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Samenvatting

In deze scriptie beginnen we met het opbouwen van wat algemene Lie-theorie. Om dat te doen
leggen we eerst uit wat variéteiten zijn. Ook zullen we enkele eigenschappen van matrix Lie
groepen en Lie algebra’s bestuderen.

Daarna definiéren we Jacobi polynomen door middel van hypergeometrische reeksen. Ook zullen
we een aantal eigenschappen van Jacobi polynomen, op een analytische manier, afleiden.

In hoofdstuk 4 introduceren we representatietheorie. We zullen laten zien hoe Jacobi polynomen
terug zijn te vinden in de representaties van SU(2). Ook bekijken we wat het verband is tussen
SU(2) en Schurs orthogonaliteitsrelaties.

Vervolgens bekijken we hoe representatietheorie van SU(2) binnen de Lie-theorie past en zullen
daarmee enkele eigenschappen voor Jacobi polynomen afleiden.
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1 Inleiding

In deze bachelorscriptie bestuderen we Jacobi polynomen. Daarbij bekijken we hoe Jacobi poly-
nomen binnen de representatietheorie van de groep SU(2), de groep van 2 X 2 unitaire matrices
met determinant 1, passen. Met behulp van deze representatietheorie willen we eigenschappen
van Jacobi polynomen, die op een vrij direct manier te bewijzen zijn, ook op een conceptuele
wijze afleiden.

P7§Q7ﬁ)

Jacobi polynomen, , zijn polynomen van graad n die voor «, 5 > —1 als volgt zijn gedefi-

nieerd

PLB) (z) = (a+ 1), i (—n)e(n+a+B+1) (1 _ x)k

n! =0 (Oé + l)k 2

waarbij (a)p =1en (a)y =ala+1)---(a+k—1) voor k=1,2,....

Zij GL(V') de groep van inverteerbare lineaire transformaties van een eindig dimensionaal com-
plexe vectorruimte V. Een representatie van een groep G op een eindig dimensionaal complexe
vectorruimte V' is een groepshomomorfisme ¢ : G — GL(V). We nemen V gelijk aan de vector-
ruimte van homogene polynomen van graad 2] en G = SU(2). Dan definiéren we de representatie
t; van SU(2) op de volgende manier

(tl <CL Z> f> (21,22) = f(CLZl + CZQ,bZl + ng) (CCL Z) c SU(?), 21,29 € C

C

waarbij f(z1,22) een homogeen polynoom van graad 2/ is. We zullen laten zien dat we de ope-
rator t; <CCL d> als een matrix kunnen schrijven waarbij de elementen Jacobi polynomen zijn.

Hierdoor kunnen we eigenschappen van de Jacobi polynomen afleiden door middel van de repre-
sentatietheorie op SU(2). We laten bijvoorbeeld zien dat de matrixelementen van deze operator
een volledig orthogonaal stelsel vormen in L?(SU(2), du) waarbij u de Haar maat is.

Ook zullen we Lie-theorie en matrix Lie groepen bestuderen. We laten zien dat SU(2) een matrix
Lie groep is met bijbehorende Lie algebra su(2): de reéle lineaire ruimte van scheef Hermitisch
(d.w.z A* + A = 0) 2 x 2 matrices met spoor 0. Hiermee kunnen we bijvoorbeeld enkele nuttige
formules voor Jacobi polynomen afleiden.

In hoofdstuk 2 beginnen we met het opbouwen van wat algemene Lie-theorie en zullen daarna
enkele eigenschappen van matrix Lie groepen en Lie algebra’s bestuderen. In hoofdstuk 3 de-
finiéren we Jacobi polynomen door middel van hypergeometrische reeksen. Ook zullen we een
aantal eigenschappen van Jacobi polynomen afleiden. In hoofdstuk 4 introduceren we represen-
tatietheorie. We zullen laten zien hoe Jacobi polynomen terug zijn te vinden in de representaties
van SU(2). Ook bekijken we wat het verband is tussen SU(2) en Schurs orthogonaliteitsrelaties.
In hoofdstuk 5 bekijken we hoe representatietheorie van SU(2) binnen de Lie-theorie past en
zullen daarmee enkele eigenschappen voor Jacobi polynomen afleiden.

Voor deze scriptie is de meest gebruikte referentie Koornwinder [1].



2 Lie groepen en Lie algebra

We beginnen dit hoofdstuk met het introduceren van enkele topologische begrippen. Daarna
zullen we, met behulp van deze begrippen, uitleggen wat Lie groepen en Lie algebra’s zijn en
hiervan enkele eigenschappen geven. Als laatst besteden we aandacht aan een speciaal type Lie
groep, namelijk de matrix Lie groep.

2.1 Topologie

Definitie 2.1. FEen topologische groep is een verzameling G, die zowel een groep als een to-
pologische ruimte is, met de eigenschap dat de afbeeldingen (g,h) — gh : G x G — G en
g g ' G — G, continu zijn.

Een topologische ruimte heet tweedst-aftelbaar als hij voldoet aan de tweede aftelbaarheids-
axioma: zijn topologie heeft een aftelbare basis.

Definitie 2.2. Fen homeomorfisme is een afbeelding f : X — Y tussen twee topologische
ruimten (X,tx) en (Y,ty) met de volgende eigenschappen:

e f is continu
e f is een bijectie
o =1 is continu

Definitie 2.3. Zij (X,tx) een topologische ruimte. Fen kaart, (of coérdinaten afbeelding), is
een homeomorfisme, ¢, tussen een open omgeving U C X en E™, een Fuclidische ruimte van
dimensie n.(Vaak genoteerd als (U, ¢)).

Definitie 2.4. Zij (X,tx) een topologische ruimte. Een atlas is een verzameling van kaarten,
{(Uas o)}, zo dat X = JU,.

Definitie 2.5. Zij (X,tx) een topologische ruimte met een bijbehorende atlas, {(Uy, ¢a)}. We
noemen X een variéteit (van dimensie n) als voor elke kaart ¢o uit de atlas geldt dat het
bijbehorende codomein dimensie n heeft.(Dus het codomein van alle kaarten is E™).

Als X daarnaast ook nog Hausdorff is spreken we van een topologische variéteit.

Zij X een varieéteit en (Ur, ¢1), (U, ¢2), twee kaarten zodat Uy N Us # (). Dan noemen we
de afbeelding 7 : ¢1(U; N Us) — ¢2(Ur N Us) gedefinieerd door 7(y) = ¢2 0 7' (y), een transi-
tieafbeelding. Merk op: Omdat ¢1 en ¢o homeomorfismen zijn is de transitieafbeelding ook een
homeomorfisme.

Als een topologische variéteit tweedst-aftelbaar is en alle transitieafbeeldingen k-keer continu
differentieerbaar,(k > 1), zijn spreken we van een differenticerbare variéteit (of C*-variéteit).
Zijn de transitieafbeeldingen oneindig vaak continu differentieerbaar dan spreken we van een
C*°-variéteit.

Een ander type differentieerbare variéteit is een compler analytisch variéteit. Hierbij is het co-
domein van de kaarten een Euclidische ruimte over C en zijn de transitieafbeeldingen complex
analytisch.

Op een differentieerbare variéteit kunnen we lokaal integraal- en differentiaalrekening toepassen.
Dit vanwege het feit dat het lokaal homeomorf is met een lineaire ruimte en omdat de transi-
tieafbeeldingen tussen de verschillende kaarten continu differentieerbaar zijn. Hieruit volgt dat
berekingen die we binnen een kaart doen ook geldig blijven binnen andere kaarten.



Opmerking over notatie: zij M een n-dimensionale variéteit en (U, ¢) een kaart op M. Stel
dat we een afbeelding f : U — R (of C) hebben. Zij u = ¢~ *(1,...,2,). In het vervolg zullen
we f(x1,...,2,) noteren in plaats van f(u) = f(¢ 1 (z1,...,2,)).

Zij M een C°°-variéteit van dimensie n en p € M. Omdat M lokaal homeomorf is met
R™ bestaat er een open omgeving U van p die homeomorf is met R™. Dus op U zijn er lokale
codrdinaten (x1,...,zy). Noem xoy = (zo1,...,Zon), de lokale codrdinaten van p. Ten opzichte
van dit codrdinaten systeem definiéren we de raakruimte 7,M aan M in het punt p op de
hieronder beschreven manier.

Zij a € R™ een vector. Als eerste associéren we met deze vector een equivalentieklasse als volgt:
neem alle C*° afbeeldingen (—1,1) — R™ : ¢t — z(t) = (x1(t),...,x,(t)) zodanig dat ze voor
t = 0 door de lokale codrdinaat van p gaan (dus z(0) = zp) en zodat de afgeleiden in ¢t = 0
gelijk zijn aan a (dus 2'(0) = (2}(0),...,2,(0)) = (a1,...,a,) = a). Alle afbeeldingen die
hieraan voldoen zitten in dezelfde equivalentieklasse. (Het bovenstaande definieert inderdaad
een equivalentierelatie: als /(0) = /(0) dan 3/(0) = 2/(0), als 2/(0) = 3/(0) en ¥/(0) = 2/(0) dan
2'(0) = 2/(0) en inderdaad 2’(0) = 2/(0)). Deze equivalentieklassen zijn de raakvectoren van M
in het punt p. De raakruimte 7, M is verzameling van al deze vectoren.

Ook associéren we met de vector a een lineair functionaal A op de ruimte C*°(U), (met U de
open omgeving van p), gegeven door

Af ::Zlajaijf(xl,...,xn) (f € C=(U)). (2.1)

r=x0

(De lineariteit van Af volgt uit de lineariteit van de partiéle afgeleide en het feit dat het een
eindige som is).

Als we z(t) en A, als hierboven, met a hebben geassocieerd dan volgt

= df (x)(a)

T=x0

d
= = f(a(t)

- 0
Af = Za]%f(ﬂjl,,l'n)
j=1 J r=x0 t=0

met f € C*°(U). Dus

Af=SfG0)|  (feCcT®) (22)

t=0

Opmerking 2.6. Voor een complex analytisch variéteit worden raakvectoren en raakruim-
ten op dezelfde manier gedefinieerd met het verschil dat de raakruimte dan gelijk is aan een
lineaire ruimte over C en in en plaats van f € C®(U) nemen we f € {g : U — C :
g is complex analytisch}.

De disjuncte vereniging van raakruimten, genoteerd als TM = | | .5 ToM = U, cpi(,a)|a €
T, M}, noemen we de raakbundel aan M.

Een laatste begrip dat we nodig zullen hebben is het begrip vectorveld. Een vectorveld X op
M is een afbeelding M — T'M die aan elke p € M een raakvector X, € T,M toewijst. Met dit
vectorveld identificeren we een functionaal X, zodanig dat voor elke open verzameling U van

M met lokale codrdinaten (z1,...,x,) we het volgende krijgen
- )
Xof = ;Ci(:ﬁl, san) g f (@) (f € CTU) (2.3)
Hier is x = (z1,...,2,) de lokale codrdinaat van p en de ¢; zijn C* functies athankelijk van
Z1,...,Ty. Deze functionaal noemen we in het vervolg ook een vectorveld.



2.2 Lie groepen

Definitie 2.7. FEen Lie groep is een groep die ook een C°-variéteit is, z0 dat de afbeeldingen
(g,h) = gh:GxG—=Gengr gt :G— G, C® zjn.

Merk op: Uit de definitie van een Lie groep volgt dat elke Lie groep ook een topologische
groep is.

Definitie 2.8. Fen Lie algebra g is een vectorruimte over een lichaam V, (V =R of V.= C),
samen met een binaire operatie |-,-] : g X g — @, die aan de volgende drie azioma’s voldoet

e bilineariteit: Va,b € V. Vx,y,z € g : [ax + by, 2] = a[z,z] + by, 2] en [z,ax + by] =
alz, z] + bz, y]

e anti-commutativiteit: Y,y € g : [z,y] = —[y, 2]
e Jacobi-identiteit: Yx,y € g : [z, [y, z]] + [y, [z, z]] + [z, [z, y]] = O
[-,:] noemen we het Lie haakje

Zij X en Y twee vectorvelden op een C*°-variéteit M. We definiéren de commutator [X,Y]
van X en Y als volgt

(X Y]f=X(Y[)=Y(X[) (feC™(M)). (2.4)
We laten zien dat deze commutator aan de axioma’s van definitie 2.8 voldoet. Zij X,Y,Z
vectorvelden, a, b constanten, f € C*™ en z = (x1,...,2,). Er geldt
Xof = ale) - fa)
o i=1 N O
- 0
Yof = Zdi(x)a—f(x)
i=1

- 0
! ; (@) 557 @)
De definitie van de commutator geeft ons

[aX +bY,Z]f = (aX +bY)(Zf) — Z((a X + DY) f
Er geldt

Z((aX +bY)f) = Z()_(aci+bdi)(@)5—f ()

8902-

3 i) o (Z di<x>;’mf<x>> (25)
J 1 i



Ook geldt

(X +0Y)(Zf) = (aX+bv)(} ki(x)(;zjf(w))

=1 = 7=1 =
103 i) (Y i) o F@) b3 ki) (3 i) s (2)

i=1 =1 —1 e

J - a[]X,Z]er[Y,Z]

We zien dus dat de commutator inderdaad bilineair is.
De commutator is ook anti-commutatief, want

(X, Y]f = X(YV[)=Y(X[)=-(YV(X[f) - X(Y[)) = =[V, X]

We moeten nog alleen laten zien dat de commutator aan de Jacobi identiteit voldoet. Er
geldt

(X, Y], Z2]f = [X,Y(Zf) - Z([X,Y]f)
= (XY -YX)(Z2f) - Z2(X(Y[) =Y (X[))
= XY (2))-Y(X(Z)) - 2(X(Y [))+ Z(Y(X[)) (2.7)
Op dezelfde manier volgt
(Y, 2], X1f =Y(Z(X[)) - 2Y (X [)) = X(Y(Z[)) + X(Z(Y [)) (2.8)
(2, X],Y]f = Z(X(Y f)) = X(Z(Y ) =Y (Z(X[)) + Y (X (Z]))- (2.9)

Tellen we (2.7), (2.8) en(2.9) bij elkaar op, krijgen we 0 en dus voldoet de commutator aan de
Jacobi identiteit.

We zien dus dat de commutator, gedefinieerd op vectorvelden op M, voldoet aan alle drie de
axioma’s van definitie 2.8. Dus de reéle lineaire ruimte van vectorvelden is een reéle Lie algebra.

We gaan nu bekijken wat de Lie algebra is die hoort bij een Lie groep. Zij G een Lie groep
(G is dus ook een C'*°-variéteit). Zij e € G, het eenheidselement van G, en V' een open omgeving
van e die homeomorf is met R"(voor zekere n) met lokale codrdinaten (yi,...,y,) zodanig dat
0 =1(0,...,0) de coordinaat is van e. We bekijken de raakruimte 7.G. Uit de vorige paragraaf



weten we dat we de raakruimte kunnen bekijken als de ruimte van lineaire functionalen A
geassocieerd met vector a € R™ gedefinieerd door

Af = Z(;Zf(yy) (f € C=(V)) (2.10)

y=0

Vervolgens definiéren een vectorveld X 4 op G als volgt

(Xaf)(g) := A(h = f(gh)) (f € CF(G), g €G). (2.11)

We moeten laten zien dat dit inderdaad een vector veld definieert. Zij g € G en f € C*°(G). We
beperken de functie h — f(gh) tot V. Dan geldt voor h € V(dus ook h € G), dat de afbeelding
(h — gh) € C* want G is een Lie groep. Omdat f € C°°(G) volgt dus dat h — f(gh) ook een
C* functie is (beperkt tot V). Laat U een open omgeving van g zijn met lokale cotrdinaten
x=(r1...,2,) en h € V met lokale coérdinaten y = (y1,...,y,). Dan geldt

(Xaf)(g) = Alh = f(gh) =3 ajfyj@ s f(ay)) (2.12)
j=1

y=0

Beschouwen we de a; als constante functies en dus als C* functies dan zien we dat (2.12)
dezelfde vorm heeft als (2.3). Hieruit volgt dat (Xaf)(g) inderdaad een vectorveld is.
Wat we ook zien is dat dit vectorveld links invariant is op de volgende manier

Xalg— fCg)(g) = A(h= f(g19h))
= (Xaf)(g19) (91,9 € G, feC™Q)) (2.13)

We kunnen dus bij elke vector, en de daarmee geassocieerde lineaire functionaal A, een links
invariante vectorveld X 4 definiéren. Ook kunnen we A terugvinden met X 4 door middel van

(Xaf)(e) = A(h = f(eh)) = A(h — f(h)) = Af. (2.14)

Hieruit volgt dat er een lineaire bijectie bestaat tussen de raakruimte op G en de ruimte van
links invariante vectorvelden op G. (De lineariteit van de bijectie volgt uit de lineariteit van de
functionaal). Door middel van deze bijectie wordt de Lie algebra structuur van de ruimte van
links invariante vectorvelden overgedragen aan T.G. Dus T.G wordt een Lie algebra met een
Lie haakje [A, B], die gedefinieerd is door

Xia,) = [Xa,X5] (A, BeT.G). (2.15)

Merk op dat we het Lie haakje [A, B] niet altijd als de commutator AB— BA kunnen beschouwen
omdat het product AB niet gedefinieerd hoeft te zijn voor A, B € T.G.

We noemen de raakruimte T.G, beschouwd als Lie algebra, de Lie algebra van de Lie groep en
noteren het met g of Lie(G).

Opmerking 2.9. Om de zelfde redenen als in opmerking 2.6 kunnen we het bovenstaande proces
ook doen voor complex analytische variéteiten



2.3 Matrix Lie groep

Bekijk G = GL(n,C), de groep van alle inverteerbare complexe n x n matrices. Het is een
deelverzameling van M, (C). M,(C) is de ruimte van complexe n X n matrices en is dus een
n?-dimensionale complexe lineaire ruimte. Het complement van G, M, (C)\GL(n,C) = {M €
M, (C) : det(M) = 0}, is de ruimte van alle niet-inverteerbare complexe n x n matrices. De
singleton {0} is een gesloten verzameling en de determinant is een continue afbeelding. Hieruit
volgt dat het volledig origineel van {0}, het complement van G, een gesloten verzameling is.
Daaruit volgt dat G open is.

Dus G is een open verzameling in een n?-dimensionale complexe lineaire ruimte en we kunnen
op de hele groep hetzelfde systeem van lokale cotrdinaten nemen. We nemen de matrixele-
menten als complexe cotrdinaten. Daarmee vormt G een complexe analytische variéteit en
de groepsoperaties zijn ook complex analytisch.(Vermenigvuldiging in G is matrixvermenigvul-
diging en dus vermenigvuldiging en optelling van matrixelementen: met andere woorden een
polynoom. Inverse nemen is dan weer een rationale afbeelding. Beide zijn complex analytisch).
Dus G = GL(n,C) vormt een Lie groep die we de algemene lineaire groep noemen. (Engels:
General Linear group).

Definitie 2.10. Zij G een Lie groep met deelgroep H. We noemen H een regulier ingebedde Lie
deelgroep van G als: Yh € H bestaat er een open omgeving U van h in G met lokale codrdinaten
(x1,.. ) (T1,...,2n € (—a,a)) zodanig dat HNU bestaat uit alle elementen van U met lokale
coordinaten (x1,...,Tm,0,...,0) (z1,...,Zm € (—a.a)).

Gevolg 2.11. H is een Lie groep met de relatieve topologie van G (Dat wil zeggen: als U open
is in G dan is H N U open in H) en met een C-variéteit structuur gegeven door de lokale
coordinaten (x1,...,Ty) op de verzameling HNU.

Bewijs. Zij H een regulier ingebedde Lie deelgroep van G. Omdat H een deelgroep is van G,
volgt voor hi,he € H dat hihy € H en h1_1 € H. Dus de groepsoperaties beelden af op H.
Omdat de groepsoperaties van H ook groepsoperaties van G zijn en G een Lie groep is volgt
dat ze C* zijn. Verder geldt dat voor elke h € H er een open omgeving U van h in G bestaat
zodat H N U homeomorf is met R™ (voor zekere m € N). Dus voor elke h € H bestaat een open
omgeving H N U die homeomorf is met R™. De C* eigenschap van de transitieafbeeldingen
wordt weer overgenomen van GG. Hieruit volgt dat H ook een C'°°-variéteit is. O

Definitie 2.12. Een regulier ingebedde lineaire Lie groep of matriz Lie groep is een requlier
ingebedde Lie deelgroep van GL(n,C) voor een zekere n € Zsq

Zij G C GL(n,C) een matrix Lie groep. De raakruimte 77G van G aan het eenheidselement
I (de identiteitsmatrix) kunnen we op verschillende manieren verkrijgen. Een daarvan is als
de verzameling van alle matrices 7"(0) zodanig dat de afbeelding ¢ — T'(t) een C*° kromme is
in GL(n,C) die volledig in G ligt en zo dat T(0) = I. Deze verzameling vormt dan een reéle
lineaire deelverzameling van M, (C). De Lie algebra structuur van deze raakruimte 177G, die per
definitie wordt geiduceerd door de Lie algebra structuur van de links invariante vectorvelden
van G, is dan ook te verkrijgen als een commutator product:

Stelling 2.13. Zij G C GL(n,C) een matriz Lie groep met Lie algebra g = T1G C M,(C). Dan
1s het Lie haakje op g gelijk aan

[A,B]= AB—BA (A,Be¢yg).

Hierbij zijn AB en BA matriz vermenigvuldigingen.



Voordat we deze stelling bewijzen zullen we het eerst hebben over de exponenti€le afbeelding.
Met de exponentiéle afbeelding kunnen we de Lie algebra g van G C GL(n,C) verbinden met
G. Voor n x n matrices is deze als volgt gedefinieerd

exp(4) =3 %Ak (A € M,(C)). (2.16)
k=0

(Deze reeks convergeert altijd en is dus welgedefinieerd).
Uit de lineaire algebra zijn de volgende eigenschappen van deze exponentiéle functie bekend

exp(A + B) = exp(A) exp(B) als A en B commuteren.

(
exp(—A) = (exp(4))~".
exp(TATY) = Texp(A) T~ (A€ M,(C), T € GL(n,C)).

)
)
)
d) det(exp(A)) = e en dus VA € M, (C) : exp(A) € GL(n,C).
) als T(t) := exp(tA) dan T"(t) = AT(t) = T(t)A. In het bijzonder geldt dan T7(0) = A.
)

Er bestaan open omgevingen U van 0 € M, (C) en V van I € GL(n,C) zodanig dat
exp : U — V een bijectie en een C*° differentieerbare homeomorfisme is. (Beschouwen we
T'(0) (zoals in e) als een afbeelding tussen matrix ruimten dan geldt dat 7"(0)(A) = A =
T'(0) = id. Dit gecombineerd met de inverse functie stelling geeft ons dit resultaat).

Propositie 2.14. Zij G C GL(n,C) een matriz Lie groep met Lie algebra g C My, (C). Dan
geldt
exp(g) C G. (2.17)

Bewijs. We hebben een raakvector aan de eenheid gedefinieerd als een equivalentieklasse van
krommen ¢t +— T(t) die voor ¢ = 0 door de eenheid gaan en waarvan de afgeleiden van deze
krommen in ¢ = 0 allemaal gelijk zijn aan elkaar. Er geldt g is gelijk aan T7G, de raakruimte
aan de eenheid in G. Zij nu A € T7G een raakvector (in dit geval is het een matrix). Dan
volgt uit f) dat T'(t) = exp(tA) in de equivalentieklasse A zit. Voor een raakvector in T7G
geldt dat de onderliggende krommen volledig in G zitten. Omdat exp(tA) een kromme is in de
equivalentieklasse A en dus een onderliggende kromme is van A volgt dus exp(A) € G. Omdat
A € g willekeurig is, volgt exp(g) C G. O

We zijn nu in staat om stelling 2.13 te bewijzen:

Bewigs stelling 2.13. Ter herinnering: Als f € C*(G), g € G, = de lokale codrdinaat van g en
¢ een covrdinaat afbeelding dan noteren we f(x) in plaats van f(¢~1(z)),
Zij G C GL(n,C) een matrix Lie groep met Lie algebra g = TG C M,,(C). Zij ¢;; de codrdinaat
functie op M, (C):
a1 a12
gy | @21 @22 | =ay

Merk op: ¢;; € C*°(G) en voor A, B € G geldt

¢’Lj AB Z szk ¢kg ) (2.18)



Zij A € g = T1G. TG is een raakruimte aan G in I. Zoals in (2.10), associéren we met A een
lineaire functionaal, a(A) op C*°(G) door:

a(A)f = & ()]

waarbij z(t) een kromme is op G door e = x(0) met 2/(0) = A. Omdat z(¢) en exp(tA) in
dezelfde equivalenticklasse zitten volgt

oAy = o)

d
= %@‘j(exp(tm) ‘t:o

d 2 Ak

= —ai; ¢
dt¢J </<;Z:0 k! > ‘t:O
d = ¢ij(AF) k’

= — ) 2y
dtkzzo k! t=0

= ¢ij(A) (2.19)

Hieruit volgt dat we een bijectie hebben tussen de lineaire functionalen en de raakvectoren.

Zij nu V(G) de vectorruimte van links invariante vectorvelden op G. Daarop hebben we het Lie
haakje gedefinieerd als [X,Y]f = X(Y f) — Y (X f). Verder weten we dat er een bijectie bestaat
tussen V(G) en T;G. Het Lie haakje op T1G is gedefinieerd als X4 p) := [Xa, Xp]. Er geldt nu

(Xadij)(9) = a(A)(h— dij(gh))

19 y(4) (h =) <Z>ik(g)¢kj(h)>

k=1

= Z ¢7,k ¢kj

2.19
( = ) Z ¢7,k d)k]

(2.18)

t=0

¢ij(gA) g,h € G, AcTG.
Gebruikmakend van het bovenstaande krijgen we

(Xa(XBdij))(9) = (Xa(h = ¢i5(hB))(g)
= a(A)(h — ¢ij(9hB))

(2.18) (h — qulk )i (hB) )

e (h = Z bir(9 Z Gri(h) ¢ (B )
= Z Dik(9)(A)pridij(B)

= Z@k )bri1(A) b1 (B)
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Op dezelfde manier volgt (Xg(Xa¢ij)(g) = ¢ij(gBA). Er geldt dus

([Xa,XBl9ij)(9) = ¢ij(9AB) — ¢ij(9BA)
¢ij(9(AB — BA))
= (Xap-padij)(9) = (X[a,8%i5)(9)

waarbij we gebruik maken van de lineariteit van de cotrdinaat afbeelding. O

Nemen we nu open omgevingen U’ en V' zoals in f) dan geldt exp(U’) = V' en exp}(V') = U’
(inverse van exp). Noem

U={uclU :explu) cGNV'} en V={veV :expt(v) egnU’} (2.20)

Dan volgt
exp(gNU) =GNV (2.21)

Ook hebben we een stelling die zegt dat het omgekeerde hiervan waar is. Namelijk

Stelling 2.15. Zij G een deelgroep van GL(n,C), g een reéle lineaire deelruimte van M, (C), U
en 'V open omgevingen zoals in f) en stel dat (2.21) geldt. Dan is G een matriz Lie groep met
Lie algebra g.

Bewijs. G is een deelgroep van GL(n,C). GL(n,C) is een Lie groep. We zien dat G aan definitie
2.10 voldoet door m = n te nemen en de matrixelementen als systeem van lokale co6rdinaten te
gerbuiken. Oftewel G is een regulier ingebedde Lie deelgroep van GL(n,C). Dus G voldoet ook
aan definitie 2.12 en is dus een matrix Lie groep.

Om te laten zien dat g de bijbehorende Lie algebra is moeten we laten zien dat g = T7G.

Zij A € g. Dan geldt voor zekere 0 # ¢ € Ren t € (—c, c) dat At een kromme is in U. Uit (2.21)
volgt dan dat exp(At) € GNV. Dus exp(At) is een kromme in G die voor ¢ = 0 door I gaat en
omdat % exp(At)‘tzo = A volgt A € T;G.

Zij B € T1G. B is de equivalentieklasse van krommen ¢ +— T'(t) die voor t = 0 door de eenheid
gaan en waarvan de afgeleiden gelijk zijn aan B. t — exp(Bt) zit ook in deze equivalentieklasse.
Door t klein genoeg te kiezen volgt exp(Bt) € GNV = exp(gNU). Hieruit volgt B € g O
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3 Jacobi polynomen

Voor meer informatie over speciale functies zie Andrews, Askey & Roy [2].

In dit hoofdstuk definiéren we eerst wat een hypergeometrische reeks is en geven we een
aantal eigenschappen ervan. Daarna definiéren we Jacobi polynomen aan de hand van een
hypergeomerische reeks. Ook zullen we een aantal eigenschappen van Jacobi polynomen geven
en op een vrij directe manier bewijzen.

3.1 Hypergeometrische reeksen

We introduceren de volgende notatie

(a)o=1, (a)g=ala+1)---(a+k—1), keZ> (3.1)
Bovenstaande notatie noemen we een Pochhammer symbool.
Merk op:
(n+k)! n! &
_ 1 = (=1)¥(= 3.2
" (n+ 1), =R (=1)%(=n)k (3.2)

Definitie 3.1. Zij Y .~ cx een reeks. We noemen deze reeks een hypergeometrische reeks als
ck+1/ck een rationale functie is van k, oftewel

o1 (k4+a)(k+ag) - (k+ap)x
. (k+b)(k+0bg)-(k+bg)(k+1)

a;j,bj,x € C en p,ge N (3.3)

Als b; #0,—1,—2... voor i = 1,...,q dan volgt uit (3.3) en gebruikmakend van de Poch-
hammer symbolen

B (k+a1)(k+a)---(k+ap)z

BT U by (ki + b2) - (k + by)k
_ o kra)(ktag) - (ktapr (k—1+a)(k—1+az) - (k—1+a)z
T T kb)) (k+bg) - (k4 bg)k (k—1+b1)(k—1+by)---(k—1+4bg)(k—1)

. (a1)k(a2)k - - - (ap)prk
O 00)k(b2)k - - (by)ik!

Uit het bovenstaande volgt dat we de hypergeomterische reeks kunnen schrijven als

- (ap) z*
ch =< Z k (b ):kl

k

Deze reeks noteren we als

ai, B > k < (ap)rx
o i) = Z (b 34

.., 0

waarbij b; #0,—1,—2... voor i =1,...,q.
Stelling 3.2. Voor de hypergeometrische reeks in (3.4) geldt:

e de reeks convergeert absoluut voor alle x als p < g
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e de reeks convergeert voor |x| <1 alsp=q+1
e de reeks divergeert voor x #0 alsp > q+ 1

Bewijs. Schrijf (3.4) als Y32, ¢ waarbij ¢g = 1. Uit (3.3) volgt dan

c k+a)(k+a2) - (k+apx
dm || = A, (ki;)(}gi i s G g bj)(lg)+ )
0 p=<gq
= Q] p=q+1
o p>q+1
Uit het quotiéntenkenmerk volgt dan de stelling. O

Voordat we de volgende stelling over hypergeometrische reeksen kunnen bewijzen hebben we
wat kennis nodig over de gamma- en de beta-functie

Definitie 3.3. De gamma-functie I' is gedefinieerd door
o0
[(z) = / e 't""1dt, Re(z) > 0.
0

Uit de definitie en partiéle integratie volgt

o0

oo
M(z+1) = / e rdt = —e 1"
0

o0 [ee]
+zx / et = x / e Lqt.
0 0

Hieruit volgt dat de gamma-functie aan het volgende voldoet

0

Iz +1) =2I'(z), Re(xz)>0. (3.5)
Aangezien (1) = [;° e~ 'dt = 1 volgt dat
I'n+1)=n! (3.6)
Gevolg 3.4. Zij Re(z) > 0, dan geldt
[(x+ k) = (2)p(2). (3.7)

Definitie 3.5. De beta-functie B is gedefinieerd door
1
B(z,y) = / t* 11 —t)»"dt, Re(z),Re(y) > 0.
0

Stelling 3.6. Voor Re(x),Re(y) > 0 geldt

I'()T'(y)

Bl = I(z+y)
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Bewijs. Voor Re(x),Re(y) > 0 definiéren we f(z,y) = I'(x + y)B(x,y). Dan geldt

o) 1
flx,y) = / e_ttx"’y_ldt/ 11— s)¥ s
0 0

00 1
= / —ttf—lty—ltdt/ s —s)¥ " lds
0

= / / Est)* L (t(1 — 5))Y Ltdsdt

Substitueren we u = st en v = t(1 — s) (dus t = u + v), dan volgt

du  Ou
Os at_t S —
w | |-t 1—s|
ds Ot

Hieruit volgt dat de Jacobiaan gelijk is aan ¢t~!. Dan volgt

/ / —(u—l—v ut= l,Uy ldudv
= / e “utT 1du/ e Yv¥ldu
0 0

= D(@)(y).

Dus er geldt B(z,y) = FF(E’;)E;?J)) -

We kunnen nu de volgende stelling over hypergeometrische reeksen bewijzen.

Stelling 3.7 (Euler). Zij Re(c) > Re(b) > 0 en |z| < 1, dan geldt

avb,x _ F(C) ! b—1/1 _ pyc—b—1 —xt) e
2F1(67 >_F(b)r(6_b)/0t (1 — 1)1 (1 — o)~ dt

Bewijs. Noem I = W fo t= (1 — )b~ 1(1 — at)~dt. Voor |zt| < 1 volgt uit de gegene-
raliseerde binomiaal steﬁlng dat

(1-at)™@ = i(_]{a)(—xt)k

k=0
_ OO(_l)k a+k—1 (_1)k gk
S (")
— (a+k—1)!
= kzzo Moot
= (a=1))a)
B kZ:O kl(a —1)! "
_ - @Iktk
2

Omdat deze reeks absoluut convergent is kunnen we de stelling van Fubini toepassen. We krijgen

dan
I'(c Z a 1 c I
| (b)I ((C)— b) <(/€)'k ' /0 tk ’ 1(1 t) " t) '
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We zien dat fol th+0=1(1 —)e=b=1dt = B(k +b,c—b). Gebruikmakend van gevolg 3.4 en stelling
3.6 krijgen we
_Tk+bIL(c—0b) (b)x T(d)(c—b)

Bk +b,c—b) — _
A L R C G
Hieruit volgt dan
_ = (a)k‘(b)k k _ aab_
I_Z kl(c)k v =20 e

k=0
O

Met bovenstaande stelling van Euler kunnen we de volgende twee evaluatie formules en
transformatie bewijzen

Gevolg 3.8 (Gauss). Zij Re(c —a —b) > 0. Dan geldt

a,b \  T(c—a—bI(c)
2F1< c ’1> T(c—a)l(c—0b)

Bewijs. Neem in stelling 3.7 limiet 2 — 1. Gebruikmakend van de stelling van Abel! en dat we
limiet en integraal kunnen verwisselen vanwege absolute convergentie van de integraal volgt dan

aab_ _ F(C) ! b—1/1 _ p\c—a—b—-1
F< : ’1> = Ty J, o

_ I'(c)
= F(b)F(c—b)B(b’c_a_b)
I'(c—a—-0)I(c)

I'(c—a)l'(c—10)

waarbij Re(c —a — b) > 0 en Re(c) > Re(b) > 0. De eis dat Re(c) > Re(b) > 0 kan worden
weggelaten door gebruik te maken van een analytische voortzetting. O

Gevolg 3.9 (Chu-Vandermonde). Zij n € N. Dan geldt
2FI(—n,b;l) _ (c=0b)p
c

Omdat (—n)r = 0 voor k > n en er —n in de bovenparameter staat volgt dat de reeks
afbreekt.

Bewijs. Nemen we a = —n in gevolg 3.8 en gebruikmakend van gevolg 3.4 krijgen we

—n,b ~ TI'(c=b+n)I'(c)
2F1( c ’1> ~ T(c+n)(c—b
(c—=b)xI'(c—0b)(c)
(c)nI'(e)T'(c —b)

O

'Zij a = {ax : k > 0} een rij reéle of complexe getallen en G(z) = 352 arz® een reeks. Stel dat 5> ax
convergeert. Dan geldt lim.41 G(z) = Y72 ax
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Gevolg 3.10 (Pfaff).

a,b u a,c—b =x
2F1< ;CU) =(1-2) 2F1< ; >
c c r—1

waarbij x zodanig is gekozen dat beide reeksen absoluut convergeren.

Bewijs. In stelling 3.7 substitueren we t = 1 — s. Dan volgt

b r !
o Fy <a, ;m) = 7(6) / (1-— s)bilsc*bfl(l —x+xs) s
C b) 0

rol(c —
—z)7T(c) [* xs
(1Fbr()c _Il;() ) /0 (1 _ S)bflscfbfl(l _ E)iadb‘
—2)"T(c) (! xs
= (1-2)“FH (a,cc— b; . i 1>

waarbij Re(c) > Re(b) > 0. Deze eis kan worden weggelaten door gebruik te maken van een
analytische voortzetting. O

Stelling 3.11. De functie o F} (ac’b; x) s een oplossing van de volgende differentiaalvergelijking

2(1—2)y(2) + e — (a + b+ Daly/(z) — aby(z) = 0 (3.8)
Deze differentiaalvergelijking wordt de hypergeometrische differentiaalvergelijking genoemd.

Bewijs. Noem P(z) =z(1 —z), Q(z) =c—(a+b+ 1)z en R(z) = —ab. Dan geldt P(0) =0 en
dus is x = 0 een singulier punt. Verder geldt
Q(:C) k() R(a:) . lo l

204 kg o+ kox SURNTRL S A ki, l; € C
Plz) +1+2 P(z) x2+ tlatlr..., €

Hieruit volgt dat het punt x = 0 een regulier singulier punt is van (3.8) en bestaat er dus een
oplossing van de vorm y(z) = > 7 ; c,a™*". Invullen in (3.8) geeft

oo

yc(l—w)ch(n—l—r)(n—i-r—l)x””*Q lc—(a+b+1)z ch nA4r)z" Tl abe"*T =
n+0

Dit is om te schrijven tot

e} o

2(1-2) Y enlntr)(nbr—140)a™ 3 eullndr)(nbr—1) +{at b 1) (ntr) abla™ " = 0
n=0 n=0

Voor alle machten van o moeten de coéfficiénten gelijk zijn aan nul. Voor 2"~! (n = 0) krijgen

we
r(r—1—c¢)=0

Hieruit volgt dat er alleen oplossingen zijn voor r = 1 — ¢ of r = 0. Nemen we r = 0, dan zien
we dat de coéfficiénten voldoen aan de volgende recurrente betrekking

cnri(n+1)(n+c¢) = cyn(n—1)+ (a+b+1)n+ ab
= cn(n2 + an + bn + ab)
= cp(n+a)(n+0)
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Hieruit volgt

=0 nl(c)y
Dus -
o) =03 e = om (s e
n=0 n
O
3.2 Jacobi polynomen
Definitie 3.12. De Jacobi polynomen, Péa’ﬁ) zign gedefinieerd als
polty ; RN g
o (a+1)n —n,n+a+B+1 1-z
P@A) () = R e i (3.9)

Omdat (—n)r = 0 voor k > n en er —n in de bovenparameter van de hypergeometrische

reeks staat volgt dat de reeks afbreekt. Dus PT(La’ﬂ ) is een polynoom van graad n. Nemen we in
de hypergeometrische reeks k = n dan krijgen we

(a4 Da(—ma(n+a+B+1),(1=2)"  (~1)'nl(n+a+B+1), (~1)"a"

n! (a4 1),n! 2n nin! 2n
+ polynoom van graad (n — 1)

Hieruit volgt dat de kopcoéfficiént van P,(f“ﬂ ) gelijk is aan

(n+a+B+1),

1
2nn! (3.10)
Stelling 3.13. Voor o, 8 > —1, geldt
1
/ P (2) PR () (1 — 2)*(1 + 2)Pdx = 6pnhl?
~1
waarbij
pasd _ 2008 (p ra+ B+ 1) I(n+a+1)I(B+n+1)
n nI'2n+a+ B+ 2)
Bewijs. Zij n € N5p. Noem
1
Lpon = / P (2)(1 4+ 2)™(1 — 2)°(1 + 2)%dz, m € {0,...,n}
-1
Gebruikmakend van (3.9) volgt
1 -n,nt+a+pf+1 1—-x
— m _ o B
! + 1)n n+a+pB+1) 3
= 1 ™1 —x)*(1 d
/1 ,§< s iy ) (400
(a+1), (n+a+p+1) i
= 1 —2)2R(1 4 2)Ptmq
n! ( 2kk:|a+1) /_1( 7)1+ ) v
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We bekijken de integraal in de som apart: substitutie van x = 1 — 2¢ geeft

1 0
/ (1= 221 4 2)P* ™y — / _o(ar)etk(2 — 2p)itm gy
-1 1

1
0
De intergaal in (3.11) herkennen we als de Beta-functie. We krijgen dus

1 1
/ (1—2)tk(1 4 2)P+mdy = getBrkim / gtk (1 _ B gy
—1 0

2a+5+k’+mB(a+k+ L,B+m+1)
stelling 3.6 2a+5+k+mf‘(a +Ek+1DI(B+m+1)
T(m+k+a+p+2
gevolg 34 gatgrktmil (@ Dk Fla+1)I(B+m+1)
(a+B+m+2), I'(m+a+pf+2)

Uit het bovenstaande volgt

n

a+1n Je(n + o+ B+ 1), 20HA+k+mtl (o 4 1), T(a+ DI(B+m + 1)
g = Z

— %Ma+) (a+B84+m+2) T(m+a+p+2)

. 2Pa+ Dalla+ DN@E+m+ ) g (Cnntat f+ Ly
nll'(m+a+ 5+ 2) Ellm+a+ B+ 2)

k=0
gevolg 3.4 %ﬂ“mﬂmn+a+mrw+mr+nﬁi@mnm+a+5+1n
nll'(m +a+ 8 +2) Kl (m+a+ B +2)

B ZHMmHNn+a+UHB+m+J)F(—mn+a+ﬂ+ll>
B n!l(m + o+ B+ 2) mta+p+2

De hypergeometrische reeks kunnen we met behulp van Gevolg 3.9 omschrijven:

m+a+f+2 C(mtat B+ |\ Gt M

—-n,n+a+pf+1 (m—n+1), 0 m <n,
2 F1 i1 =1 =

Uit het bovenstaande en het feit dat (n+a++2),I'(n+a+8+2) =T'(2n+ o+ S+ 2) volgt
dan
0 m < n,

Impn = 2098 P (n 4 a+ DB+ 1+ 1)
'l+a+p+2)
Dit bewijst de orthogonaliteit van de Jacobi polynomen. Vermenigvuldigen we I, , met de
kopcoéfficiént (3.10) dan krijgen we de norm h,,. O

m =n.

Definitie 3.14. Fen verzameling orthogonale functies {¢,} noemen we een volledig orthogonaal
stelsel in L? als voor elke functie in L? constanten (¢;)$2, bestaan zo dat

JE&W — (101 + - - +Cn¢n)”2 =

waarbij ||f|| de L*(w(z)du) norm is met gewichtsfunctie w(z).
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Opmerking 3.15. De Jacobi polynomen vormen een volledig orthogonaal stelsel in L2((—1,1), (1—
z)*(1 + x)%dx). De volledigheid volgt wit het feit dat we L2 hebben ten opzichte van een ein-
dige maat(Lebesgue) op een begrensde interval. Daaruit volgt dat de continue functies op [—1,1]
dicht zijn in L2((—1,1), (1 — 2)*(1 + 2)%dz) en wit Stone-Weierstrass volgt dat de verzameling
polynomen, in sup-norm, dicht liggen in C([—1,1]) en dus ook in L2-norm.

Opmerking 3.16. Orthogonale polynomen zijn, op een multiplicatieve constante na, uniek: zij
(pn) en (gqn) twee stelsel van orthogonale polynomen van graad n. Door te vermenigvuldigen met
een geschikte factor kunnen we orthogonale polynomen ook orthonormaal maken. We kunnen
dus aannemen dat (py) en (¢,) orthonormale stelsels zijn. Dan geldt (pn, Pm) = (Gn, Gm) = Onm.
Verder geldt

n
Pn =Y Rk = & = (Pn, dn)

k=0

=0 als k<n
%0 als k=n

= Pn = CZQW
Lemma 3.17. Zijn € N en o, 8 > —1. Dan geldt
P (=) = (=1)" PP ()

Bewijs. Noem w®?(z) = (1 — 2)(1 + z)”. Uit stellling 3.13 weten we dat er geldt
/_ 11 P () PP (2)w™P (2)dw = Spmh”
Vullen we hierin —z in plaats van x dan krijgen we
/ 11 P (—z) PP (—2)wP (—z)dx = 6y hSP
Er geldt w*?(—x) = (1 + 2)*(1 — z)? = w?(x). Hieruit volgt

1
[ B e st @) = s
-1

We zien dat PT(LO"B)(—;U) orthogonaal is ten opzichte van w®®(z). We weten, uit stelling 3.13 dat
pled (x) orthogonaal is ten opzichte van w™®(x). Hieruit volgt

PP (—z) = kPP ().

voor zekere constante k. In (3.10) zien we dat de kopcoéfficiént symmetrisch is in o en 8 en
omdat (—x)" = (—1)"z" volgt dan

PP (—z) = (=1)"P (x).
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We gaan nu pled (x)

d (@+1)n d = (—n)(n+a+B+1); (1—z\F
4 pp)py = @t n @
d:L'P" () n!  dx ;;:% (o + 1)k! 2

— 1(O£+1)n = (—n)k(n+a+ﬁ+1)k 1—z k-1
Y Z (a+ 1), (k—1)! ( 9 )

differentiéren:

k=1
n—1

el a+1n2‘: —n+1) (n+a+5+1)(n+a+5+1>l(1—x>l
B (a+1)(a+2)0! 2

l

=0
(a+2 ”Zl —n+1)in+a+B+1) [1-a\
( 'l a+2)ll' 2

1 o
= Sntat B+ DR (@), (3.12)

1
Jntatf+l)

Door %PTS&’B) (z) te vermenigvuldigen met (1 — 2)®(1 + 2)? en daarna nogmaals naar z te
differentiéren krijgen we:

d

- ((1 — 2)*(1 4 2)° PleP) (:c)) =2+ 1)(1 - 2)° 1+ 2P P V@), (3.13)

Stelling 3.18. De Jacobi polynomen R(ZO"B) (x) zijn oplossingen van de volgende differentiaal-
vergelijking:

(1—a22)y"(z)+ (B—a—(a+B+2)x)y (z) +nin+a+ B+ Dy(z) = 0.
Bewijs. De Jacobi polynomen zijn gedefinieerd als pled) — %gFl <_”’”§j‘fﬁ+1; 1_Tx> Uit

stelling 3.11 krijgen we dat o F} (“{’f’;t) een oplossing is voor

t(1—t)y"(t) + [c — (a+ b+ 1)t]y'(t) — aby(t) =0

In deze differentiaalvergelijking vullen we het volgende in:

c = a+l,
a = —-n
b = a+p+1+n
¢ - 11—z
2
1
fla) = y(=—=—) =y
fFla) = (5T =)
@) = ) = )

We krijgen dan

17TIHT”:4]”’(3:)—(oz—kl—(oz—kﬁ—FQ)lT)Qf( J+nn+a+p+1)f(x)=0
_—
(1—22)"(2)+ (B—a—(a+B+2)2)y(x) +nn+a+ B+ 1yx)=0 (3.14)

Hieruit volgt dat PP een oplossing is van (3.14) O
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Als laatste in deze paragraaf noemen we een aantal speciale gevallen van Jacobi polynomen.
Deze speciale gevallen zullen we met een vaak gebruikte normalisatie geven.
Voor o = f = —% krijgen we Chebyshev polynomen(eerste soort):
n!

(3)n

To(z) = PYE_%7_%)(1’) = cos(nf), = = cos(h)

Bewijs. Er geldt

/7r cos(nf) cos(m@)dd = 2 /07r cos(nb) cos(mb)do

= /07r cos((n +m)@) cos((n —m)6)do

™

sin((n +m)0)|” .
n-+m

_ {0, n#m

T, n=m.

sin((n — m)0)

n—m

Substitueren we nu z = cos(nf) dan krijgen we

™ 1 1
2/0 cos(nf) cos(mb)dhd = 2/_1 Tn(l‘)Tm(w)ﬁdJU

1
= 2/ Ty (2) T (2)(1 — 2)"2(1 + ) 2daz
-1
Uit bovenstaande volgt dat T),(z) orthogonaal is ten opzichte van (1 — x)_%(l + x)_% We
moeten nog alleen laten zien dat T, (x) inderdaad een polynoom is. Er geldt
cos(nf) = cos((n — 1)8 + 0) = 2cos((n — 1)0) cos(#) — cos((n — 2)0)
z=cos(0), %):cos(ne)

Tn(x) = 22T —1(x) — Th—2
_—
Tni1(z) = 22T (z) — Th—1(x) (3.15)

Uit = cos(f) en T, (x) = cos(nh) volgt To(x) =1 en Ti(x) = z. Dit gecombineerd met (3.15)

geeft ons dat T}, een polynoom is voor alle n. )

We hebben dat T, polynomen zijn die orthogonaal zijn ten opzichte van (1 — z)~2(1 4 z)2, en
1

dus zijn het Jacobi polynomen voor @ = 8 = —3. O

N|=

Voor a = = % krijgen we Chebyshev polynomen(tweede soort):
21 i 1)6
(1! 3, _ oo 1)
(5)n sin(0)
(Dit volgt op dezelfde manier als Chebyshev polynomen van het eerste soort).

Voor a = 8 = 0 krijgen we de Legendre polynomen:

Py(z) = P (x).

Up(x) =

x = cos(h).

En voor a ==X — % met A > —% krijgen we Gegenbauer polynomen:

(20,
TEESH (=)

1 1
(A—1a-1)

CW () = P,

n
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4 Representaties van SU(2)

We zullen in dit hoofdstuk uitleggen wat representaties van een groep zijn en zullen enkele
eigenschappen hiervan geven. Daarna focussen we ons op representaties van SU(2), de groep
van 2 X 2 unitaire matrices met determinant 1, en bekijken hoe de Jacobi polynomen hierin

passen. Ook zullen we Schurs orthogonaliteitsrelatie en irreducibiliteit van de representaties op
SU(2) bespreken.

4.1 Representatietheorie

Zij V een eindig dimensionaal complexe vectorruimte met dimensie n. Noem GL(V') de ver-
zameling van alle inverteerbare lineaire transformaties van V. Nemen we compositie als de
groepsoperatie dan vormt GL(V') een groep.

Definitie 4.1. Een representatie van een groep G op een eindig dimensionale complexe vector
ruimte V' is een groepshomomorfisme m : G — GL(V). FEen lineaire deelruimte W van V
noemen we invariant (ten opzichte van representatie 7) als w(g)W C W woor alle g € G. De
representatie m op V' noemen we irreducibel als V' en {0} de enige invariante deelruimten van
V' zyn.

We kunnen representaties van een groep op elke vectorruimte definiéren (ook oneindig di-
mensionaal), maar we zullen ons alleen richten op eindig dimensionale complexe vectorruimten.

Definitie 4.2. Zij w een representatie van een groep G op een eindig dimensionale complexe
vectorruimte V. Kies een basis {e1,...,en} van V. Dan heeft de lineaire afbeelding 7(g), voor
elke g € G, een matriz (m;;(g))ij=1,..n ten opzichte van deze basis, die bepaald wordt door

m(g)e; = Z Tij(g)ei
i=1

De m;; zijn complezwaardige functies op G. Deze noemen we de matriz elementen van de repre-
sentatie w ten opzichte van basis {e1,...,en}.

Opmerking 4.3. Zij G een groep, V een eindig dimensionale complexe vectorruimte en End (V')
de ruimte van alle lineaire transformaties A : V. — V. Noem e het eenheidselement in G. Als
m: G — End(V) een afbeelding is zodanig dat w(g192) = 7(g1)7(g2) en w(e) = id, dan geldt
id = 7(e) = m(g9~ ") = w(g)m(g~t) woor alle g € G. Hieruit volgt n(g)™' = w(g~') en dus
7[G] € GL(V): 7 is groepshomomorfisme G — GL(V') en is dus een representatie van G op V.

Definitie 4.4. Een representatie van een topologische groep G op een eindig dimensionale com-
plexe vectorruimte V is een continu groepshomomorfisme m: G — GL(V).

Opmerking 4.5. Zij G een topologische groep, V een eindig dimensionale complexe vector-
ruimte, w: G — GL(V') een groepshomomorfisme en {e1,...,ey} een basis van V. Dan zijn de
volgende twee eigenschappen equivalent:

a) T is continu.
e matriz elementen m;; van ™ ten opzichte van eq, ..., e, ziyn continue functies o .
b) d t l t i t hit 1 ,€en t t G

Definitie 4.6. Zij V' een eindig dimensionale complexe vectorruimte met een inwendig product
(, ). Een representatie m van een groep G op V' noemen we unitair als w(g) een unitaire operator
is op V woor alle g € G, oftewel

(m(g)v, m(g)w) = (v,w) Yo,weV enVg e G
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Opmerking 4.7. Zij V en G zoals in definitie 4.6 en zij m een representatie van G op V,
{e1,...,en} een orthonormale basis van V en zij (m;5(g)) de matriz van w(g) ten opzichte van
deze basis. De representatie m is unitair dan en slechts dan als de matriz (m;;(g)) unitair is (een

matriz U is unitair als UT = U* = U~"), oftewel
mij(g) = Wﬁl(g) =milg™") (,j=1,...,n)

Propositie 4.8. Zij V en G zoals in definitie 4.6 en zij m een unitaire representatie van G op
V. Als W een invariante deelruwimte van V is, dan is het orthoplement W+ van W ook een
mvariante deelruimte.

Bewijs. Zij v € W+. Dan geldt (w,7(g)v) = (71 (g)w,v) = 0 voor alle w € W en g € G. Dus
7(g)v € W+ voor alle g € G. O

4.2 Representaties van SU(2)

Kies [ € {0, 3 5,1,...} vast. Noem H; de verzameling van alle homogene polynomen van graad 21
in twee complexe variabelen z1, z9. Dat wil zeggen polynomen f(z1, z2) met complexe coéfficienten
zodanig dat f(cz1,cz2) = c? f(21, 22) voor alle ¢, 21, 29 € C. Dan vormen de monomen zi*”zé“‘ (
—l,—l+1,...,1) een basis van H;, en H; heeft dus dimensie 2] + 1. We zullen met een genor-

malizeerde basis werken:

n =

1
Pl (21, 22) = (l n) PR (n=-l,—-1+1,...,1). (4.1)
Voor f € H; en A € GL(2,C) definiéren we de functie t'(A)f op C? door

(EANE) = F(AT2) (2= (21,22) € C). (4.2)
Dus
(tl <Z Z) f> (21,22) = f(az + czo,bz1 + dz3) (CCL Z) € GL(2,C).
Hieruit volgt dat (t/(A)f)(21, 22) weer een homogeen polynoom van graad 21 in 21, z is. Verder
geldt t/(I)f = f(z1,2) = f en
('(AB)f)(z) = [((AB)"2) = f(BTA2) = (I'(B)f)(A"%)
= (A (B))(=) = (A (B))S)(2).

We zien dat ¢ : GL(2,C) — GL(H;) een homomorfisme is en is dus een representatie van
GL(2,C) op H;. Met behulp van definitic 4.2 kunnen we de matrix elementen ¢, (m,n =

—1,...,1) van t! ten opzichte van basis (4.1) bepalen door
Z (gt geGL(2,C) (4.3)
m=—1

Er geldt

<tl <Z Z) 1/151) (21,22) = vh(az + czo, bz + dza)
2 \ 2 - .
=, (az1 + cz2) " (bz1 + dz2) (4.4)
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Hieruit volgt dat we (4.3) kunnen schrijven als

1 I 1
20 \ 2 b 21 2,
<l B n> (az1 + cz2) " (bzy + dzo)! " = Z thn <CCL d) <l B m> Zmmeltm

o <‘C‘ Z) € GL(2,C)  (4.5)

We zien dat tfn,n een homogeen polynoom is van graad 2/ in a,b,c,d en dus is tlm,n continu

op GL(2,C). GL(2,C) is een topologische groep. Uit opmerking 4.5 volgt dan dat t' een
representatie is van GL(2,C).

Nemen we in (4.5) n vast dan kunnen we de matrix elementen tfﬂm, met m = —I,...,[,
terugvinden als de coéfficiénten van de machtreeks van de functie aan de linkerkant. We nemen

n = [. Dan krijgen we voor de linkerkant van (4.5):

(l 3ln) : (az1 + CZQ)l_n(b21 + dZQ)H_n n=t (bz1 + dzg)Ql
Bin. v Newton o= (21 2k k
= kzo <k> (bz1)" " (dz2)
!
l 2 I—m I+m
— m;l (l - m) (bz1) "™ (dz) ™.

Hieruit volgt, voor n = [, dat de matrix elementen tinl te schrijven zijn als

1
(e b\ (20 NZ o iim
bt D)= (2 »

We vermenigvuldigen nu beide kanten van (4.5) met

1
2 2 — l
<l B n) w} nw2+n

en sommeren vervolgens over n van —! tot [. Voor de linkerkant krijgen we

l
21 n n
Z (l n) (azrwy + czzwl)l (bzrwg + ClZgwg)l+

n=—I

!
21
- Z (l i n) (azwy + czzw1)lfn(bz1w2 + dzpws) "

n=-—I1

!
—n 21 _
k=t kg_o (k) (azywy + czgwl)Ql k(bzlwz + dZng)k

Bin. v. Newton
= (azywy + bziws + czowy + d22w2)21
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Hieruit volgt
(az1wy + bzywg + cz2w1+dz2w2)2l
l

1 1
_ 20 N2 20 N2, (a DY\ im_ivm, i-n, i+n
= Z (l—m) (l—n> b <c d)z zo Mwi Mws "t (4.7)

m,n=—I1

b

In de rechterkant van (4.7) vullen we ¢}, <Z 2) in plaats van ¢!, , <i d

we
’ 2 \Z/ 2 \?
1 a c l—m l+mlnl+n
¥ () (2 e ()t

mon=—I|

> in. Dan krijgen

= (awy21 + cwi22 + bwezy + dwng)Zl
= (azywy + bzyws + czow; + d22w2)21

Hieruit verkrijgen we de volgende symmetrie

! a b\ a c
tm,n (C d>_tn,m <b d) (48)

Op dezelfde manier verkrijgen we uit (4.5)

l a b 4l d c
75m,n <C d> - t—m,—n <b a> (49)

Combineren we nu (4.8) en (4.9) dan krijgen we

l a b 4l a cC 4l d b
tm,n (C d>tn,m <b d>tn,m <C a) (410)

We bekijken SU(2), de verzameling van unitaire 2 x 2 matrices met determinant 1. SU(2)
is een ondergroep van GL(n,C) want: Zij A, B € SU(2), dan geldt

1) A is unitair: AA* = A*A =1 en dus A* = A~!. Hieruit volgt dat A~! ook unitair is.
2) det(A~!) = 1. Dit samen met 1) geeft A= € SU(2).
3) (AB)(AB)* = ABB*A* =1 en (AB)*(AB) = B*A*AB = I.

) d

4) det(AB) = 1. Dit samen met 3) geeft AB € SU(2).

Uit A* = A~ volgt voor (CCL Z) € SU(2):
a ¢ d —b _ _
<b d>_<—c a>$d—aenb—c
Nemen we nu a = a + fi en ¢ = vy + di dan volgt
a b a —¢
det((c d))—l = det(<c a>)_1
a+pi —y+0oi),
- det((’eréi a—ﬂi>)_1

= 2+ (-8 =1
= la?+ =1
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Dus SU(2) bestaat uit matrices

<Z —ac> met a,¢ € Cen |a> 4 |¢)* =1 (4.11)
Hieruit volgt dat SU(2), als topologische ruimte, homeomorf is met {(a,c) € C? : |a]?+|c|> = 1}.
Dit is de eenheidscirkel in C2, oftewel S3. Omdat S® compact is en een homeomorfisme (en zijn
inverse) continu zijn volgt dat SU(2) compact is.

Als we de representatie t' van GL(2,C) in (4.2) beperken tot SU(2) en een inwendig product
op H; gebruiken zo dat de basis van functies 1/, orthonormaal is dan wordt ¢ een representatic
van SU(2) op H;. In de volgende paragraaf zullen we bewijzen dat deze representatie unitair is.

4.3 Matrixelementen van SU(2)

We gaan nu de matrixelementen van de representatie t' van SU(2) bepalen.

Propositie 4.9.

tl a b i 21 7% 21 1 (l_mgl_n) l—n l+n ajblfmfjclfnfjdm+n+j
mht\e d)  \l—m l—n 2,0\/( ) J l—m—7
J= —m—n

(4.12)
waarbij V mazimum betekent en A minimum.

Bewijs. We gaan, met behulp van (4.5), de matrixelementen van ¢' bepalen. Uit het Binomium
van Newton volgt:

M

l—n
(azy + cz0)! < Jz{cl’”’J zé_"_J
J

l-l—n
(bz1 + dzg) T = Z ( >bkzlfdl+n—kzé+nk
—0

Dus de linkerkant van (4.5) wordt
l—n l4+n
( ) Z Z ( > (l + n) jbkcl*”*jd”“”*szkz;l_j_k (4.13)
§=0 k=0

We gaan hierin variabelen veranderen. We sturen (j, k) — (m, j) met j+k = [ —m. We krijgen
dus

(j, k) — (I =k — 4,7) met inverse (m, j) — (j,l —m — j) (4.14)

We krijgen dus

0<j<l-nen 0<k<l4+n <<= —-I<m<len0<j<l—nen —m-n<j<l—-m

(4.15)
We kunnen nu (4.13) omschrijven tot
1 7 (I-=m)A(—n)
< ) Z Z <ln) (l l+n > ]bl m— jcl n— jdm+n+JZl m l+m (416)
m=—1 j=0V(—m—n) J —meJ
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(4.16) is dus gelijk aan de linkerkant van (4.5) en dus ook gelijk aan de rechterkant van (4.5).
Zowel (4.16) als de rechterkant van (4.5) zijn polynomen in z1, zo met expliciete coéfficiénten en
dus moeten deze coéfficiénten aan elkaar gelijk zijn. Dat geeft ons dan hetgene wat we wilden
bewijzen. O

We zijn nu in staat om het volgende te bewijzen:

Propositie 4.10. De representatie t' van SU(2) is unitair.

ac) € SU(2). Inverse van deze matrix is <

a

ISEeY

—C

a —¢ . a ¢
o (&) =t ()
Uit (4.12) volgt dat tfnm (Z Z) een polynoom is in a,b, c,d met reéle coéfficiénten. Dus er

geldt
a —c 1 a —c

We moeten nu dus laten zien dat

l a —c l a c
o (&) =t ()

Dit volgt direct uit (4.8). O

Bewijs. 7Zij <CCL > Uit opmerking 4.7 volgt

dat we moeten laten zien dat

De grenzen in (4.12) geven ons één van de volgende vier alternatieven afhankelijk van het
teken van m+nenm —n

0<j<l-m if m+n>0en m—n=>0
0<j<l—-n if m+n>0en m—n<0
—m-n<j<l—-m if m+n<0en m—n=>0
—m-n<j<l—-n if m+n<0en m—n<0
Deze vier alternatieven corresponderen met vier deelverzamelingen van
{(m,n) : m,n € {—1,...,1}} en samen vormen ze de hele verzameling. Verder geldt dat deze

deelverzamelingen op elkaar worden afgebeeld door de symmetrieén in (4.8),(4.9) en (4.10).
Om tfmn uit te rekenen kunnen we, in het vervolg, aannemen dat m+n>0en m —n > 0.
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Voor m+mn >0 enm—n >0 geldt dat we (4.12) kunnen herschrijven:

l=n P\ igi-m—i dn—j gmin+
J L—m—j

1

g (e by _( 2\ 2 3C
mn\c d)  \l—m l—n/) 4

3

7=0
_ i:n (I —n)! (I +n)! Qi p—m—i d—n—ij gm-nti
Ml =n =)t =m=j)n+m+j)!
_K( + )bl ml— ndm+nl m (1 —m)! (I —n)! (m+n)! <ad>j
B (I —m)l(m+n)! = “(—m—=j)(l=n—j!(m+n+j)j \be
1Kl—m l n m—i—nl m )\l J

(3:2)K(l+n)b d Z (I —n)! 1 | <ad>

(I —m)l(m+n)! = N(l—n—j'(m+n+1)5! \ be
(3:2) (L n)l "dm+"lz’f‘ (1—n) (~1(=l+m); (ad\’

(I —m)!(m+n)! = (l—n—j) (m—i—n—i—l)jj! be

N (1 — )(m+n) m+n+ l)J]' be

M

]:

B <(l+m) (1 + n)! )% pomdngman K (] 4 ) i(—1+m); (ad)j
S\ =)l —m)! (m+n)! (m+n+1);5! be

J=0

N

waarbij K = (%) We herkennen hierin de hypergeometrische functie en krijgen

L em i-n m-+n o o
tfn,n<a b>:<(l+m)(l+n)>26 d=nd 2F1< l+m, l—i—n'ad) (4.17)

¢ d (I —n)!(l —m)! (m +n)! be

m+n+1 "be
Merk op dat de twee bovenparameters negatief zijn en dus zal de reeks stoppen na de term met

j={l—m)A({—n).

Uit de transformatie van Pfaff (gevolg 3.10) volgt

=l+m,~l+n ad ad. ;. —l+m,l+m+1 ad ,  ad
2F1< m+n+1 ’bc> (1 E) 2F1< m+n+1 " be (bc 1)>

-l l 1 d
= "l be — ad) Mo Fy ( tmitmtl e ) .

m+n-+1 "ad — be

Hieruit volgt dat we (4.17) kunnen omschrijven tot:

(« a b\ _ l+m)!(l +n)! 2 Mg (be — ad)l*m2F1 —l+m,l+m+1 ad
mn\e d (I —n)!(1 —m)! (m +n)! m+n+1 ad—bc)’
(4.18)

27



Uit de definitie van Jacobi polynomen, (3.9), volgt

I —l+m,l+m+1 ad

2 1< m+n+1 ’ad—bc)
(I —m)! 7 —(l=m),l-m)+(m+n)+(m-n)+1 ad

(m+n+1)_m’ 1( m+n+1 ’adbc)
(I —m)! plm+nm=n) (bc + ad)

(m+n+1)_, =™ bc — ad

32) (I —m)!(m+ n)!P(m+"’m_") (bc + ad)

B (l+n)! l=m bc — ad

Hiermee kunnen we (4.18) verder uitschrijven tot

1
l a b _ (l+m)'(lim)' 2 m—n_jym-+n o [—m p(m+n,m—n) be + ad
ton (c d> = < ) c d (bc —ad)"™™P_ e ad ) (4.19)

We bekijken (4.19) als (Z b) € SU(2). Uit (4.11) volgt dat we voor een element van SU(2)

d
het volgende kunnen schrijven:

(sin 0e® —cosfe ¥

cos0 el sinfe—i® ) met 0<60<m/2 en ¢,¢ € 0,27).

Voor m £ n > 0 krijgen we dus
. . 1
4 sin 6 ef‘z’ —cosf ef“ﬁ _ (_1)l—m (I +m)!(l +n)!
mn \cosf e sinf e ? (l—n)(l —m)!
x eI mAnSeim=)¥ (gin) )™+ (cos H)m*”]%(mnfn’m_n) (cos26). (4.20)

4.4 Orthogonaliteit van matrixelementen

We definiéren een speciale Borel maat p op SU(2) als volgt

sinf el —cosfe W\ |
/SU(2) fdp /qb /6 , <cos€ JR v > sin @ cos 6§ df di d¢ (4.21)
voor alle continue functies f op SU(2). Uit [, ™/2 $in 0 cos 0d6 = 5 L volgt
/ dp =1 (4.22)
SU(2)
Propositie 4.11.
T 1
A | S1.1/ S m Ot 4.23
/SU()mnmnM 2l+1ll ( )

Bewigs. Voor (m,n) = (m/,n’) moeten we laten zien dat

l ‘ m+n,m—n m-+n,m—n . -

((ZJ;TZ 10— n)! / B (cos 20) By (cos 26) (sin 6)° 2 (cos 6)° 2 df
_ 1 ay
221417
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In de linkerkant substitueren we x = cos 26 en kunnen dit dan omschrijven tot

1 l+m)(l—m L m-+n,m—n m-+n,m—n m+n m—n
2(lJ(rn).(l)—( n)!22’>”+1 / @B @0 o e (120

Uit stelling 3.13 volgt nu

2(+n)(l — n)'22m+15” -

1 (I +m)(l—m)! 227t (1 4+ m+ 1), D +n+ DT —n+1)
T 2(I+ n)l(l — n)122m+1 (I —m)!T(20 + 2)
@36 L{U+m)l+m+1)_p
=" = o1
2 (20 +1)! ’
32) 1 o
C220+1

en dus geldt

SU()m"mn’“ 220 + 1 _21+1

We nemen nu aan dat (m,n) # (m’,n’). Met behulp van (4.9) volgt
v <sin fel? —cosd ew) L < sinfel®  cosf ew)

m'n \ cosfe¥  sinfe 1? —cosfe¥ sinfe ¢

—-m/,—n

Dan volgt nu, gebruikmakend van (4.20) en (4.21), dat

2m ) . 2 ., w/2
[ thtidn = [ eminetment [ gimenstoveaon [T 9)agaa,
SU(2) ¢=0 $=0 =0
Uit (m,n) # (m/,n’) volgt m+n— (m'+n') 0 of m —n— (m' —n') #0.
Als m+n—(m'+n’) # 0 dan geldt dat fOQﬂ e~imtn=(m"+n")ddh — 0 en als m—n— (m' —n') # 0
dan geldt [2" ei(m=n=(m'"=n)v gy — 0.
Hieruit volgt dat fSU(2 ', dp =0 als (m,n) £ (m/,n). O

m,n“m’ n’
Propositie 4.12. De matrizelementen tlmm (l e %Zzo, m,n € {=l,l+1,...,1}) vormen een
volledig orthogonaal stelsel in L?(SU(2),dy).

Bewijs. De orthogonaliteit van de matrixelementen volgt uit propositie 4.11.We moeten dus de
volledigheid bewijzen. Uit (4.19), de symmetrieén (4.8)-(4.10) en uit lemma 3.17 volgt voor
m,n € {—=l,l+1,...,l} zodanig dat m +=n > 0 en voor a,c € C:

a —c i
tl < a> — m nam+n
a —c _ (_C)m nam—l-n
c a
a —c — (_C)m nam—i-n
c a
a —c¢ m—n _ m-+n
_ =C a

y <(l+m)!(l:m).!>é (laf? + Jef2)—m pim=m) (W—W) (4.25)

lal? + |cf?
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Dit geeft ons alle matrixelementen van t!. Ze zijn homogeen van graad 2! in a,@,c,¢. Nemen
we |a|? + |¢|> = 1 dan beperken we ons tot SU(2). Het maakt voor de beperking niet uit als we
in (4.25) de factor (|a|? + |¢|?)!=™ vervangen door (|a|? + [¢|?>)"™™ met r — | € Z>o. We krijgen
dan polynomen van graad 2r in a,@,c,¢. De functies die we verkrijgen door (|a|? + |c[?)"™™
te vervangen met (|al? + [c[?)"™™, r vast, 0 <l € {r,r —1,...}, myn € {=l. =1+ 1,...,1},
m £ mn > 0, vormen een basis voor alle homogene polynomen van graad 2r in a, @, ¢, ¢ (Dit volgt
door de dimensie te tellen). Hieruit volgt dat de span van de matrixelementen tﬁnm als functies

van (Z —ac> € SU(2) (la]®> + |c|?> = 1), gelijk is aan de verzameling van polynomen in vier

reéle variabelen Re(a),Im(a), Re(c),Im(c), beperkt tot |al? + |c[> = 1. We weten dat SU(2)
compact is. Uit Stone-Weierstrass volgt dat voor een compacte deelverzameling X van R", de
verzameling van polynomen op R"™ beperkt tot X, dicht ligt in C(X) ten opzichte van de sup-
norm. Als p een eindige Borel maat is op X, dan ligt de verzameling polynomen ook dicht in
C(X) ten opzichte van de norm L?(X, u). Verder volgt dat C(X, i) dicht ligt in L?(X, i), zie [3,
Theorem 3.14]. Dus de ¢, , spannen een dichte declverzameling van C(SU(2)) op ten opzichte
van de sup-norm en dus spannen ze een dichte deelverzameling van L?(SU(2), du) op. O

4.5 Schurs orthogonaliteitsrelaties

In deze paragraaf gaan we laten zien dat de orthogonaliteitsrelaties in propositie 4.11 een spe-
ciaal geval is van Schurs orthogonaliteitsrelaties voor matrixelementen van irreducibele unitaire
representaties van compacte groepen. Voordat we de stelling kunnen geven hebben we wat
kennis nodig over de Haar maat.

Stelling 4.13. Zij G een compacte groep. Er bestaat een unieke Borel maat u op G, genaamd
Haar maat, zodanig dat u(G)=1 en, voor alle Borel verzamelingen E C G en voor alle g € G,
w(gE) = p(E). Deze maat voldoet dan ook aan pu(E) = u(Eg). Oftewel

/ f(hg)du(g) = / £(9)du(g) = / fgh)du(g)  (heG). (4.26)
G G G

We zullen geen bewijs geven voor deze stelling. Voor meer informatie over het concept van
Haar maat zie [3, §5.12-5.14].

We laten zien dat p op SU(2) die we in (4.21) gedefinieerd hebben gelijk is aan de Haar
maat. Uit (4.11) weten we dat SU(2) homeomorf is met S = {(a,c) € C% : |a|> + |c|? = 1}.
Zij A € SU(2). Links vermenigvuldiging 7' — AT : SU(2) — SU(2) correspondeert met een
rotatie in S3. Als we een rotatie invariante maat op S® nemen, krijgen we, na een bepaalde
normalisatie, de Haar maat op SU(2). Er bestaat een, op een constante factor na, unieke
rotatie invariante maat w op S3: deze maat is zodanig dat voor alle continue functies f op R*
met {z € R*: f(x) # 0} compact en met ), de Lebesgue maat op R* geldt

fdx = / - f(ré)r3dw(€)dr. (4.27)
R4 r=0J¢£es3

We nemen de volgende cotrdinaten op R*
x = (rsinfcos ¢, rsinfsin ¢, r cosd cos 1, r cos fsin ).

Voor r = 1 geldt x1 + ixo2 = sin 0e'?, x3 + izg = cosfe¥. Dit zijn de codrdinaten die we in
(4.21) hebben gekozen voor (a,c) € C? met |a|? + |c|?> = 1. De Jacobiaan voor de transformatie
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op deze codrdinaten is gelijk aan 73 sin @ cos . We krijgen dus

\ f(x1,x9.23, x4)dr1drodrsday
R

w/2
/ / / f (rsin @ cos ¢, rsin @ sin ¢, r cos 6 cos Y, r cos  sin 1))
r=0 Jo¢=
x 3 sin @ cos Hdedwdgbdr (4.28)

Vergelijken we (4.27) en (4.28) dan zien we dat voor continue functies F' op S C C? geldt

/ Fdw = / / / (sin B’ cos Bel?) sin O cos OdOdapdg (4.29)
S3 ¢=0 J =0 JO=

Hieruit volgt dus dat de Haar maat op SU(2) gegeven wordt door (4.21).
Voordat we Schurs orthogonaliteitsrelaties kunnen bewijzen hebben we Schurs lemma nodig.

Lemma 4.14 (Schur). Zij G een groep, en zij m, p irreducibele representaties van G op eindig
dimensionaal compleze lineaire ruimten V , respectievelijk W .

a) Zij A: V. — W een lineaire afbeelding zodanig dat
An(g) = p(g9)A Vg € G. (4.30)

Dan geldt A is bijectief of A= 0. Als A bijectief is noemen we 7 en p equivalent.

b) Zij A:V — V een lineaire afbeelding zodanig dat An(g) = w(g)A voor alle g € G. Dan geldt
A = M wvoor zekere \ € C.

Bewijs. a) We bewijzen eerst dat ker A w-invariant is en dat im A p-invariant is. Zij v € ker A
willekeurig. Dan geldt voor elke ¢ € G dat An(g)(v) = p(g9)A(v) = p(g)(0) = 0 en dus
m(g) € ker A. Hieruit volgt m(g)vker A C ker A voor alle g € G: ker A is w-invariant.

Zijv' € V willekeurig. (Dus A(v') € Im A). Dan geldt p(g)A(v') = An(g)(v') € Im A. Hieruit
volgt p(g)Im A C Im A voor alle g € G: Im A is p-invariant.

Stel A # 0. Hieruit volgt ker A # V. Omdat ker A w-invariant is en 7 een irreducibele
representatie is volgt ker A = {0}. Dus A is injectief. Stel nu dat A niet surjectief is:
Im A # W. Omdat Im A p-invariant is en p een irreducibele representatie is volgt Im A = {0}.
Dit is in tegenspraak met ker A = {0}. Dus A surjectief. Hieruit volgt dat als a # 0 dat A
bijectief is.

b) Omdat V een complexe vectorruimte is volgt dat A minstens één eigenwaarde, zeg A, heeft.
Zij B = A—\I. Omdat \ een eigenwaarde is van A volgt ker B = ker(A — AI') # 0. Nu volgt
voor elke g € G:

m(9)B = 7(g)(A— M) = n(g)(A) — m(g)(\]) = An(g) — (M) (g) = (A — M)n(g) = Br(g)

Dus B voldoet aan (4.30). Omdat ker B # {0} volgt dat B geen bijectie is en dus volgt uit
a) B = 0. Hieruit volgt A — A =0= A= \l.
U

We zijn nu in staat om Schurs orthogonaliteitsrelaties te bewijzen.
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Stelling 4.15 (Schurs orthogonaliteitsrelaties). Zij G een compacte groep met genormaliseerd
Haar maat . Zij ™ en p irreducibele unitaire representaties van G op eindig dimensionaal com-
plexe vectorruimten V', respectievelijk W die inequivalent zijn. Zij (7 ;)i j=o,...d, €7 (Pk1)ki=0,....d
de matrices van ™ en p ten opzichte van een orthonormale basis van hun representatieruimten.
Dan geldt

P

/ mijpLk(9)dp(g) =0
e

en

1
/ ik (9)dp(g) = d*5i,l5j,k
e

™

Bewigs. Zij B(W,V') de (eindig dimensionale) complexe vectorruimte van lineaire operatoren
tussen W en V. Zij T € B(W,V) willekeurig en bekijk de afbeelding G — B(W, V) gegeven
door g+ 7(g)Tp(g~"). Dit is een functie op G die continue operatoren als waarde heeft en dus
is [om(9)Tp(g~")du(g) ook een operator in B(W, V). Voor h € G geldt

m(h) (/Gﬂ(g)Tp(gl)du(g)> p(h)1—/G7T(h)7f(9)Tp(gl)p(h)1du(9)
= [ o) Tothg) dnto)
= [ @)oo duto)

waarbij we gebruik maken van de rechts en links invariantie van de Haar maat. Noem Ty =
Jam(9)Tp(g)  du(g). Voor elke g € G geldt nu w(g)Ty = Top(g). Dus Tp is een lineaire
afbeelding die aan (4.30) voldoet. Omdat 7 en p inequivalent zijn volgt uit Schurs lemma
dat Ty = 0. Dus [, 7(9)Tp(g9) 'du(g) = 0 waarbij T willekeurig is. Zij T = (t;5). Dan
geldt (m(g)Tp(g) Yy = Dk mi.;(9)tjkpei(g) ™t Omdat T = (t;5) willekeurig is krijgen we
Ja 7. (9)pri(9) " Ldu(g) = 0 voor alle 4,5 = 1,...,dr en k,l = 1,...,d,. Omdat p een unitair
representatie is, geldt p(g~') = p(g)~' = p(g)* en dus geldt

/Gﬂz,](g)Pl,k(g)dﬂ(g) =0 VZ,] = 17 .. '7d7l'7 kal = 17 s 7dp'

Zij nu p := 7 (dus p en 7 zijn niet meer inequivalent). Dan volgt uit Schurs lemma dat Tj een
scalair veelvoud is van de identiteitsmatrix. Dus [, w(g)T'7(g) 'du(g) = N(T)I. We nemen aan
beide kanten het spoor van de matrices:

([ w(0)77(0) Mauta)) = [ or (o) nta) ) dutg) = [ a(T)dule) = (),

G

en

Hieruit volgt A\(T") = tréWT) en dus [, m(g)Tn(g) tdu(g) = %I. Op dezelfde manier als
hierboven volgt

/G T (@ TA)dn(g) =0 AL j# k.

Nemen we nu 71" een diagonaalmatrix met één 1 op de diagonaal en de rest allemaal nullen, dan
krijgen we

/G mii(9)mij(9)du(g) = i
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en dus
1

/ ”i,j(g)mdu(g) = d—éi’léj,k.
G ™
]

Zij (m)qen een aftelbare verzameling van eindig dimensionaal complexe irreducibele unitaire
representaties die onderling inequivalent zijn. Dan kunnen we de orthogonaliteit in stelling 4.15
als volgt opschrijven:

1
[ mtsamli@)dnto) = -babusdi (431)

waarbij dy, := dze. Omdat de (7%)qen representaties zijn op eindig dimensionale vectorruimten

en lineair zijn volgt dat ze continu zijn op G. Uit opmerking 4.5 volgt dan dat 7; ook continu

zijn in G en zitten dus ook in L?(G,u) (met p de Haar maat). Uit (4.31) volgt dat de functies
1

dams; (¢ €N, i,j=1,...,ds) een orthonormale stelsel vormen in L?(G, i1). Het is mogelijk om

te laten zien dat dit orthonormale stelsel volledig is. Voor SU(2) volgt volledigheid uit propositie

4.12.

4.6 Irreducibiliteit van SU(2) representaties

Bekijken we propositie 4.11 nogmaals en vergelijken we het met (4.31), dan zien we dat het
inderdaad erop lijkt dat de orhogonaliteit van de matrixelementen van de representaties van
SU(2) een special geval is van Schurs orthogonlaiteitsrelaties. We hebben al laten zien dat
SU(2) een compacte groep is, de representaties van SU(2) (die op een eindig dimensionaal
complexe vectorruimte werken) unitair zijn en dat de Haar maat op SU(2) gegeven wordt door
(4.21). We moeten nog alleen laten zien dat de representaties t' ook irreducibel zijn.
i¢

Noem ay := <e0 e9i¢
en agi2r = ap. Omdat eiPe™i0 = eideid — | volgt dat A := {ay : 0 < ¢ < 27} een gesloten abelse
ondergroep is van SU(2) en dat A homeomorf is met U(1), de groep van complexe getallen met
modulus gelijk aan 1. Uit (4.1) en (4.4) volgt nu

>. Dan volgt uit simpele matrixvermenigvuldiging dat agay = ag4y

2 \2

th(ag)pl (21, 22) = <l ) (e920) 7 (e7920) 1 = 720yl (21, 2p). (4.32)

—n

Lemma 4.16. Zij V een invariante deelruimte van H; ten opzichte van de representatie 7 van

SU(2). Alsv eV en (v,pL) #0 dan !, € V.
Bewigs. Er geldt

We krijgen dan

Hieruit volgt

o l 2w
/ e21m¢tl(a¢)vd¢ _ Z <v’w£l> </ e2im¢e—2in¢d¢> wfl =27 (v, @Dinﬁﬂ?ln
0 0

n=-—I
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de linkerintegraal is een Riemann integraal voor vectoren, die we kunnen benaderen met Riemann
som van vectoren. Omdat v € V geldt dat elke benaderende Riemann som in V zit. Omdat V'
een deelruimte is van een eindig dimensionaal vectorruimte en dus gesloten is volgt dat ook hun
limiet, de Riemann integraal, in V' zit. Hieruit volgt 2m(v, ¢! )bl € V. Dus als (v.pl)) # 0 dan
Yl e V. O

Met behulp van dit lemma krijgen we de volgende propositie.

Propositie 4.17. Zij V een invariante deelruimte van H; ten opzichte van de representatie m'

van SU(2). Dan is er een deelverzameling A van {1, ... 1} zodanig dat V = Span{v!, : n € A}.
Zig W de orthoplement van V en B de complement van A. Dan is W ook een invariante
deelruimte en W = Span{v), : n € B}.

Bewijs. Dat er een deelverzameling A van {—1,. .., 1} bestaat zodanig dat V = Span{v!, : n € A}
volgt uit het feit dat de 1/121-, i =—I,...,l, een orthonormale basis vormen voor H; en lemma 4.16.
Omdat H; een eindig dimensionaal vectorruimte is, en dus V ook, volgt H; =V eVt =V a .
Dus W = Span{+, : n € {—I,...,I}\A = B}. De invariantie van W volgt uit propositie 4.8. []

We zijn nu in staat om de irreducibiliteit van de representatie op SU(2) te bewijzen.
Stelling 4.18. De represenantatie, t', van SU(2) is irreducibel.

Bewijs. Stel dat ! niet irreducibel is. Uit propositie 4.17 volgt dat #; de orthogonaal directe som
is van invariante deelruimten V = Span{v), : n € A} en W = Span{¢)l, : n € B} met W = V+,
waarbij {—[,...,l} de disjuncte vereniging is van niet-lege verzamelingen A en B. Dan zit [ in
één van deze twee verzamelingen. Stel | € A (I € B geeft dezelfde redenering). Dan bestaat er
een m # [ in B. Verder geldt ¢/ (T)y! € V voor alle T' € SU(2), en is dus orthogonaal met v,

Omdat t/(T)! = ZL:_Z tﬁCJ(T)d)fg volgt dan tﬁnJ(T) = 0 voor alle T € SU(2). Gebruikmakend
van (4.6), krijgen we

04 sinf —cosf
T mil \ cosh  sind

> = (=1)""™(cos )™ (sin )+,

Dit geeft ons dus een tegenspraak. O
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5 Representaties van de Lie algebra su(2)

In dit hoofdstuk zullen we laten zien dat SU(2) een matrix Lie groep is en zullen ook de
bijbehorende Lie algebra geven. Via deze Lie algebra leiden we een aantal eigenschappen van
de Jacobi polynomen af. Daarna bespreken we nog de Casimir operator.

5.1 Representaties van matrix Lie groepen

Zij G een Lie groep. Zij m een representatie van G op een eindig dimensionale complexe vec-
torruimte. Omdat G een Lie groep is, is het ook een C'*°-variéteit. Omdat we de C'°°-variéteit
structuur willen behouden, willen we dat m een C'°°~-homomorfisme is en dus dat de matrixele-
menten 7; ; : G — C C*°-functies zijn. Dus een representatie 7 : G — G'L(V') van een Lie groep
G op een eindig dimensionaal complexe vectorruimte V' is een C'°°-groepshomomorfisme.

Definitie 5.1. Een representatie van een Lie algebra g op een eindig dimeniosnale complexe
veectorruimte V' is een Lie algebra homomorfisme p : g — gl(V'). Hierbij is g¢(V') de Lie algebra
van endomorfismen op V. met de commutator als Lie haakje. Oftewel

p([A, B]) = [p(A), p(B)] = p(A)p(B) — p(B)p(A), A, Beg.

Stelling 5.2. Zij G een matrixz Lie groep met Lie algebra g(= T7G) en zij 7 : G — GL(n,C)
een C*®°-representatie van G op C". Definieer de reéle lineaire afbeelding dm : g — My, (C) door

drn(A) == A(z — m(x)), dw.z (dn(A)); = Az~ m;(z)) (Aeg),

waarbij A zoals in (2.10). Dan is dr een Lie algebra representatie van g en voor A € g geldt

exp(dn(A)) = m(exp A), (5.1)
dm(A) = %Tr(exp(tA)) . (5.2)
t=0

Bewijs. Merk op dat M, (C) isomorf is met End(C"). We kunnen de gedefinieerde representatie
op de Lie algebra beschouwen als een afbeelding g — End(C™).
Product nemen in g = TG is gedefinieerd als het Lie-haakje: [A, B] = AB — BA. We moeten
dus laten zien dat dn([A, B]) = [dn(A),dr(B)] = dn(A)dn(B) — dr(B)dn(A). Er geldt
dr([A, B]) = dn(AB — BA)

= (AB — BA)(z — m(x))

= (AB)(z — m(z)) — (BA)(z — 7(x))

= A(x— m(2))B(x — 7(z)) — B(z — m(x))aA(z — m(x))

=dn(A)dn(B) — dr(B)dn(A)

= [dn(A), dm(B)]
hieruit volgt dat dm een homomorfisme is en dus een represenatie.
(5.2) volgt direct uit (2.10) waarbij we de exponentiéle functie als representant gebruiken van

de equivalentieklasse van krommen die in ¢ = 0 door I gaan en afgeleide A hebben. Voor (5.1)
zie [5, proposition 4.4] O

Gevolg 5.3. Onder dezelfde voorwaarden als in stelling 5.2 en met X4 de links invariante
vectorveld op G, zoals in (2.11), krijgen we:

n

Xamij =Y (dr(A))emip  (A€g). (5:3)
k=1
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Bewigs. Er geldt

w@m::ﬂmwm>:<§jm$@nkxm>
k=1

i,j=1,..n

Hiermee krijgen we

mig(gh) = mi(h)mik(g) =
k=1
Al mij(gh)) = > A(h e w5 (W) k(g) =
k=1
(Xamij)(g) =Y _(dm(A))k,min(g)
k=1

O

We gaan nu laten zien dat SU(n) een Lie groep is en dat de bijbehorende Lie algebra gelijk is
aan su(n): de reéle lineaire deelruimte van M,,(C) bestaande uit alle scheef Hermitische matrices
(d.w.z A+ A* = 0) met spoor 0.

SU(n) is de groep van unitaire matrices (77" = I) met determinant 1 en is dus een onder-
groep van GL(n,C). Zij U en V open verzamelingen zoals in f) op bladzijde 8 en neem aan
dat [tr Al < mals A e U. Noem U* ={T*: T € U} en —U = {-T : T € U}. Vervang U
door Up :=UNU*N(=U)N(=U*) en V door Vj := exp(Up). Dan geldt dat Uy ook een open
omgeving van 0 is in M, (C) en dat het gesloten is onder het nemen van geadjugeerde en het
vermenigvuldigen met —1.

Als A € su(n) N Uy dan geldt (exp A)* = exp(A4*) = exp(—A) = (expA)~t. Ook geldt
det(exp A) = e 4 =1, want tr A = 0. Dus exp A € SU(n) N Vj.

Als T € SU(n) NV dan geldt T = exp A voor een zekere A € Uy en dus (exp A)* = (exp A) L.
Hieruit volgt exp(A*) = exp(—A). Omdat A*,—A € Uy en omdat exp injectief is op Uy volgt
A* = —A. Verder geldt det(T) = det(exp(A)) = 1 en |tr A| < 7 en dus tr A = 0. Dus volgt
A € su(n) N Up.

We voldoen nu aan de voorwaarde van stelling 2.15 en dus volgt dat SU(n) een matrix Lie
groep is met Lie algebra su(n). Hieruit volgt dus ook dat SU(2) een matrix Lie groep is met
Lie algebra su(2). Dit geeft ons de mogelijkheid om via stelling 5.2 de representaties van su(2)
te bepalen.

5.2 Representaties van su(2)

De Lie algebra su(2) bestaat uit alle 2 x 2 matrices A met A+ A* = 0 en tr A=0. Zij <CCL Z) €

a+a b+c
c+b d+d

aena= —a.

su(2). Dan geldt dus ( ) =0en a+ d = 0. Hieruit volgt b=7¢, d

Dus su(2) bestaat uit alle matrices <1§ :;) met ¢ € R en ¢ € C. Het heeft reéle dimensie 3.

We kiezen een basis, A, B,C, van su(2) gegven door
1/0 -1 1/i 0 1/0 i
A= 1O D) Bl el ) -
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Dan volgt uit simpele matrixvermenigvuldiging
[A,B]=C, [B,C]=A, [C,A=B. (5.5)

Nemen we de exponent van A, B, C' dan krijgen we de volgende ondergroepen van SU(2):

1 -1
. _ [cos50 —sin 50
ag :=exp(fA) = <sin 9 cos 1o > (5.6)
e%i(b 0
by := exp(¢pB) = 0 obio (5.7)
cos % isin 1
cy = exp(yC) = <i Sinéip/} o8 51;/}) . (5.8)

We gaan de representatie dt! van su(2) berekenen, waarbij de representatie t! van SU(2) op H,
gedefinieerd wordt door (4.1). Dan geldt

1 1 1 1
(t'(ag) f) (21, 22) = f(z1 cos 59 + 2z28in 59, —2z1 sin 59 + 23 cos 59) (f € Ha).
Met (5.6) en (5.2) krijgen we voor f € H:

d

@(tl(at)f)(zb 22)

t=0

(dt'(A)f)) (21, 22) =

d 1 o1 1 1
= — f(z1cos =t + zgsin —t, —z7 sin =t + 23 cos =t)

dt 2 2 2 2
t=0
1 1 1 1 1 1 1 1
= fi(z1, 22)(—5731 sin §t + 57208 §t) + falz1, Zz)(—521 coS it — 5% sin §t)

t=0

1 1
= §Z2f1(21722) — §Z1f2(2’1,22),

waarbij we met f; de partiéle afgeleide naar de eerste coordinaat bedoelen en met fs de partiéle
afgeleide naar de tweede codrdinaat. Hieruit volgt

(dt'(A) f))(z1, 22) = % <z28821 - Zlai) (21, 22). (5.9)
Op dezelfde manier krijgen we uit (5.2), (5.7) en (5.8)

(dt'(B)f)) (21, 22) = %i (216821 - 2’2822) flz1,22), (5.10)

(@' (C) ) (=1, 22) = %i <z2£1 + 21622> (21, 22). (5.11)

We gaan nu bekijken hoe dt!(A), dt'(B) en dt'(C) werken op de orthonormale basisvectoren
Yl van H;, gedefinieerd door (4.1). We substitueren f := 4! in (5.9) en krijgen:

2 —n

1 1
1/ 20 \? _(n wer L/ 20\2 (1) pam
dt' (Al = (l n) (1 — n)zi ( +1)zé+ - 3 (l ) I+ n)zi ( l)zéJr !

1 1
= SU=m)2(I+n+ D2yl - S +n)7(1—n+ )3, (5.12)
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Op dezelfde manier krijgen we uit (5.10) en (5.11):

dt'(B)y}, = —niyy,, (5.13)

NI

dt (Ol = %i(l )b+ )i, + %z(z bR —nt )Rl (5.14)

We zien dat dt!(B) diagonaal werkt op deze basis en dat dt!/(+A —iC) als een ladder operator
werkt:

(L+n+1)2¢h,, (5.15)
(I —n+1)3¢ (5.16)

dt'(A —iC)yl = (1 —n)
dt'(—A — i), = (14 n)

= Nl

Merk op dat +=A —iC niet in de Lie algebra su(2) ziet maar ze zitten wel in zijn complexificatie,
sl(2,C), de Lie algebra van complexe 2 x 2 matrices met spoor 0, zie [4, §3.6]. Deze is, als
vectorruimte, ook isomorf met su(2). Voor A € sl(2,C) geldt det(exp A) = e"4 = 1. Hieruit
volgt exp A € SL(2,C), de matrix Lie groep van complexe 2 x 2 matrices met determinant 1.
Dus sl(2,C) is de Lie algebra van SL(2,C). (Dat SL(2,C) een matrix Lie groep is volgt op een
soortgelijke manier als SU(2)).

We hebben de representaties ¢ gedefinieerd voor GL(2, C), dus ook voor SL(2,C). Hieruit volgt
dat we stelling 5.2 kunnen gebruiken met 7 = t!, G = SL(2,C) en g = sl(2,C). Er geldt:

exp(H(A — iC)) = C (1’) L exp(t(—A—iC)) = <(1) i) . (5.17)
Uit gevolg 5.3 gecombineerd met (5.15) en (5.16) volgt
1
Xacictn = (L= n)2 (1 0+ 1)t 0, (5.18)
1
X_psicoth,, = ((+n)2(1—n+ D3t 1 (5.19)

Zijn+m>0en ad—bc=1. Uit (4.19), (4.8) en lemma 3.17 volgt

1
b T+l —n)! \? ., i)
(4 7) = prm gt pre it (944 — 1)), 2
i (C d) <(l +m)l(l —m)! I=n (2a ) (5.20)

Uit Af = %f(exp(tA))‘t_o en (2.11) volgt Xaf(t) = %f(T exp(tA)))‘tzo. Dit gecombineerd
met (5.17) geeft ons

4l a b _il (I+bt b
Xa-ictnn (c d) = g <c+dt )| (5.21)

4l a b o 1 1 a b—i—at
X-a-ictmn (c d) = g (c d+ ct) ‘to' (5.22)

Gebruikmakend van (5.21) samen met (5.20) en (5.18) geeft

d n—m,n+—m
b"*md"er%Pl(_n M) (9(a+bt)d — 1)

t=0

= (I +n+ 1)y mHigrtmtt pmilntmil) g0 1), (5.23)
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Dit kunnen we omschrijven tot

d n—m,n+m 1 n—mv n—+m
SR (@) = S+ n+ DRI (90d — 1),
r=2ad—1
Dus geldt
) 1 (a+1,8+1)
%Pn Pl(z) = i(n +a+pB+1)P7 (x), (5.24)

waarbij a, 8 € Zx>o.
Op dezelfde manier volgt uit (5.22), (5.17), (5.20) en (5.19)

d

. ((1 — 2)%(1 + z)P PP) (x)) — 2+ D1 —2)* 1 +2) P V@) (5.25)

We hebben dus met representatietheorie van su(2) een bewijs gegeven voor de formules in (3.12)
en (3.13).
5.3 De Casimir operator

In deze paragraaf willen we, via representatietheorie, de tweede orde differentiaal vergelijking
voor Jacobi polynomen afleiden. Daarbij maken we gebruik van de Casismir operator. Zij
A, B, C de basis van su(2) die we in de vorige paragraaf hebben geintroduceerd.We definiéren

Q:=A24+B%4+(C? (5.26)

waarbij we opmerken dat A2, B2, C? ¢ su(2). Uit matrixvermenigvuldiging volgt dat € com-
muteert met alle drie de basiselementen A, B, C. Hieruit volgt dat het met alle elementen van
su(2) commuteert. We noemen (2 het Casimir element.

Uit de commutativiteit volgt AQ — QA = 0 voor alle A € su(2). Hieruit volgt

dt'(AQ — QA) = dt'(A)dt'(Q) — dt'i(Q)dt' (A) =0 (A € su(2)).
Nemen we de exponent dan volgt uit (5.1)
t(exp A)dt'(Q) = dt' (Q)t! (exp A) (A € su(2)).

Omdat A € su(2) willekeurig, exp A € SU(2) en SU(2) compact en samenhangend is (want het
is homeomorf met S3) volgt

tg)dt (Q) = dt' ()t (g), Vg e SU(2).

(zie [6, Chapter V.2, Theorem 2.2]). Omdat # een irreducibele representatie is van SU(2) op
een eindig dimensionale complexe vectorruimte, volgt uit lemma van Schur dat dt!() = wI voor
zekere w € C.

We gaan dt!(Q)], uitrekenen voor alle basis elementen v}, van H;. We schrijven (5.26) om:

Q=A%+ C?+1iB —iB + B>
=A%+ C* +i(AC + CA) —iB + B?
= —(A—iC)(—A—iC) + B* —iB,
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waarbij we gebruik maken van (5.5). Nu volgt uit (5.13),(5.15) en (5.16)

dt'( Q) = —dt' (A —i0)dt' (—=A — 10l + (dt'(B))*y! — idt' (B!,
= (L= n)2(l+n+1)2(d (A —iC)L ) — indt (B)y], — ny,
= —(l =) +n+ 1)y}, —n*¢}, — ny},
= U1+ 1)k,

Dus geldt
dt'(Q) = —1(1 + 1)1. (5.27)
We definiéren de vectorveld van €2 op dezelfde manier als gevolg 5.3:

l

Xoth ;==Y (dt"(Q))k i
k=—1

(Merk op dat © ¢ su(2), maar het commuteert met alle elementen van su(2) en de bijbehorende
differentiaaloperator commuteert met de differentiaaloperatoren van de elementen van su(2)).
We krijgen dus

l

Xty = > (di'( Q) tiy (5.28)
k=—1

=1+ 1)t .. (5.29)
Zijntm > 0en ad—bc = 1. We schrijven ¢!, , zoals in (5.20). Omdat dt'(B) diagonaal werkt

op de basisvectoren van H; en door (5.25) na (5.23) te nemen kunnen we (5.28) omschrijven tot

1— —n+m 1 —-n—m
(1= 2y gy oL i

—n(n+ DRI () = (14 1) P ()

d ((1 _ x)n—m—i-l(l + x)n+m+1 ip(nfm,ner) (x)>

Nemen we a =n —m,f0 =n+m en k =1 —n dan kunnen we, met behulp van de productregel,
bovenstaande omschrijven tot

d2 (0% d (0% (0%
(1 _xQ)@p,g )+ (B-a- (a+5+2)m)%P]§ (@) —kk+a+ B+ 1P (z)=0
k.a,p € Zzo.

)

We hebben dus een tweede orde differentiaalvergelijking voor Jacobi polynomen P,Ea’ﬁ
3.18), verkregen via representatietheorie van SU(2).

, (stelling
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