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Samenvatting

In deze scriptie beginnen we met het opbouwen van wat algemene Lie-theorie. Om dat te doen
leggen we eerst uit wat variëteiten zijn. Ook zullen we enkele eigenschappen van matrix Lie
groepen en Lie algebra’s bestuderen.
Daarna definiëren we Jacobi polynomen door middel van hypergeometrische reeksen. Ook zullen
we een aantal eigenschappen van Jacobi polynomen, op een analytische manier, afleiden.
In hoofdstuk 4 introduceren we representatietheorie. We zullen laten zien hoe Jacobi polynomen
terug zijn te vinden in de representaties van SU(2). Ook bekijken we wat het verband is tussen
SU(2) en Schurs orthogonaliteitsrelaties.
Vervolgens bekijken we hoe representatietheorie van SU(2) binnen de Lie-theorie past en zullen
daarmee enkele eigenschappen voor Jacobi polynomen afleiden.
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1 Inleiding

In deze bachelorscriptie bestuderen we Jacobi polynomen. Daarbij bekijken we hoe Jacobi poly-
nomen binnen de representatietheorie van de groep SU(2), de groep van 2× 2 unitaire matrices
met determinant 1, passen. Met behulp van deze representatietheorie willen we eigenschappen
van Jacobi polynomen, die op een vrij direct manier te bewijzen zijn, ook op een conceptuele
wijze afleiden.

Jacobi polynomen, P
(α,β)
n , zijn polynomen van graad n die voor α, β > −1 als volgt zijn gedefi-

nieerd

P (α,β)
n (x) =

(α+ 1)n
n!

n∑
k=0

(−n)k(n+ α+ β + 1)k
(α+ 1)k

(
1− x

2

)k
waarbij (a)0 = 1 en (a)k = a(a+ 1) · · · (a+ k − 1) voor k = 1, 2, . . . .
Zij GL(V ) de groep van inverteerbare lineaire transformaties van een eindig dimensionaal com-
plexe vectorruimte V . Een representatie van een groep G op een eindig dimensionaal complexe
vectorruimte V is een groepshomomorfisme t : G→ GL(V ). We nemen V gelijk aan de vector-
ruimte van homogene polynomen van graad 2l en G = SU(2). Dan definiëren we de representatie
tl van SU(2) op de volgende manier(

tl

(
a b
c d

)
f

)
(z1, z2) := f(az1 + cz2, bz1 + dz2)

(
a b
c d

)
∈ SU(2), z1, z2 ∈ C

waarbij f(z1, z2) een homogeen polynoom van graad 2l is. We zullen laten zien dat we de ope-

rator tl

(
a b
c d

)
als een matrix kunnen schrijven waarbij de elementen Jacobi polynomen zijn.

Hierdoor kunnen we eigenschappen van de Jacobi polynomen afleiden door middel van de repre-
sentatietheorie op SU(2). We laten bijvoorbeeld zien dat de matrixelementen van deze operator
een volledig orthogonaal stelsel vormen in L2(SU(2), dµ) waarbij µ de Haar maat is.
Ook zullen we Lie-theorie en matrix Lie groepen bestuderen. We laten zien dat SU(2) een matrix
Lie groep is met bijbehorende Lie algebra su(2): de reële lineaire ruimte van scheef Hermitisch
(d.w.z A∗+A = 0) 2× 2 matrices met spoor 0. Hiermee kunnen we bijvoorbeeld enkele nuttige
formules voor Jacobi polynomen afleiden.

In hoofdstuk 2 beginnen we met het opbouwen van wat algemene Lie-theorie en zullen daarna
enkele eigenschappen van matrix Lie groepen en Lie algebra’s bestuderen. In hoofdstuk 3 de-
finiëren we Jacobi polynomen door middel van hypergeometrische reeksen. Ook zullen we een
aantal eigenschappen van Jacobi polynomen afleiden. In hoofdstuk 4 introduceren we represen-
tatietheorie. We zullen laten zien hoe Jacobi polynomen terug zijn te vinden in de representaties
van SU(2). Ook bekijken we wat het verband is tussen SU(2) en Schurs orthogonaliteitsrelaties.
In hoofdstuk 5 bekijken we hoe representatietheorie van SU(2) binnen de Lie-theorie past en
zullen daarmee enkele eigenschappen voor Jacobi polynomen afleiden.

Voor deze scriptie is de meest gebruikte referentie Koornwinder [1].
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2 Lie groepen en Lie algebra

We beginnen dit hoofdstuk met het introduceren van enkele topologische begrippen. Daarna
zullen we, met behulp van deze begrippen, uitleggen wat Lie groepen en Lie algebra’s zijn en
hiervan enkele eigenschappen geven. Als laatst besteden we aandacht aan een speciaal type Lie
groep, namelijk de matrix Lie groep.

2.1 Topologie

Definitie 2.1. Een topologische groep is een verzameling G, die zowel een groep als een to-
pologische ruimte is, met de eigenschap dat de afbeeldingen (g, h) 7→ gh : G × G → G en
g 7→ g−1 : G→ G, continu zijn.

Een topologische ruimte heet tweedst-aftelbaar als hij voldoet aan de tweede aftelbaarheids-
axioma: zijn topologie heeft een aftelbare basis.

Definitie 2.2. Een homeomorfisme is een afbeelding f : X → Y tussen twee topologische
ruimten (X, tX) en (Y, tY ) met de volgende eigenschappen:

• f is continu

• f is een bijectie

• f−1 is continu

Definitie 2.3. Zij (X, tX) een topologische ruimte. Een kaart, (of coördinaten afbeelding), is
een homeomorfisme, φ, tussen een open omgeving U ⊂ X en En, een Euclidische ruimte van
dimensie n.(Vaak genoteerd als (U, φ)).

Definitie 2.4. Zij (X, tX) een topologische ruimte. Een atlas is een verzameling van kaarten,
{(Uα, φα)}, zo dat X =

⋃
Uα.

Definitie 2.5. Zij (X, tX) een topologische ruimte met een bijbehorende atlas, {(Uα, φα)}. We
noemen X een variëteit (van dimensie n) als voor elke kaart φα uit de atlas geldt dat het
bijbehorende codomein dimensie n heeft.(Dus het codomein van alle kaarten is En).
Als X daarnaast ook nog Hausdorff is spreken we van een topologische variëteit.

Zij X een varieëteit en (U1, φ1), (U2, φ2), twee kaarten zodat U1 ∩ U2 6= ∅. Dan noemen we
de afbeelding τ : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) gedefinieerd door τ(y) = φ2 ◦ φ−1

1 (y), een transi-
tieafbeelding. Merk op: Omdat φ1 en φ2 homeomorfismen zijn is de transitieafbeelding ook een
homeomorfisme.
Als een topologische variëteit tweedst-aftelbaar is en alle transitieafbeeldingen k-keer continu
differentieerbaar,(k ≥ 1), zijn spreken we van een differentieerbare variëteit (of Ck-variëteit).
Zijn de transitieafbeeldingen oneindig vaak continu differentieerbaar dan spreken we van een
C∞-variëteit.
Een ander type differentieerbare variëteit is een complex analytisch variëteit. Hierbij is het co-
domein van de kaarten een Euclidische ruimte over C en zijn de transitieafbeeldingen complex
analytisch.
Op een differentieerbare variëteit kunnen we lokaal integraal- en differentiaalrekening toepassen.
Dit vanwege het feit dat het lokaal homeomorf is met een lineaire ruimte en omdat de transi-
tieafbeeldingen tussen de verschillende kaarten continu differentieerbaar zijn. Hieruit volgt dat
berekingen die we binnen een kaart doen ook geldig blijven binnen andere kaarten.
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Opmerking over notatie: zij M een n-dimensionale variëteit en (U, φ) een kaart op M . Stel
dat we een afbeelding f : U → R (of C) hebben. Zij u = φ−1(x1, . . . , xn). In het vervolg zullen
we f(x1, . . . , xn) noteren in plaats van f(u) = f(φ−1(x1, . . . , xn)).

Zij M een C∞-variëteit van dimensie n en p ∈ M . Omdat M lokaal homeomorf is met
Rn bestaat er een open omgeving U van p die homeomorf is met Rn. Dus op U zijn er lokale
coördinaten (x1, . . . , xn). Noem x0 = (x01, . . . , x0n), de lokale coördinaten van p. Ten opzichte
van dit coördinaten systeem definiëren we de raakruimte TpM aan M in het punt p op de
hieronder beschreven manier.
Zij a ∈ Rn een vector. Als eerste associëren we met deze vector een equivalentieklasse als volgt:
neem alle C∞ afbeeldingen (−1, 1) → Rn : t 7→ x(t) = (x1(t), . . . , xn(t)) zodanig dat ze voor
t = 0 door de lokale coördinaat van p gaan (dus x(0) = x0) en zodat de afgeleiden in t = 0
gelijk zijn aan a (dus x′(0) = (x′1(0), . . . , x′n(0)) = (a1, . . . , an) = a). Alle afbeeldingen die
hieraan voldoen zitten in dezelfde equivalentieklasse. (Het bovenstaande definieert inderdaad
een equivalentierelatie: als x′(0) = y′(0) dan y′(0) = x′(0), als x′(0) = y′(0) en y′(0) = z′(0) dan
x′(0) = z′(0) en inderdaad x′(0) = x′(0)). Deze equivalentieklassen zijn de raakvectoren van M
in het punt p. De raakruimte TpM is verzameling van al deze vectoren.
Ook associëren we met de vector a een lineair functionaal A op de ruimte C∞(U), (met U de
open omgeving van p), gegeven door

Af :=

n∑
j=1

aj
∂

∂xj
f(x1, . . . , xn)

∣∣∣∣∣
x=x0

(f ∈ C∞(U)). (2.1)

(De lineariteit van Af volgt uit de lineariteit van de partiële afgeleide en het feit dat het een
eindige som is).
Als we x(t) en A, als hierboven, met a hebben geassocieerd dan volgt

Af =
n∑
j=1

aj
∂

∂xj
f(x1, . . . , xn)

∣∣∣∣∣
x=x0

= df(x)(a)

∣∣∣∣∣
x=x0

=
d

dt
f(x(t))

∣∣∣∣∣
t=0

met f ∈ C∞(U). Dus

Af =
d

dt
f(x(t))

∣∣∣∣∣
t=0

(f ∈ C∞(U)) (2.2)

Opmerking 2.6. Voor een complex analytisch variëteit worden raakvectoren en raakruim-
ten op dezelfde manier gedefinieerd met het verschil dat de raakruimte dan gelijk is aan een
lineaire ruimte over C en in en plaats van f ∈ C∞(U) nemen we f ∈ {g : U → C :
g is complex analytisch}.

De disjuncte vereniging van raakruimten, genoteerd als TM =
⊔
x∈M TxM =

⋃
x∈M{(x, a)|a ∈

TxM}, noemen we de raakbundel aan M .

Een laatste begrip dat we nodig zullen hebben is het begrip vectorveld. Een vectorveld X op
M is een afbeelding M → TM die aan elke p ∈M een raakvector Xp ∈ TpM toewijst. Met dit
vectorveld identificeren we een functionaal Xx zodanig dat voor elke open verzameling U van
M met lokale coördinaten (x1, . . . , xn) we het volgende krijgen

Xxf =
n∑
i=1

ci(x1, . . . , xn)
∂

∂xi
f(x1, . . . , xn) (f ∈ C∞(U)) (2.3)

Hier is x = (x1, . . . , xm) de lokale coördinaat van p en de ci zijn C∞ functies afhankelijk van
x1, . . . , xn. Deze functionaal noemen we in het vervolg ook een vectorveld.
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2.2 Lie groepen

Definitie 2.7. Een Lie groep is een groep die ook een C∞-variëteit is, zó dat de afbeeldingen
(g, h) 7→ gh : G×G→ G en g 7→ g−1 : G→ G, C∞ zijn.

Merk op: Uit de definitie van een Lie groep volgt dat elke Lie groep ook een topologische
groep is.

Definitie 2.8. Een Lie algebra g is een vectorruimte over een lichaam V , (V = R of V = C),
samen met een binaire operatie [·, ·] : g× g→ g, die aan de volgende drie axioma’s voldoet

• bilineariteit: ∀a, b ∈ V ,∀x, y, z ∈ g : [ax + by, z] = a[x, z] + b[y, z] en [z, ax + by] =
a[z, x] + b[z, y]

• anti-commutativiteit: ∀x, y ∈ g : [x, y] = −[y, x]

• Jacobi-identiteit: ∀x, y ∈ g : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

[·, ·] noemen we het Lie haakje

Zij X en Y twee vectorvelden op een C∞-variëteit M . We definiëren de commutator [X,Y ]
van X en Y als volgt

[X,Y ]f := X(Y f)− Y (Xf) (f ∈ C∞(M)). (2.4)

We laten zien dat deze commutator aan de axioma’s van definitie 2.8 voldoet. Zij X,Y, Z
vectorvelden, a, b constanten, f ∈ C∞ en x = (x1, . . . , xn). Er geldt

Xxf =
n∑
i=1

ci(x)
∂

∂xi
f(x)

Yxf =
n∑
i=1

di(x)
∂

∂xi
f(x)

Zxf =

n∑
i=1

ki(x)
∂

∂xi
f(x)

De definitie van de commutator geeft ons

[aX + bY, Z]f = (aX + bY )(Zf)− Z((aX + bY )f

Er geldt

Z((aX + bY )f) = Z(

n∑
i=1

(aci + bdi)(x)
∂

∂xi
f(x)

=

n∑
j=1

kj(x)
∂

∂xj

(
n∑
i=1

(aci + bdi)(x)
∂

∂xi
f(x)

)

=

n∑
j=1

kj(x)
∂

∂xj

(
a

n∑
i=1

ci(x)
∂

∂xi
f(x) + b

n∑
i=1

di(x)
∂

∂xi
f(x)

)

= a

n∑
j=1

ki(x)
∂

∂xj

(
n∑
i=1

ci(x)
∂

∂xi
f(x)

)

+b

n∑
j=1

ki(x)
∂

∂xj

(
n∑
i=1

di(x)
∂

∂xi
f(x)

)
(2.5)

4



Ook geldt

(aX + bY )(Zf) = (aX + bY )(
n∑
j=1

ki(x)
∂

∂xj
f(x))

=

n∑
i=1

(aci + bdi)(x)
∂

∂xi
(

n∑
j=1

ki(x)
∂

∂xj
f(x))

= a

n∑
i=1

ci(x)
∂

∂xi
(

n∑
j=1

ki(x)
∂

∂xj
f(x))

+b
n∑
i=1

di(x)
∂

∂xi
(
n∑
j=1

ki(x)
∂

∂xj
f(x)) (2.6)

Trekken we (2.5) van (2.6) af dan krijgen we

a

n∑
i=1

ci(x)
∂

∂xi
(

n∑
j=1

ki(x)
∂

∂xj
f(x)) − a

n∑
j=1

ki(x)
∂

∂xj
(

n∑
i=1

ci(x)
∂

∂xi
f(x))

+b
n∑
i=1

di(x)
∂

∂xi
(
n∑
j=1

ki(x)
∂

∂xj
f(x)) − b

n∑
j=1

ki(x)
∂

∂xj
(
n∑
i=1

di(x)
∂

∂xi
f(x))

= a[X,Z] + b[Y, Z]

We zien dus dat de commutator inderdaad bilineair is.
De commutator is ook anti-commutatief, want

[X,Y ]f = X(Y f)− Y (Xf) = −(Y (Xf)−X(Y f)) = −[Y,X]

We moeten nog alleen laten zien dat de commutator aan de Jacobi identiteit voldoet. Er
geldt

[[X,Y ], Z]f = [X,Y ](Zf)− Z([X,Y ]f)

= (XY − Y X)(Zf)− Z(X(Y f)− Y (Xf))

= X(Y (Zf))− Y (X(Zf))− Z(X(Y f)) + Z(Y (Xf)) (2.7)

Op dezelfde manier volgt

[[Y, Z], X]f = Y (Z(Xf))− Z(Y (Xf))−X(Y (Zf)) +X(Z(Y f)) (2.8)

[[Z,X], Y ]f = Z(X(Y f))−X(Z(Y f))− Y (Z(Xf)) + Y (X(Zf)). (2.9)

Tellen we (2.7), (2.8) en(2.9) bij elkaar op, krijgen we 0 en dus voldoet de commutator aan de
Jacobi identiteit.

We zien dus dat de commutator, gedefinieerd op vectorvelden op M , voldoet aan alle drie de
axioma’s van definitie 2.8. Dus de reële lineaire ruimte van vectorvelden is een reële Lie algebra.

We gaan nu bekijken wat de Lie algebra is die hoort bij een Lie groep. Zij G een Lie groep
(G is dus ook een C∞-variëteit). Zij e ∈ G, het eenheidselement van G, en V een open omgeving
van e die homeomorf is met Rn(voor zekere n) met lokale coördinaten (y1, . . . , yn) zodanig dat
0 = (0, . . . , 0) de coördinaat is van e. We bekijken de raakruimte TeG. Uit de vorige paragraaf
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weten we dat we de raakruimte kunnen bekijken als de ruimte van lineaire functionalen A
geassocieerd met vector a ∈ Rn gedefinieerd door

Af :=
n∑
j=1

aj
∂

∂yj
f(y1, . . . , yn)

∣∣∣∣∣
y=0

(f ∈ C∞(V )) (2.10)

Vervolgens definiëren een vectorveld XA op G als volgt

(XAf)(g) := A(h 7→ f(gh)) (f ∈ C∞(G), g ∈ G). (2.11)

We moeten laten zien dat dit inderdaad een vector veld definieert. Zij g ∈ G en f ∈ C∞(G). We
beperken de functie h 7→ f(gh) tot V . Dan geldt voor h ∈ V (dus ook h ∈ G), dat de afbeelding
(h 7→ gh) ∈ C∞ want G is een Lie groep. Omdat f ∈ C∞(G) volgt dus dat h 7→ f(gh) ook een
C∞ functie is (beperkt tot V ). Laat U een open omgeving van g zijn met lokale coördinaten
x = (x1 . . . , xn) en h ∈ V met lokale coördinaten y = (y1, . . . , yn). Dan geldt

(XAf)(g) = A(h 7→ f(gh)) =

n∑
j=1

aj
∂

∂yj
(y 7→ f(xy))

∣∣∣∣∣
y=0

(2.12)

Beschouwen we de aj als constante functies en dus als C∞ functies dan zien we dat (2.12)
dezelfde vorm heeft als (2.3). Hieruit volgt dat (XAf)(g) inderdaad een vectorveld is.
Wat we ook zien is dat dit vectorveld links invariant is op de volgende manier

XA(g 7→ f(·g))(g1) = A(h 7→ f(g1gh))

= (XAf)(g1g) (g1, g ∈ G, f ∈ C∞(G)) (2.13)

We kunnen dus bij elke vector, en de daarmee geassocieerde lineaire functionaal A, een links
invariante vectorveld XA definiëren. Ook kunnen we A terugvinden met XA door middel van

(XAf)(e) = A(h 7→ f(eh)) = A(h 7→ f(h)) = Af. (2.14)

Hieruit volgt dat er een lineaire bijectie bestaat tussen de raakruimte op G en de ruimte van
links invariante vectorvelden op G. (De lineariteit van de bijectie volgt uit de lineariteit van de
functionaal). Door middel van deze bijectie wordt de Lie algebra structuur van de ruimte van
links invariante vectorvelden overgedragen aan TeG. Dus TeG wordt een Lie algebra met een
Lie haakje [A,B], die gedefinieerd is door

X[A,B] := [XA, XB] (A,B ∈ TeG). (2.15)

Merk op dat we het Lie haakje [A,B] niet altijd als de commutator AB−BA kunnen beschouwen
omdat het product AB niet gedefinieerd hoeft te zijn voor A,B ∈ TeG.
We noemen de raakruimte TeG, beschouwd als Lie algebra, de Lie algebra van de Lie groep en
noteren het met g of Lie(G).

Opmerking 2.9. Om de zelfde redenen als in opmerking 2.6 kunnen we het bovenstaande proces
ook doen voor complex analytische variëteiten
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2.3 Matrix Lie groep

Bekijk G = GL(n,C), de groep van alle inverteerbare complexe n × n matrices. Het is een
deelverzameling van Mn(C). Mn(C) is de ruimte van complexe n × n matrices en is dus een
n2-dimensionale complexe lineaire ruimte. Het complement van G, Mn(C)\GL(n,C) = {M ∈
Mn(C) : det(M) = 0}, is de ruimte van alle niet-inverteerbare complexe n × n matrices. De
singleton {0} is een gesloten verzameling en de determinant is een continue afbeelding. Hieruit
volgt dat het volledig origineel van {0}, het complement van G, een gesloten verzameling is.
Daaruit volgt dat G open is.
Dus G is een open verzameling in een n2-dimensionale complexe lineaire ruimte en we kunnen
op de hele groep hetzelfde systeem van lokale coördinaten nemen. We nemen de matrixele-
menten als complexe coördinaten. Daarmee vormt G een complexe analytische variëteit en
de groepsoperaties zijn ook complex analytisch.(Vermenigvuldiging in G is matrixvermenigvul-
diging en dus vermenigvuldiging en optelling van matrixelementen: met andere woorden een
polynoom. Inverse nemen is dan weer een rationale afbeelding. Beide zijn complex analytisch).
Dus G = GL(n,C) vormt een Lie groep die we de algemene lineaire groep noemen. (Engels:
General Linear group).

Definitie 2.10. Zij G een Lie groep met deelgroep H. We noemen H een regulier ingebedde Lie
deelgroep van G als: ∀h ∈ H bestaat er een open omgeving U van h in G met lokale coördinaten
(x1, . . . , xn) (x1, . . . , xn ∈ (−a, a)) zodanig dat H∩U bestaat uit alle elementen van U met lokale
coördinaten (x1, . . . , xm, 0, . . . , 0) (x1, . . . , xm ∈ (−a.a)).

Gevolg 2.11. H is een Lie groep met de relatieve topologie van G (Dat wil zeggen: als U open
is in G dan is H ∩ U open in H) en met een C∞-variëteit structuur gegeven door de lokale
coördinaten (x1, . . . , xm) op de verzameling H ∩ U .

Bewijs. Zij H een regulier ingebedde Lie deelgroep van G. Omdat H een deelgroep is van G,
volgt voor h1, h2 ∈ H dat h1h2 ∈ H en h−1

1 ∈ H. Dus de groepsoperaties beelden af op H.
Omdat de groepsoperaties van H ook groepsoperaties van G zijn en G een Lie groep is volgt
dat ze C∞ zijn. Verder geldt dat voor elke h ∈ H er een open omgeving U van h in G bestaat
zodat H ∩U homeomorf is met Rm (voor zekere m ∈ N). Dus voor elke h ∈ H bestaat een open
omgeving H ∩ U die homeomorf is met Rm. De C∞ eigenschap van de transitieafbeeldingen
wordt weer overgenomen van G. Hieruit volgt dat H ook een C∞-variëteit is.

Definitie 2.12. Een regulier ingebedde lineaire Lie groep of matrix Lie groep is een regulier
ingebedde Lie deelgroep van GL(n,C) voor een zekere n ∈ Z>0

Zij G ⊂ GL(n,C) een matrix Lie groep. De raakruimte TIG van G aan het eenheidselement
I (de identiteitsmatrix) kunnen we op verschillende manieren verkrijgen. Een daarvan is als
de verzameling van alle matrices T ′(0) zodanig dat de afbeelding t 7→ T (t) een C∞ kromme is
in GL(n,C) die volledig in G ligt en zo dat T (0) = I. Deze verzameling vormt dan een reële
lineaire deelverzameling van Mn(C). De Lie algebra structuur van deze raakruimte TIG, die per
definitie wordt gëıduceerd door de Lie algebra structuur van de links invariante vectorvelden
van G, is dan ook te verkrijgen als een commutator product:

Stelling 2.13. Zij G ⊂ GL(n,C) een matrix Lie groep met Lie algebra g = TIG ⊂Mn(C). Dan
is het Lie haakje op g gelijk aan

[A,B] = AB −BA (A,B ∈ g).

Hierbij zijn AB en BA matrix vermenigvuldigingen.
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Voordat we deze stelling bewijzen zullen we het eerst hebben over de exponentiële afbeelding.
Met de exponentiële afbeelding kunnen we de Lie algebra g van G ⊂ GL(n,C) verbinden met
G. Voor n× n matrices is deze als volgt gedefinieerd

exp(A) :=
∞∑
k=0

1

k!
Ak (A ∈Mn(C)). (2.16)

(Deze reeks convergeert altijd en is dus welgedefinieerd).
Uit de lineaire algebra zijn de volgende eigenschappen van deze exponentiële functie bekend

a) exp(A+B) = exp(A) exp(B) als A en B commuteren.

b) exp(−A) = (exp(A))−1.

c) exp(TAT−1) = T exp(A)T−1 (A ∈Mn(C), T ∈ GL(n,C)).

d) det(exp(A)) = etr(A) en dus ∀A ∈Mn(C) : exp(A) ∈ GL(n,C).

e) als T (t) := exp(tA) dan T ′(t) = AT (t) = T (t)A. In het bijzonder geldt dan T ′(0) = A.

f) Er bestaan open omgevingen U van 0 ∈Mn(C) en V van I ∈ GL(n,C) zodanig dat
exp : U → V een bijectie en een C∞ differentieerbare homeomorfisme is. (Beschouwen we
T ′(0) (zoals in e) als een afbeelding tussen matrix ruimten dan geldt dat T ′(0)(A) = A ⇒
T ′(0) = id. Dit gecombineerd met de inverse functie stelling geeft ons dit resultaat).

Propositie 2.14. Zij G ⊂ GL(n,C) een matrix Lie groep met Lie algebra g ⊂ Mn(C). Dan
geldt

exp(g) ⊂ G. (2.17)

Bewijs. We hebben een raakvector aan de eenheid gedefinieerd als een equivalentieklasse van
krommen t 7→ T (t) die voor t = 0 door de eenheid gaan en waarvan de afgeleiden van deze
krommen in t = 0 allemaal gelijk zijn aan elkaar. Er geldt g is gelijk aan TIG, de raakruimte
aan de eenheid in G. Zij nu A ∈ TIG een raakvector (in dit geval is het een matrix). Dan
volgt uit f) dat T (t) = exp(tA) in de equivalentieklasse A zit. Voor een raakvector in TIG
geldt dat de onderliggende krommen volledig in G zitten. Omdat exp(tA) een kromme is in de
equivalentieklasse A en dus een onderliggende kromme is van A volgt dus exp(A) ∈ G. Omdat
A ∈ g willekeurig is, volgt exp(g) ⊂ G.

We zijn nu in staat om stelling 2.13 te bewijzen:

Bewijs stelling 2.13. Ter herinnering: Als f ∈ C∞(G), g ∈ G, x de lokale coördinaat van g en
φ een coördinaat afbeelding dan noteren we f(x) in plaats van f(φ−1(x)),
Zij G ⊂ GL(n,C) een matrix Lie groep met Lie algebra g = TIG ⊂Mn(C). Zij φij de coördinaat
functie op Mn(C):

φij

a1,1 a1,2 · · ·
a2,1 a2,2 · · ·

...
...

. . .

 = aij

Merk op: φij ∈ C∞(G) en voor A,B ∈ G geldt

φij(AB) =
n∑
k=1

φik(A)φkj(B). (2.18)
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Zij A ∈ g = TIG. TIG is een raakruimte aan G in I. Zoals in (2.10), associëren we met A een
lineaire functionaal, α(A) op C∞(G) door:

α(A)f =
d

dt
f(x(t))

∣∣∣
t=0

waarbij x(t) een kromme is op G door e = x(0) met x′(0) = A. Omdat x(t) en exp(tA) in
dezelfde equivalentieklasse zitten volgt

α(A)φij =
d

dt
φij(x(t))

∣∣∣
t=0

=
d

dt
φij(exp(tA))

∣∣∣
t=0

=
d

dt
φij

( ∞∑
k=0

Ak

k!
tk

)∣∣∣
t=0

=
d

dt

∞∑
k=0

φij(A
k)

k!
tk
∣∣∣
t=0

= φij(A) (2.19)

Hieruit volgt dat we een bijectie hebben tussen de lineaire functionalen en de raakvectoren.
Zij nu V (G) de vectorruimte van links invariante vectorvelden op G. Daarop hebben we het Lie
haakje gedefinieerd als [X,Y ]f = X(Y f)− Y (Xf). Verder weten we dat er een bijectie bestaat
tussen V (G) en TIG. Het Lie haakje op TIG is gedefinieerd als X[A,B] := [XA, XB]. Er geldt nu

(XAφij)(g) = α(A)(h 7→ φij(gh))

(2.18)
= α(A)

(
h 7→

n∑
k=1

φik(g)φkj(h)

)

=
n∑
k=1

φik(g)α(A)φkj

(2.19)
=

n∑
k=1

φik(g)φkj(A)

(2.18)
= φij(gA) g, h ∈ G, A ∈ TIG.

Gebruikmakend van het bovenstaande krijgen we

(XA(XBφij))(g) = (XA(h 7→ φij(hB))(g)

= α(A)(h 7→ φij(ghB))

(2.18)
= α(A)

(
h 7→

n∑
k=1

φik(g)φkj(hB)

)
(2.18)

= α(A)

(
h 7→

n∑
k=1

φik(g)
n∑
l=1

φkl(h)φlj(B)

)
=

∑
k,l

φik(g)α(A)φklφlj(B)

(2.19)
=

∑
k,l

φik(g)φkl(A)φlj(B)

2 keer (2.18)
= φij(gAB) g, h ∈ G, A,B ∈ TIG
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Op dezelfde manier volgt (XB(XAφij)(g) = φij(gBA). Er geldt dus

([XA, XB]φij)(g) = φij(gAB)− φij(gBA)

= φij(g(AB −BA))

= (XAB−BAφij)(g) = (X[A,B]φij)(g)

waarbij we gebruik maken van de lineariteit van de coördinaat afbeelding.

Nemen we nu open omgevingen U ′ en V ′ zoals in f) dan geldt exp(U ′) = V ′ en exp−1(V ′) = U ′

(inverse van exp). Noem

U = {u ∈ U ′ : exp(u) ∈ G ∩ V ′} en V = {v ∈ V ′ : exp−1(v) ∈ g ∩ U ′} (2.20)

Dan volgt
exp(g ∩ U) = G ∩ V. (2.21)

Ook hebben we een stelling die zegt dat het omgekeerde hiervan waar is. Namelijk

Stelling 2.15. Zij G een deelgroep van GL(n,C), g een reële lineaire deelruimte van Mn(C), U
en V open omgevingen zoals in f) en stel dat (2.21) geldt. Dan is G een matrix Lie groep met
Lie algebra g.

Bewijs. G is een deelgroep van GL(n,C). GL(n,C) is een Lie groep. We zien dat G aan definitie
2.10 voldoet door m = n te nemen en de matrixelementen als systeem van lokale coördinaten te
gerbuiken. Oftewel G is een regulier ingebedde Lie deelgroep van GL(n,C). Dus G voldoet ook
aan definitie 2.12 en is dus een matrix Lie groep.
Om te laten zien dat g de bijbehorende Lie algebra is moeten we laten zien dat g = TIG.
Zij A ∈ g. Dan geldt voor zekere 0 6= c ∈ R en t ∈ (−c, c) dat At een kromme is in U . Uit (2.21)
volgt dan dat exp(At) ∈ G ∩ V . Dus exp(At) is een kromme in G die voor t = 0 door I gaat en
omdat d

dt exp(At)
∣∣
t=0

= A volgt A ∈ TIG.
Zij B ∈ TIG. B is de equivalentieklasse van krommen t 7→ T (t) die voor t = 0 door de eenheid
gaan en waarvan de afgeleiden gelijk zijn aan B. t 7→ exp(Bt) zit ook in deze equivalentieklasse.
Door t klein genoeg te kiezen volgt exp(Bt) ∈ G ∩ V = exp(g ∩ U). Hieruit volgt B ∈ g
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3 Jacobi polynomen

Voor meer informatie over speciale functies zie Andrews, Askey & Roy [2].

In dit hoofdstuk definiëren we eerst wat een hypergeometrische reeks is en geven we een
aantal eigenschappen ervan. Daarna definiëren we Jacobi polynomen aan de hand van een
hypergeomerische reeks. Ook zullen we een aantal eigenschappen van Jacobi polynomen geven
en op een vrij directe manier bewijzen.

3.1 Hypergeometrische reeksen

We introduceren de volgende notatie

(a)0 = 1, (a)k = a(a+ 1) · · · (a+ k − 1), k ∈ Z≥1 (3.1)

Bovenstaande notatie noemen we een Pochhammer symbool.
Merk op:

(n+ k)!

n!
= (n+ 1)k,

n!

(n− k)!
= (−1)k(−n)k (3.2)

Definitie 3.1. Zij
∑∞

k=0 ck een reeks. We noemen deze reeks een hypergeometrische reeks als
ck+1/ck een rationale functie is van k, oftewel

ck+1

ck
=

(k + a1)(k + a2) · · · (k + ap)x

(k + b1)(k + b2) · · · (k + bq)(k + 1)
, aj , bj , x ∈ C en p, q ∈ N (3.3)

Als bi 6= 0,−1,−2 . . . voor i = 1, . . . , q dan volgt uit (3.3) en gebruikmakend van de Poch-
hammer symbolen

ck = ck−1
(k + a1)(k + a2) · · · (k + ap)x

(k + b1)(k + b2) · · · (k + bq)k

= ck−2
(k + a1)(k + a2) · · · (k + ap)x

(k + b1)(k + b2) · · · (k + bq)k

(k − 1 + a1)(k − 1 + a2) · · · (k − 1 + ap)x

(k − 1 + b1)(k − 1 + b2) · · · (k − 1 + bq)(k − 1)

...

= c0
(a1)k(a2)k · · · (ap)kxk

(b1)k(b2)k · · · (bp)kk!

Uit het bovenstaande volgt dat we de hypergeomterische reeks kunnen schrijven als

∞∑
k=0

ck = c0

∞∑
k=0

(a1)k(a2)k · · · (ap)kxk

(b1)k(b2)k · · · (bp)kk!

Deze reeks noteren we als

pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
=

∞∑
k=0

(a1)k(a2)k · · · (ap)kxk

(b1)k(b2)k · · · (bq)kk!
(3.4)

waarbij bi 6= 0,−1,−2 . . . voor i = 1, . . . , q.

Stelling 3.2. Voor de hypergeometrische reeks in (3.4) geldt:

• de reeks convergeert absoluut voor alle x als p ≤ q
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• de reeks convergeert voor |x| < 1 als p = q + 1

• de reeks divergeert voor x 6= 0 als p > q + 1

Bewijs. Schrijf (3.4) als
∑∞

k=0 ck waarbij c0 = 1. Uit (3.3) volgt dan

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

(k + a1)(k + a2) · · · (k + ap)x

(k + b1)(k + b2) · · · (k + bq)(k + 1)

=


0 p ≤ q
|x| p = q + 1

∞ p > q + 1

Uit het quotiëntenkenmerk volgt dan de stelling.

Voordat we de volgende stelling over hypergeometrische reeksen kunnen bewijzen hebben we
wat kennis nodig over de gamma- en de beta-functie

Definitie 3.3. De gamma-functie Γ is gedefinieerd door

Γ(x) =

∫ ∞
0

e−ttx−1dt, Re(x) > 0.

Uit de definitie en partiële integratie volgt

Γ(x+ 1) =

∫ ∞
0

e−ttxdt = −e−ttx

∣∣∣∣∣
∞

0

+ x

∫ ∞
0

e−ttx−1dt = x

∫ ∞
0

e−ttx−1dt.

Hieruit volgt dat de gamma-functie aan het volgende voldoet

Γ(x+ 1) = xΓ(x), Re(x) > 0. (3.5)

Aangezien Γ(1) =
∫∞

0 e−tdt = 1 volgt dat

Γ(n+ 1) = n! (3.6)

Gevolg 3.4. Zij Re(x) > 0, dan geldt

Γ(x+ k) = (x)kΓ(x). (3.7)

Definitie 3.5. De beta-functie B is gedefinieerd door

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt, Re(x),Re(y) > 0.

Stelling 3.6. Voor Re(x),Re(y) > 0 geldt

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.
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Bewijs. Voor Re(x),Re(y) > 0 definiëren we f(x, y) = Γ(x+ y)B(x, y). Dan geldt

f(x, y) =

∫ ∞
0

e−ttx+y−1dt

∫ 1

0
sx−1(1− s)y−1ds

=

∫ ∞
0

e−ttx−1ty−1tdt

∫ 1

0
sx−1(1− s)y−1ds

=

∫ ∞
0

∫ 1

0
e−t(st)x−1(t(1− s))y−1tdsdt

Substitueren we u = st en v = t(1− s) (dus t = u+ v), dan volgt∣∣∣∣∣
∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

∣∣∣∣∣ =

∣∣∣∣ t s
−t 1− s

∣∣∣∣ = t.

Hieruit volgt dat de Jacobiaan gelijk is aan t−1. Dan volgt

f(x, y) =

∫ ∞
0

∫ ∞
0

e−(u+v)ux−1vy−1dudv

=

∫ ∞
0

e−uux−1du

∫ ∞
0

e−vvy−1dv

= Γ(x)Γ(y).

Dus er geldt B(x, y) = Γ(x)Γ(y)
Γ(x+y) .

We kunnen nu de volgende stelling over hypergeometrische reeksen bewijzen.

Stelling 3.7 (Euler). Zij Re(c) > Re(b) > 0 en |x| < 1 , dan geldt

2F1

(
a, b

c
;x

)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− xt)−adt

Bewijs. Noem I = Γ(c)
Γ(b)Γ(c−b)

∫ 1
0 t

b−1(1− t)c−b−1(1− xt)−adt. Voor |xt| < 1 volgt uit de gegene-
raliseerde binomiaal stelling dat

(1− xt)−a =
∞∑
k=0

(
−a
k

)
(−xt)k

=
∞∑
k=0

(−1)k
(
a+ k − 1

k

)
(−1)kxktk

=

∞∑
k=0

(a+ k − 1)!

k!(a− 1)!
xktk

=
∞∑
k=0

(a− 1)!(a)k
k!(a− 1)!

xktk

=

∞∑
k=0

(a)k
k!

xktk.

Omdat deze reeks absoluut convergent is kunnen we de stelling van Fubini toepassen. We krijgen
dan

I =
Γ(c)

Γ(b)Γ(c− b)

∞∑
k=0

(
(a)k
k!

xk
∫ 1

0
tk+b−1(1− t)c−b−1dt

)
.
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We zien dat
∫ 1

0 t
k+b−1(1− t)c−b−1dt = B(k+ b, c− b). Gebruikmakend van gevolg 3.4 en stelling

3.6 krijgen we

B(k + b, c− b) =
Γ(k + b)Γ(c− b)

Γ(k + c)
=

(b)k
(c)k

Γ(b)Γ(c− b)
Γ(c)

Hieruit volgt dan

I =

∞∑
k=0

(a)k(b)k
k!(c)k

xk = 2F1

(
a, b

c
;x

)

Met bovenstaande stelling van Euler kunnen we de volgende twee evaluatie formules en
transformatie bewijzen

Gevolg 3.8 (Gauss). Zij Re(c− a− b) > 0. Dan geldt

2F1

(
a, b

c
; 1

)
=

Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
.

Bewijs. Neem in stelling 3.7 limiet x→ 1. Gebruikmakend van de stelling van Abel1 en dat we
limiet en integraal kunnen verwisselen vanwege absolute convergentie van de integraal volgt dan

2F1

(
a, b

c
; 1

)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−a−b−1dt

=
Γ(c)

Γ(b)Γ(c− b)
B(b, c− a− b)

=
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)

waarbij Re(c − a − b) > 0 en Re(c) > Re(b) > 0. De eis dat Re(c) > Re(b) > 0 kan worden
weggelaten door gebruik te maken van een analytische voortzetting.

Gevolg 3.9 (Chu-Vandermonde). Zij n ∈ N. Dan geldt

2F1

(
−n, b
c

; 1

)
=

(c− b)n
(c)n

Omdat (−n)k = 0 voor k > n en er −n in de bovenparameter staat volgt dat de reeks
afbreekt.

Bewijs. Nemen we a = −n in gevolg 3.8 en gebruikmakend van gevolg 3.4 krijgen we

2F1

(
−n, b
c

; 1

)
=

Γ(c− b+ n)Γ(c)

Γ(c+ n)Γ(c− b)

=
(c− b)nΓ(c− b)Γ(c)

(c)nΓ(c)Γ(c− b)

=
(c− b)n

(c)n
.

1Zij a = {ak : k ≥ 0} een rij reële of complexe getallen en G(z) =
∑∞
k=0 akz

k een reeks. Stel dat
∑∞
k=0 ak

convergeert. Dan geldt limz↑1 G(z) =
∑∞
k=0 ak
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Gevolg 3.10 (Pfaff).

2F1

(
a, b

c
;x

)
= (1− x)−a2F1

(
a, c− b

c
;

x

x− 1

)
waarbij x zodanig is gekozen dat beide reeksen absoluut convergeren.

Bewijs. In stelling 3.7 substitueren we t = 1− s. Dan volgt

2F1

(
a, b

c
;x

)
=

Γ(c)

ΓbΓ(c− b)

∫ 1

0
(1− s)b−1sc−b−1(1− x+ xs)−ads

=
(1− x)−aΓ(c)

ΓbΓ(c− b)

∫ 1

0
(1− s)b−1sc−b−1(1− xs

x− 1
)−ads

=
(1− x)−aΓ(c)

ΓbΓ(c− b)

∫ 1

0
sc−b−1(1− s)c−(c−b)−1(1− xs

x− 1
)−ads

= (1− x)−a2F1

(
a, c− b

c
;

x

x− 1

)
waarbij Re(c) > Re(b) > 0. Deze eis kan worden weggelaten door gebruik te maken van een
analytische voortzetting.

Stelling 3.11. De functie 2F1

(
a,b
c ;x

)
is een oplossing van de volgende differentiaalvergelijking

x(1− x)y′′(x) + [c− (a+ b+ 1)x]y′(x)− aby(x) = 0 (3.8)

Deze differentiaalvergelijking wordt de hypergeometrische differentiaalvergelijking genoemd.

Bewijs. Noem P (x) = x(1− x), Q(x) = c− (a+ b+ 1)x en R(x) = −ab. Dan geldt P (0) = 0 en
dus is x = 0 een singulier punt. Verder geldt

Q(x)

P (x)
=
k0

x
+ k1 + k2x . . . ,

R(x)

P (x)
=
l0
x2

+
l1
x

+ l2 + l2x . . . , ki, li ∈ C

Hieruit volgt dat het punt x = 0 een regulier singulier punt is van (3.8) en bestaat er dus een
oplossing van de vorm y(x) =

∑∞
n=0 cnx

n+r. Invullen in (3.8) geeft

x(1−x)
∞∑
n+0

cn(n+ r)(n+ r− 1)xn+r−2− [c− (a+ b+ 1)x]
∞∑
n=0

cn(n+ r)xn+r−1− ab
∞∑
n=0

xn+r = 0

Dit is om te schrijven tot

x(1−x)

∞∑
n=0

cn(n+r)(n+r−1+c)xn+r−1−
∞∑
n=0

cn[(n+r)(n+r−1)+(a+b+1)(n+r)+ab]xn+r = 0

Voor alle machten van x moeten de coëfficiënten gelijk zijn aan nul. Voor xr−1 (n = 0) krijgen
we

r(r − 1− c) = 0

Hieruit volgt dat er alleen oplossingen zijn voor r = 1 − c of r = 0. Nemen we r = 0, dan zien
we dat de coëfficiënten voldoen aan de volgende recurrente betrekking

cn+1(n+ 1)(n+ c) = cn[n(n− 1) + (a+ b+ 1)n+ ab]

= cn(n2 + an+ bn+ ab)

= cn(n+ a)(n+ b)
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Hieruit volgt

cn = c0
(a)n(b)n
n!(c)n

Dus

y(x) = c0

∞∑
n=0

(a)n(b)n
n!(c)n

xn = 2F1

(
a, b

c
;x

)
c0

3.2 Jacobi polynomen

Definitie 3.12. De Jacobi polynomen, P
(α,β)
n , zijn gedefinieerd als

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
(3.9)

Omdat (−n)k = 0 voor k > n en er −n in de bovenparameter van de hypergeometrische

reeks staat volgt dat de reeks afbreekt. Dus P
(α,β)
n is een polynoom van graad n. Nemen we in

de hypergeometrische reeks k = n dan krijgen we

(α+ 1)n
n!

(−n)n(n+ α+ β + 1)n
(α+ 1)nn!

(1− x)n

2n
=

(−1)nn!(n+ α+ β + 1)n
n!n!

(−1)nxn

2n

+ polynoom van graad (n− 1)

Hieruit volgt dat de kopcoëfficiënt van P
(α,β)
n gelijk is aan

(n+ α+ β + 1)n
2nn!

(3.10)

Stelling 3.13. Voor α, β > −1, geldt∫ 1

−1
P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx = δmnh
α,β
n

waarbij

hα,βn =
2α+β+1(n+ α+ β + 1)nΓ(n+ α+ 1)Γ(β + n+ 1)

n!Γ(2n+ α+ β + 2)

Bewijs. Zij n ∈ N>0. Noem

Im,n =

∫ 1

−1
P (α,β)
n (x)(1 + x)m(1− x)α(1 + x)βdx, m ∈ {0, . . . , n}

Gebruikmakend van (3.9) volgt

Im,n =

∫ 1

−1

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
(1 + x)m(1− x)α(1 + x)βdx

=

∫ 1

−1

(α+ 1)n
n!

n∑
k=0

(
(−n)k(n+ α+ β + 1)k

2kk!(α+ 1)k

)
(1 + x)m(1− x)α(1 + x)βdx

=
(α+ 1)n

n!

n∑
k=0

(
(−n)k(n+ α+ β + 1)k

2kk!(α+ 1)k

∫ 1

−1
(1− x)α+k(1 + x)β+mdx

)
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We bekijken de integraal in de som apart: substitutie van x = 1− 2t geeft∫ 1

−1
(1− x)α+k(1 + x)β+mdx =

∫ 0

1
−2(2t)α+k(2− 2t)β+mdt

= 2α+β+k+m

∫ 1

0
tα+k(1− t)β+mdt (3.11)

De intergaal in (3.11) herkennen we als de Beta-functie. We krijgen dus∫ 1

−1
(1− x)α+k(1 + x)β+mdx = 2α+β+k+m

∫ 1

0
tα+k(1− t)β+mdt

= 2α+β+k+mB(α+ k + 1, β +m+ 1)

stelling 3.6
= 2α+β+k+mΓ(α+ k + 1)Γ(β +m+ 1)

Γ(m+ k + α+ β + 2

gevolg 3.4
= 2α+β+k+m+1 (α+ 1)k

(α+ β +m+ 2)k

Γ(α+ 1)Γ(β +m+ 1)

Γ(m+ α+ β + 2)

Uit het bovenstaande volgt

Im,n =
(α+ 1)n

n!

n∑
k=0

(
(−n)k(n+ α+ β + 1)k

2kk!(α+ 1)k

2α+β+k+m+1(α+ 1)k
(α+ β +m+ 2)k

Γ(α+ 1)Γ(β +m+ 1)

Γ(m+ α+ β + 2)

)

=
2α+β+m+1(α+ 1)nΓ(α+ 1)Γ(β +m+ 1)

n!Γ(m+ α+ β + 2)

n∑
k=0

(−n)k(n+ α+ β + 1)k
k!(m+ α+ β + 2)k

gevolg 3.4
=

2α+β+m+1Γ(n+ α+ 1)Γ(β +m+ 1)

n!Γ(m+ α+ β + 2)

n∑
k=0

(−n)k(n+ α+ β + 1)k
k!(m+ α+ β + 2)k

=
2α+β+m+1Γ(n+ α+ 1)Γ(β +m+ 1)

n!Γ(m+ α+ β + 2)
2F1

(
−n, n+ α+ β + 1

m+ α+ β + 2
; 1

)
De hypergeometrische reeks kunnen we met behulp van Gevolg 3.9 omschrijven:

2F1

(
−n, n+ α+ β + 1

m+ α+ β + 2
; 1

)
=

(m− n+ 1)n
(m+ α+ β + 2)n

=

{
0 m < n,

n!
(n+α+β+2)n

m = n.

Uit het bovenstaande en het feit dat (n+α+β+ 2)nΓ(n+α+β+ 2) = Γ(2n+α+β+ 2) volgt
dan

Im,n =

0 m < n,

2α+β+1+1Γ(n+ α+ 1)Γ(β + 1 + 1)

Γ(1 + α+ β + 2)
m = n.

Dit bewijst de orthogonaliteit van de Jacobi polynomen. Vermenigvuldigen we In,n met de
kopcoëfficiënt (3.10) dan krijgen we de norm hn.

Definitie 3.14. Een verzameling orthogonale functies {φn} noemen we een volledig orthogonaal
stelsel in L2 als voor elke functie in L2 constanten (ci)

∞
i=1 bestaan zo dat

lim
n→∞

||f − (c1φ1 + · · ·+ cnφn)||2 = 0

waarbij ||f || de L2(w(x)dµ) norm is met gewichtsfunctie w(x).
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Opmerking 3.15. De Jacobi polynomen vormen een volledig orthogonaal stelsel in L2((−1, 1), (1−
x)α(1 + x)βdx). De volledigheid volgt uit het feit dat we L2 hebben ten opzichte van een ein-
dige maat(Lebesgue) op een begrensde interval. Daaruit volgt dat de continue functies op [−1, 1]
dicht zijn in L2((−1, 1), (1 − x)α(1 + x)βdx) en uit Stone-Weierstrass volgt dat de verzameling
polynomen, in sup-norm, dicht liggen in C([−1, 1]) en dus ook in L2-norm.

Opmerking 3.16. Orthogonale polynomen zijn, op een multiplicatieve constante na, uniek: zij
(pn) en (qn) twee stelsel van orthogonale polynomen van graad n. Door te vermenigvuldigen met
een geschikte factor kunnen we orthogonale polynomen ook orthonormaal maken. We kunnen
dus aannemen dat (pn) en (qn) orthonormale stelsels zijn. Dan geldt 〈pn, pm〉 = 〈qn, qm〉 = δnm.
Verder geldt

pn =
n∑
k=0

cnkqk ⇒ cnk = 〈pn, qn〉

{
= 0 als k < n

6= 0 als k = n

⇒ pn = cnkqn.

Lemma 3.17. Zij n ∈ N en α, β > −1. Dan geldt

P (α,β)
n (−x) = (−1)nP (β,α)

n (x).

Bewijs. Noem ωα,β(x) = (1− x)α(1 + x)β. Uit stellling 3.13 weten we dat er geldt∫ 1

−1
P (α,β)
n (x)P (α,β)

m (x)ωα,β(x)dx = δnmh
α,β
n

Vullen we hierin −x in plaats van x dan krijgen we∫ 1

−1
P (α,β)
n (−x)P (α,β)

m (−x)ωα,β(−x)dx = δnmh
α,β
n

Er geldt ωα,β(−x) = (1 + x)α(1− x)β = ωβ,α(x). Hieruit volgt∫ 1

−1
P (α,β)
n (−x)P (α,β)

m (−x)ωβ,α(x)dx = δnmh
α,β
n

We zien dat P
(α,β)
n (−x) orthogonaal is ten opzichte van ωβ,α(x). We weten, uit stelling 3.13 dat

P
(α,β)
n (x) orthogonaal is ten opzichte van ωβ,α(x). Hieruit volgt

P (α,β)
n (−x) = kP (β,α)

n (x).

voor zekere constante k. In (3.10) zien we dat de kopcoëfficiënt symmetrisch is in α en β en
omdat (−x)n = (−1)nxn volgt dan

P (α,β)
n (−x) = (−1)nP (β,α)

n (x).
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We gaan nu P
(α,β)
n (x) differentiëren:

d

dx
P (α,β)
n (x) =

(α+ 1)n
n!

d

dx

n∑
k=0

(−n)k(n+ α+ β + 1)k
(α+ 1)kk!

(
1− x

2

)k
= −1

2

(α+ 1)n
n!

n∑
k=1

(−n)k(n+ α+ β + 1)k
(α+ 1)k(k − 1)!

(
1− x

2

)k−1

k=l+1
= −1

2

(α+ 1)n
n!

n−1∑
l=0

(−n)(−n+ 1)l(n+ α+ β + 1)(n+ α+ β + 1)l
(α+ 1)(α+ 2)ll!

(
1− x

2

)l

=
1

2
(n+ α+ β + 1)

(α+ 2)n
(n− 1)!

n−1∑
l=0

(−n+ 1)l(n+ α+ β + 1)l
(α+ 2)ll!

(
1− x

2

)l
=

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x). (3.12)

Door d
dxP

(α,β)
n (x) te vermenigvuldigen met (1 − x)α(1 + x)β en daarna nogmaals naar x te

differentiëren krijgen we:

d

dx

(
(1− x)α(1 + x)βP (α,β)

n (x)
)

= −2(n+ 1)(1− x)α−1(1 + x)β−1P
(α−1,β−1)
n+1 (x). (3.13)

Stelling 3.18. De Jacobi polynomen P
(α,β)
n (x) zijn oplossingen van de volgende differentiaal-

vergelijking:

(1− x2)y′′(x) + (β − α− (α+ β + 2)x)y′(x) + n(n+ α+ β + 1)y(x) = 0.

Bewijs. De Jacobi polynomen zijn gedefinieerd als P
(α,β)
n = (α+1)n

n! 2F1

(
−n,n+α+β+1

α+1 ; 1−x
2

)
. Uit

stelling 3.11 krijgen we dat 2F1

(
a,b
c ; t
)

een oplossing is voor

t(1− t)y′′(t) + [c− (a+ b+ 1)t]y′(t)− aby(t) = 0

In deze differentiaalvergelijking vullen we het volgende in:

c = α+ 1,

a = −n
b = α+ β + 1 + n

t =
1− x

2

f(x) = y(
1− x

2
) = y(t)

f ′(x) = −1

2
y′(

1− x
2

) = −1

2
y′(t)

f ′′(x) = −1

4
y′′(

1− x
2

) = −1

4
y′′(t)

We krijgen dan

1−x
2

1+x
2 4f ′′(x)− (α+ 1− (α+ β + 2)1−x

2 )2f ′(x) + n(n+ α+ β + 1)f(x) = 0

=⇒
(1− x2)y′′(x) + (β − α− (α+ β + 2)x)y′(x) + n(n+ α+ β + 1)y(x) = 0 (3.14)

Hieruit volgt dat P
(α,β)
n een oplossing is van (3.14)
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Als laatste in deze paragraaf noemen we een aantal speciale gevallen van Jacobi polynomen.
Deze speciale gevallen zullen we met een vaak gebruikte normalisatie geven.
Voor α = β = −1

2 krijgen we Chebyshev polynomen(eerste soort):

Tn(x) =
n!

(1
2)n

P
(− 1

2
,− 1

2
)

n (x) = cos(nθ), x = cos(θ)

Bewijs. Er geldt∫ π

−π
cos(nθ) cos(mθ)dθ = 2

∫ π

0
cos(nθ) cos(mθ)dθ

=

∫ π

0
cos((n+m)θ) cos((n−m)θ)dθ

=
sin((n+m)θ)

n+m

∣∣∣∣∣
π

0

+
sin((n−m)θ)

n−m

∣∣∣∣∣
π

0

=

{
0, n 6= m

π, n = m.

Substitueren we nu x = cos(nθ) dan krijgen we

2

∫ π

0
cos(nθ) cos(mθ)dθ = 2

∫ 1

−1
Tn(x)Tm(x)

1√
1− x2

dx

= 2

∫ 1

−1
Tn(x)Tm(x)(1− x)−

1
2 (1 + x)−

1
2dx

Uit bovenstaande volgt dat Tn(x) orthogonaal is ten opzichte van (1 − x)−
1
2 (1 + x)−

1
2 . We

moeten nog alleen laten zien dat Tn(x) inderdaad een polynoom is. Er geldt

cos(nθ) = cos((n− 1)θ + θ) = 2 cos((n− 1)θ) cos(θ)− cos((n− 2)θ)

x=cos(θ), Tn(x)=cos(nθ)
=⇒

Tn(x) = 2xTn−1(x)− Tn−2

=⇒
Tn+1(x) = 2xTn(x)− Tn−1(x) (3.15)

Uit x = cos(θ) en Tn(x) = cos(nθ) volgt T0(x) = 1 en T1(x) = x. Dit gecombineerd met (3.15)
geeft ons dat Tn een polynoom is voor alle n.
We hebben dat Tn polynomen zijn die orthogonaal zijn ten opzichte van (1− x)−

1
2 (1 + x)

1
2 , en

dus zijn het Jacobi polynomen voor α = β = −1
2 .

Voor α = β = 1
2 krijgen we Chebyshev polynomen(tweede soort):

Un(x) =
(n+ 1)!

(3
2)n

P
( 1
2
, 1
2

)
n (x) =

sin((n+ 1)θ)

sin(θ)
, x = cos(θ).

(Dit volgt op dezelfde manier als Chebyshev polynomen van het eerste soort).
Voor α = β = 0 krijgen we de Legendre polynomen:

Pn(x) = P (0,0)
n (x).

En voor α = β = λ− 1
2 met λ > −1

2 krijgen we Gegenbauer polynomen:

C(λ)
n (x) =

(2λ)n

(λ+ 1
2)n

P
(λ− 1

2
,λ− 1

2
)

n (x).
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4 Representaties van SU(2)

We zullen in dit hoofdstuk uitleggen wat representaties van een groep zijn en zullen enkele
eigenschappen hiervan geven. Daarna focussen we ons op representaties van SU(2), de groep
van 2 × 2 unitaire matrices met determinant 1, en bekijken hoe de Jacobi polynomen hierin
passen. Ook zullen we Schurs orthogonaliteitsrelatie en irreducibiliteit van de representaties op
SU(2) bespreken.

4.1 Representatietheorie

Zij V een eindig dimensionaal complexe vectorruimte met dimensie n. Noem GL(V ) de ver-
zameling van alle inverteerbare lineaire transformaties van V . Nemen we compositie als de
groepsoperatie dan vormt GL(V ) een groep.

Definitie 4.1. Een representatie van een groep G op een eindig dimensionale complexe vector
ruimte V is een groepshomomorfisme π : G → GL(V ). Een lineaire deelruimte W van V
noemen we invariant (ten opzichte van representatie π) als π(g)W ⊂ W voor alle g ∈ G. De
representatie π op V noemen we irreducibel als V en {0} de enige invariante deelruimten van
V zijn.

We kunnen representaties van een groep op elke vectorruimte definiëren (ook oneindig di-
mensionaal), maar we zullen ons alleen richten op eindig dimensionale complexe vectorruimten.

Definitie 4.2. Zij π een representatie van een groep G op een eindig dimensionale complexe
vectorruimte V . Kies een basis {e1, . . . , en} van V . Dan heeft de lineaire afbeelding π(g), voor
elke g ∈ G, een matrix (πij(g))i,j=1,...,n ten opzichte van deze basis, die bepaald wordt door

π(g)ej =
n∑
i=1

πij(g)ei

De πij zijn complexwaardige functies op G. Deze noemen we de matrix elementen van de repre-
sentatie π ten opzichte van basis {e1, . . . , en}.

Opmerking 4.3. Zij G een groep, V een eindig dimensionale complexe vectorruimte en End(V )
de ruimte van alle lineaire transformaties A : V → V . Noem e het eenheidselement in G. Als
π : G → End(V ) een afbeelding is zodanig dat π(g1g2) = π(g1)π(g2) en π(e) = id, dan geldt
id = π(e) = π(gg−1) = π(g)π(g−1) voor alle g ∈ G. Hieruit volgt π(g)−1 = π(g−1) en dus
π[G] ⊂ GL(V ): π is groepshomomorfisme G→ GL(V ) en is dus een representatie van G op V .

Definitie 4.4. Een representatie van een topologische groep G op een eindig dimensionale com-
plexe vectorruimte V is een continu groepshomomorfisme π : G→ GL(V ).

Opmerking 4.5. Zij G een topologische groep, V een eindig dimensionale complexe vector-
ruimte, π : G→ GL(V ) een groepshomomorfisme en {e1, . . . , en} een basis van V . Dan zijn de
volgende twee eigenschappen equivalent:

a) π is continu.

b) de matrix elementen πij van π ten opzichte van e1, . . . , en zijn continue functies op G.

Definitie 4.6. Zij V een eindig dimensionale complexe vectorruimte met een inwendig product
〈 , 〉. Een representatie π van een groep G op V noemen we unitair als π(g) een unitaire operator
is op V voor alle g ∈ G, oftewel

〈π(g)v, π(g)w〉 = 〈v, w〉 ∀v, w ∈ V en ∀g ∈ G
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Opmerking 4.7. Zij V en G zoals in definitie 4.6 en zij π een representatie van G op V ,
{e1, . . . , en} een orthonormale basis van V en zij (πij(g)) de matrix van π(g) ten opzichte van
deze basis. De representatie π is unitair dan en slechts dan als de matrix (πij(g)) unitair is (een

matrix U is unitair als U> = U∗ = U−1), oftewel

πij(g) = π−1
ji (g) = πji(g

−1) (i, j = 1, . . . , n)

Propositie 4.8. Zij V en G zoals in definitie 4.6 en zij π een unitaire representatie van G op
V . Als W een invariante deelruimte van V is, dan is het orthoplement W⊥ van W ook een
invariante deelruimte.

Bewijs. Zij v ∈ W⊥. Dan geldt 〈w, π(g)v〉 = 〈π−1(g)w, v〉 = 0 voor alle w ∈ W en g ∈ G. Dus
π(g)v ∈W⊥ voor alle g ∈ G.

4.2 Representaties van SU(2)

Kies l ∈ {0, 1
2 , 1, . . . } vast. Noem Hl de verzameling van alle homogene polynomen van graad 2l

in twee complexe variabelen z1, z2. Dat wil zeggen polynomen f(z1, z2) met complexe coëfficienten
zodanig dat f(cz1, cz2) = c2lf(z1, z2) voor alle c, z1, z2 ∈ C. Dan vormen de monomen zl−n1 zl+n2 (n =
−l,−l + 1, . . . , l) een basis van Hl, en Hl heeft dus dimensie 2l + 1. We zullen met een genor-
malizeerde basis werken:

ψln(z1, z2) :=

(
2l

l − n

) 1
2

zl−n1 zl+n2 (n = −l,−l + 1, . . . , l). (4.1)

Voor f ∈ Hl en A ∈ GL(2,C) definiëren we de functie tl(A)f op C2 door

(tl(A)f)(z) := f(A>z) (z = (z1, z2) ∈ C2). (4.2)

Dus (
tl

(
a b
c d

)
f

)
(z1, z2) = f(az1 + cz2, bz1 + dz2)

(
a b
c d

)
∈ GL(2,C).

Hieruit volgt dat (tl(A)f)(z1, z2) weer een homogeen polynoom van graad 2l in z1, z2 is. Verder
geldt tl(I)f = f(z1, z2) = f en

(tl(AB)f)(z) = f((AB)>z) = f(B>A>z) = (tl(B)f)(A>z)

= (tl(A)(tl(B)f))(z) =
(
(tl(A)tl(B))f

)
(z).

We zien dat tl : GL(2,C) → GL(Hl) een homomorfisme is en is dus een representatie van
GL(2,C) op Hl. Met behulp van definitie 4.2 kunnen we de matrix elementen tlm,n (m,n =

−l, . . . , l) van tl ten opzichte van basis (4.1) bepalen door

tl(g)ψln =
l∑

m=−l
tlm,n(g)ψlm g ∈ GL(2,C) (4.3)

Er geldt (
tl
(
a b
c d

)
ψln

)
(z1, z2) = ψln(az1 + cz2, bz1 + dz2)

=

(
2l

l − n

) 1
2

(az1 + cz2)l−n(bz1 + dz2)l+n (4.4)
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Hieruit volgt dat we (4.3) kunnen schrijven als(
2l

l − n

) 1
2

(az1 + cz2)l−n(bz1 + dz2)l+n =
l∑

m=−l
tlm,n

(
a b
c d

)(
2l

l −m

) 1
2

zl−m1 zl+m2 ,(
a b
c d

)
∈ GL(2,C) (4.5)

We zien dat tlm,n een homogeen polynoom is van graad 2l in a, b, c, d en dus is tlm,n continu

op GL(2,C). GL(2,C) is een topologische groep. Uit opmerking 4.5 volgt dan dat tl een
representatie is van GL(2,C).

Nemen we in (4.5) n vast dan kunnen we de matrix elementen tlm,n, met m = −l, . . . , l,
terugvinden als de coëfficiënten van de machtreeks van de functie aan de linkerkant. We nemen
n = l. Dan krijgen we voor de linkerkant van (4.5):(

2l

l − n

) 1
2

(az1 + cz2)l−n(bz1 + dz2)l+n
n=l
= (bz1 + dz2)2l

Bin. v. Newton
=

2l∑
k=0

(
2l

k

)
(bz1)2l−k(dz2)k

m=k−l
=

l∑
m=−l

(
2l

l +m

)
(bz1)l−m(dz2)l+m

=
l∑

m=−l

(
2l

l −m

)
(bz1)l−m(dz2)l+m.

Hieruit volgt, voor n = l, dat de matrix elementen tlml te schrijven zijn als

tlml

(
a b
c d

)
=

(
2l

l −m

) 1
2

bl−mdl+m (4.6)

We vermenigvuldigen nu beide kanten van (4.5) met(
2l

l − n

) 1
2

wl−n1 wl+n2

en sommeren vervolgens over n van −l tot l. Voor de linkerkant krijgen we

l∑
n=−l

(
2l

l − n

)
(az1w1 + cz2w1)l−n(bz1w2 + dz2w2)l+n

=

l∑
n=−l

(
2l

l + n

)
(az1w1 + cz2w1)l−n(bz1w2 + dz2w2)l+n

k=n+l
=

l∑
k=0

(
2l

k

)
(az1w1 + cz2w1)2l−k(bz1w2 + dz2w2)k

Bin. v. Newton
= (az1w1 + bz1w2 + cz2w1 + dz2w2)2l
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Hieruit volgt

(az1w1 + bz1w2 + cz2w1+dz2w2)2l

=

l∑
m,n=−l

(
2l

l −m

) 1
2
(

2l

l − n

) 1
2

tlm,n

(
a b
c d

)
zl−m1 zl+m2 wl−n1 wl+n2 . (4.7)

In de rechterkant van (4.7) vullen we tln,m

(
a c
b d

)
in plaats van tlm,n

(
a b
c d

)
in. Dan krijgen

we

l∑
m,n=−l

(
2l

l −m

) 1
2
(

2l

l − n

) 1
2

tln,m

(
a c
b d

)
wl−m1 wl+m2 zl−n1 zl+n2

= (aw1z1 + cw1z2 + bw2z1 + dw2z2)2l

= (az1w1 + bz1w2 + cz2w1 + dz2w2)2l

Hieruit verkrijgen we de volgende symmetrie

tlm,n

(
a b
c d

)
= tln,m

(
a c
b d

)
(4.8)

Op dezelfde manier verkrijgen we uit (4.5)

tlm,n

(
a b
c d

)
= tl−m,−n

(
d c
b a

)
(4.9)

Combineren we nu (4.8) en (4.9) dan krijgen we

tlm,n

(
a b
c d

)
= tln,m

(
a c
b d

)
= tl−n,−m

(
d b
c a

)
(4.10)

We bekijken SU(2), de verzameling van unitaire 2 × 2 matrices met determinant 1. SU(2)
is een ondergroep van GL(n,C) want: Zij A,B ∈ SU(2), dan geldt

1) A is unitair: AA∗ = A∗A = I en dus A∗ = A−1. Hieruit volgt dat A−1 ook unitair is.

2) det(A−1) = 1. Dit samen met 1) geeft A−1 ∈ SU(2).

3) (AB)(AB)∗ = ABB∗A∗ = I en (AB)∗(AB) = B∗A∗AB = I.

4) det(AB) = 1. Dit samen met 3) geeft AB ∈ SU(2).

Uit A∗ = A−1 volgt voor

(
a b
c d

)
∈ SU(2):(

a c

b d

)
=

(
d −b
−c a

)
⇒ d = a en b = −c

Nemen we nu a = α+ βi en c = γ + δi dan volgt

det(

(
a b
c d

)
) = 1 ⇒ det(

(
a −c
c a

)
) = 1

⇒ det(

(
α+ βi −γ + δi
γ + δi α− βi

)
) = 1

⇒ α2 + β2 − (−γ2 − δ2) = 1

⇒ |a|2 + |c|2 = 1
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Dus SU(2) bestaat uit matrices(
a −c
c a

)
met a, c ∈ C en |a|2 + |c|2 = 1 (4.11)

Hieruit volgt dat SU(2), als topologische ruimte, homeomorf is met {(a, c) ∈ C2 : |a|2+|c|2 = 1}.
Dit is de eenheidscirkel in C2, oftewel S3. Omdat S3 compact is en een homeomorfisme (en zijn
inverse) continu zijn volgt dat SU(2) compact is.

Als we de representatie tl van GL(2,C) in (4.2) beperken tot SU(2) en een inwendig product
op Hl gebruiken zo dat de basis van functies ψln orthonormaal is dan wordt tl een representatie
van SU(2) op Hl. In de volgende paragraaf zullen we bewijzen dat deze representatie unitair is.

4.3 Matrixelementen van SU(2)

We gaan nu de matrixelementen van de representatie tl van SU(2) bepalen.

Propositie 4.9.

tlm,n

(
a b
c d

)
=

(
2l

l −m

)− 1
2
(

2l

l − n

)
1

2

(l−m)∧(l−n)∑
j=0∨(−m−n)

(
l − n
j

)(
l + n

l −m− j

)
ajbl−m−jcl−n−jdm+n+j

(4.12)
waarbij ∨ maximum betekent en ∧ minimum.

Bewijs. We gaan, met behulp van (4.5), de matrixelementen van tl bepalen. Uit het Binomium
van Newton volgt:

(az1 + cz2)l−n =

l−n∑
j=0

(
l − n
j

)
ajzj1c

l−n−jzl−n−j2

(bz1 + dz2)l+n =

l+n∑
k=0

(
l + n

k

)
bkzk1d

l+n−kzl+n−k2

Dus de linkerkant van (4.5) wordt(
2l

l − n

) l−n∑
j=0

l+n∑
k=0

(
l − n
j

)(
l + n

k

)
ajbkcl−n−jdl+n−kzj+k1 z2l−j−k

2 (4.13)

We gaan hierin variabelen veranderen. We sturen (j, k) 7→ (m, j) met j+ k = l−m. We krijgen
dus

(j, k) 7→ (l − k − j, j) met inverse (m, j) 7→ (j, l −m− j) (4.14)

We krijgen dus

0 ≤ j ≤ l − n en 0 ≤ k ≤ l + n ⇐⇒ −l ≤ m ≤ l en 0 ≤ j ≤ l − n en −m− n ≤ j ≤ l −m
(4.15)

We kunnen nu (4.13) omschrijven tot

(
2l

l − n

) 1
2

l∑
m=−l

(l−m)∧(l−n)∑
j=0∨(−m−n)

(
l − n
j

)(
l + n

l −m− j

)
ajbl−m−jcl−n−jdm+n+jzl−m1 zl+m2 (4.16)
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(4.16) is dus gelijk aan de linkerkant van (4.5) en dus ook gelijk aan de rechterkant van (4.5).
Zowel (4.16) als de rechterkant van (4.5) zijn polynomen in z1, z2 met expliciete coëfficiënten en
dus moeten deze coëfficiënten aan elkaar gelijk zijn. Dat geeft ons dan hetgene wat we wilden
bewijzen.

We zijn nu in staat om het volgende te bewijzen:

Propositie 4.10. De representatie tl van SU(2) is unitair.

Bewijs. Zij

(
a −c
c a

)
∈ SU(2). Inverse van deze matrix is

(
a c
−c a

)
. Uit opmerking 4.7 volgt

dat we moeten laten zien dat

tlm,n

(
a −c
c a

)
= tln,m

(
a c
−c a

)

Uit (4.12) volgt dat tlm,n

(
a b
c d

)
een polynoom is in a, b, c, d met reële coëfficiënten. Dus er

geldt

tlm,n

(
a −c
c a

)
= tlm,n

(
a −c
c a

)
We moeten nu dus laten zien dat

tlm,n

(
a −c
c a

)
= tln,m

(
a c
−c a

)
Dit volgt direct uit (4.8).

De grenzen in (4.12) geven ons één van de volgende vier alternatieven afhankelijk van het
teken van m+ n en m− n

0 ≤ j ≤ l −m if m+ n ≥ 0 en m− n ≥ 0

0 ≤ j ≤ l − n if m+ n ≥ 0 en m− n ≤ 0

−m− n ≤ j ≤ l −m if m+ n ≤ 0 en m− n ≥ 0

−m− n ≤ j ≤ l − n if m+ n ≤ 0 en m− n ≤ 0

Deze vier alternatieven corresponderen met vier deelverzamelingen van
{(m,n) : m,n ∈ {−l, . . . , l}} en samen vormen ze de hele verzameling. Verder geldt dat deze
deelverzamelingen op elkaar worden afgebeeld door de symmetrieën in (4.8),(4.9) en (4.10).

Om tlm,n uit te rekenen kunnen we, in het vervolg, aannemen dat m+ n ≥ 0 en m− n ≥ 0.
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Voor m+ n ≥ 0 en m− n ≥ 0 geldt dat we (4.12) kunnen herschrijven:

tlm,n

(
a b
c d

)
=

(
2l

l −m

)− 1
2
(

2l

l − n

) 1
2
l−m∑
j=0

(
l − n
j

)(
l + n

l −m− j

)
ajbl−m−jcl−n−jdm+n+j

= K
l−m∑
j=0

(l − n)!

j!(l − n− j)!
(l + n)!

(l −m− j)!(n+m+ j)!
ajbl−m−jcl−n−jdm+n+j

= K
(l + n)!bl−mcl−ndm+n

(l −m)!(m+ n)!

l−m∑
j=0

(l −m)!

(l −m− j)!
(l − n)!

(l − n− j)!
(m+ n)!

(m+ n+ j)!j!

(
ad

bc

)j
(3.2)
= K

(l + n)!bl−mcl−ndm+n

(l −m)!(m+ n)!

l−m∑
j=0

(l −m)!

(l −m− j)!
(l − n)!

(l − n− j)!
1

(m+ n+ 1)jj!

(
ad

bc

)j
(3.2)
= K

(l + n)!bl−mcl−ndm+n

(l −m)!(m+ n)!

l−m∑
j=0

(l − n)!

(l − n− j)!
(−1)j(−l +m)j
(m+ n+ 1)jj!

(
ad

bc

)j
(3.2)
= K

(l + n)!bl−mcl−ndm+n

(l −m)!(m+ n)!

l−m∑
j=0

(−l + n)j(−l +m)j
(m+ n+ 1)jj!

(
ad

bc

)j

=

(
(l +m)!(l + n)!

(l − n)!(l −m)!

) 1
2 bl−mcl−ndm+n

(m+ n)!

l−m∑
j=0

(−l + n)j(−l +m)j
(m+ n+ 1)jj!

(
ad

bc

)j

waarbij K =
(

(l+m)!(l−m)!
(l+n)!(l−n)!

) 1
2
. We herkennen hierin de hypergeometrische functie en krijgen

tlm,n

(
a b
c d

)
=

(
(l +m)!(l + n)!

(l − n)!(l −m)!

) 1
2 bl−mcl−ndm+n

(m+ n)!
2F1

(
−l +m,−l + n

m+ n+ 1
;
ad

bc

)
(4.17)

Merk op dat de twee bovenparameters negatief zijn en dus zal de reeks stoppen na de term met
j = (l −m) ∧ (l − n).
Uit de transformatie van Pfaff (gevolg 3.10) volgt

2F1

(
−l +m,−l + n

m+ n+ 1
;
ad

bc

)
= (1− ad

bc
)l−m2F1

(
−l +m, l +m+ 1

m+ n+ 1
;
ad

bc
/(
ad

bc
− 1)

)
= bm−lcm−l(bc− ad)l−m2F1

(
−l +m, l +m+ 1

m+ n+ 1
;

ad

ad− bc

)
.

Hieruit volgt dat we (4.17) kunnen omschrijven tot:

(tlm,n

(
a b
c d

)
=

(
(l +m)!(l + n)!

(l − n)!(l −m)!

) 1
2 cm−ndm+n(bc− ad)l−m

(m+ n)!
2F1

(
−l +m, l +m+ 1

m+ n+ 1
;

ad

ad− bc

)
.

(4.18)
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Uit de definitie van Jacobi polynomen, (3.9), volgt

2F1

(
−l +m, l +m+ 1

m+ n+ 1
;

ad

ad− bc

)
=

(l −m)!

(m+ n+ 1)l−m
2F1

(
−(l −m), (l −m) + (m+ n) + (m− n) + 1

m+ n+ 1
;

ad

ad− bc

)
=

(l −m)!

(m+ n+ 1)l−m
P

(m+n,m−n)
l−m

(
bc+ ad

bc− ad

)
(3.2)
=

(l −m)!(m+ n)!

(l + n)!
P

(m+n,m−n)
l−m

(
bc+ ad

bc− ad

)
Hiermee kunnen we (4.18) verder uitschrijven tot

tlm,n

(
a b
c d

)
=

(
(l +m)!(l −m)!

(l + n)!(l − n)!

) 1
2

cm−ndm+n(bc− ad)l−mP
(m+n,m−n)
l−m

(
bc+ ad

bc− ad

)
. (4.19)

We bekijken (4.19) als

(
a b
c d

)
∈ SU(2). Uit (4.11) volgt dat we voor een element van SU(2)

het volgende kunnen schrijven:(
sin θ eiφ − cos θ e−iψ

cos θ eiψ sin θ e−iφ

)
met 0 ≤ θ ≤ π/2 en φ, ψ ∈ [0, 2π).

Voor m± n ≥ 0 krijgen we dus

tlm,n

(
sin θ eiφ − cos θ e−iψ

cos θ eiψ sin θ e−iφ

)
= (−1)l−m

(
(l +m)!(l + n)!

(l − n)!(l −m)!

) 1
2

×e−i(m+n)φei(m−n)ψ(sin θ)m+n(cos θ)m−nP
(m+n,m−n)
l−m (cos 2θ). (4.20)

4.4 Orthogonaliteit van matrixelementen

We definiëren een speciale Borel maat µ op SU(2) als volgt∫
SU(2)

fdµ =
1

2π2

∫ 2π

φ=0

∫ 2ψ

φ=0

∫ π/2

θ=0
f

(
sin θ eiφ − cos θ e−iψ

cos θ eiψ sin θ e−iφ

)
sin θ cos θ dθ dψ dφ (4.21)

voor alle continue functies f op SU(2). Uit
∫ π/2

0 sin θ cos θdθ = 1
2 volgt∫

SU(2)
dµ = 1 (4.22)

Propositie 4.11. ∫
SU(2)

tlm,nt
l′
m′,n′dµ =

1

2l + 1
δl,l′δm,m′δn,n′ (4.23)

Bewijs. Voor (m,n) = (m′, n′) moeten we laten zien dat

(l +m)!(l −m)!

(l + n)!(l − n)!

∫ π/2

0
P

(m+n,m−n)
l−m (cos 2θ)P

(m+n,m−n)
l′−m (cos 2θ)(sin θ)2m+2n+1(cos θ)2m−2n+1dθ

=
1

2

δl,l′

2l + 1
.
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In de linkerkant substitueren we x = cos 2θ en kunnen dit dan omschrijven tot

1

2

(l +m)!(l −m)!

(l + n)!(l − n)!22m+1

∫ 1

−1
P

(m+n,m−n)
l−m (x)P

(m+n,m−n)
l′−m (x)(1− x)m+n(1 + x)m−ndx. (4.24)

Uit stelling 3.13 volgt nu

1

2

(l +m)!(l −m)!

(l + n)!(l − n)!22m+1
δl,l′h

(m+n,m−n)
l−m

=
1

2

(l +m)!(l −m)!

(l + n)!(l − n)!22m+1
δl,l′

22m+1(l +m+ 1)l−mΓ(l + n+ 1)Γ(l − n+ 1)

(l −m)!Γ(2l + 2)

(3.6)
=

1

2

(l +m)!(l +m+ 1)l−m
(2l + 1)!

δl,l′

(3.2)
=

1

2

δl,l′

2l + 1

en dus geldt ∫
SU(2)

tlm,nt
l′
m′,n′dµ =

∫ 2π

0

∫ 2π

0

1

2

δl,l′

2l + 1
dψdφ =

δl,l′

2l + 1
.

We nemen nu aan dat (m,n) 6= (m′, n′). Met behulp van (4.9) volgt

tl
′
m′,n′

(
sin θ eiφ − cos θ e−iψ

cos θ eiψ sin θ e−iφ

)
= tl

′
−m′,−n′

(
sin θ eiφ cos θ e−iψ

− cos θ eiψ sin θ e−iφ

)
.

Dan volgt nu, gebruikmakend van (4.20) en (4.21), dat∫
SU(2)

tlm,nt
l′
m′,n′dµ =

∫ 2π

φ=0
e−i(m+n−(m′+n′))φ

∫ 2π

ψ=0
ei(m−n−(m′−n′))ψ

∫ π/2

θ=0
f(θ)dθdψdφ.

Uit (m,n) 6= (m′, n′) volgt m+ n− (m′ + n′) 6= 0 of m− n− (m′ − n′) 6= 0.
Als m+n− (m′+n′) 6= 0 dan geldt dat

∫ 2π
0 e−i(m+n−(m′+n′))φdφ = 0 en als m−n− (m′−n′) 6= 0

dan geldt
∫ 2π

0 ei(m−n−(m′−n′))ψdψ = 0.

Hieruit volgt dat
∫
SU(2) t

l
m,nt

l′
m′,n′dµ = 0 als (m,n) 6= (m′, n′).

Propositie 4.12. De matrixelementen tlm,n (l ∈ 1
2Z≥0, m, n ∈ {−l, l + 1, . . . , l}) vormen een

volledig orthogonaal stelsel in L2(SU(2), dµ).

Bewijs. De orthogonaliteit van de matrixelementen volgt uit propositie 4.11.We moeten dus de
volledigheid bewijzen. Uit (4.19), de symmetrieën (4.8)-(4.10) en uit lemma 3.17 volgt voor
m,n ∈ {−l, l + 1, . . . , l} zodanig dat m± n ≥ 0 en voor a, c ∈ C:

tlm,n

(
a −c
c a

)
= cm−nam+n

tln,m

(
a −c
c a

)
= (−c)m−nam+n

tl−m,−n

(
a −c
c a

)
= (−c)m−nam+n

tl−n,−m

(
a −c
c a

)
= cm−nam+n


×
(

(l +m)!(l −m)!

(l + n)!(l − n)!

) 1
2

(|a|2 + |c|2)l−mP
(m−n,m+n)
l−m

(
|a|2 − |c|2

|a|2 + |c|2

)
. (4.25)
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Dit geeft ons alle matrixelementen van tl. Ze zijn homogeen van graad 2l in a, a, c, c. Nemen
we |a|2 + |c|2 = 1 dan beperken we ons tot SU(2). Het maakt voor de beperking niet uit als we
in (4.25) de factor (|a|2 + |c|2)l−m vervangen door (|a|2 + |c|2)r−m met r − l ∈ Z≥0. We krijgen
dan polynomen van graad 2r in a, a, c, c. De functies die we verkrijgen door (|a|2 + |c|2)l−m

te vervangen met (|a|2 + |c|2)r−m, r vast, 0 ≤ l ∈ {r, r − 1, . . . }, m,n ∈ {−l. − l + 1, . . . , l},
m± n ≥ 0, vormen een basis voor alle homogene polynomen van graad 2r in a, a, c, c (Dit volgt
door de dimensie te tellen). Hieruit volgt dat de span van de matrixelementen tlm,n als functies

van

(
a −c
c a

)
∈ SU(2) (|a|2 + |c|2 = 1), gelijk is aan de verzameling van polynomen in vier

reële variabelen Re(a), Im(a),Re(c), Im(c), beperkt tot |a|2 + |c|2 = 1. We weten dat SU(2)
compact is. Uit Stone-Weierstrass volgt dat voor een compacte deelverzameling X van Rn, de
verzameling van polynomen op Rn beperkt tot X, dicht ligt in C(X) ten opzichte van de sup-
norm. Als µ een eindige Borel maat is op X, dan ligt de verzameling polynomen ook dicht in
C(X) ten opzichte van de norm L2(X,µ). Verder volgt dat C(X,µ) dicht ligt in L2(X,µ), zie [3,
Theorem 3.14]. Dus de tlm,n spannen een dichte deelverzameling van C(SU(2)) op ten opzichte
van de sup-norm en dus spannen ze een dichte deelverzameling van L2(SU(2), dµ) op.

4.5 Schurs orthogonaliteitsrelaties

In deze paragraaf gaan we laten zien dat de orthogonaliteitsrelaties in propositie 4.11 een spe-
ciaal geval is van Schurs orthogonaliteitsrelaties voor matrixelementen van irreducibele unitaire
representaties van compacte groepen. Voordat we de stelling kunnen geven hebben we wat
kennis nodig over de Haar maat.

Stelling 4.13. Zij G een compacte groep. Er bestaat een unieke Borel maat µ op G, genaamd
Haar maat, zodanig dat µ(G)=1 en, voor alle Borel verzamelingen E ⊂ G en voor alle g ∈ G,
µ(gE) = µ(E). Deze maat voldoet dan ook aan µ(E) = µ(Eg). Oftewel∫

G
f(hg)dµ(g) =

∫
G
f(g)dµ(g) =

∫
G
f(gh)dµ(g) (h ∈ G). (4.26)

We zullen geen bewijs geven voor deze stelling. Voor meer informatie over het concept van
Haar maat zie [3, §5.12-5.14].

We laten zien dat µ op SU(2) die we in (4.21) gedefinieerd hebben gelijk is aan de Haar
maat. Uit (4.11) weten we dat SU(2) homeomorf is met S3 = {(a, c) ∈ C2 : |a|2 + |c|2 = 1}.
Zij A ∈ SU(2). Links vermenigvuldiging T 7→ AT : SU(2) → SU(2) correspondeert met een
rotatie in S3. Als we een rotatie invariante maat op S3 nemen, krijgen we, na een bepaalde
normalisatie, de Haar maat op SU(2). Er bestaat een, op een constante factor na, unieke
rotatie invariante maat ω op S3: deze maat is zodanig dat voor alle continue functies f op R4

met {x ∈ R4 : f(x) 6= 0} compact en met λ, de Lebesgue maat op R4 geldt∫
R4

fdλ =

∫ ∞
r=0

∫
ξ∈S3

f(rξ)r3dω(ξ)dr. (4.27)

We nemen de volgende coördinaten op R4

x = (r sin θ cosφ, r sin θ sinφ, r cos θ cosψ, r cos θ sinψ).

Voor r = 1 geldt x1 + ix2 = sin θeiφ, x3 + ix4 = cos θeiψ. Dit zijn de coördinaten die we in
(4.21) hebben gekozen voor (a, c) ∈ C2 met |a|2 + |c|2 = 1. De Jacobiaan voor de transformatie
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op deze coördinaten is gelijk aan r3 sin θ cos θ. We krijgen dus∫
R4

f(x1, x2.x3, x4)dx1dx2dx3dx4

=

∫ π/2

r=0

∫ 2π

φ=0

∫ 2π

ψ=0

∫ 2π

θ=0
f(r sin θ cosφ, r sin θ sinφ, r cos θ cosψ, r cos θ sinψ)

× r3 sin θ cos θdθdψdφdr (4.28)

Vergelijken we (4.27) en (4.28) dan zien we dat voor continue functies F op S3 ⊂ C2 geldt∫
S3

Fdω =

∫ 2π

φ=0

∫ 2π

ψ=0

∫ 2π

θ=0
F (sin θeiθ, cos θeiψ) sin θ cos θdθdψdφ (4.29)

Hieruit volgt dus dat de Haar maat op SU(2) gegeven wordt door (4.21).
Voordat we Schurs orthogonaliteitsrelaties kunnen bewijzen hebben we Schurs lemma nodig.

Lemma 4.14 (Schur). Zij G een groep, en zij π, ρ irreducibele representaties van G op eindig
dimensionaal complexe lineaire ruimten V , respectievelijk W .

a) Zij A : V →W een lineaire afbeelding zodanig dat

Aπ(g) = ρ(g)A ∀g ∈ G. (4.30)

Dan geldt A is bijectief of A = 0. Als A bijectief is noemen we π en ρ equivalent.

b) Zij A : V → V een lineaire afbeelding zodanig dat Aπ(g) = π(g)A voor alle g ∈ G. Dan geldt
A = λI voor zekere λ ∈ C.

Bewijs. a) We bewijzen eerst dat kerA π-invariant is en dat imA ρ-invariant is. Zij v ∈ kerA
willekeurig. Dan geldt voor elke g ∈ G dat Aπ(g)(v) = ρ(g)A(v) = ρ(g)(0) = 0 en dus
π(g) ∈ kerA. Hieruit volgt π(g)v kerA ⊂ kerA voor alle g ∈ G: kerA is π-invariant.
Zij v′ ∈ V willekeurig. (Dus A(v′) ∈ ImA). Dan geldt ρ(g)A(v′) = Aπ(g)(v′) ∈ ImA. Hieruit
volgt ρ(g)ImA ⊂ ImA voor alle g ∈ G: ImA is ρ-invariant.
Stel A 6= 0. Hieruit volgt kerA 6= V . Omdat kerA π-invariant is en π een irreducibele
representatie is volgt kerA = {0}. Dus A is injectief. Stel nu dat A niet surjectief is:
ImA 6= W . Omdat ImA ρ-invariant is en ρ een irreducibele representatie is volgt ImA = {0}.
Dit is in tegenspraak met kerA = {0}. Dus A surjectief. Hieruit volgt dat als a 6= 0 dat A
bijectief is.

b) Omdat V een complexe vectorruimte is volgt dat A minstens één eigenwaarde, zeg λ, heeft.
Zij B = A−λI. Omdat λ een eigenwaarde is van A volgt kerB = ker(A−λI) 6= 0. Nu volgt
voor elke g ∈ G:

π(g)B = π(g)(A− λI) = π(g)(A)− π(g)(λI) = Aπ(g)− (λI)π(g) = (A− λI)π(g) = Bπ(g)

Dus B voldoet aan (4.30). Omdat kerB 6= {0} volgt dat B geen bijectie is en dus volgt uit
a) B = 0. Hieruit volgt A− λI = 0⇒ A = λI.

We zijn nu in staat om Schurs orthogonaliteitsrelaties te bewijzen.
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Stelling 4.15 (Schurs orthogonaliteitsrelaties). Zij G een compacte groep met genormaliseerd
Haar maat µ. Zij π en ρ irreducibele unitaire representaties van G op eindig dimensionaal com-
plexe vectorruimten V , respectievelijk W die inequivalent zijn. Zij (πi,j)i,j=0,...,dπ en (ρk,l)k,l=0,...,dρ

de matrices van π en ρ ten opzichte van een orthonormale basis van hun representatieruimten.
Dan geldt ∫

G
πi,jρl,k(g)dµ(g) = 0

en ∫
G
πi,jπl,k(g)dµ(g) =

1

dπ
δi,lδj,k

Bewijs. Zij B(W,V ) de (eindig dimensionale) complexe vectorruimte van lineaire operatoren
tussen W en V . Zij T ∈ B(W,V ) willekeurig en bekijk de afbeelding G → B(W,V ) gegeven
door g 7→ π(g)Tρ(g−1). Dit is een functie op G die continue operatoren als waarde heeft en dus
is
∫
G π(g)Tρ(g−1)dµ(g) ook een operator in B(W,V ). Voor h ∈ G geldt

π(h)

(∫
G
π(g)Tρ(g−1)dµ(g)

)
ρ(h)−1 =

∫
G
π(h)π(g)Tρ(g−1)ρ(h)−1dµ(g)

=

∫
G
π(hg)Tρ(hg)−1dµ(g)

=

∫
G
π(g)Tρ(g)−1dµ(g)

waarbij we gebruik maken van de rechts en links invariantie van de Haar maat. Noem T0 =∫
G π(g)Tρ(g)−1dµ(g). Voor elke g ∈ G geldt nu π(g)T0 = T0ρ(g). Dus T0 is een lineaire

afbeelding die aan (4.30) voldoet. Omdat π en ρ inequivalent zijn volgt uit Schurs lemma
dat T0 = 0. Dus

∫
G π(g)Tρ(g)−1dµ(g) = 0 waarbij T willekeurig is. Zij T = (tj,k). Dan

geldt (π(g)Tρ(g)−1)i,l =
∑

j,k πi,j(g)tj,kρk,l(g)−1. Omdat T = (tj,k) willekeurig is krijgen we∫
G πi,j(g)ρk,l(g)−1dµ(g) = 0 voor alle i, j = 1, . . . , dπ en k, l = 1, . . . , dρ. Omdat ρ een unitair

representatie is, geldt ρ(g−1) = ρ(g)−1 = ρ(g)∗ en dus geldt∫
G
πi,j(g)ρl,k(g)dµ(g) = 0 ∀i, j = 1, . . . , dπ, k, l = 1, . . . , dρ.

Zij nu ρ := π (dus ρ en π zijn niet meer inequivalent). Dan volgt uit Schurs lemma dat T0 een
scalair veelvoud is van de identiteitsmatrix. Dus

∫
G π(g)Tπ(g)−1dµ(g) = λ(T )I. We nemen aan

beide kanten het spoor van de matrices:

tr

(∫
G
π(g)Tπ(g)−1dµ(g)

)
=

∫
G

tr
(
π(g)Tπ(g)−1

)
dµ(g) =

∫
G

tr(T )dµ(g) = tr(T ),

en
tr(λ(T )I) = λ(T )dπ.

Hieruit volgt λ(T ) = tr(T )
dπ

en dus
∫
G π(g)Tπ(g)−1dµ(g) = tr(T )

dπ
I. Op dezelfde manier als

hierboven volgt ∫
G
πi,j(g)πl,k(g)dµ(g) = 0 i 6= l, j 6= k.

Nemen we nu T een diagonaalmatrix met één 1 op de diagonaal en de rest allemaal nullen, dan
krijgen we ∫

G
πi,j(g)πi,j(g)dµ(g) =

tr(T )

dπ
,
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en dus ∫
G
πi,j(g)πl,k(g)dµ(g) =

1

dπ
δi,lδj,k.

Zij (πα)α∈N een aftelbare verzameling van eindig dimensionaal complexe irreducibele unitaire
representaties die onderling inequivalent zijn. Dan kunnen we de orthogonaliteit in stelling 4.15
als volgt opschrijven: ∫

G
παi,j(g)πβk,l(g)dµ(g) =

1

dα
δα,βδi,kδj,l (4.31)

waarbij dα := dπα . Omdat de (πα)α∈N representaties zijn op eindig dimensionale vectorruimten
en lineair zijn volgt dat ze continu zijn op G. Uit opmerking 4.5 volgt dan dat παi,j ook continu

zijn in G en zitten dus ook in L2(G,µ) (met µ de Haar maat). Uit (4.31) volgt dat de functies

d
1
2
απαi,j (α ∈ N, i, j = 1, . . . , dα) een orthonormale stelsel vormen in L2(G,µ). Het is mogelijk om

te laten zien dat dit orthonormale stelsel volledig is. Voor SU(2) volgt volledigheid uit propositie
4.12.

4.6 Irreducibiliteit van SU(2) representaties

Bekijken we propositie 4.11 nogmaals en vergelijken we het met (4.31), dan zien we dat het
inderdaad erop lijkt dat de orhogonaliteit van de matrixelementen van de representaties van
SU(2) een special geval is van Schurs orthogonlaiteitsrelaties. We hebben al laten zien dat
SU(2) een compacte groep is, de representaties van SU(2) (die op een eindig dimensionaal
complexe vectorruimte werken) unitair zijn en dat de Haar maat op SU(2) gegeven wordt door
(4.21). We moeten nog alleen laten zien dat de representaties tl ook irreducibel zijn.

Noem aφ :=

(
eiφ 0
0 e−iφ

)
. Dan volgt uit simpele matrixvermenigvuldiging dat aφaψ = aφ+ψ

en aφ+2π = aφ. Omdat eiφe−iφ = eiφeiφ = 1 volgt dat A := {aφ : 0 ≤ φ ≤ 2π} een gesloten abelse
ondergroep is van SU(2) en dat A homeomorf is met U(1), de groep van complexe getallen met
modulus gelijk aan 1. Uit (4.1) en (4.4) volgt nu

tl(aφ)ψln(z1, z2) =

(
2l

l − n

) 1
2

(eiφz1)l−n(e−iφz2)l+n = e−2inφψln(z1, z2). (4.32)

Lemma 4.16. Zij V een invariante deelruimte van Hl ten opzichte van de representatie πl van
SU(2). Als v ∈ V en 〈v, ψlm〉 6= 0 dan ψlm ∈ V .

Bewijs. Er geldt

v =
l∑

n=−l
〈v, ψln〉ψln.

We krijgen dan

tl(aφ)v =

l∑
n=−l
〈v, ψln〉tl(aφ)ψln =

l∑
n=−l
〈v, ψln〉e−2inφψln.

Hieruit volgt∫ 2π

0
e2imφtl(aφ)vdφ =

l∑
n=−l
〈v, ψln〉

(∫ 2π

0
e2imφe−2inφdφ

)
ψln = 2π〈v, ψlm〉ψlm.
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de linkerintegraal is een Riemann integraal voor vectoren, die we kunnen benaderen met Riemann
som van vectoren. Omdat v ∈ V geldt dat elke benaderende Riemann som in V zit. Omdat V
een deelruimte is van een eindig dimensionaal vectorruimte en dus gesloten is volgt dat ook hun
limiet, de Riemann integraal, in V zit. Hieruit volgt 2π〈v, ψlm〉ψlm ∈ V . Dus als 〈v.ψlm〉 6= 0 dan
ψlm ∈ V .

Met behulp van dit lemma krijgen we de volgende propositie.

Propositie 4.17. Zij V een invariante deelruimte van Hl ten opzichte van de representatie πl

van SU(2). Dan is er een deelverzameling A van {−l, . . . , l} zodanig dat V = Span{ψln : n ∈ A}.
Zij W de orthoplement van V en B de complement van A. Dan is W ook een invariante
deelruimte en W = Span{ψln : n ∈ B}.

Bewijs. Dat er een deelverzameling A van {−l, . . . , l} bestaat zodanig dat V = Span{ψln : n ∈ A}
volgt uit het feit dat de ψli, i = −l, . . . , l, een orthonormale basis vormen voor Hl en lemma 4.16.
Omdat Hl een eindig dimensionaal vectorruimte is, en dus V ook, volgt Hl = V ⊕V ⊥ = V ⊕W .
Dus W = Span{ψln : n ∈ {−l, . . . , l}\A = B}. De invariantie van W volgt uit propositie 4.8.

We zijn nu in staat om de irreducibiliteit van de representatie op SU(2) te bewijzen.

Stelling 4.18. De represenantatie, tl, van SU(2) is irreducibel.

Bewijs. Stel dat tl niet irreducibel is. Uit propositie 4.17 volgt datHl de orthogonaal directe som
is van invariante deelruimten V = Span{ψln : n ∈ A} en W = Span{ψln : n ∈ B} met W = V ⊥,
waarbij {−l, . . . , l} de disjuncte vereniging is van niet-lege verzamelingen A en B. Dan zit l in
één van deze twee verzamelingen. Stel l ∈ A (l ∈ B geeft dezelfde redenering). Dan bestaat er
een m 6= l in B. Verder geldt tl(T )ψll ∈ V voor alle T ∈ SU(2), en is dus orthogonaal met ψlm.

Omdat tl(T )ψll =
∑l

k=−l t
l
k,l(T )ψlk volgt dan tlm,l(T ) = 0 voor alle T ∈ SU(2). Gebruikmakend

van (4.6), krijgen we

0 = tlm,l

(
sin θ − cos θ
cos θ sin θ

)
= (−1)l−m(cos θ)l−m(sin θ)l+m.

Dit geeft ons dus een tegenspraak.
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5 Representaties van de Lie algebra su(2)

In dit hoofdstuk zullen we laten zien dat SU(2) een matrix Lie groep is en zullen ook de
bijbehorende Lie algebra geven. Via deze Lie algebra leiden we een aantal eigenschappen van
de Jacobi polynomen af. Daarna bespreken we nog de Casimir operator.

5.1 Representaties van matrix Lie groepen

Zij G een Lie groep. Zij π een representatie van G op een eindig dimensionale complexe vec-
torruimte. Omdat G een Lie groep is, is het ook een C∞-variëteit. Omdat we de C∞-variëteit
structuur willen behouden, willen we dat π een C∞-homomorfisme is en dus dat de matrixele-
menten πi,j : G→ C C∞-functies zijn. Dus een representatie π : G→ GL(V ) van een Lie groep
G op een eindig dimensionaal complexe vectorruimte V is een C∞-groepshomomorfisme.

Definitie 5.1. Een representatie van een Lie algebra g op een eindig dimeniosnale complexe
veectorruimte V is een Lie algebra homomorfisme ρ : g→ gl(V ). Hierbij is gk(V ) de Lie algebra
van endomorfismen op V met de commutator als Lie haakje. Oftewel

ρ([A,B]) = [ρ(A), ρ(B)] = ρ(A)ρ(B)− ρ(B)ρ(A), A,B ∈ g.

Stelling 5.2. Zij G een matrix Lie groep met Lie algebra g(= TIG) en zij π : G → GL(n,C)
een C∞-representatie van G op Cn. Definieer de reële lineaire afbeelding dπ : g→Mn(C) door

dπ(A) := A(x 7→ π(x)), d.w.z (dπ(A))i,j := A(x 7→ πi,j(x)) (A ∈ g),

waarbij A zoals in (2.10). Dan is dπ een Lie algebra representatie van g en voor A ∈ g geldt

exp(dπ(A)) = π(expA), (5.1)

dπ(A) =
d

dt
π(exp(tA))

∣∣∣∣∣
t=0

. (5.2)

Bewijs. Merk op dat Mn(C) isomorf is met End(Cn). We kunnen de gedefinieerde representatie
op de Lie algebra beschouwen als een afbeelding g→ End(Cn).
Product nemen in g = TIG is gedefinieerd als het Lie-haakje: [A,B] = AB − BA. We moeten
dus laten zien dat dπ([A,B]) = [dπ(A), dπ(B)] = dπ(A)dπ(B)− dπ(B)dπ(A). Er geldt

dπ([A,B]) = dπ(AB −BA)

= (AB −BA)(x 7→ π(x))

= (AB)(x 7→ π(x))− (BA)(x 7→ π(x))

= A(x 7→ π(x))B(x 7→ π(x))−B(x 7→ π(x))aA(x 7→ π(x))

= dπ(A)dπ(B)− dπ(B)dπ(A)

= [dπ(A), dπ(B)]

hieruit volgt dat dπ een homomorfisme is en dus een represenatie.
(5.2) volgt direct uit (2.10) waarbij we de exponentiële functie als representant gebruiken van
de equivalentieklasse van krommen die in t = 0 door I gaan en afgeleide A hebben. Voor (5.1)
zie [5, proposition 4.4]

Gevolg 5.3. Onder dezelfde voorwaarden als in stelling 5.2 en met XA de links invariante
vectorveld op G, zoals in (2.11), krijgen we:

XAπi,j =
n∑
k=1

(dπ(A))k,jπi,k (A ∈ g). (5.3)
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Bewijs. Er geldt

π(gh) = π(g)π(h) =

(
n∑
k=1

πi,k(g)πk,j(h)

)
i,j=1,...,n

.

Hiermee krijgen we

πi,j(gh) =
∑
k=1

πk,j(h)πi,k(g) ⇒

A(h 7→ πi,j(gh)) =

n∑
k=1

A(h 7→ πk,j(h)πi,k(g) ⇒

(XAπi,j)(g) =

n∑
k=1

(dπ(A))k,jπi,k(g)

We gaan nu laten zien dat SU(n) een Lie groep is en dat de bijbehorende Lie algebra gelijk is
aan su(n): de reële lineaire deelruimte van Mn(C) bestaande uit alle scheef Hermitische matrices
(d.w.z A+A∗ = 0) met spoor 0.
SU(n) is de groep van unitaire matrices (TT ∗ = I) met determinant 1 en is dus een onder-
groep van GL(n,C). Zij U en V open verzamelingen zoals in f) op bladzijde 8 en neem aan
dat |tr A| < π als A ∈ U . Noem U∗ = {T ∗ : T ∈ U} en −U = {−T : T ∈ U}. Vervang U
door U0 := U ∩ U∗ ∩ (−U) ∩ (−U∗) en V door V0 := exp(U0). Dan geldt dat U0 ook een open
omgeving van 0 is in Mn(C) en dat het gesloten is onder het nemen van geadjugeerde en het
vermenigvuldigen met −1.
Als A ∈ su(n) ∩ U0 dan geldt (expA)∗ = exp(A∗) = exp(−A) = (expA)−1. Ook geldt
det(expA) = etrA = 1, want trA = 0. Dus expA ∈ SU(n) ∩ V0.
Als T ∈ SU(n) ∩ V0 dan geldt T = expA voor een zekere A ∈ U0 en dus (expA)∗ = (expA)−1.
Hieruit volgt exp(A∗) = exp(−A). Omdat A∗,−A ∈ U0 en omdat exp injectief is op U0 volgt
A∗ = −A. Verder geldt det(T ) = det(exp(A)) = 1 en |tr A| < π en dus tr A = 0. Dus volgt
A ∈ su(n) ∩ U0.
We voldoen nu aan de voorwaarde van stelling 2.15 en dus volgt dat SU(n) een matrix Lie
groep is met Lie algebra su(n). Hieruit volgt dus ook dat SU(2) een matrix Lie groep is met
Lie algebra su(2). Dit geeft ons de mogelijkheid om via stelling 5.2 de representaties van su(2)
te bepalen.

5.2 Representaties van su(2)

De Lie algebra su(2) bestaat uit alle 2× 2 matrices A met A+A∗ = 0 en trA=0. Zij

(
a b
c d

)
∈

su(2). Dan geldt dus

(
a+ a b+ c

c+ b d+ d

)
= 0 en a + d = 0. Hieruit volgt b = c, d = a en a = −a.

Dus su(2) bestaat uit alle matrices

(
it −c
c −it

)
met t ∈ R en c ∈ C. Het heeft reële dimensie 3.

We kiezen een basis, A,B,C, van su(2) gegven door

A :=
1

2

(
0 −1
1 0

)
, B :=

1

2

(
i 0
0 i

)
, C :=

1

2

(
0 i
i 0

)
. (5.4)
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Dan volgt uit simpele matrixvermenigvuldiging

[A,B] = C, [B,C] = A, [C,A] = B. (5.5)

Nemen we de exponent van A,B,C dan krijgen we de volgende ondergroepen van SU(2):

aθ := exp(θA) =

(
cos 1

2θ − sin 1
2θ

sin 1
2θ cos 1

2θ

)
(5.6)

bφ := exp(φB) =

(
e

1
2

iφ 0

0 e−
1
2

iφ

)
(5.7)

cψ := exp(ψC) =

(
cos 1

2ψ i sin 1
2ψ

i sin 1
2ψ cos 1

2ψ

)
. (5.8)

We gaan de representatie dtl van su(2) berekenen, waarbij de representatie tl van SU(2) op Hl
gedefinieerd wordt door (4.1). Dan geldt

(tl(aθ)f)(z1, z2) = f(z1 cos
1

2
θ + z2 sin

1

2
θ,−z1 sin

1

2
θ + z2 cos

1

2
θ) (f ∈ Hl).

Met (5.6) en (5.2) krijgen we voor f ∈ Hl:

(dtl(A)f))(z1, z2) =
d

dt
(tl(at)f)(z1, z2)

∣∣∣∣∣
t=0

=
d

dt
f(z1 cos

1

2
t+ z2 sin

1

2
t,−z1 sin

1

2
t+ z2 cos

1

2
t)

∣∣∣∣∣
t=0

= f1(z1, z2)(−1

2
z1 sin

1

2
t+

1

2
z2 cos

1

2
t) + f2(z1, z2)(−1

2
z1 cos

1

2
t− 1

2
z2 sin

1

2
t)

∣∣∣∣∣
t=0

=
1

2
z2f1(z1, z2)− 1

2
z1f2(z1, z2),

waarbij we met f1 de partiële afgeleide naar de eerste coördinaat bedoelen en met f2 de partiële
afgeleide naar de tweede coördinaat. Hieruit volgt

(dtl(A)f))(z1, z2) =
1

2

(
z2

∂

∂z1
− z1

∂

∂z2

)
f(z1, z2). (5.9)

Op dezelfde manier krijgen we uit (5.2), (5.7) en (5.8)

(dtl(B)f))(z1, z2) =
1

2
i

(
z1

∂

∂z1
− z2

∂

∂z2

)
f(z1, z2), (5.10)

(dtl(C)f))(z1, z2) =
1

2
i

(
z2

∂

∂z1
+ z1

∂

∂z2

)
f(z1, z2). (5.11)

We gaan nu bekijken hoe dtl(A), dtl(B) en dtl(C) werken op de orthonormale basisvectoren
ψln van Hl, gedefinieerd door (4.1). We substitueren f := ψln in (5.9) en krijgen:

dtl(A)ψln =
1

2

(
2l

l − n

) 1
2

(l − n)z
l−(n+1)
1 zl+n+1

2 − 1

2

(
2l

l − n

) 1
2

(l + n)z
l−(n−1)
1 zl+n−1

2

=
1

2
(l − n)

1
2 (l + n+ 1)

1
2ψll+n −

1

2
(l + n)

1
2 (l − n+ 1)

1
2ψln−1 (5.12)
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Op dezelfde manier krijgen we uit (5.10) en (5.11):

dtl(B)ψln = −niψln, (5.13)

dtl(C)ψln =
1

2
i(l − n)

1
2 (l + n+ 1)

1
2ψll+n +

i

1
2(l + n)

1
2 (l − n+ 1)

1
2ψln−1. (5.14)

We zien dat dtl(B) diagonaal werkt op deze basis en dat dtl(±A − iC) als een ladder operator
werkt:

dtl(A− iC)ψln = (l − n)
1
2 (l + n+ 1)

1
2ψln+1, (5.15)

dtl(−A− iC)ψln = (l + n)
1
2 (l − n+ 1)

1
2ψln−1, (5.16)

Merk op dat ±A− iC niet in de Lie algebra su(2) ziet maar ze zitten wel in zijn complexificatie,
sl(2,C), de Lie algebra van complexe 2 × 2 matrices met spoor 0, zie [4, §3.6]. Deze is, als
vectorruimte, ook isomorf met su(2). Voor A ∈ sl(2,C) geldt det(expA) = etrA = 1. Hieruit
volgt expA ∈ SL(2,C), de matrix Lie groep van complexe 2 × 2 matrices met determinant 1.
Dus sl(2,C) is de Lie algebra van SL(2,C). (Dat SL(2,C) een matrix Lie groep is volgt op een
soortgelijke manier als SU(2)).
We hebben de representaties tl gedefinieerd voor GL(2,C), dus ook voor SL(2,C). Hieruit volgt
dat we stelling 5.2 kunnen gebruiken met π = tl, G = SL(2,C) en g = sl(2,C). Er geldt:

exp(t(A− iC)) =

(
1 0
t 1

)
, exp(t(−A− iC)) =

(
1 t
0 1

)
. (5.17)

Uit gevolg 5.3 gecombineerd met (5.15) en (5.16) volgt

XA−iCt
l
m,n = (l − n)

1
2 (l + n+ 1)

1

2
tlm,n+1, (5.18)

X−A−iCt
l
m,n = (l + n)

1
2 (l − n+ 1)

1

2
tlm,n−1. (5.19)

Zij n±m ≥ 0 en ad− bc = 1. Uit (4.19), (4.8) en lemma 3.17 volgt

tlm,n

(
a b
c d

)
=

(
(l + n)!(l − n)!

(l +m)!(l −m)!

) 1
2

bn−mdn+mP
(n−m,n+m)
l−n (2ad− 1). (5.20)

Uit Af = d
dtf(exp(tA))

∣∣∣
t=0

en (2.11) volgt XAf(t) = d
dtf(T exp(tA)))

∣∣∣
t=0

. Dit gecombineerd

met (5.17) geeft ons

XA−iCt
l
m,n

(
a b
c d

)
=

d

dt
tlm,n

(
a+ bt b
c+ dt d

) ∣∣∣∣∣
t=0

(5.21)

X−A−iCt
l
m,n

(
a b
c d

)
=

d

dt
tlm,n

(
a b+ at
c d+ ct

) ∣∣∣∣∣
t=0

. (5.22)

Gebruikmakend van (5.21) samen met (5.20) en (5.18) geeft

bn−mdn+m d

dt
P

(n−m,n+m)
l−n (2(a+bt)d− 1)

∣∣∣∣∣
t=0

= (l + n+ 1)bn−m+1dn+m+1P
(n−m+1,n+m+1)
l−n−1 (2ad− 1). (5.23)
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Dit kunnen we omschrijven tot

d

dx
P

(n−m,n+m)
l−n (x)

∣∣∣∣∣
x=2ad−1

=
1

2
(l + n+ 1)P

(n−m+1,n+m+1)
l−n−1 (2ad− 1).

Dus geldt

d

dx
P (α,β)
n (x) =

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x), (5.24)

waarbij α, β ∈ Z≥0.
Op dezelfde manier volgt uit (5.22), (5.17), (5.20) en (5.19)

d

dx

(
(1− x)α(1 + x)βP (α,β)

n (x)
)

= −2(n+ 1)(1− x)α−1(1 + x)β−1P
(α−1,β−1)
n+1 (x) (5.25)

We hebben dus met representatietheorie van su(2) een bewijs gegeven voor de formules in (3.12)
en (3.13).

5.3 De Casimir operator

In deze paragraaf willen we, via representatietheorie, de tweede orde differentiaal vergelijking
voor Jacobi polynomen afleiden. Daarbij maken we gebruik van de Casismir operator. Zij
A,B,C de basis van su(2) die we in de vorige paragraaf hebben gëıntroduceerd.We definiëren

Ω := A2 +B2 + C2 (5.26)

waarbij we opmerken dat A2, B2, C2 /∈ su(2). Uit matrixvermenigvuldiging volgt dat Ω com-
muteert met alle drie de basiselementen A,B,C. Hieruit volgt dat het met alle elementen van
su(2) commuteert. We noemen Ω het Casimir element.
Uit de commutativiteit volgt AΩ− ΩA = 0 voor alle A ∈ su(2). Hieruit volgt

dtl(AΩ− ΩA) = dtl(A)dtl(Ω)− dtli(Ω)dtl(A) = 0 (A ∈ su(2)).

Nemen we de exponent dan volgt uit (5.1)

tl(expA)dtl(Ω) = dtl(Ω)tl(expA) (A ∈ su(2)).

Omdat A ∈ su(2) willekeurig, expA ∈ SU(2) en SU(2) compact en samenhangend is (want het
is homeomorf met S3) volgt

tl(g)dtl(Ω) = dtl(Ω)tl(g), ∀g ∈ SU(2).

(zie [6, Chapter IV.2, Theorem 2.2]). Omdat tl een irreducibele representatie is van SU(2) op
een eindig dimensionale complexe vectorruimte, volgt uit lemma van Schur dat dtl(Ω) = ωI voor
zekere ω ∈ C.
We gaan dtl(Ω)ψln uitrekenen voor alle basis elementen ψln van Hl. We schrijven (5.26) om:

Ω = A2 + C2 + iB − iB +B2

= A2 + C2 + i(AC + CA)− iB +B2

= −(A− iC)(−A− iC) +B2 − iB,
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waarbij we gebruik maken van (5.5). Nu volgt uit (5.13),(5.15) en (5.16)

dtl(Ω)ψln = −dtl(A− iC)dtl(−A− iC)ψln + (dtl(B))2ψln − idtl(B)ψln

= −(l − n)
1
2 (l + n+ 1)

1
2 (dtl(−A− iC)ψln+1)− indtl(B)ψln − nψln

= −(l − n)(l + n+ 1)ψln − n2ψln − nψln
= −l(l + 1)ψln.

Dus geldt

dtl(Ω) = −l(l + 1)I. (5.27)

We definiëren de vectorveld van Ω op dezelfde manier als gevolg 5.3:

XΩt
l
i,j :=

l∑
k=−l

(dtl(Ω))k,jπi,k

(Merk op dat Ω /∈ su(2), maar het commuteert met alle elementen van su(2) en de bijbehorende
differentiaaloperator commuteert met de differentiaaloperatoren van de elementen van su(2)).
We krijgen dus

XΩt
l
m,n =

l∑
k=−l

(dtl(Ω))k,jt
l
i,k (5.28)

= −l(l + 1)tlm,n. (5.29)

Zij n±m ≥ 0 en ad−bc = 1. We schrijven tlm,n zoals in (5.20). Omdat dtl(B) diagonaal werkt
op de basisvectoren van Hl en door (5.25) na (5.23) te nemen kunnen we (5.28) omschrijven tot

(1− x)−n+m(1 + x)−n−m
d

dx

(
(1− x)n−m+1(1 + x)n+m+1 d

dx
P

(n−m,n+m)
l−n (x)

)
− n(n+ 1)P

(n−m,n+m)
l−n (x) = −l(l + 1)P

(n−m,n+m)
l−n (x).

Nemen we α = n−m,β = n+m en k = l− n dan kunnen we, met behulp van de productregel,
bovenstaande omschrijven tot

(1− x2)
d2

dx2
P

(α,β)
k (x) + (β − α− (α+ β + 2)x)

d

dx
P

(α,β)
k (x)− k(k + α+ β + 1)P

(α,β)
k (x) = 0

k, α, β ∈ Z≥0.

We hebben dus een tweede orde differentiaalvergelijking voor Jacobi polynomen P
(α,β)
k , (stelling

3.18), verkregen via representatietheorie van SU(2).
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