupling alone is therefore not expected to result in any dephasing.

In contrast, the presence of SOI makes that the spin is not a conserved quan-

tity, and the spin precesses around the randomly fluctuating field BR. This leads
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to mixing of the spin subbands in the interference process, and has a profound

impact on quantum interference. Specifically, the interference correction to the

Drude conductivity changes sign, i.e., weak localization (WL) becomes weak anti-

localization (WAL) in the presence of strong SOI (see e.g. [11, 12, 16]).

The origin of the sign-change lies in the fact that the spin evolution of waves

travelling along time-reversed paths is not equal (see Ch. 2.6.1. for a more formal

description). If we consider SOI due to impurities, the spin rotates slightly during

each scattering event, and will have a certain spin direction when it arrives back

at the origin. The time-reversed wave scatters at the same points, but in the

opposite time-order. Consequently, also the spin rotations at the scatters occur in

the opposite time-order. Since 3D spin rotations do not commute (or equivalently,

Pauli spin matrices do not commute), the final spin directions of the time-revered

waves is not the same when they arrive back at the origin. In fact, for strong SOI

the angle between the two final spin directions is more often 2π than 0, resulting

- on average - in destructive interference (WAL).

2.6.1 Path integral technique

There are several techniques to obtain the interference correction in the pres-

ence of SOI. The most transparent method is probably based on a path integral

technique, analogous to Chapter 2.5, but now with the spin explicitly taken into

account. This Chapter is largely based on work by Chakravarty and Schmid [12].

The propagation amplitude of an electron is given by the following Feynman

path integral

K =

∫

drt T exp(
i

~
S[rt,σt]) (2.18)

where T denotes time ordering, and S is the action (which generally depends

on the position and spin direction). This quantity is the generalization of “‘Ai”

in Chapter 2.5. Including the spin, we obtain the following expression for the

(quasi) return probability W̃rt
(= AtA

∗
−t) for a given scattering path rt

W̃rt
=

1

2

∑

σ,σ′=↑,↓
〈σ|Texp(

i

~
S[rt,σt]) |σ′〉〈σ|Texp(

i

~
S[r−t,σt]) |σ′〉∗

(2.19)

=
1

2

∑

σ,σ′=↑,↓
〈σ|Texp(

i

~
S[rt,σt]) |σ′〉〈σ′|Texp(− i

~
S∗[rt,σt]) |σ〉

In the last step we used the property that the adjoint of a time ordered sequence

leads to an anti-time-ordered sequence: {Tf [rt]}∗ = Taf
∗[rt] = Tf ∗[r−t]. This
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form allows to consider the product of two matrix elements as a matrix element of

the direct product of two spins. Hence, we can write the quasi return probability

(for a single scattering path) in the following way

W̃rt
=

1

2

∑

σa,σb=↑,↓

〈σaσb|T exp
[ i

~
(S[rt,σ

a
t ]− S∗[rt,σ

b
t ])
]

|σbσa〉

(2.20)

=
1

2

∑

σa,σb=↑,↓

〈σaσb|T exp
[

i

∫

dt Ω(ṙt, rt) · (σa
t + σb

t )
]

|σbσa〉

In the last step the kinetic part in the action drops out, since it is real. The only

remaining term in the action stems from the SOI term, and is here assumed to

have the form: HSOI ∝ (∇V (rt)× ṙt) · σt ∝ ~Ω(ṙt, rt) · σt.

To find the total quasi probability for returning to the starting point in time

t0 we have to average Eq. (2.20) over all possible scattering paths rt that return

to the origin in time t0. In doing so, first notice that (σa
t + σb

t) is the total

spin, which does not depend on time and can be taken out of the integral (and

drop the index t). This also makes the time-ordering operation superfluous, and

can be neglected from now on. Furthermore, note that for a Gaussian distributed

variable φ, we have 〈〈 exp[ iφ ] 〉〉 = exp[−〈〈φ2〉〉/2 ], where 〈〈 〉〉 denotes averaging.
Hence, assuming Ω(ṙt, rt) to be Gaussian distributed, we find

W̃t0 =
1

2
Wt0

∑

σa,σb=↑,↓

〈σaσb|
〈〈

exp
[

i(σa + σb) ·
∫ t0/2

−t0/2
dtΩ(ṙt, rt)

] 〉〉

t0
|σbσa〉

(2.21)

=
1

2
Wt0

∑

σa,σb=↑,↓

〈σaσb| exp
[

− (σa + σb)2
t0
6 τs

]

|σbσa〉

where Wt0 is the classical return probability, i.e., without taking the phase into

account. Here we have also introduced the spin relaxation rate 1/τs, which is

proportional to Ω2 [12].

Since the eigenstates of the total spin are the singlet |0, 0〉 and triplet states

|1, 1〉, |1, 0〉, |1,−1〉, it is convenient to rewrite |σaσb〉 in this basis. We have

| ↑↑〉 = |1, 1〉, and | ↓↓〉 = |1,−1〉. Furthermore, we can write
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| ↑↓〉 =
1

2
( | ↑↓〉+ | ↓↑〉 ) +

1

2
( | ↑↓〉 − | ↓↑〉 )

=
1√
2
|1, 0〉 +

1√
2
|0, 0〉 (2.22)

| ↓↑〉 =
1√
2
|1, 0〉 − 1√

2
|0, 0〉

Hence, the summation in Eq. (2.21) can alternatively be written in the following

way (defining A ≡ Wt0 exp[−(σa + σb)2 t0/6τs] )

2 W̃t0 = 〈↑↑ |A | ↑↑〉+ 〈↓↓ |A | ↓↓〉+ 〈↑↓ |A | ↑↓〉+ 〈↓↑ |A | ↓↑〉 (2.23)

= 〈1, 1|A |1, 1〉+ 〈1, 0|A |1, 0〉+ 〈1,−1|A |1,−1〉 − 〈0, 0|A |0, 0〉

Hence, the triplets each contribute 1
2
Wt0 exp(−4 t0/3τs) to the quasi return prob-

ability, and the singlet gives a negative contribution equal to − 1
2
Wt0 (destructive

interference). The total quasi return probability is given by [12]

W̃t0 =
1

2
Wt0

[

3 exp(−4 t0/3τs)− 1
]

(2.24)

For t0/τs > 1 the (conductivity-decreasing) interference correction due to the

triplet is suppressed, and only the (conductivity-enhancing) interference correc-

tion due to the singlet remains. In other words, for a given SOI strength (i.e.,

τs), the self-intersecting scattering paths that are longer that the spin-relaxation

length contribute to the enhancement of the conductivity, whereas shorter scat-

tering paths decrease the conductivity (see Fig. 2.4). The total conductivity

correction is the sum over all the scattering paths (i.e., all values of t0), and

hence depends on the distribution of scattering path lengths.

If we apply a (small) perpendicular magnetic field, we introduce a phase-

shift (see Chapter 2.5.2), which makes that time-reversed paths that enclose

one or more flux quanta do no longer contribute to the interference correction.

Hence, the long scattering paths that enhance the conductivity in the presence

of SOI will dephase first, and consequently the conductivity first decreases with

magnetic field. For stronger values of the magnetic field the conductivity increases

again, since then also the short scattering paths (which lead to localization)

dephase (see Fig. 2.4). This gives rise to the characteristic (non-monotonic)

magnetoconductance, as was first derived by Hikami, Larkin and Nagaoka [17].
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LB =    h / e B

 

Figure 2.4: Sketch of the relevant length-scales in quantum interference. The in-

terference of waves travelling along time-reversed paths that are shorter/longer than

the spin relaxation length Ls give rise to a decrease/enhancement of the conductivity

(WL/WAL). The mean free path Ltr and the phase coherence length Lφ give respec-

tively the lower and upper bound for quantum interference. When a magnetic field is

applied the magnetic length LB replaces Lφ as upper length scale for interference.

2.6.2 Magnetoconductance in presence of Rashba SOI

In the previous section it was implicitly assumed that the SOI is due to impurity

scattering. For this type of SOI the spin only rotates slightly during each scatter-

ing process, but does not precess between scattering events. This picture of the

spin-dynamics is correct for thin metal films [11], but does not hold for quantum

wells with Rashba SOI. In the case of Rashba SOI, the spin is precessing around

B‖ between scattering events, and the spin rotation during each scattering event

is negligible. The theory for the magnetoconductance in this case was developed

by Iordanskii, Lyanda-Geller, and Pikus [18]. Since their derivation is less trans-

parent and more involved than the one above, we refer the reader to the original

paper for details. Here we only state that the magnetoconductance as a function

of a small perpendicular magnetic field B⊥ (but neglecting Zeeman coupling) is

given by (with ∆σ(B⊥) = σ(B⊥)− σ(0))

∆σ(B⊥) = − e2

2πh

{

1

a0
+

2a0 + 1 +Hs

a1(a0 +Hs)− 2Hs

−
∞
∑

n=1

[

3

n
− 3a2n + 2anHs − 1− 2(2n+ 1)Hs

(an +Hs)an−1an+1 − 2Hs[(2n+ 1)an − 1]

]

+ 2 lnHtr + Ψ(1/2 +Hφ) + 3C

}

(2.25)

where C is the Euler constant, and

an = n+
1

2
+Hφ +Hs Hs,tr,φ =

~

4eDB⊥τs,tr,φ

1

τs
=

∆2τtr
2~2

(2.26)
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with τtr the elastic scattering time, τs the Dyakonov-Perel spin-relaxation time,

τφ the inelastic scattering time, and ∆ = 2αkF the Rashba spin-split energy. We

will use Eq. (2.25) frequently in this Thesis to fit the experimental data, and to

extract the phase-coherence time τφ and the spin relaxation time τs. For the fit to

the ILP theory, we have summed the second line in Eq. (2.25) up to n = 50.000

(convergence had been reached).

We note that in the full ILP theory SOI terms proportional to k as well as to

k3 are taken into account. For quantum wells with strong Rashba SOI, we only

need to consider the SOI term proportional to k, and the magnetoconductance

expression reduces to Eq. (2.25). Specifically, Ω3 in Ref. [18] can be put equal

to 0, and Ω1 corresponds to ∆/2.

Further, we note that Eq. (2.25) was derived in the diffusion approximation,

implying that Eq. (2.25) is only valid for Htr ¿ 1, i.e., the magnetic flux through

an area of the mean-free-path squared (ltr×ltr) should be much smaller than unity.

Also, it is assumed that the spin-split energy ∆ is much smaller than the impurity

broadening, i.e., ∆τ/~¿ 1 [19]. For the experimental data analysis described in

this Thesis both these conditions were always satisfied.

2.6.3 Competition between Rashba and Zeeman coupling

In the above Chapters the additional effect of Zeeman coupling on quantum in-

terference and the magnetoconductance has been neglected. Although Zeeman

coupling alone is not expected to induce significant changes, the interplay be-

tween Rashba SOI and Zeeman coupling is predicted to affect quantum interfer-

ence profoundly [20, 21]. In particular, in the limit that the Zeeman coupling can

be treated as a small perturbation in comparison to Rashba SOI, the interplay

between Zeeman coupling and Rashba SOI is predicted to cause time-reversal

symmetry breaking. In other words, the competition between Zeeman coupling

and Rashba SOI is predicted to result in an additional (spin-induced) dephasing

rate of time-reversed waves 1/τB‖,spin, which is given by [21]

~

τB‖,spin
=

E2Z
ESOI

(2.27)

with EZ = g∗µBB‖ is the Zeeman energy, and ESOI ≡ ~/τs = ∆2τ/2~ is the

effective Rashba SOI energy in diffusive systems. This spin-induced dephasing

rate, Eq. (2.27), is generally much smaller than the dephasing rate due to the

magnetic flux through the 2DEG, assuming a perpendicularly applied magnetic

field (see Ch. 2.5.2). When the magnetic field is applied in the plane of the
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quantum well, however, the dephasing due to the orbital effect of B‖ is much

smaller (see Ch. 2.5.3), and spin-effects might become visible. In this case, the

total dephasing rate of time-reversed waves is given by (with EZ ¿ ESOI)

1

τφ(B‖)
=

1

τφ(0)
+

1

τB‖,orbital
+

1

τB‖, spin
(2.28)

=
1

τφ(0)
+
√
π
e2

~2
vF ∆2 LB2

‖ +
1

~

E2Z
ESOI

(2.29)

Which of these dephasing terms is the dominant depends on the details of

the quantum well. If the orbital dephasing mechanism can be neglected (as in

our samples; see Ch. 7 and 8), Zeeman coupling results in a suppression of

weak anti-localization. In other words, in the presence of strong SOI, additional

Zeeman coupling results in a decrease in conductivity. Specifically, the change in

conductivity is given by [21]

σ(B‖)− σ(0) = − e2

2π2~
ln

(

1 +
τφ(0)

τB‖,spin

)

(2.30)

This equation, and Eqs. (2.28) and (2.29), are only valid for EZ ¿ ESOI . So

far, there exist no theoretical predictions what happens when the Zeeman energy

is strongly affecting the spin dynamics, i.e., when EZ & ESOI . In Chapters 7 and

8 we will address this situation experimentally.

2.7 Aharonov-Bohm oscillations

In the previous Chapters we have discussed quantum interference phenomena in

2D systems. In this Chapter we focus on interference effects in another kind

of structure, namely a ballistic 1D ring. In this case the electron path is well-

defined, and the interference between waves moving in opposite direction gives

rise to well-known Aharonov-Bohm (AB) magnetoconductance oscillations [22].

The origin of the AB effect lies in the fact that the vector potential modifies

the the canonical momentum of an electron, p → p + eA. This results in a

change in the acquired phase by the electron after travelling a certain distance.

Note, that infinitely many functions A can be found that satisfy B = ∇ ×A,

and hence the canonical momentum and the acquired phase in the wavefunction

of the electron cannot be determined uniquely. However, the phase difference

between two interfering partial electronic waves, or a particle travelling along a

closed loop, is well-defined.
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The total phase acquired by an electron propagating along a closed loop is

given by (neglecting the spin degree of freedom)

∆φ =
1

~

∮

p · dl =
1

~

∮

(mv + eA) · dl = ∆φv +∆φA (2.31)

here the first term is due to the velocity of the electron and the second term

comes from the vector potential. This term can be written as

∆φA =
e

~

∮

A · dl =
e

~

∮

(∇×A) · dS =
e

~
B · S = 2π

Φ

Φ0
(2.32)

with Φ0 = h/e is the flux quantum, and Φ is the magnetic flux enclosed by the

the loop with area S. Note that we do not need to specify A explicitly to obtain

the phase difference ∆φA, since only ∇×A = B enters in the equation. Notice

further that
∮

A · dl =
∫ π

0
A · dl−

∫ −π
0

A · dl, and hence Eq. (2.32) also provides

the phase difference between two partial waves travelling along the different arm

of a 1D ring. Since a phase difference is only distinguishable Mod(2π), any

effect will show periodic behavior as a function of the enclosed flux, including

the conductance. In first order approximation, the conductance G of the ring is

given by

G(B) ∝ PA→B = |A1 + A2|2 = 2|A1|2 [1 + cos(∆φA +∆φv)]

(2.33)

= 2|A1|2 [1 + cos(2πΦ/Φ0 +∆φv)]

assuming |A1| = |A2|, and with ∆φv is either 0 or π for a doubly connected ring

(a) (b)

Figure 2.5: The interference of electron paths that lead to h/e oscillations are sketched

in Fig. a. The interference of time-reversed waves results in h/2e AAS oscillations (Fig.

b). Upon ensemble averaging only the AAS oscillations survive.
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(Onsager relation [23]). Hence, the conductance shows h/e periodic AB oscilla-

tions. Also higher order interference processes are possible (see Fig. 2.5): waves

that travel completely around the ring in opposite directions and then interfere,

will give rise to h/2e oscillations (known as Altshuler-Aronov-Spivak (AAS) oscil-

lations [24]). Note that AAS oscillations originate from the interference between

time-reversed waves, and hence ∆φv ∝ ∆L is always equals 0, independent of the

path. This makes that the AAS oscillations are not damped out upon ensemble

averaging, in contrast to h/e oscillations.

2.7.1 Effect of the spin-dynamics on AB oscillations

The occurrence of AB oscillations does only rely on the charge of electrons, not

on their spin degree of freedom. The spin-dynamics can affect the AB oscillations

in an observable way, however, analogous to the (spin-induced) crossover from

weak localization to weak anti-localization in 2D systems.

In case of homogeneous Zeeman coupling, i.e., when the spin is a good quan-

tum number, the spin degree of freedom is not expected to affect the periodicity

of the AB oscillations (as in the case of weak localization). In case of inhomoge-

neous magnetic fields, however, or for a ring with Rashba SOI, the spin-dynamics

is predicted to induce a spin- and travel-direction dependent phase-shift in the

wavefunction. It has been demonstrated that this spin-induced phase shift is

equivalent to a spin-dependent “magnetic” flux, just as the AB phase is equiv-

alent to an AB flux [27]. Since the spin-dependent “magnetic” flux adds to the

real magnetic flux, the spin-dynamics is expected to cause a deviation from h/e

periodicity of the AB oscillations [26, 27].

The spin-induced phase-shift can be written as the sum of two terms φs =

φd+φg, where φd is the dynamical phase and φg the so-called geometrical phase.

The dynamical phase depends on the energy of the electron and on time (e.g.,

uniform Zeeman coupling will cause a spin-induced dynamical phase that equals

φd = ±
∫ t

0
dt′EZt

′/~). The spin-induced geometrical phase emerges from the

basic laws of quantum mechanics, just as the charge-induced (geometrical) AB-

phase (eq. 2.32). This geometrical spin phase is known as the geometrical Berry

phase [28] (although only the spin-induced phase difference or effective flux is

well-defined, as in the case of the vector potential).

2.7.2 The geometrical Berry phase

To illustrate the concept of the geometrical Berry phase it is instructive to con-

sider the following example (where the dynamical and geometrical spin-phase can
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easily be obtained). Suppose an electron is at rest at the origin, and is subject to a

magnetic field whose magnitude is constant but whose direction is changing with

time B(t) = B0(sinα cosωt, sinα sinωt, cosα) (see Fig. 2.6). The Hamiltonian

of this system is then given by

H(t) =
ge

2m
B(t) · S =

~ωL
2

(

cosα e−iωt sinα

eiωt sinα − cosα

)

(2.34)

where ωL = geB0/2m is the Larmor frequency. The eigenspinors |Φ↑(t)〉 and
|Φ↓(t)〉 of H(t), with H(t) |Φ↑,↓(t)〉 = ± ~ωL/2 |Φ↑,↓(t)〉, are given by

|Φ↑(t)〉 =
(

cos α
2

eiωt sin α
2

)

|Φ↓(t)〉 =
(

sin α
2

−eiωt cos α
2

)

These eigenspinors represent the spin-up and spin-down states along the instan-

taneous direction of B(t), but they do not satisfy the time-dependent Schrödinger

equation. The true eigenstates of are found from

i~
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 (2.35)

Using the trial wavefunction |Ψ(t)〉, which is defined as

|Ψ(t)〉 =

(

γ1(t) cos
α
2

γ2(t) sin
α
2

)

(2.36)

we find the following set of coupled differential equations for the time-dependent

expansion coefficient γ1(t) and γ2(t):

i
∂γ1(t)

∂t
cos

α

2
=

ωL
2

[ cosα cos
α

2
γ1(t) + sinα sin

α

2
e−iωt γ2(t) ]

(2.37)

i
∂γ2(t)

∂t
sin

α

2
=

ωL
2

[ sinα cos
α

2
eiωtγ1(t) − cosα sin

α

2
γ2(t) ]

This set of equations can easily be solved, and gives

γ1(t) e
iωt/2 = cos

Ωt

2
+ i

ωL + ω

Ω
sin

Ωt

2
(2.38)

γ2(t) e
−iωt/2 = cos

Ωt

2
+ i

ωL − ω

Ω
sin

Ωt

2
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where we have defined Ω = (ω2 + ω2L − 2ω ωL cosα)
1/2. Therefore, the exact

time-dependent solution of the Schrödinger equation is explicitly given by

|Ψ(t)〉 =

[

(cos Ωt
2
− iωL+ω

Ω
sin Ωt

2
) cos α

2
e−iωt/2

(cos Ωt
2
− iωL−ω

Ω
sin Ωt

2
) sin α

2
eiωt/2

]

(2.39)

For either ω À ωL or ω ¿ ωL we can set (ωL + ω)/Ω = (ωL − ω)/Ω = 1. Within

this approximation we then have

|Ψ(t)〉 =

[

cos α
2
e−i(ω+Ω)t/2

sin α
2
ei(ω−Ω)t/2

]

(2.40)

and hence, using (ωL + ω)/Ω = (ωL − ω)/Ω = 1 once more, we find in the

adiabatic limit (ω ¿ ωL) and the strongly non-adiabatic limit (ω À ωL) the

following approximate solutions for the time-dependent Schrödinger equation

ω À ωL : |Ψ(t)〉 =

(

cos α
2
e−iωt

sin α
2

)

eiωL(cosα)t/2

ω ¿ ωL : |Ψ(t)〉 =

(

cos α
2
eiω(cosα−1)t/2

sin α
2
eiω(cosα+1)t/2

)

e−iωLt/2

Hence, in the adiabatic limit, the spin-up state after one period of the magnetic

field (t = T = 2π/ω) is given by

|Ψ↑(T )〉 =
(

cos α
2

sin α
2

)

e−iπ
ωL
ω eiπ(cosα−1) =

(

cos α
2

sin α
2

)

e−iE+T/~ eiπ(cosα−1) (2.41)

This can alternatively be written in the following form

|Ψ↑(T )〉 = e−iE↑T/~ eiπ(cosα−1) |Ψ↑(0)〉 (2.42)

where the first phase, E↑T/~, is the dynamical phase φd. It depends on the en-

ergy of the spin-up state and on the travel time (note that since the transport

is adiabatic the spin is the whole time in the instantaneous E↑ state [29]). The

second phase, π(cosα − 1), is the geometrical Berry phase φg, which exclusively

depends on the (solid) angle α described by the spin.
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Doing the same calculations for the spin-down state we find

|Ψ↓(T )〉 = e−iE↓T/~ e−iπ(cosα−1) |Ψ↓(0)〉 (2.43)

Hence the geometrical Berry phase is opposite for the two spin-directions.

The above discussion gives a specific example where the geometrical Berry

phase plays a role. The concept of the Berry phase is by no means however

limited to problems involving time-dependent magnetic fields. The Berry phase

generally plays a role in systems with a certain time-dependent parameter R(t),

which is described by the Hamiltonian H(R(t)). Assuming the time-evolution of

the state of the system to be adiabatic, i.e., it always remains in the nth eigenstate

|n,R(t)〉, the geometrical Berry phase φg is generally given by [28]

φg = − Im

∫ R(t)

R(0)

〈n,R|∇R |n,R〉 dR (2.44)

Even if the evolution of the system is non-adiabatic the wavefunction acquires a

geometrical phase, as demonstrated by Aharonov and Anandan [30]. The concept

of the geometrical phase is therefore very general, and relevant in many situations.

One of this situations is the case of a 1D ring with Rashba SOI. The Rashba

field BR in a 1D ring is pointing in the radial direction, and in the presence

of additional Zeeman coupling, the spin makes a solid angle α while travelling

around the ring. Fig. 2.6 shows that this case is similar to the case described

above. In Chapters 5 and 6 we will discuss the geometrical phases in more detail,

as well as the problems to observe it in real solid state samples.

BextBext

B
R B

R

2α
Bext  

(t)

2α

Bext  
(t)

 

Figure 2.6: Two examples where the spin describes a solid angle. In the left graph

the spin | ↑〉 follows (adiabatically) a rotation of the external magnetic field Bext in

time. In the right graph the combination of a (time-independent) external field and the

internal Rashba field BR results in a solid angle of the spin as the electron is travelling

around the ring.
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2.8 Determination of the Rashba coefficient α

So far, we have only discussed the basic characteristics of Rashba SOI and its

influence on the spin-dynamics and phase-coherent transport in quantum wells

and ring structures. In this Chapter we will outline the microscopic origin of

Rashba SOI. Also, we will discuss what determines its strength, and why the

Rashba strength α is tuneable by applying external gate voltages. This Chapter

is largely based on work by Winkler [31] and Lassnig [32]. We refer the reader to

these references for more details.

To obtain the strength of the Rashba SOI α theoretically, for a given quantum

well, it is necessary to perform bandstructure calculations. A detailed determi-

nation of all the energy bands in the crystal for all values of k is in general a very

complex and involved task. For semiconductors, however, it is often sufficient

to calculate the electron states in the vicinity of the fundamental gap, since the

relevant values of k (k . kF ) are usually small. This allows to make simpli-

fying assumptions, and to base the bandstructure calculations on framework of

the so-called k · p method, combined with the envelope function approximation

(EFA).

2.8.1 The k · p approximation method

Crystalline solids are characterized by a regular pattern of atoms. Hence, elec-

trons moving through such a crystal are subject to a regular potential landscape

V0(r) that has the periodicity of the underlying lattice. The non-relativistic,

single-particle Hamiltonian is in this case given by (assuming B = 0)

Ĥ =
p2

2m0

+ V0(r) −
e~

4m0
2c2

σ · p×∇V0(r) (2.45)

where m0 is the free electron mass, and c is the speed of light. The last term is

known as the Pauli spin-orbit interaction term, and arises from the electric field

∇V0(r) of the atomic cores. Neglect the Pauli SOI term for a moment, and using

Bloch functions eik·runk(r) as trial wavefunctions, the Schödinger equation can

be written in the following form

[

p2

2m0

+ V0(r) +
~
2

2m0

| k |2 +
~

m0

k · p
]

unk(r) = En
k unk(r) (2.46)

where En
k is the energy of the nth band, and p = −i~∇. Note that the exponential

factor eik·r of the Bloch functions is “divided out”, which results in the additional
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|k|2 and the k · p term in the Hamiltonian. The advantage of this is, that the

eigenfunctions unk(r) of Eq. (2.46) have now the periodicity of the lattice. Hence,

Eq. (2.46) needs to be solved for a single primitive cell only, instead of for

the whole crystal. Moreover, for small values of k we can neglect the last two

terms in Eq. (2.46), and take them into account by perturbation theory. This

method is known as the k ·p approximation, and is a powerful tool in determining

bandstructure properties of semiconductors.

The band-edge energies and corresponding wavefunctions can be obtained by

solving Eq. (2.46), and then setting k = 0 (note that the k·p term does not vanish

in general for k = 0, since one first has to take the gradient and then let k → 0).

The resulting band-edge functions un0(r) form a complete and orthonormal set of

functions, which is often used as a basis for perturbation theory. If we calculate,

for example, the matrix elements of the last two terms of Eq. (2.46) in this basis,

〈um0(r) | ~2

2m0
k2− i ~2

m0
(k ·∇) | un0(r)〉, we can determine the dispersion relations

En(k), and hence also the effective masses in the conduction and valence bands.

Such a perturbative treatment can also be used to determine the influence of

the Pauli SOI term e~
4m0

2c2
σ · p ×∇V0(r) on the energy bands. From these cal-

culations it follows that this Pauli SOI term splits the (p-like) sixfold-degenerate

valence band into two subbands with states having total angular momentum

j = 3/2 and j = 1/2, respectively. Specifically, one obtains a heavy-hole band

and a light-hole band with j = 3/2, and a Pauli split-off band with j = 1/2 (see

Fig. 2.2). For the s-like conduction band the matrix elements vanish. The Pauli

SOI term will only affect the conduction band via higher order processes, i.e.,

via the k · p coupling to neighboring bands. This Pauli SOI induced coupling to

neighboring bands ultimately results in Rashba SOI in the conduction band.

2.8.2 The envelope function approximation

The envelope function approximation (EFA) allows one to describe electron (and

hole) states in the presence of electric and magnetic fields that vary slowly on

the length scale of the lattice constant. For the derivation of Rashba SOI we will

be particularly interested in the effect of the confinement potential V (z) of the

2DEG on its energy spectrum.

The full Schödinger equation in the presence of a magnetic field B and a

confinement potential V (z) is given by
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Figure 2.7: The dispersion relation of the valence and conduction bands of a typical

semiconductor. Due to the Pauli SOI term, the valance band splits into three different

bands; a heavy hole (HH) and light hole (LH) band, both with total angular momentum

j = 3/2, and a Pauli split-off band with total angular momentum j = 1/2. The

conduction band is, in first order approximation, not affected by the Pauli SOI term.

[

(−i~∇ + eA)2

2m0

+ V0(r) +
~

4m2
0c
2
(−i~∇ + eA) · σ × (∇V0) +

+ V (z) +
g0
2
µBσ ·B

]

Ψ(r) = E Ψ(r) (2.47)

Note that V (z) is neglected in the Pauli SOI interaction term, because it is much

smaller than the contribution from the atomic cores (∇V (z)¿ ∇V0(r)). In order

to obtain the (approximate) energy spectrum in this case, we treat the last three

terms in Eq. (2.47) as perturbations and expand the wavefunction Ψ(r) in terms

of the band-edge Bloch functions un0(r) times a spinor |σ〉.

Ψ(r) =
∑

n′,σ′

Φn′,σ′(r) un′0(r) | σ′〉 (2.48)

The position dependent expansion coefficients Φn,σ(r) modulate the fast oscil-

lating Bloch functions un0(r), and are therefore called envelope functions. The

choice of using the band-edge Bloch functions as a basis is again based on the
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fact that the dominant part of the Hamiltonian (the first two terms) is diagonal

in this basis; the last three terms will result in (small) off-diagonal elements in

the matrix form of the Hamiltonian.

Inserting this trial wavefunction in Eq. (2.47), and multiplying from the left

by 〈σ | u∗n0(r) and integrating over a unit cell, we obtain the following set of

coupled equations (the envelope function are assumed to be constant over the

unit cell and can be taken out of the integration).

∑

n′,σ′

[(

En′(0) +
(−i~∇ + eA)2

2m0

+ V (z)

)

δn,n′ δσ,σ′ +
g0
2
µB σ ·B δn,n′

+ ∆n,n′

σ,σ′ + 1
m0

(−i~∇ + eA) · P n,n′

σ,σ′

]

Φn′,σ′(r) = E Φn,σ(r) (2.49)

The summation runs over all the energy bands n of the crystal, and over the two

spin directions σ. The quantities P n,n′

σ,σ′ and ∆n,n′

σ,σ′ are defined as follows:

P n,n′

σ,σ′ ≡ 〈σ | 〈un0 | p | un′0〉 | σ′〉 (2.50)

∆n,n′

σ,σ′ ≡ 〈σ | 〈un0 |
~

4m2
0c
2
p · σ × (∇V0) | un′0〉 | σ′〉 (2.51)

The left hand side of Eq. (2.49) is called the multiband Hamiltonian, or

envelope function Hamiltonian, which contains (implicitly) all the information

about all the energy bands in the crystal or quantum well. In order to obtain

the energy spectrum explicitly, we have to solve this infinite-dimensional set of

coupled differential equations. Obviously, this is generally an impossible task.

An approximate solution can be obtained by considering a multiband Hamilto-

nian that contains only a finite number of bands, or formally stated, to work

in a reduced Hilbert space. Specifically, to obtain the energy spectrum of the

conduction band, it is often a good approximation to consider only the k · p
coupling between the conduction band and neighboring bands. The influence of

remote bands on the energy spectrum can be taken into account by perturbation

theory, which will lead in general to additional terms in the reduced multiband

Hamiltonian. Differently stated, in order to obtain the same energy spectrum

in the reduced multiband Hamiltonian and the full infinite-dimensional Hamil-

tonian, we need to add terms in the reduced Hamiltonian. This way we obtain

the effective Hamiltonian operator on the reduced Hilbert space. In practice, this

effective multiband Hamiltonian can be obtained by quasi-degenerate perturba-

tion theory, also known as “Löwdin partitioning” [33]. Ultimately, this procedure

allows to determine the effective Hamiltonian operator for the conduction band

only (containing the Rashba SOI term).
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2.8.3 The 8× 8 Kane model

In order to obtain the effective EFA Hamiltonian for the conduction band in

narrow-gap semiconductors, it is enough to consider the k · p coupling between

the conduction band and the neighboring valence bands. This is known as the

8× 8 Kane model, and the corresponding EFA Hamiltonian reads

H8×8 =







Vc(z) ‖2×2
√
3P T · k − 1√

3
P σ · k√

3P T † · k (Vv(z)− Eg) ‖4×4 0

− 1√
3
P σ · k 0 (V∆(z)− Eg −∆0) ‖2×2







with ~k = −i~∇+eA, Eg and ∆0 are the fundamental energy gap and the Pauli

SOI gap, respectively (see Fig. 2.7), and P is the Kane’s momentum matrix

element [34]. The matrices T are defined in Ref. [35]. Vc,v(z) includes the

position dependence of the band edges. This z-dependence is absent, of course,

in bulk semiconductors, but is generally present when we confine the electrons to

two dimensions, i.e., in quantum wells (see Fig. 2.8).

From this 8 × 8 Kane Hamiltonian it is possible to construct the effective

2 × 2 conduction band Hamiltonian (for the two spin directions). This EFA

Hamiltonian for the conduction band is (assuming Vv,c(z), EF ¿ Eg) [31, 36]

Ĥ3D
c =

~
2k2

2m∗ + Vc(z) + g∗µB σ ·B + κ σ ·k×∇(Vv(z) + V∆(z)) (2.52)

The first term is the kinetic energy, Vc(z) is the position-dependent band edge

energy (see Fig. 2.8), the third term is the effective Zeeman energy, and the last

term is the Rashba SOI. Note that it follows from Eq. (2.52) that the Rashba

term depends on the potential gradient in the valence band. The quantities m∗,

g∗ and κ are given by the following expressions:

m0

m∗ ≈
2P 2

3m0

[

2

Eg

+
1

Eg +∆0

]

(2.53)

g∗

2
≈ − 2P 2

3m0

[

1

Eg

− 1

Eg +∆0

]

(2.54)

κ ≈ − P 2

3

[

1

E2g
− 1

(Eg +∆0)2

]

(2.55)
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Figure 2.8: A sketch of the typical potential profile of the conduction and valence band

of an asymmetrically doped InAlAs/InGaAs/InAlAs quantum well [40]. The electronic

wavefunction in the confinement direction (or density |Ψ|2) is indicated by the dashed

curve. Figs. (b) and (c) show the corresponding (position-dependent) electric fields

in the conduction and valence band, respectively. Note that the electric fields at a

quantum well interface is opposite for the two bands.

Note that κ vanishes in the limit of vanishing Pauli SOI (∆0 → 0). Hence,

the atomic electric field felt by the Bloch functions is a crucial prerequisite for

having Rashba SOI in the conduction band, in addition to having a non-vanishing

expectation value of ∇(Vv(z) + V∆(z)), felt by the envelope function. Notice

also that the effective g-factor and the Rashba prefactor κ become larger for

narrow-gap materials, i.e., for small values of Eg. This makes the Rashba SOI

generally particular important in narrow-gap materials, such as InAs and InGaAs

(κ = 117.1 eÅ2 for InAs, versus 5.2 eÅ2 for GaAs, for example [31]).

2.8.4 Rashba SOI strength in a quantum well

The last step is to calculate the effective 2 × 2 Hamiltonian for electrons in

a quantum well (i.e., H2D
c ). Therefore we impose that the confining potential

Vc(z) (or band bending) is large, which is achieved by sandwiching a narrow-gap

semiconductor between two large-gap semiconductors (see Fig. 2.8(a)). More

accurately stated, Vc(z) is the self-consistent confinement potential, which also

includes depletion and the Hartree contribution [32].

In a thin quantum well, the confinement energy in the z-direction is the

dominant energy scale, and therefore we can obtain the wavefunctions and (2D)
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subband energies by neglecting the Zeeman and Rashba SOI term, in first order

approximation. Since the Hamiltonian is translational invariant in the plane of

the quantum well, the eigenfunctions can be written as Ψn(r) = ei(kxx+kyy) Φn(z),

and Φn(z) is obtained from

[

− d

dz

(

~
2

2m∗(z)

)

d

dz
+ Vc(z)

]

Φn(z) = En Φn(z) (2.56)

If the quantum well is thin enough, i.e., when E1 − E0 À ~
2k2F/2m

∗, all the

electrons are in the lowest subband E0, with wavefunction Φ0(z). The effective

2D Hamiltonian operator for electrons in the quantum well is then given by

Ĥ2D
c = 〈Φ0(z) | Ĥ3D

c | Φ0(z)〉, or explicitly

Ĥ2D
c =

p2x + p2y
2m∗ + E0 + g∗µB σ ·B + α (σx py − σy px) (2.57)

where the Rashba SOI strength α given by the following expression:

α = 〈Φ0(z) | κ
d

dz
[Vv(z) + V∆(z)] | Φ0(z)〉 (2.58)

Note that in the derivation of this expression for α it was assumed that

Vv,c(z), EF ¿ Eg, which allowed to treat κ as a z-independent constant. Without

these simplifying assumption, the more accurate expression for α becomes [32]

α = 〈Φ0(z) |
d

dz

[

1

EF − Vv(z)− Eg

− 1

EF − V∆(z)−∆0

]

| Φ0(z)〉 (2.59)

which reduces to Eq. (2.58) for Vv,c(z), EF ¿ Eg. Note that the average electric

field that is acting on the conduction electrons vanishes, i.e., 〈Φ0(z) | ∇Vc(z) |
Φ0(z)〉 = 0, consistent with Ehrenfest’s theorem (which states that on average

there is no force acting on a bound state [37]). This theorem does not imply, how-

ever, that the value of α should also vanish, because in Eq. (2.48) we evaluate

the expectation value of the electric field in the valence band with the wavefunc-

tion of the conductance band (i.e., Ehrenfest’s theorem does not apply). In fact,

because the sign of the electric field at the quantum well interfaces is opposite for

the valence and the conduction band (see Fig 2.8 (b) and (c)), this expectation

value and hence α, does not vanish (especially when the wavefunction Φ0(z) has

a different amplitude in the left- and right quantum well interface [38]). Only
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when the (self-consistent) confinement potential has inversion symmetry, i.e when

Vv,∆(z) = Vv,∆(−z), the Rashba SOI vanishes (α = 0).

From Eqs. (2.58) and (2.59) it also becomes obvious why the Rashba SOI

strength can be controlled by applying a gate voltage: A gate voltage will affect

the shape of the electron confinement potential, i.e., it will affect the z-dependence

of the conduction and valence band Vc,v,∆,(z). These induced changes in Vc,v,∆,(z)

do affect the expectation values for the Rashba SOI strength α (see Eqs. (2.58)

or (2.59)). This has also been demonstrated experimentally [38, 39].

Apart from applying a gate voltage, the band structure of the conductance and

valence band can also be affected by the position of the carrier supply layer(s)

in the heterostructure (see Chapter 3 for details). This possibility has been

demonstrated experimentally in Ref. [40], and has also been exploited in this

Thesis.
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3.1 Introduction

In semiconductor heterostructures, bandgap engineering makes it possible to trap

electrons in a very narrow potential well. The motion in the growth direction

is then quantized, and the electrons form a 2D electron gas (2DEG). 2DEGs

are attractive as compared to metallic structures, because the mobility of the

carriers is very high. Moreover, many relevant parameters can be controlled by

applying a gate voltage, such as the electron density, the elastic scattering rate,

as well as the Rashba SOI strength (see also below). These properties make it

possible to study systematically the effects of Rashba SOI on quasi-ballistic (and

phase-coherent) transport, in different kind of structures.

In this Thesis we discuss (1) the effect of Rashba SOI on Aharonov-Bohm

conductance oscillations measured in a ring structure, and (2) the effect of the

competition between Rashba SOI and Zeeman coupling on phase-coherent trans-

port in 2D systems (Hall bars), in particular its effect on the spin relaxation time

and on the dephasing of electronic waves.

For the fabrication of these two kinds of samples, i.e., the ring structure

and the Hall bars, we have used two different kinds of heterostructures (with

different Rashba SOI strengths). The heterostructure growth, as well as the

device fabrication, has been performed in the NTT Basic Research Laboratories,

Atsugi, Japan, in the group of prof. dr. J. Nitta. Below we briefly describe

the characteristics of the different heterostructures. In Section 3.3 the sample

fabrication procedure is described, and finally, in Section 3.4 the measurement

setup is briefly outlined.

3.2 Heterostructures

The first kind of heterostructure that has been used in this Thesis is an InAs-

inserted In0.53Ga0.47As/In0.52Al0.48As heterostructure, which was grown by molec-

ular beam epitaxy (MBE) on a Fe-doped semi-insulating (100) InP substrate. The

whole layer structure of this wafer is sketched in Fig. 3.1. All InGaAs and InAlAl

layers were lattice matched to InP. The 2DEG channel is formed in the undoped

InAs layer (only the lowest subband is occupied by electrons due to the small

layer thickness). The carriers are provided by the doped InAlAs layer, which has

a doping density of N = 4× 1018 cm−3 (the doping layer controls the position of

the Fermi level in the 2DEG; when it is above the bottom of the conduction band

edge of the 2DEG, mobile carriers are induced in the 2DEG). An undoped In-

AlAs layer is separating the 2DEG channel from the doping layer, which reduces

scattering from ionized impurities in the doping layer, and hence enhances the
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InGaAs  layer  (13.5 nm)


InAlAs gate Schottky layer  (20 nm)

InAs  quantum well  (4 nm)

InGaAs  layer  (2.5 nm)

InAlAs  spacer layer  (6nm)

doped  InAlAs  carrier-supply layer  (7nm)

InAlAs  buffer layer

semi-insulating  InP  substrate

Figure 3.1: Schematic overview of the layer structure of the first kind of heterostruc-

ture that has been used in this Thesis (Chapter 6). The doping density in the carrier

supply layer is N = 4× 1018cm−3.

electron mobility µ of the electrons in the 2DEG (µ is typically 50.000 cm2/Vs).

Note that the carrier supply layer is underneath the 2DEG channel. The struc-

ture is therefore called an “inverted” heterostructure. The advantage of inverted

heterostructures is that they generally have a lower gate leakage current and a

higher breakdown voltage when a voltage is applied to a top-gate electrode, as

compared to a normal type heterostructure.

Figure 3.2 shows the conduction band profile and the electron density distribu-

tion of the heterostructure drawn in Fig. 3.1, for three different electron densities

(ne = 1, 2, 3 · 1012 cm−2). As is apparent from Fig. 3.2, the conduction band

edge depends on the position along the growth direction, and has no inversion

symmetry. The same holds true for the valence band (not shown). For all densi-

ties, the electrons are mainly positioned in the narrow InAs layer. The electrons

in this layer are confined by an (inversion) asymmetric confinement potential,

caused by the asymmetry in the layer structure, in particular the asymmetry in

the doping with respect to the InAs conduction layer. Notice that the asymmetry

in confinement potential depends on the precise electron density.

In the previous Chapter it was shown that the Rashba strength in the quan-

tum well depends on the asymmetry of the confinement potential, and hence

from Fig. 3.2 it follows that the Rashba strength depends on the electron den-

sity. Since the electron density can be modified by applying a gate voltage, so can

the Rashba strength. Note that gate voltage will also modify the slope in the con-
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Figure 3.2: The calculated conduction band diagram of the first kind of heterostruc-

ture, for three different electron densities (solid lines). The electron density distribution

|Φ|2 for the three different densities is indicated by the dashed lines. The Figure is taken
from Ref. [2].

duction band, and hence results in an additional change in the Rashba strength

[1]. The Rashba SOI strength in this wafer is estimated (from the analysis of the

Shubnikov-de Haas oscillations) to be α ≈ 1 ·10−11 eVm for ne = 1.75 ·1012 cm−2,

and α ≈ 0.65 · 10−11 eVm for ne = 2.5 · 1012 cm−2 (for more details see Ref. [2]).

The second kind of heterostructure is schematically depicted in Fig. 3.3. It

is an In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As based heterostructure that is

grown by metal-organic chemical vapor deposition (MOCVD) on a Fe-doped

semi-insulating InP substrate. All the layers are again lattice matched to InP,

and the 2DEG is now formed in the 10 nm wide InGaAs layer (only the lowest

subband is occupied by electrons). The interesting feature of this heterostructure

is that two separate doping layers have been introduced, one on either side of the

2DEG. We denote the doping levels of the top and bottom carrier supply layer as

N2 and N1, respectively. By varying the ratio N2/N1, while keeping N1+N2 con-

stant, the degree of structural inversion asymmetry of the quantum well can be

controlled (see Fig. 3.4), i.e., this way the Rashba strength can be controlled by

doping means. Four different heterostructures have been grown, where N1 +N2

was kept fixed to 4 × 1018 cm−3, and the ratio N2/N1 was chosen to be 0, 1
3
, 1

and 3, respectively.
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InAlAs gate Schottky layer  (20 nm)

InGaAs  quantum well  (10 nm)

InAlAs  spacer layer  (6nm)
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Figure 3.3: Schematic overview the the layer structure of the second kind of het-

erostructures that have been used in this Thesis (Chapters 7 and 8).

Figure 3.4 shows the results of the self-consistent Poisson-Schrödinger calcula-

tion for the four different wafers (the potentials are plotted relative to the Fermi

energy) [3]. The electron density was fixed to ne = 7 · 1011 cm−2. For the het-

erostructure with the largest asymmetry in the doping (N2/N1 = 0), the slope in

the potential is also largest. For more symmetrically doped heterostructures the

confinement potential of the electrons in the InGaAs layer becomes more sym-

metric. Hence, the Rashba strength can be controlled by controlling the doping

ratio N2/N1. For N2/N1 = 0, 1/3, and 1 the Rashba spin-split energy ∆ = 2αkF
is estimated to be ∆ ≈ 1.8, 1.4, and 0.5meV, respectively, from the analysis of

the magnetoconductance (see Fig. 3.10) [3, 6].

3.3 Device fabrication

In this Thesis we describe systematically the phase-coherent transport properties

of two types of samples: ring structures and Hall bars. The fabrication procedure

of these two structures is briefly outlined below.

3.3.1 Fabrication & characterization of the ring structure

The ring structure has been fabricated by electron beam lithography (EBL), in

combination with electron cyclotron resonance dry etching (ECR). The advan-
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Figure 3.4: The calculated self-consistent band structure of the four different het-

erostructures of the second kind. The electron sheet density is ns = 7 · 1012 cm−2. The
solid, short-dashed, long-dashed, and dash-dotted curves denote the bandstructure for

N2/N1 = 0, 13 , 1, and 3, respectively. The inset shows again schematically the layer

structure, where “C.S. layer” stands for the carrier supply layer. The figure is taken

from Ref. [3].

tage of ECR etching in comparison to wet etchant methods is that ECR etching is

isotropic for all crystal orientations, and hence side etching is reduced in this pro-

cess. The fabrication procedure for defining a ring structure in the heterostructure

is schematically depicted in Fig. 3.5. First, a layer of (positive) organic resist

(poly-methyl-methacrylate, PMMA) is spun on top of the heterostructure. Then,

the ring structure is defined by electron beam writing in the electron-sensitive

resist. The exposed parts of the resist are subsequently removed by a developer

(solution of methyl isobutyl ketone, MIBK, and iso-propyl alcohol, IPA). In the

next step the part of the heterostructure that is not covered by the resist is

removed by ECR dry etching. Note that the etching should be deep enough to

remove the 2DEG layer (indicated by the dashed line), as well as the doping layer

(not shown). The last step is to remove the layer of PMMA-resist with acetone.

Subsequently, the ring is covered by an Au/Ti gate electrode. This procedure

is schematically depicted on the right-hand side of Fig. 3.5. Again, a PMMA
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Figure 3.5: Schematic overview of the fabrication procedure for (dry) etching a ring

structure (left column), and evaporating a metallic gate electrode (right column).

layer is spun onto the heterostructure, and the exposed parts of the resist are

removed by the developer. In the next step a thin layer of Titanium (≈ 5 nm) is

evaporated, followed by a thicker Gold layer (≈ 100 nm). The Titanium layer acts

as an adhesion layer. In the last step the remaining resist is removed by acetone,

and hence the metal film on top of the resist is removed as well. This is the

so-called “lift-off” process, which is made possible by the undercut in the PMMA

resist (caused by the significant electron scattering at the heterostructure toplayer

during the electron beam exposure). In order to measure transport properties

of the ring, Ohmic contacts are connected to the 2DEG by evaporating AuGeNi

contacts, and subsequently annealing them.
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Figure 3.6 shows a SEM picture of one of the resulting ring structures. The

mean radius and width of the arms of the ring are approximately 350 nm and

180 nm, respectively. A metallic gate is covering the whole ring, allowing to

change the electron density ne. At Vg = 0V the electron density ne was estimated

to be 1.75·1012 cm−2 (from Shubnikov-de Haas measurements in the bulk 2DEG),

and changes about linearly with gate voltage Vg, following the relation dne/dVg ≈
1.7 ·1012 cm−2/V. The mean free path and the mobility are estimated to be about

0.8µm and 48.000 cm2/Vs, respectively (at Vg = 0V). Hence, transport in the

ring is quasi-ballistic [4].

V+ V-

I+ I-

gate

1µm

Figure 3.6: SEM picture of the fabricated ring structure. A gate electrode is covering

the whole ring, allowing to change the electron density (and Rashba strength). The

voltage and current contacts are indicated with V± and I±, respectively.

The left-hand side of Fig. 3.7 shows a typical magnetoresistance trace of the

ring (the magnetic field is applied perpendicular to the heterostructure). The

resistance shows clear Aharonov-Bohm oscillations, superimposed on a randomly

fluctuating background. The presence of Aharonov-Bohm oscillations shows that

transport through the ring (measured at T = 0.3K) is phase-coherent (τφ is typ-

ically between 2 and 10µm, depending on the electron density). The right-hand

side of Fig. 3.7 shows the Fourier transform of the measured magnetoconduc-

tance. The h/e, h/2e, and h/3e (see inset) peaks are clearly visible in the Fourier

transform. The center frequency of the h/e peak in the Fourier transform cor-

responds to the mean radius of the ring. The finite width of h/e peak and its

irregular shape are caused by (sample specific) elastic scattering in the ring and

the finite width of the arms of the ring (there are typically 7 − 15 conducting

modes in the radial direction, depending on the applied gate voltage).

In Chapter 6 we describe the statistical properties of the measured AB os-
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cillations, and demonstrate in detail how sample specific features in the Fourier

transform can be suppressed, in order to identify (Rashba-induced) spin effects

in the Fourier transform of the measured AB oscillations.

0 100 200 300 400

0 100 200 300 400

F
o
u
ri
e
r 
a
m

p
lit

u
d
e
  
(a

.u
.)

Frequency  (1/T)

h/e

h/2e

h/3e

h/e

h/2e

-1.0 -0.5 0.0 0.5 1.0

10

12

14

Magnetic field  (T)

R
e

s
is

ta
n

c
e

  
(k

Ω
)

Figure 3.7: Left: a typical magnetoresistance measurement at T = 0.3K, showing

Aharonov-Bohm (AB) oscillations, superimposed on aperiodic conductance fluctua-

tions. Right: the Fourier transform of the magnetoconductance. The h/e, h/2e, and

h/3e (see inset) peaks are clearly visible in the Fourier spectrum.

3.3.2 Fabrication & characterization of the Hall bars

In Chapters 7 and 8 we study the effect of the interplay between Rashba SOI

and Zeeman coupling on the spin dynamics and on phase-coherent transport. For

these experiments we have fabricated Hall bar structures out of the second kind

of heterostructures (Fig. 3.3). Specifically, we have studied in detail the wafers

with N2/N1 = 0, 1
3
, and 1, each having a different Rashba SOI strength.

The Hall bars have been fabricated using standard photo-lithography and

ECR dry etching. Note that in this case the pattern does not need to be written

by electron beam lithography, because all the relevant dimensions are relatively

large (À 1µm). The fabrication procedure of the Hall bars (using photo-masks)

is essentially the same as depicted in Fig. 3.5; only the electron beam is replaced

by UV light. Subsequently, the Hall bar is covered by a 100 nm thick SiO2 layer

to provide good electrical insulation to the gate electrode. The gate electrode

is fabricated using photo-lithography and lift-off techniques (see Fig. 3.5), and

consists again of a thin Ti-layer and a 150nm thick Au-layer. Ohmic contacts are

again obtained by evaporating AuGeNi and annealing.
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Figure 3.8: An optical picture of a fabricated sample, which consists of two Hall bars

that are covered by a gate electrode (allowing to change the electron density, the elastic

scattering time, and the Rashba SOI strength).

Figure 3.8 shows an optical picture of the resulting structure. Note that each

sample consists of two 20 × 80µm Hall bars, which are aligned perpendicular

to each other. This sample design allows to measure the electrical response of

two different situations simultaneously. For example, when a magnetic field B is

applied in the plane of the 2DEG, the electrical response with B ⊥ I and B ‖ I
can be measured simultaneously. As far as phase-coherent transport is concerned,

we did not find a significant difference between these two situations, however.

Figure 3.9 shows typical magnetoconductance traces, measured in the Hall bar

with the weakest Rashba SOI strength (left), and the Hall bar with the strongest

Rashba strength (right). The applied magnetic field is pointing perpendicular to

the 2DEG. In both cases a weak anti-localization (WAL) peak is visible around

B = 0T. This is an experimental signature for the presence of SOI. The size of

the WAL peak gives an indication of the strength of the SOI in the sample: if the

SOI strength is large, the WAL peak will also be large. The precise strength of the

Rashba SOI can be determined experimentally by fitting the measured line-shape

of the magnetoconductance with the theory of Iordanskii, Lyanda-Geller, and

Pikus[5]. This fitting procedure simultaneously allows to determine the phase-

coherence time (we find that τφ is typically 15 − 80 ps, depending on the wafer

and electron density [6]). The effective mass was determined to bem∗ = 0.041m0

from the temperature dependence of the Shubnikov-de Haas oscillation amplitude
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Figure 3.9: Typical magnetoconductance traces, measured in the Hall bar with the

smallest Rashba SOI strength (left), and the strongest Rashba strength (right). The

WAL peak around B = 0T is larger for the sample with larger Rashba SOI strength,

consistent with theory. These measurements have been performed at T = 1.6K.

[3], and the elastic scattering time is typically between 0.2 ps and 1.2 ps (mobility

between 1 and 6m2/Vs), depending on the wafer and electron density.

Figure 3.10 gives an overview of the extracted values of the Rashba spin-split

energy ∆ = 2αkF for the three different wafers, for various values of the electron

density ne. Note that the wafer with the largest asymmetry in the confinement

potential (see Fig. 3.4) has the largest Rashba strength α, or Rashba spin-split

energy ∆, as expected. Notice further that the Rashba strength α tends to

decrease with increasing electron density (see Fig. 3.4), but since simultaneously

the Fermi wavevector kF becomes larger, the Rashba spin-split energy ∆ = 2αkF
is relatively insensitive to the value of the electron density.

3.4 Measurement setup

In order to observe phase-coherent (and spin-dependent) transport phenomena in

the ring structure and the Hall bars, it is necessary to perform the measurements

at low temperatures. For the measurements of the AB conductance oscillations in

the ring structure we have used a commercial 3He fridge, with a base temperature

of T = 0.3K. This 3He fridge is equipped with a 9T superconducting magnet.

The measurements on the Hall bars have been performed in a commercial 4He

fridge, which reaches a base temperature of T = 1.6K (by vacuum pumping the

Helium bath that surrounds the sample). This 4He fridge is equipped with a 14T

superconducting magnet. In addition, we have mounted home-made split-coils on

the sample holder, in order to be able to apply simultaneously a small magnetic
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Figure 3.10: An overview of the extracted values of the Rashba spin-split energy

∆ = 2αkF for the three different heterostructures, at various electron densities. These

values are obtained by fitting the magnetoconductance, using the ILP theory [5].

field perpendicular to the field generated by the superconducting magnet. These

split-coils generate approximately 45mT/A, and consist of 0.1mm thick copper

wire.

All the measurements have been performed by standard AC lock-in tech-

niques, using either Princeton Applied Research lock-in amplifiers (ring struc-

tures), or Stanford Research Systems SR830 lock-in amplifiers (Hall bars).
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Chapter 4

1D ring in the presence of Rashba

spin-orbit interaction: Derivation of the

correct Hamiltonian

We describe in detail the procedure for obtaining the correct 1D Hamiltonian

of electrons moving on a ring in the presence of Rashba spin-orbit interaction.

The subtlety of this seemingly trivial problem has not been fully appreciated so

far and it has led to some ambiguities and errors in the existing literature. Our

work illustrates the origin of these ambiguities and solves them.

This chapter has been published as F.E. Meijer, A.F. Morpurgo, and T.M. Klapwijk, Phys.

Rev. B 66, 33107 (2002)
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62 Chapter 4. Derivation of the correct Hamiltonian

4.1 Introduction

The effect of Rashba spin-orbit interaction (SOI) [1] on electrons moving in a

mesoscopic ring has been studied in several contexts, such as magnetoconduc-

tance oscillations [2, 3], Peierls transition [4, 5] and persistent current [6, 7]. Es-

sentially all these theoretical studies have employed one-dimensional (1D) model

Hamiltonians. Since different Hamiltonians have been used by different authors

some ambiguity currently exists with regard to the correct form of the 1D Hamil-

tonian. For instance, Aronov and Lyanda-Geller, who studied the effect of Rashba

SOI on the Aharonov-Bohm conductance oscillations [2], used a non-hermitean

operator as Hamiltonian [8]. Zhou, Li and Xue [9] noticed this fact and derived a

different (hermitean) Hamiltonian operator. However, in their Hamiltonian the

Rashba SOI term originates from an electric field pointing in the radial direction

and not in the direction perpendicular to the plane of the ring. This is physically

not correct. Subsequently others [3, 5, 7, 10] have employed a now commonly

used 1D Hamiltonian for electrons on a ring, without explicitly discussing its

derivation.

The purpose of this Chapter is to clearly identify the origin of the existing

ambiguity and to discuss in detail the procedure to obtain the correct 1D Hamil-

tonian operator for electrons moving on a ring in the presence of Rashba SOI. We

will show that the subtlety of this seemingly trivial problem has not been fully

appreciated so far.

4.2 Derivation of the correct Hamiltonian

The “conventional” way to obtain the Hamiltonian for a 1D ring from the Hamil-

tonian in two dimensions consists of two steps. First the Hamiltonian operator

is transformed into cylindrical coordinates r and φ. Then r is set to a constant

and all terms proportional to derivates with respect to r are discarded (i.e., set

to 0). This procedure works correctly in simple cases, such as free electrons or

electrons in the presence of a (uniform or textured [11]) magnetic field. However,

it does not work in the presence of Rashba SOI, as we will illustrate below.

The 2D Hamiltonian for a single electron in the presence of Rashba spin-orbit

interaction and a magnetic field is given by

Ĥ =
1

2m
(p− eA)2 + α σ̂ · E× (p− eA) + µ σ̂ ·B (4.1)

where A is the vector potential, α is the SOI constant, E and B are pointing
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in the ẑ direction (perpendicular to the plane). In cylindrical coordinates, with

x = r cosφ and y = r sinφ, this operator reads:

Ĥ(r, φ) = − ~
2

2m

[

∂2

∂r2
+

1

r

∂

∂r
− 1

r2
(i
∂

∂φ
+

Φ

Φ0
)2
]

+

− α

r
(cosφ σ̂x + sinφ σ̂y) (i

∂

∂φ
+

Φ

Φ0
) + (4.2)

+ iα (cosφ σ̂y − sinφ σ̂x)
∂

∂r
+

~ωB
2

σ̂z

with Φ is the magnetic flux through the ring, Φ0 = h/e, and σ̂x,y,z are the usual

Pauli spin matrices. Notice also that we have redefined α (α→ ~Ezα).

If we now set r to a constant value (r = a) and neglect the derivative terms,

we obtain

Ĥ(φ) = − ~
2

2ma2
(i
∂

∂φ
+

Φ

Φ0
)2 +

~ωB
2

σ̂z

(4.3)

− α

a
(cosφ σ̂x + sinφ σ̂y)(i

∂

∂φ
+

Φ

Φ0
)

This operator, used by Aronov and Lyanda-Geller [2], is not hermitean, as can

be easily shown by calculating its matrix elements in any complete basis; i.e., the

“conventional” procedure fails.

In order to find the correct form for the 1D Hamiltonian we go back to the

full 2D Hamiltonian (Eq. 4.2). To this Hamiltonian we add a potential V (r),

which forces the electron wavefunctions to be localized on the ring in the radial

direction. Specifically V (r) is small in a narrow region around r = a and large

outside this region. For a narrow ring (steep confining potential) the confining

energy in the radial direction is much larger than the SOI energy, the Zeeman

energy and the kinetic energy in the azimuthal direction. This allows us to solve

the Hamiltonian for the radial wavefunction first and treat ĤSOI , ĤZeeman and

Ĥkin(φ) as a perturbation. Specifically we write Ĥ = Ĥ0 + Ĥ1, where

Ĥ0 = − ~
2

2m

[

∂2

∂r2
+

1

r

∂

∂r

]

+ V (r) (4.4)

and the perturbation Hamiltonian Ĥ1 is given by
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Ĥ1 =
~
2

2ma2
(i
∂

∂φ
+

Φ

Φ0
)2 +

~ωB
2

σ̂z

− α

r
(cosφ σ̂x + sinφ σ̂y) (i

∂

∂φ
+

Φ

Φ0
) (4.5)

+ iα (cosφ σ̂y − sinφ σ̂x)
∂

∂r

The eigenfunctions of Ĥ0 are separable in r and φ, i.e. Ψ(r, φ) = R(r) Φ(φ),

since Ĥ0 does not depend on φ. In the limit of a very narrow (1D) ring all electrons

will be in the lowest radial mode R0(r). We then have an infinitely degenerate

set of states Ψn(r, φ) = R0(r) Φn(φ) over which we have to diagonalize Ĥ1. Here,

the Φn(φ) denote a complete set of spinors in the φ direction.

The matrix elements of Ĥ1 are calculated from

amn = 〈Φm(φ)|〈R0(r)| Ĥ1(r, φ) |R0(r)〉|Φn(φ)〉 (4.6)

from which we can read the correct 1D Hamiltonian Ĥ(φ) directly

Ĥ1D(φ) = 〈R0(r)| Ĥ1(r, φ) |R0(r)〉 (4.7)

In order to obtain the 1D Hamiltonian explicitly, we have to calculate the lowest

radial mode for a given confining potential. If we assume without loss of generality

(since we will consider the limit of a truly 1D ring) a harmonic confining potential,

V (r) = 1
2
K(r − a)2, we have to solve

− ~
2

2m

[

∂2R(r)

∂r2
+

1

r

∂R(r)

∂r

]

+
1

2
K(r − a)2R(r) = E R(r) (4.8)

In the limit of a 1D ring we may neglect the 1
r
∂
∂r

term in comparison to the
∂2

∂r2
term and obtain the harmonic oscillator equation [12]. The lowest energy

normalized solutions is then given by

R0(r) =

(

γ

a
√
π

) 1
2

e−
1
2
γ2(r−a)2 (4.9)

where γ4 = mK/~2. The 1D limit is achieved by letting γ go to infinity.
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From Eqs. (4.5) and (4.7) we can now derive the 1D Hamiltonian explicitly.

Since Ĥ1 contains terms dependent or r and derivatives with respect to r we have

to calculate their expectation value. We obtain the following result

〈R0(r)|
1

r
|R0(r)〉 =

∫ ∞

0

R20(r) dr =
1

a
(4.10)

and the expectation value of ∂
∂r

is given by

〈R0(r)|
∂

∂r
|R0(r)〉 =

∫ ∞

0

R0(r)
∂R0(r)

∂r
r dr = − 1

2a
(4.11)

From this we conclude that we can not safely disregard the ∂
∂r

term in order to

obtain the correct 1D Hamiltonian.

It is worth stressing that it is not essential to choose a harmonic potential,

nor to make any approximation as we have done above for simplicity, in order to

obtain these results. To show this, let |ρ0(r)〉 be the lowest radial mode for an

arbitrarily given confining potential. We define |ρ′0(r)〉 = 1√
r
|ρ0(r)〉. From direct

calculations it follows that 〈 ρ0| 12r + ∂
∂r
|ρ0〉 = 〈ρ′0| 1r ∂

∂r
|ρ′0〉 = 1

2
ρ′0
2|∞0 = 1

2
rρ0

2|∞0 =

0. We then obtain 〈ρ0| ∂∂r |ρ0〉 = −〈ρ0| 12r |ρ0〉. Therefore for the lowest radial

mode in the 1D limit we always get 〈ρ0| ∂∂r |ρ0〉 = − 1
2a
, independent of the precise

form of |ρ0(r)〉 and thus of the precise shape of the radial confining potential

which is used in the calculation.

Having established the generality of our result, we can now write the 1D

Hamiltonian explicitly. From Eqs. (4.5),(4.7),(4.10) and (4.11) we obtain

Ĥ1D(φ) =
~
2

2ma2
(i
∂

∂φ
+

Φ

Φ0
)2 +

~ωB
2

σ̂z

− α

a
(cosφ σ̂x + sinφ σ̂y) (i

∂

∂φ
+

Φ

Φ0
) (4.12)

− i
α

2a
(cosφ σ̂y − sinφ σ̂x)

This is the correct form of the 1D Hamiltonian operator for electrons on a ring,

in the presence of Rashba SO interaction and Zeeman coupling.

The last term in Eq. (4.12) is neglected if we follow the “conventional” pro-

cedure. It is only recovered by following the procedure described above. In the

simple cases mentioned earlier (e.g., free electrons), there are no terms present
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in the Hamiltonian proportional to both ∂
∂r

and some function of φ (i.e., the two

dimensional Hamiltonian is separable). In these cases the “conventional” proce-

dure produces the correct result. In all other cases it is necessary to take into

account properly the confinement of the wavefunction in the radial direction as

we have shown in this paper in order to obtain the correct 1D Hamiltonian on a

ring.

4.3 Conclusions

In short, what we have described in this paper is a formally correct procedure to

project the original Hamiltonian (Eq. 4.2) defined on the Hilbert space of spinors

in two dimensions on a restricted Hilbert sub-space, spanned by the complete set

of spinors Φn(φ), which are function of the φ coordinate only.
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Chapter 5

Spin-induced geometrical phases in a

1D ring with Rashba SOI: a tuneable

conductor

We propose a spin-based conductance modulator that does not require any

ferromagnetic electrode or an external magnetic field. This device is based on

quantum interference in an Aharonov-Bohm ring with tuneable Rashba SOI

strength. We calculate the (spin-dependent) phase shifts between clockwise and

anti-clockwise moving waves, and obtain the conductance of the ring as a func-

tion of the Rashba strength. We find that tuning the Rashba strength by means

of a gate voltage allows to modulate the conductance of the ring.

This chapter is a modified version of J. Nitta, F.E. Meijer, and H. Takayanagi, Appl. Phys.

Lett. 75, 695 (1999). Note that we now use the Hamiltonian derived in Chapter 4, which

differs slightly from the one used in the paper.
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5.1 Introduction

One of the most simple and appealing examples of using the spin degree of free-

dom for a conductance modulator, or field effect transistor (FET), was proposed

by Datta and Das in 1990 [1]. As discussed in Chapter 1, the Datta-Das spin-

FET consists of two ferromagnetic electrodes separated by a 2DEG with Rashba

SOI. The key idea of this device is that the injected spins precess around the

Rashba field when they are moving towards the collector. A modulation of the

conductance is achieved by controlling the alignment of the carrier’s spin with

respect to the magnetization vector of the (ferromagnetic) collector electrode.

Note that phase-coherence is not required for the operation of this spin-FET.

Since the functionality of the Datta-Das spin-FET depends crucially on the

spin injection and -detection efficiency, large affords have been dedicated to

demonstrate spin injection from ferromagnetic contacts into semiconductors. So

far, the experimentally achieved spin injection is rather small, however, mainly

due to the conductivity mismatch between the (metallic) ferromagnet and the

(semiconducting) 2DEG with Rashba SOI [2]. Consequently, the expected con-

ductance modulation in such structures is small (see also [3]). Another practical

problem of the spin-FET is that the 2DEG is very sensitive to the perpendicular

component of the stray field from the ferromagnetic electrodes [4].

In this Chapter we propose a spin-based conductance modulator that even

works without any ferromagnetic electrodes and any external magnetic field. The

conductance modulation is due to spin-dependent interference in an Aharonov-

Bohm (AB) ring with Rashba SOI. In contrast to the Datta-Das spin-FET, our

proposed ”spin-interference device” utilizes the phase-coherent properties of the

carrier’s spin when it is moving around the ring, rather than controlling the

carrier’s spin-direction in space. Specifically, in this Chapter we calculate the

spin-induced phase shifts that are acquired by the wavefunctions during a cyclic

evolution in an AB ring with Rashba SOI, and show that these spin-induced phase

shifts give rise to a large modulation of the conductance of the ring. Moreover,

we show that the phase shifts, and hence the conductance of the ring, can be

controlled by means of a gate voltage.

5.2 Eigenvalue equation for a 1D ring

To calculate the transport properties of a one dimensional ring in the presence

of Rashba SOI and Zeeman coupling, we first calculate its eigenenergies and

eigenstates. The Hamiltonian H for electrons moving on the 1D ring was derived

in Chapter 4 and is given by
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Ĥ1D(φ) =
~
2

2ma2
(−i ∂

∂φ
+

Φ

Φ0
)2 +

~ωB
2

σ̂z

+
α

a
(cosφ σ̂x + sinφ σ̂y) (−i

∂

∂φ
+

Φ

Φ0
) (5.1)

− i
α

2a
(cosφ σ̂y − sinφ σ̂x)

where σ̂x,y,z are the Pauli matrices, a is the radius of the ring, Φ = πa2Bz is the

magnetic flux through the ring, Φ0 = h/e is the elementary flux quantum, and

ωB = eBz/m0 is the Larmor frequency. By substituting the Pauli spin matrices

explicitly, we obtain the following 2× 2 Hamiltonian (with ω0 = ~/ma2)

Ĥ =













~ω0
2

(−i ∂
∂φ

+
Φ

Φ0
)2 +

~ωB
2

α

a
e−iφ (−i ∂

∂φ
+

Φ

Φ0
− 1

2
)

α

a
eiφ (−i ∂

∂φ
+

Φ

Φ0
+

1

2
)

~ω0
2

(−i ∂
∂φ

+
Φ

Φ0
)2 − ~ωB

2













(5.2)

In order to find the eigenfunctions and eigenenergies, we first note that the

Hamiltonian is rotationally invariant, and hence the total angular momentum in

the z direction, Jz, is conserved. Formally, this can be shown by the fact that

Jz = −i ∂∂φ+ 1
2
σz commutes with the Hamiltonian, i.e. [Jz, H] = 0. Consequently,

the eigenfunctions of the Hamiltonian (5.2) can be written as the eigenfunctions

of the Jz operator times a two-component spinor |σ〉, i.e.

Ψσ(φ) = einφ
[

1 0

0 eiφ

]

|σ〉 (5.3)

with JzΨσ(φ) = (n+ 1/2)Ψσ(φ). Note that n must be an integer for an isolated

ring with no leads, to make the wavefunction single-valued [Ψσ(φ) = Ψσ(φ+2π)].

The spinor states |σ〉 and the eigenenergies Eσ can be found by inserting Eq. (5.3)

into Hamiltonian (5.2). This yields the following eigenvalue equation











~ω0
2

(n+
Φ

Φ0
)2 +

~ωB
2

α

a
(n+

Φ

Φ0
+

1

2
)

α

a
(n+

Φ

Φ0
+

1

2
)

~ω0
2

(n+
Φ

Φ0
+ 1)2 − ~ωB

2











|σ〉 = Eσ |σ〉 (5.4)
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5.2.1 Eigenstates and eigenenergies for B=0

Let us first analyse the situation when B = 0, i.e., when ωB and Φ vanish. The

eigenenergies in this case are easily obtained by diagonalizing the 2 × 2 matrix,

and we obtain the following energy spectrum

Eσ=± =
~ω0
2

[

(

n+
1

2

)2
+

1

4

]

+ σ
( ∣

∣n+
1

2

∣

∣

)

[

(~ω0
2

)2
+
(α

a

)2
]1/2

(5.5)

The corresponding eigenfunction depend on the spin-label σ, as well as on the sign

of (n+1/2). Note that for electrons moving anti-clockwise we have n+1/2 > 0,

whereas for clockwise moving electrons we have n + 1/2 < 0. For anti-clockwise

moving electrons (n+ 1/2 > 0), the eigenstates are given by

Ψ+
↑ = einφ

[

sin θ
2

cos θ
2
eiφ

]

Ψ+
↓ = einφ

[

cos θ
2

− sin θ
2
eiφ

]

(5.6)

with tan θ = 2maα/~2. In contrast, for clockwise moving electrons (i.e. for

n+ 1/2 < 0), the eigenstates are given by

Ψ−↑ = e−i|n|φ
[

cos θ
2

− sin θ
2
eiφ

]

Ψ−↓ = e−i|n|φ
[

sin θ
2

cos θ
2
eiφ

]

(5.7)

Figure 5.1 shows the spin eigenstates for the clockwise and anti-clockwise

moving electrons. It follows that the spin is describing a solid angle 2θ as it is

travelling around the ring. It is interesting to note that the solid angle θ does not

depend on the value of n, i.e. the solid angle does not depend on the magnitude

of the velocity of the electron, nor on the Fermi energy. Notice, however, that the

direction (and magnitude) of the Rashba field BR do depend on the momentum

and travel direction of the electrons. Finally, notice that the spin eigenstate is

not exactly aligned with the Rashba field, i.e. the spin does not adiabatically

follow the local Rashba field BR. Only in the limit of very strong Rashba SOI,

i.e. when tan θ → ∞, the spin dynamics becomes adiabatic, and the spin will

follow exactly the local direction of BR.

5.3 Conductance of a 1D ring with Rashba SOI

Let us proceed by discussing the transport properties of the 1D ring when two

current leads are connected to it (see Fig. 5.1). Consider an electronic wave,
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n > 0n < 0 Ψ
+

Ψ
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Ψ
+

Ψ
−

2θ

B
R

B
R

Figure 5.1: Schematic overview of the spin-direction of the four eigenstates (Ψ±↑,↓)
in the ring. The solid and dashed arrow indicate the spin-up and spin-down state,

respectively. The spin is not exactly aligned with the Rashba field BR, but describes

a solid angle 2θ (with tan θ = 2maα/~
2), independent of the velocity (∝ n) of the

electron. Depending on the travel direction, n is either positive or negative.

incident to the ring. When the wave arrives at the ring it will generally split into

four partial waves (there are two possible travel directions around the ring, and

two possible spin states for each travel direction). All four partial waves have

acquired a certain phase when they arrive at the outgoing current lead. Depend-

ing on the phase difference between the partial waves, the interference at the

outgoing current lead can be constructive or destructive. Hence the conductance

of the ring crucially depends on the acquired phase differences (as well as the

final spin directions of the four partial waves at the outgoing lead, since waves

with orthogonal spins do not interference).

Formally, in the linear regime, the conductance is described by the Landauer

formula [5, 6]

G =
e2

h

M
∑

m′,m=1

∑

σ′,σ

T σ′,σ
m′,m (5.8)

where T σ′,σ
m′,m denote the transmission probability between incoming (m,σ) and

outgoing (m′, σ′) states, where m is the mode index and σ is the spin state. For

a 1D (single-mode) ring we have M = m = m′ = 1. In order to calculate T σ′,σ

in a convenient way, we choose different spin quantization axes for σ and σ ′.

Specifically, we choose the spin quantization axes for σ and σ ′ in the direction of

the spin eigenstates in the ring at the incoming and outgoing lead, respectively

(i.e. the angle between the quantization axes σ and σ′ is 2θ). Assuming strong

coupling between the ring and the current leads, and neglecting waves that travel
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around the ring more than once before leaving the ring, T σ′,σ is in the lowest

order approximation given by

T+,+ =
1

4
| ein+

↓ π + e−i|n
−
↑ |π |2 =

1

2

[

1 + cos π(n+↓ − |n−↑ |)
]

(5.9)

T−,− =
1

4
| ein+

↑ π + e−i|n
−
↓ |π |2 =

1

2

[

1 + cos π(n+↑ − |n−↓ |)
]

(5.10)

T+,− = T−,+ = 0 (5.11)

where nλσ denotes the quantum number of the wave with spin σ and travel

direction λ. Note that for clockwise moving electrons n−↑,↓ < 0 by definition

(and n+↑,↓ > 0). To avoid any possible confusion with signs, we have written

n−↑,↓ = −|n−↑,↓|. Using this notation, the conductance of the ring in the simplified

case discussed above is given by

G =
e2

h

[

1 +
1

2
cos π(n+↓ − |n−↑ |) +

1

2
cos π(n+↑ − |n−↓ |)

]

(5.12)

Due to the two external leads the values of nλσ no longer need to be an integer.

In fact, the good coupling to the leads imposes that the energy of all four partial

waves is equal to the Fermi energy, i.e. Eσ(n
λ
σ) = EF . Hence, the value of

n+↑ − |n−↓ | at the Fermi level can be obtained from the following equation

EF =
~ω0
2

[

(

n+↑ +
1

2

)2
+

1

4

]

+
( ∣

∣n+↑ +
1

2

∣

∣

)

[

(~ω0
2

)2
+
(α

a

)2
]1/2

(5.13)

=
~ω0
2

[

(

− |n−↓ |+
1

2

)2
+

1

4

]

−
( ∣

∣− |n−↓ |+
1

2

∣

∣

)

[

(~ω0
2

)2
+
(α

a

)2
]1/2

From this equation we find the following (exact) expressions

|n−↓ | − n+↑ = 1+

√

1 +
(2maα

~2

)2
= 1+

√

1 + tan2 θ = 1+
1

| cos θ| (5.14)

n+↓ − |n−↑ | = 1−
√

1 +
(2maα

~2

)2
= 1−

√

1 + tan2 θ = 1− 1

| cos θ| (5.15)
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Note that the above result does not depend on the precise value of the Fermi

energy, but only on the solid angle θ. The conductance of the 1D ring is obtained

by inserting Eqs. (5.14) and (5.15) into Eq. (5.12), and is explicitly given by the

following three equivalent expressions

G =
e2

h

[

1 − cos
( π

cos θ

) ]

=
e2

h

[

1 − cos
[

π

√

1 +
(2maα

~2

)2 ]
]

(5.16)

=
e2

h

[

1 + cos
[

2πa
mα

~2
sin θ − π(1− cos θ)

]

]

From the above expression it follows that the conductance of the ring depends

crucially on the Rashba SOI strength α. The right-hand side of Fig. 5.2 shows

the conductance of the 1D ring as a function of the Rashba strength, or more

precise as a function of the parameter 2maα/~2 = tan θ. The conductance shows

quasi-periodic oscillations as a function of 2maα/~2, which become periodic for

2maα/~2 À 1 (i.e. in the adiabatic regime, when the spin is pointing parallel

or anti-parallel to the Rashba field BR).

The left-hand side of Fig. 5.2 shows our proposed (spin-based) conductance

modulator device. It simply consists of a ring structure that is fully covered with

a gate electrode, in order to be able to control the Rashba strength, α(Vg).

G
  
(e

2
/h

)

0

2

2 4 6 8 100

2 m a α / h
2

Figure 5.2: Left: Schematic picture of the proposed ”spin-interference device”, con-

sisting of a (1D) ring structure in which the Rashba strength α is tuneable by a gate

voltage. Right: The conductance G of the 1D ring as a function of the Rashba strength

α, or more precise 2maα/~
2 (with m is the effective mass). The conductance is found to

be quasi-periodic, and becomes periodic in the adiabatic regime, i.e. for 2maα/~
2 À 1.
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In realistic devices the Rashba strength α can be tuned e.g. from α = 0.65−
1.05 · 10−11eVm [7], and hence, taking a ring with radius a = 0.5µm, and a

material system with effective electron mass m = 0.041m0, the phase-difference

can be tuned from ∆φ = π/ cos θ = (2.58 − 4.64) π. In other words, the spin-

induced phase difference can be tuned by more than 2π, and consequently a large

conductance modulation of the ring can be expected in experimentally accessible

devices.

It is worth pointing out that the above described interference effect is ex-

pected to be robust, since the acquired phase-difference does not depend on the

value of the Fermi energy itself (see Eqs. (5.14) and (5.15)). Furthermore, the

independence of the phase-difference on the Fermi energy also implies that the

conductance modulation will be present in a ballistic multi-mode ring; for each

radial mode the phase-difference is given by Eqs. (5.14) and (5.15), and hence, if

the different radial modes do not mix in the interference process, the conductance

modulation of a multi-mode ring is still given by Eq. (5.16). Recently, it was

confirmed theoretically that the conductance modulation of a 2D ring is indeed

similar to the above discussed 1D case [5].

5.4 Connection to geometrical spin phases

The above obtained phase-difference, which gives rise to a modulation of the

conductance of the 1D ring, is also interesting from a fundamental point of view:

the (spin-induced) phase-difference can be seen as the analogue of the Aharonov-

Bohm (AB) phase. As is well known, an AB phase is acquired by a charged par-

ticle when it encircles a magnetic flux (or magnetic moment). In 1984 Aharonov

and Casher discovered that a spin (or other neutral magnetic moment) does also

accumulate a phase when it is encircling an electric charge, i.e. when a spin is

moving in an electric field [8]. It has been demonstrated that the situation con-

sidered by Aharonov and Casher is similar to a 1D ring with Rashba SOI, and

that the AC effect results in a (spin-dependent) phase shift in the wavefunction

(the AC phase) [9, 10, 11]. Just as the AB phase is intimately related with a

magnetic flux through the ring, also the (spin-induced) AC phase can be viewed

as an effective spin-dependent magnetic flux through the ring (± Φ
Φ0
↔ ± 1

2| cos θ|)

[12], which modulates the conductance of the ring, as shown in Fig. 5.2.

The acquired Aharonov-Casher phase can be written as the sum of two phases,

2πamα~2 sin θ and π(1 − cos θ), as is shown in the last expression in Eq. (5.16).

The former term, 2πamα~2 sin θ, is sometimes called the dynamical part of the

AC phase, because of its dependence on the distance travelled by the electrons
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(= 2πa) [11]. The latter term, π(1 − cos θ), is a geometrical (spin-)phase, since

it only depends on the solid angle θ, and not on spatial parameters (note that

the AC phase itself, π/ cos θ, is also a geometrical phase). Such geometrical

phases were discovered by Berry in 1984 [13] from the basic laws of quantum

mechanics, and received considerable attention (see e.g. [10, 11, 12, 15]). Berry

showed that the wavefunction obtains a non-trivial phase when a parameter in

the Hamiltonian is changed in a cyclic and adiabatic way (the geometrical Berry

phase [13]). The same holds true in the non-adiabatic limit, as was shown by

Aharonov and Anandan [14]. Such a situation is realized in the 1D ring, since

the spin-dynamics in the ring is cyclic (solid angle θ) and non-adiabatic (the spin

is not exactly aligned with BR), and hence the term π(1 − cos θ) in Eq. (5.16)

can be identified as the Aharonov-Anandan phase [11].

The experimental observation of the Aharonov-Anandan phase has already

been realized in optical and NMR experiments [16]. However, the observation

of the Aharonov-Anandan phase, or the Aharonov-Casher phase, in solid state

systems has turned out to be very difficult in practice, as will be discussed in

detail in Chapter 6.

5.5 Conclusions

In conclusion, we have demonstrated that the electron wavefunction acquires a

spin-dependent geometrical Aharonov-Casher phase during a cyclic evolution in

a 1D ring structure with Rashba SOI. The precise value of the phase-shift, and

hence the conductance of the phase-coherent ring structure, is found to depend on

the Rashba SOI strength. Therefore, we have proposed to utilize a ring structure,

which is uniformly covered by a gate electrode to change the Rashba SOI strength,

as a spin-based conductance modulator that does not require any ferromagnetic

electrodes.
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Chapter 6

Statistical significance of fine structure

in the ensemble averaged Fourier

spectrum of Aharonov-Bohm

oscillations

We discuss a statistical analysis of Aharonov-Bohm conductance oscillations

measured in a two-dimensional ring, in the presence of Rashba spin-orbit inter-

action. Measurements performed at different values of gate voltage are used to

calculate the ensemble-averaged modulus of the Fourier spectrum and, at each

frequency, the standard deviation associated to the average. This allows us to

prove the statistical significance of a splitting that we observe in the h/e peak of

the averaged spectrum. Our work illustrates in detail the role of sample specific

effects on the frequency spectrum of Aharonov-Bohm conductance oscillations

and it demonstrates how fine structures of a different physical origin can be dis-

criminated from sample specific features.

This chapter has been published as F.E. Meijer, A.F. Morpurgo, T.M. Klapwijk, T. Koga,

and J. Nitta, Phys. Rev. B 69, 35308 (2004)

77
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6.1 Introduction

The investigation of Aharonov-Bohm (AB) conductance oscillations in mesoscopic

devices permits to study different aspects of phase coherent transport of electrons.

One of the aspects that has recently attracted considerable attention is the effect

of the electron spin [1]. It has been theoretically predicted that in the presence

of Rashba SOI, the electron spin modifies the properties of AB conductance

oscillations in an observable way [2, 3].

Experimental attempts have been reported in which features observed in ei-

ther the envelope function of the AB oscillations or their Fourier spectrum were

attributed to the presence of Rashba SOI [4, 5]. In a few cases [5] these claims

were based on the interpretation of single magnetoconductance measurements.

The interpretation of such experiments is difficult, however, due to the sample

specific nature of the h/e oscillations. In particular, a certain scatter configu-

ration in the ring might cause features that are similar to features induced by

SOI. In the analysis of past experiments this possibility has not been considered

thoroughly.

In this Chapter we experimentally show how sample specific effects in the

Fourier spectrum of the AB oscillations can be quantifiably suppressed in a con-

trolled way. In particular, we perform a statistical analysis of the ensemble av-

eraged Fourier spectrum. At each frequency, the mean Fourier amplitude and

standard deviation are calculated. We find features in the averaged Fourier spec-

trum that are significantly larger than the standard deviation. These features can

therefore be discriminated from remnant sample specific effects and their origin

attributed to a different physical phenomenon, such as spin effects.

6.2 Experimental system

The AB oscillations used in our analysis have been measured in a two dimensional

ring, fabricated from an InAs-inserted, InGaAs-based heterostructure (for details

on the precise layer structure, see Chapter 3, Fig. 3.1). The Rashba SOI in this

quantum well is particularly strong; α ≈ 0.8× 10−11 eVm [6, 7]. A SEM picture

of the ring structure is shown in Fig. 6.1. The mean radius and width of the

arms of the ring are 350nm and 180nm, respectively (the electronic width of the

arms of the ring is possibly somewhat smaller than the lithographic width, due to

a (thin) depletion layer at the edges). The estimated mean free path is ' 1µm,

which is smaller than the circumference of the ring and hence transport through

the ring is quasi-ballistic. A gate electrode covering the ring permits to change

the Fermi energy (and kF ), as well as the Rashba SOI strength [6].
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V+ V-

I+ I-

gate

1µm

Figure 6.1: SEM picture of the Aharonov-Bohm ring structure. A gate electrode is

covering the whole ring, allowing to change the electron density and the Fermi wavevec-

tor, as well as the Rashba SOI strength. The voltage and current contacts are indicated

with V± and I±, respectively.

6.3 Typical measurements

The magnetoconductance of the ring, G(B), was measured at 49 different values

of the gate voltage Vg, ranging from -55mV to 195mV (∆Vg = 5mV), at a

temperature of 300mK. Three G(B) curves, measured at different Vg, are shown

in the left column of Fig. 6.2. Clearly visible in each G(B) curve are a background

increasing with magnetic field (due to the classical dynamics of the electron in a

laterally confined geometry[8]), aperiodic conductance fluctuations, and periodic

AB oscillations [9]. The middle column shows the AB oscillations obtained by

subtracting the background from the G(B) curve. Due to the small period of the

oscillations, only the envelope function is visible. The right column shows the

h/e peak in the Fourier spectrum.

Both the envelope function of the AB oscillations and its Fourier spectrum

depend strongly on Vg. This strong Vg dependence is expected and well-known

for random interference of electronic waves and shows that in a single G(B) trace

sample specific effects dominate the behavior of the measured AB oscillations.

This precludes the attribution of a special meaning to any feature observed in

a single measurement, since features appear and disappear randomly with Vg.

Therefore, in practice, it is not possible to draw firm conclusions about the effect

of SOI on the AB oscillations from a single G(B) measurement [5].
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Figure 6.2: The magnetoconductance of a ring measured at different gate voltage

at 300mK is shown in the left column. The envelope function of the AB oscillations,

obtained by removing the positive magnetoconductance background, and the Fourier

spectrum are shown in the middle and right column, respectively. It is apparent that

both these quantities depend strongly on Vg, as it is typical for sample specific effects.

6.4 Suppression of sample specific effects

In order to put in evidence subtle effects possibly present in the AB oscillations,

it is necessary to suppress sample specific features in a controlled way. This can

be achieved by studying an ensemble of measurements [4], i.e. by averaging the

modulus of the Fourier spectrum, |G(ν)|, over different scatterer configuration.

The ensemble averaged Fourier spectrum, 〈|G(ν)|〉, is expected to be a smooth

function, peaked at the frequency that corresponds to the mean radius of the

ring. Superimposed on top of this smooth function, spin (or other) effects may

show up as a splitting or another well-defined structure.
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Theoretically, it has been proven that a (sufficiently large) change in Fermi

energy is equivalent to a complete change in impurity configuration, insofar as

the conductance oscillations are concerned [10]. For this reason we study the

statistical properties of quantities averaged over an ensemble that consists of

G(B) curves measured at different gate voltage (with steps of 5mV).

A “back of the envelope calculation” shows that steps of 5mV are sufficient

to change the phase of the wavefunction ∆φ between two scattering events by

order unity, thereby satisfying the ergodic hypothesis [10]. Specifically, we have

dkF/dne =
√

π/2ne, and dne/dVg ≈ 1.7 · 1016m−2/V. Hence, for an electron

density of ne ≈ 1 · 1016m−2 and a mean free path Ltr ≈ 0.8µm, the typical

change phase between two scattering events with gate voltage is given by ∆φ
∆Vg

=

Ltr
dkF

dVg
= Ltr

dkF

dne
· dne

dVg
≈ 170V−1. A change in gate voltage of 5mV gives therefore

rise to a phase change ∆φ of about unity, and measurements taken at different

gate voltage are expected to be statistically independent.
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Figure 6.3: Mean amplitude of the h/e oscillations in the averaged magnetoconduc-

tance, as a function of the square root of the number N of curves used in calculating

the average. The mean amplitude of the h/e oscillations is calculated by integrating

the modulus of the Fourier spectrum over the width of the h/e peak. The insets shows

the same analysis for the UCF amplitude (the UCF amplitude is here approximated

by integrating the modulus of the Fourier spectrum beyond the h/2e peak).
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To show experimentally the statistical independence of G(B) curves measured

at different values of Vg we calculate the mean amplitude of the h/e oscillations

upon averaging an increasing number N of G(B) traces. The h/e oscillation

amplitude in the averaged G(B) is expected to be suppressed as 1/
√
N , provided

that the curves are statistically independent [11]. Fig. 6.3 shows that this is

indeed the behavior observed experimentally [12]. In the inset of Fig. 6.3 we

show that the (sample specific) aperiodic conductance fluctuations exhibit the

same behavior, i.e. their amplitude decreases as 1/
√
N as well.

We note that in order to acquire the largest possible number of independent

G(B) curves, and therefore to obtain the largest suppression of sample specific

effects, the entire range of Vg studied is rather large. This results in a sizeable (up

to roughly a factor of 2) change of electron density and possibly also in a change

of Rashba SOI strength, which may affect the shape of the averaged modulus of

the Fourier spectrum, 〈|G(ν)|〉. For this reason, we will first discuss the average

over the whole Vg range, and then compare it to the average over a smaller Vg
range. As we will show, the final results are similar for the two different Vg ranges,

which suggests that the precise extension of the Vg range used in the experiments

is not very critical.

6.5 Ensemble averaged Fourier spectrum

Fig. 6.4 shows a typical Fourier spectrum of a single G(B) trace (upper graph),

and the result of two different kinds of ensemble averaging, using the total set of

49 G(B) curves measured from Vg= -55mV to 195mV. Specifically, the middle

graph is a plot of the modulus of the Fourier spectrum of the average magne-

toconductance, obtained by first averaging the magnetoconductance curves and

then calculating the modulus of the Fourier spectrum (≡ |〈G(ν)〉|). This quantity
has been studied extensively in the past, and was shown to result in a suppression

the h/e oscillation amplitude [11]. For this reason, the relative size of the sample

specific structure in the Fourier spectrum does not decrease upon averaging, as

it is apparent from the comparison of the upper and middle graph in Fig. 6.4.

Therefore, this way of ensemble averaging does not allow the observation of subtle

features possibly present in the h/e peak in the Fourier spectrum.

The bottom graph in Fig. 6.4 shows the ensemble average of the absolute value

of the Fourier spectrum, 〈|G(ν)|〉. This way of averaging does not suppress the

h/e oscillations, since the phase information is discarded by taking the modulus

of the Fourier spectrum of individual G(B) traces before performing the average.

This procedure results in a suppression of random features in the averaged Fourier
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Figure 6.4: The random features present in the modulus of the Fourier spectrum of

a single magnetoresistance curve (upper graph) are not suppressed in the modulus of

the Fourier spectrum of the averaged G(B), |〈G(ν)〉| (middle graph). However, ran-

dom features are clearly suppressed in the averaged modulus of the Fourier spectrum,

〈|G(ν)|〉 shown in the bottom graph (in both the middle and in the bottom graph, the

average is taken over N = 49 curves measured at different gate voltages). Note the

much enhanced visibility of the h/3e peak in 〈|G(ν)|〉. The insets show the effect of

samples specific features in the frequency range corresponding to the h/e peak. Also

here the difference between the middle and bottom graph is obvious and a splitting

is clearly visible in the h/e peak of in 〈|G(ν)|〉 (note, in the main panel, that a small

splitting is also present on top of the h/3e peak)
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spectrum, over the whole frequency range, as it is obvious from Fig. 6.4.

It was argued in ref [4] that this way of ensemble averaging provides informa-

tion that is not easily accessible otherwise. The enhanced visibility of the third

harmonic of the AB oscillations gives a direct experimental demonstration of this

statement. This h/3e peak is not observable in the Fourier spectrum of any single

G(B) curve nor in the Fourier spectrum of the averaged magnetoconductance,

but it is clearly visible in the averaged modulus of the Fourier spectrum, 〈|G(ν)|〉.
The insets in Fig. 6.4 zoom in on the h/e peak. It is apparent again that,

in comparison to the upper two graphs, the sample specific ”noise” is largely

suppressed in the averaged modulus of the Fourier spectrum (bottom graph). In

this quantity, a small splitting remains visible in the averaged h/e peak. Note

that also the h/3e peak in the bottom main figure shows a similar structure.

Without any further analysis, it is difficult to conclude what the origin of

these features is. Specifically, this is because experimentally we only average over

a finite number of scatter configurations so that the splitting may simply be some

remnant sample specific structure. Only by quantifying the magnitude of these

remnant features we can conclude if the splitting has physical significance.

6.6 Statistical analysis of the Fourier spectrum

We quantify the size of the remnant sample specific structure in terms of a fre-

quency dependent standard deviation. This is obtained from the same set of N

curves that we use to calculate the average modulus of the Fourier spectrum,

〈|G(ν)|〉. At each fixed frequency ν, this set of curves corresponds to a set of

N values of which we calculate the standard deviation σdis(ν). The statistical

error associated with the average modulus of the Fourier spectrum at frequency

ν is then σmean(ν) = σdis(ν)/
√
N (central limit theorem). For an ideal ensemble

average N = ∞ and σmean(ν) = 0, i.e. sample specific effects are completely

suppressed. However, if N is finite, σmean(ν) is also finite.

The upper panel of Fig. 6.5 shows the h/e peak of the averaged modulus of

the Fourier spectrum and, for each frequency, σmean(ν), plotted as an error bar.

In the main panel the average has been performed on N = 16 curves (with Vg
ranging from -55mV to 95mV) and in the inset on N = 49 (Vg ranging from

-55mV to 195mV). In both cases the size of the splitting is 3 to 4 times larger

than σmean. The splitting is therefore statistically significant, and it is not due to

remnant sample specific structure [13]. The size of any other structure observed

in these averaged quantities is too small compared to σmean(ν) to exclude remnant

sample specific effects as their origin. This is also true for the splitting in the
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Figure 6.5: The upper graph shows the h/e peak in the averaged modulus of the

Fourier spectrum and the associated statistical error σmean. The average is performed

over N = 16 (main figure) and N = 49 (inset) curves, measured at different Vg. The

bottom graph shows the same statistical analysis for the power spectrum. The observed

splittings are significantly larger than the corresponding σmean and can therefore be dis-

criminated from remnant sample specific features and attributed to a different physical

phenomenon, such as a spin effect.
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Figure 6.6: The h/3e peak in the ensemble averaged modulus of the Fourier spectrum,

and the associated statistical error σmean (indicated by the size of the error bar).

The average is performed for N = 49 curves. The statistical analysis shows that the

features in the h/3e peak are not statistically significant, and can consequently not be

discriminated from remnant sample specific features (the same is true for N = 16).

h/3e peak visible in the bottom panel Fig. 3 (see Fig. 6.6).

We have also performed the same statistical analysis for the Fourier power

spectrum [14]. The ensemble averaged Fourier power, 〈|G(ν)|2〉, and the asso-

ciated statistical error, σpower(ν), are shown in the bottom panel of Fig. 4 for

N = 16 (main figure) and N = 49 (inset). Also here a statistically significant

splitting is present in both cases.

The results shown in Fig. 6.5 indicate that the presence of a statistically

significant splitting in the h/e peak is a robust feature. It does not depend on

the precise gate voltage range used in our analysis, nor on the specific quantity

analyzed, i.e. the modulus of the Fourier spectrum or the power spectrum. The

result is also robust against different procedures used to calculate the Fourier

spectra from the experimental data. We have analyzed our data with and without

removing the background in the magnetoconductance in different ways and using

different kinds of windowing procedures. In all cases the final results shows a

similar, statistically significant splitting [15].

Our results confirm the conclusion of Ref. [4], namely that the h/e peak in

the averaged Fourier spectrum is split in the presence of SOI, and put it on firmer

grounds for two reasons. First, because the statistical analysis of the significance
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of the splitting had not been previously performed. Second, because the same

effect is observed in a different material system.

The size of the splitting measured here is roughly 3/T, smaller than the one

found in Ref. [4] (≈ 12/T). A direct comparison of the two results is however

difficult, because the heterostructures used in the two experiments are different,

as well as the radius of the rings (0.35 µm versus 1.05 µm). It was argued in Ref.

[4] that the splitting may be a manifestation of the geometrical Berry phase. Sub-

sequent theoretical works seem to consistently conclude that the effect of Berry

phase alone is too small to account for the magnitude of the previously observed

splitting [16]. This is also true for the magnitude of the splitting observed here,

whose precise origin remains to be identified. More experimental work is needed

to discriminate between different possible mechanisms capable of accounting for

the experimental results (such as Rashba SOI [16, 3] or Zeeman coupling [3]). The

work presented in this paper demonstrates a well-defined experimental procedure

on which future experiments can be based.

6.7 Conclusions

In conclusion, we have discussed in detail the statistical properties of Aharonov-

Bohm conductance oscillations measured in a ring with strong Rashba SOI, and

have shown how random sample specific effects can be suppressed in a quantifiable

way, up to a level that permits to reveal features of a different physical origin. In

particular, we have observed a statistically significant splitting in the ensemble

averaged Fourier spectrum, which is not a remnant sample specific feature, but

possibly a manifestation of the presence of Rashba SOI.
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Chapter 7

Competition between Rashba spin-orbit

interaction and Zeeman coupling in 2D

electron gases

We investigate systematically how the interplay between Rashba spin-orbit

interaction and Zeeman coupling affects the electron transport and the spin dy-

namics in InGaAs-based 2D electron gases. From the quantitative analysis of the

magnetoconductance, measured in the presence of an in-plane magnetic field, we

conclude that this interplay results in a spin-induced breaking of time reversal

symmetry and in an enhancement of the spin relaxation time. Both effects are

due to a partial alignment of the electron spin along the applied magnetic field,

and are found to be in excellent agreement with recent theoretical predictions.

This chapter has been published as F.E. Meijer, A.F. Morpurgo, T.M. Klapwijk, T. Koga,

and J. Nitta, Phys. Rev. B 70, 201307(R) (2004)
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7.1 Introduction

Achieving control of the orbital motion of electrons by acting on their spin is a key

concept in modern spintronics, and is at the basis of many proposals in the field

of quantum information [1]. Two physical mechanisms are used to influence the

dynamics of the electron spin in normal conductors: spin-orbit interaction (SOI)

and Zeeman coupling. In the presence of elastic scattering, these two mechanisms

affect the spin in different ways. SOI is responsible for the randomization of the

spin direction whereas the Zeeman coupling tends to align the spin along the

applied magnetic field. Depending on the relative strength of these interactions,

this interplay of SOI and Zeeman coupling is responsible for the occurrence of a

variety of physical phenomena [2, 3].

Quantum wells (QW) that define 2D electron gases (2DEGs) are particularly

suitable for the experimental investigation of the competition between SOI and

Zeeman coupling, since they give control over many of the relevant physical pa-

rameters. Specifically, in these systems the SOI strength can be controlled by an

appropriate QW design [4] and by applying a voltage to a gate electrode [5]. The

electron mobility is usually density dependent, so that the elastic scattering time

can also be tuned by acting on the gate. Finally, Zeeman coupling to the spin

can be achieved with minimal coupling to the orbital motion of the electrons by

applying a magnetic field parallel to the conduction plane.

In this Chapter we study the competition of Rashba SOI and Zeeman cou-

pling via magnetoconductance measurements in InGaAs-based 2DEGs with dif-

ferent Rashba SOI strength. From the detailed quantitative analysis of the weak

anti-localization as a function of an applied in-plane magnetic field B‖ (Zeeman

coupling), we find that the partial alignment of the spin along B‖ results in a

spin-induced time reversal symmetry (TRS) breaking, and in an increase of the

spin relaxation time. The increase in spin relaxation time is found to be quadratic

with B‖, and is strongly dependent on the SOI strength and the elastic scattering

time. For both the spin-induced TRS breaking and the increase in spin relaxation

time we find excellent quantitative agreement with recent theory. We also demon-

strate that the quantitative analysis permits to determine the in-plane g-factor

of the electrons in the quantum well.

7.2 Samples

The three InAlAs/InGaAs/InAlAs quantum wells used in this work are described

in detail in Chapter 3 (see also [4]). Here, we recall that each well is designed

to have a different Rashba SOI strength. The characteristic Rashba spin-split
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Figure 7.1: An optical picture of a fabricated sample, which consists of two Hall bars

that are covered by a gate electrode (allowing to change the electron density, the elastic

scattering time, and the Rashba SOI strength).

energy ∆ for the different samples is typically ∆ ≈ 0.5, 1.5 and 1.8meV (in what

follows we will refer to these samples as to samples 1, 2, and 3, respectively).

The electron density and mobility at Vgate = 0V are n ' 7 · 1015m−2 and µ ' 4

m2/V s. All measurements have been performed on 20 x 80 µm Hall-bar shaped

devices (see Fig. 7.1), at 1.6K. A 14T superconducting magnet is used to

generate B‖ (Zeeman coupling) and home-made split coils mounted on the sample

holder are used to independently control the perpendicular field B⊥. The value of

B⊥ is typically less than 40mT (i.e., B⊥ ¿ B‖). Hence, the Zeeman coupling is

created by B‖, and B⊥ is used to probe the small B⊥-field quantum interference

corrections to the conductance, i.e., the weak (anti-)localization signal.

We note that no significant difference in the results is observed when the

in-plane field B‖ is applied parallel or perpendicular to the direction of current

flow.

7.3 Magnetoconductance in the presence of B‖

To understand how an in-plane magnetic field (i.e., Zeeman coupling) affects the

electronic transport, we first discuss the behavior of sample 1 with the weakest

Rahsba SOI strength. Figure 7.2 shows the magnetoconductance of this sample
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Figure 7.2: The magnetoconductance σ(B⊥) of sample 1 at different values of B‖.
Three regimes can be identified: increasing B‖ from 0 to 350mT results in a suppression

of the weak anti-localization peak (a), increasing B‖ further (up to about B‖ = 1T)

does not induce additional changes in the σ(B⊥)-curves (b), for values of B‖ larger

than 1T the weak localization becomes suppressed (c).
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measured as a function of B⊥ [7], for different fixed values of the in-plane field

B‖, i.e., for fixed values of the Zeeman coupling. For small values of B‖ (main

panel), the conductance exhibits a maximum at B⊥ = 0, due to weak anti-

localization (WAL) superimposed on the background of weak-localization (WL)

[8]. As B‖ is increased, the amplitude of this maximum is reduced and eventually

disappears around B‖ = 300mT. A further increase in B‖ does not result in

additional changes of the magnetoconductance until B‖ reaches approximately

1T (Fig. 7.2b). Upon increasing B‖ even further, the weak-localization signal is

also suppressed on the scale of several (' 10) Tesla (Fig. 7.2c).

These observations allow us to conclude that the suppression of weak anti-

localization and of weak localization in a parallel field are due to two distinct

mechanisms causing time reversal symmetry breaking. At large fields, B‖ À
1T, weak localization (which is not sensitive to the spin degree of freedom) is

suppressed due to TRS breaking caused by the coupling of B‖ to the orbital

motion of the electrons, owing to the finite thickness of the quantum well and the

asymmetric confining potential [9] (see also Chapter 8). The suppression of the

weak anti-localization peak at smaller values of B‖ originates from a spin-induced

TRS breaking due to the interplay between B‖ (Zeeman coupling) and SOI, as

predicted theoretically [10]. In this paper we will focus on the spin mechanism

for TRS breaking, and discuss the orbital mechanism in Chapter 8.

The complete separation of spin and orbital TRS breaking, which is essential

for the work presented here, has not been previously reported [3]. In our samples,

this separation is due to the small quantum well thickness (≈ 10nm) and the

small effective mass (m∗ ≈ 0.041m0) which make the subband splitting in the

quantum well relatively large, as well as to the relatively large gyromagnetic ratio

(g ' 3) [9, 10]. It allows us to account for the magnetoconductance curves σ(B⊥)

measured at B‖ < 1T in terms of existing theories that only consider the coupling

of B‖ to the electron spin, i.e to take only the Zeeman coupling into account, and

neglect any orbital effect of B‖. Therefore, the number of parameters that need

to be introduced for the quantitative analysis of the data is the smallest possible.

This makes it possible to extract the values of the phase coherence time and the

spin relaxation time as a function of B‖ (Zeeman coupling) with great accuracy,

as it is needed to observe the dependence of τs on the in-plane magnetic field.

7.4 Quantitative analysis

We have performed a quantitative analysis of the magnetoconductance curves on

all samples and for different values of the electron density n, using the theory of
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Figure 7.3: The upper graph shows the magnetoconductance of sample 2 at different

fixed values of B‖ from 0 to 1T, in steps of 0.1T (top to bottom). In bottom graph

shows the same data (empty circles) together with the best fits to the ILP theory (solid

line). The curves are shifted vertically for clarity. The inset shows the amplitude of the

weak anti-localization peak at B⊥ = 0 as function of B‖, i.e. σ(B⊥ = 0, B‖)− σ(0, 0),

and the best fit to the theory (solid line).
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Iordanskii, Lyanda-Geller and Pikus (ILP) [11], as it is appropriate for our sam-

ples in which the spin relaxation is governed by the Dyakonov-Perel mechanism

[12]. Specifically, we have used Eq. (13) of Ref. [11] to fit the σ(B⊥) curves mea-

sured at different values of the in-plane field. In all cases, the elastic scattering

time τ and the diffusion constant were determined by conventional longitudinal

and Hall resistance measurements, and the Dresselhaus term was set to zero [4].

Therefore, for each value of n and B‖, the parameters τs and τφ are the only two

remaining free fitting parameters. From this analysis, we find the B‖-dependence

of τs and τφ, i.e., τs(B‖) and τφ(B‖) [13].

Here, τφ(B‖) denotes the upper time scale for interference between time-

reversed waves. For B‖ = 0, this time scale is given by the inelastic scattering

time τφ(0). When B‖ 6= 0, the interplay between Rashba and Zeeman coupling is

predicted to lead to a breaking of time-reversal symmetry, i.e., to a dephasing of

time-reversed waves. The interplay is therefore expected to reduce the upper time

scale of interference between reversed waves, i.e., this spin-induced mechanism

adds to the inelastic scattering rate.

It is worth noting that in the ILP theory only one parameter is needed to

account for the spin relaxation, since τs(0) ≡ τsx
(0) = τsy

(0) = 2 τsz
(0). In

the presence of an in-plane field, however, these relations may not hold, since

relaxing the spin along B‖ costs energy (≈ gµB‖) whereas relaxation in the

direction perpendicular to B‖ does not. Nevertheless, for sufficiently small B‖
(gµB‖ < kT and ~/τs(0)), the ratios between the different relaxation times are

expected to change only minorly under the conditions of our experiments. This

allows us to treat τs(B‖) as a single fitting parameter.

Figure 7.3 displays the measured magnetoconductance in sample 2 with the

intermediate Rashba SOI strength (upper panel), and the results of the fitting

procedure of the same set of data (lower panel). The continuous lines superim-

posed on the data in the lower panel represent the best fit to the ILP theory, and

show that the agreement between data and theory is excellent for all values of

B‖ (i.e., for all values of the Zeeman coupling). Similar agreement is obtained for

the other samples and for all the different values of the electron density n. The

values of τφ(B‖) and τs(B‖), as extracted from the fits, are shown in Figs. 7.4 and

7.5. Note that, since the electron mobility depends on the density, we are able

to investigate how changing the elastic scattering τ affects the B‖-dependence of

the phase coherence and of the spin-relaxation time. This is of particular interest

as both τφ(B‖) and τs(B‖) are predicted to depend on the Dyakonov-Perel spin

relaxation time τs(0) (see Eqs. 7.2 and 7.3), which is related to τ by the relation

1/τs(0) = ∆2τ/2~2 [11].
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Figure 7.4: The symbols represent τφ as a function of B‖, as extracted from the

analysis of the magnetoconductance of sample 2, using the ILP theory (see Fig. 7.3).

Different curves correspond to different values of n (and elastic scattering time τ).

The solid lines are best fits based on the theory describing spin-induced dephasing

[10]. The decrease of τφ with decreasing electron density is consistent with dephasing

originating from electron-electron interaction. The inset shows the extracted τφ(B‖)
and theoretical fits for sample 1.

7.5 The phase-coherence time: τφ(B‖)

For all values of the electron density n, the measured τφ(B‖) decreases as a

function of B‖ (see Fig. 7.4), which shows quantitatively that the interplay

between Rashba SOI and Zeeman coupling results in a breaking of time-reversal

symmetry (TRS). Theoretically, the interplay is predicted to yield in a quadratic

dependence of τφ on B‖ [10], given by

τφ(B‖)

τφ(0)
=

1

1 + cB2
‖

(7.1)

where c is a constant given by:
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c = τφ(0) τs(0) (g
∗
‖ µB/~)

2 (7.2)

and g∗‖ is the in-plane g-factor. The solid lines in Fig. 7.4 are best fits to the

data using Eq. (7.1) and treating c as a (density dependent) fitting parameter.

Also in this case the agreement between experiment and theory is excellent for all

values of n and for the different samples (the inset of Fig. 7.4 shows the behavior

of sample 1. Equally good agreement is found for sample 3).

Using the value of c obtained from fitting the data of Fig. 7.4 we directly

obtain g∗‖ (Eq. 7.2). We find that, for each sample, the in-plane g-factor is

approximately constant as a function of the electron density. The absolute values

are determined to be |g∗‖| = 2.8 ± 0.1, |g∗‖| = 3.3 ± 0.1 and |g∗‖| = 3.5 ± 0.1, for

samples 1, 2 and 3, respectively. Theoretically, the g-factor in our quantum well

is predicted to depend substantially on its thickness, and is calculated to be

|g∗‖| = 2.8 and |g∗‖| = 3.5 for a thickness of 10 nm and 15 nm, respectively[14].

This agreement with theory gives additional support of our analysis in terms

of spin-induced dephasing only, and shows that the measurement of weak anti-

localization in the presence of an in-plane field permits to determine the in-plane

g-factor. Contrary to other methods based on transport measurements, this

method to determine the g-factor is suitable for disordered systems.

A different way to obtain τφ(B‖) (and c), apart from fitting the whole σ(B⊥)

curves measured at fixed B‖, is by looking at the conductance at B⊥ = 0 as func-

tion of B‖. Specifically, the theory for spin-induced dephasing predicts that[10]

σ(B⊥ = 0, 0) − σ(B⊥ = 0, B‖) =
e2

2π2~
ln
( τφ(0)

τφ(B‖)

)

(7.3)

=
e2

2π2~
ln(1 + cB2

‖)

Also in this case, the agreement between theory and data is excellent (see inset

in the bottom graph of Fig. 7.3) and the fitting procedure gives values for the

parameter c identical to those obtained above. This shows the consistency of our

quantitative analysis and confirms once more the validity of the interpretation of

the data in terms of spin-induced TRS breaking only.



98 Chapter 7. Competition between Rashba and Zeeman

7.6 The spin relaxation time: τs(B‖)

Finally, Fig. 7.5 shows the behavior of the measured spin relaxation time as

function of B‖ for different densities and different strength of SOI interaction

(samples 1 and 2). In all cases, the measured spin relaxation time increases

quadratically with increasing the applied in-plane field. This directly shows that

the presence of an in-plane field reduces spin-randomization. The increase in

τs(B‖) is more pronounced for a small strength of the SOI interaction and for short

values of the elastic scattering time τ , i.e., for long Dyakonov-Perel spin-relaxation

times τs(0). This is because the Zeeman energy EZ = gµB‖, that drives the

alignment of the electron spin along B‖, competes with the characteristic energy

associated to the spin-randomization ESOI ≡ ~/τs(0). Note that the opposite

behavior, i.e., τs decreasing with increasing B, has been recently observed in

systems with different spin-relaxation mechanisms [16].

A quantitative analysis of the data requires a comparison with theory. For

the case of a magnetic field normal to the conduction plane, extensive theoretical

analysis exists [15]. For the case of an in-plane field, in which the behavior of

τs is determined by the Zeeman coupling and not by orbital effects, only the

relaxation time of the z-component of the spin has been calculated as a function

of B‖ [17]. When the Zeeman energy EZ is much smaller than ESOI ≡ ~/τs(0),

this quantity is given by

τsz
(B‖)

τsz
(0)

' 1 +
1

2
(κ g∗‖µBB‖ τs(0)/~ )2 = 1 +

1

2
(κEZ/ESOI)

2 (7.4)

Although theoretical predictions for τsx
(B‖) and τsy

(B‖) are not available, we

expect τsx
(B‖)/τsx

(0) and τsy
(B‖)/τsy

(0) to exhibit the same functional depen-

dence as τsz
(B‖)/τsz

(0) as long as EZ ¿ ESOI and kT . This allows us to compare

the measured τs(B‖)/τs(0) to Eq. 7.4. All the quantities that appear in Eq. 7.4

are known from the previous analysis, and we add a parameter κ to achieve best

fits to the data (theory [17] predicts κ = 1 in Eq. 7.4). Figure 7.5 shows that in

all cases good agreement is obtained with κ ' 1 (continuous lines). We conclude

that the qualitative behavior of the spin-relaxation time as a function of B‖, τ and

∆ (or, equivalently, τs(0)) is the one expected, and that, within a small correction

factor, our results are in quantitative agreement with theoretical predictions.

In view of the quantitative agreement between theory and data obtained

throughout this work, it is worth considering the origin of the small correction

factor κ. κ 6= 1 may originate from the limited accuracy with which the quan-

tities in Eq. 7.4 are determined. The largest uncertainty comes from g∗‖ and is
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Figure 7.5: The symbols represent τs as function of B‖, as extracted from the anal-

ysis of the magnetoconductance of sample 1 (open symbols) and sample 2 (filled sym-

bols). Each set of symbols corresponds to a different value of the Dyakonov-Perel

spin-relaxation time τs(0), with 1/τs(0) = ∆2τ/2~2 (controlled by changing the gate

voltage). The solid lines are best fits to the theory (Eq. 7.4), with κ as an added

parameter (see text). Note that the symbol code used in this figure for τs corresponds

to that used in Fig. 7.4 for τφ.

approximately 10%. An additional possibility is the B‖-induced anisotropy of

the in-plane spin relaxation times, i.e., B‖ breaks spin-rotational symmetry in

the 2D plane. Although this anisotropy is expected to be small for EZ ¿ ESOI

and kBT , as mentioned before, it may result in a deviation from κ = 1. Finally,

for sample 1 with the weakest Rashba SOI, the Dresselhaus term may not be

entirely negligible [18].

7.7 Conclusions

In conclusion, we have investigated how the competition between Rashba SOI

and Zeeman coupling affects the orbital and spin dynamics of electrons in 2D

electron gases. We have found that the the partial alignment of the electron spin
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along an applied in-plane magnetic field results in a spin-induced breaking of Time

Reversal Symmetry (i.e., in dephasing of time-reversed waves), and in an increase

of the spin-relaxation time (which is approximately quadratic with EZ/ESOI).

Our detailed quantitative analysis demonstrates the validity of recently developed

theories, and also provides indications to the limits of their validity.
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Chapter 8

Universal spin-induced Time Reversal

Symmetry breaking in 2D electron

gases with Rashba SOI

We have experimentally studied the spin-induced time reversal symmetry

(TRS) breaking as a function of the relative strength of the Zeeman energy (EZ)

and the Rashba spin-orbit interaction energy (ESOI), in InGaAs-based 2D elec-

tron gases. We find that the TRS breaking, and hence the associated dephasing

time τφ(B), saturates when EZ becomes comparable to ESOI . Moreover, we

show that the spin-induced TRS breaking mechanism is a universal function of

the ratio EZ/ESOI , within the experimental accuracy.

This chapter has been publication as F.E. Meijer, A.F. Morpurgo, T.M. Klapwijk, and J.

Nitta, Phys. Rev. Lett. 94, 186805 (2005)

103



104 Chapter 8. Universal Time Reversal Symmetry breaking

8.1 Introduction

The spin dynamics in solid state systems is commonly determined by the compe-

tition between two energy scales; the Zeeman energy and spin-orbit interaction

(SOI) energy. If the Zeeman energy (EZ) is dominant, the spin is always aligned

with the applied magnetic field. In contrast, if the spin-orbit interaction is dom-

inant, the spin and orbital dynamics are coupled, and elastic scattering therefore

randomizes the spin precession axis. This results in a finite spin relaxation time

τs(0) [1]. Hence, the “control parameter” for the spin dynamics in diffusive sys-

tems is the ratio EZ/ESOI , where ESOI ≡ ~/τs(0). Consequently, many proposals

and physical phenomena in the field of spintronics depend on the ratio of these

two energy scales [2, 3, 4].

An example where the spin dynamics, and therefore the ratio EZ/ESOI , plays

an important role is in phase-coherent transport: quantum interference is quali-

tatively different for EZ/ESOI ¿ 1 and EZ/ESOI À 1. For EZ/ESOI → ∞ the

spin dynamics does not depend on the orbital motion of the electrons (Fig. 8.1a).

The spin is a good quantum number and the interference takes place within each

spin-subband separately. For EZ/ESOI ¿ 1, the spin is not a conserved quantity,

and the spin randomly precesses during the orbital motion (Fig. 8.1b). This leads

to mixing of the spin subbands in the interference process (resulting in weak-anti

localization [5, 6]). Increasing the ratio EZ/ESOI leads therefore to a crossover

between two conceptually different physical conditions.

In the limit that EZ/ESOI ¿ 1, it was recently shown theoretically [7] and

experimentally [8, 9] that increasing the ratio EZ/ESOI from 0 to a finite value

(¿ 1), results in dephasing of time-reversed paths, i.e. it induces Time Reversal

Symmetry (TRS) breaking (see Chapter 7). The effect of the interplay between

Zeeman and Rashba SOI on quantum interference is therefore quite similar to a

small perpendicular magnetic field (i.e. a magnetic flux); they both introduce an

upper time-scale for interference, which is shorter than the inelastic scattering

time [10]. We denote this upper time-scale due to the interplay between Zeeman

and Rashba SOI by τφ(B‖).

In this Chapter we investigate experimentally the TRS breaking, due to the

competition between Zeeman coupling and Rashba SOI [11], for the whole range

of EZ/ESOI , i.e up to EZ/ESOI À 1. We demonstrate that the spin-induced

TRS breaking, and hence the associated dephasing time τφ(B‖), saturates when

EZ/ESOI ≈ 1, i.e. when the spin becomes aligned with the external magnetic

field. The saturation value of the dephasing time τφ(B‖) is found to depend

exclusively on the spin relaxation time τs(0). Moreover, we show that the quantity

τs(0)/τφ(B‖) is a universal function of EZ/ESOI , i.e. it is independent of any
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(a)  (b)   

Figure 8.1: Schematic illustration of the relevant time-reversed trajectories contribut-

ing to weak-(anti)localization for the case of negligible Rashba SOI (a; EZ/ESOI →∞)

and strong Rashba SOI (b; EZ/ESOI ¿ 1). If Rashba SOI is negligible the spin re-

mains parallel to itself and interference takes place for each spin-subband separately.

If Rashba SOI is strong, the spin dynamics has to be taken into account. This changes

the nature of time-reversed trajectories and makes them sensitive to the presence of a

magnetic field applied parallel to the plane of the two-dimensional electron gas.

details of the quantum well, such as the electron density, elastic scattering time

and Rashba spin-split energy ∆. All these conclusions are based on the detailed

quantitative analysis of the magnetoconductance as a function of perpendicular

and parallel magnetic field.

8.2 Samples and experimental procedure

In our investigation we have used the same samples as in Chapter 7, and we

will refer to the three Hall bars with different Rashba SOI strength again as to

samples 1, 2, and 3, respectively. These measurements have also been performed

at T = 1.6K.

Experimentally, the values of τφ(B‖), which quantify the TRS breaking at

different values of EZ/ESOI , are obtained again from the magnetoconductance

as a function of B⊥, at different fixed values of B‖ (i.e. EZ). Specifically, from

the quantitative analysis of the line-shape of the resulting magnetoconductance

curves σ(B⊥), the values of τφ(B‖) can be extracted. For all details of extracting

τφ(B‖) we refer the reader to Chapter 7. Here we recall that we use the theory

of Iordanskii, Lyanda-Geller and Pikus (ILP) [6], in which τφ(B‖) and the spin

relaxation time τs(B‖) are the only free parameters [13].
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8.3 Typical measurements

The upper graph in Figure 8.2 shows an example of the measured magnetocon-

ductance curves σ(B⊥) at different values of B‖ for sample 3. The bottom graph

shows a zoom-in on the data (open circles), together with the best fit to the

ILP theory (the continuous lines superimposed on the data). We find very good

agreement between data and theory for all values of B‖, or equivalently, for all

values of the ratio EZ/ESOI . This kind of analysis has been performed for all

samples, and for different values of the electron density, elastic scattering time

and SOI strength [14].

Note that for EZ/ESOI ≥ 1 the weak-antilocalization is fully suppressed (see

Fig. 8.2). Therefore, in the limit that EZ/ESOI ≥ 1, τφ(B‖) is the only free

parameter in the ILP model to fit the data, and can be determined with great

accuracy. Only in the narrow region where EZ ≈ ESOI , the value of τφ(B‖) is

possibly determined with somewhat less accuracy, due to potential B‖-induced

anisotropies in the spin relaxation time.

8.4 The phase-coherence time: τφ(B‖)

In Fig. 8.3 we first plot the extracted values of τφ(B‖) as a function of B‖ (or more

precise, B2
‖), since this is the experimentally applied parameter. For each value

of ESOI , we find the same qualitative behavior of the τφ(B‖)-curve (results from

all three samples are shown). For small values of B2
‖ , the slope ∂(1/τφ(B‖))/∂B

2
‖

(hereafter called ”dephasing-slope”) is large, and depends strongly on the value

of ESOI . For large values of B2
‖ (or E2

Z) the dephasing-slope is found to be

much smaller. In both limits, we find that the dephasing-slope is constant, i.e.

1/τφ(B‖) ∝ B2
‖ . The value of B2

‖ (or E2
Z) at which the crossover occurs is larger

for larger values of ESOI . Anticipating, the crossover occurs when EZ/ESOI ≈ 1

(see Fig. 8.4).

The large dephasing-slope for EZ/ESOI ¿ 1 is due to the competition be-

tween Zeeman coupling and Rashba SOI (see Chapter 7). In contrast, the small

dephasing-slope in the high field limit can be attributed to the coupling of B‖
to the orbital motion of the electrons. Hence, Fig. 8.3 suggests that the spin-

induced dephasing of time reversed waves - i.e. the spin-induced TRS breaking -

saturates.
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Figure 8.2: Upper graph: The magnetoconductance σ(B⊥) of sample 3, measured at

different values of EZ/ESOI : 0, 0.23, 0.46, 0.70, 1.16, 2.33, 3.72, 4.66 and 6.53, corre-

sponding to B‖ = 0, 0.5, 1, 1.5, 2.5, 5, 8, 10 and 14T. Bottom graph: A zoom-in on

the data, together with the best fits to the ILP theory (solid lines). From these fits we

obtain τφ(B‖) and τs(B‖), and hence also ESOI ≡ ~/τs(0).
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Figure 8.3: Extracted values of the dephasing rate 1/τφ(B‖) as a function of B2
‖ . The

different symbols correspond to different values of ESOI [16] (results from all three

samples are shown). The solid lines act as a guide to the eye.

8.5 Universality of spin-induced TRS breaking

To show the spin-induced part of the measured dephasing rate 1/τφ(B‖), we sub-

tract the contribution due to inelastic scattering (≡ 1/τφ(0)), and denote the

spin-induced dephasing rate by Γsφ(B‖), with Γsφ(B‖) = 1/τφ(B‖) − 1/τφ(0). For

EZ/ESOI ¿ 1 the spin-induced dephasing rate of time-reversed waves Γsφ(B‖) is

given by [7] τs(0) Γ
s
φ(B‖) = (EZ/ESOI)

2. In Fig. 8.4 we plot τs(0) Γ
s
φ(B‖) for the

whole measured range of EZ/ESOI [17]. For all samples, and all different values

of electron density, elastic scattering time, Rashba strength, and ESOI , the quan-

tity τs(0) Γ
s
φ(B‖) collapses to nearly the same curve (the combined error in the

determination of τs(0) and Γsφ(B‖) is typically 10%). We therefore conclude that

the spin-induced TRS breaking in quantum wells with Rashba SOI (or more pre-

cisely τs(0) Γ
s
φ(B‖)) is a universal function of EZ/ESOI , within the experimental

accuracy.

The spin-induced TRS breaking (or Γsφ(B‖)) saturates when EZ/ESOI ≈ 1.

For this strength of the Zeeman coupling the spins start becoming parallel or

anti- parallel with B‖. This conclusion is consistent with the observation that for
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Figure 8.4: The spin-induced dephasing rate Γsφ(B‖) multiplied by τs(0), as a function

of (EZ/ESOI)
2, with Γsφ(B‖) = 1/τφ(B‖)−1/τφ(0), and τφ(0) is the inelastic scattering

time. Results from all three samples are shown, illustrating that irrespective of sample,

electron density, SOI strength, etc., the data collapse on nearly a single curve.

EZ/ESOI ≈ 1 the weak anti-localization is just fully suppressed (see Fig. 8.2):

when the spins become aligned with B‖, only weak-localization is expected, since

conceptually this situation is identical to the case where only a small perpendic-

ular field is present, and the spins are aligned with B⊥.

Currently, there are no theoretical predictions for the behavior of τs(0) Γ
s
φ(B‖)

when EZ/ESOI is not small, i.e. when the Zeeman coupling is not a small pertur-

bation. It has only been predicted, for specific cases, that the magnetoconduc-

tance σ(B‖) saturates when EZ/ESOI À 1, indicating a saturation of τs(0) Γ
s
φ(B‖)

[18]. However, the corresponding behavior of τs(0) Γ
s
φ(B‖) - in particular its uni-

versal character - had not been recognized so far.

We understand the saturation of Γsφ(B‖) for EZ/ESOI À 1, and the depen-

dence of the saturation value of Γsφ(B‖) on spin relaxation time τs(0), in the

following intuitive way. Imagine first that the Zeeman splitting is large and SOI

is absent. At the Fermi energy, the spin-split subbands are then well separated

in k-space, and are fully decoupled. In that case each subband contributes sepa-
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rately to the interference, and the upper time-scale for interference is the inelastic

scattering time, independent of the size of the Zeeman splitting. In the presence

of SOI, the spin subbands become weakly coupled, i.e. a particle can be scattered

from one spin subband to the other (flip its spin). Imagine there is a spin-flip

center at a certain position along the path. Both time-reversed waves will then

flip their spin at that position, and hence at different times in general. The waves

spend therefore different amounts of time in each spin subband before they inter-

fere, and obtain a large phase difference, since kF,↑ − kF,↓ is large (large Zeeman

splitting). This implies that waves do no longer contribute to the interference (on

average) if a spin-flip event takes place along the path. The upper time-scale for

quantum interference is therefore reduced to (roughly) the spin relaxation time

τs(0), independent of the Zeeman splitting, as long as kF,↑− kF,↓ is large enough.

This simple picture is in qualitative agreement with our experiments.

8.6 TRS breaking by orbital coupling

Finally, we focus in more detail on the remaining small, but finite, dephasing-

slope for EZ/ESOI À 1 (see Figs. 8.3 and 8.4). To show the remaining dephasing

rate for EZ/ESOI À 1 most clearly, we subtract the spin-induced dephasing rate

in this limit - which equals the saturation value 1/τφ(EZ/ESOI = 1) - and denote

the resulting dephasing rate by Γorbφ (B‖). Fig. 8.5 shows the extracted values

of Γorbφ (B‖) = 1/τφ(B‖) − 1/τφ(EZ/ESOI = 1) for sample 1 (weakest SOI), for

different values of the electron density [19] (Note that the B2
‖-field scale in this

graph is much larger than in Figs. 8.3 and 8.4, i.e. EZ/ESOI À 1). We find

that the dephasing slope is larger for larger values of the electron density. In

particular, we find that the remaining dephasing slope scales about linearly with

the Fermi velocity (see inset).

The finite thickness of the quantum well makes that B‖ does not only couple

to the electron spin (Zeeman coupling), but also to its orbital motion. It has

been shown that this orbital coupling can also break TRS, via various mecha-

nisms [21, 22]. These mechanisms depend on the specific (non-universal) details

of the quantum well, such as surface roughness, z-dependence of the scattering

potential in the 2DEG, and the asymmetry of the confining potential. The linear

dependence of Γorbφ (B‖) (or 1/τφ(B‖)) on B2
‖ , together with the linear depen-

dence of the dephasing-slope on vF , indicates that the (small) remaining slope

for EZ/ESOI À 1 is caused by surface roughness [21]. The resulting dephasing-

slope is given by
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Figure 8.5: The measured values of Γorbφ (B‖) = 1/τφ(B‖) − 1/τφ(EZ/ESOI = 1) in

sample 1, for various values of the electron density (i.e. vF ). The dephasing-slope,

∂(1/τφ(B‖))/∂B
2
‖ = ∂Γorbφ (B‖)/∂B

2
‖ , depends about linearly on vF (see inset). This

indicates that surface roughness is the main orbital TRS breaking mechanism. Note

that the B2
‖-scale is much larger than in Figs. 8.3 and 8.4.

∂(1/τφ(B‖))

∂B2
‖

≈
√
π e2 d2 LvF / ~

2 (8.1)

where d is the mean roughness height and L is the correlation length of the

roughness. For our quantum well we find d2L ≈ 0.4 nm3, which is a small value

in comparison to other reports [9].

In general, the orbital mechanism will break the universality of the exper-

imentally measured TRS breaking in systems with SOI, since it adds to the

(universal) spin-induced TRS breaking mechanism. In our samples, the orbital

TRS mechanism is very small an hence unimportant, so it affects the universality

only minorly. This allows us to observe the universal behavior of the spin-induced

TRS breaking for all values of the ratio EZ/ESOI .
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8.7 Conclusions

In conclusion, we have demonstrated that the TRS breaking rate Γφ(B‖), caused

by the competition between Rashba and Zeeman, saturates when EZ ≈ ESOI .

This is because for EZ ≥ ESOI , two Fermi surfaces start being formed with well-

defined spin direction, pointing either parallel or anti-parallel to B‖. Moreover,

we have shown that the scaled dephasing rate, τs(0)Γφ(B‖), is a universal function

of the ratio EZ/ESOI , within the experimental accuracy. Finally, we have shown

that this universality is broken by the coupling of the magnetic field to the orbital

motion of the electrons.
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Summary

In modern semiconductor devices, only the charge of electrons is being utilized

for the manipulation and transport of information. The spin degree of freedom of

the electrons has not been exploited in any commercial semiconductor application

so far. People in the field of Spintronics are trying to find new or improved

functionalities and applications that are based on the spin of electrons, instead of

- or in addition to - its charge. Some of these new ideas are based on the binary

nature of the electron spin, which makes that it could serve as an elementary

digital bit. When the spin state can be transported and manipulated in space

and time, the spin could be used for new calculation schemes, for example. In

addition, it has been predicted that the motion of electrons through materials

can be affected by acting on their spin state. Hence, the spin could potentially

function as a “knob” for tuning the conductivity of electrons.

From the above it follows that it is important to understand mechanisms that

allow to manipulate the spin dynamics (i.e. the spin state of electrons). The best-

known mechanism to affect the spin dynamics is by an external magnetic field,

i.e., via Zeeman coupling to the spin. Another potentially important mechanism

is Rashba spin-orbit interaction (SOI). The interesting and distinguishing feature

of Rashba SOI is, that it can be tuned by electrostatic means. This might make

it easier to control the spin dynamics on very small length scales, in comparison

to Zeeman coupling. Rashba SOI is also known, however, to be the main cause of

spin relaxation in many 2D electron systems, thereby destroying any information

that is encrypted on the spin. For the field of Spintronics it is therefore important

to understand the effects of Rashba SOI, and the interplay between Rashba SOI

and Zeeman coupling, on electron transport and on the spin dynamics.

In this Thesis we have studied partly theoretically and partly experimentally

the influence of Rashba SOI on low temperature electron transport in mesoscopic

(phase-coherent) systems, such as Hall bars and ring structures. In addition,

we have experimentally investigated how the competition between Rashba SOI

and Zeeman coupling affects the spin dynamics in 2D electron gases, and if/how

information about the resulting spin dynamics, such as the spin-relaxation time,

115



116 Summary

can be obtained from “simple” transport measurements. Finally, we have studied

the effect of the interplay between Rashba SOI and Zeeman coupling on the

breaking of time reversal symmetry in 2D electron gases.

Specifically, in the first part of the Thesis we have described in detail the proce-

dure to obtain the correct Hamiltonian of electrons moving on a one-dimensional

ring, in the presence of Rashba SOI and Zeeman coupling. The subtlety of this

seemingly trivial problem was not fully appreciated before, and has led to some

ambiguities and errors in the literature. We have described the formally correct

procedure to project the Hamiltonian defined on the Hilbert space in two dimen-

sions (r, φ), on a restricted Hilbert subspace spanned by a complete set of spinors

that are only a function of the φ-coordinate.

Using this Hamiltonian, we have subsequently calculated the phase-coherent

transport properties (i.e. the conductance) of the 1-dimensional ring, as a func-

tion of the Rashba SOI strength α. We have shown that Rashba SOI induces a

spin-dependent phase-shift in the wavefunction, which results in a modification of

the interference pattern, and hence affects the conductance of the ring. In partic-

ular, we have demonstrated that the conductance of the ring shows quasi-periodic

oscillations as a function of the Rashba strength α. Since the value of α can in

practice be controlled by applying a gate voltage, we have proposed to utilize

a ring structure that is uniformly covered by a gate electrode as a (spin-based)

conductance modulator, or spin-interference device.

The above mentioned spin-induced phase shift is known as the geometrical

Aharonov-Casher phase (it is called a geometrical phase, because it only depends

on the angle that the spin makes while travelling around the ring, and not on

the time the traverse takes). This Aharonov-Casher phase is also predicted to

affect the Aharonov-Bohm (AB) magnetoconductance oscillations in the ring.

Without taking the spin dynamics into account, the period of the AB oscillations

corresponds to a flux of h/e through the ring. Including the spin dynamics -

causing the Aharonov-Casher phase - results in a beating pattern in the AB

oscillations, and hence in deviations from the h/e periodicity. The experimental

detection of the effect of the Aharonov-Casher phase in the Fourier transform of

the AB oscillations has been the aim of the second part of this Thesis.

We have fabricated a ring structure using an InAs-inserted two-dimensional

electron gas with strong Rashba SOI. The Fourier transform of the experimentally

measured AB oscillations is found to be dominated by sample-specific features,

due to the finite width of the arms of the ring and the quasi-diffusive transport

through the ring. This precludes the direct observation of spin-effects in the

Fourier transform of a single measurement. We have demonstrated that aver-

aging the modulus of the Fourier spectrum |G(ν)| over measurements taken at
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slightly different gate voltage, allows to suppress the sample-specific features in

a controllable way. We have found that the h/e peak in the ensemble averaged

Fourier spectrum 〈|G(ν)|〉 shows a clear splitting. By performing a statistical

analysis of the ensemble of Fourier spectra, we have demonstrated that the ob-

served splitting in the ensemble averaged Fourier spectrum 〈|G(ν)|〉 is statistically
significant. Therefore, the observed splitting is not a remnant sample-specific fea-

ture, but is likely to be a Rashba-induced spin-effect.

In the remaining experimental part of the Thesis we have systematically inves-

tigated the influence of the interplay between Rashba SOI and Zeeman coupling

on the spin-dynamics and phase-coherent transport in 2D electron gases. For

these experiments Hall-bar structures were fabricated out of different InGaAs-

based wafers. Each of these wafers was designed to have a different Rashba SOI

strength. A gate electrode allowed to control the relevant parameters in the Hall

bar, such as the electron mean free path, the Rashba SOI strength, and hence the

spin relaxation time τs. Zeeman coupling to the spin was achieved by applying

a magnetic field in the plane of the 2DEG, thereby causing minimal coupling to

the orbital motion of the electrons.

We have used the quantitative analysis of the weak (anti-)localization signal,

as a function of perpendicular and in-plane magnetic field, as a new tool to

extract the phase-coherence time and the spin relaxation time as a function of

both Rashba SOI and Zeeman coupling. From this detailed analysis we have

demonstrated that the spin relaxation time increases with increasing Zeeman

coupling strength, due to a partial alignment of the electron spin along the applied

magnetic field. Hence, the magnetic field is shown to have a stabilizing effect on

the spin precession axis. In particular, we have shown that the increase in the

spin relaxation time is only a function of EZ/ESOI , with EZ is the Zeeman energy

and ESOI = ~/τs is the Rashba SOI related energy scale.

In addition, from the phase-coherent transport measurements, we have also

shown that the competition between Rashba SOI and Zeeman coupling results

in a dephasing of time-reversed electronic waves. The effect of the interplay

between Rashba and Zeeman on quantum interference is therefore found to be

similar to a magnetic flux through the 2D electron gas: both cause a breaking

of Time Reversal Symmetry (TRS). In contrast to a magnetic flux, however,

we have demonstrated that the TRS breaking saturates when EZ/ESOI ≈ 1, i.e.,

when the spins become aligned parallel or anti-parallel with the applied magnetic

field. Finally, we have shown that this spin-induced TRS breaking mechanism is

a universal function of the ratio EZ/ESOI , within the experimental accuracy.

Delft, April 2005
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Samenvatting

In de huidige halfgeleider industrie wordt alléén gebruikt gemaakt van de lad-

ing van electronen om informatie te manipuleren en te transporteren. The spin

van electronen wordt tot nu toe niet toegepast in commerciele applicaties die

op halfgeleiders zijn gebaseerd. Onderzoekers op het gebied van de Spintronica

proberen nieuwe en verbeterde functionalitieten en toepassingen te bedenken die

wél zijn gebaseerd op de spin van electronen, in plaats van - of in combinatie met

- hun lading. Sommige van deze ideeën zijn geinspireerd op het binaire charac-

ter van de electron spin, waardoor een spin gebruikt zou kunnen worden als een

elementaire digitale bit. Wanneer de spin-toestand kan worden getransporteerd

en gecontroleerd in tijd en ruimte, zou de spin bijvoorbeeld toegepast kunnen

worden in een nieuw soort informatie technologie. Bovendien is er voorspeld, dat

de beweging van electronen door materie bëınvloedt kan worden door hun spin-

toestand te bëınvloeden. Daarom zou de spin-toestand eventueel kunnen dienen

als een “regelaar” van de geleiding van electronen door een bepaald materiaal.

Uit het bovenstaande volgt dat het belangrijk is om te begrijpen welke mecha-

nismen de spin dynamica (spin-toestand) kunnen controleren/manipuleren. Het

bekendste mechanisme is een extern magneetveld, oftewel Zeeman koppeling.

Een ander potentieel belangrijk mechanisme is Rashba spin-baan wisselwerking

(SBW). Rashba SBW heeft als interesante en onderscheidende eigenschap dat het

getuned kan worden door middel van een aangelegde spanning. Dit vergemakke-

lijkt naar verwachting de controle over de spin-dynamica op nanometer schaal, in

vergelijking tot Zeeman koppeling. Het is echter ook bekend dat Rashba SBW de

hoofdoorzaak is van spin relaxatie in veel 2D electron systemen. Dit leidt ertoe

dat de informatie die in de spin-toestand van electronen is opgeslagen, verloren

gaat. Het is dus belangrijk voor de Spintronica om te begrijpen op hoe Rashba

SBW, en de competitie tussen Rashba SBW en Zeeman koppeling, het electron

transport en de spin dynamica in materialen bëınvloedt.

In dit proefschrift hebben we theoretisch en experimenteel onderzoek gedaan

naar de invloed van Rashba SBW op electron transport in mesoscopische (fase-

coherente) systemen, zoals Hall- en ring structuren, bij extreem lage tempera-
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turen. Daarnaast hebben we onderzocht hoe de competitie tussen Rashba SBW

en Zeeman koppeling de spin dynamica in 2D electron gassen bëınvloedt, en

of/hoe informatie over bepaalde aspecten van de spin dynamica, zoals de spin-

relaxatie tijd, kan worden verkregen uit “simpele” transport metingen. Tenslotte

hebben we bestudeerd wat het effect is van de competitie tussen Rashba SBW

en Zeeman koppeling op het breken van de tijd-omkeer symmetrie in 2D electron

gassen.

Specifiek, in het eerste gedeelte van dit proefschrift hebben we een gede-

tailleerde beschrijving gegeven van de procedure voor het verkrijgen van de cor-

recte Hamiltoniaan van electronen die bewegen in een 1D ring, onder invloed

van Rashba SBW and Zeeman koppeling. The subtiliteit van dit ogenschijnlijk

triviale probleem was tot nu niet onder ogen gezien, en heeft geleid tot vaagheden

en fouten in de literatuur. Wij hebben de formeel correcte procedure beschreven

voor het projecteren van de Hamiltoniaan die gedefinieerd is in de 2D Hilbert

ruimte (met parameters r and φ), op een 1D Hilbert ruimte, welke slechts functie

is van de φ-coordinaat.

Gebruik makende van deze Hamiltoniaan, hebben we vervolgens de fase-

coherente transport eigenschappen (geleidbaarheid) van de 1D ring berekend,

als functie van de Rashba SBW sterkte α. We hebben laten zien dat de Rashba

SBW resulteert in een spin-afhankelijke fase verschuiving in de golffunctie, wat

leidt tot een verandering in het interferentie patroon en dus in de geleiding van de

ring. In het bijzonder hebben we aangetoond dat de geleidbaarheid van de ring

quasi-periodieke oscillaties vertoont als functie van de Rashba SBW sterkte α.

Aangezien de sterkte van de Rashba SBW getuned kan worden door middel van

een gate-spanning, hebben we voorgesteld om een dergelijke ring te gebruiken als

een schakelbare geleider, die gebaseerd is op de spin van electronen in plaats van

op hun lading.

De bovengenoemde spin-gëınduceerde fase-verschuiving staat bekend als de

geometrische Aharonov-Casher fase (het wordt een geometrische fase genoemd,

omdat de fase alleen afhangt van de hoek die de spin maakt tijdens zijn beweging

rond de ring, en niet van de tijd die het electron erover doet). Men heeft voorspeld

dat deze Aharonov-Casher fase ook de Aharonov-Bohm magneto-weerstand os-

cillaties in de ring bëınvloedt. Als we de spin dynamica van de electronen buiten

beschouwing laten, correspondeert de oscillatie periode van de weerstand met

een flux van h/e door de ring. Er treedt echter een afwijking van de h/e period-

iciteit op als we de spin dynamica (Aharonov-Casher phase) mee in beschouwing

nemen. Dientengevolge zal de Aharonov-Casher fase naar verwachting zichtbare

consequenties hebben in het Fourier spectrum van de Aharonov-Bohm oscillaties.

De experimentele detectie van deze verschijnselen in het Fourier spectrum was



121

één van de doelen van het tweede gedeelte van dit proefschrift.

Wij hebben een ring structuur gefabriceerd uit een 2-dimensionaal electron

gas met sterke Rashba SBW. We hebben laten zien dat het gemeten Fourier spec-

trum van de Aharonov-Bohm oscillaties wordt gedomineerd door sample speci-

fieke eigenschappen, vanwege de eindige breedte van de armen van de ring en

het diffunderend electron transport er doorheen. Dit belemmert de directe obser-

vatie van spin effecten in het Fourier spectrum. Wij hebben gedemonstreerd dat

het middelen van de modulus van het Fourier spectrum |G(ν)|, over metingen

die genomen zijn bij verschillende waarden van de gate-spanning, het mogelijk

maakt om de sample specifieke eigenschappen te onderdrukken op een gecon-

troleerde manier. Hierdoor hebben wij kunnen observeren dat de h/e piek in

het ensemble-gemiddelde Fourier spectrum 〈|G(ν)|〉 een duidelijke dubbele-piek

structuur vertoont. Door middel van een statistische analyse hebben we aange-

toond dat deze dubbele-piek structuur statistisch significant is. Deze observatie

kan dus niet worden toegeschreven aan een resterend sample specifieke effect,

maar duidt op een spin-geinduceerd verschijnsel.

In het resterende gedeelte van dit proefschrift hebben we systematisch onder-

zocht hoe de competitie tussen Rashba SBW en Zeeman koppeling de spin dy-

namica en fase-coherent electron transport bëınvloedt in 2D electron gassen. Voor

deze experimenten hebben we Hall structuren gefabriceerd uit verschillende het-

erostructuren, welke zodanig ontworpen zijn, dat ze ieder een andere Rashba SBW

sterkte hebben. Zeeman koppeling werd bewerkstelligd door een magneetveld aan

te leggen parallel aan het 2D electronen gas (hierdoor werd de koppeling tussen

het magneetveld en de beweging van de electronen geminimaliseerd). Een gate-

electrode maakte het mogelijk om de relevante parameters te controleren, zoals

de vrije weglengte van de electronen, de Rashba SBW sterkte, en daarmee ook

de spin relaxatie tijd τs van de electronen in het electron gas.

Wij hebben een nieuwe methode ontwikkeld, gebruik makende van de kwan-

titatieve analyse van zwakke (anti-)lokalisatie metingen, die het mogelijk maakt

de fase-coherentie tijd en de spin relaxatie tijd te bepalen, als functie van de

sterkte van de Rashba SBW en de Zeeman koppeling. Door middel van deze

analyse hebben we aangetoond dat de spin relaxatie tijd toeneemt naar mate

de Zeeman interactie sterker wordt. Dit toont aan dat de electron spin zich

(gedeeltelijk) oplijnt met het aangelegde magneetveld. Met andere woorden, we

hebben gedemonstreerd dat een magneetveld een stabliserende werking heeft op

de precessie-as van de spin. In het bijzonder hebben we aangetoond dat de spin

relaxatie tijd alleen een functie is van EZ/ESOI , waar EZ de Zeeman energie is

en ESOI = ~/τs correspondeert met de Rashba SBW energie.

Daarnaast hebben we aangetoond, door middel van fase-coherente transport
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metingen, dat de competitie tussen Rashba SBW en Zeeman interactie resulteert

in het breken van de tijd-omkeer symmetrie. Deze competitie is dus analoog aan

een magnetische flux door het 2D electron gas; beiden resulteren in een fase ver-

schuiving tussen electron golven die tegengesteld in de tijd bewegen. We hebben

echter gedemonstreerd dat het breken van de tijd-omkeer symmetrie verzadigt

wanneer EZ/ESOI ≈ 1, oftewel wanneer de spins in de richting van het aan-

gelegde magneetveld beginnen te wijzen. Tenslotte hebben we laten zien dat dit

tijd-omkeer symmetrie brekend mechanisme een universele functie is van de ratio

EZ/ESOI .

Delft, April 2005
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