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-"Sal, we gotta go and never stop going ’till we

get there."

-"Where we going, man?"

-"I don’t know but we gotta go."

Jack Kerouac, On the Road
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ABSTRACT

Europa is one of the most interesting celestial world that has been ever observed. The habitability condition,
met for the liquid water layer covering the moon, yields to astonishing speculations concerning what might
exist in the interior of the tiniest moon of Jupiter. The Voyager and Galileo programs detected a frozen and
brittle layer, deeply battered by lineament features. These lineament formations have been distinguished in
the literature in terms of ridges, strike-slips and cycloids. The majority of the features is suggesting the pres-
ence of fractures that can resemble linear patterns such as the ones observed. The observed crevasses on the
moon’s icy surface can be considered as results of a strong and variating stress field applied to the brittle icy
shell that eventually reaches critical deformation conditions locally, and lead the process of crevasse propaga-
tion. Stress components acting at different timescales can be found on Europa, and these could be modelled
with the usage of potential theory, among others. Non-zero eccentricity of the Europa orbit, together with
the non-zero obliquity and the possible physical libration of the ice crust induce stress sources that work at
a short timescale, namely one orbital period of Europa around Jupiter. These short-term components are
called diurnal tides. On the other hand, the estimated non-synchronous rotation of the moon, the true polar
wander and the progressive thickening of the ice shell deform the surface of Europa at a timescale that is sev-
eral orders of magnitude higher that the diurnal components and can be termed as secular contributors. The
superimposition of secular widening to diurnal components is the source of stress that continuously deforms
the brittle surface of Europa and induces the ice to crack, similarly to the processes observed with crevasses
in large terrestrial ice sheets.

The current research’s aim is to improve the existing models of fracture propagation for the Europa ice
shell, dealing with analogs observed in Earth’s crevasses on large ice shelves, by the implementation and
the usage of linear elastic fracture mechanics (LEFM). The numerical technique has been already applied
to Europa in order to determine whether or not the fractures crack the entire ice layer. The current project
aims to improve the models already developed in order to produce a global estimation of potential verti-
cal critical depth for surface crevasses and critical heights for bottom crevasses, using a model designed for
terrestrial fractures on ice sheets. Tidal stress, coupled with ice overburden pressure and water-pressure fill-
ing the crevasses are the deforming sources at the tip of an existing crack. Two different LEFM approaches
are included in the document, one dealing with the estimation of global areas on the moon that are more
favourable to host propagation and one dealing with the estimation of fractures’ lengths for specific observed
features. Results describe the existence of critical and non-critical areas centred in the equatorial zone which
are respectively prone or not to present vertical propagation. Maximum critical depths reaches maximum
values of 120 meters while critical heights touches values of 1.5 kilometers, around ten orders of magnitudes
higher than the former. Additionally to the outcomes of the vertical simulation, a mathematical manipula-
tion of the LEFM analysis allowed the determination of horizontal propagation events. Knowing the aspect of
an observed fracture, the current research calculated fracturing events that reach propagation rates of kilo-
meters per second. These are almost instantaneous events that are similar to what happens to terrestrial
crevasses on large ice sheets, such as the recent calving event of the Larsen C on July 2017. A comparison
between the two approaches indicates that the non-critical areas seem to arrest the horizontal propagation
of the lineament features, beside discouraging the vertical growth of the same crevasses.

The outcomes of the current research are interesting when seen in relation with the future exploration
missions to Europa: ESA’s JUICE and NASA Europa Clipper. These are planned to reach the Jovian environ-
ment at the end of the 2020’s and will enormously improve the actual knowledge of dynamics and geology of
the satellite. Additionally, NASA is considering the idea of hosting a lander in the Clipper’s spacecraft. Having
already a preliminary determination of potential interesting landing sites could be very helpful. Additionally,
the extremely large dimensions for the observed lineament features on the moon would imply a tremendous
and detectable release of energy when fractured. The current research tries to deal with these issues, in order
to give preliminary helpful estimation to the missions’ design. In more general terms, new numerical models
that can simulate the propagation events on the surface of Europa and that will result as output of the current
research, will yield to a further and more accurate understanding of the dynamics for the interior of one of
the most promising celestial object, in term of searching for a biosphere, hence extraterrestrial life.
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1
INTRODUCTION

More than 400 years after the first observation of the Jovian moon by Galileo Galilei, an Italian astronomer, a
new beginning for the exploration of the so-called Galilean satellites is about to start, by the end of the next
decade. Probably one of the more successful NASA mission, named after the discoverer of the moons Galileo,
was directly focussed to the understanding of Io, Europa, Ganymede and Callisto in the Jovian environment.
After the team of scientists and of engineers started to analyse data and images coming from Europa, a full
extension of the Galileo mission was entirely directed to complete flybys of the tiny satellite of the gas giant,
since people started to realise how scientifically promising was the moon. One of the first astonishing findings
emerged from the analysis of Europa, is that a global water ocean is covering the satellite. In the absence of a
proper atmosphere and given the large distance with the Sun, the extreme outer layer is supposed to be totally
frozen. Pictures coming from Galileo showed an outer ice crust that is deeply battered by extremely long
lineaments and by chaotic regions. The presence of lineament features is generally linked to the existence
of fractures on the brittle ice shell. The deformation of Europa in form of rifts and faults, is considered to be
the most evident result of a strong stress field that is continuously varying in amplitude and orientation and
that is also applied to the fragile icy surface of the moon. Tides on Europa are several orders of magnitude
larger than the ones observed on Earth, where these are one of the most important element that stimulate
the ocean to be as biologically variegate as possible. Mixing of different chemical components are due to
currents circulations produced by tidal effects, among others. Beside the potential analogue effects that can
be produced on the subsurface ocean the moon, one of the key consequences is that large tidal dissipation
would produce an amount of heat, assumed to be enough to maintain the water layer in a liquid state for the
majority of its status. Liquid water is naturally one of the fundamental element needed to sustain life as we
know.

More than 10 years after the official end of the Galileo mission which dived into the atmosphere of Jupiter,
new projects are about to initiate the new era of the exploration of the Medicean moons. The new Jupiter Icy
Moons Explorer mission (JUICE) is estimated to be launched around 2022, according to ESA and is going
to target the Galilean moons. Besides, NASA is considering to launch the Europa Clipper mission, with the
specific focus of Europa, just a few years after the JUICE mission. In particular, the possibility of placing a
lander, contemplated by the Clipper design team on the crust of the moon, would be a gigantic step toward
the global understanding of the dynamical and geological processes on the satellite. For instance, one or
more seismometers would definitely allow a complete characterisation of the moon’s stratification that is still
an argument of discussion. The new data and the intriguing outcomes that these missions would eventually
bring to our knowledge of Europa are elements that keep the attention toward researches and studies con-
cerning the Jovian moon. Among others, the condition of habitability1 is considered to be met for an ocean
that is globally covering the satellite’s core. Therefore, theoretically speaking life could potentially form. In
its outer portion, the water layer is considered to be frozen, fact that would protect the potential life forms

1The definition of a planet’s habitability is not universally defined, but the majority of the set of requirements are requiring the presence

of water.

1



2 1. INTRODUCTION

from the deadly radiation field coming from Jupiter. The fractures that are deforming and creating disconti-
nuities in the potential flow of ice on the surface could be suitable to host biological material themselves, in
the case that these are somehow in contact with the global ocean. As natural consequence of the fascinating
discoveries of Galileo, the focus of scientific community is concentrated on continuously new speculations
concerning the tiniest moon of Jupiter. Nevertheless, there is still a lot to do and a few characteristics and
physical parameters are effectively considered to be known for sure. The necessity of obtaining new data is
continuously suggested by the majority of the people involved with planetary sciences. This gap of observa-
tions should be filled with the measurements of JUICE and Europa Clipper.

Questions concerning the physical reasons of the existence of crevasses on Europa, dealing with the pos-
sibility of comparison with terrestrial features observed on large ice shelves are few of the aspects that could
be enlightened by future exploration missions. Hundreds of article and researches have been published since
the first direct observations of the surface and numerical models have been based on the (limited) amount
of data available. As consequence, for the same physical phenomenon, multiple physical explanations and
apparently several valid models have been proposed. Among the most interesting application of numerical
analysis to the investigation of the dynamical behaviour of the crevasses, a few works successfully applied
linear elastic fracture mechanics in order to mainly determine whether or not the fractures are cracking the
entire ice layer. The described scenario is very interesting, particularly when related to the possibility of hav-
ing an active lander on the surface of the moon. Indeed, in the case of a connection between the ocean and
the outside surface, a probable possibility is that material from underneath the moon is ejected to the sur-
face, thus easier detected and analysed by lander’s potential instruments. Linear elastic fracture mechanics
is a numerical analysis that investigate the conditions around the tip of an existing crack, in order to de-
termine whether or not the material reaches the eventual propagation threshold. Estimation of thicknesses
and of potential length of fractures are seeing completely different scientific points of view, and more data
are needed to actually determine what is the dynamical behaviour of such large fractures. Furthermore, the
actual determination of areas of the moon that are more prone to present fractures would be an enormous
help in the preliminary selection of potentially interesting landing sites. Areas that are more favourable to
host horizontal and/or vertical propagation would be the preferred target zones to place the lander. The aim
of the current research is to improve the existing models of vertical and horizontal rifts propagation for the
Europa ice shell, dealing with analogs observed in Earth’s ice shelves, by the implementation and usage of
a linear elastic fracture mechanics analysis. The project adopts a model that was successfully developed for
the investigation of terrestrial crevasses observed on the large terrestrial ice sheets in order to tune it with the
physics known for Europa and to find estimation of depths for surface crevasses and of heights for eventual
bottom crevasses together with the calculation of horizontal propagation rates for the fractures themselves.
In particular, the last concept can be assuming the description of different scenarios, where cracks are prop-
agating in a very slow way or with almost instantaneous fracturing events. The solutions of the numerical
simulation, presented in the document, opted for the second scenario with a similarity to what happens on
terrestrial crevasses on large ice sheet, such as the recent rupture of the Larsen C ice shelf in Antarctica.

The current report represent the technical presentation of the numerical model built with the aim of in-
vestigating vertical and horizontal propagation of Europa’s crevasses. The document is divided into three
different Parts with the key purpose of schematise the presentation of the current research. Part I aims to
present what is known already about the generality of Europa. Being the research aim specifically focussed
on the investigation of propagation events on the surface of the moon, the icy crust of Europa finds central
focus. Additional sections are based on the qualitative presentation of the stress sources, analysed via tidal
potential theory and limited to the effect of non circularity of the Europa’s orbit around Jupiter, the tilt of the
moon’s rotation axis and the physical libration of the crust, together with the non synchronous rotation of the
crust with respect to the interior core. This part also presents, describe and tries to catalogue the lineament
features observed on the crust. Ridges, strike-slips and a type of feature only observed on Europa and named
cycloids are some of the lineaments observed on the surface and here these are described in details, by keep-
ing a particular attention to the introduction of terrestrial analogues. The reader is encouraged to view this
Part of the document to have a global view of the state of the art for the most important findings concern-
ing Europa with a specific focus on the description of the crust environment. Part II wants to describe the
theoretical and mathematical methodology behind the building of the numerical routines. The description
of the brittle fracture of Europa via linear elastic fracture mechanics requires basics of elasticity theory, since
the material is assumed to be purely elastic. The framework of the numerical model, firstly applied to terres-
trial crevasses by a Dutch glaciologist C. J. Van Der Veen is presented in this part of the document, together
with other models applied to crevasses propagation. The stress field that is required to be acting on the tip
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of the fracture is also shown in its analytical details in this Part. Readers not interested in the full mathe-
matical description of the model and the theoretical background for the research can freely skip this purely
mathematical Part. Finally, Part III aims to present the built numerical model in its technical details. This
is distinguished between vertical and horizontal propagation, depending on the different results obtained.
A validation section is added in this Part with the main scope of defining the range of validity of the current
routines. Of course, the mentioned lack of observational data for Europa does not allow a directly valida-
tion of the satellite’s results. Nevertheless, one of the few experimental work focussed on the measuring of
terrestrial crevasses’ depths is used to positively validate the numerical model. The most important results,
always presented with a critical discussion and with a comparison with the past literature on the moon are
also presented in this Part of the document.

Outcomes of the current research allows a better understanding of how propagation works on Europa. Key
results for the vertical approach are surface and bottom crevasses critical depths and heights. Additionally,
areas that are more prone to host the two direction of propagation are also delimited. On the other hand, hor-
izontal propagation routines allow the estimation of the fracturing event’s amplitude for propagation rates.
Propagation rates and the discretisation of a set of target features observed on the surface produced an evalu-
ation of the number of orbital cycles needed to fully develop the lineaments. The outcomes of the numerical
model are particularly interesting when seen in relationship with the potential measurements that future
exploration missions, such as Europa Clipper or JUICE could bring. These could potentially corroborate or
reconsider the estimations found in the current research. A further improvement in the analysis of Europa’s
crevasses is a further step in the understanding of one of the most promising satellites in the Solar System,
when speaking of search of a biosphere, hence of life.
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The story goes that Galileo Galilei was the first man that decided to point his brand new telescope toward the
sky. Among the wonders that he had the chance to stare at, he discovered and kept track of four mysterious
stars that were dancing around the path of Jupiter through the night sky. Their peculiar pattern intrigued the
Italian scientist so much to let him thinking that they were actually orbiting Jupiter itself, something com-
pletely against the heliocentric and religious view and mentality of the time. The Sidereus Nuncius, published
in 1610 when Galileo was professor at the University of Padua, Italy, records the first scientific publication
concerning the four new Medicean satellites around Jupiter. These satellites were named after Lorenzo de
Medici, archduke of Florence at the time. Io, Europa, Ganymede and Callisto were part of the astronomical
records henceforth.

Around 400 years after the discoveries of Galileo, a man-built spacecraft named after the Italian scientist
was launched with the purpose of reaching Jupiter and its satellites. The investigation of the two gas giants
of the Solar System, Jupiter and Saturn, have been one of the most ambitious and rewarding goal of space
exploration. The main findings that the human kind evinced from the planets are results of the investigation
of the two Voyager spacecrafts in the late ’70s, followed by the Galileo and Cassini missions, launched in the
late ’90s and in the early ’00s, respectively. Probably, these missions and their findings have been the most
intriguing and though challenges of the human scientific research. Nowadays, given the promising habitable
conditions of one the four Medicean moons, Europa, the focus of the scientific community is constantly kept
pointed toward the tiny icy satellite. Therefore, one of the next big challenge of space exploration is the further
investigation and studying of the Europa, by new and exciting NASA and ESA missions. The ESA’s Jupiter Icy
Moons Explorer (JUICE) and the NASA’s Europa Clipper are scheduled to be launched in 2022 and have as
main target Europa and its neighbour moons.

Galileo noticed that these ’erratic stars’ were moving in the sky with an intriguing pattern. Modern sci-
ence knows that these moons are orbiting in a resonant state which leads to a perturbation of their orbital
parameters [54]. Io, Europa and Ganymede are orbiting in a so-called 1:2:4 orbital ratio, meaning that while
Ganymede completes one cycle around Jupiter, Europa ends his second orbit and Io its fourth. In other words,
Io orbits Jupiter 2 times more frequently than Europa, which orbits 2 times more frequently than Ganymede.
The particular type of orbital resonance that characterises to the Medicean satellites in the Jovian environ-
ment is called mean motion resonance and is particularly frequent phenomenon in the Solar System. Reso-
nance occurs when a dynamic system is forced by perturbation with a frequency that is commensurable with
the natural frequency of the system [54]. The amplitude of the response of the system to such perturbation
is amplified, and the effects are often easy to see. Resonant forcing might lead to forced eccentricities, obliq-
uities or inclinations. Orbital resonance of asteroids with Jupiter is considered to be the main reason for the
generation (and the sustenance) of the Kirkwood gap in the asteroid belt.

The current chapter aims to give the general background and the key findings on the Jovian moon Europa,
obtained by the various missions to Jupiter combined with astronomical observations and numerical models
that produces a complete literature survey. As previously mentioned, the satellite’s shape and behaviour is
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mainly influenced by the massive and disturbing presence of Jupiter, together with the orbital perturbations
of the other neighbour moons. In section 2.1, the state of the art for the description of Europa is summarised.
This part includes different estimation of the vertical stratification of the moon together with the geological
processes that are supposed to be influencing the shape of the surface. On the other hand, a first (and mostly
qualitative) description of the stress that is deforming the brittle surface is presented in section 2.2. A more
quantitative description of the stress that is used in the current research is given in Chapter 4, when the tidal
potential is introduced in the analysis.

A detailed description of Europa in its general aspects is a key aspect in the analysis of its cracks. A lot
have been published although the amount of data to corroborate the results is limited. The Galileo mission
which represents the most substantial source of data for Europa, completed around 12 flybys, counting no
more than 150 photos. Therefore, the speculations about the moon are often not showing confirmation in
the reality. The reader is referred to the review book Pappalardo et al. [71] for a global and detailed overview
of the findings for the moon in all its investigated details.

2.1. AN OCEAN WORLD

The state of the art for the description of the Europa’s interior is a silicate core that is covered by a global
H2O liquid ocean. The upper part of the ocean is thought to be far enough from the moons’ internal heat
sources and it is basically formed by ice. Additionally, this extremely cold and brittle ice layer shields and
protect the ocean from the deadly radiation of Jupiter. Europa revealed to possess a curious surface shape
already by studying data coming from the Voyager mission in the late ’70s [99]. The Voyager team observed
that a substantial amount of the surface shows lineament pattern which have been interpreted as cracks.
Already since the very early stages of the Europa investigations, these cracks have been assumed as result of a
continuous deforming tidal effects. Tides on Europa are strong, considering the massive influence of the host
planet Jupiter. The relative absence of impact craters lead the scientists to assume a fast resurfacing surface
and the possible presence of water. Furthermore, IR absorption spectrum revealed a strong signal in H2O [75]
which began to speculations on the possibility of habitability.

Figure 2.1: One of the first images that the Voyager 2 spacecraft

of the Europa surface. Image taken on July 9, 1979. Image credit:

NASA/JPL.

Figure 2.1 shows one of the first pictures that the
Jet Propulsion Laboratory (JPL) internal televisions
were transmitting live [71] from the Voyager space-
craft. Already in this coarse image, the lineament
patterns are evident and they immediately began to
rise up questions and speculations about their char-
acterisation and origins. After Voyager, the two pro-
posed successful extensions for the Galileo mission
had as main target Europa, and a lot more was dis-
covered, henceforth. Galileo first extended mission
from late 1997 to late 1999 was named Galileo Eu-
ropa Mission (GEM), while the second one is the
Galileo Millenium Mission (GMM), performed un-
til the controlled dive of the spacecraft into the
gas giant in 2003. In total, the prime mission and
the two extensions allowed the spacecraft to com-
plete 12 close encounters, with a joint operation
with the Cassini mission for the GMM. The total
amount of pictures that were taken by the Galileo
Solid State Imager (SSI) for the Europa surface are
around 150, with best resolution of 21 m/pixel. Such
a small amount of optical data has definitely under-
constrained the evaluation of the several and in-
triguing problems that raised with the first observations of the moon. Nowadays, two new ESA and NASA
mission, JUICE and the Europa Clipper, respectively, are planned to be launched in the early 2020 with main
target Europa. The successful outcomes for the two missions will definitely help to constrain and to solve
more questions that Europa is posing to the scientific community, beside finding new puzzling findings.

The most relevant evidence for the presence of a subsurface ocean underneath the brittle icy shell is the
fact that the magnetometer mounted on the Galileo spacecraft recorded an induced magnetic field. During
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the extension mission GEM, the two flybys E4 and E14 were specifically designed to capture evidence of a
magnetic field on Europa [48]. The data coming from the magnetometer confirmed that the moon is not
generating a proper magnetic field itself, but some disturbances with the background magnetic environment
(associated with Jupiter) allowed the Galileo team to first speculate abut an induced magnetic field, instead.
It is known that a static magnetic field is decaying and vanishing with the passing of time. On the other
hand, in order to maintain a magnetic field, some energy is required to be constantly added to the system. A
possible physical configuration that allows a magnetic field to be maintained is the Faraday disk dynamo [54].
Assuming that a magnetic field exists and that its stream lines pass through a conductive spinning disk, the
Lorentz force would produce currents flowing outward the disk. If this conductive disk is somehow connected
to a decoupled and non-rotating rim (e.g. a shell connected to the conductive disk rotor), a magnetic field in
the same direction of the original one is created, and therefore sustained. The key elements for the Faraday
disk dynamo are a rotating conductive material and a decoupled/non-rotating outer shell. As consequence,
if an induced magnetic field is present on Europa, the outer frosted shell should be somehow decoupled from
the interior by a conductive and rotating layer. The scientific community explains this with the existence
of conductive global ocean underneath the icy crust. The data of the two flybys E4 E14 were taken in the
northern hemisphere and a further measurement in the southern hemisphere was needed in order to confirm
the induced nature of the field. The pass E26 in early 2000 was specifically designed for that and confirmed
the supposition of the previous magnetic measurements of E4 and E14 [49]. To present, the evidence of an
induced magnetic field on Europa is the key proofs that corroborate the presence of a subsurface ocean for
the moon.

The implications for the actual existence of a subsurface ocean on Europa are multiple and very intrigu-
ing. Among others, the habitability condition for this ocean is claimed to be met. Habitability means that
the environment can potentially host life. Ingredients to host life are one of the key factors that have been
continuously investigated by the scientific community, but complete and universal definitions are difficult
to formulate [61]. Possible dominant factors are the presence of liquid water, energy, nutrients and temporal
stability [54]. Europa is an ocean world that is heated by tidal dissipation from the host planet Jupiter [19].
Nutrients might be given by underwater volcanism that is very likely to be happening on the moon [84], given
the observations of water plumes from the surface [86, 96].

The characterisation of the Europa’s layers is one of the most debated aspect of the moon. The main
information about the vertical stratification came from the Galileo radio doppler data and optical images [11].
In particular, since the first flybys of the moon by the GEM and GMM, the evidence of a layered object, with an
exterior cover of H2O. The first stratification of Europa presents an highly dense metallic core, surrounded by
a silicate rocky mantle is interfacing with the global salty water ocean [1]. Linking data coming from the Deep
Space Network facilities in Goldstone, California, near Madrid, Spain and Canberra, Australia, the Galileo
radar doppler team succeed in evaluate the third degree coefficients in the standard spherical harmonics
representation of the Europa gravitational potential1. Among other outcomes, information constrained the
evaluation of the normalised axial moment of inertia which dominates the global distribution of mass in an
object. The value was calculated as 0.3466, lower than 0.4, threshold for a constant density sphere. This result
imply a moon with a density that increases closing to its centre [54], which was aligned with the claim of an
ice layer as well. Nevertheless, the gravity experiment presented in Anderson et al. [1] could not distinguish
between liquid or frozen water, given the extremely close density value for the two matter state.

The evidence of an ice layer mainly comes from optical observations, beside the necessity of decouple
the liquid interior from the surrounding space, in order to sustain an induced magnetic field [48, 49]. As it
has been said several times already, the presence of lineaments on the surface has been interpreted as cracks
on ice since the first images of Voyager (e.g. Figure 2.1). The wide catalog of features that are characteris-
ing the surface of the moon require a global ocean in connection with a frozen upper layer in order to be
explained [70]. In general, the studies of Europa found evidences of ridges, rifts, chaotic regions, cryovolcan-
ism, lenticulæ, which are strongly supported by the presence of material arising from the subsurface ocean.
The topographic features allowed a rough estimation of the surface age as 50 Myr which is well aligned with
the crater technique analysis that produced a value of 60 Myr [116].

After the missions provided insights in the definition of a vertical stratification for Europa, a lot of nu-
merical models were generated, in order to investigate the behaviour and the characterisation of surface and
subsurface. Although the scientific community is almost agreeing in the explanation of the stratification pro-
posed by Anderson et al. [1], the rheological parameters that describes the moon are still poorly constrained.

1More details on the spherical harmonics representation of the gravitational potential are given in Chapter 4. Potential theory will be

used as key mathematical tools for the current research project.
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Figure 2.2: Europa and Ganymede vertical stratification as produced by the heat balance analysis of [36–38]. The three different models

for Ganymede (upper picture) and the two ones for Europa (lower picture) are differentiated by a different values for the silicate mantle or

the iron core. In particular, Ganymede is assumed to be formed by an iron core (grey sector), a variable silicate mantle (brown sector), an

high pressure ice shell (light blue sector), an ocean (blue sector) and a further elastic shell (light blue sector). On the other hand, Europa

shows an high variable iron core (black and grey sector), a silicate core (brown sector), an ocean (blue sector) and a global ice-I layer

(light blue sector) of almost fixed dimensions. Black numbers are the estimated radii of the two moons. Figure taken from Hussmann

et al. [38].

Values such as thickness of the ice layer, local viscosity and rigidity have large error bars that do not allow
a precise characterisation of the moon. Besides, the numerical models available for Europa shows a huge
sensitivity for these key parameters. A method that allowed an estimation of the ice thickness and of the ver-
tical stratification of the moon is a implementation of an energy balance in the moon, taking into account
the different energy source that are known to be present for Europa, such as the tidal heating. A common
issues between glaciologists is the investigation of the freezing process on glaciers and on ice sheets, and in
particular of the spatial and time scale. This process is studied by the so-called Stefan problem.

The implementation of a 3 to 5 layers viscoelastic Maxwel body allows Hussmann and Spohn [36], Huss-
mann et al. [37] and Hussmann et al. [38] to produce estimation of the ratio between liquid and frozen water.
In the models, energy sources are radiogenic heat from the silicate core and tidal dissipation. heat is trans-
ferred from the central part of the moon toward the outer layers and the different mechanism of transfer
(convection and conduction) are taken into account, depending on the rheological properties of the specific
layer2. For Europa, the silicate core’s dimension plays a key role in the tidal heat dissipation, given the fact
that the tidal forces acting on Europa are order of magnitude higher than the ones on Ganymede [38]. This
particular heat source is the main factor that explain the presence and sustenance of a liquid ocean [65]. It
has been shown that the Rossby tidal waves generated by the tilted rotation axis of the moon are energetically
sufficient to maintain a 100 km liquid water [107]. Results of the heat balance problem present the thickness
for the ocean of a range between 70 to 100 km. Figure 2.2 represents the different interiors model that [36, 37]
obtain by the energy balance for the two Galilean moons. In the current research, particular weight is given
to the superficial ice thickness for Europa.

Nevertheless, for sake of the current research, the dimension of the iron core and of the silicate mantle will
not be taken into account, so the important value to extract from the past numerical models is the ice thick-
ness. Using the data that are available for Europa, it is still not possible to precisely estimate the thickness of
the outer icy layer. Numerical models extrapolate this value by numerous and, sometimes debatable, limita-
tions. A current review for the several attempts of estimating the vertical dimension of the ice layer is referred
as Billings and Kattenhorn [5]. The work contains the summary of the most important papers that debate

2The a-dimensional parameter that governs the transfer mechanism is the Rayleigh number, function of density, viscosity and spatial

scale.
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Layer Outer Radius [km] Density ρ [kg/m3] Rigidity µ [GPa] Viscosity η [Pa s]

Lithosphere 1562 937.0 3.487 1021

Asthenosphere 1557 937.0 3.487 1014

Ocean 1532 1000.0 0 0

Silicate Mantle 1432 3453.6 65.0 1019

Core 600 5565.8 0 0

Table 2.1: 5 layers Maxwell viscoelastic model for Europa, proposed by Jara-Orue and Vermeersen [42]. Brittle ice layer (lithosphere)

measures 5 km, consistent with the review paper of [5].

the thickness of the layer and the simplification/assumptions that the various authors had to face. Beside the
already mentioned thermal models, flexural analysis is an other common method that has been applied to
Europan rifts in order to estimate thickness and elevation of the ridges. On average, the thickness of the ice
layer is estimated to be between 1 and 30 km, depending on the location and on the material characteristics
of the ice [5]. The scientific community is still debating on the composition of the outer layer and the current
data are definitely not sufficient to provide constraints. The extreme outer layer is considered to be extremely
cold and brittle, with an average temperature of 100 K [98]. Thus, the outer layer can be considered as elastic
and this will play a key role in the development of the current research. Considering the elastic behaviour of
the outer layer, the common nomenclature for this portion of Europa is lithosphere, in alignment with the
brittle rocky layer of the Earth. Below, a relatively warm and viscous layer is though to be the interface with
the liquid ocean, although the scientific debate is still on Pappalardo and Barr [68]. This layer is also called as
astenosphere.

For sake of the current research, some parameters had to be constrained. The rheological and physi-
cal properties for the vertical layers of Europa have been reported in Table 2.1, taken from Jara-Orue and
Vermeersen [42]. Important difference between lithosphere and astenosphere is the viscosity, that might be
linked to the temperature via the Arrhenius equation [37]. In Table 2.1 the thickness of the lithosphere (ice
layer) is fixed to 5 km as common value found in the literature [5]. The current research will take as basis
these value but some modifications will be introduced in order to generate a sensitivity analysis for the vari-
ous outcomes presented.

2.2. STRESS AND TIDES

The relative proximity of Jupiter to its four inner moons implies a massive perturbation of their environment.
Since the early explorations of the Jovian environment it was clear that the tides produced by the gas giant
were the key factor for all the geological implications of the surface, evinced by observations. Tides are the
results of the differential gravitational attraction of the moon itself and of the host planet. Tides on Earth can
be easily seen in the oscillation of the sea level, more evident in particular areas rather than others. On the
Galilean satellites’ surfaces there are no visible free water layer, therefore the results of tides are more evident
in geological phenomena on the crust3. Several other stress sources are acting on the brittle surface of Europa
and the scientific community is continuously debating on them. Depending on the different methods or data
used, the implication of different stress source has to be evoked.

A particularly useful mathematical tool that can describe tides is the potential theory. A complete analyt-
ical study for tidal effects is included in Chapter 4 and will be the basis for the implementation of the tidal
stress background for the surface of Europa. For a complete mathematical representation of tides in astrody-
namics problems, the reader is encouraged to look at Souchay et al. [95]. Purpose of the current section is to
present the literature findings that concern stress on the surface of the moon, rather than a pure methodolog-
ical approach, which will be addressed in Part II instead. The stress sources that are supposed to continuously
acting on the moons can be divided according to their time scale, as it has been done in Sabadini et al. [88],
among others. Short time scale sources are due to non-zero eccentricity of the moon’s orbit, to the obliquity
of the moon’s rotation axis and to the libration of the ice shell, decoupled from the interior core by the salty
ocean. Short time scales are considered to be acting every orbital period, meaning the order of days. Longer
time scales are related to more complex orbital phenomena that might reach orders in the time scale of thou-

3Tides are also influencing the moon’s subsurface ocean. For sake of the current research this part will not be treated.
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Figure 2.3: Image taken from Greenberg et al. [18], representing a schematisation of the different tidal components for Europa (E),

generated by the presence of Jupiter (J). In case of a circular orbit, the tidal bulge (black bulge) is constantly facing the host planet (b). In

case of perturbations in the orbital parameters, it is possible to observe migrations of the tidal bulge with respect to its fixed position (c)

and (d). The components that characterise the total tide can be summed up in order to find the full determination of the tidal bulge (a).

sands of years. Nevertheless, the error bar on this value is definitely large and completely dependent on the
method used to calculate it. Long-time or secular stress sources are produced by non-synchronous rotation
of the crust and to true polar wander. As it will become clear in the next sections, secular stress components
are assumed to influence the general environment of the moon by different observational studies that are
not able to understand the presence of certain features otherwise. Purpose of the next sub-sections is the
presentation of the key aspects of the five stress sources, both diurnal and secular.

2.2.1. NON-ZERO ECCENTRICITY

Io, Europa and Ganymede move around Jupiter in a 1:2:4 locked orbit. In other words, the three revolu-
tion periods around the host planet are integer of the orbital frequency of Io, the closest satellite to Jupiter.
A complex dynamical system, such as the described Jovian environment is subjected to a wide number of
perturbations produced by different sources. If these perturbing sources sum up coherently, the outcome’s
amplitude can increase of several order of magnitude [54]. In physics, this phenomenon is called resonance
and the easiest way to picture is with the spring analogue. It is known that physical springs have an inter-
nal frequency, called natural frequency. If one perturbs the springs with an oscillating force acting with a
frequency that is an integer of this characteristic frequency, the amplitude of the spring’s oscillation show a
large amplification, eventually leading to the destruction of the spring itself. The analogue with an orbiting
system is pretty straightforward. Each moon is experiencing the gravitational attraction of the other Galilean
moon, beside the one of Jupiter. Therefore, resonating pattern occurs, given the forcing sources’ character-
istics. Orbital resonance is a particularly complex case to study but the consequences are generally easy to
observe. In the Solar System, resonance is assumed to be the cause of the Kirkwood gap in the asteroid belt,
for example. The asteroids occupying this space of the Solar System are forced to reach large eccentricities
that eventually lead to hyperbolic trajectories. Europa’s eccentricity is forced to be slightly different than zero
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(around 0.0094) by the resonating influence of the other Galilean moons [18, 58]. Given the eccentric orbit,
the distance moon-planet varies every orbital cycle, leading to a varying gravitational attraction hence the
so-called tidal effect.

The stress background due to non-zero eccentricity is historically the first one to be thought of acting on
the surface of the moon. The influence of the neighbour moons prevent them to assume circularised orbits, as
expected by tidal theory [18, 88]. As it will become clear from the mathematical formulation of the tidal stress,
the non-zero eccentricity breaks the longitudinal stress symmetry. If the orbit was circular, the stress would
distribute in a symmetrical shape with respect to the meridian passing by the sub-jovian point. It is possible
to distinguish between fixed and variable tides. The first tidal component is indeed represented by a fixed
tidal bulge that arise in case of a circular orbit4. Variations in the orbital parameters (such as eccentricity)
implies a migration of the tidal bulge Souchay et al. [95]. Figure 2.3 represents the different types of tides
that a moon can experience. Tidal potential theory expects that in case of non-zero eccentricity, the tidal
effects are proportional to the value of the eccentricity itself. The effects that are induced by the non-zero
eccentricity are acting on a diurnal timescale, meaning that the outcomes are potentially observed within the
Europa orbital period around Jupiter. Europan features that require the presence of non-zero eccentricity
are the strike-slips, which need to be formed by a variating stress source. More on strike-slips on Europa
will be presented in the next chapter. Concluding, non-zero eccentricity will be key acting sources in the
development of the current research project.

2.2.2. NON-ZERO OBLIQUITY

Additionally to the diurnal stress induced by the non-zero eccentricity, non-zero obliquity is assumed to
influence the stress pattern over the surface of the moon. Instead of introducing a longitudinal stress re-
distribution, the inclination of the rotation axis causes a latitudinal asymmetry with respect to the equator.
Nevertheless, the amount of axis inclination is still poorly constrained. The reasons why a slightly tilted ro-
tation axis needs to be considered for Europa, as well as for the other Galilean moons can be found in both
theoretical and observational works.

On the observational point of view, the presence of non-zero obliquity was shown to be key in order to
understand the presence of cycloids, for example [35, 82]. On Europa, cycloids are peculiar features that
assume the shape of a multiple serie of arches. More on cycloids will be presented in next chapter. Non-zero
obliquity and the related asymmetry in the latitudinal plane help the explanation of the curious cycloidal
pattern of several features. The influence of inclined rotation axis on strike-slips is still argument of discussion
[82]. Fitting the observation with the numerical models that include non-zero obliquity, it has been possible
to induce an amount of inclination that ranges from 0.2° to 1.35° [83]. Nevertheless, as observed in Baland
et al. [3] these assumption are merely related to the specific cycloidal features under investigation and does
not imply that the moon is actually tilted that much. The dynamical history of Europa can be very complex
and the features observed can be heritage of a past configuration of the moon.

Theoretically speaking, the non-zero obliquity can be derived by a mathematical study built on a simple
secular variation model for the Jovian system, that includes Io, Europa and Ganymede [6]. The outcome of
this analysis shows small forced obliquities for the satellites. Small non-zero obliquities are expected also by
the analysis of the so-called Cassini state model [3]. In 1693 an Italian scientist, Giandomenico Cassini stud-
ied the motion of the Moon around the Earth. The Cassini state-model describe the motion of a satellite that
satisfy three general laws: it orbits the host planet in a tidally locked pattern (also known as synchronous rota-
tion), the inclination of the rotation axis is a constant value with respect to the orbital plane and the rotation
axis itself belongs to the intersection between the plane perpendicular to the ecliptic and the one perpen-
dicular to the satellite’s orbital plane [73]. More studies, such as Peale [73] included variation in the orbital
parameters for the Cassini state-model (an example is the addition of the physical libration of the crust) and
therefore extended the validity of the model to satellites other than the Moon. Baland et al. [3] used the
Cassini model in order to calculate the eventual obliquity of the rotation axis. The results are slightly different
from the ones obtained by observational fitting techniques such as Rhoden et al. [82, 83], as already men-
tioned. The amount of rotation axis according to Baland et al. [3] reaches an order of magnitude of around
0.04° in case of no-ocean and of 0.055° in case of a global ocean. The discrepancies between theoretical and
observational point of view can be due to the different orbital state used by Rhoden et al. [83] and Baland et al.
[3]. Nevertheless, for the sake of the current project an inclination of 0.5° was chosen, being a compromise
between the different opinions encountered in the literature review.

4Excluding natural oscillation from the equilibrium position, phenomenon that is also called as physical libration.
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A further theoretical work that investigates the outcomes of a potential non-zero obliquity is Tyler [107].
According to the paper, the inclination of the rotation axis would produce large Rossby waves in the subsur-
face ocean. These would be one of the key actors that keep the ocean in a liquid state. The kinetic energy
of these waves is theoretically a thousand times higher than the one of the flow induced by primary tidal
components. The heat produced by their dissipation is already enough for small values of non-zero obliquity
(around 0.1°).

2.2.3. LIBRATION OF THE DECOUPLED SHELL

The variation in the gravitational attraction that occur within the orbital cycle due to non-zero eccentricity
has effects that go beyond the pure variation of stress, phenomenon addressed already in the previous sec-
tions. The tidal bulge of the icy moon is forced to oscillate in longitude5 as it happens to every system that
tends to reach equilibrium. This oscillation, that would also happen even in a circular orbit, is called physical
libration of the crust and it is composed by a free and a forced component [34, 80]. Free libration depends
on the shape of the satellite’s interior and it is supposed to be damped if its frequency is not commensurable
with the orbital period. The forced libration is linked to the gravitational torque of Jupiter, hence the forced
frequency of libration is the orbital motion itself, while the amplitude depends on the physical properties of
the moon. Particularly useful in the investigation of the satellite’s physical libration is the studying of ampli-
tude and phase of the different components that induce the tidal bulge to oscillate in longitude. A complete
mathematical formulation for the dynamical response for the libration of the crust is included in Rambaux
et al. [80]. The work uses the mathematical setup of a solid shell that cover a global ocean. The modelled
satellite is spinning in a synchronous rotation around Jupiter. Results are the frequency spectrum in the li-
bration response of Europa that characterise short and long period librations. The former has frequency that
are close to half the orbital motion (twice the orbital period) and characterises the interior parameters of the
satellite while the latter are substantially independent from the stratification properties.

Among others, Rhoden et al. [82] used geological features in order to constrain the parameters that char-
acterise the physical libration of the crust. This work presents an approach that is completely different from
the just mentioned Rambaux et al. [80], since it uses observations to fit the dynamical parameters. Results are
other sets of phases and amplitudes based on single cycloids mapped on the surface. The discrepancies that
emerged with the comparison with the mathematical model of Rambaux et al. [80] need to find validations
and proofs that can only come from new missions’s data.

2.2.4. NON-SYNCHRONOUS ROTATION

So far, the current section has described deforming sources that are acting on Europa on a short timescale,
meaning that stress variation can be observed within one orbital period of the moon around Jupiter. From this
observation, these sources are called diurnal effects. Since the very early stages of the investigation of Europa’s
surface, already with the images and data coming from the Voyager spacecraft, a long term component in the
stress has been evoked. Indeed, a long-term, also known as secular, component in the deforming field would
allow the stress to reach higher values and eventually lead to the failure of the cold ice [17, 23]. If one considers
the ice on the moon as a cold and brittle material, the tensile strength, the ultimate threshold for the failure of
the structure can be considered to be 100 KPa [18, 20]. Tidal theory that takes into account diurnal timescale
stress provides that the maximum stress limit reached by the surface is of 30 times lower than the tensile
strength, i.e. around 40 KPa [18, 44]. This large gap between the ice failure and the stress reached by the
diurnal effects lead the scientific community to speculate about the potential presence of longer timescale
deforming actors, that together with the fatigue induced by multiple orbital cycles would permit the ice to
break.

A large number of satellites in the Solar System are trapped in the gravitational lock of their host and
massive planet. If the satellite is always facing the planet with the same side, this behaviour is called tidal
locking6. A moon is tidally locked to the planet because the tidal bulge that is arising from the differential
gravitational attraction (tide) tends to accelerate or slow down the rotation of the satellites itself in order to
balance the different torques that are generated [54]. The result is that the revolution of the satellite around

5Of course, assuming a non-zero obliquity would imply the tidal bulge to slightly oscillate in latitude. For the majority of the case this

can be simplified as zero [80]
6Clear example is our Moon facing the Earth with the same side. The other side of the Moon is also known as Dark Side of the Moon for

this reason.
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NS rotation Reference

25°−50° McEwen [58]

60° Greenberg et al. [18]

60°−95° Geissler et al. [15]

360° Geissler et al. [14]

360°−720° Figueredo and Greeley [13]

720°−900° Kattenhorn [44]

Table 2.2: Non synchronous rotation amount as expressed in the literature. The huge discrepancy has been pointed out by Kattenhorn

[44] and it is due to the different geological features that have been studied in the addressed works.

the planet and the its self rotation assume the same period. This phenomenon is also called synchronous
rotation of the satellite with its host planet.

The Laplace resonance that has been already mentioned when talking about the forced eccentricities
assumed by the Galilean satellites, is thought to be one of the main theoretical reasons why Europa might
have a rotation around its axis that is slightly faster than its revolution around Jupiter. The modified inertia
tensor that is generated by the eccentric orbit, would force the moon to rotate faster, on average, than a
synchronous motion [17]. This would mean Europa rotates non-synchronously with Jupiter, from where the
terminology non-synchronous rotation (NSR).

Beside the theoretical argumentation that would prove the non-synchronous rotation of the exterior crust
with respect to the orbital revolution, some insights that can confirm this phenomena come from the obser-
vational point of view. The stronger evidence of NSR is seen in the northern hemisphere, where the features
in the so-called Bright Plains region can be better explained with a secular clockwise rotation of the stress
field [44]. In more specific, a couple of features7 passing by the Bright Plains and the Conamara Chaos region
need at least a couple of complete reorientation of the tidal stress on the crust, in order to fit the models. A
couple of cycle of reorientation means that the NSR can be measured as at least 720°. This value is definitely
higher than the ones proposed in the literature before Kattenhorn [44], because of the peculiar configuration
of the Bright Plains region. The differences between the actual amount of NSR that have been encountered
in the literature survey are summarised in Table 2.2 which was rearranged from the paper of Kattenhorn [44].
As it can be seen in the table, the amount of crust reorientation slightly varies from a quarter of a full cycle to
a couple of them, by taking into consideration different areas of the moon.

In addition to the clear uncertainties that are mining the correct estimation of the amount of crust reori-
entation that has occurred on Europa, there are multiple open discussions when defining the actual reori-
entation rate; in other words the effective difference in the spinning of the crust with respect to the (tidally
locked) interior. According to the milestone papers about the dynamical study of Europa e.g. Hoppa et al.
[28] and Greenberg et al. [18], the NSR period is estimated to be of around 104 years. As a matter of fact, sev-
eral observational investigations have been proposed in order to validate this number, but more geological
data are needed and the rate of NSR is still heavily doubted. In the current research, the rate of NSR will be
included in the sensitivity study of the model produced.

2.2.5. TRUE POLAR WANDER

True polar wander has been firstly assumed to be a relevant phenomenon for the Earth dynamics at the
end of the 19th century by astronomical observation [87]. Two periodic drifts were in fact calculated from
astronomical data, which were immediately related to the free nutation of a rotating and deformable body
such as the Earth. On the other hand, any potential connection to continental drift was discarded. The
filtered periodic drift can be seen as a secular movement of the rotation axis of the Earth, from here the
name polar wander. The secular drift that is not corrected from the mentioned continental motion is also
called as apparent polar motion while the corrected polar wander is called true polar wander (TPW). The
motion is always calculated with respected to fixed terrestrial hot spots8. Hot spots are assumed to be results

7Agave and Asterius Lineæ.
8One of the most notorious hot spot on Earth, is the Hawaiian archipelago in the middle of the pacific ocean. In particular, The hot-spot

is located below the Big Island of Hawaii.
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(a) (b)

Figure 2.4: Global colour mosaic for the surface of Europa and stress map that accounts for TPW, taken from Schenk et al. [92] as a digital

elaboration of Voyager, Galileo and New Horizon images. In Figure 2.4a, the areas within orange lines are containing strike-slips or pulled

apart features used to match the observation with TPW models. The heavy black line roughly divide the two areas of the moon containing

the two orange sectors. Blue and green lines are small circle depression and wavy lineaments, respectively. Figure 2.4b represents a stress

map with an addition of 80° of crust reorientation due to TPW. Palaeo-pole locations are marked with solid dots while initial tidal axis are

marked with solid triangles. The short red lines, grey crosses and blue lines indicate directions of the expected normal, strike-slip and

thrust faulting, respectively. Again, black lines separate these tectonic regions. Shaded regions and contours correspond to deviatoric

stress in units of MPa.

of the shallow upper mantle activities and these are usually assumed to be crossing the upper layer of the
Earth relatively undisturbed, reversing material directly to oceans or to continents [87]. Therefore, these can
be considered as fixed points with respect to the migrating oceanic and continental plates. Subduction of
terrestrial plates, mantle convection and the redistribution of surface load are thought to be the key factors
that drive TPW. Example is the post-glacial rebound which is assumed to be a lithosphere reaction to the
melting of the large ice sheets that once covered large parts of the northern hemisphere. Such a relatively
rapid loss of surface load is considered to trigger a counter effect of the lithosphere that in some parts of the
world is constantly changing its height with respect to the geoid. A complete analysis of TPW goes beyond
the scopes of the current research and the reader is referred to Sabadini and Vermeersen [87] or Peltier [74]
for further details.

Key finding that is taken from the TPW description is that a redistribution of loads on the surface of a
deformable planet can trigger the rotation axis to migrate. Similarly to what happens on the Earth, Europa
tidally deformed figure is assume to experience masses redistribution. The evidence comes from observa-
tions obtained for the icy surface which contains features that could be only explain with a polar migration
theoretically described by TPW theories [53, 66]. More in specific, a progressing thickening (or thinning) of
the ice crust would induce a variation in the moon’s inertia tensor followed by a reorientation of the rota-
tion axis. The work of Schenk et al. [92] represents the most recent development in terms of TPW analysis
deduced from observational data. In 2007, on his way to Pluto, the New Horizon mission transmitted the
most recent images for the surface of Europa. A certain amount of features, mapped on a combination of
Voyager, Galileo and New Horizon images, allowed the research team to match the geometry with a 80° reori-
entation of rotation axis due to TPW stress. Figure 2.4a shows these areas with an orange contour, separated
by a rough division of the two hemispheres (black solid line). On the other hand, Figure 2.4b represents the
Europa stress map with an addition of 80° of crust reorientation due to TPW, over a global colour map of
the Europan surface. Solid dots are palaeo-poles while initial tidal axis are marked with solid triangles. The
short red lines, grey crosses and blue lines indicate directions of the expected normal, strike-slip and thrust
faulting, respectively.

Concluding, TPW similarly to what happens for NSR, is thought to induce a crust reorientation and a
following stress redistribution. Timescales of this two source are not known but considered to be orders of
magnitude higher than diurnal effects.



3
OBSERVING THE ICY SURFACE

In the last chapter the most recent description for the interior characterisation and the stress condition on Eu-
ropa has been addressed in details. Key finding is that an icy shell covers a global H2O ocean. The brittle crust
is continuously deformed by the effects of tides and other stressing sources, that act at different timescales.
Diurnal tides and secular stressing phenomena are the key actors that force the icy surface to change shape
(e.g. in terms of tidal bulges) and, eventually, to initiate and propagate rifts.

During the years of Europa’s exploration by the Voyager and Galileo missions, images and data have shown
a curious aspect of the Europa’s surface. Lineament features and other surprising patterns have been ob-
served on large areas of Europa’s crust. Their aspect suggests unambiguously the presence of fractures in the
ice, which are likely to be intimately linked to the lineament patterns. In other words, lineament features on
Europa seem to be related to tensile stress and presumed to be resembling rifts of the ice. It is logical to imply
that extension of the lithosphere might lead the brittle ice to reach tensile strength and hence to fracture. A
little amount of features that resemble compression of the lithosphere have been also observed on Europa
(e.g. in the work of Prockter and Pappalardo [77]).

As substantially described in Greenberg et al. [18], stress due to non-synchronous rotation of the crust, to-
gether with diurnal tidal effects (non-zero eccentricity) are sufficient to explain the several major lineaments
observed on the surface of Europa. Nevertheless, by assuming the effects of non-zero obliquity, physical
libration of the crust and true polar wander, further insights and more accurate models can be produced,
especially if taken as basis for the proposed numerical analysis of crevasses on Europa. Moreover, potential
theory will be presented in chapter 4 as a good analytical and numerical tool for the stress field build up and,
as consequence, for the crack propagation.

The current research will apply the necessary constraints that the stress field, caused by the different
contributors, pose on the brittle surface. After that, a fracture mechanics analysis will be issued in order
to explain the mechanisms of deforming the crust, until reaching the point where the ice cracks eventually
propagate. Additionally, diurnal tides will act on the opening generating oscillating phenomena, whose dy-
namical description is also part of the simulations. An important first step toward the research goal has been
already carried out in chapter 2 where stress contributors and Europa’s stratification have been analysed in
their qualitative details. The following chapter will summarise the key aspects of the characteristics shown
by the different observed lineament patterns on Europa. Generally speaking, rift formations on Europa can
be distinguished in ridges, strike-slips and cycloids. The first two categories have several similarities with ter-
restrial formations and will be described in section 3.1 and 3.2, respectively. The third category is intimately
linked to the curious Europan stress conditions and its characteristics will be presented in section 3.3. These
three groups have been distingushed in order to clarify predominant characteristics of specific features of the
moon. In reality, it is very rare to find perfect examples that belong to a single group. More likely the features
have properties that combine the formation of ridges, lateral displacement and cycloidal shape at the same
time.

An accurate attempt of explaining the formation of the different features that Galileo and Voyager cap-

17
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Figure 3.1: Current models for explaining the formation of the cracking features observed on the brittle surface of Europa [2]. A-D from

Pappalardo et al. [70]. E represents the effects of heat generated by friction due to shear stress, from Nimmo et al. [64]. In particular, B

is the effect of diurnal tides as explained in Greenberg et al. [18] and Pappalardo and Coon [67] and in section 2.2 of the current work.

Further details in the text.

tured on the surface of Europa is given in Pappalardo et al. [70], enriched by Aydin [2] and schematically
represented in Figure 3.1. In the image, Figure 3.1A shows the cryovolcanism model, firstly proposed by
Kadel et al. [43]. The model describes the formation of rifts and fractures with the several explosions due to
the low temperature volcanic mechanism termed as cryovolcanism. Differently to Earth volcanism, driven by
extremely high temperature characteristics of silicates in the mantle, the water, ammonia and other volatiles
are at very cold states. Hence, a small variation in the temperature could lead the materials to flow and pres-
surised volatiles’ chamber can be ejected at very high speed [110]. The latter are supposed to be the cause
of the plumes that have been observed in the icy moons in the Solar System such as Enceladus [10]. Just
recently Europa showed plumes from equatorial and southern regions that might confirm the presence of
cryovolcanism on the Jovian moon [86, 96]. Figure 3.1B represents the relatively opening and closure of a
crack generated by alternation of tensile and compressional stresses produced by diurnal tides and already
addressed in section 2.2. The mathematical representation of this process will be presented in chapter 4. It
has also been proposed that some features could be explained with the solid-state convective process called
diapirism, firstly proposed for Europa by Pappalardo et al. [69] and schematically shown in Figure 3.1C. This
phenomenon consist in the geological intrusion of warm and relatively low density material that arises buoy-
antly above the surrounding colder environment. The assumption that this model is valid for Europa would
positively explain the presence of pits, domes and spots, which are common on the surface [18, 19, 68, 69].
The acceptance of diapirism may have the consequence of refusing the effective presence of a liquid water
ocean, assuming a global solid-state convection. Nevertheless, since the first proposal of such a model for
the H2O layer [69], these implications have been strongly contested and discussed. Other researches, pro-
duced models that strongly require presence of a water layer in order to form diapir formations, e.g. Nimmo
[62], Pappalardo and Barr [68], Rathbun [81]. It is important to notice that Chaos regions are assumed to
be mainly formed by diapiric extrusion [91] or, in any case, by effects of convective phenomenon. Diapiric
formations such as pits and domes will not take place in the current research. Figure 3.1D represents the
generation of folds or wedge ridges, mainly due to compressional forces, also addressed in Prockter and Pap-
palardo [77]. This group represents the minority of the features observed on the surface, surpassed in amount
by large presence of extension mechanisms on the surface, which will be presented throughout the develop-
ment of this chapter. Figure 3.1E represents the deformation of the crust that might be due to the shear
heating as proposed by Nimmo et al. [64] and better explained when talking about strike-slips (section 3.2),
where shear stress is dominant. Despite the wide catalogs of models that have been proposed in the history
of the discovery of Europa, the current literature review concentrates the focus on tidal stress, superimposed
to the secular forcing due to reorientation of the crust as presented in section 2. The reason is that tidal stress
can be studied by using relatively simple mathematical tools such as the potential theory. The models pre-
sented so far are useful to understand the full variety of features observed on the surface but will not be used
in the current research.

Additionally, the geological analysis of ridges and in general, of all the fracturing patterns on Europa, have
been the major contributor for the validation of the ice shell vertical dimension, which can only be calculated
by theoretical models. Examples are Billings and Kattenhorn [4, 5], which confirmed the average range of 1-30
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Feature Name Length [km] Central Coordinates

Agave Linea 1440 273.1°W, 12.8°N

Agenor Linea 1496 213.5°W, 43.8°S

Alphesiboea Linea 1438 175.9°W, 25.1°S

Asterius Linea 1943 122°W, 14.9°S

Belus Linea 2437 231.4°W, 9.3°N

Cadmus Linea 3584 191.7°W, 38.7°N

Drizzlecomb Linea 1500 111.7°W, 7.7°N

Euphemos Linea 1250 45.7°W, 11.4°S

Harmonia Linea 1154 171.7°W, 28°N

Hyperenor Linea 2996 324.4°W, 12.1°S

Mehen Linea 1500 236.7°W, 56°N

Minos Linea 2170 195.2°W, 47.2°N

Pelorus Linea 1535 188.3°W, 19.8°S

Phineus Linea 2004 319.9°W, 29.8°S

Rhadamantys Linea 1747 200.5°W, 19.3°S

Sparti Linea 1600 245.5°W, 59.3°N

Telephassa Linea 777 177.2°W, 0.8°S

Tormsdale Linea 875 258°W, 47.7°N

Udaeus Linea 2050 239.4°W, 48.6°N

Yelland Linea 186 196°W, 16.7°S

Table 3.1: List of a selection of 20 lineament features observed on the surface of the moon, including their length and their central

longitude and latitude. Data from IAU.

km present in the rest of the literature on Europa. The corroboration mainly comes from geological study of
ridge flexure of flanking cracks. It is clear how the study of the lineament features that Europa shows is a key
aspect in the description of the global environment of the Jovian moon, since ridges, strike-slips and cycloids
are the visible effects of the huge oscillations of stress on the icy surface.

It is important to highlight that several terrestrial analogs with Europan features have been proposed
throughout the years, and these will be pointed out in the developing of the following sections. The reasons
of giving large importance to the Earth analogs are principally two. First of all, it is easier to drawn general
conclusions for geological formations that the scientific community is familiar with. Thousand of papers and
researches are investigating Earth rifts, under different aspects, while for Europa a lot of work is still lacking.
Secondly, the proposed research will use a fracture mechanics model that have been developed exclusively
for Earth ice shell and it has strong capabilities of model terrestrial cracks. The idea of the proposed research
is to tune this Earth model with boundary conditions for Europa, and to investigate the dynamical behaviour
of cracks.

Voyager, Galileo and New Horizon images picturing the surface of the moon have been digitalised in one
single map that is now representation of the highest quality aspect of Europa. The current research and in
particular the numerical algorithm that is produced in order to find critical depths for the crevasses, takes as
basics this map, also reported in Figure 3.2. The map is a product of the International Astronomical Union
(IAU)1. As it can be seen from the map, the lineament features presents extremely large dimensions for the
crevasses. Many features cross more than half of the surface dimension, meaning values larger than the radius
of around 1500 km. The list of a selection of features that are also used as target for the simulations of the next
Part are included in Table 3.1 also taken from IAU data1. Maximum crevasses length are of 3500 km and at
such spatial scales no analogues with terrestrial crevasses can be drawn.

1http://planetarynames.wr.usgs.gov/Page/EUROPA/target, last view on October, 15th 2017

http://planetarynames.wr.usgs.gov/Page/EUROPA/target
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Figure 3.2: Global Map of Europa, where the main lineament features have been labeled in white. This map is the latest version for the

Europan surface aspect and it has been produced by images of Galileo and Voyager, with elaboration of the International Astronomical

Union. Free access to the interactive map of Europa and lineaments nomenclature on the website of IAU.
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3.1. RIDGES
Ridges are probably the most common group of features that have been observed on the surface of Europa
by Voyager and Galileo programmes. An useful definition, though qualitative, can be that a ridge is an accu-
mulation of material due to some sort of forced extrusion or ejection of material from an icy rift. On Earth,
common types of ridges are the one generated when large plates of ice shelves are compressed and/or sheared
among each others. Examples can be observed in the large shelves of Antarctica, where terrestrial tides force a
relatively thin chunk of ice to impact and compress again an other. Besides, an other common phenomenon
that is associate to material ejection from a rift can be see at the bottom of the Atlantic Ocean, where the so-
called mid ocean ridges continuously produce new lithospheric material coming from underneath the ocean
floor. Terrestrial mid ocean ridges are associated with volcanic episodes that occur at the boundary between
two tectonic plates in phase of separation from each other. On Europa, the formation of ridges is strongly
related to the tidal stress field build up on the surface, but most importantly to its frequent variation in time
(also known as diurnal tides). In chapter 2, it has been shown that secular components contribute to the pro-
cess of deformation. Differently to what happen in the large ice shelves on Earth, Europa has no open ocean
where the ice chunks can float. Therefore, the global ice layers are forced to be continuously compressed and
stretched, maintaining approximately the same geographical position2.

Talking about experimental works, it is interesting to report the paper of Manga [56], who built a wax
experiment, with the purpose of simulating the formations of cracks on a test closed domain. The experiment
is based on the cooling of a wax layer until it reaches the solidification point. After that the layer is deformed
cyclically, allowing the simulation of diurnal tides effects and secular components, such as NSR. Once the
generation of a frozen shell above a liquid layer is complete, the analogs with the Europan global description
is set. A moving plate perpendicular to the layers plays the role of the deforming source. Introducing scaling
a-dimensional parameters, the research could observe similarities between the wax cracks and the Europan
rifts, in particular with ridges and dilatational bands, by playing and tuning these coefficients. An important
a-dimensional parameter is the dilation coefficient which will be reported in the following equation and used
in the development of the section. This coefficient has been firstly proposed by Tufts et al. [106].

γD = net secular dilation during one cycle

amplitude of diurnal opening during one cycle
(3.1)

The coefficient γD in the ratio between the secular dilation3 rate during one Europan day and the amplitude
of opening rate due to diurnal tidal effects. The wax experiment proposed by Manga [56], though the obvious
limitations in terms of simulating the complex deformation sources on Europa, achieved positive outcomes
in the contribution of crust reorientation due to NSR on ridges and on dilatational bands. Additionally, the
usage and the variation of the dilatation parameter, together with other a-dimensional numbers (e.g. the
Rayleigh number which governs the distinction between conduction and convection), allows a sensitivity
study about how the layer deforms with changing the key rheological characteristics.

A consistent and useful classification of ridges on Europa, which is still the baseline for the most recent
researches related to the analysis of superficial features, is the one proposed by Greenberg et al. [18]. The
classification is qualitatively based on the optical aspect of the ridge. Indirectly, this is linked to the age of
the feature, as it will become clear later. According to Greenberg et al. [18], on Europa it is possible to de-
tect simple pair of ridges (Class I), multiple subparallel lines of ridges (Class II) and formations consisting
of mutually crossing ridge complexes (Class III). Figure 3.3a represents a typical Class I ridge in the area of
the Bright Plains, imaged by Galileo during the flyby E6. This lineament has been named Androgeos Linea
(14.7°N, 273.4°W). This type of ridge should have been generated in a period of 30000 years approximately.
The accumulation of material has assumed to be largely influenced by the frequent effects of oscillating diur-
nal tides. In particular, a proposal for the generation of ridges consists in the continuous opening and closure
of the fracture which leads to the ejection of material from the ocean to the surface [67]. That would cause
the formation of an accumulated amount of material at the top of the rift. Figure 3.3b represents a typical
Class II ridge (4.7°N, 325.7°W). The difference with the former type of ridge is only given by the fact that Class
II presents an evolution in terms of extension, that has occurred for the surrounding lithosphere. Multiple
crack lineaments have formed parallel to the central though, due to the relatively large time period of diurnal
tide action. Finally, Figure 3.3c shows a Class III type of ridge which is assumed to be the oldest of the three

2Not considering reorientation of the crust, namely true polar wander and non-synchronous rotation. These phenomena deeply modify

the shape of the crust.
3In the current document, the term dilation and dilatation have the same meaning and will be both used.
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(a)

(b)

(c)

Figure 3.3: Classification of Europan ridges introduced by Greenberg et al. [18]. Further information and geographical coordinates of

the lineaments in the text. (a) Class I ridge in the area of Bright Plains, from Galileo images taken during the flyby E6. A central rift is

surrounded by accumulated material, due to the progressive opening and closure of the fracture. Several other Class I ridges can be

seen in the same picture. (b) Large Class II ridge. The central rift represents a spreading centre. Dilatation processes generate multiple

subparallel lineaments which resemble further cracks, surrounded by smaller ridges. (c) Class III type of ridges. The picture shows Agave

Linea, nearby Conamara Chaos region, as imaged from the Galileo E6 flyby. The presence of intersecting lineaments suggests that this

kind of ridges is the oldest of the three classes. It is possible to notice other dated Class 3 ridges crossed by Agave Linea.
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groups. This image represents a mature Europan lineament named Agave Linea (12.8°N, 273.1°), which is
crossed by relatively younger features, and crosses, itself, relatively older features. Due to the prolongated
time under the effects of diurnal tides, water and material from the deeper layer of Europa might have found
the possibility of flowing on the surface, generating multiple intersecting patterns and features that are sim-
ilar to secondary canals. The reddish colour that these features shows in true color images, might be due to
silicates or even organic material coming from the ocean [19].

As previously mentioned, ridges are assumed to be generated by the ejection of material from a crack,
due to the progressing squeezing of the two side of the rift in time. Pappalardo and Coon [67] firstly proposed
an analog between ridges on Europa and on Earth. Terrestrial sea ice is assumed to crack after the tensile
strength is reached. After that, the forced opening and closure of the fracture generates the ridge. In the work
of Pappalardo and Coon [67], a 4-phase sequence analogous to Earth-based processes is set for a general
Europa’s rift formation:

1. When the non-synchronous stress, together with the diurnal component has reached the ice tensile
strength, a crack might form. Liquid water from the underneath ocean arises, filling the gap just formed.
The new liquid surface starts to freeze, generating an Arctic-like thin ice layer also termed ’lead’.

2. After some hours, the stress field changes orientation and the crack begins to close. The thin lead layer
is forced to be destroyed and new liquid is accumulated near the top of the crack.

3. The crack approaches closure. The new material is squeezed toward the ocean and toward the top of
the ice shelf, forming a ridge.

4. During an other diurnal cycle the process starts again, leading to accumulated material on the top of
the shelf.

In Pappalardo and Coon [67], this process is assumed to be due by the mutual interaction of diurnal tides and
NSR only. Nevertheless, the interaction of TPW, non-zero obliquity and physical libration of the crust may
induce further accuracy in the model.

The 4-phase opening-closing cycle directly suggests the presence of a sort of dilatation phenomenon on
the surface of Europa, since new lithospheric mass is forced to reach the surface (e.g. the results that the wax
experiment of Manga [56] that addresses dilational band analogs). On Earth this happens, for instance, at
the bottom of the Atlantic mid-ocean ridges, where continuous material is ejected from the cracks and leads
to dilatation of the lithosphere. On Europa, bands and ridges are elements that suggest a strong and evident
presence of lithospheric extensional phenomena. Tufts et al. [106] firstly proposed that diurnal tides, super-
imposed to secular stress deforms a crack within one Europan day in a way that new material is continuously
ejected and accumulated on the top of the rifts. The progressive effects of diurnal opening and closing of the
crack [67], prolongate this effect in time and the amount of material that arises from the lower part of the
crust is forced to move away from the crack, replaced by new emerging mass. Key parameter that governs the
extension of lithosphere in the model of Tufts et al. [106] is the dilation parameter γD , already presented in
Equation 3.1 while talking about the wax experiment of Manga [56]. This a-dimensional parameter consists
in the secular rate of dilation during one Europan day (e.g. NSR) on the rate of dilation due to diurnal tidal
cycle (i.e. non-zero eccentricity and non-zero obliquity). Small values of γD imply a huge accumulation of
material on the top of the cracks, hence of the formation of high ridges. On the other hand, large values of
γD represent evident extensional phenomena which lead to the formation of small and spread-out bands.
Extremely large values of γD imply no visible effects of crack closure due to diurnal tides, therefore continu-
ous ejection of material is suggested. The model of Tufts et al. [106] allows an accurate description of Class
II ridges (as classified in Greenberg et al. [18]), of dilation bands and of strike-slips, which are linked to tidal
walking. Moreover, it investigates several Galileo images and produces a model that is able to explain exten-
sional phenomena of the Europan lithosphere. Some years after, this model has been positively applied to
Earth rifts as well. Hurford and Brunt [32] adopted the model to a crevasse that was generated in the large
Antarctic Ross ice shelf in 2005. By changing the dilatation coefficient from ratio of dilatation rates into ratio of
dilatation amplitudes, the process was better explained. Already in Tufts et al. [106], the researchers claimed
that further corroborations of the model with terrestrial rifts was needed, in order to extend the range of va-
lidity of the model. The crack propagated in 2005 from an existing notch nearby the calving line. In Figure
3.4a an aerial picture of the crevasse has been reported. The locations labelled NN and NS in the picture are
surveying stations that allowed the detection of GPS signals. Using GPS measurements, it has been possible
to extract via inverse problem the velocities of the ice shelves that were separated by the rift. According to
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(a) (b)

Figure 3.4: (a) Aerial photograph of the rift formed in 2005 in the Ross Ice Shelf, Antarctica. The rift was generated by the propagation

of a fracture from the calving front. NS and NN are surveyed station, from which GPS measurements have been taken. The image is

coming from the work of Hurford and Brunt [32]. (b) Measurements of rift dilatation in the Ross Ice Shelf in Antarctica [32]. The trend

of the data interpolation fits with the model proposed by Tufts et al. [106] for explaining dilatational phenomena for the Europan crust,

represented by the secondary image on the right corner. This is the prediction for the trend of the normalised dilatation parameter γD

(Equation 3.1), as function of time.

the theoretical predictions, the effects of oceanic tides on the two flanks of the ice sheet fit with the dilatation
process presented in Tufts et al. [106], that was produced to explain the dilatation phenomena on the surface
of Europa. Elaboration of data coming from GPS allowed the discovery of both secular widening and diurnal
tidal motion in the area of the Ross Ice Shelf, similarly to what happens on Europa. Figure 3.4b represents
the results that the GPS measurements produced for the addressed rift. The changing distance between the
two sides of the fault is shown as function of time. In the same picture it is also possible to observe the pre-
diction for the normalised dilatation parameter as function of time, coming from Tufts et al. [106]. The two
graphs present a small misfit that allows the Europan dilatation model to be positively applied to terrestrial
formations. The positive results that the model of Tufts et al. [106] produced on terrestrial formation, have
been a major corroborator for the explanation of extensional phenomena on Europa as imposition of secular
components to diurnal tidal deforming effects.

Additionally to the positive terrestrial analogs pointed out by Hurford and Brunt [32], the work of Prockter
et al. [78] compared Europan dilatation processes to terrestrial mid-ocean ridges, in particular to the ones at
the so-called Rejkyanes Ridge, close to Iceland. Several characteristics of terrestrial mid-ocean ridges and Eu-
ropan formations are close, but the forces that are driving the processes are considered to be quite different.
On Earth, it is clear how the extensional process is directly linked to the subduction of plates. In other words,
a terrestrial tectonic plate that is assumed to resemble lithospheric dilatation on one side, directly implies
subduction of other sides of plates. This process might cause episodes of volcanism. Indeed, the subduction
of the lithosphere drags sediments in lower and warmer layers of the Earth, which may cause the reaching of
the melting point, and thus the generation of volcanism [54]. It is the case of the Ring of Fire, surrounding
the Pacific Ocean. On Europa, presence of subduction has been proposed by recent studies of Kattenhorn
and Prockter [46]. Among others, the evidences are related to the abrupt interruption of some lineament pat-
tern that should be only given by subduction of tabular zones. The strongest source that drive extensional
phenomena is again the tidal forcing and the not perfect closure of cracks [106].

Concluding, the process of dilatation directly suggests that an increased amount of material is reversed on
the surface of the moon. Dilatational bands are assumed to be the key elements that resurface the Europan
surface [78]. The only effects of subduction, might not be enough to determine where the new material
is forced to move. On Europa, some compressional ridges have been detected. The work of Prockter and
Pappalardo [77] and Schulson [94] found on Europa geological features that can be assumed to be generated
by compressional stress. These have the aspect of folds and wedge-cracks. According to other points of view, it
has been suggested that the accommodation of material coming from underneath the crust, can be related to
the generation of chaotic regions [18] Nevertheless, the amount of compressional formations is definitely the
minority of the Europan features. The lack of compressional features and the large presence of extensional
ones have been already addressed when talking about the predominant effects of extensional dynamics due
to thickening of the ice shell [63].
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3.2. STRIKE-SLIPS

Ridges are geological formations that form when the tensile strength in the direction perpendicular to the
future lineament is reached by an area of the structure subjected to deformation, hence a crack can be literally
opened and eventually, propagated. Generally speaking, it has been shown that diurnal tide can open and
close a fracture by inducing the material from the lower warmer layers of Europa to arise and flow on the
surface. This process requires a varying stress that is oriented perpendicular to the fracture, in order to be
perfectly understood. Nevertheless, with further and more accurate observations the presence of shear stress,
even for ridges, might be revealed.

First evidence of a strike-slips has been detected with Voyager II images. The spacecraft captured one of
the largest lineament in the southern hemisphere of Europa. The feature has been termed after Astypalaea,
who, in the Greek mythology, is the name of the wife of Europa. Astypalaea Linea fractures the surface for
around 810 km and crosses the southern hemisphere from 85° S to 60° S, approximately (180°-210°W of lon-
gitude). The first work that presented Astypalaea as a strike-slip has been Tufts [103].

Compared to terrestrial formations Astypalaea Linea has been identified several time in the literature con-
cerning Europa to be an analog for the large San Andreas fault in California [105]. In these kind of geological
features key role is played by shear stress, which is continuously produced by the rubbing between the two
oscillating walls of the fracture. A positive mechanism that can explain the formation of strike-slip is refer-
enced as tidal walking, firstly proposed by Tufts et al. [104] and [27]. The idea behind this process is that
the diurnal tide redistribute and reorient the stress along the fracture, leading to progressive opening and
closure, together with lateral displacement generated by shear stress. Lateral displacement is introduced by
oscillation in the stress field from left to right and viceversa. This phenomenon resembles a walking person
that puts his left foot forward, push the ground back to go forward, and do the same with the right foot af-
terward. From here the term tidal walking. A visual representation of tidal walking for the Astypalea Linea
is represented in Figure 3.5. The white lines represents tension and black compression. As it can be seen,
the stress reorient itself along the crack producing oscillating lateral displacement. For instance, at apojove
(Figure 3.5a) the stress is almost perpendicular to the feature while at one quarter of the orbital period (Figure
3.5b), the stress rotated of around 45°, producing right lateral displacement. While the moon completes its
orbit around Jupiter, left lateral displacement occurs before reaching the same initial configuration at apo-
jove. Tufts et al. [105] proposed that the superimposition of NSR to non-eccentricity allows an explanation for
the possible initiation of Astyplaea and that the further cycles of diurnal tides continuously shapes the aspect
of the feature in form of a strike-slip. The subsequent cycles of walking might have led to the generation of
lateral displacement and dilation bands that can been observed along the fracture. Diurnal tides are indeed
able to explain the mechanism of tidal walking alone, without the contribution of secular components.

A direct consequence of shear stress is the generation of heat, from basic thermodynamic laws. Among
others, the work of Nimmo et al. [64] produced a thermal model for the production of heat due to shear stress
in strike-slips. The temperature anomaly for a strike-slip has been found to be of 66 K for an ice thickness
of 2 km. As consequence, the relatively warmer material might be forced to arise from the crevasse and be
accumulated on the top of the rift. That might produce ice melting and possible compression zones around
the fracture. Double ridges on Europa (e.g. Class II in Greenberg et al. [18]) can be assumed to fit this thermal
model (Fig. 3.1E).

A first attempt of producing an extensive catalog for the observed strike-slips have been proposed in the
work of Hoppa et al. [30], who generated a survey of several images taken from the first 15 Galileo flybys of
Europa. The results revealed 117 strike-slips formations on the surface. According to the survey 95% of the
strike-slips in the southern hemisphere are right-lateral. In the area surrounding the equator, an almost equal
mix of right and left-lateral is present while in the northern hemisphere the majority of strike-slips is left-
lateral. A possible deduction that comes from these observations is that on Europa right-lateral strike-slips
are favoured to form in the southern hemisphere while left-lateral strike-slips are preferred in the northern
hemisphere. The tidal walking theory fits with this general deduction and with the description of the strike-
slips presented in the work. Additionally, Hoppa et al. [30] associated the large majority of strike-slips to ridge
formations; 64% of the surveyed strike-slips can be categorised as Class I ridges, 31% can resemble other types
of ridges (Class II and Class III) while only 5% of the 117 formations are not showing accumulated material
on the top of the crack. Therefore, tidal walking can be enriched with the possibility to accumulate material
coming from underneath the shell and a way for accommodating the extra-lithosphere that is generated by
extensional phenomena (e.g. Nimmo [63]). A further update to the survey proposed by Hoppa et al. [30]
is the one produced by the work of Sarid et al. [90]. The researchers investigated the aspect of several other
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Figure 3.5: Tidal walking process, as proposed in Tufts et al. [104] and Hoppa et al. [27]. (a) Orientation of stress at apojove for Astypalaea

Linea. (b) Diurnal stress at 1/4 orbit after apojove. Tension is represented by white lines, compression black. Parts (a) and (b) can also

represent stresses at perijove and 1/4 orbit after perijove, respectively, by reversing the signs (i.e., tension black and compression white)

[27]. White arrows represents the shear stress, in this case termed left-lateral. The plus (+) symbol, at the bottom of the figures, represents

the position of the south pole. The oscillating reorientation of the stress along the feature would produce alternating left and right lateral

displacement.

formations that resemble strike-slips, which can be explained by the application of tidal walking. The success
of this survey is a further corroboration of the presence of an effective shift in the lateral displacement.

Hoppa et al. [30] and Sarid et al. [90] did not find a preferred lateral displacements for the lineaments
in the equatorial region. The favoured right-lateral displacement in the southern hemisphere and the left-
lateral displacement in the northern hemisphere predictably yield to a mixed orientation in the areas of the
equatorial belt, where chaotic zones are predominant and difficult to model. Spaun et al. [97] produced an
analysis for the equatorial region. The presence of pits, domes and lenticulae4 is generally explained by the
presence of diapirism. The work of Spaun et al. [97] surveyed the behaviour of lineaments in two relatively
small areas of approximated geographical coordinates of 5°N, 330°W, and 15°N, 270°W respectively. In these
areas, the lineaments show a large shear component and the orientation is, for the majority of North-East,
North-West directions. These specific orientations of the crack directions can be explained with the strong
effects of stresses due to NSR, which can be superimposed to the diurnal deformation. The values for the
amount of NSR is calculated to be around 30°-90°. NSR stresses that act in the directions North-South and
East-West [18] can explain the inclination of 45° of the majority of lineaments in the equatorial area. As for the
lineaments in the polar areas subjected to TPW in Sarid et al. [90], the contribution of secular components
is important to understand the dynamical behaviour of strike-slip formations even in the equatorial regions.
The work of Rhoden et al. [83] extended the study of the effects that polar wander, non-zero obliquity and
physical libration have on cycloids (section 3.3), to strike-slip formations. Even if a single value for the obliq-
uity of Europa has definitely not been assumed, dealing with the findings of Baland et al. [3]), the theoretical
predictions of Rhoden et al. [83] fit with the observed behaviour of several strike-slips. The preferred model
in the work is that Europa has a 1° of obliquity and the polar wander occurs in longitudinal direction. The
influence of physical libration induced an improvement of accuracy in the predictions of faults locations but
could not produce a correct direction for the features. Uncertainties in NSR and TPW parameters have been
already addressed in section 2.2.

In section 3.1, two ways of accommodating extensional lithosphere have been presented, namely com-
pressive folds [77] and generation of chaotic regions [18]. Nevertheless, the convergence regions deduced by
the strike-slips analysis of Sarid et al. [90] did not fit the two accommodating mechanisms. The researchers
suggested the presence of some compressional bands, that work under a principle that is opposite to the
dilation bands. A possible compressional band can be a strike-slip, Agenor Linea (190°-250°W, 40°S), which
cannot be explain by a the definition of a dilational band. Sarid et al. [90] and several other studies failed
in reconstructing the closure of this lineament and the effective presence of compression for Agenor Linea
suggests that the material surrounding the fracture might have been much further apart than the period of
Galileo observations. It has been already pointed out that the lacking of compressional features on Europa

4Lenticulae are defined as circular-elliptic patterns, morphologically produced [69, 70].
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is still argument of discussion and doubts. Furthermore, in order to better fit the theory to the observations,
Sarid et al. [90] claimed the presence of polar migration (TPW) and, as consequence, that the former north
pole, has shifted of around 30° into the present state during a time period that is less than a few million years.

Finally, Preblich et al. [76] simulated the behaviour of the tidal walking phenomenon by the usage of Finite
Element Methods (FEM). A viscoelastic model for the material was given to a structure that is floating above
a liquid water layer. A stress field that reaches amplitudes and orientations able to fracture the ice layer is
applied. The thickness of the ice can vary from 1 to 10 km. For a layer that is 1 km, the simulations result
in a fracture that penetrates through all the vertical direction, hence until the reaching of the underneath
ocean. On the other hand, the 10 km thickness is assumed to simulate the partial penetration of the fracture.
In particular, this last case showed a propagation of the crack until the warm buoyant region of the ice shell
interfaces the cold part of the ice. As it has been shown already by the survey of Hoppa et al. [30], the fact
that the fracture reaches the bottom of the ice shell, is particularly important because if that happens, the
material (even organic) that floats in the ocean can find a way to the surface, generating for example ridges
and secondary canals. The current research will try to give more constraints on the eventual possibility of the
full fracture of the ice layer.

Concluding, strike-slips are interesting pattern to study, given the remarkable comparisons with terres-
trial formations. All of them are assumed to be generated by shear stress due to diurnal tides in a already
existing fracture of the brittle surface. The direction and the orientation for the majority of the lineaments
in the areas close to the poles can be explained by diurnal tides superimposed to TPW, while for the areas
surrounding the equator NSR presumably governs the initiation of shear stress. The majority of strike-slips
are associated to accumulation of material from underneath the crust, thus to Class I ridge formation. Ac-
commodation of material can fit with the tidal walking theory. Large strike-slips as Astypalaea Linea are a
perfect target for the numerical simulations proposed in the current research, since it has several similarities
with strike-slips already existing on Earth, i.e. the large San Andreas fault in California and a numerical model
that simulates the tidal walking process has been already proposed.

3.3. CYCLOIDS

The last category of features that will be addressed in this chapter are called cycloids. In the literature, it is
also possible to find the Latin term flexus (plural flexi), which is the official IAU denomination. In this section
and in the rest of the work, the two terms will be used indistinctly.

Even by giving a rapid look to the global map of Europa, it is possible to observe several lineaments that
posses an arcuate shape, each formed by segments of around 100 km on average [29]. These patterns are
called cycloids. Example are Cilicia, Sidon and Delphi flexi in the southern hemisphere around 60°S, 170°-
180°W. In particular, it is relatively easier to observe these kind of features at high latitudes in absolute values,
hence close to the poles. The reason for that will be explained later in this section.

The first attempt of generating a model for the arcuate patterns observed on Europa is contained in the
work of Hoppa et al. [29]. This model is mainly based on geometrically matching the theoretical predictions
of large cycloids due to tidal stress in the southern hemisphere of the moon, with images of Galileo. The
simple application of the diurnal tide, expressed in Greenberg et al. [18], can explain the generation and the
propagation of the crack, in a way that resembles a flexus. According to the rheological parameters assumed
by Hoppa et al. [29], the tensile strength for the Europan ice is reached at 25 kPa. The fracture starts to prop-
agate until a point where the tensile strength is not reached anymore. There, the crack stops to propagate.
After a period that can be compared to the day on Europa (≈ 85 hr), the point where the cracked stopped to
propagate might undergo to a stress condition that is close to 15 kPa which is the tensile strength for a ’weak’
ice that was already initiated. That would lead to a new initiation and propagation of the fracture through the
ice shell, namely a reactivation of the precedent crack, with geometrical characteristics which will be different
from the precedent. The geometrical pattern that links the two fractures that have been propagated in the
two different tidal cycles is called cusp. A cycloid can be formed after several diurnal cycles. A relatively thin
layer of ice (less than 100 km) that covers a global ocean, is necessarily required in order to validate the model.
By using ice penetrating radar techniques, it has been possible to corroborate the fact that some cracks would
penetrate throughout the entire brittle crust, in order to explain the proposed fracturing models [52].

After having obtained new images and new data from Galileo, the model of Hoppa et al. [29] has been
continuously enriched and substantially improved throughout the years. The model proposed by Marshall
and Kattenhorn [57] added new insight in the process of crack initiation, which for Hoppa et al. [29] was only
due to tensile strength reached in direction normal to the crack. The relatively new model added the intro-
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Figure 3.6: Picture taken from Kattenhorn and Marshall [45](a) Image taken from Galileo flyby E17 on the southern hemisphere of

Europa, capturing a cycloid. (b) The cycloid shape is traced on the image. (c) The cycloidal segments are joined with cusps, tailcrack are

evident and described by the cusp angle θ.

duction of shear stress in the analysis and hence of the tidal walking theory, addressed in the previous section
for strike-slips formations. Furthermore, the inclusion of the effects of tailcracks have produced remarkable
outcomes in the later studies. Tailcracks are formed by shear stress at the end of one fracture in a brittle ma-
terial. Due to the weakened area that is surrounding the crack, it is relatively easier to initiate new secondary
fractures. Additionally, Marshall and Kattenhorn [57] positively introduced the effects of shear stress in cy-
cloidal formations. In particular, the generation of tailcracks has been modelled via linear elastic fracture
mechanics (LEFM) just some years later by the same authors [45]. In this work, extensional tailcracks are
formed in combination with compressional anticracks and both can be observed in Galileo images. Figure
3.6, taken from [45] shows a cycloidal crack observed by Galileo in the southern hemisphere of the moon (a).
In order to visualise the shape of the crevasse, the trace of the cycloid is plotted in black along the existing
shape (b). The formation of multiple cycloidal segments can be seen in Figure 3.6 (c), where the cusp angle θ
is indicated. This publication further elaborated the similarities that cycloids have with strike-slips by usage
of LEFM techniques, which are able to precisely characterise the magnitude of the tailcrack and anticrack an-
gles . LEFM and FEM analysis have succeeded in several simulations of terrestrial icy fractures. In particular,
LEFM will be the key numerical tool used in the current research.

The models that have been presented so far, are characterised by the common fact that they can explain
cycloids only by taking into consideration diurnal tides. In chapter 2, it has been pointed out that on Europa
diurnal tides are acting in combination with secular contributions, namely NSR and TPW, among others. The
first model that introduced NSR in the explanation of cycloids is the one proposed in Hurford et al. [33]. Fur-
thermore, the model achieved an improvement in the simulation of large cycloids by including the possibility
of variating rheological parameters during the propagation of the cycloid chains. These two opportunities
were not accounted in the previous models. Nevertheless, the results of these simulations confirmed the
findings of Hoppa et al. [29] and Marshall and Kattenhorn [57], namely that the effects of NSR improve the
matching only of a few flexi. Indeed, in a more recent publication of the same authors [35], the focus has been
concentrated in the introduction of other sources of diurnal deformation, such as the non-zero obliquity, in-
stead of secular components. Additionally, as already addressed in section 2.2 while talking about diurnal
tides, Rhoden et al. [82] introduced the effects of physical libration, in order to further improve the mod-
els for cycloids. A discussion has been already issued in the current literature review, concerning the actual
value of Europa’s obliquity, that finds several contrasting opinions in the literature, mainly dealing with the
publications of Rhoden et al. [82] and Baland et al. [3].

More in details, Hurford et al. [33] and Hurford et al. [35] produced interesting findings in the speed of
propagation of a cycloids. Observing cycloidal shapes, values for the propagation speed of 4.8 km/h, initiation
stress of 68 kPa and propagation stress of 38 kPa are generally accurate characterising values, on average. The
value for the non-zero obliquity is assumed to be 0.1°, similarly to what proposed by the work of Bills [6], an
order of magnitude less than the 1° of Rhoden et al. [82] and almost double of the 0.055° of Baland et al. [3].
Propagation of cycloids in both eastward and westward direction, assuming rheological parameters that fit
the large cycloids in the Argadnel Regio, are close to the sub-jovian point (200°-230°W at the equator). These
features are fit when choosing a argument of perigee that ranges between 180° and 315°. The simulations
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allowed the generation of a relatively more arcuate pattern in regions close to the poles. This is the reason
why cycloids are better observed at high latitudes. Nevertheless, this does not mean that only polar regions
produce cycloids.

The work of Groenleer and Kattenhorn [22] focused more on the effects of tailcracks, which are assumed to
be the large factor that generate cusps and hence arcuate cycloids. The models of Groenleer and Kattenhorn
[22], as well as the addressed work of Kattenhorn and Marshall [45], used LEFM tools in order to simulate the
large flexi in the southern hemisphere. Additionally, a contribution of 600° of NSR better fits the geometry
of the patterns. By studying the geometrical aspect of cusps, the researchers improved the models for the
cycloids that present a large arcuate shape. Nonetheless, the introduction of tailcracks and NSR is not able to
explain the flexi that can be seen in the Argadnel Regio [35]. The already presented work of Rhoden et al. [82],
introduced the contribution of physical libration to the initiation of cycloids.

Concluding, cycloids are interesting features to investigate. It is definitely still unknown which are the
stressing sources that mostly contributes to the initiation and the propagation of these arcuate patterns. Sev-
eral studies proposed that the only effects of diurnal tides (non-zero eccentricity, non-zero obliquity and
physical librations) are enough to explain the presence of flexi in the region around the equator and close to
the sub-jovian point (i.e. Argadnel Regio). On the other hand, the large and arcuate patterns that can be seen
close to the poles (e.g. Delphi, Sidon and Cilicia flexi) are more likely to be generated by the propagation of
secondary cracks, namely extensional tailcracks. The contribution of secular components such as NSR are
still under research and only some authors proposed the necessity of a certain amount of NSR to explain the
arcuate pattern of flexi. For sake of the proposed research, the usage of LEFM will result as an useful tool in
defining rift’s depths, as it will be addressed in the following chapter. Parameters such as the obliquity value
will be tuned in order to produce a sensitive analysis. Same considerations can be done with the assumption
of physical characteristics of the ice.
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4
TIDAL POTENTIAL THEORY

The current chapter aims to describe the concept of tides, both from a qualitative and a quantitative point of
view. Tides are the effects of a differential gravitational attraction, hence the concept of potential plays a key
role in the analysis. As it has been mentioned already, tides can be distinguished into two different groups,
namely time dependant and time independent components. If a moon orbits around the host planet in a
circular and synchronous motion, the tidal bulge is arising on the line that virtually connects the two centres
of the bodies. This is also called as primary tidal components and it maintains its fixed position, excluding
natural oscillations that occurs around the equilibrium status (phenomenon known as physical libration).
Additionally to the fixed tidal component, the variation of orbital parameters, such as the eccentricity, intro-
duces forced migration of the tidal bulge that would imply stress redistribution, as it is explained later on.
These ulterior components are depending on the orbital position of Europa around Jupiter, hence on time.
The rest of the chapter deals with fixed and migrating tidal components in order to present tides in a more
formal approach.

Section 4.1 starts with the identification of the gravitational law which will be used to obtain the Gauss
theorem. This is one of the most important theoretical tools in the investigation of gravitational potentials.
In particular, the Gauss theorem in vacuum takes the form of a Laplace equation, whose possible solutions
can represent the gravitational field of the Earth in its complexity. These concepts are described in section
4.2. Finally, section 4.3 provides a complete mathematical description of tides and is applying the results
to the case of the Jovian moon Europa. This chapter starts with the mathematical background needed for
understanding the tidal potential theory, which is the key tool for calculating the stress on the surface of
Europa.

As mentioned, the concept of potential provides very useful mathematical tools when one needs to ana-
lyze a vectorial field. Generally speaking, the potential is a scalar translation of a specific vectorial property.
For instance, the gravitational attraction between two massive bodies is a force directed toward the centers
of mass of the two, according to Newton’s laws. In three dimension, such as when considering an object at-
tracted by the Earth, the gravitational force can be represented by a vectorial field around the globe. Since
gravitational force is a central force, mathematically it also possible to state that this force is nothing more
than a gradient of a scalar field, which is the gravitational potential [59]. In symbols this concept is expressed
as:

v =∇U (4.1)

where U is the so called potential. An other property that would define a field as conservative is that the curl
of the field itself to be null [9]. Anyhow, for the sake of the current purposes, the identification of conservative
field as gradient of a potential is enough. The reader is encouraged to refer to calculus textbooks for further
insights. The gravitational attraction of a mass is a conservative force, hence the gravitational potential can
be found. A property of a conservative field is that the work between 2 points is always non dependent of
the path taken1. This can lead to the identification of the potential energy, which is nothing more than the

1This condition can also be taken as a requirement for a force to be conservative.
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potential, changed in sign. The difference between potential is often confusing and it merely depends on
assumptions.

Isaac Newton firstly proposed that two massive bodies are attracting each other by a force that is propor-
tional to their masses. Equation 4.2 represents the universal gravitational law for two point masses. Hence-
forth, these will be called bodies or points without distinction. In the formula, the force of body 2 on body 1
F21 is expressed. G is the universal gravitational constant, measuring 6.6740831×10−11 m3kg−1s−2 in align-
ment with the indications of the Committee on Data for Science and Technology. Additionally, m1 and m2 are
the masses of the two bodies. r21 is the vector pointing from body 2 to body 1. Its module is r21. The remain
of the mathematical analysis of this section is based on [12].

F21 =−Gm1m2

r 3
21

r21 (4.2)

Gravitational forces as every other force in nature follows the additive property meaning that if two or
more points are acting on an other one, their contribution can be added and the resulting force is following
standard parallelogram rules.

Tides are just the differential action of two attractors to a single point in the space. If this point is located
to the surface of a moon, and the attractors are the host planet and the moon itself, the tidal force is the
differential pull of the host planet at the surface subtracted to the one at the center of the moon [54]. After the
description of potential in terms of spherical harmonics, the current chapter focusses on the mathematical
presentation of tides.

4.1. GAUSS THEOREM
For sake of simplicity, one of the two mass of Equation 4.2 will be called the attractor. The second one will be
called test mass. The gravitational attraction acting on the test mass can be found dividing the gravitational
force itself by the mass of the test body. Result is an acceleration, measured in m/s2. Therefore, it is possible
to measure a vectorial field around the mass which is not affected by eventual test masses. Equation 4.3
represents the gravitational field of a an attractor with mass m. Again r is the vector from the attractor with
module r .

g(r) =−Gm

r 3 r (4.3)

It is also possible to find the gravitational attraction of a 3D body with an other shape, just by evaluating
the specific value for its mass. In other words, m must be integrated over the volume of the body in the
following form:

dm(r) = ρ(r)d xd yd z (4.4)

where the coordinate reference system is a pure Cartesian x, y and z right-hand system.
As consequence, it is possible to calculate the gravitational attraction of an arbitrary shape by the solving

the integral:

g(r) =−G
Ñ

V

ρ(r′)
r− r′

|r− r′|3 dV where dV = d xd yd z (4.5)

In the equation, r is the vector that represents the position of the attractor, while r′ is the position of the test
mass, with respect to the center of the reference frame.

A further step in the description of the potential is the introduction of the concept of flux. Qualitatively,
the flux is defined as the ’amount’ of stream line of a certain vectorial field that pass through a fictitious
surface. Mathematically, an arbitrary vectorial field v produces a flux through a surface S defined as:

Θ=
Ï
S

v ·n dS (4.6)

where the scalar product is between the vectorial field v and the normal to the surface S, indicated by the
unitary vector n. The idea of the flux is particularly useful in fluid mechanics, where one can visualise the
stream of lines as a fluid current, for instance. According to the orientation of the surface (hence to its normal
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vector), the flux can be maximum, when the surface is perpendicular to the stream lines or null, when the
surface is parallel to the vectorial field. This behaviour is mathematically determined by the dot product. In
other fields of physics, such as in electromagnetism or gravity, the idea of flux is much more abstract, but the
analogs with liquid stream lines always holds as comparison.

A further step in the analysis of the flux is the usage of the divergence theorem. This is particularly useful
when one wants to calculate the flux through a closed surface. The theorem states that the closed surface
integral (which can be expressed by the symbol

Ò
) of the vectorial field through the surface itself is equal

to the volume integral of the divergence of the same vector for the space confined by the surface [9]. In
mathematical terms: Ó

S

v ·n dS =
Ñ

V

∇·v dV (4.7)

It is relatively easy to explain the divergence theorem with the fluid mechanics analog once again. In this case,
the flux through a close surface can be produced by the presence of some kind of positive or negative source
in the interior of the surface itself. In the liquid case, these can be represented by a fountain or a well. In other
words, some kind of source has to exist in the confined volume. Otherwise, if the closed surface is placed
through a liquid current the net flux would be zero, since the amount of liquid that enter, is the same that
exit. This does not happen if there’s some sort of leak, mathematically explained by the divergence operator.
The theorem keeps track of what happens inside a confined volume.

The application of the flux and the divergence theorem to the gravitational field is the key operation for the
implementation of the potential theory that can give enormous understanding for mass transport processes
on Earth or on other planets. The flux of the gravitational field of a point mass can be expressed by the
following equation:

Θ=
Ï
S

g ·n dS (4.8)

The result has the same properties of the flux expressed by Equation 4.6. The gravitational vectorial field g for
a point mass is shown in Equation 4.3. Therefore, it is possible to insert Equation 4.3 into Equation 4.8. This
also means that the closed surface has to envelope the point mass, otherwise the net flux would be null.

Θ=
Ó
S

g(r) ·n dS =
Ó
S

−Gm

r 3 r ·n dS =−Gm

r 2

Ó
S

r

|r| ·n dS (4.9)

where the factors that are not related to the calculation can be taken outside the integral. For simplicity, a
sphere can be assumed as closed surface with the point mass at the very center. Therefore, it is possible to
see that the radial vector r and the normal to the sphere n are always parallel, leading to a dot product that is
always unitary. Thus, the flux can be expressed:

Θ=−Gm

r 2

Ó
S

dS =−4πGm (4.10)

where the integral is reduced to the evaluation of the area of the sphere, measuring 4πr 2. It is possible to prove
that in every closed surface the scalar product between a radial vector and the normal to the surface (terms
inside the integral) is always 1. So, the results of Equation 4.10 are valid for every geometrical configuration.

Equation 4.10 itself represents already very interesting results. This is called integral formulation of the
Gauss theorem. The flux of a point-mass gravitational field through a closed surface that englobe the point
itself is only related to the measure of its mass. Additionally, it is possible to prove that for every 3D massive
body (whose gravitational attraction is expressed by Equation 4.5) the results are the same of Equation 4.10
where m would be the mass of that body. This is also valid if one considers 2 or more massive objects instead
of one. The only constraint is that the surface has to envelope the entire masses; thus the term m would be
the sum of the masses.

Next step would be the application of the divergence theorem, expressed in Equation 4.7. The flux Θ can
be calculated with the solving of the volume integral for the divergence of the gravitational attraction. The
results can be summarised in the following equation:

Θ=
Ñ

V

∇·g dV =−4πGm (4.11)
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In the equation, it is possible to re-write the mass term as function of the density as shown in Equation 4.4.
Indeed, the evaluation of the total mass of a generic 3D body is nothing more than the volume integral of the
density itself.

m =
Ñ
x,y,z

ρd xd yd z =
Ñ

V

ρdV (4.12)

Substituting Equation 4.12 into 4.11, it is possible to write the following:Ñ
V

(∇·g)dV =
Ñ

V

(−4πGρ)dV (4.13)

which give as differential formulation:
∇·g =−4πGρ (4.14)

The result is called differential formulation of the Gauss theorem. Operationally, Equation 4.14 has the same
meaning of Equation 4.10 because the only mathematical operation is the identity given by the divergence
theorem2. The theorem links the direct gravitational attraction to the composition of the attractor. If the
Gauss theorem is applied in vacuum (ρ=0), Equation 4.14 simplifies into:

∇·g = 0 (4.15)

The identification of a null divergence makes the vectorial field to be solenoidal, which characterises incom-
pressible fields in fluid mechanics, for example Bramanti et al. [9]. Furthermore, if the vectorial field is also
conservative, it is possible to express it as a gradient of a certain potential (Equation 4.1) [9]. It has been
already stated that the gravitational attraction is a conservative field, hence the concept of gravitational po-
tential can be used. The gravitational potential is calledΦ and it can be related to the gravitational attraction
as follows:

g =∇Φ (4.16)

A valid function ofΦ that satisfies Equation 4.16 is the following, that will be used in the rest of the chapter as
definition of gravitational potential:

Φ=G
m

r
(4.17)

Substituting the definition of gravitational potential of Equation 4.16 into the differential formulation of the
Gauss theorem links the gravitational potential to the density of the attractor. This operation simplifies the
case because the problem can be solved in a scalar dimension instead of a vectorial.

∇·∇Φ=−4πGρ hence ∇2Φ=−4πGρ (4.18)

where the mathematical operator ∇2 is called Laplacian and Equation 4.18 is called Poisson equation. If one
wants to apply the same cosideration to the vacuum case, the equation simplifies into:

∇2Φ= 0 (4.19)

which is known as Laplace equation. Functions that are among solutions of the Laplace equation are called
harmonic functions. The Laplace equation describes lots of natural phenomena such as heat transfer or the
conformation of the gravitational field around a planet, which is the case that will be investigated in the next
section.

4.2. SPHERICAL HARMONICS
The solution of a partial differential equation (PDE) is a function that substituted into the PDE itself, generates
the identity. Theoretically speaking, given a simple PDE, the number of solutions is infinite [89]. If one wants
to find a specific solution for a specific case, some constraints have to be set. These are called boundary or
initial conditions. There are specific ways of solving a PDE. It is possible to implement numerical algorithms
that can produce solutions by minimising the residuals from the true solution. On the other hand, some

2In many texts, the usage of Gauss theorem or divergence theorem has the exact same meaning, intending the indentity of Equation 4.7.
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Figure 4.1: Representation of various degrees and orders for the non-normalised surface spherical harmonics Yl ,m , where l is the degree

and m the order. The scalar function is plotted over the surface of the Earth. When the order m is null, the harmonics are called zonal

and it is possible to notice no dependency with the longitude. If the order is m =±l , the functions are called sectorial and the symmetry

with the equator is evident. All other spherical harmonics are called tesseral.

analytical techniques can be proposed, although for the large majority of PDEs a correct analytical solution
is difficult or impossible to find [89].

One of the most common analytical technique is the so-called separation of variables. The general idea
behind this technique is the decomposition of a PDE’s potential solution into different factors, each one func-
tion of a specific variable in the game. After that, the function is substituted into the actual PDE in order to
find whether or not it is a solution. For example, if a specific PDE’s domain is set in time and space, a valu-
able separation of variable would be factorise the candidate function in a term that is dependent of time and
one that is dependent of space. The separation of variables technique is a purely empirical method which
produced elegant and relatively simple solutions to a discrete amount of PDEs. Nevertheless, for complex
equations it is often convenient to adopt numerical integrators.

The Laplace equation (Equation 4.19) is a PDE and also a very common representation of several phe-
nomena of physics and science. Solutions of the equations are called harmonics function and equation can
be translated in finding functions whose Laplacian operator is null. If the right member of Equation 4.19 is
not zero, then its name is Poisson equation. The Laplace equation of Equation 4.19 describes the gravitational
potential for every point outside the radius of the Earth.

It is also possible to state that a function can be represented by an expansion of other (usually more sim-
ple) function. Details of the problem of a function representation are given in Appendix A. Examples are the
generalised Fourier expansion (Equation A.11) or the usage of an arbitrary set of orthogonal functions (e.g.
the Legendre polynomials of Equation A.4). It is possible to represent the gravitational potential as a series
of expansion as well. The only constraint is that it should be a series of harmonic functions, given that their
linear combination should satisfy the Laplace equation. One might decide to divide the representing func-
tion in terms of different factors, each one dependent of a different parameter, as the variation of variables
technique provides. When dealing with spherical bodies, it is particularly useful to express the equation in
the spherical coordinates, comprehending longitude ϕ, colatitude θ and distance from the centre of the at-
tracting body r . Particularly useful types of orthogonal functions that satisfy the Laplace equation are called
solid spherical harmonics which is described by the following relation:

Hlm(r,θ,ϕ) =
(

R

r

)l+1

Pl ,|m|(cosθ)

{
cosmϕ if m ≥ 0
sin |m|ϕ if m < 0

(4.20)
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where the term l and m are the degree and the order of the harmonics. The term R is the radius of the Earth.
The function is formed by three different functions depending on different parameters. The first depends
on the distance from the center of the Earth, the second one depends on the latitudes while the last one
on the longitudes. This is an emblematic example The term Pl m(cosθ) is a generalisation of the Legendre
polynomials and it is called associated Legendre function of degree l and order m. The explicit formulation
for the factor Plm(cosθ) can be found in Moritz [59] and it can be written as:

Pl m(x) = 2−l (1−x2)m/2
floor[ l−m

2 ]∑
k=0

(−1)k (2l −2k)!

k !(l −k)!(l −m −2k)!
x l−m−2k (4.21)

where the term floor[A] is the largest integer lower than the term A. Equation 4.21 is practically hard to solve
and for the majority of the cases, the terms Plm are calculated via recursive methods [25]. When setting m = 0,
the equation that calculates the associated Legendre functions become the definition Legendre polynomials
(addressed in Appendix A). It is possible to state that the associate Legendre functions are a generalisation of
the Legendre polynomials.

If one extracts from the solid spherical harmonics the factor that is dependent with the distance from the
center of the Earth, what remains is only function of the specific location given by colatitude and longitude.
These part of the solid spherical harmonics are called surface spherical harmonics and it is defined as the
term Ylm , as follows:

Yl m(θ,ϕ) = Pl ,|m|(cosθ)

{
cosmϕ if m ≥ 0
sin |m|ϕ if m < 0

(4.22)

The surface spherical harmonics can also be obtained by restricting the solid spherical harmonics to the
surface of the Earth, meaning setting r = R in Equation 4.20. The dependance of Equation 4.20 and 4.22
with the degree l is the same that the Fourier series has with the number of harmonics. An higher degree
means a faster variation of the spherical harmonic between two different points. On the other hand, the
order m gives indication about the spatial distribution [12]. More in specific, depending on the order of the
harmonic, it is possible to define zonal, sectorial and tesseral harmonics. Zonal harmonics are identified by
a null order. These functions are constant along a certain latitude, hence there is no dependency with the
longitude. Sectorial harmonics’ degrees and orders satisfy the relationship l = ±m and their representation
over a sphere is symmetric with the equator. All the other kinds of spherical harmonics are called tesseral.
The representation of four different types of spherical harmonics, plotted over a map of the spherical Earth
is shown in Figure 4.1, where zonal, sectorial and tesseral harmonics can be visualised. Spherical harmonics
allows the representation of functions that would be very difficult to define otherwise.

By convention, it is possible to scale the mentioned coefficient with an arbitrary real constant [12]. As
a matter of fact, one useful operation that is usually applied to the spherical harmonics is the so called 4π
normalisation. The L2 norm of the surface spherical harmonics is defined as:

||Ylm || =
√Ï

w
Y 2

lm(θ,ϕ)dw (4.23)

where dw = sinθdθdϕ is the area of a surface element. The spherical harmonics that are divided by their 4π
norm are also called as normalised spherical harmonics and labelled as Y lm . Of course, the same procedure
can be applied to solid spherical harmonics and to the associate Legendre function [12].

Appendix A presents the basics of how to represent a function in terms of a series of other function. This
is particularly useful to describe complex non-linear relationships between parameters of a function. In this
sense, it is possible to approximate the gravitational potential Φ, function of radius r , co-latitude θ and lon-
gitude ϕ as a series of solid spherical harmonics. This is possible because spherical harmonics are a possible
solution of the Laplace equation, therefore the potential can be written as a expansion of them. In the specific

Φ(r,θ,ϕ) =
∞∑

l ,m=0
C

(Φ)
lm

(
R

r

)l+1

Y l m(θ,ϕ) =
∞∑

l ,m=0
C

(Φ)
lm H l m(r,θ,ϕ) (4.24)

where the coefficients C l m are the Fourier coefficient of the series and also known as Stokes coefficient for
the gravitational potentialΦ and calculated as:

C
(Φ)
lm =

Ï
w
Φ(r,θ,ϕ)Y (θ,ϕ)dw (4.25)
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where again w is the area of the infinitesimal surface. Equation 4.24 represents the most common way of
writing the gravitational potential. As it has been previously mentioned, also the tidal potential can be repre-
sented as a linear combination of gravitational potential calculated at different locations. hence the formula-
tion of the tidal potential in terms of spherical harmonics is possible. The concept of tides is presented in the
next section.

4.3. TIDES

On Earth, tides are intimately linked to the oscillating pattern of the sea level in the coastal areas. Anyone who
has been to maritime areas, has experienced rise and fall of the sea surface at least twice a day. Depending on
the location on Earth, the amplitude of the sea level oscillations can vary between a few centimetres to several
meters. Notorious example is the coast of Normandy which experience very large tidal oscillation. Certain
places in North France, such as the castle on Mount St. Michel, cannot be reached on foot when the tide is
high. Oceanic tides are the most evident results of the gravitational disturbance of the Sun and the Moon on
Earth. In reality, also the solid Earth is affected by tides that deform its structure but these results are more
difficult to observe. The reason is that liquid matter responds faster than solid matter to such perturbations.
Despite the fact that both continents and oceans are affected by the variating gravitational attraction that falls
under the name of tides, only ocean are responding to these perturbations in a timely way. Tides are also the
longest waves in oceanography and can be easily and precisely predicted [93]. Tides mixes and redistribute
chemicals components in the ocean, producing fertile conditions to an extremely large number of organisms.
On Europa, where tides are orders of magnitude higher than the one on Earth, the effects are though to be
even more relevant in the global understanding of the moon dynamic. Indeed, the most relevant gravitational
source that acts on Europa is the massive Jupiter, which is at the distance Earth-Moon but it is 20000 times
more massive [16]. As consequence, tides on Europa are easier to study and larger to visualise, with respect
to the ones on Earth.

The gravitational attraction of multiple massive bodies creates differential forces that deform the surface
and the interiors of all the bodies. On Earth, the bodies that are influencing the most the gravitational po-
tential are the Moon and the Sun. On Europa, only Jupiter induce relevant variations but a more complete
analysis would include also the effects of the other Galilean moons. The rest of the current section is describ-
ing the mathematical analysis for the understanding of tides by using the described tidal potential theory.
The basics vectorial formulation for the tide generating force is expressed in section 4.3.1, including the ap-
plication of the spherical harmonics. The current approach is the same of Jara-Orue and Vermeersen [42]
and its results provide an analytical formulation for the stress acting on the surface of Europa by the usage of
normal mode theory. These results are summarised in section 4.3.2.

4.3.1. TIDE GENERATING POTENTIAL

The following section is based on the Kaula approach [47] and summarised in Schrama [93]. As it has been
mentioned before, tides are the result of the differential gravitational attraction between two or more body.
Figure 4.2 represents the two dimensions geometry of the problem of tide generating potential between two
celestial objects. Assuming that two bodies are orbiting each other in two dimensions, the primary object
called P and the moon M . The forces are acting on a point of the surface of P named location S. The grav-
itational attraction of the moon of the surface of the primary body can be called as fP M and fSM , with the
directions shown in Figure 4.2, the former being the reaction of the moon action on the centre of the body P
and the latter being the actual effect of the moon on the surface. The differential gravitational attraction can
be expressed by a simple vectorial summation as:

∆f = fSM − fP M (4.26)

Recalling the first details for the potential theory, the gravitational force, being conservative, can be rewritten
as the derivative of the scalar function called potential (Equation 4.16). Stated that, it is possible to rewrite
Equation 4.26 in terms of gravitational potential as follows:

ΦT =ΦSM −ΦP M (4.27)

where the termΦT is called tidal potential. Since the tidal potential is a difference between two gravitational
potential, it assumes the form of a gravitational potential itself (Equation 4.17). As consequence, the term
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Figure 4.2: Two dimensions geometry used to describe the tidal generating potential problem. P is the primary body, M is the moon and

S is a point on the surface of the planet P . The various terms labeled as f are the gravitational attraction calculated between the different

segments of lengths r .

ΦSM can be written as:

ΦSM =GmM
1

rSM
(4.28)

where mM is the mass of the moon M and rSM is the distance between the surface point S and the centre of
the moon M . Applying the same process to the termΦP M implies that it is possible to write:

ΦP M =GmM

(
1

rP M
− rP cosΨ

r 2
P M

)
(4.29)

Including Equation 4.28 and 4.29 into 4.27, produces the following result:

ΦT =GmM

[
1

rSM
−

(
1

rP M
− rP cosΨ

r 2
P M

)]
(4.30)

which is the analytical formulation of the tidal potential at the point S for the geometry presented in Figure
4.2, whereΨ is the angle formed by the two segments P M and PS.

As previously mentioned, if we considered that the two bodies are placed in vacuum, the Laplace equa-
tion (Equation 4.19) holds for the gravitational potential. Therefore, possible valid solutions that satisfy the
Laplace PDE are the spherical harmonics. Since the tidal potential is a linear combination of gravitational po-
tentials, calculated at different locations (Equation 4.27), it can be expressed in forms of spherical harmonics
(Equation 4.24), expansions that is known to satisfy the Laplace equation [41]. After some mathematical
manipulations of the equations presented, the tidal potential can be re-written as an infinite series of solid
spherical harmonics:

ΦT =GmM
1

rP M

∞∑
n=0

(
rP

rP M

)n

Pn(cosΨ) (4.31)

where the term Pn is the symbol for the associate Legendre function of order n. It is possible to see the same
structure of Equation 4.24, where the dependance with the radial distance from the center of the planet P
is calculated as rP and the Ψ is the angular distance from the centre of P , replacement of the geographical
coordinates θ and ϕ.

If now the idea is to apply the formulation of the tidal potential for the case of Jupiter and Europa, and
the arising tides has to be calculated on the surface of Europa itself, the parameters in the equations need to
be changed. In particular, Figure 4.2 changes completely its purpose. Now the point is to calculate the tidal
potential on the surface of Europa, hence the point S will be attached to the body E , staying for Europa. On
the other hand, the tide-rising body is now Jupiter, labeled J . The equation governing the tidal potential on
the surface of the Jovian satellite can be written as:

ΦT =Gm J
1

rE J

∞∑
n=0

(
R

RE J

)n

Pn(cosΨ) (4.32)
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where m J is the mass of Jupiter, R is the radius of Europa, and RE J is the average distance between the centre
of Europa and the gas giant. In order to better understand the dependance of the tidal potential with respect
to the orbital position of Europa around Jupiter, it is convenient to express the termΦT as function of the Eu-
ropa orbital parameters. Additionally, for a complete description of the problem, a three dimension geometry
has to be assumed. The reader is encouraged to refer to Kaula [47] for the complete derivation of the expres-
sion for the tidal potential as function of the orbital parameters. In the following of the current chapter, only
the most important outcome of the mathematical analysis are presented. As a further simplification, theo-
retical studies demonstrated that is enough to truncate the series of spherical harmonics to the third degree
in order to appreciate the most relevant contribution of the tidal potential.

The tidal potential can be distinguished in two different contributions that are acting at two different
timescales. Basic astrodynamics usually works with the concept of mean motion of the orbit [112], calculated
as:

n2 = Gm J

a3 (4.33)

which is defined as function of the Jupiter mass and the semi-major axis of Europa with respect to Jupiter,
term a.

The tidal potential for the surface of Europa can be considered to be formed by the primary and time-
invariant for a circular, tidally locked orbit with a zero-obliquity for the rotation axis. In the case some per-
turbations for the mentioned parameters, the tidal potential equation needs to be modified:

ΦT =ΦT
0 +ΦT

e +ΦT
υ +ΦT

ns (4.34)

where the apexes 0, e, υ, ns stay for: primary component, eccentricity-driven, obliquity-driven and non-
synchronous rotation-driven tidal potential. These four terms are analysed in details in the next paragraphs
and referred to Jara-Orue and Vermeersen [42]. The formulation of the auxiliary functions called associate
Legendre function Pl ,m(cosθ) of degree l and order m are reported in Appendix A.

Having stated the definition of mean motion, the time-invariant potential, which would be the only con-
tribution acting if the orbit were tidally locked and circular, can be written as:

ΦT
0 = (nrE )2

{
−1

2
P2,0(cosθ)+ 1

4
P2,2(cosθ)cos2ϕ

}
(4.35)

where the angles θ andϕ are the longitude and the co-latitude of the Europa’s geographical map and rE is the
radius of Europa.

The time dependant proportionality with respect to the eccentricity e of the orbit is given by:

ΦT
e = (nrE )2e

{
−3

2
P2,0(cosθ)cosnt + 1

4
P2,2 cosθ · [3cos2ϕcosnt +4sin2ϕsinnt ]

}
(4.36)

Being the term t is the time and in astrodynamics, the factor nt is defined as mean anomaly [112].
A further contribution can be given by a tilt for the rotation axis of the satellite, term υ. The contribution

of such phenomenon is acting on a short timescale as follows:

ΦT
υ = (nrE )2 {

P2,1(cosθ)cosυsinυcosϕsin(w +nt )
}

(4.37)

where the term w is the argument of pericentre.
If one considers the effect of a non-synchronous rotation of a period Tns , and orbital frequencyΩns , this

can be taken into account by tidal potential. The last contribution to the termΦT is:

ΦT
ns = (nrE )2{−1

2
P2,2(cosθ)sin(2ϕ+Ωns t )sin(Ωns t )} (4.38)

Equation 4.35 to 4.38 represent the contributions of time-independent tide and eccentricity, obliquity
and non-synchronous rotation driven tide, respectively. The summarised formulation is written in Equation
4.34. Tidal potential is now expressed as a function of the orbital parameters of Europa around Jupiter and
the time taken from an arbitrary reference period. The next section represents the application of the normal
mode theory [87] to the mentioned equations that are describing the tidal potential for Europa. The results
are the calculation of the stress induced by the four components on the surface of the satellite. This would
also be relevant as opening source for the modelled crevasses.
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4.3.2. TIDAL STRESS ON EUROPA

This last section of the chapter aims to present a general overlook to the stress field on Europa. As it has been
explained already in the last chapter, the Jovian moons are battered by a continuous deforming action that
operates both at secular and diurnal timescales. The most important sources are described in section 2.2 and
distinguished between non-zero eccentricity and obliquity, physical libration coupled with non-synchronous
rotation and true polar wander. The evidence of these stress sources come from both theoretical and observa-
tional studies. Nevertheless, the physical characteristics that describe the different sources are far from being
completely determined. The problem is set by the lack of data on the surface of the moon. The only missions
that probed the Europa environment were not able to fully characterise the processes that deform the sur-
face. Therefore, the numerical studies on Europa need to simplify and assume many physical properties. The
current research did the same. An example is the vertical stratification for the moon which was presented in
Table 2.1 and fixed the radii of the several layers assumed to form to moon. As consequence, also the stress
field obtained by the manipulation of the tidal potential will be highly sensitive to the parameters used.

As it has been explained from the last chapter about linear elastic fracture mechanics, one key factor in
the calculation of the stress intensity factor is the stress, of course. The stress tensor calculated in Jara-Orue
and Vermeersen [42] is the baseline for the fracture analysis presented in the next Part of this document.
The stress field that is used as deforming source in the current research is the outcome of the normal mode
application to the tidal potential as produced by Jara-Orue and Vermeersen [42]. As already mentioned, the
numerical work takes the potential presented in the previous sections and, by normal mode theory, produces
analytical formulation for the stress tensor. A full presentation of normal theory is beyond the scope of the
current research which takes only the analytical formulation of the stress tensor. The reader is encouraged
to find references in Sabadini et al. [88] or in Jara-Orue and Vermeersen [42] for a theoretical description of
the mathematical tools. For sake of the current project, it is enough to understand that the stress tensor is
calculated from the tidal potential via frequency response. The analytical functions that are governing the
tidal stress on Europa are reported for sake of completeness in Appendix B.

Figure 4.3 and 4.4 represent the results of the work Jara-Orue and Vermeersen [42]. In particular, the
two figures describe the stress field distribution on the moon for different time period. Figure 4.3 shows the
dependance of the stress with respect to the orbital position around Jupiter. The physical parameters for the
two simulations are a moon eccentricity of 0.0094 and a axial tilt of 0.5°. As it can be seen the tidal bulge (high
stress with respect to the background) is moving around the surface of the moon and this is considered to be
the cause of the peculiar fractures observed. Already with this diurnal stress, the structure might reach the
material threshold fixed at 100 KPa, differently to what found in the literature, e.g. in [18]. The reason stays in
the already mentioned high sensitivity to the physical parameters used. Figure 4.4 is the perfect visualisation
of this problem. The image shows the dependance with the non-synchronous rotation rate. The meaning of
the factor ∆ is described by the following Equation 4.39

∆= µ/η

2Ωns
= Tns

4πτM
(4.39)

where τM = η/µ is the Maxwell time, ratio of viscosity η and rigidity µ. This specific time is an important
parameter to take into account. For the current project τM for the lithosphere is around 9000 years and a
constant given by the constant values presented in Table 2.1. If the timescale taken into account for the sim-
ulation have the same or lower order of magnitude, the regime of the material can be assumed as elastic.
If the order of magnitude is higher than the Maxwell time, viscosity starts to be not negligible anymore and
material undergoes relaxation and the pure elastic response is not applicable. Since the linear elastic frac-
ture mechanics require an elastic matter, the simulations will use timescale at diurnal scale where the elastic
regime is acceptable. Returning to the figure meaning, the variation of the term∆ describe the variation of the
non-synchronous frequency and rate (terms Ωns and Tns , respectively). Being τM fixed as assumption, the
term ∆ is only dependant on the non-synchronous rotation. In the figure, ∆ assumes 0.1 (around 1400 years
of NSR period), ∆=1 (around 104 years of NSR period), ∆=10 (around 106 years of NSR period) and ∆=100
(around 107 years of NSR). As it can be seen in the figure, the faster the rotation (low values of ∆), the higher
the stress reached by the surface. Numerical simulations that investigate material thresholds such as tough-
ness or tensile strength are very sensitive to such high values of stress. In fact, this can lead to a full failure of
the structure that implies trivial outcomes. Therefore, a model such as the one of the current project has to
assume specific values for the physical parameters in order to avoid the trivial results and obtained valid and
interesting outcomes instead.
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Figure 4.3: Stress map calculated by Jara-Orue and Vermeersen [42], assuming a NSR a-dimenisional parameter of∆= 40, a diurnal tides

due to the combination of non-zero eccentricity of magnitude e = 0.0094 and non-zero obliquity of magnitude ε= 0.5°.

Figure 4.4: Stress map calculated by Jara-Orue and Vermeersen [42], assuming a NSR a-dimenisional parameter ∆ that varies from very

fast rotation to more secular timescales.





5
LINEAR ELASTIC FRACTURE MECHANICS

This chapter is the most technical part of the current research. It aims to describe the engineering tools de-
rived from the elasticity theory in order to study cracks’ propagation and to set up the numerical analysis that
presents its results in the next Part. In the specific of the current case, the branch of fracture mechanics that
investigates brittle failures of structures is called linear elastic fracture mechanics, also known as LEFM. This
analysis has been firstly proposed by the English aerospace engineer Alan Arnold Griffith during World War
I with the specific purpose of investigating brittle failures. The theory of Griffith was tested on brittle glass
with a background characterised by purely energetic approach. The theory was able to positively describe
the propagation of a crack in a purely elastic material. Despite the positive outcomes of the Griffith fracture
theory, the approach was only designed for merely fragile materials. When ductile matters were tested, the
predicted numerical results for propagation were far from fitting the reality. Hence, the developed theory en-
countered several doubts and contestations during the modern history of fracture mechanics. During World
War II, George Irwin, an American scientist working for the US Naval Research Laboratory, improved the Grif-
fith theory by introducing plasticity to the problem. Irwin and his research group introduced a plastic zone
around the tip of the crack allowing a better understanding of crack growth. Irwin was the first one who intro-
duce the concept of stress intensity factor, which is the key numerical element used in the current research.
In result of the Irwin improvement of the LEFM, partly ductile materials were also positively described by
LEFM. As mentioned, the theoretical assumption of LEFM are induced from the experimental world. During
the years, thousand and thousand of different specimen have been tested, in order to provide constraints in
a correct representation of the structure geometry.

The most important assumption of the LEFM analysis is the acceptance that a crack exists already. If a
structure is cracked, LEFM can study the propagation of the failure, by the investigation of the structure’s
status around its tip. Therefore, LEFM provides no insights concerning crack initiation. Initiation of a crack is
reached when the structure reaches certain material’s threshold, called tensile strength. On the other hand,
for a LEFM analysis, the crack exists and if the area around its tip reaches certain conditions (different from
the tensile strength), this crack will eventually propagate. Initiation and propagation are two completely
different aspects of fracture mechanics but it is very easy to mix the terms. The current analysis focusses only
on propagation and does not touch initiation processes at all.

A complete technical and mathematical description of the linear elastic fracture mechanics, starting from
the Griffith theory, passing by the improving of Irwin and reaching the modern application is presented in
section 5.2, which represents the key mathematical aspect of the current research. LEFM bases its calcula-
tion on the assumption that the structure under investigation is described by a purely elastic material. There-
fore, section 5.1 presents a short summary of elastic theory that gives the basics of every structural analysis.
After the modification of Irwin, the LEFM analysis became the most efficient way of investigating brittle fail-
ures. Therefore, completely different branches of engineering and science applied LEFM analysis in the most
diverse problem, from medical issues to Earth science. In particular, glaciology produced one of the most
interesting field of the theory application. Large ice shelves are floating chunk of extremely cold material.
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Already in the ’80 scientists applied LEFM techniques in order to study calving events and/or iceberg for-
mations. Section 5.3 describes the application of such fracture mechanics tools to terrestrial crevasses in
Antarctica and Greenland, which are the works used as baseline of the current research.

The current analysis applies LEFM techniques to the ice shell of the Jovian moon Europa. The literature
survey presented the surface of the moon as an extremely cold material that is continuously deformed by
tidal effects. The low temperature of the ice shell, together with the calculated stress field are two key aspect
that suggested the application of LEFM for Europa. The key result of the research, presented in the next Part,
investigates vertical and horizontal propagation for the crevasses observed on the surface of the moon.

5.1. ELASTICITY
In nature, almost every material behaves for a specific time in an elastic way, somehow. The property called
elasticity is the ability of a material under stress to return to the original conditions after the deforming
sources stops to act. Therefore, a perfect elastic material will support every stress condition, below a certain
threshold, and will return to the original state once stopped to be loaded. In reality, a perfect elastic mate-
rial does not exist and the combination with plasticity, most likely occurs. For the purposes of the current
research only perfect elastic matter are studied. Basic books that are presenting elastic theories are Timo-
shenko and Young [102] and Love [55] and these will be used as baseline for the current section, when not
cited otherwise. Additionally, the materials considered here behave as isotropic matter, meaning that these
show the same physical properties in the entire structure1. It is important to notice that a complete descrip-
tion of elastic theories goes beyond the scope of this chapter, which only aims to extrapolate the necessary
background to understand linear elastic fracture mechanics tools.

The presentation of elastic theory begins with the definition of stress state, which can be a very difficult
concept to understand. If one consider an elastic body that is loaded with external forces, the body will be
subjected to inner forces between its different parts. When considering only one part of the loaded body, it
can be stated that it is in equilibrium with the mentioned external forces. Furthermore, the inner forces are
distributed in order to produce a reaction between the different parts of the body in order to maintain this
equilibrium. These forces are usually measured by the amount of force per unit area, and also called as stress.
Mathematically speaking the stress can be written as:

σ= ∆F

∆S
= dF

dS
(5.1)

where F is the force applied on a surface of area S. Stress is measured in Pascal.
The next step in the presentation of the stress status of a body is the application of Equation 5.1 to three

dimensions, which can represent the infinitesimal part of an elastic body. In particular, Figure 5.1 identifies
the stress configuration around a virtual body in standard Cartesian coordinates. The stress status can be
represented by a second order tensor which is called Σ and contains the decomposition of stresses for the

different surfaces of the body.

Σ=
σxx σy x σzx

σx y σy y σz y

σxz σy z σzz

 (5.2)

where the columns can be substituted by three vectors (red vectors in Figure 5.1) that correspond to the
Cartesian decomposition of the stress vector. It is possible to consider these three vectors as a further decom-
position of a stress configuration that can be represented by a single vector in three dimensions. The stress
tensor is symmetrical, meaning that stresses with the same indexes (hence not considering the order) have
the same magnitude. Hence, counting the number of independent parameters, from the 9 components of a
second order tensor, one can rewrite the stress in vectorial form. This is also called as Voigt formulation of
the stress status.

σ= [σxx ,σy y ,σzz ,σx y ,σy z ,σzx ] (5.3)

which is a first order tensor, better manipulated than a second order one.
One of the most important theorem of calculus is the Spectral Theorem that describe the decomposition

of a matrix into eigenvalues and eigenvectors [9]. The theorem evokes complex mathematical insights that
are related to Hermitian spaces and advance vectorial analysis. A simple deduction of the theorem is that

1In reality, the materials present non-homogeneous properties for their body and a pure homogeneous body does not exist.
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Figure 5.1: Classical representation of the Cauchy stress tensor, where the prism represents an infinitesimal part of an elastic body. The

red terms tx , ty and tz represent the Cartesian decomposition of the stress vector, while the black terms are its further decomposition

into a second order tensor.

a real and symmetrical matrix is similar to a diagonal matrix, through an orthogonal matrix. An orthogonal
matrix is a matrix that satisfies the condition expressed below:

M T M = M M T = I (5.4)

where M is a square matrix and I is the identity matrix. Orthogonal matrices’ columns are formed by orthog-

onal vectors, whose definition can be found in basic calculus and linear algebra books, such as Bramanti et al.
[9]. The mentioned Spectral Theorem can be applied to the stress status Σ, which can be written as:

Σ=V T D V (5.5)

where the diagonal values of D are called eigenvalues or principal stresses’ magnitude and the columns of V

are called eigenvectors or principal stresses’ direction. Eigenvalues and eigenvectors are forming a normal
base for the stress status [9]. Eigenvalues are some of the most useful mathematical tools in linear algebra.
They are calculated as invariants of a matrix and can indicate an easy representation of a complex matrix.

Beside the stress status, a further important concept in structural mechanics is the deformation. If an
elastic body is loaded with external forces, this will tend to deform naturally2. Deformations can be largely
visible, or completely unnoticeable. Deformation is nothing more than the difference between the position
of a body’s point at rest and the position of same point under a load. An analogue representation of a body
deformation is the concept of strain. As it has been done in Equation 5.1 for the stress, one can write strain
as:

ε= ∆s′−∆s

∆s
(5.6)

where s is the position of a body’s specific location at rest and s′ is the deformed position. Strain is a a-
dimensional parameter. The numerator of Equation 5.6 is nothing more than the definition of deformation.
If one considers a three dimension body, a infinitesimal part of this body can be represented by Figure 5.1.
Hence, applying the same approach for the second order tensor representing the stress status, one can also
write the second order tensor that represents the body’s strain status as follows:

E =
εxx εy x εzx

εx y εy y εz y

εxz εy z εzz

 (5.7)

2Temperature variations can also produce deformation of a body, among other sources.
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where the columns are vectors that decompose the strain status of a body.
The key of elastic theory is the relationship that can be built up between stress and strain, which is usually

called as constitutive equation. As mentioned already, the qualitative description of the elastic behaviour
of a material is that, given a certain load, the material will respond with a proportional deformation, until a
certain limit that is call strength of the material. Above this level of stress or strain the structure fails and the
material breaks. Considering an axial stress, the constitutive equation that governs elastic materials is called
Hooke’s law and can be expressed as:

σ= Eε (5.8)

where the proportional coefficient E is the Young modulus of the material, usually measured in Pascals. On
the other hand, of the loading axis is shear, the Hooke’s law is written as:

σx y =µεx y (5.9)

where the coefficient µ is called modulus of rigidity or more simple rigidity. The two mentioned coefficients
E and µ are material’s properties and their relationship forms the material’s Bulk modulus B , found in re-
elaboration of the following equation:

E = 9Bµ

3B +µ (5.10)

knowing two parameters between Bulk, Young and rigidity moduli allows the calculation of the other by using
Equation 5.10.

Equations 5.8 and 5.9 can be re-written for a three dimension body, such as the one depicted in Figure 5.1
as well as for a two dimension problem. A common two dimension analysis where 5 out 9 tensor’s compo-
nents are zero is also called as planar stress, meaningσzx =σxz =σzz =σy z =σz y = 0. As consequence, using
the Voigt formulation for stress and strain, the planar formulation of the Hooke’s law can be written as:

σxx

σy y

σx y

= E

1−ν2

1 ν 0
ν 1 0
0 0 2+2ν

 εxx

εy y

2εx y

 (5.11)

where the term ν is called Poisson coefficient, calculated as the ratio between transverse and axial strain,
measured via testing material specimens[102]. It is possible to derive the relationship between the Poisson
ration and remaining of the material’s moduli through an equation that is similar to Equation 5.10, namely:

E = 2(1+ν)µ (5.12)

Returning to the constitutive equation, this can be re-formulated by the introduced relations between the
stress and strain vectors:

σ= K ε (5.13)

where K is called stiffness matrix. Given the linearity of the elastic problem, it is possible to invert the stiff-

ness matrix in order to find the strain when the stress is known. The inverse of the stiffness matrix is called
compliance matrix C , and the new formulation for the elastic constitutive equation is:

ε=Cσ→
 εxx

εy y

2εx y

= 1

E

 1 −ν 0
−ν 1 0
0 0 1−ν

2

σxx

σy y

σx y

 (5.14)

The relations presented in the current section are the basic for the development of the elastic theory. A
material that is elastic will return to the unloaded position when the force is stopping to act. The linearity of
the problem, demonstrated by the two proportionality matrices (stiffness and compliance), implies the fact
that stress and strain are mathematically the same thing. In other words, the loaded status can be described
via stress or via displacement approach but the knowledge of only one of the two status, directly implies
the knowledge of the second, given the material properties. Of course, if the load is exceeding the material
threshold a crack will be initiated and the structure will eventually fail.
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Figure 5.2: Configuration of stress around the tip of an existing crack, image taken from the handbook of Tada [100]

5.2. APPROACHES OF LEFM
In the literature, a large number of books and handbooks have been written in order to present fracture me-
chanics tools and in the specific, LEFM analysis, since it is based upon interpolation of experimental work. Of
course, the works of Griffith and Irwin are the baselines for all the other researches, being the first documents
that presents the LEFM techniques. Among others, manuals of fracture mechanics that contains the experi-
mental results of specimen tests are very important for the application of LEFM techniques to other fields of
science and engineering. The handbook that is taken as reference in the current research is Tada [100] and
the rest of the section is based on it, when not cited otherwise.

The stress distribution around the tip of an existing crack can be divided into three different modes that
depends on the type of acting source that is deforming the area. The three modes are shown in Figure 5.2
and represent the different ways of acting on a crack. Mode I is also called opening mode, where the crack’s
flanks are move away from each other (in the y-direction). Mode II is the edge-sliding mode where the two
sides of the crack are sliding over each other perpendicularly to the leading edge of the crack (in x-direction).
Finally, in Mode III or tearing mode the surfaces are sliding on each other parallel to the leading edge of the
crack itself (in the y-direction). The superimposition of the three Modes is sufficient to represent the majority
of the fracture mechanics problems. In the remain of the current chapter, only Mode I is presented, limiting
the analysis to a 2D problem. In the elaboration of the research aim, only the opening mode (Mode I) is used
in the investigation of crevasses’ propagation as well. Essential assumption of the LEFM, is that the structure
has to be fractured already. LEFM does not provide any insights in the initiation of crack, instead it can only
describe if the fracture can eventually grow.

Two categories of LEFM approaches can be distinguished, although these are essentially investigating the
same process. The first LEFM analysis is based on an energy balance approach, trying to find the energy
equilibrium for the extension of crack. Historically speaking, this is also the oldest and first attempt that
built the basics for the future LEFM improvement. The energy balance approach is often named as Griffith
theory, in honour to the aerospace engineer who firstly proposed. A more practical approach is the one which
introduce the concept of stress intensity factor, that measures the criticality of the conditions around the tip
of an existing crack. This last approach is the one that is used in the development of the current research
project. The two approaches are presented in the following section 5.2.2 and 5.2.1, respectively.

5.2.1. THE STRESS INTENSITY FACTOR APPROACH

Using the Irwin [40] approach, based on Westergaard [115], it is possible to represent the planar stress around
the tip of the crack that is placed in a infinite large layer that is biaxially loaded by the mechanical stress σ.
This works with produces the so-called Westergaard solution. The mathematics behind the simplification of
Westergaard is using second order differential equations named Airy functions. A complete mathematical
formulation of the Airy functions goes beyond the purposes of the current research and the reader is encour-
aged to view Hertzberg [24] for details. The result of the Westgaard solution is a set of equation that describe
the stress field as function of both the geometry and the load, specifically in the area of space that surrounds
the tip of the crack. It is necessary to specify that the Westergaard solution is only valid in the close proximity
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of the tip. Considering a pure Mode I fracture geometry, the equations governing the stress around a crack in
biaxially loaded infinity large plate are the following:

σx = σ
p
πap

2πr
cos

θ

2
(1− sin

θ

2
sin

3θ

2
) (5.15a)

σy = σ
p
πap

2πr
cos

θ

2
(1+ sin

θ

2
sin

3θ

2
) (5.15b)

τx y = σ
p
πap

2πr
sin

θ

2
cos

θ

2
cos

3θ

2
(5.15c)

where the three coordinates are referred to Figure 5.2, for Mode I fractures.
The structure of the three equations is the same. All of them are formed by different factors that are func-

tions of different parameters. First of all, crack’s geometry and the deformation background are expressed in
the Westergaard solution through the length of the crack l and the stress σ. After that, fixing a polar reference
system to the crack’s tip allows the identification of the radius r and polar angle θ. A more visual representa-
tion of the three equations is given by the following:

σα =σ
p
πl

1p
2πr

fα(θ) (5.16)

where the indexα can be x, y or x y , depending on the acting source. As it can be seen from the equation, there
are three main factors that contributes to the stress distribution σα. Two of them are related to the position
of the place we want to measure the stress. These are the geometrical function depending on the polar angle,
meaning the term fα(θ) and the singularity term 1/

p
2πr . The latter factor goes to infinity when r → 0 which

is the definition of singularity. On the other hand, the largest is the distance with the tip (r →∞), the more
the stress approaches to the applied load (σα → σ). The work of Irwin [40] introduced the occurrence of
plasticity3around the tip, in order to avoid the mathematical problem of singularity. The other relevant term
of Equation 5.16 is the dependance with the geometry of the crack coupled with the background stress:

K I =σ
p
πl (5.17)

which is named stress intensity factor calculated for a crack in a infinite plate, biaxially loaded. In the equa-
tion, l is the length of the crack. Equation 5.17 is a function that keeps track of the stress condition around
the tip. This is the most important equation for a LEFM analysis and as consequence, also for the current
research project. The stress intensity factor is measured in Pa m1/2 but it is more common to find order of
magnitudes of KPa m1/2 in the majority of fracture mechanics problems. For a propagation study of a crack,
the stress intensity factor is constantly monitored. When this reaches a certain threshold, called material’s
toughness K IC , the structure fails, and the crack can eventually propagate.

The same approach can be implemented for the other two fracturing modes, but their description is not
part of the current work and is avoided. The stress intensity factor was derived by the build-up of the first Grif-
fith theory which is based on energy balance. Next section gives a short presentation of the energy approach
and the equivalency of the two approaches, which will suggest the usage of the stress intensity factor.

5.2.2. THE ENERGY BALANCE APPROACH

During World War I, an English aerospace engineer, Alan Arnold Griffith started to specialise in the study of
the brittle glass fractures. Key outcome of his experimental researches is that the presence of micro-defects
and fractures that weakens the structure, as consequence, the fracture is more prone to propagate in the
material. Griffith coupled experimental work with the elaboration of a new fracture theory [21]. In qualitative
terms, the work of the loading scenario at the tip of an existing crack can be translated into an amount of
energy that is available for the fracture’s growth. Considering a pure elastic regime4, the energy factor is called
G and it can also be viewed as the variation of the body’s potential energy over the displacement change,
hence it is usually called as energy release rate. In symbols, this can be written as:

3Measured via the yield strength.
4The addition of non-linearity to the constitutive equations governing stress and strain are taken into account by a further factor, usually

labelled as J factor[100].
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G =−∂U (A,∆s)

∂A
(5.18)

where U is the total strain energy in the fractured body. This factor is function of the crack’s area A and the
load point displacement∆s. Despite the positive results of the application of the LEFM to studied specimens,
the energy balance approach is intrinsically complex to understand and to apply to real cases. So for the
majority of the practical cases, it is more convenient and efficient to use the stress intensity approach.

Despite the difference between the two approaches, it is possible to draw a relationship between the factor
G and the factor K . Assuming that a crack in an elastic body is extended by an external load and it is pulled
closed over a length l [100]. It is possible to write:

G =−∂U (A,∆s)

∂A
= lim

l→0

2

l

∫ l

0

(σy y v

2
+ σx y

2
+ σy z

2

)
dx (5.19)

where the stresses σy y , σx y and σy z are the stresses that are acting on the tip of a crack and which are the
loading factors that gives the name to the three fracture modes. Indeed, u, v and w are the displacements in
the three directions of Figure 5.2, related to their scaled version, the strain. By some mathematical manipu-
lations, the term G of Equation 5.19 can be written as:

G = 1−ν
2µ

K 2
I + 1−ν

2µ
K 2

I I +
1

2µ
K 2

I I I (5.20)

where ν and µ are the Poisson ratio and the rigidity modulus of the material (linked by Equation 5.12) This
equation represents the relationship between the stress intensity factor approach and the energy balance
approach. In the rest of the chapter, the application of the stress intensity approach to the study of terrestrial
crevasses is presented.

5.3. FRACTURE MECHANICS APPLIED TO TERRESTRIAL CREVASSES
One of the most complex and less understood phenomenon of glaciology is the calving process. Calving is
the episode of the breaking of large chunks of ice that are reversed in the sea from terrestrial ice sheet. The
floating blocks of ice are usually called icebergs. One of the most famous and recent calving event is the
breaking of the Larsen C ice sheet in Antarctica, after months of progressive propagation of a large crack on
the surface of the ice shelf itself. The Larsen C fracture is imaged in Figure 5.3 and reversed into the ocean
the highest amount of ice recorded in the history of humanity. At the beginning of the calving phenomenon,
there always the initiation of large fractures on the ice sheet. In particular, the ice at the extreme locations
of an ice sheet is considered to be weakened by multiple potential effects, such as global warming and tidal
oscillations of the sea level, among others.

In the rest of the research project, ice is treated as a purely elastic matter in order to allow the possibility
of applying the mathematical tools provided by the LEFM, described in the previous section. Nevertheless, in
nature, ice behave as elastic material only in specific and controlled conditions in the testing laboratories5.
When one deals with fractures on glaciers and/or on ice sheets, viscosity starts to play a key role. The viscosity
is a parameter that is extremely dependent on the temperature of the material. Viscous and visco-elastic
materials are extremely difficult to model given the non-linearity introduced. In fact, viscosity can be added
to the constitutive equation of the material by adding a non-linear term in the Hooke’s Equation 5.8 as follows:

σ= Eε+ηε̇ (5.21)

where ε̇ is the strain rate. As it has become clear, the constitutive equation is now non-linear with the intro-
duction of a time-dependant factor, the strain rate. Among others, ice is one of the most difficult material to
model and the relationship of the viscosity with the temperature is given by the Glen’s flow law:

η= ζ

2ε
n−1

n
e

(5.22)

where ζ is the hardness of the ice, εe is one of the stress invariant of the stress tensor[102] and n is the Glen’s
flow coefficient, usually set as 3. Physics of glaciers’ flows and of ice sheets is a complex field of glaciology and

5Where LEFM techniques can be experimented, for example.
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Figure 5.3: Aerial image of the Larsen C crevasse, in Antarctica.

its description goes beyond the scopes of the current document. The non linearity introduced by the viscosity
makes the ice one of the most difficult material to model. The reader is referred to Hutter [39] for a complete
presentation of the glaciology issues. The current chapter aims to describe the most relevant numerical anal-
ysis that have been produced regarding vertical and horizontal propagation of terrestrial crevasses (section
5.3.1 and 5.3.2, respectively). The two sections are fundamentals of the current research project since the
models developed are taken as reference the works cited here.

5.3.1. VERTICAL PROPAGATION

Historically speaking, the first attempt of applying LEFM tools to the propagation of terrestrial crevasses is
the work of Rist et al. [85]. The paper was the first one to propose the analogue between ice shelves and the
specimen that are tested in order to study the behaviour of the fracture. More in specific, an ice shelf can be
visualised and modelled as a finite specimen for studying deep crevasses and a semi-infinite layer for more
shallow crevasses. A couple of years after the mentioned work, a further improvement to the application
of LEFM was presented. Van der Veen [108] and Van der Veen [109] developed a study for surface and bot-
tom crevasses respectively, re-elaborating the work of Rist et al. [85] with a more consistent and schematic
approach. The basics of the paper are the fracture mechanics tools presented in section 5.2.1 with the ap-
plication of the stress intensity factor approach for surface and bottom vertical crevasses. Results presented
amounts of stresses and conditions necessary to find a crack that cross the entire layer and would eventually
separate the two flanks of the ice sheet. Of course, the motivation of the research is the understanding of
the calving phenomenon, which would explain the iceberg formation, among others. The formulation of a
calving law has been one of the key aims of glaciologists and it is still an unanswered question. The current
research takes as mathematical and numerical baseline the work of Van der Veen, in order to study the vertical
propagation of crevasses. The geometry of the model is shown in Figure 5.4, where surface and bottom cracks
are presented. A further step in the LEFM mathematics allows to find insights in the horizontal propagation,
referencing to Larour et al. [50] and better explained in section 5.3.2.

Surface crevasses can be considered to be deformed by various stress sources. In reality, an infinite num-
ber of actors are accounted in a virtual full understanding of the crevasse’s behaviour. In the numerical world,
it is enough to take into account opening (or closing) stress, overburden ice pressure and water pressure. Ten-
sile or compressive stress can be due to the flowing of the glacier or to tides; these are only example and in
reality lots of factors are acting on the flanks of the rift. Overburden (or lithostatic) pressure is the weight of
the ice that is above the tip of the crack. The deeper is the crack, the more intense is the closing action of the
ice above. Lastly, if water is filling the crevasse, this is counteracting the closing effect due to lithostatic pres-
sure, via water pressure. Only considering these first implications, one can already deduce that water-filled
crevasses potentially reach greater lengths. The three conditions are applicable also to bottom crevasses for
ice sheets, meaning ice layer in contact with water below.

The geometry of the LEFM application to surface crevasses is shown in Figure 5.4a. The various terms
are presented in the following paragraphs. Some key simplifications need to be explained before proceeding



5.3. FRACTURE MECHANICS APPLIED TO TERRESTRIAL CREVASSES 53

(a) (b)

Figure 5.4: Geometry of the crevasse vertical propagation problem. Figure readapted from the description of Van der Veen [108]and

Van der Veen [109]. For both the figures, d , H and Rxx represent the crack length, the ice thickness and the tensile stress, respectively.

(a) represent the surface crevasse geometry, where a is the water level, b is s variating parameter that measures the lithostatic pressure

(term dP ) from the top of the ice sheet. On the other hand, (b) represents the bottom crevasse geometry, where dP is still the overburden

pressure and D is the depth of the glacier sole below sea level. For completeness, H −D is the piezometric head and z the variating

vertical position, calculated from the bottom of the ice sheet.

with the description of the Van Der Veen model (VDV). First of all, in all the simulations proposed, the tensile
(or compressive) normal stress acting on the crevasse’s flanks is constant with depth (term Rxx ). This hap-
pens both for surface and bottom crevasses. Secondly, the ice behaves as a purely elastic matter and it has a
density that include a depth profile that takes into account the lower densities of the upper snow layers. In
the specific:

ρ(b) = ρi − (ρi −ρs )e−C b (5.23)

where b is the variating vertical position, ρi andρs are the solid ice and the snow density, while C is a constant.
Taking into account experimental field works and glaciology handbooks (e.g. Paterson [72]), the values can
be assumed to be 917 Kg/m3 and 350 Kg/m3 for solid ice and snow density, respectively; and 0.02−1 for the
constant C . Thirdly, water filling the crevasses is considered to reach a specific level that can be chosen
arbitrarily. For bottom crevasses, the assumptions are the same with the only exception that the water is
filling the entire crack from below.

Concerning surface crevasses, the stresses acting on the flanks of the fracture are basically three: ten-
sile stress, lithostatic stress and water pressure. The next equations describe the model of VDV for surface
crevasses and the symbols found are referenced to Figure 5.4a, when not cited otherwise. Standard tensile (or
compressive) stress is:

σxx = Rxx (5.24)

Lithostatic stress, with the introduction of the density-depth profile mentioned in Equation 5.23 is:

σl (b) =−
∫ b

0
ρ(z)g dz = ρi g b + ρi −ρs

C
g (1−e−C b) (5.25)

Finally, water-filled crevasses need to take into account water pressure as follows:

σw (b) = ρw g (b −a) (5.26)

where a is the depth below the surface of the water layer and ρw is the constant density of fresh water. Equa-
tion 5.24 to 5.26, represent the stress acting on the flank of a surface crevasses. The last two equations are
dependent of the vertical position (term b that variates from 0 to the crack length d), while the first one is
constant by assumption.

As presented in section 5.2, stress status needs to be coupled with the geometry of the problem in order to
calculate the stress intensity factor for the tip of the crack (measured as d in Figure 5.4a). Therefore, for each
stress source presented before, a factor K I can be calculated in order to satisfy Equation 5.17.
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The stress intensity factors calculated for Equation 5.24 is:

K (1)
I = F (λ)Rxx

p
πd (5.27)

where λ= d/H is the ratio between the crack depth and the ice thickness. The function F is a a-dimensional
parameter that is only dependent on the crack geometry. This factor, together with the stress condition are
the two parameter that combined summarise the stress intensity factor approach. In the specific case of an
ice sheet, simplified as a finite plate specimen [100], the function F is shown as the solid curve in Figure 5.5
and it can be written as:

F (λ) = 1.12−0.23λ+10.55λ2 −21.72λ3 +30.39λ4 (5.28)

The equation is calculated on polynomial curve based on numerical fitting of stress intensity factors for the
finite specimen [100]. For relative shallow cracks (λ→ 0) or for very thick ice layers (H →∞), the function F
assumes a constant value of 1.12, which is the geometrical factor for a semi infinite layer. The semi-infinite
layer plane curve is shown in dashed lines in Figure 5.5. The result of the stress intensity factor calculation for
a pure tensile (or compressive) stress implies that the main behaviour of K (1)

I is that the deeper the fracture,
the higher is the intensity. In other words, the deeper the fracture, the easier is to continue the propagation.

Figure 5.5: Function F shown in Equation 5.28 taken from [108]. The

solid curve represents the finite layer model with respect to d/H as

the ratio between the crevasse length and the ice thickness. Dashed

line correspond to the semi-infinite layer approach (H →∞).

The stress intensity factor in differential form for
Equation 5.25 can be calculated with the following
equation [100]:

dK (2)
I = 2σl (b)dbp

πd
G(γ,λ) (5.29)

where σl is expressed in Equation 5.25 and the fac-
tor G , function of the ratio between the crack depth
and the ice thickness λ together with the variating
factor γ = b/d has the same geometrical implica-
tion of function F in Equation 5.28, but now it is a
bit more complex and written as:

G(γ,λ) = 3.52(1−γ)

(1−λ)3/2
− 4.35−5.28γ

(1−λ)1/2
+[

1.3−0.3γ3/2

(1−λ2)1/2
+0.83−1.76γ

][
1− (1−γ)λ

]
(5.30)

which is taken from Tada [100], similarly to function
F . The equation is also calculated on polynomial
curve based on numerical fitting of stress intensity
factors for the finite thickness specimen. The K (2)

I
is in differential formulation because of the depen-
dance with the vertical position b. Therefore, the net
stress intensity factor can be calculated by integra-
tion of Equation 5.29 as follow:

K (2)
I =

∫ d

0
dK (2)

I = 2ρi gp
πd

∫ d

0

[
−b + ρi −ρs

ρi C
(1−e−C b)

]
G(γ,λ)db (5.31)

Differently to Equation 5.27, Equation 5.31 is an integral function, because of the dependance with the verti-
cal parameter b. The result of the stress intensity factor calculation for the overburden pressure implies that
the main behaviour of K (2)

I is that the deeper the fracture, the higher is the intensity of the closing action
of the ice layer. The physical explanation is simple: the ice on the top of the crack has a certain weight (or
pressure) and this tends to close the crevasse naturally.

Lastly, in the case that water is filling the crevasse, the pressure of the liquid tends to counteract the litho-
static ice pressure and its behaviour is described by the implementation of the stress of Equation 5.26 in form
of net stress intensity factor as follows:

K (3)
I = 2ρw gp

πd

∫ d

a
(b −a)G(γ,λ)db (5.32)
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(a) (b)

Figure 5.6: Figure taken from Van der Veen [108], showing the dependance of the stress intensity factor (y-axis in Figure 5.6a and x-axis

in Figure 5.6b) with depth of the crevasse (x-axis in Figure 5.6a and y-axis in Figure 5.6b) and the effective presence of water that is filling

the fracture. Both the figures are referring to a 500 m thick ice shelf where a bilateral stress of 100 KPa is acting. Figure 5.6a shows the

dependance with the water layer (labelled numbers on the right of the curves). The higher the water level (smaller values of a), the higher

magnitude of the stress intensity factor. Figure 5.6b represents the stress intensity factor for a water-free crevasse (heavy solid line), and

of a water-filled crevasse (without superficial firn layer with the thin solid line and with the layer with the dashed solid line). dm and dw

are the maximum depth for a water-free crevasse and the minimum depth for a water-filled crevasse, respectively. More details in the

text.

where a is the water level calculated from the upper surface and G is the geometrical function shown in
Equation 5.30. The aspect of the water pressure-related stress intensity factor is the same of Equation 5.31
because of the dependance with the term b variating from a to d . Water pressure is an important parameter
and its only presence can modify the depth of the crevasses in order of magnitudes [72, 85, 108].

The VDV model finds its key equations in the three stress intensity factors presented in the Equation
5.27, 5.31 and 5.32 that characterise an ice crevasse’s stress configuration. The last two functions are depen-
dant with the crevasse depth d , differently from the first one which is constant by assumption. These can
be summed together in the total net stress intensity factor via the superimposition principle, as previously
mentioned:

K net
I (d) = K (1)

I +K (2)
I (d)+K (3)

I (d) (5.33)

The stress intensity factor approach of the LEFM states that crack propagation occurs when K net
I reaches a

certain threshold, called material toughness K IC . This condition is reached for a specific value of crevasse’s
depth, that can be called as critical depth, in symbols:

K (1)
I +K (2)

I (d)+K (3)
I (d) = K IC (5.34)

Solving this equation, given material properties and stress conditions, allows the calculation of d , the pene-
tration depth of the crevasse. This procedure, that elaborate the stress intensity factor around the tip of the
crack, is the final purpose of the LEFM analysis applied to terrestrial crevasses. Main outcome of the pre-
sented analysis is that the combination of three different stressing sources on the flanks of an existing ice
fracture can lead to crack propagation until a point where the critical conditions are not reached anymore
and the crack stops to propagate. The results of the VDV model for surface crevasses vertical propagation
are shown in Figure 5.6 taken from Van der Veen [108]. In the specific, both 5.6a and 5.6b are showing the
net stress intensity factor (Equation 5.33), the former in the vertical axis and the latter in the horizontal axis.
Both the graphs have the same parameters for ice thickness (H = 500 m) and for a bilateral tensile stress
(Rxx = 100 KPa). Figure 5.6a shows the dependance of the K net

I with respect to crevasse depth (vertical axis)
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and to the water parameter a. The closer the water to the surface. the smaller value of a and the higher the
stress intensity factor. In the image, the toughness does not appear so the critical depth can not be deduced.
On the other hand, Figure 5.6b shows6, with the heavy solid curve the crevasses in absence of water, with the
dashed curve the case of a crevasse of a = 15 m with a firn layer, and with the thin solid curve the solution for
a constant density profile (firn layer removed). The two vertical dashed lines are upper and lower limits for
the ice toughness in a glacier. In the figure, dm represents the maximum value reached by the crevasse depth
while dw is the minimum depth of a water-filled crevasses. These two values represents the theoretical limits
of a crevasse depth in a ice layer of 500 m and under the tensile stress of 100 KPa. As stated in Van der Veen
[108] the results obtained for the crevasses depths can be considered as an upper limit for their effective val-
ues. The material threshold is an other critical factor that affect the results of the LEFM. Experimental works
found that potentially correct values for the glacier ice toughness are in the range of 0.1 to 0.4 MPa m1/2,
which is the range that plotted with the two vertical dashed lines in Figure 5.6b. In reality, terrestrial crevasses
are affected by a large number of different physical phenomenon which modify the actual geometry of the
crack such as temperature and/or ablation of the ice. Additionally, a better representation of terrestrial ice is
a visco-elastic material but this state would not allow LEFM to be applicable.

The application of LEFM to bottom crevasses follows the same procedure of the surface fracture with the
only difference that water is considered to be filling the crevasse entirely. The theoretical background for this
last part of the section is referring to Van der Veen [109]. Geometry of the problem is pictured in Figure 5.4b,
where Rxx and H are still the tensile stress and the ice thickness. Water can reach a level that is represented
by the term D . In glaciology, the term H −D is called piezometric head Hp . Considering the water pressure
at the bottom of the ice layer, this cannot surpass the weight of the ice sheet itself. In symbols:

σmax
w = ρg H (5.35)

where the term ρ is the depth-averaged ice density, calculated from solving the density-depth profile (Equa-
tion 5.23) via integration:

ρ = ρi − ρi −ρs

C H
[1−e−C H ] (5.36)

The calculated water pressure σmax
w represents the maximum pressure of the water7. The minimum pressure

for the water column is found at the highest reachable point, i.e. at level D :

σmin
w = ρw g D (5.37)

Knowledge from basics glaciology relates ice thickness is related to the term D via the following formula,
when for a floating ice shelf, maximum and minimum pressures are equal.

H = ρw

ρ
D (5.38)

Considering that the piezometric head is written as H −D , it follows by logical implication of Equation 5.37
and 5.35 that:

D ≤ Hp ≤ ρ

ρw
H (5.39)

which is an important equation in the development of the rest of the glaciology problem.
For surface crevasses, a complete analysis of the three different characteristics affecting the stress inten-

sity factor, i.e. tensile stress, water and lithostatic pressure. For bottom crevasses the process is the same so it
is possible to summarise the steps, finding a stress equation that is, again, depth-dependant:

σn(z) =−ρi g (H − z)+ ρi −ρs

C
g [1−e−C (H−z)]+ρw g (Hp − z)+Rxx (5.40)

where z is now the vertical dimension calculated from the bottom of the ice layer as it can be seen in Figure
5.4b. For a single crevasse, the stress intensity factor acting on the tip of the fracture can be calculated by the
following function, similarly to what happens for surface crevasses:

K net
I =

∫ d

0

2σn(z)p
πd

G(γ,λ)dz (5.41)

6Which has the axis rotated on 90° counter-clock wise with respect to Figure 5.6a.
7No oceanic phenomenon are considered and the water is assumed to be in equilibrium with the ice above. Currents, eddies and other

actor can change this this value substantially.
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where the function G is written in Equation 5.30 and σn is the normal stress acting on the flanks of the
crevasse as stated in Equation 5.40.

The results of the LEFM applied to bottom crevasses have the same aspect of the ones for the surface
crevasses. Still, the stress intensity factor needs to reach a critical threshold in order to propagate the fracture.
Similarly to what happens in Equation 5.34, the net value of K I assumes the value of the material toughness
K IC :

K net
I (d) = K IC (5.42)

As previously mentioned, the stress intensity factor depends on the crack length d and one can find this
value from the critical condition by iteration of the threshold Equation 5.42. LEFM is a pretty straightforward
numerical analysis to implement and, given the full description of the background conditions (ice thickness,
material properties, and stress status), it is possible to find lots of interesting results such as the crack length.
Figure 5.7 represents the results for the calculation of the stress intensity factor as function of the crevasse
depth. As it was seen for surface crevasses, the curve (in heavy solid black line) can be compared with the
material toughness (minimum and maximum allowed values in thin solid line) in order to detect the critical
height of the crevasse above the lower surface of the ice sheet. Considering a minimum toughness of 0.1 MPa
m1/2, the crevasse height is of 90 m, while with a value of 0.4 MPa m1/2, the height is lowered to a maximum
of 55 m. Surface and bottom crevasses can be considered to be present at the same time in an ice sheet.

A last consideration that is needed to be mentioned is the problem of numerical stability. It is possible to
appreciate the issue with reference to Figure 5.7 but the implications are the same also for surface crevasses.

Figure 5.7: Figure re-adapted from Van der Veen [109], showing the

dependance of the stress intensity factor (x-axis) with the height of

the crevasse (y-axis). The figures refers to a 500 m thick ice shelf

where a bilateral stress of 60 KPa is acting. The two thin vertical

lines corresponds to the minimum (0.1 MPa m1/2)and the maxi-

mum value (0.1 MPa m1/2) for the ice toughness on a glacier.

As already stated, the critical length of the crack can
be found by iteration of Equation 5.42. Among the
different types of solutions that the equation can
produce, a double valid solution might also emerge.
Mathematically speaking, these solutions are both
valid and can be easily visualised in Figure 5.7, con-
sidering the intersection between the vertical line
representing the maximum limit of 0.4 MPa m1/2

for the toughness and the heavy solid curve repre-
senting the stress intensity factor. Two solutions are
shown to be present, the first one with a lower mag-
nitude than the second one. These points projected
onto the vertical axis, shows the critical length of
the crevasse. In a complete LEFM analysis, only the
solution with a positive derivative of the K I factor
with respect to d needs to be taken into account.
The reason is that, when dealing with the first so-
lution (with the negative derivative), this presents a
condition of instability. Indeed, if the crack length
presents a value that is somehow lower than the crit-
ical limit, the stress intensity factor assumes values
that are lower than the threshold and the crack will
naturally tend to close. On the other hand, if the
length is a larger than the critical value, the stress in-
tensity factor, being higher than the threshold K IC ,
will induce the crack length to grow till the material
limit again. This is represented by the second so-
lution, after which the toughness threshold is not
reached anymore. This solution is stable; values
that presents small differences with the critical limit
would produce stress intensity factors that are in-
duce the length to return in the equilibrium posi-
tion. In the figure, the stable and unstable solutions are indicated as d ST and d UN; the discussion addressed
so far can be visualised by looking at the mentioned variations around the two equilibrium points.
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5.3.2. HORIZONTAL PROPAGATION

So far, the focus of the chapter was pointed to the vertical propagation of crevasses and, historically speak-
ing, the VDV model is one of the most successful numerical analysis that investigates depths of terrestrial
crevasses. The outcomes of the simulations allow the determination of the vertical depth of such fractures in
ice at its brittle regime.

Beside the vertical propagation of VDV, further works applied the LEFM in order to study horizontal prop-
agations of crevasses. It is the case of Larour et al. [51], which investigates the behaviour of a rift formed on
the Ronne Ice Shelf, near the Hemmen Ice Rise in Antarctica. Radar and optical images taken during the years
1992 to 1997 clearly showed the presence of multiple surface crevasses in the area, with the probable presence
of bottom fractures as well. Interferometric radar images allowed the scientists to detect a horizontal creep
flow on the ice sheet. Coupling digital observations with the numerical tools offered by LEFM, succeeded
in the determination of important dynamical parameters that governs the horizontal propagation of these
crevasses. If a planar geometry is considered to model the area around the crack, an other geometrical for-
mulation of the stress intensity factor needs to be evoked [100]. In particular, by rotating the vertical geometry
of Figure 5.4a to horizontal direction, the propagation of the eventual crack is intended to be in the direction
parallel to the surface of the ice sheet. The LEFM analysis applied to find the displacement movement can
produce outcomes that are relevant to study propagation rates, beside the simple crack length growth. If one
derive in time the displacement found in the LEFM analysis [100] the results are the following:

δ= 4σl

E
V (d) → ∂

∂t

[
δ= 4σl

E
V (l )

]
(5.43)

where the term l is the crack’s length, E is the young modulus of the ice, and V is the a-dimensional parameter
that governs the geometry of an horizontal plate. Results of the derivative can be summarised as:

∂l

∂t
= f

(
σ,
∂σ

∂t
, l ,

∂δ

∂t

)
(5.44)

which can be described as the variation of crack length in time (also known as propagation rate) as func-
tion of stress, stress rate, crack length and displacement rate. These last parameters that are governing the
propagation rates are all known and measured by satellite observations. More in particular, the displacement
used in the model is nothing more than the opening width of the crevasse. Of course, this kind of analysis is
possible if observational data are available, as happens for the numerous crevasses on terrestrial ice sheets.
The current research aims to apply the same concept of Larour et al. [51] but for crevasses on Europa. In this
sense, the lack of observations for the icy surface of the moon are limiting the results of the numerical studies
and bring problems in the implementation of a correct model. The solution adopted in this project deals
with the simplification of the opening width and the displacement rate with the introduction of the strain
rate, calculated from the stress equation via the constitutive equation. More details in the following part of
the document.

A further work that investigated the horizontal propagation of crevasses on the Ronne Ice shelf is Hulbe
et al. [31] that applied a numerical model that is based on LEFM but intrinsically using different mathematical
tools than the one of Larour et al. [51]. After the calculation of the stress intensity factor around the tip of the
existing ice cracks, the research applied a displacement continuity boundary element method that is able
to compute stresses in complex mesh-geometries in order to proceed with the identification of a potential
crevasse propagation, together with its direction. Terrestrial crevasses have been observed to arrest their
propagation at specific locations called suture zone. These areas are intersections between different and
adjacent ice flows. The results of the work Hulbe et al. [31] suggested that these crevasses are unlikely to be
stopped in those locations, in the case of absence of suture zones.

Concluding, some numerical works have been already applied to horizontal propagation of terrestrial
crevasses. In particular, LEFM theory has the potentiality of simulating longitudinal propagation of crevasses
by rotating the geometry of the VDV approach. The current research applies the approach of Larour et al.
[51] in order to find relations for the horizontal propagation of the features observed on the icy surface of the
moon Europa.
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6
RIFT PROPAGATION MODEL

So far, the main focus of Part I presented the key findings that were found in the literature survey about the
Jovian moon Europa. The satellite’s current view is seen as a global icy shell that covers a liquid water ocean.
Speculations about the potential habitability of this global water layer have kept the focus of the scientific
community toward the tiny Europa. Habitable conditions, mainly deduced by the maintained liquid state of
the H2O layer, are due to large tidal dissipation that is thought to occur in the interior of Europa. Indeed, heat
dissipation is supposed to be constantly generating energy used to keep the liquid state and avoid the global
freezing. Beside being the extreme shield protecting the water ocean from the deadly radiation of Jupiter, the
outer ice shell of the moon represents of the most curious surfaces observed in the Solar System. Tides are
the key deforming sources that are acting on the different layers of Europa.

Beside waves and heat that are assumed to be tidal actions on the Europa ocean, stress due to tides con-
tinuously deforms also the upper layer of the moon. The extremely cold temperature and the brittle regime
lead the ice shell to reach deformations that ranges on orders of magnitude way higher than what happen
on terrestrial ice. This, combined with the fragile properties of the ice, induce the crust to eventually initi-
ate and propagate fractures. Result is the wide number of lineament features observed on the surface by the
several mission that reached the Jovian environment. Stress sources are acting on Europa at both short and
long timescales. The former are composed by tidal influence of non-zero eccentricity and non-zero obliquity
together with the generation of physical libration of the crust. Secular terms are non-synchronous rotation
and true polar wander. Fractures on Europa have different shapes, depending on the location on the moon
and on the different characteristics of the stress acting along it. Lots of models have been applied in order
to study the initiation and the propagation behaviour of the fractures observed on the surface of the moon.
Nevertheless, the lack of observational data has not allowed a full knowledge even of very basics properties of
these fractures, namely depth or age, for example.

The current research tries to answer to one of the most intriguing question for the propagation of the
cracks observed on Europa by using mathematical tools provided by the coupling of fracture mechanics and
tidal potential theory in a numerical model. Part II presented the mathematical tools that are needed in the
developing of this research purpose. In the specific, a description of tides that uses the tools of the potential
theory allowed the identification of analytical functions for the stress field on the surface of the moon as func-
tion of the various orbital parameters assumed for the orbit of the satellite around Jupiter. The technique used
to translate potentials in terms of stress tensor is the normal mode theory, not presented in the current doc-
ument. After a stress field is provided, fracture mechanics tools such as the LEFM can investigate cracks on
theoretically pure elastic materials. The Europa surface’s extremely low temperature allows the assumption
of an elastic material as first order approximation. Being the LEFM a technique firstly used in the World War,
more recent studies applied its key features also to the investigation of terrestrial crevasses, among others.

Taken this important finding from the literature on Europa and from terrestrial glaciology, it is possible to
build a numerical model that investigates the crevasses’ propagation on the icy surface of the moon as well.
The current chapter aims to present the model in its technical details. Section 6.1 describes the numerical
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Parameter Symbol Value Reference

Bulk Modulus B 9.3 GPa Wahr et al. [111]

Rigidity µ 3.487 GPa Wahr et al. [111]

Poisson ratio ν 0.33 Jara-Orue [41]

Young Modulus E 9.29 GPa Equation 5.10

Table 6.1: Rheological parameters of the ice crust of Europa, including references of the values.

model’s set-up. It starts from basic properties of the structure and the material to end by finding characteris-
tics for vertical and horizontal crevasses’ propagation. Additionally, the most important assumptions of the
model are here listed. The idea is to give already the general potentiality of the numerical routines, together
with its inner limitations. Four different sub-sections are here included, namely one describing the input files
needed, two showing vertical and horizontal propagation routines and one briefly presenting the outcomes,
but these are fully presented in chapter 7. On the other hand, section 6.2 shows the procedure of valida-
tion of the numerical code. It is important to mention already the problem encountered when dealing with
validation of the code. The behaviour and the parameters that rule crevasses on Earth is still unknown for
the majority of the properties. The location where crevasses are observed, are remote, hardly-accessible and
extremely dangerous places for potential field works. Additionally, ice is known to be a very hard material
to model, given the large amount of parameters that affects its properties. Therefore, even the most basic
parameters (such as the depth of a crevasse) are hard to measure and to constrain via numerical models. If
for Earth the data for crevasses are rare but still are present in the literature, information on Europa fracture
are limited to a hundred of spacecraft’s images, not even of an high quality. The strategy adopted to avoid the
problem of having a non-validated model, is to use the built model to find depths of a crevasses’ set that were
measured in Iceland. This work is the only one of the kind, because of the mentioned problem of accessibility
and dangerousness of the eventual field-work.

At the end of this chapter, all the tools for running the codes are provided and the document proceeds with
the analysis of the outcomes of the numerical simulations. The outcomes of the simulations are presented in
the next chapter where details for vertical and horizontal propagation for Europa’s crevasses are investigated.

6.1. NUMERICAL SET-UP
The current sections provides the numerical set-up for the calculation interested in vertical and horizon-
tal propagation of crevasses. Being the aim of the current research an improvement to the existing models
that study the depths and the propagation rate for the crevasses, the layout of the numerical routines can be
distinguished into horizontal and vertical propagation, respectively. Before starting the presentation of the
technical details of the model, the most important assumptions have to be made clear in order to foresee
already the potentiality of the model and its necessary limitation. The following bullet list includes assump-
tions whose field of validity ranges between the arguments that have been discussed in the past two Parts of
the documents.

• The tidal stress on the surface of the moon is considered constant along the entire thickness of the ice
layer and as results of normal mode theory applied to tidal potential.

Potential theory allowed the identification of the tidal potential as function of the orbital parameters of Eu-
ropa around Jupiter. In the specific, the normal mode theory allows the manipulation of the tidal poten-
tial in order to derive the stress that is acting on the Jovian satellite. The work that is used as reference is
Jara-Orue and Vermeersen [42] which takes into account non-zero eccentricity, non-zero obliquity and non-
synchronous rotation for a 5 layer Maxwell model for the interior of the moon as described in Table 2.1.
When not specified in other ways, the thickness of the ice is considered to be of 5 km. The two first stress
sources, namely eccentricity-driven and obliquity-driven background fields are defined by a value of 0.0094
and an axial tilt of 0.5°, respectively. The two sources are deforming Europa on a short, diurnal timescale
whose magnitude has the same order of the orbital period (around 85 hours). Secular stress source is the
non-synchronous rotation with a period set as 107 years. These numbers are taken from the literature survey
of Europa and used also in Jara-Orue and Vermeersen [42]. For more details about the stressing sources on
Europa, the reader is encouraged to refer to chapter 2, with a focus on section 2.2. The work of Jara-Orue and
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Vermeersen [42] applied the results of normal mode theory to a viscoelastic stratified moon and produced an-
alytical formulations for elastic and viscous stress tensor that can be calculated for every point of the moon.
In the current research, only elastic stress can be used as acting source on the crevasses, if one wants to apply
LEFM. The analytical functions are reported in Appendix B.

• Europa ’s outer layer is considered to be a constant thickness solid ice crust that is behaving as a pure
elastic material.

This is considered to be the first and most important assumption for the model developed in the current
research. Europa icy crust is assumed to be a finite thick layer in contact with the lower global ocean. The ice
is purely elastic and its constitutive equation is the Hooke’s law (Equation 5.8). In reality, it is more likely that
ice is also flowing on Europa but the introduction of visco-elasticity would not allow the linear elastic fracture
mechanics to be applicable. The key physical properties that have been assumed for the Europan outer layer
are listed in Table 6.1. It is important to notice that the parameters mentioned in the table are considered
constant throughout the entire thickness of the ice. The limitation of a pure elastic plate is the key for the
application of the LEFM to crevasse propagation.

• The linear elastic fracture mechanic investigation aim to find the stress intensity factor for various lo-
cations of the moon, by assuming a single edge notch specimen on a finite plate geometry

This simplification is maybe the most limiting one, while talking about the effective validity of the model.
LEFM is a theoretical technique that is based on experimental work done on materials cracked in the lab-
oratory. Obviously, the dimensions of the specimens are far from the scales of crevasses on Europa. Some
features are observed to stretched along half on the moon’s surface reaching total lengths of thousands of
kilometers. Laboratory specimens maximum dimensions are meters. Therefore, it is necessary to take the
effective validity of the results very cautionary. Although LEFM is been applied and validated with terres-
trial crevasses, the VDV model provides just a first order approximation of icy crevasses. If data are partially
available for Earth, for Europa even the more basic information is discussed. So it is necessary to critically
understand that at such at large space scale no complete validation can be found. Additionally, the extremely
large values of the length and the fact that some Europan crevasses are crossing almost the entire surface of
the moon would imply a geometry that is definitely not plane, as the one assumed for terrestrial crevasses in
Van der Veen [108] and Van der Veen [109], where the curvature of the Earth could be depreciate. For a com-
plete analysis, planetary curvature should be taken into account. So doing, the problem would be translated
into the LEFM analysis of a crack in a shell. In the literature on fracture mechanics, some analysis of fractured
shell are present (e.g. Tada [100]). Unfortunately, the nature of the tidal forces expressed in Jara-Orue and
Vermeersen [42], used as acting stress on the crevasses, is not suitable for vertical propagation. Concluding,
the finite thick plate is applied to both the cases for sake of uniformity in the development of the work. Future
work might include the curved geometry into the numerical model. In the current research, only a single edge
notch specimen on a finite plate geometry is considered. Details on LEFM applied to such type of cracks has
been already described in chapter 5, and more in specific in section 5.2. Figure 5.4 represents the geometry
that is used for the vertical propagation.

The rest of the section describes the numerical passages that are needed to evaluate depth of the crevasses
and horizontal propagation rate from the tidal stress of Jara-Orue and Vermeersen [42]. The key executable
that is the basic of every routine that deals with the propagation of a crack is the evaluation and the mon-
itoring of the stress intensity factor around the tip of the fracture. This is presented in section 6.1.1 and is
based on the comparison of the K I factor with respect to the toughness of the ice. This process is an iterative
calculation that aims to find the crack length whose stress intensity factor is equal to the material toughness.
Given its iterative nature, it is also called as LEFM loop. This routine is the basics of both vertical and horizon-
tal propagation. If for the former the length represents the final product and the arrest of the simulations, for
the latter this is the first step of the numerical analysis, which continues with the calculation of the propaga-
tion rate via time derivation. Vertical propagation is based on the VDV model presented in section 5.3.1 while
the horizontal propagation on section 5.3.2, as it will become clear from the rest of the chapter. Of course,
the executables need to receive input parameters that describes the general representation of Europa and the
stress tensor that is the deforming background of the LEFM loop. Additionally, the parameters that governs
the LEFM loops have to be included, in order to translate the model firstly developed for the Earth to Europa’s
crevasses, whose geometry is slightly different. This part is presented in sections 6.1.2 and 6.1.3. Finally, a
short presentation of the outcomes of the simulations is reported in section 6.1.4. This just serves to show
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Figure 6.1: Representation of the numerical procedure of the research project, distinguishing between input files (in blue), executables

(in red), and outcomes (in yellow). In particular, the input files consist in the Europa description, the parameters used for a LEFM loop

and the geometry of the particular feature, if this is requested. The two categories of output files are vertical depths and horizontal

propagation rates. The two executables are coded in order to find the two outcomes with different types of routines.

how the results would look like, instead of showing the exact numerical results of the simulations. A complete
critical presentation of the results of the current research project are presented in chapter 7.

The scheme of the numerical routine is pretty straightforward, beginning with a set of input files that
represents the planet conditions and the most relevant physical parameters, passing through the executables
routines in order to produce relevant results. The actual diagram that represents the flux of the numerical
model is shown in Figure 6.1. In the scheme, the executables are marked with the red boxes and differentiated,
the two different types of outcomes are marked with the yellow boxes. The input files are represented by the
blue boxes. Important is to notice that the geometrical aspect of specific crevasses is added only when the
simulations needs to calculate the actual depth of specific fractures. The geometry is needed in order to to
calculate the rotation matrix that would allow the reorientation of the stress tensor in terms of the actual
opening stress normal to the crevasse. For the calculation of global depths, the geometry is not needed.

6.1.1. INPUT FILES

The current section discusses the input files that are describing the background of the simulations. In par-
ticular, these include the parameters that can be tuned in order to also produce sensitivity analysis, beside
dealing with the effective answer to the research question. For sake of simplicity, the input files needed for
running the numerical routines can be divided into three different categories. The three blocks of input files
can be seen with the blue boxes of Figure 6.1. Referring to the scheme, two out of the three input files are
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needed at the very beginning of the simulations. These are the physical description for Europa and the LEFM
parameters. The third input is the geometry of an existing crevasse. More in specific, the discretised crevasse
can be shaped along the map of the moon through the usage of Geographic Information System, also called
as GIS softwares. This kind of input file is needed only when dealing with the local approach of the vertical
dimension as it is mentioned later on. The software used in the current research is the open source software
QGIS1. Among the possibility of the GIS program, the ability of discretising and manipulating geographical
maps is given. In particular, the approach adopted in the research is the discretisation and the digitalisation
of a list of target features observed on the surface of Europa in nodes and segments. So doing, the LEFM
routines can be applied point-wise to the nodes found. Basic reference map is Figure 3.2. The next part of the
section aims to describe the three input files in details.

The first two input files are the physical parameters that describe the Europa environment and the ones
that govern the LEFM simulations. Dealing with the first of the two, the physical factors are needed for the
calculation of the stress tensor as derived from Jara-Orue and Vermeersen [42]. Again, the analytical formu-
lation of the stress tensor is included in Appendix B. The orbital parameters and the key elements that are
describing the physical background environment of Europa are reported in Table 6.2, which summarises val-
ues that have been already discussed in chapter 2 and in the rest of the sections of the current document. This
table is an essential part of the simulation and can be seen as the blue box called Europa in Figure 6.1. The
rest of the parameters about the vertical stratification of the moon are listed in Table 2.1. Nevertheless, the
parameters listed in this last table are not used in the calculation of the LEFM analysis but are only needed in
the derivation of the stress tensor from the tidal potential, instead [42]. Additionally, some key factors are still
needed in order to produce a full and valid LEFM simulation for Europan crevasses. The LEFM loop is better
explained in section 6.1.2 and based on the VDV model presented in section 5.2. The geometry for a LEFM
applied to an ice crevasse (for both surface and bottom fractures) is shown in Figure 5.4. In the specific, a
constant thickness ice layer is subjected to a tensile stress of magnitude Rxx , among other stressing sources.
The ice’s density is represented by a depth-profile (Equation 5.23) where the values that are governing the ice
are listed in Table 6.3. The general values that are governing the density profile have been taken from Van der
Veen [108] and Van der Veen [109], given the similar characteristics of the elastic ice that is investigated in the
terrestrial model. Tables 6.2 and 6.3 represent the key parameters that are needed to perform the numerical
routines explained in sections 6.1.2 and 6.1.3, in order to produce a fracture propagation analysis.

Concerning the last input file, this is needed only when the actual local depth of the crevasse is required.
the description of the single crevasse’s geometry is one of the key aspect of the simulations. Purpose is to de-
scribe the shape of the lineament feature that is observed on the surface of the moon. The map that is taken
as reference is Figure 3.2 which represents the most recent digitalisation of images from Voyager, Galileo and
New Horizon, elaborated by IAU. As it can be seen from the map, the white lines are the lineament features are
labelled with their name and these can be discretised via GIS and taken as targets for the current simulations.
The process of discretising the lineaments of Europa can also be called shaping, term that derives from the
type of file that is produced after the process, shape file, for instance. The two terms will be used arbitrarily
in the rest of the document. Discretising a feature proceeds with the differentiation in nodes and segments,

1http://qgis.org/en/site/, last viewed on October, 29th 2017.

Europa Physics Symbol Value Reference

Radius of Europa R 1562 km Lissauer and De Pater [54]

Superficial gravity g 1.315 m/s2 Lissauer and De Pater [54]

Semi-Major Axis a 671080 km Lissauer and De Pater [54]

Eccentricity e 0.0094 Jara-Orue [41]

Obliquity υ 0.5° Jara-Orue [41]

Argument of pericenter w 345° Lissauer and De Pater [54]

NSR period Tns 107 years Jara-Orue [41]

Mass of Europa ME 4.7998×1022 kg Jara-Orue [41]

Table 6.2: Table that summarises the key parameters that govern the model representing Europa. The majority of the values are discussed

in chapter 2.

http://qgis.org/en/site/
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Figure 6.2: Visualisation of the stress tensor rotation applied to the geometry of a crevasse on Europa. The blue dashed lines represents

lineaments on the surface. The black small tensor on the right represents the analytical formulation of the stress tensor in longitudinal

σϕ and co-latitudinal direction σθ . On the other hand, the red tensor is rotated with respect to the geometry of the crack.

which can be found along the continuous aspect of a feature. Figure 6.2 represents the problem of rotating
the stress tensor with respect to the single crevasse. With the blue dashed line, the lineament feature is repre-
sented. Jara-Orue and Vermeersen [42] found the stress tensor as function of longitude ϕ and co-latitude θ.
As first part of the numerical simulations, while dealing with the global view of the results, the stress tensor
is diagonalised in order to find its eigenvalues, whose most tensile is used as opening source for the point in
question. Therefore, it is enough to adopt the stress tensor as it is, in co-latitudinal and longitudinal direction,
and then proceed with the finding of the eigenvalues, before applying the LEFM. On the other hand, when
the routines are applied to a specific crevasse, in order to find the actual normal stress acting on the tip of the
existing fracture a rotation matrix needs to be added to the simulation.

Considering the definitions provided in chapter 5 and in particular with Equation 5.7, the stress tensor in
co-latitudinal and longitudinal direction can be written as:

Σ=
[
σθ σθϕ
σϕθ σϕ

]
(6.1)

where the dependance of the various stress components with respect to time and position can be found in
Appendix A. The rotated stress tensor with respect to the observed crevasse, which distinguishes between
normal stress σn , lateral stress σt and shear stress τ, can be written as:

Σ
R
=

[
σn τ

τ σt

]
(6.2)

Parameter Symbol Value Reference

Ice Thickness H 5 km Billings and Kattenhorn [5]

Ice density ρi 917 kg/m3 Van der Veen [108]

Surface Ice density ρs 850 kg/m3 Van der Veen [108]

Water density ρw 1000 kg/m3 Lissauer and De Pater [54]

Density profile constant C 0.02 Van der Veen [108]

Ice touchness K IC 100 KPa m1/2 Van der Veen [108]

Table 6.3: Table that summarises the key parameters that govern the LEFM routines.
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Figure 6.3: Representation of the crevasse discretisation in nodes and segments (black solid lines) of the crevasse (blue dashed lines).

The rotation angle α is shown, together with the original and rotated stresses σθ , σφ, σn , and τ. Rotation of the stress tensor is written

in Equation 6.3.

It is possible to introduce the operation of matrix rotation, function of the rotation angle α, as follows:[
σn τ

τ σt

]
=

[
cosα −sinα
sinα cosα

][
σθ σθϕ
σϕθ σϕ

][
cosα −sinα
sinα cosα

]T

(6.3)

which can be summarised by the following equation, that includes the so-called rotation matrix R, function

of the already mentioned rotation angle α[102]:

Σ
R
= R Σ RT (6.4)

The operation of rotating a stress tensor allows the identification of the stress status with respect to a different
reference system. In the actual case, the initial reference system is given by the generic geographical direc-
tions, co-latitude and longitude (as the tensor provided by Jara-Orue and Vermeersen [42]). With the rotation,
the actual geometry of the features starts to assume a relevant role. A LEFM application to such geometry al-
lows the calculation of the actual depth of the crack, instead of a generic role given by the evaluation of the
most tensile principal stress.

It is important to understand the role of the angle α. This is represented in Figure 6.3 where the actual
discretisation of the existing crevasse is addressed. The blue dashed line represents the actual continuous
shape of the crevasse, as seen from the map of the moon (i.e. the white lines of the global map of Figure 3.2).
The black solids line, linked by the black dots are the segments and the nodes used to discretise the crevasse.
The original reference system is stated at the upper right corned of the image and represents co-latitudinal
θ and longitudinal ϕ directions. The angles α are shown at the intersections between the continuous and
discretised crevasses, namely at the nodes. The stress that is described as the original reference system is
rotated with respect to the actual orientation of the segment, and the rotated tensor is applied to the most
western of the two nodes that represent the extremes of the segment. The terms σθ, σφ, σn , and τ are the
ones written in Equation 6.3. The rotated stress is considered to be constant along the entire segment, as the
first part of the current document mentioned already.

The lineament features observed on Europa reaches total dimensions of thousand of kilometers. At such
spatial scale, the ratio between the total length of the fracture and the radius of the moon approaches to the
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Figure 6.4: Identification of angles (in capital letters) and sides (in small letters) for the geometry of a spherical triangle. In particular,

the current triangle has a right angle for γ. Nodes 1 and 2 represent the extreme limits

unity. This means that a spherical geometry needs to be evoked in order to represents the correct values
of angles and segments. The problem of spherical geometry can be translated into the analysis of spherical
triangles. In the specifics of the current case, the latitude and the longitude of the nodes that represent the
extremes of the segments in Figure 6.3 are known, since they are found with the usage of GIS softwares, as
already mentioned. A good reference when dealing with spherical geometry is Wertz [114] and the rest of the
analysis is based on it. Assuming a sphere of radius equal to 1 and a spherical triangle; the sides are named
a, b and c, while its angles are α, β and γ. It is possible to visualise the geometry of angles and sides in Figure
6.4 and the segment of the discretised crevasse can be seen as the lineament connecting N1 and N2. If one
considers the angle γ as 90° for simplicity, it is possible to write the side angles a and b as the difference
between latitudes and longitudes of the two nodes. With an eye on the Europa problem, the idea is to relate
the length of the crack and the rotation angle to the values of latitude and longitude that are known. In the
specific, the rotation angle that represents the rotation from the longitude and latitude components can be
assumed to be α in Figure 6.4, while the angular length of the discretised segment of the crack is c. Terms a
and b can be written as function of co-latitude θN and longitude ϕN of the nodes N1 and N2 as follows:

a = |θN1 −θN2 | (6.5a)

b = |ϕN1 −ϕN2| (6.5b)

Knowing that γ= 90°, it is possible to find α, β and c with the following routine [114]:

c = acos2[cos a cosb,Hemi(C )] (6.6a)

α= acos2

[
cos a −cosb cosc

sinb sinc
,Hemi(a)

]
(6.6b)

β= acos2

[
cosb −cos a cosc

sin a sinc
,Hemi(b)

]
(6.6c)

where the function acos2 is defined as:

acos2[φ,Hemi(φ)] = Hemi(φ)acosφ (6.7)

where:
0° ≤ acos(φ) < 180° (6.8)
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and the hemisphere function Hemi is defined as:

Hemi(φ) =+1 if 0° ≤ (φ) < 180° (6.9a)

Hemi(φ) =−1 if 180° ≤ (φ) < 360° (6.9b)

For the Equations 6.5 to 6.9, the angles assumes values that stay in the range 0° to 360°[114]. The current
analysis allowed the calculations of the angular distance between two points on a unity-radius sphere. If the
radius is changed, this implies that the actual dimension of the segment can be measured as:

l = Rc (6.10)

where the term R is the radius of the sphere and l is the length of the spherical segment. This value is useful
when dealing with the calculation of the crevasse length, key element in the calculation of the stress intensity
factor of the crevasse. Additionally, the shown routine is able to find the estimation of the angle α which is
the rotation angle introduced with Figure 6.3, dealing with the re-orientation of the stress tensor.

The current section aimed to describe in details the input files that are needed in the elaboration of the
routines. Namely, Europa physical characteristics and the LEFM basic parameters are listed in Tables 6.2 and
6.3, respectively. The presentation and the explanation of the several parameters introduced in the current
list are taken from the qualitative analysis of chapter 2, together with the presentation of the VDV model of
section 5.2. It is now possible to describe the observed crevasses in terms of nodes and segments (Figure 6.3)
and the calculation of angles and sides allowed the identification of segment’s lengths and rotation angles.
These elements are very useful when dealing with the rotation of the stress tensor and with the identification
of the crack’s length, as it becomes clear in the next two sections, presenting the two key executables produced
by the current research.

6.1.2. EXECUTABLE 1: VERTICAL PROPAGATION

This part of the chapter focusses on the description of the kew executables that have been developed for the
current research. In Figure 6.1, these are represented with the red boxes and can be distinguished between
vertical and horizontal propagation, depending on the type of outcome these eventually produce. The results
of the vertical propagation routine is the vertical depth of the crevasse which can be calculated in a global
or in a local point of view. On the other hand, horizontal propagation allows the calculation of horizontal
propagation rates for the crevasse. The difference between local and global view consists in the introduction
of the rotation matrix R, function of the rotation axis α. The description of this process is given in the last

section and it can be visualised in Figure 6.3, where the geographical tensor on the upper right corner is
rotated to the local geometry of the fracture.

In the analysis of the two routine that produces different insights in the propagation of Europa crevasse,
there is one loop that is common for both. This is the actual LEFM loop that continuously calculates and
monitors the stress intensity factor as function of the stress and the length of the crack. The model finds the
exact length of the crack whose stress intensity factor at that moment is equal to the toughness of the ice.
The description of the LEFM methods are included in section 5.2, where the stress intensity factor approach
is introduced, and in section 5.3 where it is applied to terrestrial crevasse in the so-called VDV model of
Van der Veen [108] and Van der Veen [109]. The current routine is based on the VDV approach which is
used to determine propagation details on Europa.

Dealing with surface crevasses, it is possible to calculate the critical depth for a specific point of the moon
at a specific time with the evaluation of the various components of the stress intensity factor. The routine
processes values for the K factor as function of the actual depth of the crevasses di . Accounting a crevasses
that exists and it is very shallow (1 meter by assumption), the routine finds the stress intensity factor for every
possible critical depths from 1 to the actual thickness of the ice layer H (meaning a fully fractured ice sheet).
The algorithm is presented in Algorithm 1, where the result is the critical depth d i whose stress intensity
factor is equal to the material toughness Ki c for the specific time-space combination. The routine is built on
the VDV model of [108], which is explained in details in section 5.3. As mentioned before, surface crevasses
on Europa are thought to be water-free fractures, hence the term K (3)

I is not considered in the simulations
(Equation 5.32). In the algorithm the geometrical and a-dimensional functions for a finite thick specimen
are included. These are the functions F and G taken from Tada [100] and written in Equation 5.28 and 5.30,
respectively. F and G have as varying parameters the terms λ= d/H and γ= b/d .

On the other hand, for a bottom crevasse, the guidelines for the algorithm are reported in Van der Veen
[109] and presented in section 5.3. Given the thickness of the ice H , it is possible to calculate the stress inten-



70 6. RIFT PROPAGATION MODEL

For a specific location on the moon, at a specific orbital position of Europa around Jupiter

while σ> 0 do

the surface crack’s tip is under tensile stress;

for i = 1 : H do

evaluation of equilibrium length d ;

K (1)
i =σ

√
πdi F (di );

K (2)
i = 2ρi gp

πdi

∫ di
0

[
−b + ρi−ρs

ρi C (1−e−C b)
]

G(γi ,λi )db;

K net
i = K (1)

i +K (2)
i ;

end

find critical value d i ;

K net
i (d i ) = Ki c → d i

end
Algorithm 1: LEFM loop for surface water-free crevasses, from the VDV model of [108].

sity factor for the potential bottom crevasse heights h, instead of depth d . The difference in the terminology
between depth and height does not change the fact that they both refer to the fracture length. Accounting
a net opening tensile stress σ, lithostatic pressure and water pressure, it is possible to find the K factor as
function of h. Assuming that a global water ocean is found underneath the ice crust, the assumption of water
filling the crevasse is valid. For a description of the vertical stratification of Europa, the reader is referred to
chapter 2. Algorithm 2 represents the numerical routine that is build in order to find heights whose stress in-
tensity factor is equal to the material toughness for the location under investigation and at the specific time.
Functions F and G are the same of the ones in Algorithm 2 but defined as dependent of λ= h/H and γ= z/h,
differently to the surface crevasse routine.

For a specific location on the moon, at a specific orbital position of Europa around Jupiter

while σ> 0 do

the bottom crack’s tip is under tensile stress;

for i = 1 : H do

evaluation of equilibrium length h;

σn(hi ) =−ρi g (H −hi )+ ρi−ρs
C g [1−e−C (H−hi )]+ρw g (Hp −hi )+σ;

K net
i = ∫ di

0
2σn (z)p
πdi

G(γi ,λi )dz;

end

find critical value hi ;

K net
i (hi ) = Ki c → hi

end
Algorithm 2: LEFM loop for bottom water-filled crevasses, from the VDV model of [109].

In the Algorithms 1 and 2, the tensile stress σ can assume two different type of value. While dealing with
the global view, this is the most tensile principal stress found by the identification of the eigenvalues of the
stress tensor. On the other hand, the local view requires that stress tensor to be rotated and to be express in
terms of normal, lateral and shear stress. Here the term σ assumes the value of σn .

Although the two explained algorithms allow the identification of critical depths and heights, the calcu-
lated equilibrium solution is not always a stable solution. Indeed, it is important to recall the discussion
already initiated at the very end of section 5.3.1, in the last chapter. As already mentioned in the work of
Van der Veen [108], there are two kind of potential solutions in the vertical propagation model. The differ-
ence between the two is whether or not the solution is stable. As it can be seen in Figure 5.6b, the nature of
the stress intensity factor curve allows the possibility of finding a lower and an higher value for the crevasse’s
length. In the specific case, critical lengths that have negative derivative of the stress intensity factor with
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if K net
i+1 > Ki c and K net

i−1 < Ki c then

non-stable solution;

K net
i = K net

i+1;

else if K net
i+1 < Ki c and K net

i−1 < Ki c and K net
i < Ki c then

no intersection between stress intensity factor and toughness ;

K net
i = K net

i+1;

else

critical value hi was found;

K net
i (hi ) = Ki c → hi ;

end
Algorithm 3: Stability check loop for the solution found with the LEFM loops.

respect to the length itself are assumed to be unstable. The critical length that generate a positive derivative
is considered to be stable, instead. The qualitative reason is that at the equilibrium length with a negative
derivative, a small perturbation from the solutions would lead the stress intensity factor to reach either the
closure2 or the other higher solution. In other words, lengths that are a bit smaller than the equilibrium
would imply a stress intensity factor that is lower than the toughness and hence closure of the crevasse. On
the other hand, lengths that are a bit larger than the equilibrium point implies the K factor to be larger than
the toughness and the crack to propagate until the threshold of the material is not reached anymore. This
happens at the second (higher solution) where the derivative is now positive. A new routine is needed in or-
der to determine only stable solution. The routine is presented in Algorithm 3 and it consists of three different
conditions that are representation of three different situations where the numerical solution needs a double
check. The first condition represents the actual unstable solution and it is determined by finding the values
of the stress intensity factors for the two length, one step larger and smaller than the actual solution. If the
former is higher and the latter lower than the toughness, the solution is unstable3, as mentioned before. The
second condition occurs when there is no intersection between toughness and stress intensity factor. Finally,
if the two conditions are not satisfied, the solution is acceptable and the numerical routine stops.

6.1.3. EXECUTABLE 2: HORIZONTAL PROPAGATION

In section 6.1.2, the description has been entirely focussed on the vertical propagation routine, which leads
to the calculation of the vertical depth of the crevasses on Europa. Even if two different types of routine have
been included (termed as global view and local view), the background idea is the same. In Figure 6.1 the
two are naturally summarised by the red box called vertical propagation. This last part of the section aims to
describe the second executable, which evaluates the horizontal propagation rate for existing crevasses. The
geometry adopted is the same of the local view of vertical propagation, meaning that the rotation tensor is
introduced in order to find the actual stress that is acting normal to the tip of the crack, for reference Figures
6.2 and 6.3. Differently to what happens for vertical propagation, this time the LEFM approach adopted by
VDV is not valid anymore because the depth of the crevasse is not targeted in this case. The description of
the model is now the one of a centred crack test specimen [100]. Additionally, for sake of the current aim,
i.e. the evaluation of propagation rate, the displacement approach of the LEFM is more suitable to the actual
case. The finding of the displacement is an alternative to the stress intensity factor, but the idea behind is
again the evaluation of the possibility of the material status to reach the critical toughness and of the crack
to eventually grow. Nevertheless, in the current project the approach is the same of Larour et al. [50] which
coupled the usage of the stress intensity factor with the evaluation of the displacement. The methodology is
presented in section 5.3.2. The geometry of the new specimen is shown in Figure 6.5a, where the terms of the

2In reality, the extreme lower value for the crevasse is not zero, but assumes a value of meter. LEFM does not tell anything about fracture

initiation, only propagation can be analysed. Therefore, the crack has to exist in order to apply LEFM routines. Nevertheless, a negative

value for the stress acting on the tip, would allow a zero value for the length, by assumption.
3The explained control is an alternative to the evaluation of the derivative of the stress intensity factor with respect to the crack’s length.
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next equations can be appreciated. The displacement can be calculated as:

δ= 4lσn

E
V (l ) (6.11)

where l is the length of the crack4, σn the normal stress and E the Young modulus. V is the geometrical
function that describes the centred crack specimen, differently from the function F (Equation 5.28) used for
the single notched test specimen. The function V can be written as:

V (l ) =−0.071−0.535

(
l

L

)
+0.169

(
l

L

)2

−0.09

(
l

L

)3

+0.02

(
l

L

)4

−1.071
L

l
log

(
1− l

L

)
(6.12)

where the term L is the thickness of the test specimen. The validity of this equation is hold for every value
of l /L so, it is possible to use the equation also for an extremely large value of L, being the current case. The
terms l and L can be seen in Figure 6.5a. The stress intensity factor formulation needs to take into account
the assumption of the centred crack test specimen instead of the single notched test specimen. This can be
done with the introduction of a new a-dimensional geometrical function F2 [100], that can be written as:

Fs (l ) = 1+0.128

(
l

L

)
−0.288

(
l

L

)2

+1.525

(
l

L

)3

(6.13)

which is valid for ratios l /L lower than 0.7. The numerical simulations need to take this into account: since
the term L is arbitrary for the case of Europa, it can be calculated as L = l/0.7, by assumption.

After the displacement function is expressed, the key mathematical operation that is needed for finding
propagation rate is a time-derivative of δ itself. In symbols this can be written as:

∂δ

∂t
= ∂

∂t

[
4lσn

E
V (l )

]
(6.14)

so by the application of standard calculus manipulations to the right member, the equation can be written
as:

∂δ

∂t
= 4

E

{
σnV (l )

∂l

∂t
+ lV (l )

∂σn

∂t
+ lσn

∂V (l )

∂t

}
(6.15)

where the different terms in the right member needs to be described in details. If the term l represents the
crack’s length, its derivative in time is the actual propagation rate, which is the target of the current simula-
tions. It is known already that the stress tensor is function of time (Appendix B), so its derivative in time is
straightforward and can be written as σ̇n . A different discussion is needed for the rest of the terms. A common
mathematical manipulations in engineering problems is the variation of variables which can be applied to
the derivative in time of the a-dimensional function V in order to find again the propagation rate:

∂V (l )

∂t
= ∂V

∂l

∂l

∂t
(6.16)

This operation is particularly useful because now the only derivation that is needed is of Equation 6.12 with
respect to the term l .

Larour et al. [50] applied the same idea for the investigation of crack’s horizontal propagation rates near
the Hemmen Ice Rise in the Ronne Ice Shelf, Antarctica. In the study, LEFM was able to model the order of
magnitude for the annual propagation rates of the crevasses. The key element of the research is that the open-
ing width δ and the opening rates ∂δ/∂t were available data. In fact, the work used interferometric synthetic
aperture radar (inSAR) data in order to fix this two key parameters in Equation 6.11 and 6.14, respectively.
Since the current research applied the simulation to Europa, data for opening rates are limited to the (few)
pictures that are available for the surface, while for the opening rates no observations are available, although
some models have been produced. Therefore, a strategy to avoid the lack of observations needs to be imple-
mented. The opening width δ can be calculated by LEFM with Equation 6.11. The opening rate can be found,
by introducing the strain rate ε̇:

∂δ

∂t
= δε̇ (6.17)

4Note the substitution in the terminology: from depth d with crack’s length l .
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(a)

 

 

(b)

Figure 6.5: The two pictures represent the geometry adopted for the horizontal propagation problem. Figure 6.5a shows the centred

crack test specimen, where l is the half-crack length and L the specimen lateral thickness. δ is the crack’s opening width while σn is still

the opening stress. The figure replaces the geometry of Figure 5.4, introduced for vertical propagation. On the other hand, Figure 6.5b

represents the discretisation that has been already introduced in section 6.1.1. The number of nodes goes from i = 1 to i = N , and the

horizontal propagation is always assumed to be in east-ward direction. Red arrows represents segments whose stress intensity factor

reaches the material threshold. More details in the text.

The strain rate can be found by the derivation of Equation 5.14. By considering an homogeneous, isotropic
material, the compliance matrix C is constant hence:

ε=Cσ→ ε̇=C σ̇ (6.18)

The compliance matrix can be found in Equation 5.14, while the derivative of the stress can be calculated
from Jara-Orue and Vermeersen [42].

The discussion that has been proposed allows the possibility of re-writing Equation 6.15 as function of
the propagation rate, termed as v :

δε̇= 4

E

{
σnV (l )v + lV (l )σ̇n + l vσn

∂V

∂l

}
(6.19)

where, rearranging the two members in a more compact form, the propagation rate at a specific time t can
be written as:

v(t ) =
[

E

4
δε̇− lV σ̇n

][
σn l

∂V

∂l
+σnV

]−1

(6.20)

The variables that are governing the behaviour of v for a specific location of the crevasse, at a specific time
are better visualised in:

v(t ) = f (σn , σ̇n , l ) (6.21)

because of the dependance between stress rate and strain rate of Equation 6.18. The term ∂V /∂l can be
calculated from the derivation of Equation 6.12 with respect to the parameter l .

Equation 6.21 can be applied to every single node that discretise the aspect of the Europan crevasses. If
the time variable ranges from a reference position, set at the PeriJove, it is possible to evaluate the propa-
gation rate of the full crevasse in time. The discretisation geometry of the problem is shown in Figure 6.5b
which is a re-adaptation of Figure 6.3, introduced for the vertical propagation. The evaluation of the horizon-
tal propagation of the nodes follows the current scheme. The base consideration is that the crevasse shape is
known a priori (by satellite images of Europa), namely the total length of the crack and its orientation is fixed.
Assuming that a small crack is present (segment between node 1 and 2 in Figure 6.5b) at a specific time (Per-
iJove by assumption), it is possible to evaluate, via the LEFM loop of Algorithm 1, whether or not the material
threshold is reached and whether or not the crack grows. The introduction of Equation 6.13 is essential to
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For a specific crevasse on the moon, at a PeriJove t0

for i = 2 : N do

find R(αi );

find li ;

find ε̇=C σ̇;

while check = off do

for j = i −1 : −1 : 1 do

li = li + l j−1;

end

Li = li /0.7;

Ki =σi
√
πli F2(li );

δi = 4liσi
E V (li );

∂δi
∂t =C ε̇δi ;

vi = f (σi , σ̇i , li , ∂δi
∂t );

if Ki > Ki c and vi > 0 then

check = on;

else if ti − t0 > 10TE then

partial formation;

check=on;

else

ti = ti +∆t ;

end

end

end
Algorithm 4: Numerical routine that summarises the passages needed to find horizontal propagation rates

for crevasses on Europa. Nodes 1 : N are shown in Figure 6.5b.

describe the new geometry. If the toughness for node 2 is not reached5, the crack is in a stand-by mode and
the time passes, Europa moves around Jupiter and the tidal stress changes, until a moment (if present) when
the conditions are favourable to let the fracture propagate. When this happens, the propagation rate v can be
calculated and at this speed, the fracture advances at node 3 in Figure 6.5b. Of course, knowing the rate and
the length of the new segment, it is possible to calculate the time needed to reach the next node. Therefore,
the simulation can move forward and at node 3, time has passed and the crack length has changed, because a
new segment has been added. The model applies this concept to the entire crevasse, in order to see whether
or not it is possible to reach the last node N or not. Moving at further points in the crevasses rises the problem
of what happens behind. As it is now clear the crack length l is a fundamental element in the calculation of
the stress intensity factor and of the displacement rate, especially for cracks measuring thousands of kilome-
ters. Therefore, it is important to keep track of the length at every node. It is possible that some parts of the
crevasses are subjected to a compressive stress that can lead to a closure of the crack itself. As consequence
the routine analyses the stress status to every nodes west to the investigated point in order to see how far
the crack remains open. At the end of the simulation, the total time for the full (or partial) completion of the
crevasse is found, together with the analysis of the propagation rates.

The numerical scheme can be seen in mathematical formulation in Algorithm 4. The routine surveyed
each node of the discretised fracture in order to determine when and how propagation can occur. Addition-
ally, for every node, also the stress status of the segments left behind are necessary, since these an eventual
compressive status means a zero depth, by assumption. A particular discussion needs to be addressed when

5As mentioned before, only east-ward propagation is considered.
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dealing with the calculation of the crack length l . Since the majority of the surveyed crevasses shows dimen-
sions that reaches thousands of kilometers, the curvature of the moon starts to play a relevant role in the
model. Therefore, spherical geometry needs to be evoked. A good reference book for geometry of orbits is
Wertz [114]. The aim of the problem is to find the length of a segment on sphere, given the latitude, the longi-
tude of the two nodes that represent the extremes of the segment itself. The problem of finding the rotation
angle α and the crack length has been already addressed in section 6.1.1.

6.1.4. OUTCOMES

The last part of the current section aims to briefly describe the outcomes of the current numerical model. So
far, a pretty straightforward scheme is assumed to be the baseline of the of the calculations. Two different
types of executables have the purposes of translating input parameters to relevant results. Summarising, the
input files describe the physical aspect of Europa and its ice layer, meaning orbital parameters coupled with
rheological and material properties. These values are listed in Tables 6.2 and 6.3. The numerical executables
are distinguished between vertical and horizontal propagation. As it can be evinced from the name, vertical
propagation aims to find vertical critical depths and heights for surface and bottom crevasses, respectively.
The so-called global view takes as opening source the most tensile principal stress calculated from the stress
tensor of Jara-Orue and Vermeersen [42]. This is applied globally to every point that represent the surface of
the moon, in order to determine whether or not critical areas emerge. On the other hand, the so-called local
view applied the LEFM routine to a specific feature of the moon. This is possible with the rotation of the stress
tensor with respect to the lineament’s geometry (Figure 6.3). The numerical model can also apply LEFM in
order to find insights in the horizontal propagation rate of the crevasses’ development. The geometry is the
same adopted in the local view of the vertical approach with some differentiation in the LEFM equations.

As it can be derived from the previous discussions, the two different executables produce outcomes that
are distinguished between vertical and horizontal propagation. In more specific, the global view of the ver-
tical approach allows the identification of areas that can be considered as critical, meaning that are showing
depths that on average are higher than zero. The most tensile principal stress is a good representation of
the stress status of the actual location at a specific time of the Europa rotation around Jupiter. Additionally,
the local approach implies a better and more focussed analysis of specific crevasses on the moon, by finding
the actual opening source on the crevasses’ flanks themselves. Finally, the horizontal propagation allows the
calculation of the horizontal propagation rate of the actual cracks. In the numerical scheme of Figure 6.1 the
outputs of the simulations are represented with the yellow boxes at the bottom of the diagram. A complete
understanding of how fast the crevasses are formed would be a key aspect to take into account when talking
about future exploration missions and the actual detectability of this fracture development. The results of the
simulations are described and critically discussed in chapter 7.

6.2. VALIDATION

The last part of the current chapter presents the validation procedure that has been implemented in order
to check the correct behaviour of the LEFM routine presented in section 6.1.2. The lack of observation for
crevasses on Europa has been mentioned already. The highest quality sources of data are around 150 images
of the surface, captured by Voyager, Galileo and New Horizon, plus inclusion of some radar data from Galileo
itself. The general problem is the same of every numerical model produced for Europa. Without data, it
is hard to validate the model. Nevertheless, the current research applies a model that has been designed
and used to study terrestrial crevasses. The Europa conditions are added into the routine in form of input
information. The strategy adopted to validate the routine is to use data coming from terrestrial crevasses in
order to validate the LEFM routine.

As previously discussed, terrestrial crevasses are observed in some of the most remote and dangerous
places in the world. The high instability of the crevasse area and the hard accessibility of the locations are
factors that limits the experimental fieldworks to study their behaviour. Although crevasses on glacier are
some of the most important features that are characterising glaciers’s behaviour, a few is known and studied
concerning their properties. As already mentioned, they can be used as indicators of the glacier’s flow (e.g.
Hulbe et al. [31]) and their arrest point (suture zones) can indicate two different parts of the glaciers itself
Larour et al. [50]. Additionally, fractures of the ice are considered as interesting phenomenon to study because
of the difficulties of elaborating a calving law.

The only recorded experimental work that aimed to benchmark the results of crevasses’ models is the



76 6. RIFT PROPAGATION MODEL

Figure 6.6: Location of the fieldwork of Mottram and Benn [60]. (a) shows the position of the Breidamerkurjokul in the map of Iceland.

This glacier is the extreme southern part of the larger Vatnajokull ice cap. The marked areas in the pictures are the large ice caps of the

island. (b) shows the area of interest of the glacier itself and (c) represents the 9 different experimental sites. In particular, sites 1 to 6

were studied in 2004 while sites 7 and 8 in 2004.

one of Mottram and Benn [60] which investigates the Breidamerkurjokul glacier in the South of Iceland. The
image that shows the location of the different field sites is reported in Figure 6.6a to c. The surveyed glacier
is flowing from the large Vatnajokull ice cap and was chosen from its relatively easy access from the land.
The glacier is flowing into a lake that is separated from the ocean by a small line of land, where the Icelandic
highway is passing. Additionally, this is one of the most studied glacier on Earth, hence bed topography and
ice thickness were known. Purposes of the experimental fieldwork were divided into two different campaigns
in 2004 and in 2005. At each site, the depth of the crevasse was measured via a simple plumb-line system. Ad-
ditionally, across crevasses were determined by repeat measurement of the positions of pairs of stakes within
each network, using a Leica 1200 laser theodolite [60]. The strain rate could be calculated via a logarithmic
formula [26] as follow:

ε̇= 1

∆t
ln

L2

L1
(6.22)

where the two terms L2 and L1 indicate the two different separation from the stakes at the two different times.
The time interval is ∆t .

Knowing the strain rate, allows the calculation of the stress between the two flanks of the crevasse by using
the Glenn law of Equation 5.22 that governs the viscous model of the ice. This can be re-written in order to
find the dependance of the stress with respect to the strain rate:

ε̇e =
(σe

A

)n
(6.23)

where σe and ε̇e represent the equivalent stress and strain rate and A is a temperature dependant parameter
that is related to the rigidity factor in Equation 5.22. n is the Glen’s law parameter that ranges between 2 to 4
and in this case is selected as 3.
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Site Strain Stress Ice Measured Calculated

No Rate [year]−1 [KPa] Thickness [m] Depth [m] Depth [m]

1 0.48 111.41 193.8 19 19.7

1 0.12 70.84 193.8 13.7 11.6

2 0.03 44.82 145.23 3 6.4

2 0.12 70.79 145.23 10 11.7

3 0.33 97.91 404.82 3.5 16.7

3 0.11 68.03 404.82 1.95 11.1

3 0.06 54.85 404.82 2.5 8.5

4 0.13 72.16 395.89 1.2 11.8

4 0.13 72.27 395.89 3.5 11.9

4 0.05 51.37 395.89 4 7.8

5 0.02 41.46 258.84 3 5.7

5 0.43 107.56 258.84 9.8 18.6

5 0.15 75.47 258.84 0.3 12.5

5 0.11 67.33 258.84 3.5 10.9

5 0.55 116.38 258.84 11.5 20.4

5 0.29 94.51 258.84 2 16.1

6 0.02 39.18 298.87 3.3 5.3

6 0.04 47.07 298.87 1.2 6.9

7 0.10 65.80 363.33 12.6 10.6

7 0.19 81.86 363.33 12.8 13.7

7 1.77 171.85 363.33 6.6 30.9

7 0.19 81.51 363.33 9.1 13.6

8 0.51 113.60 109.32 4.8 21.9

8 0.06 56.62 109.32 4.5 9

8 0.24 88.75 109.32 7.6 15.9

8 0.29 93.97 109.32 4.9 17.1

8 0.18 79.90 109.32 5.4 13.9

8 0.01 28.87 109.32 4.9 2.7

Table 6.4: Tabulated summary of the experimental work of Mottram and Benn [60] and the calculated depths found via the LEFM routine

elaborated in the current research (Last column). Sites 1 to 6 surveyed in 2005, while sites 7 and 8 in 2004. Experimental sites’ location is

shown in the aerial image of the glacier in Figure 6.6.
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With the evaluation of strain rates and crevasses’ depths, models such as the VDV can be validated. In the
work of Mottram and Benn [60] the depth results of the VDV model applied to crevasses with stress calculated
from the strain rate, described well the observed measurements. Nevertheless, the discrepancies between
measured and modelled depths are still large for some sites. According to the authors, the crevasses observed
were hard to survey and many times the plumb-line system reached levels where the visibility was limited
hence it could not be stated whether or not the weight had touched the actual bottom of the fracture. For
the majority of the observations, the crevasse was seen to go deeper than the actual bottom. In fact, addi-
tional fractures were present at the bottom and these had flanks separated by few centimeters, hence almost
impossible to reach with the plumb line. Furthermore, the 43% of the surveyed stakes presented a negative
strain rate which corresponds to a compressive status. Given the scheme of a LEFM loop, a negative stress
would not allow a crack to propagate. The solution to this contradiction is that crevasses could be formed in
an historical previous stress configuration. A more complete analysis would be to keep track of the strain rate
for a longer period of time, although nothing similar to this has never been attempted and recorded.

The current research used the strain rate and the related stress that can be introduced to the LEFM loop
presented in Algorithm 1, in order to calculate the modelled critical depths. Table 6.4 shows the data used for
the validation of the code. The first column represent the number of the site, ranging from 1 to 8. The first
six sites were surveyed in 2005 while the last two in 2004. The location of the sites with respect to the glacier
are shown in Figure 6.6(c). The second and the third columns list the strain rate and the stress, calculated
by the Glenn flaw law of Equation 6.23, with a coefficient n equal to 3. The fourth column represents the ice
thickness, measured with inSAR measurements. The fifth column indicates the depths measured with the
plumb-line system. Finally, the last column represents the results of the LEFM loop presented in section 6.1.2
and summarised in Algorithm 1. As it is possible to see from comparison between the last two columns that
the LEFM model produces values that are generally a bit higher than the actual measured depths. The general
overestimation of the critical depth can be caused by several factors, including systematic errors, for example.
Particularly difficult to model is the rheology of the ice and the temperature plays a key role in Equation 6.23.

In order to better visualise the results of the validation process, two figures have been included. The first
one is Figure 6.7 which shows the relative errors between measured and calculated depths. The relative error
can be written as:

erel =
dmod −dobs

dobs
(6.24)

where dmod and dobs are the modelled depths (last column in Table 6.4) and the observed depths (fifth col-
umn in Table 6.4). The relative error allows the identification of the value offset that is scaled with the actual
measurement. As it can be seen in the figure, an erel of 100 means that the two values have the same or-
der of magnitude. Generally speaking the representation of the relative error shows that the LEFM model
overestimate the depths, since the majority of the dots have relative values larger than 100.

Additionally, the plot of the modelled depths as function of the observed depths has been plotted in Figure
6.8. Here, the blue dots represents the match between the two last columns of Table 6.4. The black dashed
line indicates the perfect fit between experimental and numerical approach while the red dashed line is the
linear regression of the point. The aim of the current figure is, once again, to indicate that the LEFM depths
are overestimations of the actual measured depths. This can be seen from the fact that the red line behaves
to the upper part of the graph, divided by the black line.

Concluding, the LEFM loop that is presented in section 6.1.2 is the key numerical tool that is used in the
current research. Given a geometry of a crevasse, the thickness of the ice and the background stress it is able
to find the correct order of magnitude for the crevasse depth. The normal uncertainties in the rheology of the
ice, in the material properties and in the difficulty of correctly measuring the actual length of the fracture lead
the model to overestimate the depths, although the general magnitude is roughly matched. For sake of the
current research, the LEFM loop can be considered validated and the presentation of the work can proceed
to the analysis of the results of the routines when applied to Europa crevasses.
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Figure 6.7: Relative error between calculated and measured depths for each experimental site. The value 100 for the relative error

indicates the same order of magnitude between measured and calculated values.
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7
KEY FINDINGS

This chapter represents the final step of the current research and it aims to describe and critically comment
the results obtained by the various implemented simulations. Europa’s most outer layer is thought to be
formed by a global liquid water ocean, covered by a frozen ice crust. This extremely cold and brittle layer
of Europa, together with the entire solid body, are assumed to be continuously deformed by tidal effects.
These are acting both at diurnal and secular time scales. In the current research, only tidal stress due to
non-zero eccentricity, non-zero obliquity and non-synchronous rotation have been included as deforming
sources. One of the most efficient ways of representing the tidal stress on Europa is to derive it from the tidal
potential via normal mode theory. This mathematical procedure is not included in the current document
but the outcomes of the application is taken as key element. This is the analytical formulation of the stress
tensor for every point on the surface of the moon. Calculating the tensor and assuming a pure elastic layer
for the ice crust, it is possible to apply fracture mechanics tools in order to better understand the behaviour
of the lineament crack features observed on the surface of the moon. In particular, the fracture mechanics
branch that can be used for a pure elastic material is the LEFM, which was firstly developed from the analysis
of racking specimens inside laboratories. Nevertheless, the success of this numerical technique allowed its
application to the fractures observed in the large ice sheets on Earth. The current research aims to apply
a terrestrial model for understanding vertical propagation of crevasses on ice, to the features observed on
Europa.

Part I includes the state of the art for the general description of the Europa environment. Both the com-
ponents that are forming the tidal stress and the geological implication from the surface observations are ad-
dressed in the first part of the document. On the other hand, Part II showed the key mathematical methods
that are needed in the completion of the research aim. Tidal potential theory and the calculation of the tidal
stress status belongs to this part, as well as a complete and detailed description of LEFM techniques, from its
first formulation to the more recent application to Earth science. Chapter 6 included the key technical section
of the document, presenting the mathematical and numerical framework of the model that is the most im-
portant outcome of the current research. The model, already described in all its parts, can be schematically
visualised in Figure 6.1, where the different blocks are represented in different colours. The blue boxes are
the input files that are necessary when one wants to describe the physics of the background environment on
Europa. Additionally, the parameters and the geometry of the specimen case needs to be added in the routine
in order to correctly describe the configuration of the LEFM model. After the entire set of input parameters
are set, it is possible to run the LEFM-based routine. These are marked as the red boxes and distinguished
between vertical and horizontal propagation. The two different types of routines are investigating two differ-
ent aspects of crevasse propagation. The first, being the analysis in the vertical dimension, aims to find the
critical depths and the critical heights for surface and bottom fractures, respectively. Furthermore, the same
routine can be applied to the entire map of the the moon, using the most tensile principal stress as opening
source, and to specific lineaments, by rotating the stress tensor the local orientation of the fracture. These
two analysis an give two different view of the same problem. If the global approach can distinguish between
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areas on the moon that are constantly subjected to a potential propagation, the localised view aims to deter-
mine the actual critical depth (or height) reached by a specific crevasse. On the other hand, the horizontal
propagation analysis has the main purpose of detecting the horizontal propagation rates. This is possible by
using simple time derivations in the formulation of the LEFM routines. In particular, the numerical calcu-
lation of vertical depths has been validated with data coming from experimental field works for crevasses in
Iceland. Crevasses’ depths and strain rate at the flanks of the fractures are used as validating information.
The data coming from the field work of Mottram and Benn [60] has been the only recorded attempt of the
kind. The dangerousness and the hard accessibility of the locations where crevasses are observed, apparently
discouraged campaigns aimed to measure crevasses’ depths.

The usage of the most tensile principal stress as opening source identifies the actual stress status of the
location. If this analysis is applied to the entire surface of the moon, the purpose is to show whether or not
some areas are critically showing a notable value in depth. If any area shows a positive value for the depth, it
means that the location is particularly prone to initiate crevasse propagation. On the other hand, a location
that is not showing propagation after a short number of orbital cycles, is potentially less favourable to host
short term propagating crevasses. Of course, the usage of the principal stress, oriented as the eigenvectors of
the stress tensor does not take into account the local geometry of specific cracks which can be oriented in a
way that is more suitable to facilitate the propagation. This aspect of the local geometry of existing crevasses is
considered in the so called local approach, which aims to describe the crevasse by a discretisation technique.
Indeed, the observed crevasse is represented by a set of N nodes and N −1 segments. This description of the
feature allows the implementation of the LEFM along the crevasse itself, in order to determine whether or
not this might show potential areas of the crack which is subjected to higher values of depth than other. On
of the first consideration that emerge from the local approach, is when surface crevasses, shaped along an
observing rift, can eventually crack the entire layer, reaching the bottom of the crust. This analysis has been
implemented already several times in the literature of Europa [52, 113], although nothing has been produced
for the depth of the actual crevasses, only the general application of the LEFM for coupled bottom and surface
crevasses was investigated. The current research and in particular the current chapter aims to deal with this
lack of knowledge and will put the outcomes in the right critical environment in the literature. After a vertical
propagation scenario is presented, the further re-elaboration of the geometry and of the LEFM routines allows
the analysis the potential horizontal propagation rate for the same crevasses shaped in the local approach.

On a large scale, the implications of vertical and horizontal propagation can generate a strong interest
when seen in the contest of future exploration of the moon. NASA’s Europa Clipper and ESA’s JUICE are
planned to reach the Jovian environment in the late 2020’s. The two proposed spacecrafts are planned to orbit
the moon several times and the instruments onboard will produce a complete set of observations that can
substantially improve the understanding of the surface and of the curious lineaments, among other scopes.
Numerical models could help the preliminary identification of areas that are more interesting to survey. For
instance, the current global view of the critical depths shows that some areas are more prone to present
propagation than other. In this optic, the outcomes of the model can help the selection of the more intriguing
target areas. Even more interesting, is the case of the potential Europa Clipper lander, proposed by a JPL
research group of scientists and engineers [61]. In this case, the target landing area will be specified after
some measurements of the orbiter itself, but a general idea of the more valuable landing, is very helpful in
the primary design of the missions. The implications of the current research are better presented at the end
of the following sections.

As it has been possible to deduce from the previous chapters, the numerical code built for the current
project, can generate insights in the vertical and horizontal propagation of Europa crevasses. This chapter
aims to describe the most important results that have been found, via the application of LEFM routines. The
chapter is divided into two sections that describe vertical and horizontal propagation results, respectively.
A large part of the sections is taken by a complete critical discussion. This tries to draw parallels between
studies already done and the past literature in order to put the obtained results in the correct critical con-
test. Vertical propagation in both global and local views is presented in section 7.1, while the results of the
horizontal propagation are presented in section 7.2. The numerical simulations are run for a relative short
period of time (a few orbital cycles) in order to investigates propagation of crevasses for diurnal cases. The
reason can be appreciate when comparing with the timeline of the mentioned future exploration missions
such as Europa Clipper’s lander that will be able to survive the deadly Jovian environment for 15-20 days
maximum. Knowing that the lineaments on Europa are growing at timescales comparable to the lander’s life-
time develops very interesting and promising scenarios for the outcomes of the mission. After this sections,
the conclusive chapter aims to summarise the most important findings of the project and to set the scheme
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Figure 7.1: The two images represent the results of the stress intensity factor calculation for a specific location on the surface of Europa

(in particular, the Pywill crater at longitude 90°E and latitude 15°S). Given the stress of non-zero eccentricity and obliquity coupled with

NSR and together with overburden pressure, the curve of the stress intensity factor KI with respect to the critical depth can be plotted.

Figure (a) represents two KI curves at two different orbital position of Europa. The blue curve at one quarter and the orange at half of

the orbital period. The toughness threshold is reached only for the blue curve at around 40 m critical depth. Figure (b) represents the

sensitivity of the stress intensity factor with respect to the ice thickness (different colours in the legend). At the same location of Figure

(a) and at a fixed orbital position, for very shallow ice crust (lower than 150 m), the KI is always higher than the toughness, meaning that

the crack fractures the entire layer. For crusts thicker than 1 km, the sensitivity of the curve to the thickness itself is negligible. More

details in the text.

for potential future works together with confronting the results obtained in the adequate literature contest.

7.1. VERTICAL PROPAGATION

This section represents the outcomes of the simulations that deal with the vertical propagation of crevasses.
The routines that aim to find vertical depth for the crevasses are described in section 6.1.2. The current chap-
ter is divided into two big sections that have the purpose of describing the two approaches used to investigate
the vertical propagation: namely global and local view. Both the numerical models have as key routine the
LEFM loop, presented in Algorithm 1 for surface crevasses and in Algorithm 2 for bottom crevasses. For both
the cases the global ice layer is set as a 5 km purely elastic material. The characteristics the describe the
physics of Europa and the LEFM routines are listed in Table 6.2 and 6.3. In particular, all the parameters that
are needed to describe the physics of the ice layer belong to this latter table.

As section 5.2 already addressed in details, the LEFM approach of the current research is with the usage
of the stress intensity factor. This element keeps track of the stress status around the tip of the crack together
with the geometry of the fracture configuration. For crevasses on Europa, the background stress is formed by
the tidal stress tensor of Jara-Orue and Vermeersen [42] and reported in Appendix B. The stress sources that
are considered to deform the brittle crust are non zero eccentricity, non zero obliquity and non-synchronous
rotation, being the key factors that act on the surface at two different time scales, diurnal and secular. This is
better described in chapter 2. The model of Van der Veen [108] for surface crevasses and of Van der Veen [109]
(also called VDV model, as abbreviation), expects that the ice overburden pressure, together with the pressure
of the water, that entirely fills the bottom crevasses are included in the stress intensity factor analysis. The
stress intensity factor for vertical crevasses K I can be calculated as:

K I =σI

p
πdF (d) (7.1)
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where d is the vertical length of the fracture. σ in case of the global approach is the most tensile principal
stress σI , calculated as eigenvalue of the stress tensor of Jara-Orue and Vermeersen [42] and oriented with
the eigenvector’ direction. In case of the local approach, the term refers to the normal stress σn , rotated from
the tensor. In the term σ it is possible to include the three different tidal components, the lithostatic pressure
of the ice and the water pressure (for bottom crevasses only). The term

p
πdF (d) describes the geometry

adopted, in the case of the vertical propagation of a single notched test specimen the function F is written
in Equation 5.28. The visual representations of the surface and bottom crevasses propagation for the VDV
model are shown in Figure 5.4a and 5.4b, respectively. The vertical propagation routine of section 6.1.2 and
in particular Algorithm 1 and 2 can be basically summarised in the monitoring of the K I factor variating the
depths and the orbital position of Europa (hence the time, hence the tidal stress amount), and in the deter-
mination of the reaching of the material toughness threshold Ki c . When this is reached, the critical depth d
can be found from the stress intensity factor. Figure 7.1 shows the preliminary results for the K I curve at a
specific location for the surface crevasses of the moon1. In the specific, Figure 7.1a represents the same loca-
tion at two different orbital positions of Europa, at a quarter (blue line) and at half (orange line) of the orbital
period. Ice thickness is fixed at 5 km. It is interesting to notice that only for the first curve, the toughness
(dashed line) is reached, with the possibility of finding a critical depth d of around 40 meters. The second
curve does not touch the toughness vertical line, meaning that no vertical propagation occur. Conclusions
extracted from Figure 7.1a is that this location on the moon is more prone to propagate a potential crevasse
at one quarter of the orbital period. On the other hand, Figure 7.1b represent the dependance of the model
with respect to the ice thickness, whose values range from 100 m to 10 km, as seen in the legend. Two main
findings can be drawn by the current figure. First of all, for a very shallow ice crust (smaller than 150 m), the
K I curve is always higher than the toughness, meaning that the fracture reaches the bottom of the ice layer.
Increasing the value of the thickness influences the a-dimensional geometry factor F and the results for the
critical depth oscillates between 100 and 60 meters. Interesting to notice that after 1 km, the sensitivity of the
critical depth with respect to the thickness seems to be negligible. This is due to the behaviour of the func-
tion F . As it can be seen in Figure 5.5, for large values of H , and small values of d/H the model assumes the
aspect of a semi-infinite layer (dashed line) and the function F (d) becomes 1.12 [100]. Therefore, for a valid
description of the Europa’s crust, a layer of 5 km is used in the rest of the simulations, value that is present in
the literature of the moon several times [5].

7.1.1. GLOBAL VIEW

The adoption of the principal stresses allows the identification of a stress configuration that does not expect
shear stress [102]. This is due to the fact that the tensor needs to be diagonalised in order to determine
eigenvalues and eigenvectors. Using the principal stress in order to consider them as opening source for the
LEFM theory can be considered as a first step in a global application of the code to the figure of Europa. The
results of such a simulations produces a global contour map for the surface and for the bottom of the 5 km ice
layer of Europa. The short term, or diurnal, time scale stress sources are a non-zero eccentricity of 0.0094 and
a rotation axis tilt of 0.5°. These are the stress sources whose effects are seen to oscillate every orbital cycles
(around 3.55 days, or 85 hours), because of the variation of the orbital distance between Europa and Jupiter,
which varies every orbital cycle. On the other hand, a secular stress is assumed to form a background stress
that increases its order of magnitude. It is the already addressed case of the crust’s non-synchronous rotation.
Nevertheless, depending on the rotation rate (or the rotation period), the effects to the stress can be seen at
shorter or longer timescales. The NSR parameters is a key element in the LEFM simulations. Its influence
to the stress (and as consequence to the stress intensity factor) is huge. Very fast rates of NSR, or very short
rotation periods, increase the stress tensor’s magnitude of several orders, leading to extremely large values for
critical lengths of bottom and surface crevasses. Beside being very contested in the literature, very fast NSR
could produce such trivial solutions for the critical depths. Therefore, for the rest of the simulations the NSR
period is fixed at 107 years, as listed in Table 6.2. It is interesting to report the sensitivity of the LEFM depths to
the rate of NSR. Figure 7.2 shows the dependance of the global critical depths, applied to surface crevasses, to
the NSR period Tns . The four plots are referring to a fixed position in time (PeriJove). White lines represent a
set of selected target features directly shaped via GIS software. The list of the selected lineaments is reported
in Table 3.1. As mentioned, the larger the NSR (smaller Tns ), the larger is the order of magnitude of the
critical depth, which reaches orders of 4 km for a 0.1 million year rotation period. Slowing down the rotation
till values of 100 million years produces depths that are around 60 m shallow. The order of magnitude was

1In particular, the Pywill crater was arbitrary selected. Its longitude is of 270°W and of latitude 15°S. Reference in Figure 3.2.
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Figure 7.2: Global critical depth sensitivity to the non-synchronous rotation for surface crevasses. The faster the rotation period, the

smaller the Tns and the higher the values reached by the critical depths. The four contour maps are referring to a 5 km thick ice layer.

The rate of NSR directly influence the stress tensor, which reaches maximum values that are orders of magnitude higher than the 100

KPa established as tensile strength of the material.

reduced of 100 times, which can determine whether or not the fracture propagates through the entire layer.
The current research set the NSR period at 107 in order to find shallow depths, which are more probable to
exist, as emerged in the literature. Nevertheless, the value of NSR, being completely unconstrained (e.g. see
Table 2.2) can definitely play a important role in the estimation of crevasses total lengths. For sake of time
and simplicity of the routines, some arbitrarily parameters needed to be chosen. Given the form of the tidal
stress, NSR produces a constant background stress instead of a variating one, such as the ones generated
by the diurnal components. The reason is that the timescales of the current simulations always limited to
a few number of cycles. At this scale, NSR effects appears as a constant value throughout the all period. If
the simulations were run for a longer time, the total effects of NSR would be a migration of the stress in the
rotation direction, since the secular phenomenon expect a slightly faster rotation of the crust with respect to
the locked interior [15, 17].

After the sensitivity of the NSR has been addressed and the final value for the rotation period has been
chosen, it is possible to present the results for surface and bottom crevasses on Europa, according to the
global point of view. Following the routines presented in Algorithm 1 and 2 it is possible to appreciate the
contour maps for a full orbital cycle in Figure 7.3 and 7.4, respectively. Similarly to what shown in Figure 7.2,
the global critical length of the crevasses, deformed by the most principal stress, are plotted. White lines still
represent the target list of Table 3.1. Variating the position of Europa for a complete cycle around Jupiter,
from PeriJove to PeriJove, a period of 3.55 days or 85 hours2 passes and the stress reorient itself from the ini-
tial and reference status. The two figures shows the dependance of the critical depth for surface crevasse and
of the critical height for the bottom crevasses with respect to the orbital position. Distance between surface
and bottom of the ice layer is fixed at 5 km by assumption [5]. Considering the shape of the contour map,
it is possible to identify that the two figures have the same aspects and their evolution in the orbital cycle is
the same. This is principally due to the fact that the stress is assumed constant through the entire vertical
dimension of the ice layer, as already assumed in the VDV model. Indeed the stress acting on the surface is
assumed to keep the same value also at the bottom of the layer itself. As consequence, the tidal stress status
is the same along the vertical dimension. Nevertheless, the introduction of lithostatic pressure that increase

2In the rest of the document, the terms orbital cycle, orbital period and Europa day refer to the 85 hours that Europa needs to complete

a full revolution around Jupiter.
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Figure 7.3: Representation of the LEFM results for the global surface of Europa for one orbital cycle. The equilibrium depth reached by

every point composing the grid of the moon’s surface is plotted. Depths are calculated from the surface of the ice layer. White lines are the

lineament features that later on are shaped in the local approach. The opening stress source is the most tensile principal stress oriented

as the calculated eigenvectors. It is already possible to appreciate that during one orbital cycle some areas are constantly presenting a

positive value for the depth, while other areas are apparently always showing a ’closed’ crack.
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Figure 7.4: Same as Figure 7.3 but for the bottom of the 5 km ice layer. Instead of critical depths, the contour map measures height
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for deeper locations in the ice and of water pressure (for bottom crevasses), influence the values reached by
the critical length. In particular, considering bottom crevasses, water is assumed to fill the fractures. As al-
ready mentioned in section 5.3, the introduction of water inside the crevasses counteracts the closing effects
of the ice overburden pressure. This is the reason why critical heights for bottom crevasses reach magni-
tudes 10 times larger than the critical depths for the surface crevasses. Critical depths ranges from zero to
120 meters while the critical heights reaches maximum lengths of 1.5 km. Looking at the magnitude of the
calculated critical lengths and referring it to the thickness of the ice layer, set at 5 km, no full fracture of the
ice crust occurs. Indeed, considering the presence of both surface and bottom crevasses, one of the key ques-
tions that can be asked is whether or not these two can potentially meet. A combination of up-bottom and
bottom-up propagation can potentially crack the entire layer. This is observed on terrestrial ice sheets and
the comparison is interesting. For such thick ice layer, the surface crevasse are definitely shallow, especially
if opened in vacuum. Bottom crevasses begins to be very prominent crossing 1/5 of the entire layer and the
water pressure plays a key opening role here. The literature provided already with some numerical studies
to determine whether or not the crevasses can fracture the entire layer. In particular, Walker [113] improved
the analysis of Lee et al. [52], which adopted the LEFM in order to find the maximum propagation depth for
surface crevasses in case and in the absence of a global subsurface ocean. Outcomes presented that in case
of a global ocean underneath a 1 km thick layer, the fractures reaches values 50% larger than in the absence
of the ocean, and these can easily propagate through the entire layer. Nevertheless, the estimations of Lee
et al. [52] are contested by the work of Qin et al. [79], which found some inconsistencies in the geometrical
representation of the crevasses by LEFM. On the other hand, Walker [113] produced a complete analysis of
the penetration depths for different ranges of tensile stress, using the same VDV approach adopted in the
current model. Results are defining a range of tensile stress that are needed to potentially fracture the entire
ice layer. The aim of the current research is substantially different from the past works of Lee et al. [52] and
Walker [113]. If these are studying the propagation depths in order to determine if the surface of the moon is
in contact with the subsurface ocean, the built numerical model aims to investigate the propagation process
itself, aiming to find areas of the moon that are more prone to host propagation of crevasses. Additionally,
the objectives of former LEFM works for Europa are modelled in a very general approach, selecting a range
of stresses that the literature provided and choosing a virtual target as location of the simulation. The cur-
rent research puts the LEFM routine into perspective of the observed map of Europa. This approach is better
explained in the next section and in section 7.2.

As it can be seen already from Figure 7.3 and 7.4, some areas of the moon are constantly showing a zero
depth for the entire Europa day. On the other hand, for some other areas, the LEFM expects that the critical
depth (or height), is constantly showing a value different than zero. Hence, the latter are called critical areas
and the former non-critical areas. It is possible to visualise critical and non-critical areas by running the
routines for several cycles and by averaging the obtained contour map in time. A global critical map for
surface crevasses averaged over 5 orbital cycles is reported in Figure 7.5. Beside showing that the maximum
average depth is of around 70 m, the critical and non-critical areas can be seen. The blue zones at the equator
with central longitude of 30°E and 220°E are the non-critical areas, showing an average zero value for the
critical depth. Alternatively, equatorial regions of longitude 110°E and 310°E generates average depths of 60-
70 m. Critical areas imply that some zones to host vertical propagation. Beside the value found as average
depth, this is the most important element to extract from the contour map. The possibility of determine
whether or not an area is more prone to present propagation of feature is fundamental in the preliminary
design of a potential lander in the future explorative missions of Europa. NASA’s Europa Clipper is already
defining the idea of hosting a lander which would be ejected from the spacecraft toward the more interesting
zone on the surface [61]. The zones of interest could be selected after several flybys producing better images of
the superficial features. According to the preliminary thoughts of the design team of scientists and engineers,
a lander’s payload could be potentially composed by a seismometer, among other instruments. Fractures that
have spatial dimensions of thousand of kilometers (Table 3.1) would produce seismic signals that are orders
of magnitudes higher than the ones detected on Earth. The positioning of a seismometer on areas that are
more subjected to produce fracture propagation would allow a better recording, hence understanding, of the
dynamic phenomena of the moon. in this sense, the current research and in particular the implications of
Figure 7.5 can orient the landing site selection already.

Although the parameters that govern the LEFM routines and the physics of Europa were selected from the
most recent and updated literature on the Jovian moon, the possibility of large diversity in the actual parame-
ters needs to be taken into account. The limitations of the model introduced with the preliminary description
of the numerical routines in chapter 6 are always considered. Additionally to the orbital parameters, the un-
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Figure 7.5: Global critical depths for the surface of the moon, averaged over 5 orbital cycles. White lines are the lineament features

shaped along the local position of the crevasse. As it emerges from the figure, areas at the equator with a longitude central value of

around 120° and 310° are more prone to observe a positive depth. On the other hand, longitudes of 25° and 220° seem to not be affected

by interesting depth values. Critical and non-critical areas could potentially help the selection of target landing sites for the lander

onboard of the Europa Clipper spacecraft.

known in the material properties of the ice investigated are a further element of uncertainties. In the current
research, the ice is considered to be purely elastic with a density that follows a depth-profile. In reality, radar
penetrating techniques allowed the identification of the Europa ice as a very porous material [7, 8, 52] which
can be translated into a weaker status of the ice hence a crack grows easier.

7.1.2. LOCAL VIEW

The last section described the results obtained for the global approach to the calculation of the critical depths
for surface crevasses and of critical heights for bottom crevasses. The global approach allowed the identifica-
tion of critical and non-critical areas. In other words, the simulations allowed the emerging of some zones of
the moon that are more favourable to host propagation events. Nevertheless, it is not possible to appreciate
local depths of observed crevasses. The assumption of the most tensile principal stress as opening source
does not consider the local geometry of the lineaments, given the framework of the routine. The principal
stress evaluation allows the representation of the stress status in form of simple tension and/or compression,
avoiding the arising of shear stress. The tensor is rotated of an angle that is calculated with the eigenvector
orientation. The implications of global critical areas have been discussed in combination with the possible
influence that they might have in the elaboration of a landing site for the future Europa Clipper lander.

Differently to what happened for the global approach, the current section aims to describe the application
of the LEFM to observed crevasses in a localised view. It has been already addressed how the usage of a GIS
software allowed the discretisation of continuous lineaments on the surface. In particular, Figure 6.3 shows
that the lineament is discretised in form of nodes and segments. The rotation angle α that can be calculated
with the introduction of spherical triangles (Equation 6.5 to 6.9) is used to rotate the stress tensor, firstly
expressed by latitudinal and longitudinal components. Knowing the actual intensity of the normal stress σn

that is acting on the crevasse’s tip, allows the calculation of the critical depth of the crevasse itself. The normal
stress σn can be substituted to the most principal stress σI in Equation 7.1. With this element taken into
account, Algorithm 1 and 2 can be run for localised depths and heights. For bottom crevasses, it is assumed
that a fracture has the same aspect (in terms of nodes and segments) of the one observed on the crust directly
above. This is a very limiting assumption introduced to show consistency between the two simulations and
in order to determine whether or not the two fractures eventually meet each other. In reality, it is naturally
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Figure 7.6: Results of the local application of the LEFM to specific surface crevasses. The depth value calculated with the routines is
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Figure 7.8: The image summarises the local approach of the LEFM to the Agenor Linea in the southern hemisphere of Europa. The loop

is applied for the investigation of the surface crevasse propagation. In (a), a zoomed view of the Agenor Linea at half of the orbital period

is elaborated from Figure 7.6. On the other hand, in (b) the blue curves represent the mean depth of the feature (solid line) and the

maximum depth reached (dashed line), for the entire duration of one Europa day. The orange line represent the average normal stress

acting on the crevasse. This oscillate from tension to compression within the cycle.

very hard that a bottom crevasse develops with the exact same aspect of the one above.

Similarly to the global approach results shown in Figure 7.3 and 7.4, the local application of the LEFM to
existing surface and bottom crevasses is shown in Figure 7.6 and 7.7, respectively. In the figures, the output of
the simulations are plotted directly over the observed lineaments. The background map is a re-elaboration of
Figure 3.2 that digitalised images coming from three different exploration missions: Voyager, Galileo and New
Horizon. The features that have been considered as target of the simulations are 8 of the more representative
lineaments observed3. Already with a quick look at the two figures, one can already see that some of the fea-
tures are showing a constant zero value for the crack’s length. On the contrary, other features seem to present
a sort of signal. Lineaments that are ’closed’ for specific periods of time, are initiating their propagation at
specific orbital position. This is due to the fact that, the feature is remaining in a stand-by status until the
background stress re-orients itself in a more favourable configuration. When (if) this occurs, the crack even-
tually grows. Furthermore, it is possible to appreciate that in some cases, only specific parts of the crevasses
are showing a depth variation during the orbital period. This distinction between sections of the same fea-
tures is interesting when it is coupled with its implication in the history of the crack. Parts of a crevasse that
are constantly showing a zero depth signal being observed imply that have been necessary generated in a
stress configuration that is different from the one adopted in the current research. Hence, this might imply
that the tidal stress that is composed by non-zero eccentricity, non-zero obliquity and NSR could be different
at different periods in the history of Europa.

As mentioned, some features are apparently showing a oscillating critical value for the crack’s length. It
is possible to better appreciate this oscillating behaviour in Figure 7.8a, where the LEFM results are plotted
only for the superficial propagation of Agenor Linea, in the southern hemisphere at around half of the orbital
period. The inclusion of this zoomed version of Figure 7.6 for Agenor Linea only aims to show the variating
critical depth reached by different parts of the features itself. At the same time, the most eastern part and the
most western parts are not showing the occurrence of propagation while the central part does. Such curious
behaviour could have not been observed by the previous global point of view. The localisation of the routines’
application has the precise scope of investigating such oscillating behaviour for the depth. Figure 7.8b aims to
represent the analysis of depths and stresses for the case of Agenor. In the graph, two different vertical axis are
present. On the left and with the blue line, it is possible to measure depths while on the right the stress is plot
with the orange line. Solid lines are referring to mean values for depths and for normal stress. As predictable,
the mean normal stress for the lineament is a sinusoid, given the fact that this is the tidal potential (and the
tidal stress) is formed by sinusoidal functions. The period is 3.55 days, the value of one orbital cycle, and
the status passes from compression (negative stress), through tension (positive stress) till reaching the initial
configuration. On the other axis, the mean depth shows the signal that was earlier mentioned several times.

3In the specific, the simulated lineaments are: Agave, Agenor, Asterius, Drizzlecomb, Euphemos, Harmonia, Rhadamanthys and Torms-

dale Lineae. Characteristics of the features are listed in Table 3.1.
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The feature seem to activate at around 10 hours after the PeriJove passage. Mean depth reaches values of 70
meters and then de-activate again. A value of zero for the depth means that the toughness is not reached, or
a the tip belongs to a compressive status.

The most important outcome of the local application of the LEFM to existing crevasses is the emerging of
oscillating signals for the critical length throughout the orbital cycle. Places on Europa are seeing a structural
configuration that varies from compression to tension, while other are constantly in a single regime. The
implications on the crevasses’ depths and heights are that these changes magnitude in very unpredictable
ways, given the sometimes strange geometrical configurations of the lineaments themselves. Knowing that
some of the features are more ’active’ and more prone to host vertical propagation can be a key input in the
determination of potential target of the future exploration missions. A next step of the current research would
be to produce a complete list of features that present potential activity of propagation.

7.2. HORIZONTAL PROPAGATION
This last section of the chapter deals with the outcomes of the application of LEFM techniques to horizontal
propagation of Europa crevasses. So far, the geometry of the numerical analysis has followed the approach
of the VDV model for terrestrial crevasses. Vertical propagation of fractures on ice are have been studied and
validated by experimental works. The current numerical model has also been validated by fieldwork data (in
section 6.2, using measurements of Mottram and Benn [60]). The direct measurement of stresses around the
flanks of a crevasse and its depth seem to be a pretty straightforward process but in reality the dangerousness
and the difficult accessibility of the locations where ice crevasses are observed definitely poses a serious risk in
conducting experimental campaigns. For horizontal propagation, the issue of validating the rate calculation
routines is a bit more complicated because of the difficulties in the detection of propagation events. Satellites
investigations and a few fieldwork campaigns are the data that can help the understanding of the horizontal
propagation. Probably the most interesting instruments that are surveying the surface of the Earth are satel-
lites mounting SAR onboard. Radar and interferometric radar techniques allow the calculation of topography
and of mass transport phenomena on Earth. One interesting proposal is to mount a SAR instrument on the
payload of the future Europa Clipper mission. After multiple passages above the same areas of the moon, it
would be possible to detect movement or flows of the icy crust and to record fracture propagations.

In the code, the analysis of horizontal propagation begins with the discretisation of an existing lineament
on the surface. The shaping approach is the same of the local approach for vertical propagation but the ge-
ometrical representation of the crevasse in terms of the a-dimensional function F needs to be replaced by
a new one, for instance the F2 function of Equation 6.13. Doing so, the dependance to the ice thickness is
now null, since the term does not appear in the stress intensity factor anymore. It is important to mention
that the application of the LEFM in horizontal direction is only valid when dealing with surface crevasses,
the application of the routine to bottom crevasses is not accounted in the current research. The numerical
routine for the horizontal propagation is shown in Algorithm 4 and adopt the LEFM formulation of the dis-
placement, coupled with the K I factor. The time derivation of the displacement (Equation 6.14) and a further
mathematical manipulation of the equations allows the identification of the propagation rate as function of
stress, stress rate and length of the crack:

v(t ) = f [σn(t ), σ̇n(t ), l (t )] (7.2)

which is dependent on the orbital position of Europa with respect to Jupiter, via the temporal parameter
t . The dependance of time is also present in the calculation of stress σ, stress rate σ̇n and length l . As it
has been presented already in the description of the model, the routine starts with the presence of a small
crack on the surface, without which the LEFM is not applicable. This initial crack is represented by the first
segment in Figure 6.5b. It is possible to run the LEFM routines for the tip of the second node in order to
determine if propagation occurs. When the conditions are favourable to host crack’s growth, the propagation
rate can be calculated by Equation 7.2. Knowing the rate of growth, and the distance between two nodes, the
calculation of the needed time step is straightforward. Applying the same scheme for the entire length of the
feature allows the calculation of the total number of cycles that are needed to full develop4 the lineament.
A necessary note is that the shape of the lineament is directly modelled from the map of Figure 3.2 and, as
consequence, is referring to the time when the pictures have been taken. An open argument of discussion

4The term development or completion is preferred to the term generation because of the latter is referred to a crack that is produced and

initiated directly on a intact structure. Differently, the term development would suppose a crack that already exists.
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Figure 7.9: Representation of the simulations’ results for the horizontal propagation rates of the features listed in Table 3.1, with respect

to time after the reference PeriJove passage. (a) shows the 22 features in the same graph, while (b) presents a zoomed version for a

restricted number of lineaments.

about Europa geology, is the appropriate consideration of the dynamical history of the moon in the contest.
The determination of the age of the lineaments observed on Europa is one of the most difficult study that
can be implemented, given the limited amount of observational data. The same features can be formed
in completely different scenarios but in the current project, these are modelled as a single crevasse that is
propagating in a precise and fixed direction. Additionally, sources of stress that are different from the tidal
effects investigating here, can be the key perturbing elements that potentially trigger the crack’s propagation.
Past studies suggested the possibility of cryovolcanism whose extremely high pressurised vapors can also
influence the fracture mechanics of the ice. Impacts of external bodies on the crust can be also accounted.
Nevertheless, these considerations go beyond the scopes of the current research and the features are assumed
to be propagating eastward.

The plot of the propagation rate with respect to the time from the reference PeriJove passage for the entire
list of Table 3.1 is shown in Figure 7.9a, while a zoomed version of the same graph for four selected targets is
reported in Figure 7.9b. The four lineaments have been chosen because they show the most interesting be-
haviour in terms of propagation. Probably the most important outcome of the simulations is that crevasses
are growing through a set of propagation events, followed by standby periods. If the conditions are favourable
and the toughness is reached, the crack grows experiencing almost instantaneous fracturing events. The ad-
jective instantaneous can be used since the order of magnitude reached by the propagation event peaks is
of kilometers per second. On Earth, such instantaneous events are seen in the propagation of ice sheets’
crevasses, especially when these are observed at the extreme portions of glaciers. Example is the notorious
Larsen C break in July 2017. A potential future application of the current model would be the adoption of data
available for terrestrial crevasses (such as for the Larsen C) in order to study the same behaviour on Earth. At
these extremely high rates and accounting the dimension of the lineaments observed on the surface of the
moon, the fractures can be fully developed after a relatively short number of orbital cycles, as it can be seen
from the temporal horizontal axis of Figure 7.9 (one Europa cycle is 3.55 days). In other words, the relatively
short period of time needed for the full development is composed by periods of standby for the fracture. Any-
how, the conditions for the stress and for the length of the crack are continuously changing until the material
threshold is reached and the fracture can eventually grow. A particular note concerning the length of the frac-
ture needs to be recalled. The length of the fracture is one of the more influent elements in the evaluation
of stress intensity factor. Large crack are more prone to continue the propagation respect to smaller ones.
Therefore, a correct value for the term l needs to be taken into account. For this purpose, a specific routine
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Figure 7.10: Representation of the completion of the features shape. White lines represent part of the lineaments that are propagated
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Figure 7.5. Non-critical areas seem to trigger the arrest of the horizontal propagation, beside showing a zero average depth for superficial

crevasses.

is analysing the stress status at all the nodes that are behind the one where the LEFM is focused. The routine
goes back in the already analysed nodes in order to see how far the tensile configuration is observed for the
specific time under investigation. As soon as the routine encounters a node that is experimenting compres-
sion, the calculation stops and the length of the crack is the sum of the segments under tension. More details
in section 6.1.3 which describes the numerical code for horizontal propagation.

Beside all the considerations made so far, the model notices that some features are not experimenting a
full development of their aspect. This means that the possibility that some crevasses are reaching areas not
showing a favourable configuration for the propagation is accounted by the model in the total time provided
by the simulations. Nevertheless, the numerical analysis is run for a maximum number of around 1000 cycles
and the reorientation of the secular stress due to NSR is not appreciated at this relatively short timescales,
being a constant offset in the stress background. The possibility that the (relatively) slow reorientation intro-
duced by NSR can start to influence the standby tips of cracks after long time steps. In other words, given the
timescale of the current routine, it is possible that some features are not showing a full completion of their
shaped aspect. These reaches areas that are not prone to host propagation and they standby for a period
that is larger than the threshold imposed to the simulation. This limit is set as 20 cycles. Such a relatively
small time period is chosen while keeping in mind the possibility of detection via future in situ exploration
missions. Features that are in standby for periods shorter than 20 cycles are more probable to be detected by
potential lander’s instruments (such as a seismometer). In order to present which features are reaching full
completion and which are not, Figure 7.10 is reported. Here the shaped lineaments are plotted on the map
of the moon in two different colours. Black lines are indicating the the full spatial dimension of the crevasse,
as shaped by GIS software. The white lines that overlap the black ones, represent the part of the feature that
has propagate in the timescale provided by the numerical routine. As consequence, the remaining black lines
indicate line that are not yet developed, or whose last surveyed node was calculated to be in standby for more
than 20 cycles. In this definition, for the two full black lines the propagation does not advance from the small
assumed crack of the first node. The background image is the global map of Europa of Figure 3.2, which has
been overlapped by the contour map of the average critical depth for surface crevasses of Figure 7.5. This
contour map has been defined as the plot of the average value for surface critical depth at every point of the
moon. Blue areas, where the mean critical depth is null, were defined as non-critical areas while the coloured
zones are called critical, having a positive value for the depth that reaches a maximum of 70 meters. the rea-



94 7. KEY FINDINGS

0 100 200 300 400 500 600
0

1

2

3

4

5

6

Figure 7.11: Histogram relating the number of features to the amount of orbital cycles needed to develop their shaped aspect. Partial

developments are also included in the histogram. Data shown in Table 7.1.

son why the two different types of approach are coupled in the current figure is clear when looking at the
locations where the feature’s colour is black. Curiously, the non-critical areas seem to trigger the arrest of
the horizontal propagation. As already mentioned, a couple of feature whose first node is found inside the
non-critical area, the propagation does not even begin. For the majority of the not fully developed crevasses,
the arrest node is found at a very advance position in the global dimension of the lineament. As logical de-
duction, being the length of the crack already at a large spatial dimension, the stress intensity factor should
be relatively high. On the contrary, as soon as the crevasses enter the blue zones of Figure 7.5, propagation
arrests also for large crevasses. The two approaches seem to reach the same conclusions, the critical and non
critical areas can be referred to both horizontal and vertical propagation. The theoretical reason could be
found in the fact that both the approaches are calculating stress intensity factor and this is naturally highly
sensitive to the stress status, which is the same for the identical location. Apparently, the non-critical areas
are subjected to a weak tensile effect, thus the K I factor rarely reaches the material threshold, meaning that
both horizontal and vertical propagation are limited. A further comment that can be done while studying
Figure 7.10, is the determination of why features are actually observed even in non critical areas. Instead of
saying that non-critical areas arrest the propagation, one can say that something needed to trigger the fea-
ture to reach locations that apparently are not prone to host fracture growth, in any direction. Other kind of
stress source or geological processes should stimulate the propagating behaviour of crevasses in order to fully
complete their shape.

As mentioned previously, knowing the propagation rate for the single nodes and the total length of the
crevasse, it is possible to calculate the amount of time needed to complete the feature’s shape. If this is divided
by the duration of an orbital period, the amount of orbital cycles are needed for the completion. Numerical
results are listed in Figure 7.11 where an histogram is showing the number of features that are completed in
a specific amount of orbital cycles. The maximum number of cycles needed for a completion of a crevasse is
of around 600, meaning around six terrestrial years. Minimum amount of cycles is of 11, around one month
and 10 days. Although the number of surveyed features (20 out of 47 total lineaments tabulated by IAU) and
despite the fact that it is not possible to implement a valid statistical analysis for such a few cases, the peak
of around 50 cycles needed to completion can be visualised already. The order of magnitude of the cycles
needed that has been found is a bit larger than the lifetime of the proposed Europa Clipper’s lander. The
implication would be that the lander could hardly manage to detect a full propagation of a crack. Neverthe-
less, a large part of the propagation should be easily measured, given the extremely large values reached by
crevasse’s length and opening width. This last factor is nothing more than displacement term δ calculated by
the LEFM in Equation 6.11. According to the numerical model, the opening width reaches values of several
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meters, magnitude that is appropriate to a crevasse that can be several thousands of kilometers long.
A tabulated version of the numerical results of the routine is reported in Table 7.1, where the details for

every analysed lineament feature have been reported. Together with the further indication of the crevasse’
length, the table reports the number of cycles needed, the percentage of completion with respect to the full
shape of the crevasse, the maximum opening width, and the maximum and mean horizontal propagation
rate. A curious conclusion that can be drawn from the numbers in the table is that the implication that a large
crevasse needs to be completed in an high number of cycles is not the current case. The dynamic propagation
behaviour of every crevasse is intimately related to the geometry and, more in particular, to the location where
the crevasse is found. Example is the Cadmus Linea that needs only 91 cycles to a full completion, even being
a large 2993 km crevasse. The difference between the second columns of Table 7.1 and Table 3.1 is due to
the fact that for the total features’ length the latter are data directly taken from the IAU website while the
former is calculated by the current routine. The discrepancies are due to the discretisation process via GIS
softwares, that for some cases found difficulties in determining the exact location of the lineament, given the
low resolution of some zones of the global map of Europa of Figure 3.2. Despite this, the order of magnitude
is satisfied for the majority of the cases. Considering the maximum value reached by the propagation rate,
the two features that are experimenting the faster events are also some of the most prominent, generally
speaking. The smallest features of the list (Telephassa and Yelland Lineae) also presents some of the relatively
slower propagation events. At the same time the opening widths of such crevasses reaches orders of a few
meters, while bigger features such as Mehen Linea showing extremely large δ factors. As it can be seen in the
fourth column, 9 out of 20 features reaches the full completion, while other 4 are completed at 75% or more.
The remaining lineament present percentages of completion lower than around half of the full dimension,
accounting the two features that do not start to propagate (Asterius and Drizzlecomp Lineae, for instance
the total black lines of Figure 7.10). Finally, the last column of the table reports the average propagation rate
which is directly linked to the amplitude of the propagating events. It is important to notice that the mean
propagation rate is related to the single fracturing event and not the the ratio between total distance of the
completed crack and the total time needed (number of cycles). These two types of values are intrinsically
different in magnitude and in concept so it is important to express their different meaning. In particular,
comparing the average rate of completion (total length over total time needed), the results are some orders of
magnitude lower than the results of Hurford et al. [33], which assumed an estimation for cycloidal growth of
around 4.8 km/hr. Average value of the current research is of around 500 m/hr. The last column of Table 7.1 is
the mean propagation speed of the different fracturing events that form the crevasse. This value is particularly
useful if coupled with the potential seismic signal that these events can generate. This application is not part
o the current research but it is a good first step in development of future research. Generally speaking, the
crevasses experience a mean propagation rate of meters per second with peaks of 55 m/s for Udaeus Linea
and minimum values of around 2 meters per second. On average, these numbers can detected by future
exploration mission that would orbit Europa.
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Table 7.1: List of numerical results obtained for the horizontal propagation approach to the target features of Table 3.1. Note the dif-

ference between the second column of the current table and the one of Table 3.1. The latter directly taken from IAU data, the former

calculated by the numerical routines of the model. Differences are due to the discretisation process which sometimes found difficulties

in the interpretation of correct ending points. The two lineae whose values are labeled as ’-’ indicate the two features whose propagation

do not begin.



8
CONCLUSIONS

Europa is one of the most fascinating planet observed in the Solar System. A global water layer is covering
the moon, with an extreme outer frozen crust which is protecting the global ocean from the deadly radiation
coming from Jupiter. The combination of these elements defines Europa as an habitable world, meaning that
it can potentially host life. Nevertheless, the parameters and the physics that could be useful in categorising
the life environment are poorly defined. The lack of observations is not permitting the numerical models to
be validate and as consequence, there are completely different point of views regarding how to describe the
various physical phenomena on the satellite of Jupiter. ESA and NASA are currently working on the design of
future exploration missions with the main target set as Europa. More in the specific, NASA’s Europa Clipper
design team is trying to evaluate the feasibility of mounting a lander onboard of the interplanetary spacecraft.
The possibility of having an active lander on the surface, even if for a small period of time, built to detect
geological events, such as seismic activity, would be a fundamental improvement in the knowledge of Europa
interior and of the effective moon’s habitability. Therefore, knowing a priori which areas on the moon are
more interesting to survey would be very helpful, in order to avoid the tremendously unfortunate scenario
of landing on a region of no interest. The current research aims to preliminary determine which areas of the
satellite are more favourable to host crevasse horizontal and vertical propagation. Additionally, the effective
possibility of having a connection between the ocean and the outside of the surface, is an important aspect
to take into account, given the potential biological material that can be reversed on the surface. Europa’s
outer surface shows an extremely large number of lineament features that are crossing the entire surface
of the moon. These are assumed to be large fractures that, similarly to terrestrial crevasses found on large
glaciers in Antarctica or in Greenland, are propagating on thick layers of ice floating on oceans. General
aim of the current research is the better understanding of how these crevasses are propagating in order to
put the results in the optic of future exploration missions, concerning their ability to detect such geological
phenomena. The mathematical framework of the research is the model of C.J. Van Der Veen adopting linear
elastic fracture mechanics tools.

The usage of linear elastic fracture mechanics techniques is a very simple but accurate approach to inves-
tigate the behaviour of crack propagation for elastic materials. Europa extreme outer layer can be considered
to be a purely elastic ice crust, given the extremely low temperatures reached by the frozen surface. As con-
sequence, the application of the fracture mechanics’ selected tool is a valid approach with the avoidance of
viscosity. The current research aimed to apply a LEFM-based model used to investigate the vertical propa-
gation of terrestrial crevasses in order to determine the critical depth they potentially reach. The approach
can be used for both bottom and surface crevasses and the theoretical basics are reported in Van der Veen
[108, 109]. The analysis of the propagation environment at the tip of an existing crack is basically composed
by different deforming phenomena that are acting on the crack. Opening and closing sources are combined
in order to calculate the critical equilibrium length of the fracture. The stressing sources assumed by the
current research are the ones calculated via normal mode theory in Jara-Orue and Vermeersen [42], namely:
non-zero eccentricity, non-zero obliquity and non synchronous rotation. These are assumed to be the com-
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ponents of the tidal stress which are deforming the brittle crust of Europa every orbital cycle. Additionally,
a further purpose of the current research is the investigation of potential horizontal propagation events that
can trigger the full development of the observed feature.

The current research produced a model based on a methodology derived from experimental works on test
specimens. By the monitoring of the configuration status around the tip of an existing crack, it is possible to
derive analytical function that describe the fracture behaviour. Being a model induced from the experimental
works, it implies some limitations in the validity of its outcomes. First of all, the geometrical configurations
adopted are referred to a finite plate, while in reality, the extremely large dimensions of the fracture would
require a curvilinear geometry in order to correctly represent the correct shape of the lineaments. Lastly,
the thickness of the ice is considered to be a constant 5 km, through the entire crust of the moon although
several studies estimated that it is highly possible to have different moon’s locations characterised by variating
thicknesses.

The results for the application of linear elastic fracture mechanics to Europa crevasses consider both hor-
izontal and vertical propagation. The next bullet list aims to summarise the most important findings found
by the numerical analysis produced. Beside the numerical results that have been obtained, the model itself is
a very important outcome of the research. Given its modular scheme, the application of physical characteris-
tics of different planets would allow the identification of results also for completely diverse environments. A
possible future development of the linear elastic fracture mechanics model is its implementation into larger
and more complete ice flow models. This would allow an improvement of the mathematical understand-
ing of complex glaciological problems also on Earth. Summarising, the six different outcomes of the routines
allowed a better representation of the Europa crevasses by the usage of linear elastic fracture mechanics tech-
niques.

• Surface crevasses reaches critical depths that reaches values up to 110 meters.

One of the first result of the linear elastic fracture mechanics, is the pure application of the VDV model to
vertical crevasse on the surface of the Europa icy crust. The VDV model is a terrestrial numerical analysis
implemented as one of the first historical attempts to find a valid calving law. It assumes a purely elastic ma-
terial and the usage of the stress intensity factor approach. The extremely low temperatures (around 100 K)
reached by the surface of Europa are one of the most relevant reasons that drove the selection of linear elastic
fracture mechanics techniques for the current investigation of crevasse propagation. By the rotation of the
stress tensor (found in Jara-Orue and Vermeersen [42]) to the local shape of single crevasses, the possibility
of calculating the actual critical depth was possible. The ice thickness was chosen fixed at the value of 5 kilo-
meters, consistently to the average estimations found in the review paper of Billings and Kattenhorn [5]. The
results of the calculations are showing crevasses’ critical depths that reaches maximum values of hundreds of
meters. Relating this amplitudes with the thickness of the ice crust adopted, the fractures are definitely shal-
low and not able to reach the bottom of the ice layer, unless this is extremely thin (around 130 meters). The
critical depth has been calculated throughout the completion of a full orbital cycle (around 3.55 days) in or-
der to define whether or not a depth signal could be found. 20 lineament features have been investigated and
different propagation scenarios have emerged. Specific features are showing an average null critical depth,
meaning that are not propagating in the calculation of a full orbital cycle. On the other hand, other types of
features are experiencing peculiar behaviours. For the majority of the surveyed crevasses the depth shows
a signal of period as the orbital cycle, meaning that the crevasses are stimulate to initiate propagation every
orbit of Europa around Jupiter. This would mean that a propagation should occur very often on the surface
of Europa, hence its detection with orbiting or in situ instruments have to be very probable. If the outcomes
of the current research are viewed with the optic of future exploration missions on the surface of the moon
such as NASA’s Europa Clipper and its potential lander or ESA’s JUICE, the determination of preliminary es-
timations of crevasses depths could be a very interesting set of values to validate. As mentioned already, the
results of the current simulations are deeply linked to the stress tensor adopted, which is related to the dif-
ferent stress sources considered. Even small variations in orbital parameters or in rheological behaviour of
the ice, could largely affect the outcome of the model. In particular, the assumption of the material as purely
elastic avoided the issue of representing viscosity, whose non-linearity is one of the major reason why ice is
such a difficult material to model. Nevertheless, the extremely low temperatures for the crust of Europa allow
the adoption of an elastic material in order to be able to host a linear elastic fracture mechanics analysis. One
of the potential future development of the current research is the calculation of potential seismic signals that
such fractures might generate. Given the large dimensions of the crevasses, the explosive amount of energy
released in such a tiny moon are though to be tremendously high. Working in relation with seismometrical
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technology would be a potential key aspect of the current research to further develop, especially if seen with
respect to the possibility of the Europa Clipper to host a seismometer onboard. This would be the key in the
understanding of the lithosphere phenomena on Europa.

• Bottom crevasses reaches critical heights that reaches values up to 1500 meters.

The same discussion presented before can be applied to the analysis of bottom crevasses. In particular, these
have been shaped right below the actual observed surface crevasses, by assumption. Considering that the
stress at the bottom of the ice layer is the same of the one at the surface, the VDV model was implemented
and run. The only difference with the analysis of the surface crevasses is that, in this case, water from the
underneath ocean is filling the fractures until the highest portion of the crevasse itself. As noticed in the VDV
model, the water presence is deeply influencing the calculation of the crack’s length. Indeed, the dimensions
of the bottom crevasses are ten times larger than the surface ones, meaning magnitudes of 1500 meters.
Although the initiation process of bottom crevasses is completely unknown and could be related to multiple
dynamical effects that are potentially happening in the ocean1, the extremely large amplitude reached by
these fractures (around 1/4 of the total thickness) developed from below the crust are interesting phenomena
to study and to better understand. For bottom crevasses, the problem of viscosity is even more important
than for surface crevasses. Superficial temperature for Europa is estimated to be around 100 K while at the
bottom the ice reaches the melting temperature, being in contact with the liquid water layer. As consequence,
warmer section of the ice would be hardly modelled by a linear elastic fracture mechanics analysis.

• Consistently to what found in the literature, surface and bottom crevasses combined fracture the entire
layer if this is thinner than 1.2 kilometers.

A various number of past works have been published with the main aim of determining whether or not the
crust can be fully cracked, implying a connection between the subsurface ocean and the (almost null) atmo-
sphere of Europa. This scenario is particularly interesting if looked in the perspective of the habitability of the
water ocean. If organic or biological material is floating in the water layer, the eventuality of this connection
with the extreme outer layer of the moon, would imply a probable presence of this material on the surface
itself, where is easier to detect and to study. This has been the key motivation of applying calving theory to
the Europa lineament features. Also linear elastic fracture mechanics analysis have been already adopted for
this scope. It is the case of Lee et al. [52] and Walker [113] whose results are expecting that the ice layer can be
fully cracked only if the thickness has dimensions of one kilometer. If this is the case, the existence of bottom
crevasses would be a key element in the process, even more than the surface crevasses. The outcomes of the
current research, although not precisely focused to this aspect, allowed a further corroboration of the past
works. Surface and bottom crevasses are meeting each other only if the ice layer is thinner than around 1.2
kilometers. As already addressed multiple times, the bottom crevasses are reaching orders ten times larger
than the surface crevasses, given the opening action of the water from below the crust.

• Specific areas of the crust are more prone to host vertical propagation.

The application of the linear elastic fracture mechanics vertical propagation routine to the global map of the
moon, formed by a thin grid of selected locations, allowed the identification of crevasse’s length contour maps
for the surface and the bottom of the Europa crust. In order to simulate the general stress status at every point
of the grid, the assumption of the most tensile principal stress has been adopted. The global critical depth,
averaged over 5 orbital cycles, allowed the identification of two different types of area on the moon. The first,
called critical areas, is showing an average positive depth while the second, named non critical areas, are ex-
periencing a null depth on average. This means that some zones of the moon are more prone to host vertical
propagation for crevasses. The identification of areas that are more subjected to present propagation phe-
nomena can help the potential selection of the more interesting parts of the moon. When future exploration
missions would need to strategically design potential landing sites, the results of the current model could
present a preliminary investigation in the preliminary selection. Of course, the precise landing site would
need a more complete process of identification that more likely will be provided after some flybys of the host
spacecraft [61].

1For example cryovolcanism episodes, proposed several times in the literature about the moon.
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• Other areas of the crust seem to lead both horizontal and vertical propagation to arrest.

The numerical analysis that aimed to model the horizontal propagation for crevasses allowed the identifi-
cation of which features are experiencing a full completion of their aspect, given the final aspect of the lin-
eament, the geometry of the problem and the stress sources taken as perturbing actors. The crevasses are
shaped on the actual aspect observed on the global map of the moon, using GIS softwares. The features are
extremely large and their dimension has the same order of magnitude of the radius of the moon itself. Begin-
ning with the existence of a small fracture on the surface and accounting for the crack’s dimension through
the entire surveyed time, it is possible to calculate the propagation rate via a simple time derivation of stan-
dard linear elastic fracture mechanics equations. Furthermore, the actual possibility of a fracture to follow the
observed shape with a eastward propagation is given. If the results of the horizontal propagation are com-
bined with what was found for critical and non critical areas, a surprising behaviour occurs. Non critical areas
which show an average zero depth for surface crevasses apparently arrest also the horizontal propagation of
crevasses which enter the zone. Additionally, features whose first nodes are found inside the non critical areas
are not even starting to present propagation events. The results of horizontal propagation corroborates what
found already for vertical propagation scenarios. Areas of the moon apparently host more favourable condi-
tions to facilitate crack propagation, while others are triggering the crevasses to arrest their growth. Again,
these results are particularly interesting when seen in comparison with the potential purposes of the Europa
future exploration missions. The cracking of such long and wide crevasses on a tiny moon such as Europa,
would produce a tremendous amount of energy released in form of seismic activity. This also because of the
extremely cold and fragile configuration of the superficial ice. Seismic activity are one of the most successful
tools that can be used to investigate the interior structure of a planet. Knowing already which areas are more
prone to present fracture propagation implies that the detection of such events is more probable to be issued
in the areas that are more prone to host the phenomena. The current analysis could give preliminary recom-
mendations for the more interesting superficial zones, that can also be considered in the preliminary design
of the potential Europa Clipper’s lander’s sites of analysis.

• Lineament features are formed by series of nearly instantaneous fracturing events.

As already mentioned, the horizontal propagation routine allows the identification of the propagation rate
for every node of the discretised crevasse. The calculation methodology is pretty straightforward and can
be found via time derivation of standard functions governing linear elastic fracture mechanics routines. As
consequence, for every node and segment, the propagation scenario can be derived. One of the key outcome
of the routine, is the calculation of the propagation rate’s order of magnitude. Results reaches maximum
values of kilometers per second, which is the definition of an almost instantaneous event. Something similar
is observed while dealing with calving phenomena, such as the recent one of the Larsen C in Antarctica, in
July 2017. Future application of the current model would be the application of the routines to terrestrial
crevasses. For Europa, such tremendously fast events would imply an enormous amount of released energy,
given the observed opening width and the total length of the feature. Knowing the propagation rate and the
global dimension of the crevasse, the total time needed for the full completion of the fracture’s shape can be
calculated. This produced a first order estimation of the potential development scenario for 20 lineaments
observed on the surface. Nevertheless, given the large uncertainties in the dynamical and geological history
of the moon, these results have to be considered as a example of how much time such crevasses could need to
fully develop in a specific and fixed direction. This does not mean that the time found is a precise estimation
in the history of the fractures. More likely, the outcome of the research provided an estimation of the time
needed to develop. Nevertheless, for the surveyed features the average time to full completion ranges from
10 to 600 orbital cycles (from a month to almost 6 years). Galileo surveyed the surface of Europa for 8 years
and no apparent movement or crevasse propagation have been detected. Therefore, the claiming of a short
completion time has to be seen in this optic. Of course, future and more precise observation of the icy crust
will allow a better understanding of the crevasses’ dynamics.

Concluding, the current research provided a new numerical representation of crevasses’ propagation on
the icy surface of Europa. Specific areas of the crust are more prone to host vertical and horizontal propaga-
tion, while other zones seem to trigger the arrest of fractures’ growth. If surface and bottom crevasses exist
at the same time, the ice layer is fully cracked for an extremely thin ice layer. Superficial fractures propagates
at rates that can be considered quasi-instantaneous. The outcome of the simulations can be used with the
preliminary design of future Europa missions that aim to capture crack growth’s events in order to better con-
strain the physical description one of the more promising satellite of the Solar System, in terms of finding a
biosphere.
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A
REPRESENTATION OF A FUNCTION

The current extra chapter is based on [9, 12], when not cited differently. It aims to describe the possibility
of representing a function via a series of different analytical factors. Before starting the description, some
preliminary mathematical tools need to be introduced. For instance, the definition of multiplication between
function is a key aspect and it is here presented. The so-called L2 inner product of two scalar functions f (t )
and g (t ), on a domain t = [a,b] can be linked to the integral of the multiplications between the two functions.
In symbols the inner product can be written as: < f , g >. After the L2 inner product is shown, one can also
define the L2 norm || f || of a scalar function f . The symbolical formulation of the two arithmetical operations
is given in the following equations:

< f , g >=
∫ b

a
f (t )g (t )d t (A.1a)

|| f || =
√
< f , f >=

√∫ b

a
f 2(t )d t (A.1b)

The L2 inner product can also be interpreted as a generalisation of the the scalar product between vectors.
Pushing this analog for a step further than the simple scalar product between vectors, the concept of orthog-
onality can be claimed as well. Indeed, two scalar functions are said to be orthogonal if and only if:

< f , g >= 0 (A.2)

Therefore, a set of N function e1(t ),e2(t ), ...,eN (t ) is an orthogonal set if and only if their mutual L2 inner
products are null, in symbols:

< ei e j >= δi j ||ei ||2 ∀i , j ∈ [1, N ] (A.3)

where δi j is the Kronecker delta. In the equation, the inner product of two distinct functions is zero while if
the product is applied to the same function, the result is the L2 norm, by definition.

A set of orthogonal function can be found in the so-called Lagrange polynomials. These are simple func-
tions whose mutual L2 product is always zero. The Lagrange polynomials are an useful set of functions that
allows the representation of more complex such as the gravitational potential for example. These functions
can be easily calculated with a bunch of algorithm such as the recursive method [12]. The following list gives
the reader the first few polynomials of low orders and Figure A.1 represents the plot of the first 6 orders.

P0(t ) = 1

P1(t ) = t

P2(t ) = 1
2 (3t 2 −1)

P3(t ) = 1
2 (5t 3 −3t )

P4(t ) = 1
8 (35t 4 −30t 2 +3)

(A.4)
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Figure A.1: Representation of the Lagrange polynomials Pl function of a variable t between -1 and 1. The order for the current graph is

up to 6. An arbitrary L2 inner product between each of these functions is null, meaning this set of functions is an orthogonal basis in the

domain [-1,1].

It can be easily proved that these functions satisfy Equation A.3. A generalisation of the Legendre polynomials
are the so-called associated Legendre functions, whose definition can be found in Equation 4.21. These are
particularly useful in the determination of the tidal potential of Equation 4.34. The three different associate
Legendre functions Pl ,m(cosθ), where l is the degree and m the order, that are used in the current research
can be written as:

P2,0(cosθ) = 3cos2θ−1

2
(A.5a)

P2,1(cosθ) = 3sinθcosθ (A.5b)

P2,2(cosθ) = 3sin2θ (A.5c)

Among other orthogonal functions, it is important to mention the cosine and sine cases that will be used in
the presentation of the Fourier series.

A further analog can be done between vectors and functions is the representation of a vector with an
orthogonal basis. Linear algebra’s theorems state that an arbitrary vector can be expressed by a linear com-
bination of basis vectors. In particular, an interesting case is when this basis vectors are orthogonal. As a
parallel to linear algebra, if a function can be represented as linear combination of some basis functions, the
latter are called basis. In other words, every function can be represented by the linear combination of a set of
basis function. This lemma is often named as superposition principle.

If one wants to represent a generic function f (t ), a possible way is to rewrite it as a linear combination of
a set of orthogonal function e1,...N (t ). The resulting series of functions can be expressed in symbols:

f (t ) ≈
N∑

j=1
ξ j e j (t ) (A.6)

There are several ways to calculate the coefficients ξ j . A possible attempt would be the assumptions of the
ones that minimise the L2 inner product of the difference between the left and the right member [101]. Dif-
ferentiation of the equation obtained can be summarised into:

ξ j =
< f ,e j >
||e j ||2

(A.7)

It is important to mention that there are other forms of writing the coefficients of the series, which are mainly
based on different techniques of optimisation. By substituting Equation A.7 into A.6 the function f (t ) can be
approximated by:
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f (t ) ≈
N∑

j=1

< f ,e j >
||e j ||2

e j (t ) (A.8)

In the equation, the factors ξ j are nothing more than the projection of the function f (t ) on the orthogo-
nal basis. This is a further analog with a N -dimensional vectorial field, whose vector can be geometrically
represented by its projection onto an arbitrary basis.

A generalised Fourier series is nothing more than a decomposition of a function as a linear combination
of a set of orthogonal function, as it has been explained previously and summarised by Equation A.6. The
selection of the coefficients ξ j defines different types of series. In particular, an orthogonal set of functions is
obeying the constraints of having mutual L2 inner product null (Equation A.2).

An arbitrary function f (t ) can be re-written as the series from zero to infinity of some particular and
orthogonal functions e j :

f (t ) '
∞∑

j=1
ξ j e j (t ) (A.9)

Formally speaking, the two members are not an identity and the residuals although depreciable are differ-
ent than zero [12]. The representation of the function f (t ) as series of infinite function is called generalised
Fourier series and the terms ξ j are called generalised Fourier coefficient, while e j (t ) are a set of orthogonal
functions (basis). Theoretically, the linear combination can involve an infinite number of functions. Practi-
cally, the order is truncated and the Fourier series will involve a finite number of orthogonal functions.

The set of orthogonal function can be arbitrary. One might want to choose the Legendre polynomials
for instance. In that case, the functions shown in Equation A.4 are valid as replacement of e j . Nevertheless,
in the classical formulation of the Fourier series the set of orthogonal function is represented by sinusoidal
functions. It is important to notice that the selection of the basis is purely driven by the actual case. Sinusoidal
functions are just an assumption made in the definition of the classical Fourier expansion.

In the classical formulation of the Fourier series, the orthogonal set is given by the following functions,
which are often called Fourier harmonics:

e0(t ) = 1

en(t ) = cosnωt where n = 1, ...∞
en(t ) = sin |n|ωt where n =−∞, ...,−1

(A.10)

These functions are defined for a domain t = [0,T ], where T is the period of the sinusoidal functions and
consequently ω is its angular frequency defined as ω = 2π/T . The different values of n, which are all inte-
ger numbers lead to the identification of the so-called first, second, third, etc. harmonics, increasing the
frequency to 1, 2, 3 or more times the value of ω.

By combining the Fourier harmonics with the decomposition of a general function f (t ), valid on a domain
t = 0, ...T , one might write the following equation:

f (t ) ' A0 +
∞∑

n=1
An cosnωt +

∞∑
n=1

Bn sinnωt (A.11)

where the three terms A0, An , Bn are the Fourier coefficients that constraint the particular case under inves-
tigation.

The higher the values reached by n, the higher the accuracy for the description of f (t ) as a linear combina-
tions of functions. The infinity value is idealistically meaning that Equation A.11 is an identity. As mentioned
before, this case in not possible and the series needs truncation.

The Fourier coefficients can be evaluated with the usage of Equation A.7 and after some simple mathe-
matical manipulations that includes the evaluation of the L2 inner product for the terms of Equation A.10,
the coefficients can be written as: 

A0(t ) = 1
T

T∫
0

f (t )d t

An(t ) = 2
T

T∫
0

f (t )cosnωtd t

Bn(t ) = 2
T

T∫
0

f (t )sinnωtd t

(A.12)
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The results of this sections will be particularly useful when dealing with the representation of the gravitational
potential of a planet outside its surface. As it will become clear in the next chapter, the gravitational potential
satisfy the Laplace equation whose solutions can be approximated by a set of harmonic functions. The clas-
sical Fourier series decomposition will represent the gravitational potential on the surface of the planet, and
a particular function that is dependent on the distance from the centre of the planet will allow the extension
of the approximation to every place in the space outside the planet. More details in chapter 4.



B
ANALYTICAL FUNCTIONS FOR THE TIDAL

STRESS ON EUROPA

In this extra chapter, the equations used as background tidal stress are reported. The next equations are the
outcome of the mathematical manipulation of the tidal potential expressed in Equation 4.34 through the us-
age of normal mode theory. The complete theoretical and practical formulation go beyond the scopes of the
current document and it is reported in Jara-Orue and Vermeersen [42] or in Jara-Orue [41]. This part is only
aimed to report the analytical functions used as background stress in the numerical routines. Diurnal stress is
generated by non-zero eccentricity and non-zero obliquity while secular stress is due to the non-synchronous
rotation. The physical characteristics governing the stress are the mean motion n of Equation 4.33 and the
various parameters: radius of Europa R, orbital eccentricity e, superficial gravitational attraction g , axial tilt
υ and argument of pericentre w all listed in Table 6.2 and ice viscosity µ found in Table 2.1. The equations
are time dependant via the term t which calculates the orbital position from a reference PeriJove passage,
set as t = 0. The background stress is referred to spherical geographical coordinates that are longitude ϕ and
colatitude θ. The stress tensor can be build from the identification of the following relations, where only the
elastic part of the stress is considered. This is due to the fact that LEFM requires an elastic material in order
to be applied. The short term stress tensor, whose timescale is the orbital period of Europa revolution around
Jupiter T , is governed by the following relations:

σθθ =
1

2

n2Rµ

g

1p
1+Λ2

{
−6eβθθ2,0(θ)cos(nt +arctan(Λ))+eβθθ2,2(θ)

[
4sin(2ϕ)sin(nt +arctan(Λ))

+3cos(2ϕ)cos(nt +arctan(Λ))
]+4cos(υ)sin(υ)βθθ2,1(θ)

[
cos(ϕ)sin(w +nt +arctan(Λ))

]}
(B.1)

σϕϕ = 1

2

n2Rµ

g

1p
1+Λ2

{
−6eβϕϕ2,0 (θ)cos(nt +arctan(Λ))+eβϕϕ2,2 (θ)

[
4sin(2ϕ)sin(nt +arctan(Λ))

+3cos(2ϕ)cos(nt +arctan(Λ))
]+4cos(υ)sin(υ)βϕϕ2,1 (θ)

[
cos(ϕ)sin(w +nt +arctan(Λ))

]}
(B.2)

σθϕ = 1

2

n2Rµ

g

1p
1+Λ2

{
2eβθϕ2,2(θ)

[
4cos(2ϕ)sin(nt +arctan(Λ))−3sin(2ϕ)cos(nt +arctan(Λ))

]
+4cos(υ)sin(υ)βθϕ2,1(θ)

[
sin(ϕ)sin(w +nt +arctan(Λ))

]}
(B.3)
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where the factorΛ is related to the Maxwell time τM and to the rigidity of the ice shell η as follows:

Λ= µ/η

n
= T

2πτM
(B.4)

This dimensionless factor is related to the actual relaxation state of the diurnal stress on the icy surface of
Europa.

Additionally to the diurnal stress of the previous equation, the secular components due to a non-synchronous
rotation of period Tns , also expressed in form of frequencyΩns = 2π/Tns , can be written as:

σ̂θθ =
1

2

n2Rµ

g

1p
1+∆2

αθθ2,2(θ)cos
(
2ϕ+2Ωns t +arctan(∆)

)
(B.5)

σ̂ϕϕ = 1

2

n2Rµ

g

1p
1+∆2

α
ϕϕ
2,2 (θ)cos

(
2ϕ+2Ωns t +arctan(∆)

)
(B.6)

σ̂θϕ =−1

2

n2Rµ

g

1p
1+∆2

α
θϕ
2,2(θ)sin

(
2ϕ+2Ωns t +arctan(∆)

)
(B.7)

where the term∆ represents the ratio between Maxwell time and non-synchronous rotation period as follow:

∆= µ/η

2Ωns
= Tns

4πτM
(B.8)

In the six equations, the auxiliary functions α(θ) and β(θ) can be written as:

βθθ2,0(θ) = 3

4
(3h

e −10l
e

)cos(2θ)+ 3

4
(h

e −2l
e

) (B.9)

βθθ2,1(θ) = 3

2
(3h

e −10l
e

)sin(2θ) (B.10)

βθθ2,2(θ) =−3

2
(3h

e −10l
e

)cos(2θ)+ 9

2
(h

e −2l
e

) (B.11)

β
ϕϕ
2,0 (θ) = 3

4
(3h

e −8l
e

)cos(2θ)+ 3

4
(h

e −4l
e

) (B.12)

β
ϕϕ
2,1 (θ) = 3

2
(3h

e −8l
e

)sin(2θ) (B.13)

β
ϕϕ
2,2 (θ) =−3

2
(3h

e −8l
e

)cos(2θ)+ 9

2
(h

e −4l
e

) (B.14)

β
θϕ
2,1(θ) = 3l

e
sin(θ) (B.15)

β
θϕ
2,2(θ) = 3l

e
cos(θ) (B.16)

αθθ2,2(θ) =−3

2
(3ĥe −10l̂ e )cos(2θ)+ 9

2
(ĥe −2l̂ e ) (B.17)

α
ϕϕ
2,2 (θ) =−3

2
(3ĥe −8l̂ e )cos(2θ)+ 9

2
(ĥe −4l̂ e ) (B.18)

α
θϕ
2,2(θ) = 3l̂ e cos(θ) (B.19)

where the parameters h
e

, l
e

, ĥe and l̂ e are the Love numbers for the elastic formulation of the ice crust,
calculated via normal mode theory in Jara-Orue and Vermeersen [42]. Their values is reported in Table B.1

The total stress acting on the surface of the moon can be written, via superimposition principle, as sum
of Equations B.1 to Equation B.3 with Equations B.5 to Equation B.7 in the following form:

σθθ =σθθ+ σ̂θθ (B.20a)

σϕϕ =σϕϕ+ σ̂ϕϕ (B.20b)

σθϕ =σθϕ+ σ̂θϕ (B.20c)

which can be re-written as stress tensor related to longitude and latitude as follows:

Σ=
[
σθθ σθϕ
σϕθ σϕϕ

]
(B.21)
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Love Parameter Value

h
e

1.15100×100

l
e

3.07996×10−1

ĥe 1.85155×100

l̂ e 4.95366×10−1

Table B.1: Tabularised values for the Love numbers for the elastic crust of Europa, calculated via normal mode theory from the tidal

potential of Jara-Orue and Vermeersen [42].

which is the tensor used in Equation 6.1 and in the remaining of the document. This can also be rotated with
respect of the actual geometry of a target crevasse, or derivate with respect to the time parameter t for the
calculation of the stress rate. More details in chapter 6.
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