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Summary

Photonic sensors have recently attracted much attention in both industry and academia.
High accuracy, low weight and the possibility of building a large sensor network are
key benefits of photonic sensors. Another benefit is installing optical sensors in
harsh environments where electronic sensors’ usage is not plausible: aerospace
applications where ionizing radiation is present or gas and oil pipes are some ex
amples.

Integrated photonics brings new challenges to the interrogation of multiplexed
sensors in WDM. Unlike FBG sensors, whose resonance wavelength can be cho
sen to an accuracy better than 1.0 nm, the resonance wavelength of integrated
microring resonators cannot be chosen during the design stage. The main reason
is the imperfections of the manufacturing process. The fact that the resonance
wavelength is unpredictable is a problem for interrogators based on interferome
try. Such interrogators perform the demultiplexing and demodulation in different
stages: first, a spectrometer separates the optical channels; subsequently, outputs
of the spectrometer are conveyed to interferometers. From the photoreceiver volt
ages connected to MZI outputs, the signal from the sensors can be demodulated.
As the resonance value of sensors cannot be determined during design, two sen
sors may have their resonances in the same spectrometer’s channel. As a result,
the demultiplexing step fails, compromising the interrogator’s operation.

In Chapter 4 of this thesis, a new interrogation method is proposed. Much of
the effort of interferometric interrogators is to separate the spectrum of the sensors
correctly. In the Fourier Transform Interrogator, the spectrum of all sensors is sent
to an array of MachZehnder interferometers (MZI) with different OPDs. Using the
output voltages from the photoreceivers attached to the MZIs, we derive a sys
tem of nonlinear equations, whose solution provides the signal from each sensor.
The demodulation and demultiplexing steps are performed simultaneously for the
Fourier interrogator, which guarantees the interrogator’s unique flexibility. On the
other hand, the computational cost is high since the system of nonlinear equa
tions is solved using Newton’s method. For each set of voltages sampled over time,
a different system of equations is obtained. Chapter 4 leaves some unanswered
questions:

1. Does the system of nonlinear equations have a unique solution?

2. How many solutions are there?

3. What is the physical meaning of each of the solutions?

4. Is it possible to solve nonlinear systems of equations for fast sensors in real
time?
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x Summary

All these questions are answered in Chapter 5. As a consequence of the new
algebraic formulation, it is possible to solve about 1 000 000 algebraic systems of
equations in 10 ns, i.e., allowing the realtime interrogation of highspeed sensors.
The interrogator is a candidate for interrogating arrays of ultrasound ring resonator
sensors in the tens of MHz range.



Samenvatting

Fotonische sensoren krijgen de laatste tijd veel aandacht in zowel de industrie als
de academische wereld. Hoge nauwkeurigheid, laag gewicht en de mogelijkheid
om een   groot sensornetwerk te bouwen zijn belangrijke voordelen van fotonische
sensoren. Een ander voordeel is het installeren van optische sensoren in onbew
erkte omgevingen waar het gebruik van elektronische sensoren niet aannemelijk is:
ruimtevaarttoepassingen waar ioniserende straling aanwezig is of gas en olielei
dingen zijn enkele voorbeelden.

Geïntegreerde fotonica brengt nieuwe uitdagingen voor de ondervraging van ge
multiplexte sensoren in WDM (wavelength division multiplexing) met zich mee. In
tegenstelling tot Fiber Braggsensoren (FBGsensoren), waarvan de resonantiegolflengte
kan worden gekozen met een nauwkeurigheid die beter is dan 1,0 nm, kan de
resonantiegolflengte van geïntegreerde microring resonators niet worden gekozen
tijdens de ontwerpfase. De belangrijkste redenen zijn de onvolkomenheden van
het productieproces. Het feit dat de resonantiegolflengte onvoorspelbaar is, is een
probleem voor ondervragers op basis van interferometrie. Dergelijke ondervragin
gen voeren de demultiplexing en demodulatie uit in verschillende fasen: eerst
scheidt een spectrometer de optische kanalen; Daarna worden de outputs van de
spectrometer getransporteerd naar interferometers. Van de fotoontvanger span
ningen die zijn aangesloten op de MZIuitgangen, kan het signaal van de sensoren
worden gedemoduleerd. Omdat de resonantiewaarde van sensoren tijdens het on
twerp niet kan worden bepaald, kunnen twee sensoren hun resonantie in hetzelfde
spectrometerkanaal hebben. Als resultaat mislukt dan de demultiplexingstap, waar
door de werking van de ondervrager in gevaar komt.

In hoofdstuk 4 van dit proefschrift wordt een nieuwe ondervragingsmethode
voorgesteld. Een groot deel van de inspanning van interferometrische ondervragers
is om het spectrum van de sensoren correct te scheiden. In de Fourier Transform
Interrogator wordt het spectrum van alle sensoren naar een reeks MachZehnder
interferometers (MZI) met verschillende OPD’s gestuurd. Met behulp van de uit
gangsspanningen van de fotoontvangers die aan de MZI’s zijn bevestigd, leiden
we

een systeem van nietlineaire vergelijkingen af, waarvan de oplossing het sig
naal van elke sensor levert. De demodulatie en demultiplexingstappen worden
gelijktijdig uitgevoerd voor de Fourierondervrager, wat de unieke flexibiliteit van
de ondervrager garandeert. Aan de andere kant zijn de rekenkosten hoog omdat
het stelsel van niet lineaire vergelijkingen wordt opgelost met behulp van de meth
ode van Newton. Voor elke set spanningen die in de loop der tijd is bemonsterd,
wordt een ander systeem van vergelijkingen verkregen. Hoofdstuk 4 laat een aantal
onbeantwoorde vragen achter:
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xii Samenvatting

1. Heeft het stelsel van nietlineaire vergelijkingen een unieke oplossing?

2. Hoeveel oplossingen zijn er?

3. Wat is de fysieke betekenis van elk van de oplossingen?

4. Is het mogelijk om nietlineaire stelsels van vergelijkingen voor snelle sen
soren in realtime op te lossen?

Al deze vragen worden beantwoord in Hoofdstuk 5. Als gevolg van de nieuwe al
gebraïsche formulering is het mogelijk om ongeveer 1 miljoen algebraïsche stelsels
van vergelijkingen in 10 ns op te lossen, d.w.z. de realtime ondervragen van
hogesnelheidssensoren mogelijk te maken. De ondervrager is een kandidaat voor
het ondervragen van arrays van ultrasone ring resonator sensoren.



1
Introduction

This thesis focuses on the interrogation of photonic sensors. The goal of this
Chapter is to introduce the principles of photonic sensors and some basic
concepts of the different interrogation methods. The key idea is that the sen
sors work as modulators, encoding the external signal to be sensed into one
of the fundamental properties of light such as amplitude, phase or polariza
tion phase. The interrogators, in contrast, work as demodulators and de
multiplexers: they separate the information of each sensor and convert the
modulated light signal into an understandable value, in general, proportional
to the intensity of the external signal. The thesis is divided into three parts:
Chapters 1 and 2 introduce the key concepts, Chapter 3 presents the demod
ulation of a ring resonator sensor using a MachZehnder interferometer, while
in Chapters 4 and 5 a new interrogation method based on Fourier transform
spectroscopy is proposed.

1.1. Preface
Photonic sensors, sensors based on light technology, have recently attracted much
attention in industry and academia. They can offer high accuracy, low weight and
the possibility of building an extensive sensor network. Photonic sensors can be
employed in various situations and can be used in harsh environments where elec
tronic sensors are not suitable [1]. Sahota et al. identify [2] two main types of
photonic sensors: distributed sensors in which a certain quantity is continuously
sensed along a fiber optic cable; and point sensors at which a quantity is sensed at
the specific position where the sensor is located. As an example of the application
of distributed sensors, Schenanto et al. [3] reviews OTDR and OFDR techniques
for geohydrological applications. Attention is given in this thesis to point sensors
such as on FBG (fiber Bragg gratings) and integrated sensors. The spectrum of the
sensors is assumed to be finite and so that it can be multiplexed using wavelength
division multiplexing techniques (WDM).

1
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2 1. Introduction

The fiber Bragg gratings (FBGs) have been first fabricated and characterized
at the end of the 1970s [4]. As detailed in Section 1.2.2, it consists of a peri
odic modulation of the refractive index of the fiber’s core, resulting in a dip into
the transmission spectrum and a peak in the reflection spectrum. The reflection
spectrum peak is modulated according to the applied strain or stress or any other
signal to be sensed [2]. FBG sensors can be easily multiplexed in a large WDM
network, forming quasidistributed sensors. They are typically employed as strain
and temperature sensors in different situations, such as structural health monitor
ing [5] and the oil industry [6]. Other examples of FBGs sensors application are in
acoustic sensing [7, 8], shape sensing [9–11], pHsensing [1], and for monitoring
geohazards, landslides and Debris flows [12, 13].

The idea of fabricating optical components on chips date from the 1960s [14].
Integrated photonics allowed the development of a novel generation of sensors
and interrogators. Examples of applications are gas sensing [15, 16], strain sens
ing [17, 18], biosensing [19–21]. In the health care field, possible applications are
ultrasound intravascular imaging [22, 23] and photoacoustic imaging [24]. While
most FOS are made of silica, integrated sensors can be manufactured using dif
ferent waveguide materials. Silicon [25, 26], silicon nitride [27], and indium phos
phide [14] are the most common materials used in photonic integrated circuits
(PIC). The recent rise in work with PICs can be mainly explained by [14]: (a) the
maturity of the fabrication process, both for CMOS platforms (silicon and silicon
nitride) and InP; (b) the availability of building blocks, i.e. a list of integrated com
ponents usually provided by the foundry (or by a third party) which have been
fabricated and tested multiple times and can be easily added to the design. Most
foundries provide designs of input/output couplers, beam splitters, and if active
components are available, photodetectors, modulators or light amplifiers (for III
V semiconductors); (c) the possibility of fabrication under the multiproject wafer
(MPW) regime, in which multiple users share the same wafer, reducing the fabri
cation costs.

The field of Silicon photonics and silicon photonics sensors is currently under
intensive research [28]. The material is transparent at 1550 nm, and PICs based
on silicononinsulator (SOI) technology feature a high refractive index contrast be
tween the waveguide core and cladding (it can be as high as 2). The larger the
refractive index contrast is, the more the light is confined within the waveguide
core, allowing an overall reduction of the footprint of the components. Therefore,
many integrated sensors can be fabricated in a single die. In contrast, the design
of thermally insensitive devices is challenging due to the large thermooptical co
efficients compared to other materials (silicon nitride, for instance). The drift of
the sensor’s resonance wavelength induced by temperature variations is typically
compensated using another integrated temperature sensor as reference [29, 30].
Components such as modulators based on the drift and diffusion of free carriers
or germanium photodetectors, which are useful for the design of interrogators, are
available and can be integrated into a Si platform. Monolithic light sources in silicon
(electrically pumped) is challenging due to silicon indirect bandgap, although much
progress has been made in hybrid Si/IIIV integrated circuits [31] and in silicon
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Raman lasers [32].
One of the key properties of indium phosphide and other IIIV semiconductors

is its direct bandgap, allowing for the design of active components. Highquality
semiconductor optical amplifiers, continuous [33, 34] and pulsed lasers [35, 36]
have already been demonstrated in integrated InP chips. Compared to silicon, the
footprints of the components are much larger due to a reduced contrast between
the core and cladding materials1. Since fully passive sensors are often desirable,
the platform faces strong competition from silicon and silicon nitride in the de
sign of passive sensors. Nevertheless, InP is quite an attractive platform for the
development of interrogators, as will be demonstrated in Chapters 4 and 5. In ap
plications where active sensors are desirable, such as optical gyroscopes [37], InP
is a promising platform.

Finally, silicon nitride features reduced thermooptical coefficients compared to
Silicon and InP, allowing for the design of nearly thermally insensitive sensors. The
material is transparent from 400 nm – 3700 nm, making the platform flexible. Prop
agation losses in silicon nitride waveguides as low as 2.25 dB/cm (at 𝜆 =532 nm),
0.04 dB/cm (at 𝜆 =1550 nm), 0.16 dB/ cm (at 𝜆 =2630 nm) and 2.10 dB/cm (at
𝜆 =3700 nm) have been reported [38, 39]. In addition, the refractive index contrast
is high compared to other platforms such as InP and silica, enabling the fabrication
of devices with a reduced footprint. Although highspeed modulators2 and pho
todetectors are not available in the silicon nitride platform (or its development is
in an early stage), the material is compatible with the CMOS fabrication process.
Thus, silicon nitride can to monolithically integrated with silicon platform [40, 41].

Integrated photonic technology provides large flexibility in designing photonic
sensors based on different components. For instance, Hallynck et. al. [17] com
pare the performance of a ring resonator (RR) and MachZehnder photonic sensors,
Rosenthal [42] demonstrates an ultrasound sensor based on integrated Bragg grat
ings and Tadayon [43] shows the characterization of a polymer highQ integrated
FabryPerot cavity, which can be used as a sensor. This work focuses on RRs, es
pecially in Chapter 3, where the interrogation of an ultrasound sensor based on an
integrated silicon RR is demonstrated. Similarly to FBGs, the transmission spectrum
of the RR is a peak (or a dip depending on the output port) whose resonance is
modulated according to the intensity of the external signal.

1.2. Principle of photonic sensors based on ring res
onators and on Fiber bragg gratings

Dutta et al [44] classified photonic sensors into three categories according to their
external excitation signal type: (a) Physical sensors, which detect physical proper
ties such as temperature, strain, ultrasound or acceleration, (b) chemical sensors,
1An InP deep etch waveguide fabricated in the COBRA/Smart Photonics foundry (see Fig. 4.1(c) in
Chapter 4) features a high lateral refractive index contrast between InP core waveguide(3.367) and a
polymer (1.5) and a low vertical refractive index contrast between the InP layers (3.367 and 3.17). As
a result, a low loss 90∘ bend has a radius of about 100 𝜇m, while in silicon, this radius is 5 𝜇m, 20
times smaller.
2Thermal based modulators are available in silicon nitride.
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which detect the concentration of chemical species or gases and (c) biosensors,
used to determine concentrations of biological media such as bacteria, viruses or
antibodies [19–21]. Photonic sensors act as modulators, in which the signal to be
sensed is encoded in one of the fundamental properties of the input light signal,
such as the amplitude, wavelength, phase or polarization phase. For the sensors
of interest here, the signal to be sensed does not directly interact with the light
signal3 but with the waveguide materials instead. Fig. 1.1(a) shows a schematic of
a situation where a section of a waveguide is exposed to an external signal which
induces a modulation of the refractive index of the waveguide materials and of the
length 𝐿. As shown in the following subsections, this yields a modulation of the
resonance wavelengths for RR sensors and FBGs. For instance, Zhang et al. [46]
reported an ultrasound sensor whose refractive index changes according to the in
tensity of an ultrasound wave. Westerveld and Leinders [18, 22] report a strain
and ultrasound sensor in which the waveguide is elongated and the refractive in
dex changes according to the pressure. [19, 20] reports several types of labelfree
biosensors whose waveguide refractive index changes according to the presence of
relevant biochemical materials.

1.2.1. Ring Resonators
Ring resonators (RRs) are photonic components widely used as sensors. The struc
ture of a RR is shown in Fig. 1.1: it consists of a waveguide loop connected to
itself (usually in a ring shape) where light is coupled via evanescent fields. Fig. 1.1
shows two input ports of the ring (input port and add port, the second one is not
used for sensor applications) and two output ports (pass port and drop port). The
transmission spectrum of the ring resonator pass ports and drop ports [47] is given
by:

𝑇𝑝𝑎𝑠𝑠 =
𝑟2 + 𝑟2𝑎2 − 2𝑟2𝑎𝑐𝑜𝑠𝜃
1 + 𝑟4𝑎2 − 2𝑟2𝑎𝑐𝑜𝑠𝜃 ,

𝑇𝑑𝑟𝑜𝑝 =
𝑎(1 − 𝑟2)2

1 − 2𝑟2𝑎𝑐𝑜𝑠𝜃 + 𝑟4𝑎2 , (1.1)

where 𝑟 is the coupling coefficient from the waveguide to the ring, 𝑎 is the single
roundtrip amplitude transmission and 𝜃is the accumulated phase along the length
𝐿, given by:

𝜃 = 2𝜋
𝜆 𝑛𝑒𝑓𝑓𝐿, (1.2)

where 𝐿 is the ring length, 𝑛𝑒𝑓𝑓 the waveguide effective index and 𝜆 the optical
wavelength. The resonance condition is defined as:

𝑂𝑃 = 𝑛𝑒𝑓𝑓𝐿 = 𝑚𝜆𝑟 , (1.3)

where 𝑂𝑃 is the optical path length within the ring, 𝑚 is an integer and 𝜆𝑟 is the
resonance wavelength. If the resonance condition is satisfied, i.e., the optical path
3In some sensors such as gas sensors [45] the sensing is based on light absorption. Thus, the signal to
be sensed interacts directly with the light.
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is an integer multiple of the wavelength, the optical field interferes constructively
within the ring. Mathematically, this occurs when 𝜃 = 𝑚2𝜋, leading to cos(𝜃) = 1
in Eq. (1.1), which results in a peak at the drop port and a dip in the pass port as
as shown in the Fig. 1.1(b). The RR spectrum features multiple resonances in the
Cband.4 As explained in Chapter 2, this is an issue when multiplexing an array
of RR sensors in the wavelength domain. Claes et al. [48] solves this issue using
another RR as an optical filter (See Section 2.1 for further details). The spectral
distance between two dips (or two peaks) is defined by the free spectral range,
given by:

𝑃𝑅𝑅 =
𝜆2𝑟
𝑛𝑔𝐿

, (1.4)

where 𝜆𝑟 is one of the resonances and 𝑛𝑔 the effective group index of the waveguide
of the ring. Eq. (1.4) implicitly assumes that the RR waveguides are monomode,
which is the case of most RR sensors. A multimode waveguide would introduce
undesirable extra resonances.

The external excitation signal 𝑥𝑒𝑥𝑡 (which could be pressure, temperature, the
concentration of a chemical substance, or any other signal to be sensed) may
change the ring length 𝐿 or the refractive indices of the waveguide materials, caus
ing the effective index to change. By deriving the resonance condition (Eq. (1.3))
with respect to the external excitation, we obtain5:

Δ𝜆𝑟 =
1
𝑚 (𝐿

𝑑𝑛𝑒𝑓𝑓
𝑑𝑥𝑒𝑥𝑡

+ 𝑛𝑒𝑓𝑓
𝑑𝐿
𝑑𝑥𝑒𝑥𝑡

)Δ𝑥𝑒𝑥𝑡 . (1.5)

For strain and ultrasound sensors, according to Westerveld [18], the two terms in
Eq. (1.5) have opposite signs, but 𝑑𝐿/𝑑𝑥𝑒𝑥𝑡 is dominant. The effective index can
be written as:

𝑛𝑒𝑓𝑓 =∑
𝑗
Γ𝑗𝑛𝑗 , (1.6)

where 𝑛𝑗 is the refractive index of the ring 𝑗th material and Γ𝑗 is the confinement
factor of light in the 𝑗th material, defined as [49]:

Γ𝑗 =
∫∫𝜕Ω E(𝑥, 𝑦) ⋅ E∗(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∫∞−∞ ∫

∞
−∞ E(𝑥, 𝑦) ⋅ E∗(𝑥, 𝑦)𝑑𝑥𝑑𝑦

, (1.7)

where 𝜕Ω s the area of the waveguide crosssection occupied by the 𝑗th material
and E(𝑥, 𝑦) is the electric field. Differentiating Eq. (1.6) with respect to the external
signal, we obtain:

𝜕𝑛𝑒𝑓𝑓
𝜕𝑥𝑒𝑥𝑡

=∑
𝑗
(
𝜕Γ𝑗
𝜕𝑥𝑒𝑥𝑡

𝑛𝑗 + Γ𝑗
𝜕𝑛𝑗
𝜕𝑥𝑒𝑥𝑡

) (1.8)

4The optical conventional band (Cband) ranges from 1530 nm to 1565 nm and corresponds to the gain
bandwidth of erbiumdoped fiber amplifiers.
5In the following derivation, optical dispersion is neglected. For a complete analysis, see [18].
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Placing Eq. (1.8) into Eq. (1.5):

Δ𝜆 = 1
𝑚 [𝐿∑

𝑗
(
𝜕Γ𝑗
𝜕𝑥𝑒𝑥𝑡

𝑛𝑗 + Γ𝑗
𝜕𝑛𝑗
𝜕𝑥𝑒𝑥𝑡

) + 𝑛𝑒𝑓𝑓
𝑑𝐿
𝑑𝑥𝑒𝑥𝑡

] Δ𝑥𝑒𝑥𝑡 . (1.9)

For most chemical and biological sensors, the 𝑑𝐿/𝑑𝑥𝑒𝑥𝑡 term is zero, and the
resonance wavelength depends only on the variation of the refractive indices. Typ
ically, the waveguide of the core material remains unchanged, while one of the
cladding materials is designed to sense the specific biological or chemical compo
nent, as reported in [19, 20]. For strain, acoustic and acceleration sensors, all the
terms of Eq. (1.9) are nonzero: the elastooptical effect induces a modification of
the refractive indices while the local strain changes the waveguide length and width.
The change of the waveguide width alters the waveguide crosssection and induces
changes in the confinement factor, according to the term see the term 𝑑Γ/𝑑𝑥𝑒𝑥𝑡,
as seen in Eq. (1.9).

1.2.2. Fiber Bragg gratings
Photonic sensors based on FBG components are widely used nowadays and have
many applications in industry. The fabrication of the first gratings dates from the
late 1970s [4], but a major improvement on the FBG fabrication process is achieved
in the end of the 1980s. Meltz et. al. [50] reported in 1989 the fabrication of a
grating within the fiber using the interference of a monochromatic UV light source.
As a result, a periodic modulation of the refractive index of the fiber core was
obtained. Here, the refractive index modulation is modelled as a single harmonic
function:

𝛿𝑛(𝑧) = Δ𝑛 [1 + (𝑣𝑛/2) cos(
2𝜋𝑚
Λ 𝑧)] , (1.10)

where 𝛿𝑛 is the refractive index modulation, 𝑧 is the coordinate corresponding to the
light propagation direction, Λ is the grating period, Δ𝑛 is the average refractive index
within a grating period, 𝑣𝑛 is the visibility of the refractive index modulation and
𝑚 is the grating diffraction order (typically 𝑚 = 1). The variation in the refractive
index is in the order of 10−5 to 10−3 [51] and causes the input light signal to
be continuously reflected along the grating. Thus, two optical beams propagate
simultaneously through the FBG: a forward beam, which propagates in the direction
of the input signal, and a backward beam, induced by the grating reflections. The
fiber is assumed to be monomode. It can be shown using coupledmode theory
that the reflection spectrum for an uniform fiber Bragg grating is given by [52, 53]:

𝑅𝐹𝐵𝐺(𝜆) =
|𝜅|2 sinh2(√|𝜅|2 − Δ(𝜆)2𝐿)

|𝜅|2 cosh2 (√|𝜅2| − Δ(𝜆)2) − Δ(𝜆)2
, (1.11)

where

Δ(𝜆) = 2𝜋
𝜆 𝑣𝑛Δ𝑛 + 2𝜋𝑛𝑒𝑓𝑓 (

1
𝜆𝑟
− 1
𝜆𝐵
) , (1.12)



1.3. Thesis outline

1

7

𝑛𝑒𝑓𝑓 is the effective index of the 𝐿𝑃01 mode and 𝜅 is the coupling coefficient of the
forward and backward propagating modes, defined by the overlapping integral:

𝜅 = 𝜔𝑛𝑒𝑓𝑓𝜀0∫
∞

−∞
∫
∞

−∞

𝑣𝑛Δ𝑛
2 ELP01(𝑥, 𝑦)ELP01∗(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (1.13)

where 𝜀0 is the vacuum permittivity, 𝜔 the angular frequency, and ELP01(𝑥, 𝑦) is
the normalized transversal component of the 𝐿𝑃01. The reflection spectrum 𝑅𝐹𝐵𝐺(𝜆)
has a peak lineshape as shown in Fig. 1.1(c). 𝜆𝑟 is defined as the wavelength at
which the reflection spectrum has a maximum, which occurs for Δ = 0 in Eq. (1.12):

2𝜋
𝜆𝑟
𝑣𝑛Δ𝑛 + 2𝜋𝑛𝑒𝑓𝑓 (

1
𝜆𝑟
− 1
𝜆𝐵
) = 0. (1.14)

Isolating 𝜆𝑟 in Eq. (1.14), we obtain:

𝜆𝑟 = 𝜆𝐵 (1 +
𝑣𝑛Δ𝑛
𝑛𝑒𝑓𝑓

) , (1.15)

where 𝜆𝐵 = 2Λ𝑛𝑒𝑓𝑓 is the socalled Bragg wavelength6 In contrast to RRs, FBGs
have a single resonance in the whole optical Cband. They can be used as opti
cal filters by extracting the wavelengths close to 𝜆𝑟 from the input spectrum. In
contrast, FBGs can be used as sensors by modulating 𝜆𝑟 with an external signal
𝑥𝑒𝑥𝑡. Repeating the steps performed for the RR, Eq. (1.15) is derived with respect
to 𝑥𝑒𝑥𝑡:

Δ𝜆𝑟 =
𝜕𝜆𝑟
𝜕𝑥𝑒𝑥𝑡

Δ𝑥𝑒𝑥𝑡 ≅
𝜕𝜆𝐵
𝜕𝑥𝑒𝑥𝑡

Δ𝑥𝑒𝑥𝑡 . (1.16)

By substituting in the definition of 𝜆𝐵 = 2𝑛𝑒𝑓𝑓Λ:

Δ𝜆𝑟 = 2 [𝑛𝑒𝑓𝑓
𝜕Λ
𝜕𝑥𝑒𝑥𝑡

+ Λ
𝜕𝑛𝑒𝑓𝑓
𝜕𝑥𝑒𝑥𝑡

] Δ𝑥𝑒𝑥𝑡 . (1.17)

The two terms in Eq. (1.17) have opposite signs, but 𝜕Λ
𝜕𝑥𝑒𝑥𝑡

is dominant for strain

sensors [51].
𝜕𝑛𝑒𝑓𝑓
𝜕𝑥𝑒𝑥𝑡

is dominant for temperature sensors [54] (the thermal expan

sion causes 𝜕Λ
𝜕𝑥𝑒𝑥𝑡

to be different than zero).

1.3. Thesis outline
In this Chapter, thus far, the basic concepts of photonic sensing have been intro
duced. Photonic sensors work as modulators, which encode the external excitation
into the light signal in the sensor. Interrogators, in contrast, work as demodulators
and demultiplexers.
6SSome authors refer to the Bragg wavelength as the wavelength at which 𝑅𝐹𝐵𝐺(𝜆) is maximum. Here,
we keep the notation of [52], where 𝜆𝐵 = 2Λ𝑛𝑒𝑓𝑓. 𝜆𝑟 reduces to 𝜆𝐵 as Δ𝑛 tends to zero.
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Figure 1.1: (a) Schematic of a waveguide section which is exposed to sense an external signal. (b)
Schematic of a RR sensor. On the left, the input, the pass and the drop ports are shown. On the right,
the typical spectra of the drop and pass ports are shown. (c) Schematic of an FBG sensor. The illustration
on the top shows the cladding and the core of the fiber. The FBG refractive index modulation, which is
also exposed to the external excitation, is also shown. On the lower left, the crosssection of the fiber
is shown. On the lower right, typical reflection and transmission spectra are shown.
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Chapter 2 provides an overview of the different interrogation techniques in
the wavelength domain. The interrogation methods are classified into three main
groups: induced power modulation and edge filter interrogators, interrogators
based on spectrometers and interrogators based on interferometry. The basic oper
ation principle for each case is presented. The different interrogators are compared
based on five different parameters, all defined in Chapter 2: maximum interroga
tion resolution, sensitivity, dynamical range/ wavelength operation range, maxi
mum speed, and flexibility. Special attention is given to interferometric techniques
in order to introduce the concepts used in Chapters 35.

In Chapter 3, the interrogation of an ultrasound sensor based on a RR sensor
using a MachZehnder interferometer is detailed. The basic concepts of interfer
ometric interrogation for a single sensor are introduced, and no demultiplexing is
performed. In order to calibrate the interrogation method, an induced power mod
ulation interrogator, described in Chapter 2, is used. The appendix of Chapter 3
provides the key ingredients and an inspiration for the Fourier transform interroga
tor.

In Chapter 4, the method presented in Chapter 3 is generalized, and a novel
interrogation method is proposed based on an integrated Fourier transform spec
trometer. It is demonstrated that the number of interferometers needed is only
as many as the number of sensors, which results in a reduced footprint device.
Although the spectrometer features a reduced spectral resolution (about 50 pm)
compared to other integrated FTspectrometers, signal excursions as small as 400
fm could be demodulated, two orders of magnitude lower than other integrated
FTspectrometers.

In Chapter 5, the nonlinear equations proposed in Chapter 4 are solved us
ing semianalytical methods. Under the transformation 𝑧𝑘 = exp [𝑖(Φ𝑘 −Φ𝑟𝑒𝑓)],
where Φ𝑘 is a phase which encodes the external signal detected by the 𝑘th sensor
and Φ𝑟𝑒𝑓 a constant, an algebraic system of polynomials have been obtained. To
solve it, we compute the Gröbner basis of the polynomial ideal using a lexicograph
ical order, resulting in an algebraic system which can be easily solved. However,
the algebraic system features multiple solution sets per instant of time where, in
general, only one of them gives the actual modulation provided by the external
signal. The algebraic equations have been solved using a graphical processing unit,
resulting in a processing time per equation of about 9 ns. This allows for real
time interrogation of highspeed sensors such as an array of ring based ultrasound
sensors. A conclusion is presented in Chapter 6.

References
[1] H. Alemohammad, R. Liang, D. Yilman, A. Azhari, K. Mathers, C. Chang,

B. Chan, and M. A. Pope, Fiber optic sensors for harsh environments: En
vironmental, hydrogeological, and chemical sensing applications, in 26th In
ternational Conference on Optical Fiber Sensors (Optical Society of America,
2018) p. TuB4.

[2] J. K. Sahota, N. Gupta, and D. Dhawan, Fiber Bragg grating sensors for mon

http://dx.doi.org/10.1364/OFS.2018.TuB4
http://dx.doi.org/10.1364/OFS.2018.TuB4


1

10 References

itoring of physical parameters: a comprehensive review, Optical Engineering
59, 1 (2020).

[3] L. Schenato, A review of distributed fibre optic sensors for geohydrological
applications, Applied Sciences 7 (2017), 10.3390/app7090896.

[4] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in
optical fiber waveguides: Application to reflection filter fabrication, Applied
Physics Letters 32, 647 (1978), https://doi.org/10.1063/1.89881 .

[5] X.W. Ye, Y.H. Su, and P.S. Xi, Statistical analysis of stress signals from bridge
monitoring by fbg system, Sensors 18, 1 (2007).

[6] A. D. Kersey, Optical fiber sensors for downwell monitoring applications in the
oil and gas industry, IEICE Transactions on Electronics , 400 (2000).

[7] A. Rosenthal, D. Razansky, and V. Ntziachristos, Highsensitivity compact ul
trasonic detector based on a piphaseshifted fiber bragg grating, Opt. Lett.
36, 1833 (2011).

[8] Q. Wu, Y. Okabe, and F. Yu, Ultrasonic structural health monitoring using fiber
bragg grating, Sensors 18 (2018), 10.3390/s18103395.

[9] J. P. Moore and M. D. Rogge, Shape sensing using multicore fiber optic cable
and parametric curve solutions, Opt. Express 20, 2967 (2012).

[10] M. Amanzadeh, S. M. Aminossadati, M. S. Kizil, and A. D. Rakić, Recent de
velopments in fibre optic shape sensing, Measurement 128, 119 (2018).

[11] X. Chen, X. Yi, J. Qian, Y. Zhang, L. Shen, and Y. Wei, Updated shape sensing
algorithm for space curves with fbg sensors, Optics and Lasers in Engineering
129, 106057 (2020).

[12] H.H. Zhu, B. Shi, and C.C. Zhang, Fbgbased monitoring of geohazards:
Current status and trends, Sensors 17 (2017), 10.3390/s17030452.

[13] C.J. Huang, C.R. Chu, T.M. Tien, H.Y. Yin, and P.S. Chen, Calibration and
deployment of a fiberoptic sensing system for monitoring debris flows, Sen
sors 12, 5835 (2012).

[14] M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. Tol, van der, E. Smalbrugge,
T. Vries, de, E. Geluk, J. Bolk, P. Veldhoven, van, L. Augustin, P. Thijs,
D. D’Agostino, H. Rabbani Haghighi, K. Lawniczuk, S. Stopinski, M. Tahvili,
A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko,
J. Zhao, R. Lemos Alvares Dos Santos, G. Gilardi, W. Yao, K. Williams, R. Sta
bile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale,
P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.L. Gen
tner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti,
D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, An intro
duction to inpbased generic integration technology, Semiconductor Science
and Technology 29, 083001 (2014).

http://dx.doi.org/10.1117/1.OE.59.6.060901
http://dx.doi.org/10.1117/1.OE.59.6.060901
http://dx.doi.org/10.3390/app7090896
http://dx.doi.org/10.1063/1.89881
http://dx.doi.org/10.1063/1.89881
http://arxiv.org/abs/https://doi.org/10.1063/1.89881
http://dx.doi.org/10.1117/12.2302132
http://dx.doi.org/10.1364/OL.36.001833
http://dx.doi.org/10.1364/OL.36.001833
http://dx.doi.org/10.3390/s18103395
http://dx.doi.org/10.1364/OE.20.002967
http://dx.doi.org/ https://doi.org/10.1016/j.measurement.2018.06.034
http://dx.doi.org/https://doi.org/10.1016/j.optlaseng.2020.106057
http://dx.doi.org/https://doi.org/10.1016/j.optlaseng.2020.106057
http://dx.doi.org/10.3390/s17030452
http://dx.doi.org/ 10.3390/s120505835
http://dx.doi.org/ 10.3390/s120505835
http://dx.doi.org/10.1088/0268-1242/29/8/083001
http://dx.doi.org/10.1088/0268-1242/29/8/083001


References

1

11

[15] N. A. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. Van Thourhout,
and R. Baets, Silicononinsulator (SOI) ring resonatorbased integrated opti
cal hydrogen sensor, IEEE Photonics Technology Letters 21, 960 (2009).

[16] N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, Onchip arrayed waveguide
grating interrogated silicononinsulator microring resonatorbased gas sensor,
IEEE Photonics Technology Letters 23, 1505 (2011).

[17] E. Hallynck and P. Bienstman, Integrated optical pressure sensors in silicon
oninsulator, IEEE Photonics Journal 4, 443 (2012).

[18] W. J. Westerveld, J. Pozo, P. J. Harmsma, R. Schmits, E. Tabak, T. C. van den
Dool, S. M. Leinders, K. W. van Dongen, H. P. Urbach, and M. Yousefi, Char
acterization of a photonic strain sensor in silicononinsulator technology, Opt.
Lett. 37, 479 (2012).

[19] K. De Vos, J. Gironès Molera, S. Popelka, E. Schacht, R. Baets, and P. Bi
enstman, Soi optical microring resonator with poly(ethylene glycol) polymer
brush for labelfree biosensor applications, Biosensors & Bioelectronics 24,
2528 (2009).

[20] K. de Vos, Girones, J. Girones, T. Claes, Y. D. Koninck, S. Popelka, E. Schacht,
R. Baets, and P. Bienstman, Multiplexed antibody detection with an array
of silicononinsulator microring resonators, IEEE Photonics Journal 1, 225
(2009).

[21] G. G. Daaboul, C. A. Lopez, A. Yurt, S. Member, and B. B. Goldberg, Label
Free Optical Biosensors for Virus Detection and Characterization, IEEE Journal
of selected topics in quantum electronics 18, 1422 (2012).

[22] S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder,
P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, A sensitive optical
micromachined ultrasound sensor (OMUS) based on a silicon photonic ring
resonator on an acoustical membrane. Scientific reports 5, 14328 (2015).

[23] F. G. Peternella, B. Ouyang, R. Horsten, M. Haverdings, P. Kat, and J. Caro, In
terrogation of a ringresonator ultrasound sensor using a fiber machzehnder
interferometer, Opt. Express 25, 31622 (2017).

[24] B.Y. Hsieh, S.L. Chen, T. Ling, L. J. Guo, and P.C. Li, Integrated intravascular
ultrasound and photoacoustic imaging scan head, Opt. Lett. 35, 2892 (2010).

[25] M. Hochberg and T. BaehrJones, Towards fabless silicon photonics, Nature
Photonics 4, 492 (2010).

[26] T. BaehrJones, T. Pinguet, P. Lo GuoQiang, S. Danziger, D. Prather, and
M. Hochberg, Myths and rumours of silicon photonics, Nature Photonics 6,
206 (2012).

http://dx.doi.org/ 10.1109/JPHOT.2012.2189614
http://dx.doi.org/10.1364/OL.37.000479
http://dx.doi.org/10.1364/OL.37.000479
http://dx.doi.org/10.1016/j.bios.2009.01.009
http://dx.doi.org/10.1016/j.bios.2009.01.009
http://dx.doi.org/ 10.1109/JPHOT.2009.2035433
http://dx.doi.org/ 10.1109/JPHOT.2009.2035433
http://dx.doi.org/10.1038/srep14328
http://dx.doi.org/ 10.1364/OE.25.031622
http://dx.doi.org/10.1364/OL.35.002892
http://dx.doi.org/10.1038/nphoton.2010.172
http://dx.doi.org/10.1038/nphoton.2010.172
http://dx.doi.org/10.1038/nphoton.2012.66
http://dx.doi.org/10.1038/nphoton.2012.66


1

12 References

[27] C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens,
D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M.
Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuze
broek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Tabal
lione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.J. Boller, Lowloss
si3n4 triplex optical waveguides: Technology and applications overview, IEEE
Journal of Selected Topics in Quantum Electronics 24, 4400321 (2018).

[28] A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, Openaccess silicon pho
tonics: Current status and emerging initiatives, Proceedings of the IEEE 106,
2313 (2018).

[29] S. Abdulla, B. de Boer, J. Pozo, J. van den Berg, A. Abutan, R. Hagen, D. L.
Cascio, and P. J. Harmsma, Sensing platform based on microring resonator
and onchip reference sensors in SOI, Proceedings of SPIE 8990, 89900W
(2014).

[30] A. L. Moras, V. Silva, M. C. M. M. Souza, G. A. Cirino, A. A. G. Von Zuben,
L. A. M. Barea, and N. C. Frateschi, Integrated photonic platform for robust
differential refractive index sensor, IEEE Photonics Journal 12, 1 (2020).

[31] T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott,
S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, Heterogeneous
silicon photonic integrated circuits, Journal of Lightwave Technology 34, 20
(2016).

[32] M. A. Ferrara and L. Sirleto, Integrated raman laser: A review of the last two
decades, Micromachines 11 (2020), 10.3390/mi11030330.

[33] S. Latkowski, A. Hänsel, N. Bhattacharya, T. De Vries, L. Augustin, K. Williams,
M. Smit, and E. Bente, Novel Widely Tunable Monolithically Integrated Laser
Source, IEEE Photonics Journal 7 (2015), 10.1109/JPHOT.2015.2493722.

[34] S. Latkowski, A. Hansel, D. D’Agostino, P. J. Van Veldhoven, H. Rabbani
Haghighi, B. Docter, N. Bhattacharya, P. J. A. Thijs, H. P. M. M. Ambrosius,
M. K. Smit, K. A. Williams, and E. A. J. M. Bente, Long wavelength mono
lithic photonic integration technology for gas sensing applications, Interna
tional Conference on Transparent Optical Networks 2016Augus, 2 (2016).

[35] M.C. Lo, R. Guzmán, and G. Carpintero, Femtosecond pulse and terahertz
twotone generation from facetfree multisegment laser diode in InPbased
generic foundry platform, Optics Express 26, 18386 (2018).

[36] E. Bente, S. Tahvili, V. Moskalenko, S. Latkowski, M. Wale, J. Javaloyes,
P. Landais, and M. Smit, Integrated InP based modelocked lasers and pulse
shapers, Integrated Optics: Devices, Materials, and Technologies XVII 8627,
86270E (2013).

http://dx.doi.org/10.1109/JSTQE.2018.2793945
http://dx.doi.org/10.1109/JSTQE.2018.2793945
http://dx.doi.org/10.1109/JPROC.2018.2878686
http://dx.doi.org/10.1109/JPROC.2018.2878686
http://dx.doi.org/10.1117/12.2039896
http://dx.doi.org/10.1117/12.2039896
http://dx.doi.org/ 10.1109/JPHOT.2020.3024856
http://dx.doi.org/ 10.1109/JLT.2015.2465382
http://dx.doi.org/ 10.1109/JLT.2015.2465382
http://dx.doi.org/ 10.3390/mi11030330
http://dx.doi.org/10.1109/JPHOT.2015.2493722
http://dx.doi.org/ 10.1109/ICTON.2016.7550555
http://dx.doi.org/ 10.1109/ICTON.2016.7550555
http://dx.doi.org/ 10.1364/oe.26.018386
http://dx.doi.org/10.1117/12.2010458
http://dx.doi.org/10.1117/12.2010458


References

1

13

[37] C. Ciminelli, D. D’Agostino, G. Carnicella, F. Dell’Olio, D. Conteduca, H. P.
M. M. Ambrosius, M. K. Smit, and M. N. Armenise, A highQ InP resonant
angular velocity sensor for a monolithically integrated optical gyroscope, IEEE
Photonics Journal 8 (2016).

[38] P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fer
nández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera,
R. Mas, and C. Domínguez, Silicon nitride photonic integration platforms
for visible, nearinfrared and midinfrared applications, Sensors 17 (2017),
10.3390/s17092088.

[39] A. T. Mashayekh, T. Klos, D. Geuzebroek, E. Klein, T. Veenstra, M. Büscher,
F. Merget, P. Leisching, and J. Witzens, Silicon nitride picbased multicolor
laser engines for life science applications, Opt. Express 29, 8635 (2021).

[40] P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.K. Chen, Mono
lithic silicon photonic integrated circuits for compact 100 gb/s coherent optical
receivers and transmitters, IEEE Journal of Selected Topics in Quantum Elec
tronics 20, 150 (2014).

[41] J. K. S. Poon and W. D. Sacher, Multilayer silicon nitrideonsilicon photonic
platforms for threedimensional integrated photonic devices and circuits, in
2017 75th Annual Device Research Conference (DRC) (2017) pp. 1–2.

[42] A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntzi
achristos, Embedded ultrasound sensor in a silicononinsulator photonic plat
form, Applied Physics Letters 104, 021116 (2014), publisher: American Insti
tute of Physics.

[43] M. A. Tadayon, M.E. Baylor, and S. Ashkenazi, High quality factor polymeric
fabryperot resonators utilizing a polymer waveguide, Opt. Express 22, 5904
(2014).

[44] A. Dutta, Brief review on integrated planar waveguidebased optical sensor,
in Planar Waveguide Optical Sensors From Theory to Applications (Springer,
Cham, 2016) Chap. 2, pp. 9–69.

[45] M. A. Butt, S. A. Degtyarev, S. N. Khonina, and N. L. Kazanskiy, An evanescent
field absorption gas sensor at midir 3.39 μm wavelength, Journal of Modern
Optics 64, 1892 (2017).

[46] C. Zhang, S.L. Chen, T. Ling, and L. J. Guo, Imprinted polymer microrings as
highperformance ultrasound detectors in photoacoustic imaging, J. Lightwave
Technol. 33, 4318 (2015).

[47] W. Bogaerts, P. DeHeyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes,
P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, Silicon microring
resonators, Laser and Photonics Reviews 6, 47 (2012), arXiv:1208.0765v1 .

http://dx.doi.org/10.3390/s17092088
http://dx.doi.org/10.3390/s17092088
http://dx.doi.org/10.1364/OE.417245
http://dx.doi.org/10.1109/JSTQE.2013.2295181
http://dx.doi.org/10.1109/JSTQE.2013.2295181
http://dx.doi.org/10.1109/DRC.2017.7999502
http://dx.doi.org/ 10.1063/1.4860983
http://dx.doi.org/ 10.1364/OE.22.005904
http://dx.doi.org/ 10.1364/OE.22.005904
http://dx.doi.org/ 10.1007/978-3-319-35140-7
http://dx.doi.org/ 10.1080/09500340.2017.1325947
http://dx.doi.org/ 10.1080/09500340.2017.1325947
http://jlt.osa.org/abstract.cfm?URI=jlt-33-20-4318
http://jlt.osa.org/abstract.cfm?URI=jlt-33-20-4318
http://dx.doi.org/10.1002/lpor.201100017
http://arxiv.org/abs/arXiv:1208.0765v1


1

14 References

[48] T. Claes, W. Bogaerts, and P. Bienstman, Verniercascade labelfree biosensor
with integrated arrayed waveguide grating for wavelength interrogation with
lowcost broadband source, Opt. Lett. 36, 3320 (2011).

[49] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications,
6th ed. (Oxford University Press, 2007).

[50] G. Meltz, W. W. Morey, and W. H. Glenn, Formation of bragg gratings in optical
fibers by a transverse holographic method, Opt. Lett. 14, 823 (1989).

[51] D. Krohn, T. MacDougall, and A. Mendez, Fiber optics sensors fundamentals
and applications, 4th ed. (SPIE Press, 2014).

[52] R. Kashyap, Fiber Bragg gratings, 2nd ed. (Academic Press, 2010).

[53] T. Erdogan, Fiber grating spectra, Journal of Lightwave Technology 15, 1277
(1997).

[54] A. D. Kersey, A review of recent developments in fiber optic sensor technology,
Optical Fiber Technology 2, 291 (1996).

http://dx.doi.org/ 10.1364/OL.36.003320
http://dx.doi.org/ 10.1364/OL.14.000823
http://dx.doi.org/10.1109/50.618322
http://dx.doi.org/10.1109/50.618322
http://dx.doi.org/ 10.1006/ofte.1996.0036


2
Review of the most common

methods for interrogating
photonic sensors

In this Chapter, a brief review of the different interrogation techniques is
presented. The spectra of the sensors are assumed to be finite, typically
with a peak lineshape, so that the photonic sensors can be multiplexed in
the wavelength domain. The interrogation methods are classified here into
three main groups: induced power modulation and edge filter interrogators,
interrogators based on spectrometers and interrogators based on interfer
ometry. Despite the simplicity of induced power modulation and edge filter
interrogators, they usually feature a limited dynamic range. Moreover, these
interrogators may introduce distortions in the interrogated signal due to non
linear components. Spectrometer based interrogators feature a high interro
gation resolution, are pretty flexible but usually limited to reduced speeds.
Finally, interferometric interrogators feature highresolution and can be used
to demodulate highspeed sensors. As explained along with this Chapter,
the performance of interrogators based on interferometry can be strongly af
fected by variations of resonance wavelength of the sensors introduced by
the fabrication process.

2.1. Review introduction
One of the key benefits of sensors based on photonic technology is the possibility
of multiplexing them and building a large sensor network. Many applications re
quire an extensive array of sensors. For instance, for structurehealth monitoring
applications, which aim to evaluate the degradation of structures such as buildings
or bridges, Xiao Wei et al.[1] and Dai et al. [2] perform the interrogation of 64 and
100 FBG sensors. Larger sensor networks are presented by Hu et. al [3] and Wang
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et. al[4], who report the interrogation of 843 and 1000 FBG sensors. There are dif
ferent techniques described in the literature to multiplex photonic sensors, and the
most common approaches are timedivision and wavelength division multiplexing.
Refs. [5–7] demonstrated that a combination of these techniques could be used in
order to accommodate more sensors in the network.

Fig. 2.1 shows three schemes for interrogating FBG and ring resonator sensors
using Wavelength Division Multiplexing (WDM) [5, 8]. The optical source used to
illuminate the photonic sensors is typically broadband, but tunable coherent sources
can also be used (see Section 2.4.2). The key idea of WDM is to keep the resonance
wavelengths of the photonic sensors sufficiently separated so that their combined
output spectra do not overlap, as shown in Fig. 2.1 (d). As discussed along with the
Chapter, the different interrogators provide a different tolerance to how close the
resonance wavelengths can be to each other. A typical scheme for interrogating
FBG sensors is shown in Fig. 2.1 (a) [5, 8–10]: the light signal from the source
is conveyed, using a circulator, to the FBGs, and their reflection is sent to the
interrogator. For ring resonators, the input optical signal is sent to the ring input
port, and the signal from the ring pass port (see Fig. 2.1 (b)) [11–13] or by the
drop port [14] is collected and conveyed to the interrogator (see Fig. 2.1 (c)). RRs
have a finite spectrum, and multiple resonances may occur within the Cband. In
Chapter 3, an FBG is employed as an optical filter to select the spectrum from a
single resonance. Fig. 2.1(d) shows an example of the combined spectrum 𝑆(𝜆, 𝑡)
for 𝐾 photonic sensors, which can be written as:

𝑆(𝜆, 𝑡) =
𝐾

∑
𝑘
𝑠𝑘(𝜆 − 𝜆𝑟,𝑘(𝑡)), (2.1)

where 𝐾 is the number of sensors and 𝑠𝑘(𝜆) is the lineshape of the output spec
trum 1 of the 𝑘th photonic sensor centred at the resonance wavelength 𝜆𝑟,𝑘(𝑡).
The resonance wavelength of the sensor is modulated according to the intensity
of the external signal to be sensed. 𝑆(𝜆, 𝑡) is conveyed to the interrogator, which
determines the resonances 𝜆𝑟,𝑘(𝑡) as a function of time.

A schematic of timedivision multiplexing (TDM) is shown in Fig. 2.2. Instead
of illuminating the photonic sensors with a continuous light signal, optical pulses
are sent to a photonic sensor array, which are typically FBGs. The source can be
either coherent [4, 5, 7, 8] or broadband [2, 15, 16]. In order to generate the
pulses, an optical intensity modulator (OIM) is coupled to the output of the optical
source. The OIM works as an optical switch that blocks or allows the transmission
of the optical signal depending on an external voltage applied to it. The OIM is
kept in its off state most of the time, except for a short period when it allows the
transmission of the light signal, producing a pulse. The fiber couplers, shown in
Fig. 2.2, split the input pulse into 𝐾 pulses, which are subsequently sent to the 𝐾
photonic sensors. The resonance wavelengths of the photonic sensors (without the
excitation of an external signal) are typically the same unless the sensor network
1For FBGs, the output spectrum refers to the reflected spectrum. The output spectrum for arrays of ring
resonator sensors may refer to the drop or the through port, according to the ring array design.
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Figure 2.1: Schematic of the wavelength division multiplexing (WDM). The spectrum of each sensor
must be limited so that resonances can be accommodated in the wavelength domain without overlap.
Different interrogators have different tolerances about how distant the resonances must be kept apart.
(a) Interrogation of an FBG array. (b) Interrogation of an array of ring resonators, connected via the
through port. In this case, the combined spectrum is an array of dips, as explained in Chapter 1. (c)
Interrogation of an array of ring resonators connected via the pass port. The combined spectrum is an
array of peaks. (d) Example of the combined spectrum of the sensors.
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Figure 2.2: Schematic of the timedivision multiplexing of the photonic sensors. A pulse coming from
the optical source is divided in 𝐾 pulses using the fiber couplers. The fiber lengths 𝐿𝑘 (𝑘 = 1, ..., 𝐾),
through which the 𝐾 pulses travels, must be sufficiently large so that the recombined optical signal does
not overlap in the time domain.

is designed in such a way as to combine TDM and WDM methods [6, 7]. The 𝑘th
photonic sensor encodes the information of the external signal into the 𝑘th part of
the original pulse. The output pulses from the photonic sensors are then conveyed
to the interrogator.

For TDM to work correctly, the duration of the pulses must be sufficiently short,
and the distance 𝐿𝑘 (shown in Fig. 2.2), through which the light pulse travels, is
sufficiently large. 𝐿𝑘 amounts about a few meters, while the pulse durations are of
the order of ns [2, 4, 16]. Thus, the optical pulses travelling back from the photonic
sensors can be recombined without overlap, allowing the interrogator to perform
the demultiplexing properly. Moreover, ultralow reflectivities (35 dB in [3] and 40
dB in [4]) have been reported, reducing multiple reflections in between the FBGs
and the crosstalk among the sensors.

In this Chapter, a review of the different interrogation techniques is presented.
Although the sensors are assumed to be multiplexed in the WDM scheme, the
interrogators presented in Chapters 3, 4 and 5 can be operated using the TDM
approach. The choice of the proper interrogation method depends on the proper
ties of the photonic sensors: as discussed in the following sections, sensor speed,
dynamic range and sensitivity strongly depend on the interrogation method.

2.2. Criteria of analysis of WDM photonic interroga
tors

As discussed in Chapter 1, the goal of the interrogator is to determine the resonance
wavelength of the photonic sensors as a function of time. The interrogation meth
ods were classified into three main groups: induced power modulation and edge
filter interrogators, interrogators based on spectrometers and interrogators based
on interferometry. In order to better compare the different interrogation methods,
the following parameters are introduced [17]:

• Interrogator resolution. Let 𝑠𝑘(𝜆) be defined as the lineshape of the out
put spectrum of 𝑘th photonic sensor. The external excitation sensed causes
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the 𝑠𝑘(𝜆) to be shifted to 𝑠𝑘(𝜆 + Δ𝜆), where Δ𝜆 is the resonance wavelength
shift. The resolution is the minimum value of Δ𝜆 which the interrogator can
resolve.

• Interrogator sensitivity.2 Defined by the derivative 𝜕𝑦/𝜕𝑥𝑒𝑥𝑡, where 𝑦
is one of the interrogator output parameters. For edge and induced power
modulation interrogators, 𝑦 is the interrogator output voltage. For interfero
metric sensors, the signal is encoded in a phase Φ(𝑡) of the complex voltage:
�̂� ∼ exp (𝑖Φ(𝑡)); thus 𝑦 = Φ(𝑡) and the sensitivity is given by 𝜕Φ/𝜕𝑥𝑒𝑥𝑡
(see Section 2.5 for details). For interrogators based on spectrometers, this
parameter is defined according to the postprocessing algorithm used (see
Sections 2.4).

• Interrogator Dynamic range. The range of values that the interrogator
can resolve. For temperature sensors, the dynamic range is defined by the
minimum and maximum temperature, which the interrogator can evaluate.
The sensor properties typically determine the dynamic range. However, since
interrogators may limit the dynamic sensor range, it is worth defining an over
all dynamic range for sensors and interrogators. 3

• Wavelength operation range. The range of resonance wavelength val
ues which the interrogator can retrieve for each sensor. Since the resonance
wavelength is assumed to be linearly related to the external excitation, the dy
namic range is defined by the sensor sensitivity and the wavelength operation
range. 4

• Interrogator response time and speed. It is defined as the response
time from which the interrogator takes to react from the external excitation.
Specifically, [17] defines this parameter as the time taken by interrogator
output to reach a certain level of the stable value (95 %, for instance) when
exposed to the signal to be sensed. A highspeed interrogator features a short
response time.

• Flexibility. The interrogator tolerance concerning variations in the sensor pa
rameter. In some cases, the interrogators expect the resonance wavelengths
and the FWHM of the sensor to operate around certain preestablished val
ues. It describes how the interrogator may handle variations in the sensor
parameters.

2Sensor sensitivity is a different parameter. For photonic sensors such as rings and FBGs, the sensitivity
is defined as 𝜕𝜆𝑟/𝜕𝑥𝑒𝑥𝑡, where 𝜆𝑟 is the resonance wavelength shift.
3Some authors [18] define the dynamic range as the ratio of the maximum and minimum value that can
be resolved. Here, we use the definition presented by [17].
4Some authors (See Fig. 4 of [19]) use this parameter as wavelength dynamic range. Here, dynamic
range refers to the range of values the signal to be sensed, according to to [17] .
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2.3. Induced power modulation and edge filter in
terrogators

The principle of interrogators based on induced power modulation and edge filter
interrogators is to convert the modulation of the resonance wavelength into optical
intensity modulation. The voltage obtained by the photoreceivers 5 is assumed to
be linear related or can be linearized to the resonance wavelength of the sensors.
Fig. 2.3 shows on the top an interrogator based on laserinduced power modulation,
while on the bottom, an interrogator based on edge filtering. Induced power mod
ulation and edge filter interrogators do not provide any mechanism to demultiplex
photonic sensors. Thus, a WDM filter or a dispersive spectrometer (see Section 2.4)
should be used in combination with the interrogators for this purpose.

2.3.1. Interrogation based on laserinduced power modulation
Fig. 2.3(a) shows a schematic of an interrogator based on laserinduced power
modulation, in which a tunable laser is used as the optical source. The method is
used by Refs [11, 12, 20–22] and also here in Chapter 3 [23]. The laser wavelength
is set at the flank of the photonic sensor spectrum, where the sensor lineshape is
typically linear. As an external signal modulates the resonance wavelength of the
photonic sensor, a power modulation is imprinted onto the light signal as indicated
in the scheme of Fig. 2.3(a). The output optical signal is sent to a photoreceiver.
The photoreceiver output voltage 𝑣𝑃𝐷(𝑡) is given by:

𝑣𝑃𝐷(𝑡) = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ𝑃0𝑠 (𝜆0 + Δ𝜆(𝑡)) , (2.2)

where 𝑔𝑇𝐼𝐴 is the photoreceiver transimpedance gain, 𝑅𝑝ℎ is the photodetector
responsivity, 𝑃0 the laser power, 𝜆0 the laser wavelength and 𝑠(𝜆) the spectrum
of the sensor. The external signal to be sensed induces the spectrum 𝑠(𝜆) to be
shifted to 𝑠(𝜆 + Δ𝜆(𝑡)), where Δ𝜆(𝑡) is the resonance wavelength modulation. By
expanding the function 𝑠(𝜆 + Δ𝜆(𝑡)) in a Taylor series around 𝜆 = 𝜆0, Eq. (2.2) can
be rewritten as:

𝑣𝑃𝐷(𝑡) = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ𝑃0 [𝑠(𝜆0) + Δ𝜆(𝑡)
𝜕𝑠(𝜆)
𝜕𝜆 |

𝜆=𝜆0
+ 𝑂(Δ𝜆(𝑡)2)] , (2.3)

By rearranging Eq. (2.3), we obtain:

Δ𝑣𝑃𝐷(𝑡) ≡ 𝑣𝑃𝐷(𝑡) − 𝑔𝑇𝐼𝐴𝑅𝑝ℎ𝑃0𝑠(𝜆0) = Δ𝜆(𝑡)𝑔𝑇𝐼𝐴𝑅𝑝ℎ𝑃0
𝜕𝑠(𝜆)
𝜕𝜆 |

𝜆=𝜆0
. (2.4)

Thus, the resonance wavelength modulation is proportional to the modulation of
the detected voltage Δ𝑣𝑃𝐷(𝑡). Eq. (2.4) can be simplified by differentiating both
sides of Eq. (2.2) with respect to the laser wavelength, in absence of an external
excitation (Δ𝜆 = 0):

𝜕𝑣𝑃𝐷(𝜆)
𝜕𝜆 = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ𝑃0

𝜕𝑠(𝜆)
𝜕𝜆 , (2.5)

5A transimpedance amplifier(TIA) is usually connected to the output of the photodetectors. Here, the
photoreceiver is the set photodector+TIA.
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Figure 2.3: (a) An interrogator based on induced power modulation (b) An interrogator based on edge
filtering. In both cases, the spectral power density of the photonic sensor is graphed, and how the
resonance wavelength modulation induces an optical power modulation in the output signal is indicated.
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where we assumed that 𝜕𝑠(𝜆)𝜕𝜆 = 𝜕𝑠(𝜆+Δ𝜆(𝑡))
𝜕𝜆 around 𝜆0. The function 𝑣𝑃𝐷(𝜆) can be

easily obtained by sweeping the laser wavelength along the spectrum of the pho
tonic sensor and by recording the photoreceiver output. Substituting Eq. (2.5)(for
𝜆 = 𝜆0) into Eq. (2.4):

Δ𝑣𝑃𝐷(𝑡) =
Δ𝜆(𝑡)

𝜕𝑣(𝜆)
𝜕𝜆 |

𝜆=𝜆0

. (2.6)

Eq. (2.6) does not depend on the photoreceiver parameters 𝑔𝑇𝐼𝐴 and 𝑅𝑝ℎ or on the
applied laser power.

The main advantage of the technique is its simplicity since it only requires a
photodetector and a tunable laser. As long as the laser power is sufficiently high,
a high interrogation resolution can be achieved. Since the interrogator speed is
limited only by the speed of the electronics, highspeed photonic sensors can be
demodulated using this technique, such as ultrasound sensors [11, 12, 21, 22]. On
the other hand, the main disadvantage of this method is that the technique limits
the dynamic range of the sensor. As the modulation of the resonance wavelength
increases, the relation between Δ𝑣𝑃𝐷 and Δ𝜆𝑟(𝑡) becomes nonlinear, and the non
linear terms can be compensated only up to a certain extent.

2.3.2. Interrogation based on edge filtering
Examples of edgefilter interrogators are provided by [19, 24–28]. A schematic of
the edge filtering method is shown in Fig. 2.3(b). Instead of using a monochromatic
light source as in the previous case, this method employs a broadband source. The
output spectrum of the photonic sensor is sent to an optical filter whose transfer
function is linear and known around the region of interest, as shown in the schematic
of Fig. 2.3(b). The voltage measured at the photoreceiver is given by:

𝑣𝑃𝐷(𝑡) = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ∫
∞

0
𝐸𝑓(𝜆)𝑠(𝜆 + Δ𝜆(𝑡))𝑑𝜆, (2.7)

where 𝐸𝑓(𝜆) is the spectrum of the edge filter. Expanding 𝐸𝑓(𝜆) in a Taylor series
up to the first order around the resonance wavelength of the sensor 𝜆𝑟 when no
excitation is applied gives:

𝑣𝑃𝐷(𝑡) = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ∫
∞

0
[𝐸𝑓(𝜆𝑟) + (𝜆 − 𝜆𝑟)

𝜕𝐸𝑓(𝜆)
𝜕𝜆 |

𝜆=𝜆𝑟
] 𝑠(𝜆 + Δ𝜆)𝑑𝜆. (2.8)

By changing the integration variable 𝜆 → 𝑢 = 𝜆+Δ𝜆 and rearranging the terms, we
obtain:

𝑣𝑃𝐷(𝑡) = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ∫
∞

0
[𝐸𝑓(𝜆𝑟) + (𝑢 − 𝜆𝑟 − Δ𝜆(𝑡))

𝜕𝐸𝑓(𝜆)
𝜕𝜆 |

𝜆=𝜆𝑟
] 𝑠(𝑢)𝑑𝑢. (2.9)

Eq. (2.9) can be rewritten as:

𝑣𝑃𝐷(𝑡) = 𝐴Δ𝜆(𝑡) + 𝐵 (2.10)
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where:

𝐴 = −𝑔𝑇𝐼𝐴𝑅𝑝ℎ
𝜕𝐸𝑓(𝜆)
𝜕𝜆 |

𝜆=𝜆𝑟
∫
∞

0
𝑠(𝑢)𝑑𝑢

𝐵 = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ∫
∞

0
(𝐸𝑓(𝜆𝑟) + (𝑢 − 𝜆𝑟)

𝜕𝐸𝑓(𝜆)
𝜕𝜆 |

𝜆=𝜆𝑟
) 𝑠(𝑢)𝑑𝑢

= 𝑔𝑇𝐼𝐴𝑅𝑝ℎ (𝐸𝑓(𝜆𝑟) − 𝜆𝑟
𝜕𝐸𝑓(𝜆)
𝜕𝜆 |

𝜆=𝜆𝑟
)∫

∞

0
𝑠(𝑢)𝑑𝑢+

+ 𝑔𝑇𝐼𝐴𝑅𝑝ℎ
𝜕𝐸𝑓(𝜆)
𝜕𝜆 |

𝜆=𝜆𝑟
∫
∞

0
𝑢𝑠(𝑢)𝑑𝑢. (2.11)

The voltage modulation Δ𝑣(𝑡) ≅ 𝑣𝑃𝐷(𝑡) − 𝐵 is proportional to the resonance wave
length modulation, and the coefficients 𝐴 and 𝐵 can be experimentally deter
mined [24, 27].

Authors report edge filtering technique as an inexpensive interrogation method [25,
28]. Tiwari et al. [26] used an erbiumdoped fiber as the edge filter; Aulakh et al.
uses another FBG [28], while Diaz et al. [25] uses the linear region of a FabryPerot
interferometer produced by a catastrophic fuse effect. The demultiplexing can be
performed using WDM filters [19, 24] or the TDM method [16]. The dynamic range
and the sensitivity strongly depend on the properties of the edge filter. A highly
sensitive interrogator, i.e., with a large value of |𝐴|, compromises the wavelength
operation range. This can be observed in Fig. 2.3(b): the higher the slope |𝐴| is,
the more voltage 𝑣𝑃𝐷(𝑡) is attenuated as the resonance wavelength shifts towards
to +∞.

2.4. Interrogators based on spectrometers
2.4.1. Interrogators based on dispersive spectrometers
Despite their simplicity, interrogators based on induced power modulation and edge
filter interrogators can impose strong limitations on the dynamic range of the sen
sor. A schematic of interrogators based on spectrometers is shown in Fig. 2.4(a):
a broadband light source is used to illuminate an array of photonic sensors, and
their combined spectrum is sent to a spectrometer. In this section, we focus on
dispersive spectrometers, i.e., spectrometers which detect the spectrum using dis
persive optical components such as gratings and prisms [29] (interrogators based
on Fourier transform spectrometers are discussed in the next section). Guo et.
al. [30] demonstrated a spectrometer using an integrated echelle, while others
[31–33] employed integrated arrayed waveguide gratings. Interrogacation can be
performed using commercial spectrometers [34–36]. For instance, the commercial
spectrometer IBSEN I MON 512 HS [37] gives an operation range of 90 nm, while
the spectral resolution is about 170 pm.

Xiau et al.[33] modelled the lineshape of the AWG channels as a gaussian func
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tion, given by:

𝑇𝑐ℎ,𝑚(𝜆) = exp [−4 log(2)(𝜆 − 𝜆𝑐ℎ,𝑚)
2

𝑤2𝑐ℎ,𝑚
] , (2.12)

where 𝑇𝑐ℎ,𝑚(𝜆) is the transmission function of the𝑚th spectrometer channel, 𝜆𝑐ℎ,𝑚,
is its central wavelength and 𝑤𝑐ℎ,𝑚, its FWHM. Thus, the output voltage obtained
by the 𝑘th photodetector, connected to the 𝑘th spectrometer output is given by:

𝑣𝑐ℎ,𝑚(𝑡) = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ∫
∞

0
𝑆(𝜆, 𝑡) exp [−4 log(2)(𝜆 − 𝜆𝑐ℎ,𝑚)

2

𝑤2𝑐ℎ,𝑚
] 𝑑𝜆 (2.13)

Assuming that the FWHM of the spectrometer channels is much smaller than the
FWHM of the photonic sensors, 𝑇𝑐ℎ,𝑚(𝜆) can be approximated to a Dirac delta, and
Eq. (2.13) can be written as:

𝑣𝑐ℎ,𝑚(𝑡) = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ∫
∞

0
𝑆(𝜆, 𝑡)𝛿(𝜆 − 𝜆𝑐ℎ,𝑚)𝑑𝜆 = 𝑔𝑇𝐼𝐴𝑅𝑝ℎ𝑆(𝜆𝑐ℎ,𝑚 , 𝑡), (2.14)

where 𝛿(𝜆) is the Dirac delta function. Thus, the set of voltages {𝑣𝑐ℎ,1, 𝑣𝑐ℎ,2, ..., 𝑣𝑐ℎ,𝑀}
is proportional to 𝑆(𝜆𝑐ℎ,𝑚 , 𝑡) sampled at the points 𝜆𝑐ℎ,1, ..., 𝜆𝑐ℎ,𝑀, where 𝑀 is the
number of spectrometer channels.

After retrieving the spectrum of the combined photonic sensor array, a postpro
cessing algorithm needs to be applied in order to determine the resonance wave
lengths, as described by Tosi et al. [34]. In most cases, however, the assumption
that the FWHM of the spectrometer channels is much smaller than the FWHM of
the photonic sensors does not hold, as illustrated in case 1 of Fig. 2.4(b). The
spectrometer resolution plays a key role in the interrogation: FBGs have a typical
FWHM of hundreds of picometers, which is comparable, or at the most, one order
of magnitude larger than the spectrometer resolution [23, 38]. A high spectrome
ter resolution, in this case, comes with the disadvantage of having a large device
footprint. Tosi et al.[34] listed techniques for determining the resonance wave
length using the measured spectrum of the sensors. The most robust techniques
are those based on applying transformations (such as the Fourier transform) to the
measured spectrum. Although a subwavelength resolution can be achieved [36],
the implementation of these algorithms can be computationally expensive.

Pustakhod and other authors [30–32] use a different approach to obtain the
resonance wavelength modulation: the spectrometer is designed in such a way
that the FWHMs of its channels are much larger than the FWHMs of the sensors, as
indicated as case 2 of Fig. 2.4(c). Thus, the resonance wavelengths are expected to
operate close to the border of the AWG channels, where the lineshape of 𝑇𝑐ℎ,𝑚(𝜆)
can be linearized. The AWG channels work as an edge filter: although the spectrum
of the photonic array cannot be obtained, the modulation of each sensor can be
determined using Eqs. (2.10,2.11), as defined in the previous section. The spec
trometer is designed in such a way that the lineshapes of two adjacent channels
overlap, avoiding a strong attenuation in the case that the resonance wavelength
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of one of the sensors is exactly in the centre of the two channels. Pustakhod [31]
reports a minimum modulation amplitude smaller than 1 pm, which is much smaller
than the AWG resolution. This comes with the disadvantage of reduced flexibility:
using the AWG channels as an edge filter defines regions at which the resonance
wavelengths must be placed. As discussed in detail in the following sections, this
could be an issue for integrated sensors since the resonance wavelengths cannot
be exactly defined during the design. Moreover, the dynamic range increase of the
photonic sensors is limited by the regions at which the lineshape of the spectrometer
channels can be linearized. Similarly to the edge filter interrogators, nonlinearities
can be compensated only up to a certain extent.

Another issue for interrogators based on dispersive spectrometers is a large
number of outputs. Spectrometers such as [37] feature a resolution of 170 𝑝𝑚 with
a 90 𝑛𝑚 bandwidth, leading to 500 output channels. Having many outputs requires
a large number of channels to be sampled, which enhances the complexity of the
electronic circuits for highspeed sensors. Some of the commercial spectrometers,
such as [37], serializes the sampled data and reducing the maximum sampling
speed of the photonic sensor array to the kHz range.

2.4.2. Spectral scanning interrogators
In order to overcome the issues with interrogators based on dispersive spectrom
eters, the spectral scanning technique can be used. Such an interrogator features
a high resolution and large wavelength operation range. A broadband light signal
is coupled to photonic sensors, and their output spectrum is conveyed to a highQ
optical cavity such as an RR [39–41] or a FabryPerot [42]. Alternatively, instead of
a broadband source and a tunable filter, a tunable laser can be employed [43]. The
output of the photonic cavity is then sent to a photoreceiver, as shown in Fig. 2.4(b).
The operation principle of this method consists of tuning the resonance wavelength
of the optical cavity using a known modulation signal. The voltage measured by a
photoreceiver is given by:

𝑣𝑃𝐷(𝑡) = 𝑅𝑝ℎ𝑔𝑇𝐼𝐴∫
∞

0
𝑆(𝜆)𝑇𝑓(𝜆)𝑑𝜆, (2.15)

where 𝑇𝑓(𝜆) is the spectrum of the tunable optical cavity and 𝑆(𝜆) is the combined
spectrum of the photonic sensors. Assuming that the FWHM of the tunable filter is
much smaller than the FWHM of the photonic sensors, the voltage measured by a
photoreceiver is given by:

𝑣𝑃𝐷(𝑡) ≅ 𝑅𝑝ℎ𝑔𝑇𝐼𝐴∫
∞

0
𝑆(𝜆)𝛿(𝜆 − 𝜆0(𝑡))𝑑𝜆 = 𝑅𝑝ℎ𝑔𝑇𝐼𝐴𝑆(𝜆0(𝑡)), (2.16)

where 𝛿(𝜆) is the Dirac delta function and 𝜆0(𝑡) is the resonance wavelength of
the tunable filter. The voltage measured by the photodetector is proportional to
the combined spectrum of the photonic sensors. If the modulation speed of the
optical cavity is much faster than the speed of the external signal to be sensed by
the photonic sensors, 𝑆(𝜆, 𝑡) can be accurately obtained. A postprocessing step is
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needed; the same algorithms described by Tosi et al.[34] can be used in order to
retrieve the resonance wavelengths.

In general, the spectral scanning technique gives a much better resolution than
interrogators based on dispersive spectrometers. A tunable laser, for instance, may
have a FWHM ranging from hundreds of kHz [44] to a few Hz [45], and the wave
length can be set at a subpicometer accuracy [43, 46]. In contrast, the resolution
of dispersive spectrometers is in the order of tens of pm (in the wavelength do
main). However, most spectral scanning interrogators are based on thermal tuning
[39, 40] or micromechanical systems [41], limiting the speed to the few kHz range.
Kim et al.[40] presented an optimized design of a thermally modulated RR whose
speed could reach 100 kHz. In spite of this improvement, the assumption that the
tuning speed of the optical cavity needs to be much higher than the speed of the
photonic sensors limits the interrogation to sensors with speeds up to one order
of magnitude slower than the maximum tuning speed of the optical cavity. More
over, this method faces a tradeoff between wavelength operation range and tuning
speed: a higher tuning speed comes at the cost of a lower wavelength operation
range.

2.5. Interrogators based on interferometry
2.5.1. Interrogator based on interferometry in combination with

a dispersive spectrometer
Fig. 2.5(a) shows a schematic for an interrogator based on interferometry. Light
from a broadband source is sent to a photonic sensor array, whose combined spec
trum is conveyed to a dispersive spectrometer in order to demultiplex the sensor
spectra. If a single sensor is being interrogated (see Chapter 3), no dispersive
spectrometer needs to be used. Following the schematic of the figure, the demul
tiplexed output spectrum of each sensor is sent to an unbalanced MachZehnder
interferometer, through which the modulation of the resonance wavelengths is con
verted to a phase modulation. By first assuming that the MZI has a single output,
its transmission spectrum is given by:

𝑇𝑀𝑍𝐼(𝜆) = 𝑝 + 𝑞 cos [
2𝜋
𝜆 𝑂𝑃𝐷 + 𝜑𝑒] ≅ 𝑝 + 𝑞 cos [

2𝜋
𝐹𝑆𝑅𝜆 + 𝜓𝑒] , (2.17)

where the constants 𝑝 and 𝑞 which define the interferometer visibility 𝑝/𝑞. 𝐹𝑆𝑅 is
the MZI free spectral range, and 𝜓𝑒 is a phase whose value changes according to
local variations in temperature. The derivation of Eq. (2.17) is presented in Chapters
3 and 4. The relation between the MZI optical path difference (𝑂𝑃𝐷) and its free
spectral range is given by:

𝐹𝑆𝑅 = 𝜆20
𝑂𝑃𝐷 , (2.18)

where 𝜆0 is a reference wavelength, typically close to 1550 nm for sensors that
operate in the C band. The output voltage of the photoreceiver connected to the
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Figure 2.4: Interrogators based on spectrometers: (a) Schematic of an interrogator based on a dis
persive spectrometer. The figure illustrates the two situations discussed in the main text. In (b), the
FWHM of the photonic sensors (shown in gray) is smaller than the FWHM of the spectrometer channels
(shown as different colors); in (c), The FWHM of the photonic sensors is much larger than the FWHM of
the spectrometer channels. (d) Interrogator based on tuning filter. The illustration shows the spectra
of the photonic sensors and of the tuning filter.
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MZI is given by:

𝑣𝑃𝐷,𝑘(𝑡) = 𝑅𝑝ℎ𝑔𝑇𝐼𝐴∫
∞

0
𝑇𝑐ℎ,𝑘(𝜆)𝑆(𝜆)𝑇𝑀𝑍𝐼(𝜆)𝑑𝜆, (2.19)

where 𝑇𝑐ℎ,𝑘(𝜆) is the transmission spectrum of the 𝑘th spectrometer channel.
For such case, it is desired for the spectrometer lineshape to be flat, so that
𝑇𝑐ℎ,𝑘(𝜆)𝑆(𝜆) = 𝑠𝑘(𝜆). Substituting this expression into Eq. (2.19):

𝑣𝑃𝐷,𝑘(𝑡) = 𝑅𝑝ℎ𝑔𝑇𝐼𝐴∫
∞

0
𝑠𝑘(𝜆)𝑇𝑀𝑍𝐼(𝜆)𝑑𝜆. (2.20)

For a peaked lineshape sensor, the voltage is given by:

𝑣𝑃𝐷,𝑘(𝑡) = 𝐴 cos (Φ𝑘(𝑡) + 𝜓𝑒,𝑘) , (2.21)

where 𝐴 is a constant, 𝜓𝑒,𝑘 is a phase proportional to 𝜙𝑒,𝑘 and the phase modulation
is given by:

Φ𝑘(𝑡) =
2𝜋𝜆𝑘(𝑡)
𝐹𝑆𝑅 , (2.22)

where 𝜆𝑘(𝑡) is the resonance wavelength of the 𝑘th sensor.
As indicated in Eq. (2.22), the sensitivity of Φ𝑘(𝑡) with respect to 𝜆𝑘(𝑡) and the

external signal increases as the MZI free spectral range decreases. A larger value
for the 𝑂𝑃𝐷 is accompanied by a smaller value for the 𝐹𝑆𝑅, as these two quantities
are inversely proportional. It is shown in Chapters 3 and 4 that if the 𝐹𝑆𝑅 is smaller
than or equal to the sensor 𝐹𝑊𝐻𝑀, the visibility of the interferometric fringes and
the voltages 𝑣𝑘,𝑗 are strongly attenuated. Therefore, the choice of the 𝑂𝑃𝐷 value
needs to consider both the sensitivity and the attenuation of the interferometric
fringes.

Retrieving Φ𝑘(𝑡) from Eq. (2.21) can be difficult since the phase is wrapped into
the cosine. For instance, assuming for 𝑡 = 𝑡0, Φ𝑘(𝑡0) = 0 and 𝑚𝜓𝑒,𝑘 = 𝑚𝜋 (where
𝑚 is an integer), 𝑣𝑃𝐷,𝑘(𝑡) gives an ambiguous response [5]: both positive and
negative variations of Φ𝑘(𝑡0+𝑑𝑡) produce the same value of 𝑣𝑃𝐷,𝑘(𝑡). This happens
because the voltage signal, which is proportional to sin(Φ(𝑡) + 𝜓𝑒,𝑘), is unknown.
If the MZI has a single output, the best option would be tuning 𝜓𝑒,𝑘 = 𝜋/2 (using
a phase modulator, for instance) so that Eq. (2.21) gives an approximately linear
response for small modulations ofΦ𝑘(𝑡). Two other approaches are commonly used
instead: (a) active modulation or (b) passive modulation using a 3 × 3 coupler.

The idea of active modulation [47, 48] is to place a phase modulator into one
of the MZI arms. In this case, Eq. (2.21) is rewritten as:

𝑣𝑃𝐷,𝑘(𝑡) = 𝐴 cos (Φ𝑘(𝑡) + 𝜙𝑉(𝑡) + 𝜓𝑒,𝑘) , (2.23)

where 𝜙𝑉(𝑡) is the induced phase proportional to an external voltage applied to the
modulator. Typically, 𝜙𝑉(𝑡) = 𝐴𝑠𝑖𝑛(2𝜋𝑓0𝑡), where 𝑓0 is much higher than the speed
of the sensor. Let �̃�𝑃𝐷,𝑘(𝑓) = 𝐹 {𝑣𝑃𝐷,𝑘(𝑡)} be the Fourier transform of 𝑣𝑃𝐷,𝑘(𝑡).
Marin et. al. [48] demonstrated that �̃�𝑃𝐷,𝑘(𝑓0) is proportional to sin (Φ𝑘(𝑡)), while
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�̃�𝑃𝐷,𝑘(2𝑓0) is proportional to cos (Φ𝑘(𝑡)). Since both the sine and the cosine of the
angular deflection are known, Φ𝑘(𝑡) can be determined using Eq. (2.27) (presented
later).

In most situations, however, the usage of active modulation is undesirable since
such interrogators depends on a highspeed phase modulator. An alternative is the
interrogation using a 3×3 coupler: the optical signals coming from the arms of the
MZIs typically interfere within a 3×3 coupler, producing three 120∘ phase shifted
output signals. It is shown in Chapters 3 and 4 that the output voltage 𝑣𝑘,𝑗 (𝑗 =
1,2,3) of the photoreceiver connected to the 𝑗th MZI output is given by:

𝑣𝑘,1(𝑡) =
𝑅𝑘
3 cos(Φ𝑘(𝑡) − 2𝜋/3 + 𝜓𝑒,𝑘) + 𝑎𝑘 ,

𝑣𝑘,2(𝑡) =
𝑅𝑘
3 cos(Φ𝑘(𝑡) + 𝜓𝑒,𝑘) + 𝑏𝑘 ,

𝑣𝑘,3(𝑡) =
𝑅𝑘
3 cos(Φ𝑘(𝑡) + 2𝜋/3 + 𝜓𝑒,𝑘) + 𝑐𝑘 , (2.24)

where 𝑅𝑘, 𝑎𝑘,𝑏𝑘 and 𝑐𝑘 are constants. Linear combinations of the outputs give 90𝑜
phase shifted voltage signals. Let’s introduce

𝑣𝑘,𝑥(𝑡) = 2𝑣𝑘,1 − 𝑣𝑘,2 − 𝑣𝑘,3
𝑣𝑘,𝑦(𝑡) = √3 (𝑣𝑘,2 − 𝑣𝑘,3) , (2.25)

where 𝑣𝑘,𝑥(𝑡) and 𝑣𝑘,𝑦(𝑡) are 90𝑜 phase shifted phase signals. By substituting
Eq. (2.24) into Eq. (2.25) and manipulating, one obtains:

𝑣𝑘,𝑥(𝑡) = 𝑅𝑘 cos(Φ𝑘(𝑡) + 𝜓𝑒,𝑘) + 𝑥0,
𝑣𝑘,𝑦(𝑡) = 𝑅𝑘 sin(Φ𝑘(𝑡) + 𝜓𝑒,𝑘) + 𝑦0, (2.26)

where 𝑥0 and 𝑦0 are constants which depend on 𝑎𝑘, 𝑏𝑘 and 𝑐𝑘. Eq. (2.26) describes
a parametric equation of a circle with radius 𝑅𝑘 and centre (𝑥0,𝑦0). The angle Φ𝑘(𝑡)
is given by:

Φ𝑘(𝑡) = unwrap(arctan2(𝑣𝑘,𝑦(𝑡) − 𝑦0, 𝑣𝑘,𝑥(𝑡) − 𝑥0)) − 𝜓𝑒,𝑘 . (2.27)

The phase, however, is still wrapped so unwrap algorithms needs to be employed.
Nevertheless, the ambiguous response for small modulations of Φ(𝑡) no longer
occurs. In contrast, the ambiguous response faced for small modulations of Φ𝑘(𝑡)
no longer occurs. 6

According to Orr. et. al. [49], interrogators based on interferometry give the
best resolution of all methods. However, the interferometry method requires for the
phase 𝜓𝑒,𝑘, which drifts as the temperature of the MZI locally changes, to be stable.
For lowspeed sensors, this is an issue, as accurately controlling the temperature
6For the example given previously, take 𝑚𝜓𝑒,𝑘 = 𝑚𝜋 (where 𝑚 is an integer). Both positive and
negative modulations of Φ𝑘(𝑡) lead to positive variations of the value of 𝑣𝑘,𝑥(𝑡) but lead to values of
𝑣𝑘,𝑦(𝑡) with opposite signs. Nevertheless, the interrogator is still unable to distinguish variations of
Φ𝑘(𝑡) larger than 2𝜋.
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of the MZI is required. For highspeed sensors, the effect can be compensated by
applying a high pass filter. This is the approach used in Chapter 3. In spite of the
high resolution of this method, attention should be paid in order to properly align
the outputs of the spectrometer to the sensor spectrum. In the case of photonic
sensors based on FBGs, this is not an issue since the Bragg wavelength can be
chosen with an accuracy better than 1 nm. Nevertheless, Orr. [49] reports that
if one of the FBG sensors in the network shown in Fig. 2.5(a) fails, it needs to be
replaced by another sensor with the same resonance wavelength, indicating a lack
of flexibility with this method.

For integrated RR sensors, the alignment between the outputs of the spectrom
eter and the sensor spectra is critical. For most foundries, it is not possible to
predict the resonance wavelength of the rings during the design stage [50]. Up
to certain extend, this can be solved by tunning the integrated spectrometer using
the thermooptic effect [51]. As a side effect, this could trigger the interferometer
thermal drift of the phase 𝜓𝑒,𝑘. Selvaraja et al. [52] reports a standard deviation
of the resonance wavelengths of silicon microrings of about 1.8 nm for devices
distant 20 mm apart within the wafer. A flexible interrogator method is key so that
sensors fabricated from different parts of the wafer can be interrogated.

2.5.2. Interrogator based on Fourier transform
The main focus of this thesis is on an interrogator based on the Fourier transform.
This method comes as an alternative to the passive interferometric interrogator,
offering unprecedented flexibility and resolution. Even under large variances of the
nominal value of the photonic sensor resonances, the sensor’s response can be
demodulated. Moreover, this method also provides a meaningful reduction of the
interrogator footprint. No dispersive spectrometer is used, and demultiplexing and
demodulation steps are performed simultaneously. A schematic of the interrogator
design is shown in Fig. (2.5)(b). A broadband source is used to illuminate the
photonic sensor array. Its output spectrum is sent to an MZI array integrated on an
InP chip. The combined spectra of the sensors is shared among 𝑀 interferometers
with progressively higher optical path differences (𝑂𝑃𝐷𝑚 = 𝑚𝑂𝑃𝐷1). The two 90∘
phaseshifted voltages are given by:

𝑣𝑥,𝑚(𝑡) =
𝑀

∑
𝑘=1

𝑅𝑘 cos(𝑚Φ𝑘(𝑡) + 𝜓𝑒,𝑘)

𝑣𝑦,𝑚(𝑡) =
𝑀

∑
𝑘=1

𝑅𝑘 sin(𝑚Φ𝑘(𝑡) + 𝜓𝑒,𝑘) (2.28)

where the coefficients 𝑅𝑘 (𝑘 = 1, ..., 𝐾) are to be determined during a calibration
procedure. Eq. (2.28) can be obtained from Eq. (2.26) by superimposing the indi
vidual contributions of the photonic sensors. In Chapter 4, it is demonstrated that
𝑣𝑥,𝑚 and 𝑣𝑦,𝑚 are coefficients of a Fourier series so the combined spectrum can be
retrieved. Instead of calculating the combined spectrum, a system of nonlinear
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Figure 2.5: Schematic of interrogators based on interferometers (a) Spectrometer + MZI Interferometer
(b) Fourier transform Interrogator.
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equations is solved. Let

�̂�𝑚 = 𝑣𝑥,𝑚(𝑡) + 𝑖𝑣𝑦,𝑚(𝑡), (2.29)

where �̂�𝑚 is the complex voltage and 𝑖 the imaginary unit. Substituting Eq. (2.28)
into Eq. (2.29), we obtain:

�̂�𝑚(𝑡) = 𝑒𝑖𝜓𝑒,𝑘
𝑀

∑
𝑘=1

𝑅𝑘 exp(𝑖𝑚Φ𝑘(𝑡)). (2.30)

Eq. (2.30) represents a system of nonlinear equations. The number of MZIs
must be at least as large as the number of sensors so that we have a system
of 𝐾 unknowns and 𝐾 ≤ 𝑀 independent equations. Using one of the sensors as a
reference, one could also compensate for the drift of the phases 𝜓𝑒,𝑘. The flexibility
of the method comes with the disadvantage of a high computational cost. The non
linear system of Eq. (2.30) needs to be solved at each time step . In Chapter 5, we
propose semianalytical methods to solve Eq. (2.30), allowing the interrogation of
highspeed sensors.

2.6. Review conclusion
In this Chapter, an overview of the different interrogation techniques was given.
The choice of the interrogation method depends on the property of the photonic
sensor array since the interrogator affects the sensitivity, the dynamic range and
the speed of the photonic sensors. Induced power modulation and edge filter
interrogators are, in general, among the simplest methods. They work for both low
speed and highspeed sensors, whereas they may impose hard limitations on the
sensor dynamic range. Interrogators based on spectrometers have high flexibility
and are usually employed in large sensor networks. The minimummodulation depth
that can be detected by this method depends on the spectrometer resolution. In
order to achieve a higher resolution, a postprocess step is required, which may
affect the interrogation speed. An alternative is interrogators based on tunable
filters that provide a higher resolution but limited speed.

The interrogators based on interferometry feature the highest resolution of all
methods. However, highly accurate control of the MZI temperature is needed to
avoid the thermal phase drift, which can plague the interrogation of lowspeed
sensors. This method requires the resonance wavelengths to be known during
the design stage in order to properly align the spectrum of the sensors with the
spectrum of the channels of the dispersive spectrometer. In order to handle those
issues, an interrogator based on the Fourier transform is proposed. This is probably
the most flexible method, providing a high resolution while the drift of the phases
can be compensated using a reference sensor. A detailed comparison of the FT
interrogator with other common interrogation methods is presented in Chapter 5,
section 5.5.3.
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3
Interrogation of a

ringresonator ultrasound
sensor using a fiber

MachZehnder interferometer

We experimentally demonstrate an interrogation procedure of a ringresonator
ultrasound sensor using a fiber MachZehnder interferometer (MZI). The sen
sor comprises a silicon ring resonator (RR) located on a siliconoxide mem
brane, designed to have its lowest vibrational mode in the MHz range, which
is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident
on the membrane excites its vibrational mode and as a result induces a mod
ulation of the resonance wavelength of the RR, which is a measure of the
amplitude of the ultrasound waves. The interrogation procedure developed
is based on the mathematical description of interrogator operation presented
in Appendix A, where we identify the amplitude of the angular deflection
Φ0 on the circle arc periodically traced in the plane of the two orthogonal
interrogator voltages, as the principal sensor signal. Interrogation is demon
strated for two sensors with membrane vibrational modes at 1.3 and 0.77
MHz, by applying continuous wave ultrasound in a wide pressure range.
Two optical path differences (OPDs) of the MZI are used. Thus, different in
terference conditions of the optical signals are defined, leading to a higher
apparent sensitivity for the larger OPD, which is accompanied by a weaker
signal, however. Ultrasound is detected at a pressure as low as 1.2 Pa.

Parts of this chapter have been published in Fellipe Grillo Peternella, Boling Ouyang, Roland
Horsten, Michael Haverdings, Pim Kat, and Jacob Caro , Interrogation of a ringresonator ul
trasound sensor using a fiber MachZehnder interferometer Optics Express, Vol. 25, Issue 25, pp.
3162231639 (2017).
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3.1. Introduction
Integrated photonics is an enabling technology for important application fields, such
as telecommunication [1, 2], optical signal processing [3] and various types of
photonic sensing [4]. In the field of sensing the main advantages of integrated
photonics sensors are small size, mass producibility, low cost and electromagnetic
immunity. The labonchip approach to chemical sensing and particle identification
also benefits strongly from integrated photonics. This is demonstrated for example
by recent advances in excitation and collection of spontaneous Raman scattering
near silicon nitride waveguides [5] and in optical trapping and Raman spectroscopy
of microparticles using a dualbeam trap made from composite silicon oxidenitride
waveguides [6].

In the field of sensing for health and medicine, integrated silicon photonics is
used in our department for an ultrasound sensor based on a ring resonator (RR)
located on a thin membrane [7]. Ultrasound waves make the membrane vibrate
and as a result induce a modulation of the optical resonance wavelength of the RR,
which characterizes the waves. The sensor is very promising for medical ultrasound
imaging, in particular for intravascular ultrasound (IVUS) imaging, which is widely
used to diagnose atherosclerosis in humans. For IVUS, important advantages of our
RR ultrasound sensor are its high sensitivity [7], the possibility to realize an array of
sensors on a single chip, which is spontaneously enabled by the CMOS fabrication
technology, and the absence of electrical wiring as needed for piezoelectric IVUS
sensors. Wiring has the disadvantages of being rather cumbersome for an array
of piezoelectric sensors and susceptible to crosstalk, while making the sensors
incompatible with magnetic resonance imaging.

Here, we present an interrogation procedure of a RR ultrasound sensor of the
type introduced in [7] using a passive fiber MachZehnder interferometer [8, 9].
The procedure yields a welldefined relation between the sensor signal and the
applied ultrasound pressure, thus qualifying a sensor of this type for IVUS. For am
plitudes of the ultrasoundinduced resonancewavelength modulation smaller than
the bandwidth of the spectrum incident on the RR, the signal is proportional to the
applied ultrasound pressure. The MZI employs a 3×3 fiber output coupler, of which
at least two of the three outputs are nonzero for any optical phase difference be
tween the MZI arms. This is beneficial for the signaltonoise ratio of the quadrature
signal components defined with the three outputs. We demonstrate detection of
ultrasound waves of a pressure amplitude as small as 1.2 Pa. The interrogation
method we present for a single sensor is the first step towards interrogation of an
array of sensors. A complete mathematical description of the operation of the in
terrogator, resulting in the interrogation procedure we apply, is given in Appendix
A.

3.2. Silicon ringresonator sensor for ultrasound
The heart of the ultrasound sensor is a silicon RR of the racetrack type, coupled to
two bus waveguides, as depicted in Fig. 3.1. Ring and waveguides are located on a
thin silicon oxide membrane designed to have its lowest vibrational mode in the MHz
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range. Typically, to mimic the situation of IVUS imaging of an artery, the sensor is
operated in water. Ultrasound waves of the proper characteristics impinging upon
the membrane excite the vibrational mode and thus periodically deform the RR,
leading to encoding of the optical signal with information of the ultrasound waves for
imaging, in particular modulation of the RR resonance wavelength at the ultrasound
frequency. The modulation results from the combined effect [10] of elongation of
the racetrack’s straight part, change of the ring cross section due to the Poisson
effect, change of the refractive indices of silicon and of silicon oxide of the cladding,
and finally change of the effective index of the waveguide mode circulating the ring
due to the elastooptic effect. The RRs were fabricated at ePIXfab, Imec [11] on

R

w

�0

R

input 

pass

add 

drop 

Figure 3.1: Schematic view of the silicon ringresonator sensor fabricated on a circular silicon oxide
membrane. Width of coupling waveguides and racetrack is 𝑤=400 nm, while the gap of the directional
couplers is 200 nm. Radius of bends is 𝑅=5 𝜇m. The length of the straight part of the racetrack 𝓁0
varies among the devices.

silicononinsulator wafers thinned to 250 𝜇m. The silicon device layer and the
buried oxide (BOX) layer are 220 nm and 2 𝜇m thick, respectively. The width of
the ring and the bus waveguides is 400 nm, implying these are single mode around
the operational wavelength of 1550 nm. The gap of the two identical directional
couplers of the RR is 200 nm. The length 𝓁0 of the straight part of racetracks is in
the range 20100 𝜇m, while the bending radius is 5 𝜇m. For light coupling from and
to external fibers we use grating couplers (GCs), to which 10 𝜇m wide waveguides
are connected. The GCs are polarization sensitive, implying that the modes coupled
into and out of the waveguides and circulating the ring are TE polarized, according
to the building block specification [11]. Between GCs and RR, the 10 𝜇m wide
waveguides are adiabatically tapered down to 400 nm in two steps. The fibers are
permanently connected to the sensor via angled and aluminium coated Pyrex mirror
blocks glued to the chip [12]. The mirror blocks reflect the inplane light leaving the
fiber towards the grating coupler. Only the pass port is fiberconnected, implying
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that the transmission spectrum shows a series of dips (see Fig. 3.2).
The current sensors result after the fabrication (in Kavli Nanolab Delft) of a

membrane, which vibrates in the MHz range, in the backside of the chip. At the
position of a RR a membrane is created by deep reactive ion etching (Bosch pro
cess) of a circular hole in the handle wafer. This etching from the backside stops
selectively at the BOX layer, and thus a membrane is formed spontaneously. In this
procedure a 2.5 𝜇m PECVD oxide layer is used as a hard mask and the photonic
circuitry on the front side is protected by a 0.5 𝜇m thick PECVD oxide layer, which
also serves as upper cladding. The resulting membranes thus have a thickness of
2.5 𝜇m. The cavity under the membrane is closed by gluing a glass platelet to the
chip’s backside, entrapping air (see Fig. 3.3). The sensor thus effectively operates
with a membrane that is water loaded on one side.

The silicon waveguiding platform, owing to its high index contrast, allows for
small bending radii, which is advantageous for small footprint sensors. This ad
vantage has been recognized before in [13], which reports pressure sensors us
ing a silicon RR on an oxide membrane. This work, however, is focused on the
demonstration of sensing of static pressures, while the reported RR is relatively
large. Ultrasound detection with polymer RRs is reported in [14]. These RRs are
not located on a membrane and thus only rely on the elastooptic effect. Further,
the polymer waveguides have a relatively low index contrast with respect to the
cladding, implying that bending radii are more limited than for silicon RRs.

We concentrate on two sensors: sensor #1 with 𝓁0 = 30 𝜇m located on a 66
𝜇𝑚 diameter membrane (vibrational mode at 1.3 MHz) and sensor #2 with 𝓁0 = 40
𝜇𝑚 located on a 124 𝜇m diameter membrane (vibrational mode at 0.77 MHz). For
sensor #1, the transmission spectra without applied ultrasound are shown in Fig.
3.2. The resonance dips captured in Fig. 3.2(a) give a free spectral range 𝑃𝑅𝑅 =
6.01 nm. Fig. 3.2(b) is a zoomin of the central dip at 1550.19 nm, which we use
for experiments with the interrogator (Section 3.4). The setup for measuring the
dips is addressed in connection to the modulation method (Appendix B).

To analyze a single resonance, we start from the expression for the transmission
to the pass port for two identical directional couplers, which is [15]

𝑇𝑝𝑎𝑠𝑠(𝜃) =
𝑟2 + 𝑟2𝑎2 − 2𝑟2𝑎 cos𝜃
1 + 𝑟4𝑎2 − 2𝑟2𝑎 cos𝜃 . (3.1)

Here 𝑟 is the selfcoupling coefficient of the directional coupler, 𝑎 the single round
trip amplitude transmission, and 𝜃 is the accumulated phase of the mode for a
single round trip in the ring. When concentrating on a single resonance of the
overall spectrum, the phase can be approximated by

𝜃 = 2𝜋
𝐿 𝑛𝑒𝑓𝑓𝐿 ≅ 2𝜋𝑚 − 2𝜋𝑛𝑔𝐿

𝜆 − 𝜆𝑟
𝜆2𝑟

. (3.2)

Here 𝜆 is the wavelength, 𝜆𝑟 the resonance wavelength, 𝐿 the roundtrip length and
𝑚 an integer. 𝑛𝑒𝑓𝑓 and 𝑛𝑔 are the wavelength dependent effective index and the
group index at resonance, respectively. The righthand side of Eq. (3.2) results from
keeping only the first order term of the Taylor expansion of the function 𝑛𝑒𝑓𝑓(𝜆)/𝜆
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Figure 3.2: (a) Transmission spectrum of a ring resonator on a silicon oxide membrane, showing three
resonance dips. (b) Zoomin of the central dip in (a). The blue curve is a fit of Eq. (3.3) to the data
points. On the linear part of the dip’s left flank the operation point 𝜆op. is shown, the static wavelength
to which the laser is tuned in the modulation method (see Appendix B).

around 𝜆𝑟 and implementing the resonance condition 𝑛𝑒𝑓𝑓(𝜆𝑟)𝐿 = 𝑚𝜆𝑟 . Eq. (3.1)
simplifies further by using cos𝜃 ≅ 1 − 𝜃2/2 near the resonance phase 𝜃 = 2𝜋𝑚,
which for the cosine is equivalent to 𝜃 = 0, and by using Eq. (3.2). This yields the
singledip transmission

𝑇𝑝𝑎𝑠𝑠(𝜆) ≈
(𝜆 − 𝜆𝑟)2 + 𝜀(𝛾𝑟/2)2
(𝜆 − 𝜆𝑟)2 + (𝛾𝑟/2)2

. (3.3)

Here 𝛾𝑟 and 𝜀 are defined by, respectively

𝛾𝑟 =
𝜆2𝑟(1 − 𝑎𝑟2)
𝜋𝑛𝑔𝐿𝑟√𝑎

= 𝐹𝑊𝐻𝑀 (3.4)

𝜀 = 𝑟2(1 − 𝑎)2
(1 − 𝑎𝑟2)2 . (3.5)

In Eq. (3.4), 𝛾𝑟=FWHM is the full width at half minimum of the resonance dip.
The line shape function of Eq. (3.3) corresponds to [1 − (1 − 𝜀)𝐿(𝜆)], with 𝐿(𝜆)
a Lorentzian function of maximum value unity, centred at 𝜆𝑟. We note that using
Eq. (3.3) instead of Eq. (3.1) is not really needed for analysis of a single dip.
However, we already introduce Eq. (3.3) in view of later analyses, which are strongly
simplified by it.

A fit of Eq. (3.3) to the measured dip of Fig. 3.2(b) yields the blue curve in
that figure, giving fit parameters 𝜀 = 0.043 and 𝛾𝑟 = 122 pm. Thus, the quality fac
tor 𝑄 = 𝜆𝑟/𝛾𝑟 is 12706. The value of 𝜀 being close to zero, the ring operates close to
critical coupling, which holds for [15]
𝑎 = 1, i.e. 𝜀 = 0. With 𝑛𝑔 = 4.37 derived from the free spectral range 𝑃𝑅𝑅 =
𝜆2𝑟/(𝑛𝑔𝐿) = 6.01 nm, Eqs. (3.4,3.5) give the values 𝑟 = 0.975 and 𝑎 = 0.987.
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3.3. Fiber interrogator
3.3.1. Circuitry and signal flow of the interrogator
The interrogator is a fiber optic circuit based on a MachZehnder interferometer
(MZI) with a 2×2 input coupler and a 3×3 output coupler. A schematic of the circuit
is shown in Fig. 3.3. Light from a broadband source (BBS, EXALOS EXS210069
01 superluminescent diode, maximum output power 14 mW) is guided to the RR
sensor, via a circulator, a fiber Bragg grating (FBG, from TeraXion, FWHM 200 pm)
and an EDFA set at gain of 24 dB (Amonics, AEDFAPM33BFA, noise figure ap
prox. 3.5 dB at 1 dBm). The width of the FBG reflection spectrum is such that a
single resonance of the sensor can be selected, in particular the one of Fig. 3.2(b).
Selection is by tuning the center of the FBG spectrum to the sensor’s resonance
wavelength in the absence of ultrasound, by applying axial strain with a mechan
ical stretcher and temperature using a thermoelectric cooler. The light from the
sensor is guided to the MZI, of which one arm has a variable length air gap, thus
providing a variable optical path difference (OPD). The air gap is realized using two
lenses (ThorLabs FiberPort collimators), one of which can be accurately translated.
One input of the 3×3 coupler is left open. Each coupler output is connected to
a combination of a photodetector (Fermionics, FD100, max dark current = 3 nA)
and a transimpedance amplifier (TIA, ADA48991 from Analog Devices with gain
2.2 kV/A, noise: 1nV/√𝐻𝑧), after which further amplification (gain=196) and high
pass filtering (𝑓𝑐 =1.0 kHz) are applied (last two operations not shown in Fig. 3.3).
The resulting output voltages 𝑉𝑖 are sampled by a data acquisition system (based
on National Instruments NI 5734, max. sampling rate 120 MSa/s). The sensor is
immersed in a water tank. Glued to a stick, it is mounted on one side of a frame
(see Fig. 3.3). On the other side, coaxial with the sensor and at a distance of
135 mm, a transducer is mounted for sending ultrasound waves, which is actuated
by an arbitrary waveform generator (AWG, Rigol DG1022). The fibers of the optic
circuit are standard connectorized fibers for telecom wavelengths. Prior to ultra
sound measurements with the sensor, the amplitude of the ultrasound pressure is
calibrated with a hydrophone (Precision Acoustics, SN2082, 1.0 mm) placed in the
sensor’s position.

The power transmission 𝑇𝑖 (𝑖 = 1, 2, 3) of the MZI, supposed lossless, at the
optical outputs is given by [16]

𝑇𝑀𝑍𝐼,𝑖 =
1
3 [𝑝 + 𝑞 cos(

2𝜋
𝜆 𝑂𝑃𝐷 + 𝜑𝑖 + 𝜑𝑒)] . (3.6)

The parameters 𝑝 and 𝑞 determine the fringe visibility 𝑞/𝑝. OPD is the optical
path difference between the MZI arms. For an ideal 3×3 coupler 𝑝 = 1 and 𝜑𝑖 =
0∘, 120∘, −120∘ for 𝑖 = 1, 2, 3. The phase 𝜑𝑒 is a socalled environmental phase
[9], that drifts slowly in time. Its origin is temperature instability of the fiber optic
circuit. Owing to the three phase shifted cosines in Eq. (3.6), at least two of the
voltages 𝑉𝑖 are nonzero for any total argument of the cosines, thus avoiding signal
fading [9]. For further analyses we rewrite Eq. (3.6) for wavelengths 𝜆 close to the
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Figure 3.3: Schematic of the fiber interrogator, based on a MachZehnder interferometer with a 2×2
coupler and a 3×3 coupler. BBS is the broad band source, FBG the fiber Bragg grating, EDFA the
erbium doped amplifier and AWG the arbitrary waveform generator. The lenses L1 and L2 are part
of the variable optical path length of one MZI arm, ranging from 4 to 13.5 mm. PD + TIA denotes
combination of photodetector and transimpedance amplifier. 𝑉1, 𝑉2 and 𝑉3 are the three output voltages
sampled by the data acquisition system. At the BBS, after the circulator and before the MZI the signal
spectrum has been indicated. The water tank with sensor and transducer shows the setup for ultrasound
measurements.

resonance wavelength 𝜆𝑟, using a first order Taylor expansion of 1/𝜆. This gives

𝑇𝑀𝑍𝐼,𝑖 ≈
1
3 [𝑝 + 𝑞 cos(2𝜋𝜆

𝑂𝑃𝐷
𝜆2𝑟

− 4𝜋𝜆𝑟
𝑂𝑃𝐷 − 𝜑𝑖 − 𝜑𝑒)]

= 1
3 [𝑝 + 𝑞 cos (𝜉𝜆 + 𝜑𝑖 + 𝜑𝑒)] . (3.7)

Here we have used 𝜉 = 2𝜋𝑂𝑃𝐷/𝜆2𝑟 = 2𝜋/𝐹𝑆𝑅, with 𝐹𝑆𝑅 the MZI’s free spectral
range. Further, 𝜓𝑒 is defined by 𝜓𝑒 = −4𝜋𝑂𝑃𝐷/𝜆𝑟−𝜑𝑒, which thus shows the same
drift as 𝜑𝑒. Renumbering the outputs has removed the minus sign of 𝜑𝑒. Retaining
only the Taylor expansion’s first order term is justified, as the deviation of 𝜆 from
𝜆𝑟 is about 100 pm, to be compared with 𝜆𝑟 ≅ 1550 nm.

𝑇𝑀𝑍𝐼,i of Eq. (3.7) is a main ingredient in the mathematical description leading
to the output voltages 𝑉𝑖 of the overall circuit in Fig. 3.3. For the total description
we refer to Appendix A, from which we have extracted the interrogation procedure
summarized in Section 3.4.1 and applied in Section 3.4.2.
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3.3.2. Characterization of the fiber Bragg grating and Mach
Zehnder interferometer

The FBG was characterized by measuring its reflection spectrum, using an optical
spectrum analyzer (OSA, Yokogawa AQ6315A) coupled to port 3 of the circulator
(see Fig. 3.3). Fig. 3.4(a) shows the measured spectrum (blue data points), which
has a tophat shape and decays steeply. We have fitted a superLorentzian function
to the data points. This function, also used to describe the transverse profile of
optical beams [17], is given by

𝑅𝐹𝐵𝐺(𝜆) = [1 + (
𝜆 − 𝜆0
𝛾𝐹𝐵𝐺/2

)
𝑁
]
−1

. (3.8)

Here 𝛾𝐹𝐵𝐺 is the FWHM of the line shape with central wavelength 𝜆0, and the integer
𝑁 is the order of the superLorentzian. 𝑁 = 8 gives the best fit result. In Fig. 3.4(a)
we also show the fitted function, which yields 𝛾𝐹𝐵𝐺 = 207 pm, in agreement with
the specification.

The combined spectrum of the FBG and sensor #1 is presented in Fig. 3.4(a)
as well (green data points). It was measured in the configuration of Fig. 3.3, but
with the difference that the OSA instead of the MZI is coupled to the sensor’s pass
port. Alignment of the FBG spectrum is close to symmetric with respect to the
resonance dip, which here is broader than in Fig. 3.2b. The increase of ring FWHM
results from the OSA resolution and the higher power applied to the RR in this
measurement configuration, due to nonlinear optical absorption [15, 18]. This
changes the effective index of the ring waveguide, which explains the dip’s shift to
longer wavelength as compared to Fig. 3.2b. The normalization of the two curves
shown in Fig. 3.4(a) causes an apparent broadening of FBG reflection spectrum.
The combined spectrum indicates a latitude of about 100 pm before the dip moves
out of the FBG reflection spectrum as a result of applied ultrasound.

The MZI was characterized by directly connecting a tunable laser (Santec TSL
210VF, set at output power 500 𝜇𝑊) to the MZI input, to measure the output
voltages 𝑉𝑖 as a function of wavelength. The wavelength was swept from 1550
to 1551 nm at a rate of 1.2 nm/min, giving a measurement time of 50 s. This
time, unlike the very short measurement times in the actual ultrasound experiments
(Section 3.4.2), is comparable to the time scale of the environmental phase drift1.
Therefore, to exclude the drift, a stabilization time of the setup of several hours
was observed before the measurements, with the laser on. The characterization
was done for five OPDs, i.e. five positions of lens L2 in Fig. 3.3. In agreement with
Eq. (3.8), the resulting five sets of 𝑉𝑖(𝜆) traces are cosines, each oscillating around
a nonzero average.

Traces for OPD = 12.9 mm are shown in Fig. 3.4(b), together with fits of the
function
1Thermal fluctuations along the MZI are the main cause of the phase drift. This effect can be mitigated
by fabricating the MZI on a chip: since the chip dimensions are much reduced, it is easier to control its
temperature. However, MZIs can be extremely sensitive to temperature depending on its OPD, and a
different strategy is used in Chapter 4.
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Figure 3.4: (a) FBG reflection spectrum and combined FBG reflection and RR transmission spectrum,
both normalized to their maximum value, and a fit of Eq. (3.8) to the FBG spectrum for 𝑁 = 8. (b)
Traces of the interrogator outputs 𝑉𝑖 as a function of wavelength, with data points shown as crosses.
Due to the way of plotting, the DC component of the 𝑉𝑖 is not visible. The oscillatory functions are fits
of 𝐴𝑖 cos(𝜉𝜆 + 𝜑𝑒 + 𝜓𝑒) to the data points. The fits give: 𝐴𝑖 = 63.4, 68.9, 68.7 mV (𝑖 = 1, 2, 3) and
𝜑𝑒 +𝜓𝑒 = 176∘, 59∘ and 67∘ (𝑖 = 1,2,3). The traces were used in obtaining the correction factors and
in Eqs. (9) and (10). (c) Corrected (𝑉𝑥 , 𝑉𝑦) points, together with the fitted circle. The circle radius is
181 mV.

𝑉𝑖 = 𝐴𝑖 cos(𝜉𝜆 + 𝜑𝑖 + 𝜓𝑒) to the traces, from which first the average was sub
tracted. The fits are performed for the five sets, treating 𝐴𝑖 and the sum 𝜑𝑖 + 𝜓𝑒
as fit parameters. The fits indicate that the amplitudes of the three cosines of a set
are not equal (see caption), which contradicts Eq. (3.8). This implies that the circle
defined by voltages 𝑉𝑥 and 𝑉𝑦 in Eqs. (3.32) and (3.33), respectively, is deformed
to an ellipse. As explained in Appendix A, the circular shape defined by these equa
tions plays a central role in the interrogation procedure. Taking for the traces of
Fig. 3.4(b) the fitted phase of output 𝑉1 as a reference (𝜑1 + 𝜓𝑒 = 0), we obtain
𝜑2 + 𝜓𝑒 = −117∘ and 𝜑3 + 𝜓𝑒 = 117∘. Thus, the phases deviate somewhat from
the nominal values. We note that slight nonideal behavior of amplitude and phase
of 3×3 fiber couplers is not uncommon and has been reported before [8, 19]. The
measured traces also yield the relation between the FSR and the setting of the dial
for choosing the OPD.

In order to make the amplitudes of the cosines equal, we modified Eqs. (3.32)
and (3.33) by including correction factors 𝑐2 and 𝑐3:

𝑉𝑥(𝑡) = 2𝑉1 − 𝑐2𝑉2 − 𝑐3𝑉3 (3.9)
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𝑉𝑦(𝑡) = √3 (𝑐3𝑉3 − 𝑐2𝑉2) . (3.10)

Initially, we set 𝑐2 = 𝑐3 = 1 for the traces in Fig. 3.4(b). Using these start values
the equation of the ellipse given by the locus of points (𝑉𝑥 , 𝑉𝑦) defined by Eqs.
(3.9) and (3.10) is obtained by least square fitting [20], giving the ellipse semi
axes 𝑎 and 𝑏. Next, using an optimization algorithm [21] the function 𝑓(𝑐2, 𝑐3) =
|1− 𝑎(𝑐2, 𝑐3)/𝑏(𝑐2, 𝑐3)| is minimized, yielding the circle aimed for. The initial ellipse
semiaxes 𝑎 and 𝑏 serve as start values. The result is 𝑐2=0.85 and 𝑐3=0.86, for
minimum 𝑓(𝑐2, 𝑐3) = 0.001. The corrected (𝑉𝑥 , 𝑉𝑦) points have been plotted in Fig.
3.4(c), together with the fitted circle. The correction factors 𝑐2 and 𝑐3 are used in
the interrogation procedure of Section 3.4.2.

3.4. Interrogation of the ultrasound sensor
3.4.1. Interrogation procedure
The goal of the interrogation procedure of the sensor is quantitative extraction of
the ultrasoundinduced optical signal of the sensor from the three output voltages
𝑉𝑖(𝑡) (𝑖 = 1, 2, 3) of the interrogator. Appendix A is the basis of the procedure. Here,
we give the main dataprocessing steps for the case of continuous ultrasound waves
of frequency 𝑓0. We start from slightly modified versions of Eqs. (3.35) and (3.36)
for the mutual orthogonal voltages 𝑉𝑥(𝑡) and 𝑉𝑦(𝑡) constructed from the measured
𝑉𝑖(𝑡):

𝑉𝑥(𝑡) = 2𝑉1 − 𝑉2 − 𝑉3 = 3𝑅𝐾 cos (Φ(𝑡) + 𝜓𝑒) + 𝑥0(𝜓𝑒) (3.11)

𝑉𝑦(𝑡) = √3 (𝑉3 − 𝑉2) = 3𝑅𝐾 sin (Φ(𝑡) + 𝜓𝑒) + 𝑦0(𝜓𝑒). (3.12)

As compared to Eqs. (3.35) and (3.36) the modifications in Eqs. (3.11) and (3.12)
comprise neglect of constant parameters in the argument of the cosine and sine,
and in the functions 𝑥0 and 𝑦0. It is understood that these are absorbed in 𝜓𝑒. This
simplifies the analysis, but has no consequences for the final result. Eqs. (3.11) and
(3.12) are parametric equations of a circle of radius 3𝑅𝐾 and with center (𝑥0, 𝑦0).
Φ(𝑡) = Φ0 sin(2𝜋𝑓0𝑡) is the instantaneous angular deflection of the point (𝑉𝑥 , 𝑉𝑦) on
an arc of the circle, which is periodically traced at the frequency 𝑓0 of the ultrasound.
𝑅𝐾 is constant for constant total gain of the interrogator circuit, independent of the
applied ultrasound pressure, but dependent on the OPD of the MZI. Dependence
of 𝑉𝑥(𝑡) and 𝑉𝑦(𝑡) on the environmental phase 𝜓𝑒 is not an issue for the analysis,
since 𝜓𝑒 is constant on the time scale of a single interrogation of the sensor.

The dataprocessing steps are as follows. First, for a reference ultrasound pres
sure of high enough amplitude, implying a long enough arc of the circle, the radius
3𝑅𝐾 and the center (𝑥0, 𝑦0) are determined using the fit procedure already described
for an ellipse in Section 3.3.2. The fitted value of 3𝑅𝐾 then holds for all other pres
sures of a measurement series. We typically use a rather high reference pressure
of a series of pressures (in Section 3.4.2 we use 2280 Pa for sensor #1 and 312 Pa
for sensor #2), since a high pressure gives a long arc and thus an accurate fit result
for 3𝑅𝐾.
Next, the fitted 3𝑅𝐾 is used to retrieve the circle center (𝑥0, 𝑦0) for each amplitude
pressure 𝑝0 of the series by minimizing [20, 21] the average squared deviations of
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the locus of points (𝑉𝑥 , 𝑉𝑦) from a circle of radius 3𝑅𝐾.
Subsequently, for each pressure of the series we determine the instantaneous de
flection. In more detail, we obtain the wrapped deflection from Eqs. (3.11) and
(3.12) according to

Φ(𝑡)𝑤𝑟. = atan2 (𝑉𝑦 − 𝑦0, 𝑉𝑥 − 𝑥0) − 𝜓𝑒 . (3.13)

Here atan2 is the fourquadrant arctangent function. Upon input of the coordinates
of a point in the plane, atan2 returns the angle of the point in the range (−𝜋, 𝜋 ].
Φ(𝑡)𝑤𝑟. in principle oscillates regularly in time around −𝜓𝑒, but may be discontin
uous in view of the limited range of atan2, even for small resonancewavelength
modulation. Therefore, we unwrap Φ(𝑡)𝑤𝑟. using the unwrap function of MATLAB
[22], which returns the smooth unwrapped deflection. After subtracting from the
unwrapped deflection its average −𝜓𝑒, we arrive at the proper instantaneous de
flection Φ(𝑡), which describes the periodic tracing of the circle arc in the right way.
Fourier transformation of Φ(𝑡) then yields the amplitude Φ0, the quantity sought
for.
As a last step, again following Appendix A, the amplitude 𝛿0 of the resonance
wavelength modulation is obtained from

𝛿0 = 𝜅
Φ0
𝜉 = 𝜅 𝜆2𝑟Φ0

2𝜋𝑂𝑃𝐷 . (3.14)

Here 𝜅 is the correction factor introduced in Appendix A, where its values are de
rived. In the next section we will follow an experimental approach for obtaining
𝜅.

The dataprocessing just described is performed offline, which is adequate for
the present purpose. Various scenarios can be conceived for realtime data pro
cessing, which is required for later application to IVUS imaging.

3.4.2. Interrogation experiments
We interrogated sensors #1 and #2 according to the above procedure, using OPD
values of 6.9 and 12.9 mm, which almost span the available range. We applied
two series of pressures amplitudes, which become apparent in Fig. 3.6 below. For
each pressure we acquired time traces of the three voltages 𝑉𝑖(𝑡) during 300 ms,
sampled at 30 MSa/s.

In Fig. 3.5(a), as an example, we show for sensor #1 part of the 𝑉𝑖(𝑡) traces and
of the 𝑉𝑥(𝑡) and 𝑉𝑦(𝑡) traces deduced from these, for OPD=12.9 mm and a pres
sure of 2280 Pa, the reference pressure for determining radius 3𝑅𝐾 for this sensor.
Similar traces (not shown) were obtained for sensor #2 for reference pressure 312
Pa. The traces results after noise reduction, applying a Gaussian bandpass filter of
FWHM=80 Hz centred at the fundamental frequency and its harmonics. The ultra
sound period of 0.77 𝜇s is clearly present in the traces, while the second harmonic
can be seen as well. In Fig. 3.5(b) the points (𝑉𝑥 , 𝑉𝑦) are plotted, together with
the fitted circle of radius 3𝑅𝐾 = (191± 6) mV. The spectral content of the 𝑉𝑖(𝑡) of
sensor #1 is more apparent in the Fourier transforms in Fig. 3.5(c), in which the
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Figure 3.5: (a) Part of traces of 𝑉𝑖(𝑡) (𝑖 = 1, 2, 3) for sensor #1, sampled while interrogating the sensor,
and of the mutual orthogonal voltages 𝑉𝑥 and 𝑉𝑦, for OPD = 12.9 mm and 𝑝0 = 2280 Pa. (b) Plot of
the points (𝑉𝑥 , 𝑉𝑦), which trace a circle arc, together with the fitted circle. (c) Fourier transforms of the
𝑉𝑖(𝑡) and of the angular deflection Φ(𝑡) for OPD = 12.9 mm and 𝑝0 = 2280 Pa (sensor #1) and 𝑝0 =
312 Pa (sensor #2). The weak signals at the third harmonic are indicated as 3𝑓0,#1 and 3𝑓0,#2 for sensor
#1 and #2, respectively.
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transforms for sensor #2 are included as well for reference pressure 312 Pa. Apart
from the fundamental frequency (1.3 and 0.77 MHz for sensor #1 and #2, respec
tively), the transforms also show peaks for the second and third harmonic, albeit
a very small peak for the third harmonic. Peaks at the harmonics agree with the
Bessel function expansion referred to in Appendix A. To obtain the angular deflec
tion Φ(𝑡) we follow Section 3.4.1, leading to the Fourier transforms in Fig. 3.5(c),
upper panel. At the fundamental frequency the transforms show a sharp peak.
Its height is the angular deflection’s amplitude and amounts to Φ0 = (0.69 ±0.04)
radian and Φ0 = (0.62±0.05) radian for sensor #1 and #2, respectively. This is the
main interrogation result for these experimental conditions.

For all other pressures we determined the Φ(𝑡) traces and the corresponding
amplitudes Φ0 for both sensors. For sensor #1, Fig. 3.6(a) shows the main plot of
Φ0 versus 𝑝0. The pressure range is 2.3  5750 Pa. Fig. 3.6(b) zooms in on the lower
pressures. The straight lines through the origin are fits to those data points showing
the linear behavior discussed in Appendix A. The slopes 𝜕Φ0/𝜕𝑝0 of the fitted lines,
which are the sensitivities of sensor #1 for these OPDs, are given in Table 1, along
with the sensitivities of sensor #2 and other parameters of the two sensors. For
sensor #2, a comparable data set is shown in Fig. 3.6(c,d) for the pressure range
1.2  775 Pa. The plots indicate that sensor #2 is more sensitive than sensor #1.
This arises from the larger membrane diameter of sensor #1, which results in a
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Figure 3.6: Main results of the interrogation of the sensors: (a) amplitude of the angular deflection Φ0
for sensor #1 as a function of the pressure amplitude 𝑝0 of 1.3 MHz ultrasound. (b) Zoomin of (a) for
the pressure range 030 Pa. (c) Amplitude of the angular deflection Φ0 for sensor #2 as a function of
the pressure amplitude 𝑝0 of 0.77 MHz ultrasound. (d) Zoomin of (c) for the pressure range 015 Pa.
In (a)(d) OPDs of the MZI are as stated and the lines are fitted straight lines through the origin. (e)
Sensitivity as a function of frequency of sensor #2 for OPD = 12.9 mm.
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Table 3.1: Parameters obtained for sensors #1 and #2: 𝜕Φ0/𝜕𝑝0 is the sensor sensitivity, 𝜕𝛿0/𝜕𝑝0 is
the amplitude of the resonancewavelength modulation of the sensor per unit of pressure, while 𝜅𝑒𝑥𝑝.
and 𝜅𝑡ℎ𝑒𝑜. are the experimental and theoretical correction factors, respectively, which relate to Eq.(3.14).
The uncertainty in 𝜕𝛿0/𝜕𝑝0 was omitted, since its contribution to the uncertainty of 𝜅𝑒𝑥𝑝. is negligible.

OPD (mm) Parameter Sensor #1 Sensor #2
6.9 𝜕Φ0/𝜕𝑝0 0.15 ± 0.02 1.04 ± 0.06
12.9 (milliradian/Pa) 0.30 ± 0.01 1.98 ± 0.08


𝜕𝛿0/𝜕𝑝0
(fm/Pa) 5.4 25.9

6.9
12.9 𝜅𝑒𝑥𝑝.

0.65 ± 0.3
0.60 ± 0.02

0.45 ± 0.03
0.44 ± 0.02

6.9
12.9 𝜅𝑡ℎ𝑒𝑜.

1.07
1.26

1.03
1.16

larger membrane deflection per unit of pressure. Further, the sensitivity is higher
for the larger OPD for both devices. This agrees with Eq. (3.14), which indicates
that the ratio Φ0/𝑂𝑃𝐷 is constant for a constant 𝛿0. The sublinear behavior in
the plots above a certain pressure indicates that in that range the amplitude of the
resonancewavelength modulation is such that the bandwidth of the FBG becomes
limiting. The minimum pressures we succeed to detect in these measurements
are 2.3 and 1.2 Pa for sensor #1 and #2, respectively, detection limits comparable
to the one reported in [7]. The present detection limit is determined noise, both
electronic and shotnoise. We also observed sources of disturbing signals external
to the interrogator. The order of magnitude of the spurious signals is a few mV,
comparable to the voltage values for small pressure amplitudes.

The data shown in Fig. 3.6(a)(d) were obtained using monochromatic con
tinuous wave ultrasound, chosen at the frequency of the membrane’s maximum
deflection. The sensors, however, are broadband owing to the membrane’s intrin
sic loss. This property is apparent from the sensitivity as a function of frequency,
which for sensor #2 is shown in Fig. 3.6(e). The function plotted is 𝜕Φ0/𝜕𝑝0 ,
normalized to unity at its maximum. It was measured using continuous waves and
a frequency sweep. The function has the typical shape for a damped resonator.
The peak occurs at 0.77 MHz, while the 6 dB bandwidth is 14.5%. This sensitivity
curve and the one in [7] for the same sensor are very close to each other. We note
that the bandwidth of the sensor enables application of tailored ultrasound pulses,
as may be more appropriate for later imaging. If for certain applications a larger
bandwidth is needed, it can for example be increased by adding a lossy layer to the
membrane.

We now discuss the correction factor 𝜅 occurring in Eq. (3.14) and finally, in
relation to 𝜅, make further comments on the sensitivities 𝜕Φ0/𝜕𝑝0 listed in Table 3.1.
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From Eq. (3.14), the correction factor can be rewritten as:

𝜅 = 2𝜋𝑂𝑃𝐷𝜕𝛿0𝜕𝑝0
[𝜆2𝑟
𝜕Φ0
𝜕𝑝0

]
−1
, (3.15)

where the missing ingredient is 𝜕𝛿0/𝜕𝑝0. The pressure dependence of 𝛿0 is derived
using the modulation method detailed in Appendix B, for low pressures leading to
linear behavior and the derivatives 𝜕Φ0/𝜕𝑝0 listed in Table 1. For the two sensors
and for either OPD we thus obtain the experimental values 𝜅𝑒𝑥𝑝. listed in Table 1, to
be compared with the listed values 𝜅𝑡ℎ𝑒𝑜. taken from Appendix A (discussed there
in relation to Fig. 3.7). The 𝜅𝑒𝑥𝑝. values for sensor #1 exceed those of sensor #2, in
agreement with the behaviour of 𝜅𝑡ℎ𝑒𝑜.. Further, on average the ratio of the values
is 0.47 for sensor #1 and 0.61 for sensor #2. In our opinion, the agreement to
much better than one order of magnitude validates the mathematical description
of Appendix A in presenting the proper physics picture.

The ratio of the experimental sensitivities in Table 3.1 for the two OPDs equals
0.50 and 0.53 for sensor #1 and sensor #2, respectively. The ratio of the theoreti
cal sensitivities can be obtained using the above relation between 𝜅 and 𝜕Φ0/𝜕𝑝0
(where we use 𝜅𝑡ℎ𝑒𝑜.). This yields for the theoretical ratio 0.63 and 0.60 for sensor
#1 and sensor #2, respectively. The relative difference between the theoretical and
experimental sensitivity ratios is 18% on average. This indicates a high degree of
consistency of our description of the operation of the interrogator and the actual
interrogation experiments.

Conclusion
We interrogated two silicon ringresonator sensors for ultrasound in the MHz range
using an interrogator based on a fiber MachZehnder interferometer (MZI), by ap
plying the procedure based on our mathematical description of the interrogator
operation in Appendix A. According to the geometrical interpretation of the opera
tion, the amplitude of the angular deflection Φ0 on the circle arc periodically traced
in the plane of the two orthogonal interrogator voltages, is the principal sensor sig
nal. Φ0 is proportional to the amplitude of the resonancewavelength modulation
of the sensor in response to the ultrasound. The main interrogation results are the
linear relations between Φ0 and the pressure amplitude of continuous wave ultra
sound, in a broad pressure range and for optical path differences (OPDs) of the MZI
of 6.9 and 12.9 mm. The minimum detected pressures is 1.2 Pa. For sensor #1,
the sensitivity amounts to 0.15 and 0.30 milliradian/Pa, for OPDs of 6.9 and 12.9
mm, respectively. For sensor #2, the sensitivity is 1.04 and 1.98 milliradian/Pa for
these OPDs. This higher sensitivity for the larger OPD is accompanied by a lower
output voltages of the MZI, in agreement with the prediction in Appendix A. This
suggests a tradeoff between sensitivity and signal strength, for which in future a
brighter broadband source will be helpful, also for avoiding the EDFA we use now.

This work on the fiber interrogator is an important step towards an integrated
photonics interrogator. The architecture of an integrated photonics version can be
similar to the fiber version but should be much smaller so that the environmental
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phase drift we have encountered here will be much less severe. The ultrasound
sensors should then be equipped with a drop port, which gives a peak in the trans
mission. Interrogating a dip is a major issue. The optical background around the
minimum is also amplified by the EDFA and has no information about ring reso
nance. As a result, a highoptical gain applied can quickly saturate the analogue
todigital converters of the acquisition system. To overcome this issue, we used a
highpass electric filter (cut frequency at 1kHz) at the input of the data acquisition
system. The FBG filter has a very limited FHMW (200 nm) compared to the ring
FHMW (120 pm), limiting the sensor’s dynamic range. Furthermore, as the spec
tra of the ring and the FBG filter feature similar FWHM, their coherence lengths
are similar, distorting the function �̂�(𝛿𝜆𝑟), as described in Appendix A. It can be
shown that such distortion is the cause of the circle centres to be dependent on
the thermal phase drift. These effects have been handled by fitting a circle to the
Lissajous (𝑉𝑥(𝑡), 𝑉𝑦(𝑡)) in order to retrieve the radius and the circle centre; and by
introducing a correction factor, accounting for the deformation of the circle arc.
The disturbance of the optical background could be avoided by using an FBG with
a wider FWHM, which reduces the coherence length of the optical background and
increasing the sensor’s dynamic range.

Appendix A : Mathematical description of the oper
ation of the fiber interrogator
In this Appendix we present a mathematical description of the operation of the
fiber interrogator when interrogating a ringresonator sensor in the passport con
figuration. Based on the overall signal flow we arrive at the three outputs of the
MZI, of which specific linear combinations yield the signal that is a measure of the
amplitude of the applied ultrasound waves. The interrogation procedure we follow
in the main text is based on this Appendix. Reproducing Eqs. (3.3), (3.7) and (3.8)
of the main text, the latter for 𝑁 = 8 and 𝜆0 = 𝜆𝑟, gives

𝑇pass(𝜆, 𝛿𝜆𝑟) =
(𝜆 − 𝜆𝑟 − 𝛿𝜆𝑟(𝑡))

2 + 𝜀(𝛾𝑟/2)2

(𝜆 − 𝜆𝑟 − 𝛿𝜆𝑟(𝑡))
2 + (𝛾𝑟/2)2

(3.16)

𝑇𝑀𝑍𝐼,i(𝜆) =
1
3 [𝑝 + 𝑞 cos (𝜉𝜆 + 𝜑𝑖 + 𝜑𝑒)] (3.17)

with 𝜙𝑖 = 0∘, 120∘, −120∘ for 𝑖 = 1, 2, 3.

𝑅FBG =
1

1 + ( 𝜆−𝜆𝑟
𝛾𝐹𝐵𝐺/2

)
8 . (3.18)

Eq. (3.16) includes the resonancewavelength modulation 𝛿𝜆𝑟 ≡ 𝛿𝜆𝑟(𝑡) = 𝛿0 sin(2𝜋𝑓0𝑡)
resulting from application of ultrasound waves of frequency 𝑓0 . Following the signal
path in Fig. 3.3 and using the integrating property of the photodetectors, we can
write the timedependent output voltage of the TIAs as
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𝑉𝑖(𝛿𝜆𝑟) = 𝛼𝑃BBS𝑅ph𝐺∫
∞

0
𝑅FBG(𝜆)𝑇pass(𝜆, 𝛿𝜆𝑟)𝑇𝑀𝑍𝐼,i(𝜆)𝑑𝜆. (3.19)

Here 𝑃BBS is the power density of the broadband source, supposed constant in
the range the FBG spectrum. 𝑅ph is the responsivity of the photodetectors, 𝐺 the
combined gain of the EDFA and TIA, while 𝛼 is a transmission coefficient of the
overall fiber optic circuit. In the following we drop the prefactors of the integral,
since later these cancel when extracting Φ0, which is the principal sensor signal
defined below. Cancellation of prefactors becomes clear in Section 3.4.1 of the
main text. Also dropping the factor 1/3 of 𝑇𝑀𝑍𝐼,i and the subscripts FBG and pass,
this leads to 𝐼i(𝛿𝜆𝑟), the 𝑖𝑡ℎ component of the integral proportional to the voltage
𝑉𝑖(𝛿𝜆𝑟)

𝐼𝑖 = ∫
∞

0
𝑅 (𝜆) 𝑇 (𝜆, 𝛿𝜆𝑟) [𝑝 + 𝑞 cos (𝜉 𝜆+𝜑𝑖 + 𝜓𝑒)] 𝑑𝜆

= 𝑝∫
∞

0
𝑅 (𝜆) 𝑇 (𝜆, 𝛿𝜆𝑟) 𝑑𝜆 + 𝑞∫

∞

0
𝑅 (𝜆) 𝑇 (𝜆, 𝛿𝜆𝑟) cos (𝜉 𝜆+𝜑𝑖 + 𝜓𝑒) 𝑑𝜆 (3.20)

= 𝑝 𝐼𝛼(𝛿𝜆𝑟) + 𝑞 𝐼𝛽,𝑖(𝛿𝜆𝑟).

Here we have used

𝐼𝛼(𝛿𝜆𝑟) = ∫
∞

0
𝑅(𝜆)𝑇(𝜆, 𝛿𝜆𝑟)𝑑𝜆 (3.21)

𝐼𝛽,𝑖(𝛿𝜆𝑟) = ∫
∞

0
𝑅(𝜆)𝑇(𝜆, 𝛿𝜆𝑟) cos(𝜉𝜆 + 𝜑𝑖 + 𝜓𝑒)𝑑𝜆

= 𝑅𝑒 {𝑒𝑖(𝜑𝑒+𝜓𝑒)∫
+∞

0
𝑅(𝜆)𝑇(𝜆, 𝛿𝜆𝑟)𝑒𝑖𝜉𝜆𝑑𝜆} . (3.22)

By substituting the expressions for 𝑇(𝜆, 𝛿𝜆𝑟) and 𝑅(𝜆) from Eqs. (3.16) and (3.18)
into Eqs. (3.21) and (3.22), we obtain

̂𝐽 ≡ ∫
∞

0
𝑅(𝜆)𝑇(𝜆, 𝛿𝜆𝑟)𝑒𝑖𝜉𝜆𝑑𝜆 =

∫
∞

0

(𝜆 − 𝜆𝑟 − 𝛿𝜆𝑟)
2 + 𝜀(𝛾𝑟/2)2

(𝜆 − 𝜆𝑟 − 𝛿𝜆𝑟)
2 + (𝛾𝑟/2)2

𝑒𝑖𝜉𝜆

1 + ( 𝜆−𝜆𝑟
𝛾𝐹𝐵𝐺/2

)
8𝑑𝜆. (3.23)

The integrals 𝐼𝛼(𝑡) and 𝐼𝛽,𝑖(𝑡) can then be written as

𝐼𝛼(𝑡) = ̂𝐽|𝜉=0 (3.24)

𝐼𝛽,𝑖(𝑡) = 𝑅𝑒 {𝑒𝑖(𝜑𝑒+𝜓𝑒) ̂𝐽} . (3.25)
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Using the fact that the integrand in Eq. (3.23) is vanishingly small for 𝜆 ≤ 0, we
can integrate ̂𝐽 from (−∞,∞)2. Making the substitution 𝜆 − 𝜆𝑟 → 𝑧 in Eq. (3.23)
and using contour integration we obtain

̂𝐽/𝑒𝑖𝜉𝜆𝑟 ≡ �̂� = ∮
𝐶

(𝑧 − 𝛿𝜆𝑟)
2 + 𝜀(𝛾𝑟/2)2

(𝑧 − 𝛿𝜆𝑟)
2 + (𝛾𝑟/2)2

𝑒𝑖𝜉𝑧

1 + ( 𝑧
𝛾𝐹𝐵𝐺/2

)
8𝑑𝑧 = ∮

𝐶
𝑓(𝑧)𝑑𝑧. (3.26)

The contour 𝐶 is the upper half circle of radius 𝑅 in the complex plane, includ
ing the interval [−𝑅, 𝑅] of the real axis, taken in the limit 𝑅 → ∞ . The poles
of 𝑓(𝑧) arise from the RR transmission function and FBG reflection function, re
spectively, and for the contour 𝐶 occur for 𝑧𝑅𝑅 = 𝛿𝜆𝑟 + 𝑖𝛾𝑟/2 (RR pole) and
𝑧𝐹𝐵𝐺,𝑘 = (𝛾𝐹𝐵𝐺/2) exp [𝑖𝜋 (𝑘 + 1/2) /4], 𝑘 = 0, 1, 2, 3 (FBG poles). Using Cauchy’s
residue theorem, the integral is evaluated to obtain

∮
𝐶
𝑓(𝑧)𝑑𝑧 = �̂�(𝛿𝜆𝑟) + �̂�(𝛿𝜆𝑟). (3.27)

Here �̂�(𝛿𝜆𝑟) and �̂�(𝛿𝜆𝑟) are given by:

�̂�(𝛿𝜆𝑟) = −
𝜋𝛾𝑟
2

(1 − 𝜀) 𝑒−𝜉𝛾𝑟/2

1 + (𝛿𝜆𝑟+𝑖𝛾𝑟/2𝛾𝐹𝐵𝐺/2
)
8 𝑒𝑖𝜉𝛿𝜆𝑟 ≡ �̂�(𝛿𝜆𝑟)𝑒𝑖𝜉𝛿𝜆𝑟 (3.28)

�̂�(𝛿𝜆𝑟) = −𝑖
𝜋
4

3

∑
𝑘=0

𝑧𝐹𝐵𝐺,𝑘 [(𝑧FBG,k − 𝛿𝜆𝑟)
2 + 𝜀(𝛾𝑟/2)2]

(𝑧𝐹𝐵𝐺,𝑘 − 𝛿𝜆𝑟)
2 + (𝛾𝑟/2)2

𝑒𝑖𝜉𝑅𝑒(𝑧FBG,k)𝑒−𝜉𝐼𝑚(𝑧FBG,k).

(3.29)
The complex functions �̂�(𝛿𝜆𝑟) and �̂�(𝛿𝜆𝑟) are timedomain (oscillatory) signals
resulting from light interference in the 3×3 coupler, the time dependence being
expressed by 𝛿𝜆𝑟(𝑡).

The oscillatory behavior of �̂�(𝛿𝜆𝑟) is recognized to the full extent from the Bessel
function expansions [23] of exp(𝑖𝜉𝛿𝜆𝑟) = cos [𝜉𝜆𝛿0 sin(2𝜋𝑓0𝑡)]+𝑖 sin [𝜉𝜆𝛿0 sin(2𝜋𝑓0𝑡)],
which apart from terms at the fundamental frequency also give harmonics. The
factor exp(𝑖𝜉𝛿𝜆𝑟) is multiplied by the envelope �̂�(𝛿𝜆𝑟), implicitly defined in Eq.
(3.28). The envelope includes both RR and FBG parameters and attenuates the
oscillations with increasing 𝛿0 and increasing OPD. This OPDdependence follows
from the damping factor exp(−𝜉𝛾𝑟/2) = exp(−𝑂𝑃𝐷/𝐿𝑐,𝑟). Here 𝐿𝑐,𝑟 is the coher
ence length related to the wavelength and spectral width of the ring’s resonance
dip. 𝐿𝑐,𝑟 limits the OPD of the MZI for which fringes in traces 𝑉𝑖(𝑡) can be resolved
experimentally. For the resonance we are using for the sensing (Fig. 3.2(b) we
have 𝐿𝑐,𝑟 ≈ 6 mm.

�̂�(𝛿𝜆𝑟) arises from interference of waves within the bandwidth of the FBG, each
FBG pole giving rise its own interference signal, damped by the factor exp [−𝜉𝐼𝑚 (𝑧FBG,k)]
2The same approximation is applied to all integrals from (−∞,∞) in Chapters 4 and 5.
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= exp (−𝑂𝑃𝐷/𝐿𝑘𝑐,FBG) . Here 𝐿𝑘𝑐,FBG is the coherence length related to the width of
the FBG spectrum and due to the 𝑘𝑡ℎ FBG pole. It is given by

𝐿𝑘𝑐,𝐹𝐵𝐺 =
𝜆2𝑟

2𝜋𝐼𝑚(𝑧𝐹𝐵𝐺,𝑘)
= 𝜆2𝑟
𝜋𝛾𝐹𝐵𝐺 sin [

𝜋
4 (𝑘 + 1/2)]

. (3.30)

For 𝑘 = 0, we obtain 𝐿𝑘𝑐,𝐹𝐵𝐺 ≈ 10 mm.
We have studied the complex functions �̂�(𝛿𝜆𝑟), �̂�(𝛿𝜆𝑟) and their sum �̂�(𝛿𝜆𝑟).

The behavior of these functions in the complex plane is exemplified in Fig. 3.7
by plots for OPDs of 6.9 and 12.9 mm, the values used in the experiments (Sec
tion 3.4.2 of the main text). The values of the other parameters used in obtain
ing the data points of the functions are given in the figure caption. It can be
seen that �̂�(𝛿𝜆𝑟) and �̂�(𝛿𝜆𝑟) resemble a circle arc, whereas �̂�(𝛿𝜆𝑟) is like a short
line segment given by 𝑅𝑒{�̂�(𝛿𝜆𝑟)} ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Resulting from a single period of
𝛿𝜆𝑟(𝑡) = 𝛿0 sin(2𝜋𝑓0𝑡), where 𝛿0 =40 pm is approximately the maximum ampli
tude in the experiment, the arcs and line segments are symmetric with respect to
the real axis.

�̂�(𝛿𝜆𝑟) would be a circle arc if it were given by solely the factor exp(𝑖𝜉𝛿𝜆𝑟),
implying that deviation from an arc is due to the envelope �̂�(𝛿𝜆𝑟). To visualize the
deviation, Fig. 3.7 also shows the circle �̂�0(𝛿𝜆𝑟) = 𝑅𝐹0 exp{𝑖𝜉𝛿𝜆𝑟}, defined by the
radius 𝑅𝐹0 = �̂�(0). Deviation form a circle is present for either OPD, albeit most
clearly for OPD=6.9 mm.

The rather close resemblance of the sum �̂�(𝛿𝜆𝑟) = �̂�(𝛿𝜆𝑟) + �̂�(𝛿𝜆𝑟) to a circle
arc for either OPD suggests as a first approximation

�̂�(𝛿𝜆𝑟) = �̂�(𝛿𝜆𝑟)𝑒𝑖𝜉𝛿𝜆𝑟 + �̂�(𝛿𝜆𝑟) ≅ �̂�0(𝛿𝜆𝑟) + 𝑧0 = 𝑅𝐹0𝑒𝑖𝜉𝛿𝜆𝑟 + 𝑧0. (3.31)

Here 𝑧0 = |𝑧0| exp(𝑖𝜑𝑧0) is the circle center’s coordinate, which in this approxi
mation can be taken constant and real. Eq. (3.31) for the function �̂�(𝛿𝜆𝑟) has a
simple geometrical interpretation: the product 𝜉𝛿𝜆𝑟 is as the instantaneous angular
deflection of the periodic motion of the point �̂�(𝛿𝜆𝑟) on the circle arc, induced by
the ultrasound. In Fig. 3.7 the dashed circles through the data points of �̂�(𝛿𝜆𝑟)
are fits of a circle to these points, where the circle is given by the right hand side
of Eq. (3.31) but 𝑅𝐹0 is now treated as a fit parameter. Very close similarity to a
circle is quantified by the average deviation of 0.1% from the points from the circle.

Although the approximation given by Eq. (3.31) and the periodic motion on
the circle arc already present the physics picture, refinement is needed, since the
functions �̂�(𝛿𝜆𝑟) and �̂�(𝛿𝜆𝑟) are not constant and thus distort �̂�(𝛿𝜆𝑟). Further,
�̂�(𝛿𝜆𝑟) and �̂�(𝛿𝜆𝑟) contribute to the angular deflection of �̂�(𝛿𝜆𝑟), modifying the
total bidirectional deflection angle 2𝜉𝛿0 of �̂�0(𝛿𝜆𝑟) to the value 2Φ0 of �̂�(𝛿𝜆𝑟).
In Fig. 3.7 the deflection angles have been indicated. Φ0 is the amplitude of the
periodic deflection Φ(𝑡) = Φ0 sin(2𝜋𝑓0𝑡) for �̂�(𝛿𝜆𝑟). Assuming that the sensor
operates in the linear response regime, characterized by small membrane deflec
tions and small resonancewavelength modulation compared to the width of the
FBG spectrum, the instantaneous deflection Φ(𝑡) is expected to be proportional to



3

58
3. Interrogation of a ringresonator ultrasound sensor using a fiber

MachZehnder interferometer

−50 0 50
Re(function) (pm)

−50

0

50

Im
(fu

nc
tio

n)
 (p

m
)

2ξδ0 2Φ0

F̂
̂G

K̂
F̂0
fit

−50 −25 0
Re(function)̂(pm)

−30

0

30

Im
(fu

nc
tio

n)
̂(p

m
)

2ξδ0

2Φ0

F̂
̂G

K̂
F̂0
fit

(a) (b)

Figure 3.7: Plots of the functions �̂�, �̂�, �̂� and �̂�0 in the complex plane for (a) OPD=6.9 mm and (b)
OPD=12.9 mm. Zero angular deflection of the functions occurs for the point where Im(function)=0.
The black dashdotted curve is a fit of a circle to the data points of �̂�, giving radii of 54.3 and 32.6
pm for the OPDs of 6.9 and 12.9 mm, respectively. For �̂�0 the radii are 60.1 and 23.2 pm, for these
OPDs. In the plot the total bidirectional angular deflections 2𝜉𝛿0 and Φ0 for the functions �̂�0 and �̂� ,
respectively, are indicated. In calculating the functions, the following parameters were used: 𝛾𝑟 = 122
pm, 𝛾𝐹𝐵𝐺 = 207 pm, 𝜀 = 0.043 (the three values in section 3.2) and 𝛿0 = 40 pm.

𝛿𝜆𝑟(𝑡) = 𝛿0 sin(2𝜋𝑓0𝑡). 𝛿0 in turn, is expected to be proportional to the amplitude
𝑝0 of the ultrasound pressure. Fig. 3.7 shows that 2Φ0 < 2𝜉𝛿0, the inequality be
ing marginally observable for OPD=6.9 mm. The modification of the total deflection
angle suggests to introduce the correction factor 𝜅 = 𝜉𝛿0/Φ0. The angles in Fig.
3.7 give 𝜅 = 1.07 and 𝜅 = 1.26 for the OPDs of 6.9 and 12.9 mm, respectively.
Similarly, for sensor #2, we obtain 𝜅 = 1.03 and 𝜅 = 1.16 for these OPDs, which
are some smaller than for sensor #1. This decrease of 𝜅 arises from the smaller 𝛾𝑟
of sensor #2 (𝛾𝑟 = 96 pm).

In the experiment, the sensor is interrogated by measuring the voltages 𝑉𝑖.
Based on the considerations leading to Eq. (3.27), the 𝑉𝑖 are described by the
function ̂𝐽 = exp(𝑖𝜉𝜆𝑟)�̂�(𝛿𝜆𝑟) = exp(𝑖𝜉𝜆𝑟) [�̂�(𝛿𝜆𝑟) + �̂�(𝛿𝜆𝑟)]. The function ̂𝐽, via
its dependence on exp(𝑖𝜉𝛿𝜆𝑟) or equivalently on exp (𝑖Φ(𝑡)), in principle contains
all information on the ultrasound sensed by the sensor. From the 𝑉𝑖 the following
functions are constructed:

𝑉𝑥(𝑡) = 2𝑉1 − 𝑉2 − 𝑉3, (3.32)

𝑉𝑦(𝑡) = √3 (𝑉3 − 𝑉2) . (3.33)

In 𝑉𝑥(𝑡) and 𝑉𝑥(𝑡) the contributions from 𝐼𝛼(𝑡) cancel, as these are independent of
𝜑𝑖 (see Eq. (3.24)). Actually, 𝐼𝛼(𝑡) does give an appreciable contribution to the
total integral 𝐼𝑖(𝑡), while 𝐼𝛼(𝑡) carries no useful information on 𝛿𝜆𝑟 and thus limits
the smallest measurable 𝛿𝜆𝑟.

We now rewrite 𝐼𝛽,𝑖 of Eq.(3.25) in the approximation given by (3.31), using
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Eqs. (3.26)(3.28):

𝐼𝛽,𝑖 = 𝑅𝑒 {𝑒𝑖(𝜑𝑖+𝜓𝑒) ̂𝐽}
= 𝑅𝑒 {𝑒𝑖(𝜑𝑖+𝜓𝑒+𝜉𝜆𝑟) [�̂�(𝛿𝜆𝑟)𝑒𝑖𝜉𝛿𝜆𝑟 + �̂�(𝛿𝜆𝑟)]} (3.34)

≅ 𝑅𝑒 {𝑒𝑖(𝜑𝑖+𝜓𝑒+𝜉𝜆𝑟) [𝑅𝐾𝑒𝑖Φ(𝑡) + 𝑧0]} .

Here 𝑅𝐾 is used now instead of 𝑅𝐹0 to emphasize that we are dealing with �̂�(𝛿𝜆𝑟).
Based on the definition of 𝜅 we have Φ(𝑡) = 𝜉𝛿𝜆𝑟(𝑡)/𝜅. Using Eq. (3.34) and
omitting the prefactor 𝑞 of Eq. (3.20), 𝑉𝑥(𝑡) and 𝑉𝑦(𝑡) can be written as:

𝑉𝑥(𝑡) = 3𝑅𝐾 cos (Φ(𝑡) + 𝜓𝑒 + 𝜉𝜆𝑟) + 3|𝑧0| cos (𝜑𝑧0 + 𝜓𝑒 + 𝜉𝜆𝑟)
= 3Re {𝑒𝑖(𝜉𝜆𝑟+𝜓𝑒)�̂�(Φ(𝑡))} , (3.35)

𝑉𝑦(𝑡) = 3𝑅𝐾 sin (Φ(𝑡) + 𝜓𝑒 + 𝜉𝜆𝑟) + 3|𝑧0| sin (𝜑𝑧0 + 𝜓𝑒 + 𝜉𝜆𝑟)
= 3Im {𝑒𝑖(𝜉𝜆𝑟+𝜓𝑒)�̂�(Φ(𝑡))} . (3.36)

𝑉𝑥(𝑡) and 𝑉𝑦(𝑡) oscillate around levels 𝑥0 and 𝑦0, respectively, given by

𝑥0 = 3|𝑧0| cos (𝜑𝑧0 + 𝜓𝑒 + 𝜉𝜆𝑟) , (3.37)

𝑦0 = 3|𝑧0| sin (𝜑𝑧0 + 𝜓𝑒 + 𝜉𝜆𝑟) . (3.38)

Eqs. (3.35) and (3.36) show that 𝑉𝑥(𝑡) and 𝑉𝑦(𝑡) are orthogonal, a known property
[16] for the combinations of outputs of a 3×3 coupler defined by Eq. (3.32) and
(3.33). Further, in time, the point (𝑉𝑥(𝑡), 𝑉𝑦(𝑡)) traces a circle arc in the 𝑉𝑥 − 𝑉𝑦
plane, of radius 3𝑅𝐾 and with center (𝑥0, 𝑦0). Equivalently, the circle arc according
to these equations is a partial plot of the function 3 exp (𝑖𝜉𝜆𝑟 + 𝑖𝜓𝑒) �̂�(Φ(𝑡)) in the
complex plane. Experimentally, measuring 𝑉𝑥(𝑡) and 𝑉𝑦(𝑡) leads to Φ(𝑡), which
yields Φ0 by Fourier transformation. Details about the interrogation procedure in
practice are given in Section 3.4.1 of the main text.

As described in Section 3.3.1, a high pass filter is applied after the TIAs. The
signal components 𝑥0 and 𝑦0, which are close to DC in view of the slow drift of the
environmental phase 𝜓𝑒, will thus be removed. However, by rewriting the terms
with sin (Φ(𝑡) + 𝜉𝜆𝑟 + 𝜓𝑒) and cos (Φ(𝑡) + 𝜉𝜆𝑟 + 𝜓𝑒) in Eqs. (3.35) and (3.36) to
wards linear combinations of sin (Φ(𝑡)) and cos (Φ(𝑡)), and by using Bessel func
tion expansions [23], it can be shown that signal components at the ultrasound
frequency 𝑓0 and its harmonics result. These components, which survive the high
pass filtering, are modulated by sin (𝜉𝜆𝑟 + 𝜓𝑒) or cos (𝜉𝜆𝑟 + 𝜓𝑒) and thus still de
pend on the environmental phase. This is not an issue, since the time scale for
interrogation of the sensor is much shorter than the time scale of the drift. Thus,
the angular deflection amplitude Φ0, which is the principal sensor signal, can be
obtained for IVUS imaging.
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Appendix B : Modulation method for measuring the
amplitude of the resonancewavelength modulation
The modulation method is based on laser induced power modulation, described in
Chapter 2, operated in a point on the steep and linear flank of the transmission
dip (see Fig. 3.2b). The laser also used for characterizing the MZI (Section 3.3.2)
actuates the sensor and is tuned to operation point 𝜆op. = 1550.14 nm. We mea
sure the modulated power transmitted through the sensor using a photodetector
(New Focus, 1811FCAC). The resonancewavelength modulation according to this
method is

𝛿𝜆𝑟(𝑡) ≈
𝑇0pass(𝜆op.) − 𝑇pass(𝜆op., 𝑡)

𝜕𝑇0pass/𝜕𝜆|𝜆op.
(3.39)

Eq. (3.39) implies that 𝛿𝜆𝑟 can be obtained from a time trace 𝑇pass(𝜆op., 𝑡), and from
the static transmission value 𝑇0pass(𝜆op.) and its derivative 𝜕𝑇0pass/𝜕𝜆|𝜆op. . The latter
two quantities follow from the static transmission curve in Fig. 3.2b, which is also
measured using the laser setup just described, albeit that the laser wavelength is
swept and the DC mode of the detector is used. The modulation amplitude 𝛿0 is
obtained as the peak value of the Fourier transform of 𝛿𝜆𝑟(𝑡) at 1.3 and 0.77 MHz
for sensors #1 and #2, respectively.
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4
Onchip interrogator based

on Fourier transform
spectroscopy

In this paper, the design and the characterization of a novel interrogator
based on integrated Fourier transform (FT) spectroscopy is presented. To
the best of our knowledge, this is the first integrated FT spectrometer used
for the interrogation of photonic sensors. It consists of a planar spatial hetero
dyne spectrometer, which is implemented using an array of MachZehnder
interferometers (MZIs) with different optical path differences. Each MZI em
ploys a 3×3 multimode interferometer, allowing the retrieval of the complex
Fourier coefficients. We derive a system of nonlinear equations whose solu
tion, which is obtained numerically from Newton’s method, gives the modu
lation of the sensor’s resonances as a function of time. By taking one of the
sensors as a reference, to which no external excitation is applied and its tem
perature is kept constant, about 92% of the thermal induced phase drift of
the integrated MZIs has been compensated. The minimum modulation am
plitude that is obtained experimentally is 400 fm, which is more than two
orders of magnitude smaller than the FT spectrometer resolution.

4.1. Introduction
Photonic based sensors find nowadays a wide range of applications. Acoustic and
ultrasound sensors [1, 2], pressure sensors [3], biochemical and gas sensors [4, 5]
are examples of sensors based on optical technology. They are low cost, immune to

Parts of this chapter have been published in Fellipe Grillo Peternella, Thomas Esselink, Bas Dors
man, Peter Harmsma, Roland C. Horsten, Thim Zuidwijk, H. Paul Urbach, and Aurèle L. C.
Adam , Onchip interrogator based on Fourier transform spectroscopy Optics Express, Vol. 27, Issue
11, pp. 1545615473 (2019) .
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electromagnetic radiation, and operate under a wide range of temperatures. In this
paper, we focus our attention on photonic sensors whose transmission or reflection
spectra have a peak (or dip) in their lineshape. Examples are sensors based on fiber
Bragg gratings (FBGs)[5, 6] or on integrated ring resonators [1, 2, 4]. For these
sensors, it is possible to build large and multipurpose sensor arrays by wavelength
multiplexing the spectrum of the sensors [6, 7].

The photonic sensors mentioned above are designed in such a way that the
signal to be sensed modulates the sensor’s resonance wavelength. Interrogation
is the technique of demodulating and demultiplexing the response of an array of
photonic sensors. Different methods have been proposed in the past. A com
mon approach is to measure the spectrum of the sensor array using a dispersive
spectrometer such as an arrayed waveguide grating (AWG)[8–10] or an echelle
grating[11]. Their sensitivity to the external excitation depends on the spectral
resolution of the spectrometer; higher resolution comes at the price of a larger
footprint. Another approach is edge filtering, where the output spectra of the pho
tonic sensors is conveyed to an optical filter whose transfer function is linear within
certain range. As the spectrum of the sensor shifts due to the sensing signal, the
filter converts the resonance wavelength modulation into power modulation which
can be obtained by a photodetector. The main drawback is that a high sensitivity
may compromise the wavelength operation range[12]. Passaro et al [13] reports
the spectral scanning as a possible solution, which features a high sensitivity and
a large wavelength operation range. On the other hand, most of these interroga
tors are based on thermal tuning which limits their interrogation speed to a few
kHz. Another approach for interrogation is to use passive interferometers such
as MachZehnder interferometers. In combination with a demultiplexing element,
such as an AWG, it is possible to interrogate the photonic sensors as demonstrated
in [14, 15]. Despite the high sensitivity of this interrogator, special care should be
taken to match the spectra of the AWG outputs to the sensors spectra. This might
be an issue for integrated sensors such as ring resonators [1] since the resonance
wavelength, in most of the cases, cannot be predicted during the design due to
variations of the fabrication process.

The interrogation method here proposed may be applied to any sensor whose
spectrum is finite and is modulated by an external signal. We demonstrate its per
formance using FBG sensors, but the method is equally suitable to other types of
sensors such as ring resonators. To the best of our knowledge, this is the first inter
rogator based on integrated Fourier Transform (FT) spectroscopy. The technique
is promising since it benefits from high flexibility, high sensitivity, and offers a high
tolerance to variations of the fabrication process. In the past, FT spectroscopy was
applied to demultiplexing FBG sensors [16, 17], but at that time, the speed of the
method was limited by the mechanical speed of the mirror. Integrated photonics
enables the design of new FT spectrometer implementations. The most common
one consists of an array of MZIs with different optical path lengths (OPDs) [18–22].
Alternatively, [23] uses a single MZI whose OPD can be dynamically increased by
using optical switches. The spectrum can be retrieved by calculating the coefficients
of the Fourier cosine series from the interferogram [18, 19] or by solving a system
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of linear equations [20–23]. However, since the number of MZIs is finite, the re
trieved spectrum is an approximation to the actual one and a large the number of
MZIs is required in order to achieve a high spectral resolution.

The design of our integrated FT spectrometer is similar to the one proposed
by [24, 25], where the complex Fourier coefficients of the system are obtained
by using 3×3 multimode interferometers (MMIs). In our case, however, instead
of retrieving the spectrum, we demonstrate that the complex Fourier coefficients
can be written as a sum of the individual contributions of the sensors. We obtain
a coupled system of nonlinear equations, whose solution gives the modulation
of the sensor’s resonance wavelength. The minimum modulation amplitude we
experimentally retrieved is 400 fm, more than two orders of magnitude smaller
than the spectral resolution of our own FT spectrometer. While the spectrometer’s
resolution depends on the number of MZIs and their OPDs, the system of non
linear equations is limited by the signaltonoise ratio of the input signal and the
accuracy of the coefficients experimentally obtained (see Section 4.3.2). Moreover,
we demonstrate that the number of interferometers can be as small as the number
of sensors, which strongly reduces the device footprint without compromising the
interrogator sensitivity. Finally, we propose a novel technique for compensating the
slow drift with time of the phases of the MZIs due to temperature fluctuations[1, 26].

4.2. Design and characterization of the FT spectrom
eter

Fig. 4.1(a) shows a picture of the FT spectrometer. The chip was fabricated in a
multiproject wafer run at the Smart Photonics foundry using InP technology. Its
dimensions are 4.0 mm by 4.5 mm. The chip has a total of 7 inputs, but inputs
#5 and #7 are not used, as indicated in the Fig. 4.1(a). The crosssection of the
waveguide at the facet of the chip is shown in Fig. 4.1(b) (the mode field diameters
are 2.8 𝜇m in the horizontal direction and 0.96 𝜇m in the vertical direction). This
waveguide makes an angle of 7 degrees with respect to a normal line perpendicular
to edge of the chip, as shown in Fig. 4.1(d). The optical fiber guiding the light signal
to be coupled to the chip is placed at an angle of 23 degrees with respect to the
normal, avoiding that the reflections from the chip facet to be coupled back to the
fiber (the angle of 23 degrees can be obtained using Snell’s law, giving the fact that
the effective index of the waveguide is 3.26 at 1550 nm). The waveguide at input
#4 is the only waveguide which makes an angle of 90 degrees with respect to the
chip edge.

By using a taper, the width of the shallow etch waveguide shown in Fig. 4.1(b) is
slowly reduced to 2.0 𝜇m, where a proprietary component, provided by Smart Pho
tonics, couples the optical field into the deep etch waveguide shown in Fig. 4.1(c).
Compared to the shallow etch waveguide, the deep etch waveguide has a higher
mode confinement and it is used everywhere else in the chip. Following the optical
path of the main input port (input #1) the light signal is split into nine beams using
1×2 and 2×2 MMIs (the 2×2 MMIs are indicated in the Fig. 4.1(a); all other power
splitters are 1×2 MMIs) and guided to nine different MachZehnder interferometers.
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The chip has multiple inputs, each providing access to a specific set of MZIs (see
Fig. 4.1(a) and Fig. 4.2). The main idea is to optimize the optical power budget:
in Section 4.3 it is shown that the number of photonic sensors must be as large
as the number of the MZIs. The multiple inputs allow the choice of the number
of MZIs to be used during the interrogation. For instance, in order to interrogate
up to 5 sensors, it is preferred to use input #6, through which the optical power is
shared among MZIs 15, instead of input #1. Interrogating the photonic sensors
using more MZIs than needed is possible and the extra MZIs may provide some
additional information which can be used to increase slightly the signaltonoise ra
tio. However, the fringe visibility of the MZIs with larger OPDs are strongly reduced
(see the discussion in the end of Section 4.3.1) and better interrogation results have
been obtained by using a small number of MZIs. The optical connections shown in
the diagram of Fig. 4.2 indicate a nonuniform distribution of optical power for MZIs
15. Following the path from input #6, Fig. 4.2 shows that MZIs 4 and 5 receive as
much power as MZIs 1,2 and 3; MZI 3 gets the same amount of optical power as
MZIs 1 and 2. Using such distribution, MZIs with larger OPDs receive more power,
mitigating the reduced visibility of the MZIs with larger OPDs.

One of the key benefits of the FT spectrometers is the large optical throughput
(etendue) compared to other types of spectrometers [18, 20, 22]. The design of
our FT spectrometer allows the light signal to be coupled from both sides of the
chip simultaneously. In this case, it would be needed to split the signal containing
the combined spectra of the sensors externally (by using a 1×2 fiber coupler, for
instance). This feature has not been explored in this paper, but it could increase
the interrogator performance if an additional optical gain is given for the signal
to be coupled to the left side of chip, where inputs #2  #4 provide access to
MZIs with larger OPDs (input #1 must not be used, otherwise some of the MZIs
would receive the light signal coming from both of chip sides). Optical power is
uniformly distributed (see Fig. 4.2) for MZIs 69 so that a larger gain is expected
for compensating the reduced visibility.

MZIs represent the heart of the onchip FT spectroscope. The length difference
between the arms range from 0.710 mm to 6.39 mm in steps of 0.710 mm. At
the end of the MZI, the light signals from the two arms interfere within a 3×3
MMI (360 𝜇m length, 11.4 𝜇m width). The chip is glued to a printed circuit board
(PCB), to which the chip pads were wire bonded. Outputs per MZI of this PCB were
connected to an other PCB which contain three transimpedance amplifiers (TIAs)
for the photodetectors and a preprocessing module. This module gives a linear
combination of the outputs, as indicated in the schematic shown Fig. 4.1(e).

In this Section we characterize the MZIs of the FT spectrometer by consider
ing its response to one particular wavelength 𝜆. The transmittance for the given
wavelength of 𝑙th output of the 𝑚th MZI is given by:

𝑇𝑚𝑙(𝜆) =
1
3 [1 + 𝑣𝑚𝑙 cos(2𝜋

𝑛𝑒𝑓𝑓,𝑚(𝜆)Δ𝐿𝑚
𝜆 + 𝜙𝑙)] , (4.1)

where 𝑣𝑚𝑙 is the visibility, 𝑛𝑒𝑓𝑓,𝑚(𝜆) is the effective index of waveguides of the 𝑚th
MZI, Δ𝐿𝑚 the arms length difference of the 𝑚th MZI, and 𝜙𝑙 is the MZI phase shift
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Figure 4.1: (a) Picture of the FT spectrometer chip. Δ𝐿𝑚 is given by Δ𝐿𝑚 = 𝑚Δ𝐿1 with Δ𝐿1 = 0.710mm,
leading to 𝐹𝑚 = 𝐹1/𝑚, where 𝑚 is an integer number ranging from 1 to 9. The different MZIs are
identified with the index 𝑚. The 2×2 MMIs are indicated in white. All other power splitters are 1×2
MMIs. (b) Crosssection of the shallow etch waveguide. The refractive indexes at the wavelength of
1550 nm are also indicated. (c) Crosssection of the deep etch waveguide. (d) Schematic of an optical
fiber aligned to one of the inputs of the chip. For input #4, 𝜃𝑤𝑔 = 𝜃𝑓 = 0∘. For all other inputs, 𝜃𝑤𝑔 =
7∘ and 𝜃𝑓 = 23∘. (e) Schematic of the FT spectrometer and the PCB that implements the TIAs and a
preprocessing module. The outputs are sampled by the DAQ.
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given by (120∘, 0∘, 120∘) for 𝑙 = 1,2,3 in case the 3×3 coupler is balanced. In our
design, the waveguide effective indexes are all the same except by small deviations
caused by variations of the fabrication process. Expanding the term 𝑛𝑒𝑓𝑓,𝑚(𝜆)/𝜆 in
Taylor series around 𝜆0, we obtain:

𝑛𝑒𝑓𝑓,𝑚(𝜆)
𝜆 ≅

𝑛𝑒𝑓𝑓(𝜆0) + 𝑛𝑔 + 𝛿𝑛𝑒𝑓𝑓,𝑚
𝜆0

−
𝑛𝑔
𝜆20
𝜆, (4.2)

where 𝛿𝑛𝑒𝑓𝑓,𝑚 are deviations of the nominal value of the effective index at the 𝑚
th MZI and 𝜆0 a wavelength close to 1550.0 nm. The approximation holds as long
as the effect group index (𝑛𝑔) can be considered constant over the spectrum of
interest. Replacing Eq. (4.2) in Eq. (4.1) we obtain 1:

𝑇𝑚𝑙(𝜆) =
1
3 [1 + 𝑣𝑚𝑙 cos [2𝜋

𝜆
𝐹𝑚

− 𝜙𝑙 − 𝜓𝑒,𝑚)] , (4.3)

where 𝐹𝑚 = 𝜆20/(𝑛𝑔Δ𝐿𝑚) is the free spectral range2 of the 𝑚th interferometer and

𝜓𝑒,𝑚 =
2𝜋Δ𝐿𝑚
𝜆0

(𝑛𝑔 + 𝑛𝑒𝑓𝑓(𝜆0) + 𝛿𝑛𝑒𝑓𝑓,𝑚) . (4.4)

In our design, Δ𝐿𝑚 is given by Δ𝐿𝑚 = 𝑚Δ𝐿1 with Δ𝐿1 = 0.710 mm, leading to
𝐹𝑚 = 𝐹1/𝑚, where 𝑚 is an integer ranging from 1 to 9 and 𝐹1 = 921.7 ± 0.5 pm.
𝜓𝑒,𝑚 depends on 𝑛𝑒𝑓𝑓(𝜆0), which might change in case of temperature fluctuations,
inducing a phase drift in 𝑇𝑚𝑙(𝜆).

The schematic of Fig. 4.1(e) shows that the outputs of the MZIs are con
nected to integrated photodetectors (PD). The PD current 𝐼𝑚𝑙 is given by 𝐼𝑚𝑙(𝜆) =
𝑃𝑚𝑅𝑝ℎ𝑇𝑚𝑙(𝜆), where 𝑃𝑚 is the optical power delivered at the 𝑚th MZI and 𝑅𝑝ℎ
is the photodetector responsivity. The outputs of the photodetectors are send to
TIAs, whose outputs voltage are given by:

𝑉𝑚𝑙(𝜆) = 𝑔𝑇𝐼𝐴,𝑚𝑙𝑃𝑚𝑅𝑝𝑚𝑇𝑚𝑘(𝜆)

=
𝑔𝑇𝐼𝐴,𝑚𝑙𝑃𝑚𝑅𝑝𝑚

3 [1 + 𝑣𝑚𝑙 cos(2𝜋𝑚
𝜆
𝐹1
− 𝜙𝑙 − 𝜓𝑒,𝑚)] , (4.5)

where 𝑔𝑇𝐼𝐴,𝑚𝑙 is the transimpedance gain. The 3×3 MMIs were designed to produce
interference fringes with similar amplitude and a 120∘ shift between each other.
Aiming for the interrogation of the photonic sensors, the preprocessing module of
the PCB combines the TIA output voltages according to [1]:

𝑉𝑚,𝑥(𝜆) =2𝑉𝑚,3 − 𝑉𝑚,1 − 𝑉𝑚,2 = 𝐴𝑚,𝑥 cos(2𝜋𝑚
𝜆
𝐹1
− 𝜓𝑒,𝑚) + 𝑥𝑜𝑓𝑓,𝑚 ,

𝑉𝑚,𝑦(𝜆) =√3 (𝑉𝑚,2 − 𝑉𝑚,3) = 𝐴𝑚,𝑦 sin(2𝜋𝑚
𝜆
𝐹1
− 𝜓𝑒,𝑚 − 𝛿𝜙𝑚) + 𝑦𝑜𝑓𝑓,𝑚 ,

(4.6)

1Eq. (4.3) reduces to Eq. (3.7) by neglecting the dispersion of the effective index.
2In order to simplify the notation, in this chapter we represent the free spectral range of the 𝑚th MZI
as 𝐹𝑚 instead of 𝐹𝑆𝑅𝑚.
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(a) (b)

Figure 4.3: (a) Traces of 𝑉1,𝑥 and 𝑉1,𝑦 as a function of the laser wavelength. We fitted Eq. (4.6) against
the data points and we obtained 𝐹1 = 921.7 ± 0.5 pm, 𝛿𝜙1 = 17.9 ±0.3∘, 𝐴1,𝑥 = 1.449 ± 0.003V and
𝐴1,𝑦 = 1.234 ± 0.004V. (b) Lissajous plot of the data points [𝑉1,𝑥(𝜆), 𝑉1,𝑦(𝜆)] shown in Fig. 4.3(a). By
fitting an ellipse to the data points we got 1.56 V and 1.09 V for the semiaxis values and 31.2∘ for the
tilt angle with respect to the 𝑥axis.

where 𝑉𝑚,𝑥 and 𝑉𝑚,𝑦 are 90∘ phase shift voltages, 𝐴𝑚,𝑥 and 𝐴𝑚,𝑦 are the voltage
amplitudes, 𝑥𝑜𝑓𝑓,𝑚 and 𝑦𝑜𝑓𝑓,𝑚 are voltage offsets, and 𝛿𝜙𝑚 is a phase error. If
the 3×3 MMI and the electronic components of the PCB are ideal (ideal operational
amplifiers and no variance with respect to the nominal value of the resistors and
capacitors), the voltage offsets are zero (𝑥𝑜𝑓𝑓,𝑚 = 𝑦𝑜𝑓𝑓,𝑚 = 0), 𝛿𝜙𝑚 = 0, and
𝐴𝑚,𝑥 = 𝐴𝑚,𝑦 = 𝑃𝑚𝑅𝑝ℎ𝑔𝑣, where the visibility is 𝑣 = 𝑣𝑚1 = 𝑣𝑚2 = 𝑣𝑚3 and the
TIA gain is 𝑔𝑇𝐼𝐴 = 𝑔𝑇𝐼𝐴,𝑚1 = 𝑔𝑇𝐼𝐴,𝑚2 = 𝑔𝑇𝐼𝐴,𝑚3. In this case, the Lissajous curve
[𝑉𝑚,𝑥(𝜆), 𝑉𝑚,𝑦(𝜆)] gives a circle with radius 𝑣𝑃𝑚𝑅𝑝ℎ𝑔 centred at the origin.

The transmission spectrum of each MZI has been measured using a tunable laser
(Agilent, 81960A). The laser power is set to 6.0 mW and we performed the laser
wavelength sweep ranging from 1550 nm to 1551 nm in steps of 1 pm, while the
outputs of the preprocessing module are recorded by the digital acquisition module
(DAQ, National Instruments, NI 9220). Fig. 4.3(a) shows the measured voltages
of the outputs of MZI 1 (Δ𝐿1 = 0.710 mm), as well as a fit of the measured data
against to Eq. (4.6). Since 𝑉1,𝑥 and 𝑉1,𝑦 have slightly different amplitudes and 𝛿𝜙1
= 17.9∘, the circle is deformed into a tilted ellipse centred outside of the origin, as
shown in Fig. 4.3(b).

4.3. Interrogation method and experimental setup
4.3.1. The interrogation method
Here we derive the expressions for determining the resonance wavelengths of the
photonic sensors as a function of time. Typically, the spectrum of each sensor has
a peaked lineshape, which is modulated by an external signal such as temperature,
strain or any other physical or chemical quantity. The photonic sensors are assumed
to be wavelength multiplexed. Let there be K sensors with resonance wavelengths
𝜆𝑘(𝑡) at time 𝑡, where 𝑘 = 1, ..., 𝐾. The combined spectrum 𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡))
received by the interrogator is given by:

𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) =
𝐾

∑
𝑘=1

𝑠𝑘(𝜆, 𝜆𝑘(𝑡)) =
𝐾

∑
𝑘=1

𝑠𝑘(𝜆 − 𝜆𝑘(𝑡)), (4.7)
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where 𝑠𝑘(𝜆, 𝜆𝑘(𝑡)) is the spectrum of the 𝑘th sensor. The signals that are to be
sensed induce time dependent modulations of the resonance wavelengths. The res
onances 𝜆𝑘(𝑡) must be separated so that the curves 𝑠𝑘(𝜆, 𝜆𝑘(𝑡)) do not overlap. In
this paper 𝑠𝑘(𝜆, 𝜆𝑘(𝑡)) correspond to the reflection spectra of FBGs sensors. How
ever, the method applies also to integrated photonic sensors as the ones described
in [1].

𝑆(𝜆) is assumed to be a polychromatic signal and the values of the TIA output
voltages are given by:

𝑉𝑚𝑙(𝑡) = 𝐺∫
∞

−∞
𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡))𝑇𝑚𝑙(𝜆)𝑑𝜆, (4.8)

where the constant 𝐺 is given by 𝐺 = (1−𝛼𝑐)𝑔𝑇𝐼𝐴, 𝑅𝑝ℎ with 𝛼𝑐 the coupling losses.
The electronic preprocessing module combines the signals from the three outputs
of the interferometers according to Eq. (4.6), resulting in the two 90∘ phase shifted
voltages 𝑉𝑚,𝑥(𝑡) and 𝑉𝑚,𝑥(𝑡):

𝑉𝑚,𝑥(𝑡) = 3𝐺 ∫
∞

−∞
𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) cos(2𝜋𝑚

𝜆
𝐹1
− 𝜓𝑒,𝑚)𝑑𝜆 + 𝑥𝑜𝑓𝑓,𝑚 , (4.9)

𝑉𝑚,𝑦(𝑡) = 3𝐺∫
∞

−∞
𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) sin(2𝜋𝑚

𝜆
𝐹1
− 𝜓𝑒,𝑚)𝑑𝜆 + 𝑦𝑜𝑓𝑓,𝑚 . (4.10)

The voltage offsets 𝑥𝑜𝑓𝑓,𝑚 and 𝑦𝑜𝑓𝑓,𝑚 are mainly caused due to imperfections in the
3×3 MMIs. At the end of a calibration process (see Section 4.3.2), the offsets are
removed by averaging and, at this point, they are neglected.

By defining a complex voltage �̂�𝑚(𝑡) = 𝑉𝑚,𝑥(𝑡) + 𝑖𝑉𝑚,𝑦(𝑡) we obtain:

�̂�𝑚(𝑡) = 3𝐺𝑒−𝑖𝜓𝑒,𝑚 ∫
∞

−∞
𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) exp(𝑖2𝜋

𝑚
𝐹1
𝜆)𝑑𝜆. (4.11)

The chip is characterized after the MZI phase drift has been stabilized, so 𝜓𝑒,𝑚
is constant in time and taken out of the integral in Eq. (4.11). In Section 4.3.3,
however, a novel method is presented for compensating the environmental phase
drift by using one of the sensors as a reference. We assume that 𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡))
vanishes outside the interval [𝜆0 − 𝐹1/2, 𝜆0 + 𝐹1/2] for all times t, where 𝜆0 is a
wavelength close to 1550.0 nm. Then we have:

�̂�𝑚(𝑡)𝑒𝑖𝜓𝑒,𝑚
3𝐺 = ∫

𝜆0+𝐹1/2

𝜆0−𝐹1/2
𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) exp(𝑖2𝜋

𝑚
𝐹1
𝜆)𝑑𝜆. (4.12)

Eq. (4.12) are the Fourier coefficients of the function 𝜆 → 𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) when
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considered as periodic function with period 𝐹1. This implies that:

𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) =
1
3𝐺

∞

∑
𝑚=−∞

�̂�𝑚(𝑡)𝑒𝑖𝜓𝑒,𝑚 exp(−𝑖2𝜋𝑚𝐹1
𝜆)

= 2
3𝐺

∞

∑
𝑚=0

[𝑉𝑚,𝑥(𝑡) cos(2𝜋
𝑚
𝐹1
𝜆 − 𝜓𝑒,𝑚) − 𝑉𝑚,𝑦(𝑡) sin(2𝜋

𝑚
𝐹1
𝜆 − 𝜓𝑒,𝑚)],

(4.13)

where �̂�−𝑚(𝑡) = �̂�∗−𝑚(𝑡) since 𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) is real. The chip contains a finite
number of 𝑀 = 9 interferometers. The retrieved spectrum 𝑆𝑀(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) is
given by:

𝑆𝑀(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) =
2
3𝐺

𝑀

∑
𝑚=0

[𝑉𝑚,𝑥(𝑡) cos(2𝜋
𝑚
𝐹1
𝜆 − 𝜓𝑒,𝑚) − 𝑉𝑚,𝑦(𝑡) sin(2𝜋

𝑚
𝐹1
𝜆 − 𝜓𝑒,𝑚)].

(4.14)
Function 𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) differs from 𝑆𝑀(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) by the fact that the
last one features a finite spectral resolution 𝛿𝜆𝑟𝑒𝑠 given by:

𝛿𝜆𝑟𝑒𝑠 =
𝐹1
2𝑀 . (4.15)

For 𝑀 = 9, 𝛿𝜆𝑟𝑒𝑠 = 50 pm. Moreover, 𝑆𝑀(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) is periodic with period
𝐹1. For a large number of interferometers (𝑀 >> 𝐾), 𝑆𝑀(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) gives a
good approximation to 𝑆(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)) and it is possible to obtain the resonance
wavelengths by tracking the peaks of 𝑆𝑀(𝜆, 𝜆1(𝑡), ..., 𝜆𝐾(𝑡)). However, 𝛿𝜆𝑟𝑒𝑠 repre
sents a limitation to the minimum resonance wavelength that can be experimentally
obtained.

In order to determine 𝜆𝑘(𝑡) with higher accuracy and using a reduced number
of MZIs we derive a nonlinear system of equations. We assume in this Section that
𝜆(𝑡) is known at 𝑡 = 0. Let

𝜆𝑘(𝑡) = 𝜆𝑘(0) + 𝛿𝑘(𝑡), (4.16)

where 𝛿𝑘(𝑡) is the modulation of the resonance wavelength of the 𝑘th sensor that
we aim to determine. By substituting Eq . (4.7) and Eq. (4.16) into Eq. (4.11), we
obtain:

�̂�𝑚(𝑡) = 3𝐺𝑒−𝑖𝜓𝑒,𝑚
𝐾

∑
𝑘=1

∫
∞

−∞
𝑠𝑘(𝜆 − 𝜆𝑘(0) − 𝛿𝑘(𝑡)) exp(𝑖2𝜋

𝑚
𝐹1
𝜆)𝑑𝜆. (4.17)

The righthand side of Eq. (4.17) represents the Fourier transform of 𝑠𝑘(𝜆−𝜆𝑘(0)−
𝛿𝑘(𝑡)) evaluated at 𝑚/𝐹1. Using the shift property of the Fourier transformation,
Eq. (4.17) is rewritten as:

�̂�𝑚(𝑡) = 3𝐺
𝐾

∑
𝑘=1

�̂�𝑘(𝑚/𝐹1) exp [𝑖 (−𝜓𝑒,𝑚 + 2𝜋
𝑚
𝐹1
𝜆𝑘(0))] exp(𝑖2𝜋

𝑚
𝐹1
𝛿𝑘(𝑡)), (4.18)
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where �̂�𝑘(𝑚/𝐹1) is the Fourier transform of 𝑠𝑘(𝜆). Let

𝑎𝑚𝑘 = 3𝐺�̂�𝑘(𝑚/𝐹1) exp [𝑖 (−𝜓𝑒,𝑚 + 2𝜋
𝑚
𝐹1
𝜆𝑘(0))] . (4.19)

We rewrite Eq. (4.18) as:

�̂�𝑚(𝑡) =
𝐾

∑
𝑘=1

𝑎𝑚𝑘 exp [𝑖
2𝜋𝑚
𝐹1

𝛿𝑘(𝑡)], (4.20)

for 𝑚 = 1, ..., 𝑀. The coefficients 𝑎𝑚𝑘 are experimentally determined as explained
in Section 4.3.2. Eq. (4.20) represents an M×K system of nonlinear equations to
be solved using Newton’s method, where 𝑀 is the number of interferometers and
𝐾 is the number of sensors. Hence, the number of interferometers must only be
at least as large as the number of sensors (i.e. 𝑀 >= 𝐾), which means that the
footprint of the device can be relatively small. In our chip 𝑀 = 9. The system is
explicitly written in the in Eq. (4.21):

�̂�1(𝑡) =𝑎11 exp [𝑖
2𝜋𝛿1(𝑡)
𝐹1

] + 𝑎12 exp [𝑖
2𝜋𝛿2(𝑡)
𝐹1

] + ... + 𝑎1𝐾 exp [𝑖
2𝜋𝛿𝐾(𝑡)
𝐹1

] ,

�̂�2(𝑡) =𝑎21 exp [2𝑖
2𝜋𝛿1(𝑡)
𝐹1

] + 𝑎22 exp [2𝑖
2𝜋𝛿2(𝑡)
𝐹1

] + ... + 𝑎2𝐾 exp [2𝑖
2𝜋𝛿𝐾(𝑡)
𝐹1

] ,

...

�̂�𝑀(𝑡) =𝑎𝑀1 exp [𝑀𝑖
2𝜋𝛿1(𝑡)
𝐹1

] + 𝑎𝑀2 exp [𝑀𝑖
2𝜋𝛿2(𝑡)
𝐹1

] + ... + 𝑎𝑀𝐾 exp [𝑀𝑖
2𝜋𝛿𝐾(𝑡)
𝐹1

] .
(4.21)

It can be show that as long as the phases 2𝜋𝜆𝑘(𝑡)/𝐹1 (for 𝑘 = 1, ..., 𝐾) are different
and the initial guess for {𝛿1(𝑡), ..., 𝛿𝐾(𝑡)} is close to the actual solution, the Jacobian
𝜕�̂�𝑚/𝜕𝛿𝑘 is not singular and the Eqs. (4.21) are independent. From Eq. (4.16), at
𝑡 = 0, {𝛿1(0), ..., 𝛿𝐾(0)} = {0, ..., 0}. The solution at time 𝑡 is taken as an initial guess
at 𝑡 + 1/𝑓𝑠, where 𝑓𝑠 is the sampling frequency. This reduces the computational
time and assures that the initial guess and the solution are close to each other.
The method is also flexible in the sense that the ratio between the arms length
difference of the MZIs (Δ𝐿𝑚/Δ𝐿1) does not need to be an integer number, which
would cause the𝑚 value in Eq. (4.20) to a fractional number. The equations remain
independent as long as the Δ𝐿𝑚 values are different.

Assuming that the FBG sensors spectra have a Lorenzian lineshape, we replace
the Fourier transform of 𝑠𝑘(𝜆) into Eq. (4.19):

𝑎𝑚𝑘 =
3𝐺𝑠max𝑘
2 exp(−𝑚𝑂𝑃𝐷1𝐿𝑐,𝑘

) exp [𝑖 (−𝜓𝑒,𝑚 + 2𝜋
𝑚
𝐹1
𝜆𝑘(0))] , (4.22)

where 𝑠max𝑘 is the maximum value of the Lorenzian of the 𝑘th sensor, 𝑂𝑃𝐷1 = 𝑛𝑔Δ𝐿1
is the optical path difference of MZI 1, and 𝐿𝑐,𝑘 is the cohenrece length given by:

𝐿𝑐,𝑘 =
𝜆20
𝜋𝑤𝑘

, (4.23)
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where 𝑤𝑘 is the full width half maxima (FWHM) of the Lorenzian. The coherence
length limits the maximum OPD value which allows interferometric fringes to be
experimentally resolved. Eq. (4.22) shows that 𝑎𝑚𝑘 becomes very small when the
MZI free spectral range is comparable or smaller than the FWHM of 𝑘th sensor.
As discussed in Section 4.3.1, the MZIs with larger OPDs are not used due to the
strong attenuation and the reduced signaltonoise ratio (SNR).

4.3.2. Calibration and experimental determination of the coef
ficients

The coefficients 𝑎𝑚𝑘 are experimentally determined via the following calibration
procedure:

1. Apply an excitation to all the sensors individually. During the time interval
𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 , where the 𝑘th sensor is being excited, all other sensors
must receive no excitation. As a result, the Lissajous curves (𝑉1,𝑥𝑉1,𝑦), ...,
(𝑉𝑀,𝑥 , 𝑉𝑀,𝑦) are ellipses. Excitation must be applied for all K sensors. In total,
𝑀 × 𝐾 ellipses are obtained, where 𝑀 is the number of voltage pairs and 𝐾
the number of sensors.

2. Fit an ellipse to the voltage pairs (𝑉1,𝑥 , 𝑉1,𝑦), ... (𝑉𝑀,𝑥 , 𝑉𝑀,𝑦) during the interval
𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 . Repeat this procedure for all sensors.

3. Apply the linear transformation that maps the ellipses to circles.

4. Using the radius 𝑅𝑚𝑘 and the angles of the circular arcs at 𝑡 = 𝑡𝑒𝑛𝑑𝑘 , determine
the module and argument of coefficients 𝑎𝑚𝑘.

5. Compute the voltage offsets using Eq. (4.32).

Step 1 Let 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 be the instant of time when the calibration of 𝑘th sensor
starts and 𝑡𝑒𝑛𝑑𝑘 be the instant of time when the calibration ends for the same sensor.
During the time interval 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 , all sensors are kept at rest, while sensor
𝑘 is excited. In case sensor 𝑘 is a temperature sensor, heat is applied (as much
as possible) during the calibration. If sensor 𝑘 is a strain sensor, a large stress is
applied (as much as possible). For an ideal 3×3 couplers, according to Eq. (4.20),
the 𝑚th complex voltage �̂�𝑚(𝑡) during the time interval 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 is given
by:

�̂�𝑚(𝑡) = |𝑎𝑚𝑘|𝑒
𝑖2𝜋 𝑚

𝐹1
𝛿𝑘(𝑡) +

𝐾

∑
𝑙≠𝑘
𝑎𝑚𝑙 = |𝑎𝑚𝑘|𝑒𝑖𝜃𝑚𝑘(𝑡) + 𝑐𝑚𝑘 , (4.24)

where 𝛿𝑙(𝑡) = 0 if 𝑙 ≠ 𝑘 since no excitation is applied to the other sensors. 𝑐𝑚𝑘 =
∑𝐾𝑙≠𝑘 𝑎𝑚𝑙 and 𝜃𝑚𝑘(𝑡) is the complex argument of the term |𝑎𝑚𝑘|𝑒𝑖𝑚2𝜋𝛿𝑘(𝑡)/𝐹1 , given
by:

𝜃𝑚𝑘(𝑡) = 𝑚2𝜋
𝛿𝑘(𝑡)
𝐹1

+ arg(𝑎𝑚𝑘). (4.25)
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The Lissajous curve (ℜ{�̂�𝑚(𝑡)}, ℑ{�̂�𝑚(𝑡)}) for 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 is given by a circular
arc:

(𝑉𝑚,𝑥(𝑡), 𝑉𝑚,𝑦(𝑡))|𝑡𝑠𝑡𝑎𝑟𝑡𝑘 <𝑡<𝑡𝑒𝑛𝑑𝑘
= (ℜ{�̂�𝑚(𝑡)}, ℑ{�̂�𝑚(𝑡)})|𝑡𝑠𝑡𝑎𝑟𝑡𝑘 <𝑡<𝑡𝑒𝑛𝑑𝑘

= [|𝑎𝑚𝑘| cos (𝜃𝑚𝑘(𝑡)) + ℜ{𝑐𝑚𝑘}, |𝑎𝑚𝑘| sin ((𝜃𝑚𝑘(𝑡)) + ℑ{𝑐𝑚𝑘}]|𝑡𝑠𝑡𝑎𝑟𝑡𝑘 <𝑡<𝑡𝑒𝑛𝑑𝑘
,

(4.26)

where (ℜ{𝑐𝑚𝑘}, ℑ{𝑐𝑚𝑘}) defines the arc centre, |𝑎𝑚𝑘| the radius, and 𝜃𝑚𝑘(𝑡) the
instantaneous angle with the real axis.

Fig. 4.4 shows a simulation of the calibration for two sensors. The calibration
starts at 𝑡 = 𝑡0 < 0 and ends at 𝑡 = 0, when the interrogation procedure starts.
During 𝑡𝑠𝑡𝑎𝑟𝑡1 < 𝑡 < 𝑡𝑒𝑛𝑑1 , sensor 2 is kept at rest, while sensor 1 is excited by moving
its resonance wavelength from 1550.50 nm to 1550.16 nm, as shown in Fig. 4.4(a).
This induces the oscillations of 𝑉1,𝑥(𝑡) and 𝑉1,𝑦(𝑡) during 𝑡𝑠𝑡𝑎𝑟𝑡1 < 𝑡 < 𝑡𝑒𝑛𝑑1 as shown
in Fig. 4.4(b), which are traced as a circular arc in red shown in Fig. 4.4(c). The
procedure is repeated for sensor 2: during 𝑡𝑠𝑡𝑎𝑟𝑡2 < 𝑡 < 𝑡𝑒𝑛𝑑2 , while sensor 1 is
not excited, sensor 2 changes its resonance from 1550.75 nm to 1550.33 nm. This
causes the oscillations from 𝑡𝑠𝑡𝑎𝑟𝑡2 < 𝑡 < 𝑡𝑒𝑛𝑑2 in Fig. 4.4(b) which are traced as the
circular arc in green shown in Fig. 4.4(c).

Step 2 As explained in Chapter 3, a slight nonideal behavior of amplitude and
phase of 3×3 couplers are not uncommon and result into a deformation of the
circle in an ellipse. An ellipse is fitted to the data points (𝑉𝑚,𝑥(𝑡)′, 𝑉𝑦,𝑚(𝑡)′) during
the interval 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 , where 𝑉𝑚,𝑥(𝑡)′ and 𝑉𝑚,𝑦(𝑡)′ are the 𝑚th MZI voltages
measured during the calibration. A larger excitation of the 𝑘th sensor results in
a larger angular deflection, leading to a more accurate retrieval of geometrical
parameters of the ellipse.

Step 3 The fitting gives the ellipse semiaxis 𝑟1,𝑚𝑘 and 𝑟2,𝑚𝑘 (where 𝑟1,𝑚𝑘 >
𝑟2,𝑚𝑘), the angle 𝛼 that represents the rotation of the ellipse with respect to the
xaxis, and the ellipse centre (𝑥𝑒𝑙𝑚𝑘 , 𝑦𝑒𝑙𝑚𝑘). In order to map the ellipse to an circle,
the following transformation is applied:

(𝑉𝑚,𝑥(𝑡)𝑉𝑚,𝑦(𝑡)) = (
𝑟1,𝑚𝑘/𝑟2,𝑚𝑘 0

0 1)(
cos𝛼 sin𝛼
− sin𝛼 cos𝛼)(

𝑉𝑚,𝑥(𝑡)′
𝑉𝑚,𝑦(𝑡)′) , (4.27)

where 𝑉𝑚,𝑥 and 𝑉𝑚,𝑦 are the corrected values of the 90∘ phase shifted voltages so
that the Lissajous curve (𝑉𝑚,𝑥(𝑡), 𝑉𝑚,𝑦(𝑡)) for 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 gives a circle arc with
radius 𝑟1,𝑚𝑘. The correction of Eq. (4.27) needs to be performed for all interferom
eters (𝑚 = 1, ..., 𝑀). Although the ellipse semiaxis 𝑟1,𝑚𝑘 and 𝑟2,𝑚𝑘, as well as the
corrected radius 𝑟1,𝑚𝑘 may change according to the sensor (since it depends on its
total transmitted or reflected power spectrum) and according to the interferometer
(due to the different MZI’s coherence lengths), the ellipse eccentricity depends only
on the 3×3 MMI, as discussed in Section 4.2. Thus, for a given interferometer 𝑚
the ratio 𝑟1,𝑚𝑘/𝑟2,𝑚𝑘 is constant for 𝑘 = 1, ..., 𝐾. The design of the 3×3 MMI is the
same for all interferometers, hence the ratio 𝑟1,𝑚/𝑟2,𝑚 is constant for 𝑚 = 1, ..., 𝑀 as
long as the variations of the fabrication process are negligible.
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Step 4 After calculating the 90∘ phase shifted voltages, the modulus of the
coefficients 𝑎𝑚𝑘 can be obtained. Since the radius of the circle arc obtained for the
𝑚th interferometer and the 𝑘th sensor is 𝑟1,𝑚𝑘, the modulus of the coefficients
𝑎𝑚𝑘, according to Eq. (4.26), is given by:

|𝑎𝑚𝑘| = 𝑟1,𝑚𝑘 . (4.28)

Next, the linear transformation of Eq. (4.27) is applied to the point (𝑥𝑒𝑙𝑚𝑘 , 𝑦𝑒𝑙𝑚𝑘),
which gives the centre (ℜ{𝑐𝑚,𝑘}, ℑ{𝑐𝑚,𝑘}). The angles 𝜃𝑚𝑘(𝑡) (for 𝑚 = 1, ..., 𝑀 and
𝑘 = 1, ..., 𝐾) are given by:

𝜃𝑚𝑘(𝑡) = arctan2(𝑉𝑦,𝑚(𝑡) − ℑ{𝑐𝑚,𝑘}, 𝑉𝑥,𝑚(𝑡) − ℜ{𝑐𝑚,𝑘}), (4.29)

where arctan2(𝑥, 𝑦) is the four quadrant arc tangent. During the final stage of
the calibration of sensor 𝑘, the angle 𝜃𝑚𝑘(𝑡) remains constant because then no
excitation is anymore applied to it. By substituting 𝑡 = 𝑡𝑒𝑛𝑑𝑘 in Eq. (4.25), we
obtain:

𝜃𝑚𝑘(𝑡𝑒𝑛𝑑𝑘 ) = 𝑚2𝜋𝛿𝑘(𝑡
𝑒𝑛𝑑
𝑘 )
𝐹1

+ arg(𝑎𝑚𝑘) = 𝑚2𝜋
𝛿𝑘(0)
𝐹1

+ arg(𝑎𝑚𝑘), (4.30)

where the calibration procedure ends at 𝑡 = 0. According to Eq. (4.16), 𝛿𝑘(0) = 0.
Therefore, the argument of 𝑎𝑚𝑘 is given by:

arg(𝑎𝑚𝑘) = 𝜃𝑚𝑘(𝑡𝑒𝑛𝑑𝑘 ) = 𝜃𝑚𝑘(0). (4.31)

The values of 𝜆𝑘(𝑡) (for 𝑘 = 1, ..., 𝐾) are in general unknown at the end of the
calibration (𝑡 = 0), which contradicts the assumption made in Eq. (4.16). Here,
we refine our previous statement by assuming that the values of 𝜆𝑘(𝑡) are known
at 𝑡 = 𝑡0, before the calibration procedure starts. In most of cases, however, the
sensors can be calibrated in such a way that their resonance wavelengths return to
their initial value at the end of the calibration (𝜆𝑘(𝑡0) = 𝜆𝑘(0)). In situations where
this is not possible (due to a sensor hysteresis, for instance), the values of 𝜆𝑘(0) can
be obtained by following the procedure: (a) determine the value of 𝛿(𝑡𝑠𝑡𝑎𝑟𝑡𝑘 ) from
Eq. (4.25) evaluated at 𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 ; (b) substitute the value of 𝛿(𝑡𝑠𝑡𝑎𝑟𝑡𝑘 ) in Eq. (4.16)
(also evaluated at 𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 ).

Step 5 After finishing the calibration of all sensors in this way, the offsets are
determined by averaging:

𝑥𝑜𝑓𝑓,𝑚 =
1
|𝑡0|

∫
0

𝑡0
{𝑉𝑚,𝑦(𝑡) −∑

𝑘
|𝑎𝑚𝑘| cos [𝜃𝑚𝑘(𝑡)]}𝑑𝑡,

𝑦𝑜𝑓𝑓,𝑚 =
1
|𝑡0|

∫
0

𝑡0
{𝑉𝑚,𝑦(𝑡) −∑

𝑘
|𝑎𝑚𝑘| sin [𝜃𝑚𝑘(𝑡)]}𝑑𝑡.

(4.32)

Finally, the complex voltages are computed as function of time to be used in
Eqs. (4.20) and (4.21):

�̂�𝑚(𝑡) = [𝑉𝑥,𝑚(𝑡) − 𝑥𝑜𝑓𝑓,𝑚] + 𝑖 [𝑉𝑦,𝑚(𝑡) − 𝑦𝑜𝑓𝑓,𝑚] . (4.33)
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Figure 4.4: Illustration of the calibration procedure for two sensors. (a) Independent excitation of
sensor 1 and sensor 2. (b) Simulated values of 𝑉1,𝑥(𝑡) and 𝑉1,𝑦(𝑡) for MZI 1. The changes in time of the
functions 𝑉1,𝑥(𝑡) and 𝑉1,𝑦(𝑡) are caused by the modulation of the peak wavelengths shown in Fig. 4.4(a).
The voltages 𝑉𝑚,𝑥(𝑡)′ and 𝑉𝑚,𝑦(𝑡)′ (m = 1,...,M) are measured by our acquisition system. 𝑉𝑚,𝑥(𝑡) and
𝑉𝑚,𝑦(𝑡) are obtained from Eq. (4.27). For this simulation, 𝑉𝑚,𝑥(𝑡) = 𝑉𝑚,𝑥(𝑡)′ and 𝑉𝑚,𝑦(𝑡) = 𝑉𝑚,𝑦(𝑡)′.
(c) Lissajous curve (𝑉1,𝑥(𝑡), 𝑉1,𝑦(𝑡)) for MZI 1. The modulation of the peak wavelength of the sensors
induces an angular deflection in the plane of the voltages 𝑉1,𝑥 and 𝑉1,𝑦. From the Lissajous curve, the
complex modulus and the phase of the coefficients 𝑎𝑚𝑘 were extracted. For this simulation, 𝐹1 =1.0 nm.

4.3.3. Compensation of the phase drift
Since the effective index in Eq. (4.4) is temperature dependent, local variations of
temperature induces the phase 𝜓𝑒,𝑚 to drift. [22] presents two different methods
for compensating the phase drift: by using temperature dependent calibration ma
trices or by correcting the phases errors of the interferogram in case of narrowband
signals. In our case, however, the system of equations is nonlinear and a different
approach is used. Eq. (4.4) is rewritten according to:

𝜓𝑒,𝑚(𝑡) = 𝑚
2𝜋Δ𝐿
𝜆0

(𝑛𝑔 + 𝑛𝑒𝑓𝑓(𝜆0)(𝑇0) +
𝜕𝑛𝑒𝑓𝑓
𝜕𝑇 Δ𝑇(𝑡) + 𝛿𝑛𝑒𝑓𝑓,𝑚) = 𝜓𝑒,𝑚(0)+𝑚Δ𝜓𝑒(𝑡),

(4.34)
where

Δ𝜓𝑒(𝑡) =
2𝜋Δ𝐿
𝜆0

𝜕𝑛𝑒𝑓𝑓
𝜕𝑇 Δ𝑇(𝑡). (4.35)

The temperature dependence of the group index 𝑛𝑔 and to 𝛿𝑛𝑛𝑒𝑓𝑓 have been ne
glected. Eq. (4.35) indicates that the phases 𝜓𝑒,𝑚 in Eq. (4.18), (4.20), and (4.21)
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are no longer constant. Eq. (4.18) can be rewritten as:

�̂�𝑚(𝑡) = 3𝐺
𝐾

∑
𝑘=1

�̂�𝑘(𝑚/𝐹1) exp [𝑖 (−𝜓𝑒,𝑚(0) + 2𝜋
𝜆𝑘(0)
𝐹1

)] exp [𝑖2𝜋𝑚𝐹1
(𝛿𝑘(𝑡) − Δ𝜓𝑒(𝑡)

𝐹1
2𝜋)]

=
𝑀

∑
𝑚=1

𝑎′𝑚𝑘 exp [𝑖2𝜋
𝑚
𝐹1
𝛿𝑘(𝑡)′],

(4.36)

where
𝛿𝑘(𝑡)′ = 𝛿𝑘(𝑡) − Δ𝜓𝑒(𝑡)𝐹1/(2𝜋). (4.37)

The right side of Eq. (4.36) is identical to Eq. (4.20) demonstrating that fluctuations
of the environmental phase impacts on the solutions of Eq. (4.20) or Eq. (4.36).
This effect can be corrected by using another sensor as a reference, to which no
excitation is applied and its temperature is kept constant.

Let 𝛿𝑟𝑒𝑓(𝑡) be the solution of Eq. (4.36) for the reference sensor. The calibration
procedure assures that when the interrogation procedure starts (𝑡 = 0), the values
𝛿𝑘(0) are zero for all sensors (𝑘 = 1, ..., 𝐾). Since no excitation is applied to the
reference sensor, the function 𝛿𝑟𝑒𝑓(𝑡) remains at zero for 𝑡 > 0. Hence, according
to Eq. (4.37):

𝛿𝑟𝑒𝑓(𝑡)′ = −Δ𝜓𝑒(𝑡)𝐹1/(2𝜋). (4.38)

Thus, the phase drift can be compensated by subtracting the term Δ𝜓𝑒(𝑡)𝐹1/(2𝜋)
in Eq. (4.37), obtained from Eq. (4.38):

𝛿𝑘(𝑡) = 𝛿𝑘(𝑡)′ − 𝛿𝑟𝑒𝑓(𝑡)′. (4.39)

4.3.4. Experimental setup
The schematics of the experiment is depicted in Fig. 4.5. Light from a broadband
amplified spontaneous emission source (ASE, Optolink, OLS15CGB20FA) is sent,
through a circulator (OZ Optics, FOC12N1119), to the FBG sensor array (Tech
nicasa, T10). The broadband source has an approximately flat spectrum, ranging
from 1525 nm to 1565 nm. The FBG sensors reflect back to the circulator their
combined spectrum, which is amplified by an optical booster amplifier (Thorlabs,
S9FC1004P) according to Fig. 4.5(a). The gain is 12 dB and the light is coupled to
the chip using lensed fibers (Oz Optics, TSMJ3A15509). The lensed fiber is placed
at an angle of 23∘ with respect a normal line perpendicular to the edge of the chip
(see Fig. 4.1(d)). Outputs of the chip are conveyed to a PCB which implements the
transimpedance amplifiers for the photodetectors and a preprocessing module in
order to implement Eq. (4.6) electronically (see Fig. 4.1(e)). The PCB outputs are
sampled by the DAQ (National instruments, NI9220), which the maximum sampling
speed is 100 kSa/s/channel.

The performance of our interrogator is evaluated using four FBG sensors: three
as strain sensors one as a reference sensor, used to compensate the environ
mental phase drift. The reflection spectrum of the FBGs have a peak lineshape.
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Figure 4.5: (a) Schematic of the setup. Light from an ASE source is sent, through a circulator, to the
FBG sensor array. The FBG sensors reflect back to the circulator their combined spectrum, which is
amplified by an optical booster amplifier (gain = 12dB). Light is coupled to the chip using lensed fibers.
(b) Schematic of the temperature / strain sensors. 𝓁0 = 1.74 m, which is the fiber length between the
clamps.

The FWHM is 103 pm and their resonance wavelengths without applied stress is
1550.0±0.5 nm. The calibration is performed in a such way that 𝜆𝑘(𝑡0) = 𝜆𝑘(0).
The ends of the fibers containing the FBGs are clamped to the translation stages as
shown in Fig. 4.5(b). In order to tune the resonance wavelengths 𝜆𝑘(0), stress is
applied using the manual positioners, avoiding the angles 2𝜋 (𝜆𝑘(𝑡)) /𝐹1 to overlap
during the experiment. FBG #1 represents the main strain sensor and the transla
tion stage (referred as translation stage 1) to which FBG #1 is attached is controlled
by a stepper motor. FBGs #2 and #3 are the secondary strain sensors and they are
both attached to translation stage 2 controlled by another stepper motor. FBG #4 is
the reference sensor and it is attached only to manual positioners. We programmed
the stepper motors to operate in cycles of three steps: (a) the translation stage trav
els at a constant speed from the position 𝑥 = 0 to 𝑥 = Δ𝓁; (b) The stage rests at
𝑥 = Δ𝓁; (c) The stage returns to the original position.

Since FBGs #2 and #3 are secondary strain sensors, we programmed the trans
lation stage to move periodically from the distances 𝑥 = 0 to 𝑥 = Δ𝓁(2) = 30𝜇m.
In contrast, the translation stage to which FBG #1 is attached, travels to differ
ent values of Δ𝓁(1) ranging from 0.5 𝜇m to 200 𝜇m (these values are shown later
in Fig. 4.7). Since the stress to be applied to FBG #1 is much larger compared
to FBGs #2 and #3, the translation stage 1 is programmed to move towards −𝑥.
Thus, a negative stress applied to FBG #1, avoiding to damage it. Translation stage
1 repeats three times its motion from 𝑥 = 0 to 𝑥 = Δ𝓁(1) and from 𝑥 = Δ𝓁(1) to
𝑥 = 0. Thus, the travelling distances Δ𝓁(1)3𝑗+1, Δ𝓁

(1)
3𝑗+2 and Δ𝓁

(1)
3𝑗+3 are the same for

𝑗 = 0, ..., 𝐽 − 1, where 𝐽 is the number of different values of Δ𝓁(1).
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4.4. Experimental results
As explained in Section 4.3.4, the performance of our interrogator is evaluated using
four FBG sensors: three as strain sensors one as a reference sensor, used to com
pensate the environmental phase drift. Using manual positioners, a constant stress
is applied to all FBGs in such a way that the resonance wavelengths of the sensors
are set to 𝜆1(0) = 1550.9 nm, 𝜆2(0) = 1550.3 nm, 𝜆3(0) = 1551.4 nm and 𝜆4(0) =
1549.7 nm. The differences of 𝜆𝑘(𝑡)−𝜆𝑙(𝑡) for 𝑙 ≠ 𝑘 can be larger than 𝐹1 (𝐹1 is the
free spectral range of MZI 1) provided that the angles 2𝜋𝜆𝑘(𝑡)/𝐹1 ≠ 2𝜋𝜆𝑙(𝑡)/𝐹1 for
all 𝑙, 𝑘 = 1...𝐾. The light signal is coupled to the chip using input #6 (see Fig. 4.1(a)),
where the input power is shared among MZIs 1 to 5. Better interrogation results are
obtained by sharing the optical power among a reduced number of interferometers
since the outputs of the MZIs with larger OPDs are strongly attenuated, according
to the discussion in the end of Section 4.3.1.

In order to retrieve the coefficients 𝑎𝑚𝑘, we individually excited the FBG sensors.
Following the procedure described in Section 4.3.2, the complex voltages �̂�𝑚(𝑡) have
been obtained by mapping the ellipse arcs to circle arcs according to Eq. (4.27), and
by removing the voltage offsets according to Eq. (4.32). Fig. 4.6(a) shows the real
and imaginary parts of �̂�1(𝑡), to which a low pass filter (cutoff at 45 Hz) has been
applied in order to suppress noise. The real and the imaginary parts of �̂�1(𝑡), shown
in Fig. 4.6(a), are plotted in Fig. 4.6(b) as a Lissajous curve. Fig. 4.6(b) shows four
circular arcs, which correspond to the individual excitation of the sensors, obtained
from the outputs of MZI 𝑚 = 1 during the calibration. The radii and the angles of
the arcs at the end of the calibration procedure give the modulus and argument of
the coefficients 𝑎𝑚𝑘, as described in Section 4.3.2.

Fig. 4.6(b) shows, however, that some regions of the Lissajous curve deviate
from the expected circular path. This occurs when the resonance wavelengths of
two FBGs are about to cross and the spectra of two FBG sensors overlap. This
causes that a part of the input optical signal is reflected multiple times in between
the FBGs, creating an FabryPerot cavity. The interference of the electric field which
is reflected multiple times between the FBGs leads to the deviations of the circular
arcs. To overcome this issue, we followed the calibration described in Section 4.3.2
using only the parts of the Lissajous curves that are close to circular. For 𝑡 > 0 s,
the interrogation starts and the three strain sensors are simultaneously excited. As
a result, an arbitrary Lissajous curve is obtained.

Figs. 4.6(c)4.6(f) show the solution of Eq. (4.20) obtained using the Newton’s
method. As explained in Section 4.3.1, the solution obtained at the instant 𝑡 is used
as an initial guess for the Newton’s method at the instant 𝑡 + 1/𝑓𝑠, where 𝑓𝑠 is the
sampling frequency. As a result, the method converges at any 𝑡 with a maximum
of four iterations. For a sampling rate of 10 kSa/s, about one million of systems
of equations needs be solved from 𝑡 =0 s to 𝑡 = 100 s. Using an Intel i53470
processor, the solution is roughly calculated at a rate of a hundred equations per
second and the total computational time is about 2h and 45 min.

FBGs #2 and #3 are attached to translation stage 2 which periodically travels
from 𝑥 = 0 to 𝑥 = Δ𝓁(2) = 30𝜇m. As a result, the functions 𝛿2(𝑡) and 𝛿3(𝑡) are time
periodic, as shown in Figs. 4.6(c) and 4.6(d). On the other hand, Fig. 4.6(f) shows
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Figure 4.6: Main results of the interrogation. (a) Time traces of the real and imaginary parts of �̂�1(𝑡).
A low pass filter (cutoff at 45 Hz) has been applied to the measured voltages 𝑉𝑚,𝑥(𝑡) and 𝑉𝑚,𝑦(𝑡). The
numbers 1,2,3 and 4 indicate the calibration interval (𝑡𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑡 < 𝑡𝑒𝑛𝑑𝑘 ) for sensors 𝑘 =1,...,4. (b)
Lissajous plot obtained by plotting the real and imaginary parts of �̂�1(𝑡). During the calibration, the
Lissajous curve is a circular arc. During the interrogation, all sensors are simultaneously excited, and an
arbitrary Lissajous curve is obtained as shown in orange. (c)(e) Solutions 𝛿2(𝑡), 𝛿3(𝑡) and 𝛿4(𝑡)′ of
Eq. (4.36) for 𝑡 > 0. FBG #4 is the reference sensor. The phase drift was compensated using Eq. (4.39).
(f) Comparison between the solutions 𝛿1(𝑡) and 𝛿1(𝑡)′. The inset shows a zoom of the solution 𝛿1(𝑡).

the solution 𝛿1(𝑡), which consists of a succession of dips. The dips are obtained
because the stepper motor applies a negative stress to FBG #1, as explained in
Section 4.3.3. Since the translation stage repeats its motion three times to a given
distance Δ𝓁(1), Fig. 4.6(f) shows a series of dips grouped by 3 successive ones with
approximately the same depth.

Fig. 4.7 shows the modulation amplitude Δ𝜆(1) for sensor 1 as a function of the
strain applied to FBG #1. The strain is assumed to be constant along the fiber and
it is defined as:

𝜀(1)𝑗 =
Δ𝓁(1)3𝑗
𝓁0

, (4.40)

where 𝜀(1)𝑗 is the strain at FBG #1 and 𝓁0 the fiber length defined in Fig. 4.5(b). The
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index 3𝑗 in Eq. (4.40) appears since the distances Δ𝓁(1)3𝑗 , Δ𝓁
(1)
3𝑗+1 and Δ𝓁

(1)
3𝑗+2 are the

same, as explained in Section 4.3.3. On the other hand, the modulation amplitude
is defined as:

Δ𝜆(1)𝑗 = |𝛿dip1,3𝑗 − 𝛿max1,3𝑗 | , (4.41)

where 𝛿dip1,3𝑗 is the time average of function 𝛿1(𝑡) at the three adjacent dips (3𝑗+1),
(3𝑗+2) and (3𝑗+3), as indicated in the upper inset of Fig. 4.7. Similarly, 𝛿max1,3𝑗 is the
time average of function 𝛿1(𝑡) at its (3𝑗+1)th, (3𝑗+2)th and (3𝑗+3)th maxima,
which occur when the translation stage rests around the original position 𝑥 = 0.
The ratio between the amplitude modulation and the strain gives the sensitivity 𝑆(1)
of FBG #1:

𝑆(1) = 𝜕Δ𝜆(1)
𝜕𝜀(1) . (4.42)

By fitting a straight line to the data points (Δ𝜆(1)𝑗 , 𝜀
(1)
𝑗 ), we retrieved 𝑆(1) = 1.217 ±

0.006 pm/𝜇strain, which agrees with the nominal sensitivity of 1.2 pm/𝜇strain pro
vided by the manufacturer (Technicasa, T10). The minimum retrieved strain is
365 nanostrain and the corresponding minimum modulation amplitude obtained is
Δ𝜆𝑚𝑖𝑛 = 400±200 fm. This value is more than two orders of magnitude smaller
than the resolution of the FT spectrometer (50 pm). The free spectral range of MZI
with the larger OPD limits the resolution of the spectrometer in the chip (see Eqs.
4.14 and 4.15). However, such limitation does not affect the system of nonlinear
equations derived in Section 4.3.1. The value of Δ𝜆𝑚𝑖𝑛, experimentally retrieved, is
limited by the SNR of the input signal and by the accuracy of the coefficients 𝑎𝑚𝑘
(where 𝑚, 𝑘 = 1...𝐾), obtained by the calibration procedure.

FBG #4 has been taken as a reference sensor and no external excitation is
applied to it after the end of the calibration. However, for 𝑡 < 10 s, Fig. 4.6(e)
shows small fluctuations of function 𝛿4(𝑡)′ (of the order of a few pm), caused by
the crosstalk among sensors. Since the modulation amplitude of FBG #1 is the
larger for 𝑡 < 10 s, its crosstalk with FBG #4 is dominant. The maximum cross talk
between FBGs #4 and FBGs #1 is about 1% of the 𝛿1(𝑡) value, which is acceptable in
most applications. For smaller modulations of the FBG #1 (below 50 pm), resonance
wavelength pertubation due to crosstalk is in subpicometer level.3

In order to demonstrate the compensation of the thermal drift of the phases
𝜓𝑒,𝑚 (𝑚 = 1, ..., 𝑀), the chip is heated up using a Peltier element (MCPE103108NC
S 18.8W, Multicomp) placed a few centimeters above it. The Peltier hot surface
reaches a temperature of 45 ∘C causing a shift of 35 pm to the solutions 𝛿1(𝑡)′,
𝛿2(𝑡)′, 𝛿3(𝑡)′ and 𝛿4(𝑡)′. The drift of 𝛿4(𝑡)′ can be observed in Fig. 4.6(e) for
𝑡 > 73 s. Using Eq. (4.39) we calculated 𝛿1(𝑡), 𝛿2(𝑡) and 𝛿3(𝑡)′, where 92.0% of
the phase drift has been compensated. Fig. 4.6(f) shows a comparison between
𝛿1(𝑡)′ and 𝛿1(𝑡) while Figs. 4.6(c) and 4.6(d) show only the compensated solutions
3The resonance wavelength pertubation due to crosstalk is about 1.5 pm. According to Tosi [27], most
of the applications require an interrogation resolution of 1 pm, in the same order of magnitude of the
maximum crosstalk.
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Figure 4.7: Modulation amplitude Δ𝜆(1) of sensor 1 as a function of the strain applied. Δ𝜆(1) is calculated
from as Δ𝜆(1) = |𝛿𝑑𝑖𝑝1,3𝑗 − 𝛿𝑚𝑎𝑥1,3𝑗 |, where 𝛿

𝑑𝑖𝑝
1,3𝑗 and 𝛿𝑚𝑎𝑥1,3𝑗 are defined in upper inset of the fig. A straight line

has been fitted to the data points (|𝜀(1)𝑗 |, Δ𝜆(1)𝑗 ). The slope, whose value is 1.217±0.006 pm/microstrain,
gives the sensitivity of FBG #1. The inset in the bottom of the fig. shows the data points (𝜀(1)𝑗 , Δ𝜆(1)𝑗 )
and the straight line fitted in a Loglog plot. The minimum amplitude modulation retrieved is 400±200
pm.

𝛿2(𝑡) and 𝛿3(𝑡). For the sensors presented here, the phase drift could have been
removed by applying a high pass filter to 𝛿1(𝑡)′, 𝛿2(𝑡)′ and 𝛿3(𝑡)′. However, for
low speed sensors such as biochemical sensors [4], filtering is not possible since
the speed of the sensor is comparable to the phase drift speed.

Although the method can be applied to high speed sensors, its real time imple
mentation is challenging. On one hand, the speed of the FT spectrometer is limited
only by the electronics and the integrated photodetectors may respond at frequen
cies of hundreds of MHz. On the other hand, a system of nonlinear equations
need to be solved at each instant of time. The computational costs, however, can
be reduced by calculating the inverse of the Jacobian 𝜕�̂�𝑚/𝜕𝛿𝑘 analytically. Using
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the transformation 𝑧𝑘(𝑡) = 2𝜋(𝜆𝑘(0)+𝛿𝑘(𝑡))/𝐹1, it can be shown that the Jacobian
is given by a product of a diagonal matrix and the Vandermond matrix 𝑉(𝑧𝑘). Since
analytic expressions do exist [28] for the inverse of 𝑉(𝑧𝑘), the computational time
is mainly governed by the time of calculating product of matrices. Moreover, the
reduced number of interactions of Newton’s method also contributes in reducing
the computational time. In Chapter 5, the nonlinear system of equations is solved
using semianalytic methods.

4.5. Conclusion
A novel interrogation method based on FT spectroscopy is presented. The tech
nique is promising due to its high flexibility, high sensitivity and reduced interrogator
footprint. It can be applied in different situations, in particular, for arrays of inte
grated sensors where the resonance wavelengths cannot be predicted during the
design stage. Three conditions have been identified for the proper interrogation
of the sensors: (a) the number of interferometers must only be at least as large
as the number of sensors, allowing the interrogator footprint to be relatively small;
(b) the MZIs must have different OPDs; (c) the phases 2𝜋𝜆𝑘(𝑡)/𝐹1 (for 𝑘 = 1, ..., 𝐾)
needs to be different at any time. If the maximum amplitude modulation of the
sensors is known, condition (c) is usually not an issue for FBG sensors, since the
Bragg wavelengths could be chosen with an accuracy better than 1.0 nm. In case
of integrated ring resonators, it is possible in most situations to design rings with a
slightly different lengths, assuring a similar free spectral range, but different reso
nances. Since the phases depend on 𝐹1, the proper design of the FT spectrometer
gives an extra flexibility to avoid the phases 2𝜋𝜆𝑘(𝑡)/𝐹1 to overlap.

It has been shown that the minimum modulation amplitude experimentally re
trieved is not limited by resolution of the FT spectrometer, but limited only by the
signaltonoise ratio of the input signal. The minimum modulation amplitude ob
tained is 400 ± 200 fm and the crosstalk is about 1%. Moreover, the phase drift of
the interrogator, caused by temperature fluctuations, can be compensated by using
one of the sensors as reference sensor to which no external excitation is applied.
This is important for low speed sensors where the thermal induced drift of MZI
phases is comparable to the speed of the sensors. Our method can also be applied
for highspeed sensors as the photonic components integrated within the chip can
respond at high speed. The implementation of real time interrogators, however, it
requires the analytic calculation of the inverse of the Jacobian matrix used in New
ton’s method. This issue is addressed in Chapter 5, where the nonlinear system of
equations is solved using semianalytic methods.
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5
Algebraic solutions for the

Fourier transform
interrogator

A new method for fast, high resolution interrogation of an array of photonic
sensors is proposed. The technique is based on the integrated Fourier trans
form (FT) interrogator previously introduced by the authors. Compared to
other interferometric interrogators, the FTinterrogator is very compact and
has an unprecedented tolerance to variations in the nominal values of the
sensors’ resonance wavelength. In this Chapter, the output voltages of the
interrogator are written as a polynomial function of complex variables whose
modulus is unitary and whose argument encodes the resonance wavelength
modulation of the photonic sensors. Two different methods are proposed to
solve the system of polynomial equations. In both cases, the Gröbner basis
of the polynomial ideal is computed using lexicographical monomial ordering,
resulting in a system of polynomials whose complex variable contributions
can be decoupled. Using an NVidia graphics processing card, the process
ing time for 1 026 000 systems of algebraic equations takes around 9 ms,
which is more than two orders of magnitude faster than the interrogation
method previously introduced by the authors. Such a performance allows
for real time interrogation of highspeed sensors. Multiple solutions satisfy
the algebraic system of equations, but, in general, only one of the solutions
gives the actual resonancewavelengthmodulation of the sensors. Other solu
tions have been used for optimization, leading to a reduction in the crosstalk
among the sensors. The dynamic strain resolution is 1.66 𝑛𝜀/√𝐻𝑧.
Parts of this chapter have been published in Fellipe Grillo Peternella, Peter Harmsma, Roland
C. Horsten, Thim Zuidwijk, H. Paul Urbach, and Aurèle J. L. Adam, Algebraic solutions for the
Fourier transform interrogator, Opt. Express 29, 2563225662 (2021).

89



5

90 5. Algebraic solutions for the Fourier transform interrogator

5.1. Introduction
Photonic sensors have recently attracted much attention in both industry and academia.
They can offer high accuracy, low weight and the possibility of building a large sen
sor network. Photonic sensors can be employed in a wide range of situations and
can be used in harsh environments where electronic sensors are not suitable. Ex
amples of applications are gas sensing [1, 2], biosensing [3–5], monitoring pressure
and temperatures in oil industry [6] and finally, in structure health monitoring [7].
In the health care field, possible applications are ultrasound intravascular imag
ing [8, 9] and photoacoustic imaging [10]. Attention is given in this Chapter to
sensors whose spectrum is finite and can be multiplexed using wide division multi
plexing techniques (WDM). Ring resonator sensors and fiber Bragg gratings (FBG)s
are examples of this type of photonic sensor.

Interrogators can have a deep impact on sensor performance; they can limit
their dynamic range, measurement resolution, and speed. Interrogators based on
interferometry are usually implemented using two main stages [11, 12]: a de
multiplexer (such as an arrayed waveguide grating (AWG) or an echelle), which
separates the spectra of the photonic sensors and then an array of interferome
ters, which retrieve the information encoded in the resonance wavelength of each
photonic sensor. This approach gives a limited tolerance to variations in the reso
nance wavelength of the sensors. If one of the FBG sensors in the sensor network
needs to be replaced, another FBG with the same resonance wavelength must be
used [11]. The reason is that the resonance wavelength of the photonic sensors
should coincide with a wavelength close to the center of the spectrum of one of
the spectrometer’s output channels. A flexible interrogator is particularly impor
tant for demodulating integrated photonic sensors, since the fabrication stage may
introduce large variations in the nominal values of their resonance wavelengths.

The interrogator previously presented by our group [13] is based on a Fourier
transform (FT) spectrometer and implements the steps of demultiplexing and de
modulation simultaneously. The resonance wavelength modulation of the sensors
was obtained by numerically solving (at each instant of time) a system of non
linear equations. The minimum retrieved resonance wavelength modulation was
400 fm, about 130 times smaller than the FTspectrometer’s resolution. Despite the
high interrogation resolution, the processing time per nonlinear system is around
10 ms[13], limiting the maximum speed of the photonic sensors.

In this work, the nonlinear system of equations has been rewritten as a system
of polynomial equations. This algebraic system is solved by computing the Gröbner
basis of the polynomial ideal. Under a lexicographical monomial ordering, it is
possible to decouple the response of the photonic sensors. The algebraic system
admits multiple solutions and it is demonstrated in the appendix that, in general,
there is only one solution from which the resonance wavelength modulation of the
sensors can be obtained. One of the nonphysical solutions, however, has been used
to adjust the coefficients of the algebraic equations, reducing the crosstalk among
the sensors. As will be discussed in Section 5.3, the algebraic formulation enables
one to solve the polynomial system of equations using parallel computation. Using
an NVidia graphical processing unit (GPU), the overall processing time for 1 026 000
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algebraic systems of equations is about 9 ms. The novel formulation allows two
orders of magnitude faster than our previous Chapter’s approach, which allows
realtime interrogation of highspeed sensors. The Fourier transform interrogator
is a candidate for interrogating arrays of ultrasound ring resonator sensors [8, 9,
35, 36].

5.2. The Fourier transform interrogator
Different integrated FT spectrometer designs have been presented in the literature
[14–19]. While conventional Fourier transform spectrometers use a Michelson in
terferometer with a moving mirror, in 2007 Florjanczyk et al. [14] proposed a spec
trometer featuring a set of integrated MachZehnder interferometers (MZI) with
different arm lengths. As a result, the interferogram becomes discrete and the re
trieved spectrum periodic. The spectral reconstruction takes the Littrow wavelength
(defined as the wavelength at which the interferences are completely constructive
for all MZIs) as a reference. Given the fact that the spectrum is real and symmetric
with respect to the frequency 𝑓 = 0, the sine terms of the complex Fourier series
vanish. Moreover, the Fourier coefficients (which are calculated from the outputs
of each MachZehnder interferometer) become real.

FT spectrometers can be designed to achieve a resolution as hundreds of MHz [20].
The free spectral range (FSR) of the MZI with the larger optical path difference
(OPD) defines the spectral resolution limit of the system, while the periodicity of the
spectrum is defined by the FSR of the MZI with the smaller OPD. One of the critical
limitations of the spectral reconstruction method presented by [14] are the phase
errors: if the interference is not completely constructive at the Littrow wavelength,
distortions are introduced into the reconstructed spectrum. HerreroBermello et
al. [21] identify two main sources of phase errors: (a) errors caused by imperfec
tions in the fabrication process, and (b) errors introduced by thermal instabilities
during measurement.

The fabrication process introduces variations in the waveguide parameters such
as local variations of its width, leading the constructive interference maximum to
deviate from the Littrow wavelength. Takada et al. [22] solved this issue by using
microheaters and actively controlling the wavelengths at which the constructive
interference maximum occurs. Alternatively, Refs. [15–18] handle the phase er
rors by including them in the transmission function of each MZI and subsequently
solving a linear system of equations. Uda [19] and Okmamoto et. al [23] simpli
fied the calculation of the spectrum input by employing a 3×3 and a 4×4 MMIs
(multimode interference couplers) at the MZI outputs. In this case, both real and
imaginary parts of the Fourier coefficients are evaluated, and the phase errors are
compensated by multiplying the voltages of the interferogram by a phase factor
(see Eq. (5.5)). In contrast, phase errors introduced by thermal instabilities can be
mitigated by performing the measurements in a wellcontrolled environment. One
of the methods presented in [24] consists of computing several calibration matri
ces as a function of temperature. The input spectrum is obtained by multiplying
the spectrogram by the inverse (or pseudoinverse) of a matrix whose elements,
previously obtained by calibration, depend on the temperature of the device. Alter
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natively, [21] applies a novel technique based on machine learning, which gives an
80 % success rate. Thermal instabilities also impact the interrogation of photonic
sensors. Such instabilities have been compensated for in our previous article using
one of the photonic sensors as a reference [13].

The design of the FT interrogator differs from the FT spectrometer in that (a) it
contains a reduced number of interferometers and (b) the MZIs contain 3×3 MMI
couplers at their outputs, which is unusual for a FT spectrometer. As detailed later in
Section 5.3, according to the algebraic formulation, the number of MZIs employed in
the interrogation is equal to the number of the sensors. This drastically reduces the
number of MZIs which need be integrated on the chip. Fig. 5.1 shows the design of
our chip, fabricated by Smart Photonics in Eindhoven using InP technology. Its size
is 4.5 mm × 4.0 mm, and it has nine integrated MZIs. The armlength difference
of MZI1, shown in the upperright corner of Fig. 5.1, is Δ𝐿1 =710 𝜇m and its free
spectral range is 𝐹1 = 921𝑝𝑚. The armlength differences of the other MZIs are
progressively larger and given by 𝑚Δ𝐿1, where 𝑚 is an integer which identifies the
MZI in Fig. 5.1 and ranges from 1 to 9. The MZI free spectral ranges are given by
𝐹𝑚 = 𝐹1/𝑚. Input 1 is the main entrance, from which all MZIs can be accessed.
The other inputs guide the light signal to a smaller group of MZIs, allowing some
optical power to be saved if fewer sensors are being interrogated. The MZI outputs
are connected to integrated photodetectors (PDs). The PD electrical outputs are
conveyed (through a wirebond connection) to a printed circuit board (PCB), which
has the chip on top. This PCB is attached to another PCB which contains an array of
transimpedance amplifiers (TIA) (one per photodetector) and also to an additional
electronic circuit designed to calculate the complex Fourier coefficients.

Instead of retrieving the spectrum and thereby computing the resonance wave
length modulation of the sensors, in this work, a system of algebraic equations
is derived. The argument of the complex variables of the solution encodes the
resonance wavelength modulation of the photonic sensors. By solving the alge
braic system, it has been possible to experimentally obtain resonance wavelength
modulation amplitudes 140 times smaller than the FT spectrometer’s resolution. In
standard integrated FT spectroscopy applications, the spectrum is obtained using
a finite number of harmonic terms of the Fourier series because a finite number of
interferometers are on the chip. This limits the resolution of the retrieved spectrum.
An exception to this has been described by Podmode [16], in which the spectrum
is known to be sparse and was obtained using l1normalization. In contrast, the
algebraic system of equations derived in this work gives an accurate physical de
scription of the modulation of the sensors. The interrogation resolution is limited
by the noise and the inaccuracies of the coefficients retrieved in the calibration
procedure.

5.3. Theoretical analysis of the FT interrogator
5.3.1. Derivation of the system of polynomial equations
Photonic sensors can be multiplexed in large sensor networks. In this thesis,
the focus is on the interrogation of sensors which are multiplexed in the wave
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Figure 5.1: Schematic of the FTInterrogator. The device contains nine MZIs, all with different OPDs.
Input 1 is the main entrance, from which all MZIs can be accessed; Input 2 guides the light signal to
MZIs 8 and 9; Input 3, to MZIs 6 and 9; Input 4, to MZIs 6 and 7; and Input 6, to MZIs 1  5. The other
inputs are not used.

length domain (WDM). The spectrum of the sensors is assumed to be finite and
shaped as a peak (as with ring resonators or fiber Bragg gratings) and their res
onances, i.e., the wavelength at which the spectrum is maximum, are sufficiently
separated so that their combined spectra do not overlap. The combined spectrum
𝑆(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) as a function of time is given by:

𝑆(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) =
𝐾

∑
𝑛=1

𝑠𝑘(𝜆 − 𝜆0𝑘 − 𝛿𝑘(𝑡)), (5.1)

where 𝐾 is the number of photonic sensors, 𝑠𝑘(𝜆) is the spectrum of the 𝑘th
sensor, 𝜆0𝑘 is the resonance wavelength of the 𝑘th sensor, in the absence of an
external signal to be sensed and 𝛿𝑘(𝑡) is the resonance modulation of the 𝑘th
sensor, encoded by the signal to be sensed. Ring resonators may present multiple
resonances along the Cband, and the interrogator expects single resonance. To
isolate a single resonance, an optical filter, such as an FBG, can be used [9]. The
goal of the interrogator is to determine the function 𝛿𝑘(𝑡) as a function of time.

Here we derive the coupled polynomial system of equations for the FT Inter
rogator. A similar derivation has been presented in our former article [13], here it
is partially repeated for the reader’s convenience. The PCBs, which are connected
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to the TIAs, combine the voltages according to:

𝑉𝑚,𝑥(𝑡) = 2𝑉𝑚,3(𝑡) − 𝑉𝑚,1(𝑡) − 𝑉𝑚,2(𝑡)
𝑉𝑚,𝑦(𝑡) = √3 (𝑉𝑚,1(𝑡) − 𝑉𝑚,2(𝑡)) , (5.2)

where 𝑚 is the MZI index, 𝑉𝑚,𝑥(𝑡) and 𝑉𝑚,𝑦(𝑡) are voltages phase shifted by 90
degrees. Thus, 2 voltages (instead of 3) are sampled per MZI. In our former article,
it was shown that the expression for the voltages 𝑉𝑚,𝑥 and 𝑉𝑚,𝑦 is given by:

𝑉𝑚,𝑥(𝑡) = 3𝐺 ∫
∞

−∞
𝑆(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) cos(2𝜋

𝑚
𝐹1
𝜆 + 𝜓𝑒,𝑚)𝑑𝜆

𝑉𝑚,𝑦(𝑡) = 3𝐺 ∫
∞

−∞
𝑆(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) sin(2𝜋

𝑚
𝐹1
𝜆 + 𝜓𝑒,𝑚)𝑑𝜆, (5.3)

where 𝜓𝑒,𝑚 is an angle which accounts for the phase errors and 𝐹1 = 921 𝑝𝑚 the
free spectral range of MZI 1. 𝐺 is a parameter which depends on the photodetector
responsivities, on the TIA gains and on the attenuation of the optical signal within
the chip. For further details about this derivation, please refer to our previous
paper [13]. The 𝑚th complex voltage is defined according to:

�̂�𝑚(𝑡) = 𝑉𝑚,𝑥(𝑡) + 𝑖𝑉𝑚,𝑦(𝑡) = 3𝐺𝑒−𝑖𝜓𝑚 ∫
∞

−∞
𝑆(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) exp(𝑖2𝜋

𝑚
𝐹1
𝜆)𝑑𝜆.
(5.4)

As shown in our previous Chapter, the input spectrum can be reconstructed accord
ing to the following expression:

𝑆𝑟𝑒𝑐(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) =
𝑀

∑
𝑚=−𝑀

�̂�𝑚(𝑡)𝑒𝑖𝜓𝑚
𝐺 exp(−𝑖2𝜋𝑚𝐹1

𝜆), (5.5)

where 𝑆𝑟𝑒𝑐(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) is the reconstructed spectrum. 𝑆𝑟𝑒𝑐(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡)
differs from 𝑆(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) in that 𝑆𝑟𝑒𝑐(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆, 𝑡) = 𝑆𝑟𝑒𝑐(𝛿1(𝑡), ..., 𝛿𝑀(𝑡), 𝜆+
𝐹1, 𝑡) is periodic and that it features a limited resolution, as the number of interfer
ometers is finite. Phase errors that may have been introduced by the fabrication
process are compensated by the factor exp(𝑖𝜓𝑚) in Eq. (5.5).

The spectrometer resolution is given by 𝐹1/(2𝑀). To resolve sensor modulation
amplitudes much smaller than the spectrometer’s resolution, we derive a system
of polynomials equations. Substituting Eq. (5.1) into Eq. (5.4) and changing the
integration variable 𝜆 → 𝜆′ + 𝜆0𝑘 + 𝛿𝑘(𝑡), we obtain:

�̂�𝑚(𝑡) =
𝐾

∑
𝑘=0

𝑎𝑚𝑘 exp [𝑖2𝜋
𝑚
𝐹1
𝛿𝑘(𝑡)], (5.6)

where

𝑎𝑚𝑘 = 3𝐺 exp [𝑖 (−𝜓𝑒,𝑚 + 2𝜋
𝑚
𝐹1
𝜆0𝑘)]∫

∞

−∞
𝑠𝑘(𝜆′) exp(𝑖2𝜋

𝑚
𝐹1
𝜆′)𝑑𝜆′. (5.7)
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Eq. (5.6) represents a system of 𝑀 nonlinear equations (each MZI has one cor
responding equation) and 𝐾 variables. The coefficients 𝑎𝑚𝑘 are determined via
a calibration (see Section 5.4.2). Eq. (5.6) was solved numerically via Newton’s
method in our former article. The only restriction imposed is for the argument of
the complex exponentials in Eq. (5.6) to be all different from each other, otherwise
the Jacobian of Eq. (5.6) is singular.

In order to solve Eq. (5.6) analytically, one the sensors is chosen as a reference
and both sides of Eq. (5.6) are divided by its coefficient 𝑎𝑚,𝑟𝑒𝑓:

�̂�𝑚(𝑡)
𝑎𝑚,𝑟𝑒𝑓

=
𝐾

∑
𝑘=1

𝑎𝑚,𝑘
𝑎𝑚,𝑟𝑒𝑓

exp [𝑖2𝜋𝑚𝐹1
𝛿𝑘(𝑡)]

=
𝐾

∑
𝑘=1

∫∞−∞ 𝑠𝑘(𝜆′) exp (𝑖2𝜋
𝑚
𝐹1
𝜆′) 𝑑𝜆′

∫∞−∞ 𝑠𝑟𝑒𝑓(𝜆′) exp (𝑖2𝜋
𝑚
𝐹1
𝜆′) 𝑑𝜆′

exp [𝑖2𝜋𝑚𝐹1
(𝜆0𝑘 − 𝜆0𝑟𝑒𝑓 + 𝛿𝑘(𝑡))].

(5.8)

We assume that the lineshapes of the photonic sensors 𝑠𝑘(𝜆) are proportional or,
in the best case, equal. The coefficients 𝑏𝑘 (for 𝑘 = 1...𝐾), defined as:

𝑏𝑘 =
∫∞−∞ 𝑠𝑘(𝜆′) exp (𝑖2𝜋

𝑚
𝐹1
𝜆′) 𝑑𝜆′

∫∞−∞ 𝑠𝑟𝑒𝑓(𝜆′) exp (𝑖2𝜋
𝑚
𝐹1
𝜆′) 𝑑𝜆′

= | 𝑎𝑚𝑘𝑎𝑚,𝑟𝑒𝑓
| ≅ 1 (5.9)

are real and given by the ratio of the moduli of the coefficients 𝑎𝑚𝑘 and 𝑎𝑚𝑟𝑒𝑓.
The unity on the righthand side of Eq. (5.9) occurs if only the spectrum lineshapes
𝑠𝑘(𝜆) (for 𝑘 = 1, ..., 𝐾) are equal. Let

𝑧𝑘(𝑡) = exp [𝑖 2𝜋𝐹1
(𝜆0𝑘 − 𝜆0𝑟𝑒𝑓 + 𝛿𝑘(𝑡))] . (5.10)

By substituting the definitions of 𝑧𝑘 (Eq. (5.10)) and 𝑏𝑘 (Eq. (5.9)) into Eq. (5.8),
we obtain a system of algebraic equations:

𝑝𝑚(𝑧1, ..., 𝑧𝑀) =
𝐾

∑
𝑘=1

𝑏𝑚𝑧𝑘(𝑡)𝑚 −
�̂�𝑚(𝑡)
𝑎𝑟𝑒𝑓,𝑚

= 0, (5.11)

where 𝑝1,...,𝑝𝑀 are polynomials in the variables 𝑧1(𝑡),...,𝑧𝑀(𝑡). The methods for
solving Eq. (5.11) are discussed in details in Section 5.3.2. According to Eq. (5.10),
the resonance wavelength modulation of the 𝑘th photonic sensor is proportional
to the argument of 𝑧𝑘, where in theory |𝑧𝑘| = 1. After computing the solution, the
resonance wavelength modulation of the sensors is retrieved from the following
expression:

𝛿𝑘(𝑡) = 𝐹1
unwrap(arg(𝑧𝑘(𝑡))) − arg(𝑧𝑘(0))

2𝜋 , (5.12)

where it is assumed that at 𝑡 = 0 no external excitation is applied, thus 𝛿𝑘(0) = 0.
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5.3.2. Algorithm to retrieve the resonance wavelength modu
lation

This paper aims to solve Eq. (5.11) using analytical and semianalytical methods.
In order to retrieve the modulation for 𝐾 photonic sensors, at least 𝐾 complex
voltages are needed. In this paper, 𝐾 = 𝑀, i. e., the number of sensors is equal
to the number of interferometers and complex voltages. The main reason is that
the voltages �̂�𝑚 (for 𝑚 > 𝐾) are attenuated more compared to the voltages for
𝑚 ≤ 𝐾, and the additional information provided for these equations has a reduced
signaltonoise ratio. The larger the value of 𝑚 is, the larger the MZI OPD size is,
resulting in a stronger attenuation due to the photonic sensors’ finite coherence
length.

Solutions of Eq. (5.11) are obtained using the computation of Gröbner basis.
For a basic introduction of the Gröbner basis, we refer the reader to [25–28]. Let
𝐼 =< 𝑝1, ..., 𝑝𝑀 > be an ideal in the polynomial ring 𝐾𝑟 [𝑧1, 𝑧2, ..., 𝑧𝑀] 1, where the
polynomials 𝑝1, ..., 𝑝𝑀 are defined by Eq. (5.11). The set 𝐺 = {𝑔1, ..., 𝑔𝐽} ⊂ 𝐼 is a
Gröbner basis of 𝐼 as long as:

< 𝐿𝑇(𝑔1), ..., 𝐿𝑇(𝑔𝐽) >=< 𝐿𝑇(𝐼) >, (5.13)

where 𝐿𝑇 is the leading term using some monomial ordering. As later discussed,
the Eqs. (5.11) intersect in a finite number of points. In this case, and using a
lexicographical monomial ordering, the polynomials of the basis 𝐺 are given by [28]:

𝑔1,1 ∈ 𝐾𝑟 [𝑧1, 𝑧2, ..., 𝑧𝑀]
𝑔1,2 ∈ 𝐾𝑟 [𝑧1, 𝑧2, ..., 𝑧𝑀]

...
𝑔1,𝑛1 ∈ 𝐾𝑟 [𝑧1, 𝑧2, ..., 𝑧𝑀]

𝑔2,1 ∈ 𝐾𝑟 [𝑧2, ..., 𝑧𝑀]
...

𝑔2,𝑛2 ∈ 𝐾𝑟 [𝑧2, ..., 𝑧𝑀]
...

𝑔𝑀,𝑛𝑀 ∈ 𝐾𝑟 [𝑧𝑀] , (5.14)

where 𝑛1, ..., 𝑛𝑀 are integers. Hence, there exists at least one subset 𝐺𝑠𝑢𝑏 =
{𝑔𝑠𝑢𝑏,1, ..., 𝑔𝑠𝑢𝑏,𝑀} of 𝐺 in which the polynomials satisfy a triangular form. Thus

𝑔𝑠𝑢𝑏,1(𝑧1, 𝑧2, ..., 𝑧𝑀) = 0
𝑔𝑠𝑢𝑏,2(𝑧2, ..., 𝑧𝑀) = 0

...
𝑔𝑠𝑢𝑏,𝑀(𝑧𝑀) = 0, (5.15)

1Although the coefficients 𝑏1,...,𝑏𝑀 are real, the voltages are complex numbers. Thus the field is 𝐾𝑟 =
𝑄(𝑖), as coefficients are represented in fixedpoint precision. Solutions are found in the extension field
of the complex numbers.
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where we dropped the time dependency of 𝑧𝑚 = 𝑧𝑚(𝑡) and 𝑉𝑚 = 𝑉𝑚(𝑡) (for
𝑚 = 1, ..., 𝑀) for simplifying the notation. Eqs. (5.15) can be analytically solved
if the degrees of the polynomials are equal or smaller than four. Otherwise, the
polynomial roots of Eqs. (5.15) are numerically obtained.

Proposition. Let (𝛿1(𝑡),...,𝛿𝑀(𝑡)) be the resonance wavelength modulation of
𝑀 sensors, encoded in the argument of the complex variables 𝑧1(𝑡), 𝑧2(𝑡), ..., 𝑧𝑀(𝑡)
defined by Eq. (5.10). The spectrum of the sensors is finite and their lineshapes
are all equal, except each having a slightly different peak height, so that Eq. (5.11)
can be written as:

𝑀

∑
𝑘=1

𝑏𝑘𝑧𝑘(𝑡)𝑚 = �̂�𝑚(𝑡)/𝑎𝑚,𝑟𝑒𝑓 , (5.16)

where 𝑏1 ≅ ... ≅ 𝑏𝑚 ≅ 1. For any value of 𝑡, it is assumed that arg 𝑧1(𝑡) ≠
arg 𝑧2(𝑡) ≠ ... ≠ arg 𝑧𝑀(𝑡) and that the arguments of complex variables are suffi
ciently distant from each other so that Matrix Q𝐻, defined in Eq. (5.57), is definite
positive and the jacobian of Eq. (5.16) is wellconditioned. For this proposition,
we assume a noiseless interrogator. The combined spectrum of the sensors inter
fere in 𝑀 interferometers according to the FT interrogator description presented in
Section 5.2. Eq. (5.16) satisfy the following properties:

1. The polynomials in Eq. (5.16) intersect in 𝑀! points;

2. If 𝑍𝑠𝑜𝑙 = (𝑧1, ..., 𝑧𝑀) is a solution of Eq. (5.16) and the coefficients 𝑏1, ..., 𝑏𝑀
are all equal, the other solutions are given by all possible permutations of the
coordinates of 𝑍𝑠𝑜𝑙. Moreover, |𝑧𝑚| = 1, for 𝑚 = 1, ..., 𝑀;

3. If the coefficients 𝑏1 ≠ 𝑏2 ≠ ... ≠ 𝑏𝑀 are all different, there is only one
solution whose complex variables satisfy |𝑧1| = ... = |𝑧𝑀| = 1. For all the other
solutions, there is at least one complex variable whose modulus is different
from one.

Lemma. If a subgroup of 𝐽 < 𝑀 of coefficients of the monomials 𝑧𝑚1 , 𝑧𝑚2 , ..., 𝑧𝑚𝐽 (for
𝑚 = 1...𝑀) in Eq. (12) are all equal (𝑏1 = ... = 𝑏𝐽), there will be 𝐽! solutions in which
the moduli of all complex variables is one.

Mathematical details of the proposition are presented in the appendix. Item (1)
guarantee the existence of the and the amount of intersection points. Items (2) and
(3) provide a physical interpretation of the solutions. If the lineshapes 𝑠𝑘(𝜆) (for
𝑘 = 1...𝑀) of the photonic sensors are equal, 𝑏1 = ... = 𝑏𝑀 = 1 and the polynomials
on the lefthand side of Eq. (5.16) become symmetric (see the Appendix for details).
Given a solution 𝑍𝑠𝑜𝑙 = (𝑧1, ..., 𝑧𝑀), other solutions are given by permutations of 𝑍𝑠𝑜𝑙
coordinates. In this case all solutions are equally valid as |𝑧1| = ... = |𝑧𝑀| = 1. If
the spectra 𝑠𝑘(𝜆) for k = 1...M) are different, there is only one solution in which the
modulus of all the complex variables is equal to the unity. Since the other solutions
violate the assumption made in Eq. (5.10), the other solutions are spurious. The
lemma can be derived using the same arguments presented in the appendix. Given
these properties, the following algorithm has been proposed in order to demodulate
the sensor signals:
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1. Determine the coefficients 𝑎𝑚𝑘 (for 𝑚 = 1...𝑀 and 𝑘 = 1...𝑀 and ) from the
calibration procedure, described in Section 5.4.2.

2. Compute the Gröbner basis of the polynomial ideal using the lexicographic
monomial ordering. The complex voltages �̂�𝑚(𝑡) (for 𝑚 = 1, ..., 𝑀) are kept
as parameters so that the computation of the Gröbner basis needs only to be
done once. The computation of the basis uses the SymPY Python module and
the F5b [29] algorithm. Similar results can be obtained using Mapple [30].

3. For each instant of time, substitute the values of �̂�𝑚(𝑡) (for 𝑚 = 1, ..., 𝑀)
into the polynomials obtained from the Gröbner basis analysis and solve the
system of equations.

4. Compute the absolute values of variables 𝑧1, ..., 𝑧𝑀. Solutions whose absolute
value of the complex variables are different than one are discarded. Let:

Δ(𝑡) = 1
𝑀

𝑀

∑
𝑚=1

||𝑧𝑚(𝑡)| − 1|. (5.17)

Function Δ(𝑡) indicates on average how much the modulus of the complex
variables deviates from the unity. The valid solution is the one which minimizes
Δ(𝑡).

5. Compute the argument of the complex variables. The arguments of the com
plex variables may swap with time: if at a certain instant of time the signal of
one of the photonic sensors is encoded in the argument of the 𝑚th complex
variable 𝑧𝑚(𝑡), at a different time instant, this signal may be encoded into a
different complex variable. This phenomenon is explained in detail in Section
5. The identification of the sensor is possible by observing the DC component
of the complex variable argument. From the calibration procedure described
in Section 5.4.2, we obtain the arguments of all complex variables at 𝑡 = 0 and
which photonic sensor the argument corresponds to. Let 𝛿𝑚,𝑚𝑖𝑛 and 𝛿𝑚,𝑚𝑎𝑥
be the minimum and maximum modulation amplitudes for the 𝑚th sensor.
The complex variable 𝑧𝑗(𝑡) can be associated with the 𝑚th sensor if:

arg(𝑧𝑗(0)) −
|𝛿𝑚,𝑚𝑖𝑛|𝐹1

2𝜋 < unwrap(arg(𝑧𝑗(𝑡))) < arg(𝑧𝑗(0)) +
𝛿𝑚,𝑚𝑎𝑥
2𝜋 ,
(5.18)

where 𝛿𝑚,𝑚𝑖𝑛 ≤ 0 and 𝛿𝑚,𝑚𝑎𝑥 > 0.

6. Finally, the sensor modulation is obtained according to Eq. (5.12).

This first method has been implemented in Python only. It features the dis
advantage that the subset 𝐺𝑠𝑢𝑏 of the Gröbner basis, shown in Eq. (5.15), may
not be unique. For a given basis Gröbner basis, polynomials might be arranged in
different subsets, all of them obeying the triangular form described by Eq. (5.15).
Thus, Lazard [31] proposed an algorithm which calculates a finite array of triangu
lar systems of polynomials from the Gröbner basis 𝐺, obtained using lex monomial
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ordering. However,for the case of three sensors studied in the Experimental Sec
tion, this is not needed. For 𝑏1 ≠ 𝑏2 ≠ 𝑏3, the Gröbner basis obtained using both
Python and Maple has only three equations: the univariate equation in 𝑧3 has the
degree of six, while the other two polynomials are linear for 𝑧1 and 𝑧2, respectively.
Another issue of the current method is that the computation cost of obtaining the
Gröbner basis for nonsymmetrical polynomial equations can be extremely high for
a larger number of sensors. Other algorithms for algebraic solving the system of
equations could also be employed [32]. However, the computation cost stills quite
high for a large number of sensors.

We propose a second method for solving the polynomial system described by
Eq. (5.11): in step 2 of the algorithm described above, we first approximate 𝑏1 =
... = 𝑏𝑀 = 1, making the system of equations symmetric. This meaningfully reduces
the computational cost of obtaining the Gröbner basis. Next, the symmetric system
solution is taken as a starting point in Newton’s method. In order to ensure a
fast convergence, the coefficients 𝑏1, ..., 𝑏𝑀 are expected to be close to unity. As
explained in Section 5.3.1, this is obtained if the sensors’ spectra lineshapes are all
similar. As an alternative to the computation of the Gröbner basis, the symmetric
system of polynomial equations can be solved using the approach described by[33],
also presented Appendix B. Let (𝑍1, ..., 𝑍𝑀) be one of the solutions of Eq. (5.16) for
the case 𝑏1 = ... = 𝑏𝑀 = 1. We construct an univariate polynomial in variable 𝑍,
given by:

𝑀

∏
𝑚=1

(𝑍 − 𝑍𝑚) =
𝑀

∑
𝑚=0

(−1)𝑚𝑒𝑚(�̂�1, ..., �̂�𝑀)𝑍𝑀−𝑚 = 0, (5.19)

where 𝑒0, ..., 𝑒𝑀 are elementary symmetric polynomials in 𝑀 variables, which can
always be written as a function of the complex voltages �̂�1, ..., �̂�𝑀 if 𝑏1 = ... = 𝑏𝑀 = 1.
The relation between the 𝑒0,...,𝑒𝑀 and �̂�1,...,�̂�𝑀 is given by [34]:

𝑚𝑒𝑚 =
𝑚

∑
𝑗=1
(−1)𝑗−1�̂�𝑗𝑒𝑚−𝑗 . (5.20)

where �̂�𝑗 = �̂�𝑗/𝑎𝑗,𝑟𝑒𝑓 and 𝑒0 = 1. Solving Eq. (5.20) for 𝑒1,...,𝑒𝑀 gives 𝑒𝑚 =
𝑒𝑚(�̂�1, ..., �̂�𝑀) (where 𝑚 = 1, ..., 𝑀). Therefore, solutions of the symmetric system of
the system is given by 𝑍𝑠𝑜𝑙 = (𝑍1, ..., 𝑍𝑀), where 𝑍1, ..., 𝑍𝑀 are the roots of Eq. (5.19).
Other solutions are given by permutation of 𝑍𝑠𝑜𝑙 coordinates: (𝑍1, 𝑍2, ..., 𝑍𝑀), (𝑍2, 𝑍1, ..., 𝑍𝑀),
(𝑍𝑀 , 𝑍2, ..., 𝑍1),... If two or more resonance wavelengths coincide, the polynomial in
Eq. (5.19) has multiple roots. In this case, although not explored in the experimen
tal Section, the Newton method’s corrections are no longer possible to be obtained
as the Jacobian of the lefthand side of Eq. (5.16) becomes singular. As a result,
the accuracy of 𝛿1(𝑡), ..., 𝛿𝑀(𝑡) to obtained from Eq. (5.19) decreases. However,
Eq. (5.19) can be solved, indicating the interrogator’s high flexibility concerning
𝜆01, ..., 𝜆0𝑀 and 𝛿1(𝑡), ..., 𝛿𝑀(𝑡) values.

The main difference between the second approach and the method proposed in
our previous article [13] is the initial guess of Newton’s method: in our last paper,
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Buffer 1 Buffer 2 Buffer M
0 �̂�1(𝑡0) �̂�2(𝑡0) ... �̂�𝑀(𝑡0)
1 �̂�1(𝑡1) �̂�2(𝑡1) ... �̂�𝑀(𝑡1)

... ... ... ... → ∑𝑘 𝑏𝑘𝑧𝑘[𝑡]𝑚 = �̂�𝑚[𝑡]
N1 �̂�1(𝑡𝑁−1) �̂�2(𝑡𝑁−1) ... �̂�𝑀(𝑡𝑁−1)

Figure 5.2: Buffers copied to CUDA device memory. Each buffers’ row represents a different algebraic
system of equations, according to Eq. (5.11), displayed on right side of the figure.

the starting point is given by the solution obtained in the previous time step, while
in this novel method, the starting point is given by the solution of the symmetric
algebraic system. The second approach has been implemented in CUDA. Solving the
nonlinear equations using a GPU is only possible due to novel algebraic formulation:
in the previous article, since the initial guess depends on Newton’s method solution
of a past time instance, the equations had to be solved sequentially. On the other
hand, in the novel algebraic formulation, the complex voltages are stored in M
buffers of with N elements each, as shown in Fig. 5.2. Each buffers’ row represents
a different algebraic system of equations to be solved, as also shown in the figure.
All N equations are solved in parallel as earlier described: first, the solution of
N symmetric equations is obtained (for 𝑡 = 0...𝑡𝑁−1) by computing the roots of
Eq. (5.19); next, the solution is corrected using Newton’s method, also evaluated
in the GPU.

5.4. Experimental procedure
5.4.1. Experimental setup
The experimental setup is shown in Fig. 5.3. The FTinterrogator has been char
acterized using three FBG strain sensors. Fig. 5.3(a) shows that the ends of the
fibers, which contain the fabricated FBGs, are mechanically attached to a manual
positioner and a stepper motor. The manual positioners are used to apply an ini
tial stress to the FBGs so that the resonance wavelengths of the sensors can be
controlled at 𝑡 = 0. In our experiment 𝜆0,1 = 1550.52 nm, 𝜆0,2 = 1551.7 nm
and 𝜆0,3 = 1551.08 nm. Their full width half maximum (FWHM) are 100, 125 and
112 pm, respectively. As the stepper motor (Standa, 8Mt_167100) travels along
the xaxis, it stresses the fiber, causing the resonance wavelength of the FBGs to
be modulated according to the position of the stepper motor. Two stepper motors
have been used. FBG 3 is chosen as the reference sensor and is attached to stepper
motor (1), and the other two FBG sensors are attached to stepper motor (2). While
stepper motor (2) travels back and forth along the xaxis over a fixed distance Δ𝑥
=  20 𝜇m, stepper motor (1) moves along different distances on the xaxis (Δ𝑥),
as shown in Fig. 5.3(b). Thus, different stresses can be applied to the reference
sensor. The Δ𝑥 values are later used to retrieve the curve strain versus resonance
wavelength modulation. The stepper motors are defined as always first travelling
towards negative xaxis values and afterwards returning in the positive direction
to the original position. As a result, the fiber elongation is always negative with
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respect to its length at 𝑡 = 0, when the stepper motor is in its original position.
Thus, the strain in the FBGs is always negative, preventing the FBGs from being
damaged if the stepper motor is accidentally configured to move to a high value of
Δ𝑥.

Figure 5.3: (a) Schematic of the experimental setup. The circulator is represented as a blue circle and
the booster optical amplifier (BOA) as a red triangle. Three FBGs have been used to characterize the
interrogator. The stepper motors and their moving plate are represented in orange. (b) Position of
stepper motors 1 and 2 as a function of time.

The amplified spontaneous emission (ASE) light source (Optolink, OLS15CGB
20FA), shown in 5.3 (a), emits a broadband spectrum, which can be assumed to
be flat in the region of operation of the photonic sensors and to be unpolarized.
The circulator couples the signal from the ASE source to the FBG sensor array.
Next, each FBG reflects a gaussian shapedpeak (whose resonance wavelength is
modulated according to the external excitation) to the circulator. The circulator
then guides the optical signal to the BOA (Thorlabs, S9FC1004P), which amplifies
it and provides a gain of 20.5 dB. It should be noted that the BOA gain is applied
only to one of the polarization states of the input light signal. This is an important
issue because the integrated photodetectors on the chip feature a high polarization
dependency, being nearly insensitive to quasiTM modes. Hence, the polarization
rotator (shown in Fig 5.3(a)) is used to maximize the power coupled to the quasiTE
modes in the chip waveguides. Subsequently, by using a lensed fiber (Oz Optics,
TSMJ3A1550−9), the light signal is brought to chip input 6 and guided to MZIs 1  5
(see Fig. 5.1). The output voltages of the electronic board are recorded by analog
to digital convertors (ADC) at a sampling frequency 𝑓 = 10 kHz. The algorithm
described in Section 5.3.2 has been implemented in Python and in C++, using an
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™NVidia Tesla K40®graphics processing unit.

5.4.2. Calibration
The goal of the calibration procedure is to determine the coefficients 𝑏𝑘 (for 𝑘 =
1, ..., 𝑀) in Eq. (5.11), as well as the complex values of 𝑎𝑚,𝑟𝑒𝑓 (for 𝑚 = 1, ..., 𝑀). The
procedure presented here is similar to the one in our previous paper. The coeffi
cients 𝑎𝑚𝑘 (for 𝑚 = 1, ..., 𝑀) are obtained by exciting the 𝑘th sensor individually.
During the calibration time interval 𝑡𝑘𝑐𝑎𝑙, when 𝑘th sensor is excited, Eq. (5.6) can
be written as:

�̂�𝑚(𝑡𝑘,𝑐𝑎𝑙) = 𝑎𝑘 exp(𝑖𝑚𝛿𝑘(𝑡𝑘,𝑐𝑎𝑙)) + ∑
𝑗,𝑗≠𝑘

𝑎𝑚𝑗
⏝⎵⎵⏟⎵⎵⏝
other sensors

, (5.21)

where the other sensors receive no excitation and they contribute only as a con
stant in Eq. (5.21). Regardless of the excitation applied, Eq. (5.21) describes a
circle arc in the complex plane. Hence, we fit a circle to the Lissajous curve
(ℜ{�̂�𝑚(𝑡𝑐𝑎𝑙)}, ℑ{�̂�𝑚(𝑡𝑐𝑎𝑙)}). The radius and angle of this arc at the beginning of
the 𝑘th photonic sensor calibration (t = 𝑡𝑘𝑠𝑡𝑎𝑟𝑡) give the modulus and argument of
𝑎𝑚𝑘:

𝑅𝑚𝑘 = |𝑎𝑚𝑘|,
Φ𝑚𝑘(𝑡𝑘𝑠𝑡𝑎𝑟𝑡) = 𝑎𝑟𝑔(𝑎𝑚𝑘), (5.22)

where Φ𝑘(𝑡𝑘𝑠𝑡𝑎𝑟𝑡) is the angle of the circle arc at 𝑡 = 𝑡𝑘𝑠𝑡𝑎𝑟𝑡. Both positive and
negative stress is applied to the FBG strain sensors shown in Fig. 5.3(a) so that the
excitation applied to the 𝑘th sensor is zero at the end of its calibration (𝑡 = 𝑡𝑘𝑒𝑛𝑑),
which gives:

𝛿(𝑡𝑘𝑠𝑡𝑎𝑟𝑡) = 𝛿(𝑡𝑘𝑒𝑛𝑑) = 0. (5.23)

Hence, the resonance wavelengths 𝜆0𝑘 (for 𝑘 = 1, ..., 𝐾) are unchanged by the
calibration procedure. From Eq. (5.10), it can be shown that the argument of 𝑧𝑘
(for 𝑘 = 1...𝐾) is given by

arg (𝑧𝑘(𝑡𝑘𝑠𝑡𝑎𝑟𝑡)) = arg (𝑧𝑘(𝑡𝑘𝑒𝑛𝑑)) = arg(𝑧𝑘(0)) = Φ1,𝑘 −Φ1,𝑟𝑒𝑓 . (5.24)

According to the convention adopted here, the calibration procedure occurs for
𝑡 < 0, while the experimental simultaneous excitation of the sensors starts at 𝑡 = 0.
No excitation is applied during the period 𝑡𝑘𝑒𝑛𝑑 < 𝑡 < 0, and thus, the argument of
𝑧𝑘(𝑡) is constant during this period. Since the arguments of the complex variables
at 𝑡 = 0 are known and given by Eq. (5.24), they are used to identify the sensors,
as explained in Section 5.3.2. Imperfections in the 3×3 couplers distort the arc of
the circle in Eq. (5.21) into an arc of an ellipse. The variation of the parameters
in the electronic circuit responsible for computing Eq. (5.2) also contributes to the
increasing of the ellipse eccentricity and furthermore introduces voltage offsets.
Hence, instead of a circle, we fit an arc of an ellipse to 𝑉𝑚,𝑥(𝑡𝑘,𝑐𝑎𝑙) and 𝑉𝑚,𝑦(𝑡𝑐𝑎𝑙). A
linear transformation is applied to map the ellipse arcs to the circle arcs. For further
details, please refer to [13].
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Table 5.1: Parameters extracted during the calibration

Parameter Value Unit
𝑏1 0.94 1
𝑏2 1.04 1
𝑎3,1 110.8 + 235.1 i mV
𝑎3,2 247.7 + 174.8 i mV
𝑎3,3 261.7  107.4 i mV

5.5. Experimental results
5.5.1. Solutions of the algebraic system of equations
The algebraic system of equations is explicitly written for three sensors:

𝑝1(𝑧1, 𝑧2, 𝑧3) = 𝑏1𝑧1 + 𝑏2𝑧2 + 𝑧3 − �̂�1/𝑎1,3 = 0
𝑝2(𝑧1, 𝑧2, 𝑧3) = 𝑏1𝑧21 + 𝑏2𝑧22 + 𝑧23 − �̂�2/𝑎2,3 = 0 (5.25)

𝑝3(𝑧1, 𝑧2, 𝑧3) = 𝑏1𝑧31 + 𝑏2𝑧32 + 𝑧33 − �̂�3/𝑎3,3 = 0,

where the third sensor is chosen as a reference so that 𝑏3 = 1. We dropped the
time dependency of 𝑧𝑚 = 𝑧𝑚(𝑡) and 𝑉𝑚 = 𝑉𝑚(𝑡)(for 𝑚 = 𝑘, ..., 𝑀) for simplifying the
notation.

Fig. 5.4(a) shows the measured voltages 𝑉1,𝑥(𝑡) and 𝑉1,𝑦(𝑡). In order to reduce
the noise, a 45 Hz digital low pass filter has been applied to all measured voltage
signals. During the calibration procedure, the sensors were excited separately,
resulting in three ellipse arcs in the Lissajous curves (𝑉𝑚,𝑥(𝑡), 𝑉𝑚,𝑦(𝑡)). As explained
in Section 5.4.2, the ellipse arcs are obtained instead of circle arcs mainly due to
imperfections when using the 3×3 couplers. The linear transformation described in
our previous Chapter (see Section 3.2 of [13]), maps the ellipse arcs to circle arcs
and removes the voltage offsets. The corrected values of 𝑉1,𝑥(𝑡) and 𝑉1,𝑦(𝑡) are
plotted as a Lissajous curve, seen in Fig. 5.4(b). The figure also shows circles fitted
to the data points (𝑉1,𝑥(𝑡𝑐𝑎𝑙𝑘 ), 𝑉1,𝑦(𝑡𝑐𝑎𝑙𝑘 )), where 𝑡𝑐𝑎𝑙𝑘 is the calibration interval of the
𝑘th sensor. In some areas of Fig. 5.4(b) the data points deviate from the arc,
following a path closer to the center. This phenomenon has already been reported
in our previous Chapter, and it occurs when the resonance wavelength between
two FBG sensors overlap, creating an undesirable FabryPerot effect. Thus, some
optical energy is stored in the FabryPerot cavity and the radius of the circle to be
shortened. During the circle fittings, the points that highly deviate from the circle
arc have been neglected. From the radii of the arcs and their angles phases at
𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡𝑘 , the parameters of Eqs. (5.25) are retrieved and are shown in Table 5.1.

The system of Eqs. (5.25) have been solved using two different approaches,
as described in Section 5.3. Method 1 consists of computing the Gröbner basis of
the ideal 𝐼 =< 𝑝1, 𝑝2, 𝑝3 >, where the polynomials 𝑝1, 𝑝2 and 𝑝3 are defined in
Eqs. (5.25). The computation cost of retrieving the Gröbner basis in terms of time
and memory is high and the number of monomials of the basis is extremely large.
For that reason, the polynomials of the basis are not presented in this paper but can
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Figure 5.4: (a) Output voltages 𝑉1,𝑥(𝑡) and 𝑉1,𝑦(𝑡) recorded by the ADCs. The calibration is for 𝑡 < 0. (b)
Lissajous plot for (ℜ{�̂�1(𝑡)}, ℑ{�̂�1(𝑡))}. The circles fitted to the individual excitation of sensors 1,2 and
3 are shown in blue, orange and green, respectively. (c) Root loci of polynomials 𝑔3(𝑍) and 𝑔𝑠𝑦𝑚.3 (𝑍)
at 𝑡 = 0. The solution of the algebraic system of Eq. (5.25) from which the resonance wavelength
modulation is obtained is also shown in the figure (blue triangle) as is the unit circle. The figure shows
the effect of the symmetry breaking: each of the roots of 𝑔𝑠𝑦𝑚.3 (𝑍) (red crosses) are split into two
roots of 𝑔3(𝑍) (green circles). Only one of the roots of 𝑔3(𝑍) lies on the unit circle. (d) Function 𝑈(𝑡)
evaluated for the solutions of the symmetric system (in green), the original system of equations (in red)
and the optimized system (in blue), obtained in Section 5.5.2. (e) Real and (f) imaginary parts of the
paths 𝑊1(𝑡), 𝑊2(𝑡) and 𝑊3(𝑡) as a function of ℜ{𝑈} and ℑ{𝑈}. Branches of the cubic root function are
represented by the sheets shown in blue, red and green.



5.5. Experimental results

5

105

be obtained using the groebner command in the SymPY Python module. The com
putation of the Gröbner basis can be unfeasible for higher order nonsymmetrical
algebraic systems and the number of solutions follows a factorial growth: for 6
sensors, the algebraic system gives 720 solutions, of which 719 are spurious if the
coefficients 𝑏𝑘 (in this case for 𝑘 = 1...6) are all different. Method 1 has been
implemented in Python only.

The second method (hereby referred as Method 2) for solving Eqs. (5.25) has
two steps: (1) compute the solutions of the symmetric system of equations, ob
tained under the approximation 𝑏1 = 𝑏2 = 𝑏3 = 1; (2) improve the solution using
Newton’s method. The symmetric system of equations can either be solved by using
the Gröbner basis calculation or by calculating the roots of Eq. (5.19), as described
in Section 5.3.2. The elements of the Gröbner basis 𝐺𝑠𝑦𝑚 = {𝑔𝑠𝑦𝑚1 , 𝑔𝑠𝑦𝑚2 , 𝑔𝑠𝑦𝑚3 }
are:

𝑔𝑠𝑦𝑚1 (𝑧1, 𝑧2, 𝑧3) = −�̂�1 + 𝑧1 + 𝑧2 + 𝑧3 = 0,
𝑔𝑠𝑦𝑚2 (𝑧2, 𝑧3) = �̂�21 − 2𝑣1𝑧2 − 2�̂�1𝑧3 − �̂�2 + 2𝑧22 + 2𝑧2𝑧3 + 2𝑧23 = 0,
𝑔𝑠𝑦𝑚3 (𝑧3) = −�̂�31 + 3�̂�1�̂�2 − 6�̂�1𝑧23 − 2�̂�3 + 6𝑧33 + 𝑧3 (3�̂�21 − 3�̂�2) = 0. (5.26)

The computational cost for obtaining the 𝐺𝑠𝑦𝑚is much reduced for the symmetric
system of equations. Convergence is achieved with only three Newton’s method it
erations. This method has been implemented in C++/CUDA, taking approx. 8.6 ms
(using a Tesla K40 GPU) and 12.6 ms (using a Ge Force GTX 1050 Ti ) to solve ap
prox. 1000 000 systems of equations. The transfer time from CPU to GPU memory
is included in the numbers presented in table 5.2. Compared to the formulation we
presented in [13], implemented in a CPU, the processing time improves in more
than two orders of magnitude, allowing for realtime interrogation of highspeed
sensors in tens of MHz range. The previous approach is limited for sensors that
operate at maximum in tens of kHz range (eventually 100 kHz for three sensors
only). In particular, the current interrogator a candidate for interrogate arrays of
ultrasound ring resonator sensors [8, 9, 35, 36]. Ref. [35] uses four ultrasound
ring resonators sensors for photoacoustic imaging, allowing to solve the equations
using Method 2.

Table 5.2: Time comparison of different systems. Time data transfer for CPU and GPU is included in the
times below

System Compiler Time
i7, Ubuntu 19, GPU (Tesla) nvcc 8.6 ± 1 ms

i7, Ubuntu 19, CPU g++ 6 s
i7, Ubuntu 19, GPU (GeForce) nvcc 12.6 ± 0.5 ms

i5, Windows 10, CPU MinGw, g++ 8.3s

For a larger number of sensors, it is no longer possible to compute the roots of
polynomials analytically. Thus, the performance is as fast as the GPU can compute
roots of polynomials. An estimative of the total computational time has been made
for a symmetric system with eight sensors. Using Tesla K40 GPU, it was possible to
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solve one million symmetric algebraic systems in 86 ms, of which 26 ms concern the
data transfer from CPU+GPU and 60 ms of processing. As a result, realtime inter
rogation is feasible for sensors’ that operate up to a few MHz range. For simplicity,
Newton’s method has been used to find the roots of a univariate polynomial. For
a fixed number of iterations (in this case, six iterations), processing time increases
linearly with the number of sensors. Other efficient polynomial root algorithms can
be used to improve the processing time [37].

A third method, described in [38], has also been implemented. In this case,
a larger number of equations and complex voltages are needed: for 𝑀 sensors,
2𝑀 − 1 equations are needed. For three sensors, five equations are needed. This
method generalizes the algebraic approach for solving the symmetric system of
equations described in Section 5.3.2 for nonsymmetrical polynomials and returns
a unique solution. The spurious solutions, which satisfy the three equations in
Eq. (5.25), do not satisfy the other two equations. However, due to the coherence
length of the photonic sensors, the complex voltages of �̂�4(𝑡) and �̂�5(𝑡) feature a
reduced visibility and the resonance wavelength obtained is extremely noisy. For
this reason, the results are not shown. In terms of complexity, the method requires
solving an M×M linear system + computing the roots of an M order polynomial. For
the estimative of processing time with eight sensors, the linear system of equations
has been solved using LU decomposition and cublas library. The processing time
obtained is about 90 ms. In total, we estimate about 200 ms for solving a 1 000 000
nonsymmetric algebraic systems with eight sensors. The processing time of LU
decomposition features a thirdorder dependence with respect to the number of
sensors.

Fig. 5.4(c) compares the root locus (at t=0) of the univariate polynomials of
the Gröbner bases 𝑔𝑠𝑦𝑚3 (𝑧3) and 𝑔3(𝑧3), obtained from both the symmetric and the
original system of equations. 𝑔𝑠𝑦𝑚3 (𝑧3) has a degree of three, as can be observed
in Eq. (5.26), while 𝑔3(𝑧3) has a degree of six. This symmetry breaking causes
each of the roots of 𝑔𝑠𝑦𝑚3 (𝑧3) to split into two roots, as shown in Fig. 5.4(c). The
univariate polynomial 𝑔𝑠𝑦𝑚3 can be written as a function of a generic variable 𝑍:

𝑔𝑠𝑦𝑚3 (𝑍) = 6𝑍3 − 6�̂�1𝑍2 + (3�̂�21 − 3�̂�2) 𝑍 − �̂�31 + 3�̂�1�̂�2 − 2�̂�3 =
𝑐1𝑍3 + 𝑐1𝑍2 + 𝑐3𝑍 + 𝑐4 = 0, (5.27)

where 𝑐1,𝑐2,𝑐3 and 𝑐4 are coefficients of the cubic. By solving Eq. (5.20) in terms
of the elementary symmetric polynomials in three variables and substituting into
Eq. (5.19), the obtained equation is identical to Eq. (5.27). Therefore, as explained
in Section 5.3.2, the solutions of the symmetric system are given by all possible
permutations of the coordinates of 𝑍𝑠𝑜𝑙 = (𝑍1, ..., 𝑍𝑀), where 𝑍1, 𝑍2 and 𝑍3 are the
roots of 𝑔𝑠𝑦𝑚3 (𝑍). In contrast, the six solutions that satisfy Eqs. (5.25) are obtained
by substituting the roots of 𝑔3(𝑧3) into the other order polynomials of the bases
𝑔1(𝑧1, 𝑧3) and 𝑔2(𝑧2, 𝑧3), which are linear with respect to 𝑧2 and 𝑧3, respectively.
As a result, six solutions are obtained.

According to the proposition in Section 5.3.2, in general, there is only one so
lution in which the moduli of complex variables are all equal to one. This is the
case since matrix Q𝐻, defined in Eq. (5.57) in the appendix, is definite positive
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for any instance of time. The noise causes the moduli of complex variables to be
slightly different from one. Thus, Method 1 chooses the solution which minimizes
function Δ(𝑡), defined by Eq. (5.17), i.e. it chooses the solution whose moduli of
complex variables are closer to the unity. The solution obtained from Method 1 at
𝑡 = 0 is also shown in Fig. 5.4(c). The complex variables lie closer to the unit circle,
compared to the complex variables of the symmetric solution, which are given by
the roots of 𝑔𝑠𝑦𝑚.3 (𝑍(𝑡)). This occurs because no approximation has been made
for coefficients 𝑏1 and 𝑏2, allowing the complex variable moduli to be closer to the
theoretical value. Fig. 5.4(c) shows the value of function Δ(𝑡) for the solutions of
the original and the symmetric system. Δ(𝑡) is about one order of magnitude lower
for the solution of the original system one order of magnitude lower compared to
the other spurious solutions obtained by Method 1 (not shown). After three New
ton’s method iterations, the solution of the symmetric system converges to the
solution obtained from Method 1 so that the maximum difference of the resonance
wavelength of the sensors obtained from the two methods is about 10−11 pm.

Figs. 5.5 (a), (b) and (c) show the resonance wavelength modulation obtained
from Method 2. This method is taken as the reference due to its simplicity and
because roots of third order polynomials can be analytically evaluated. The colors
in Figs. 5.5 (a), (b) and (c) indicate the root of the cubic equation from which the
resonance wavelength has been computed and then later corrected using Newton’s
method. For 𝑡 > 40, there is a onetoone correspondence between the 𝑗th root
of 𝑔𝑠𝑦𝑚3 (𝑍) and the signal of the 𝑗th sensor. However, for 𝑡 < 40, the complex
variables swap, as described in Section 5.3.2. This swap occurs when the argument
of function 𝑈(𝑡), which satisfies Eq. (5.28), reaches 180∘. Function 𝑈(𝑡) is obtained
after applying a series of variable transformations in Eq. (5.27), reducing the degree
of the polynomial to two. For details, we refer to Appendix B. 𝑈(𝑡) obeys the second
order equation:

𝑈(𝑡)2 + 𝑄(𝑡)𝑈(𝑡) − 𝑃(𝑡)
3

27 = 0, (5.28)

where 𝑃(𝑡) and 𝑄(𝑡) are the depressed cubic coefficients, also defined in [33].
Eq. (5.28) has two solutions: 𝑈+(𝑡) and 𝑈−(𝑡), given by:

𝑈±(𝑡) =
−𝑄(𝑡)
2 ± √𝑃(𝑡)

3

27 + 𝑄(𝑡)
2

4 . (5.29)

The roots of Eq. (5.27) have been obtained using 𝑈−(𝑡), according to:

𝑍𝑗(𝑡) = 𝑊𝑗(𝑡) −
𝑃(𝑡)
3𝑊𝑗(𝑡)

− 𝑐2
3𝑐1

, (5.30)

where𝑊𝑗(𝑡) = 𝜉𝑗𝑈−(𝑡)1/3 and 𝜉𝑗 = exp(𝑖(𝑗−1)2𝜋/3) (for 𝑗 = 1, 2, 3) are cubic roots
of unity. Although both values of 𝑈+(𝑡) and 𝑈−(𝑡) are valid and could be used into
Eq. (5.30), the choice of 𝑈+(𝑡) or 𝑈−(𝑡) impacts on the swapping of the complex
variables: the argument of 𝑈+(𝑡) never reaches 180𝑜 and, hence, no swapping
occurs. Aiming to understand the swapping of the complex variables, the roots of
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Eq. (5.27) have been obtained using 𝑈−(𝑡). The principal value of 𝑈(𝑡)1/3 is defined
according to [39, 40]:

𝑈1/3(𝑡) = |𝑈(𝑡)|1/3 exp [𝑖arg(𝑈(𝑡))3 ] , (5.31)

where arg(𝑈(𝑡)) ranges from [−𝜋, 𝜋). Let 𝑑Φ𝑈 > 0 be a small variation in the
argument of function 𝑈(𝑡). Suppose that at 𝑡 = 𝑡0− the argument of 𝑈(𝑡0−) is
given by −(180𝑜 − 𝑑Φ𝑈) and the modulation applied to the sensors adds 2𝑑Φ𝑈 to
arg(𝑈(𝑡)) at 𝑡 = 𝑡0+ . Thus, the term arg(𝑈(𝑡))/3 in Eq. (5.31) induces a disconti
nuity according to:

arg(𝑈(𝑡0−))
3 = (−𝜋 − 𝑑Φ𝑈)

3 →
arg(𝑈(𝑡0+))

3 = +𝜋 − 𝑑Φ𝑈
3 , (5.32)

due to the fact that arg(𝑈(𝑡)) is always limited by the range [−𝜋, 𝜋). As a result,
the paths 𝑊𝑗(𝑡) (for 𝑗 = 1, 2, 3) swap according to:

𝑊1(𝑡0−) → 𝑊3(𝑡0+), 𝑍1(𝑡0−) → 𝑍3(𝑡0+)
𝑊2(𝑡0−) → 𝑊1(𝑡0+), 𝑍2(𝑡0−) → 𝑍1(𝑡0+)
𝑊3(𝑡0−) → 𝑊2(𝑡0+), 𝑍3(𝑡0−) → 𝑍2(𝑡0+). (5.33)

This situation can be observed in the Riemann surfaces shown in Figs. 5.4(e)
and 5.4(f). The figures show the real and imaginary part of the paths 𝑊1(𝑡),
𝑊2(𝑡) and 𝑊3(𝑡) obtained from the measured complex voltages for 0.3 < t < 0.5
s, which corresponds to the first swap of complex variables of Fig. 5.5(a). The
figure also depicts three sheets (in blue, red and green) corresponding to the three
branches of the complex cubic root, on which the paths 𝑊1(𝑡), 𝑊2(𝑡) and 𝑊3(𝑡)
travel along. The three branches of the complex cubic roots are discontinuous at
the semiplane arg(𝑈) = 180∘, causing 𝑊1(𝑡), 𝑊2(𝑡) and 𝑊3(𝑡), calculated from
Eq. (5.30) and Eq. (5.31), to be discontinuous. However, by joining the three
discontinuous branches, Figs. 5.4(e) and 5.4(f) show that the three cubic roots of
𝑈(𝑡) are continuous everywhere. This assures the continuity of the retrieved values
of the resonance wavelength modulation of the sensors, encoded in the complex
variables’ arguments.

For the symmetric system of equations, solutions are given as permutations of
the variables (𝑍1(𝑡), 𝑍2(𝑡), 𝑍3(𝑡)). Hence, the swapping of the complex variables
indeed represents a swapping of the solutions. Solutions also swap in the original
system of equations, in which only one of the solutions is valid. The cross markers
in Fig. 5.5(a) indicate the points at which the solutions obtained from Method 1
swap. Those points are identified by function Δ(𝑡), which senses when a different
solution has the modulus of its complex variables closer to unity. The swapping of
the solutions in Fig. 5.5(a) occurs close to the points where functions𝑊1(𝑡), 𝑊2(𝑡),
and 𝑊3(𝑡) swap. Such difference occurs due to the small difference of coefficients
𝑏1, 𝑏2 and 𝑏3 of the original and the symmetric system of equations.

Figs. 5.6(a) and (b) show zoomedin graphs of the resonance wavelength mod
ulation of sensor 3, obtained by solving the symmetric, and the original system of
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Figure 5.5: (a) Resonance wavelength modulation of sensor 3. The inset shows that the modulation
of FBG 3 slowly drifts along the time. This occurs since the sensors also respond to local fluctuations
of the temperature. (b) Resonance wavelength modulation of sensor 2. (c) Resonance wavelength
modulation of sensor 1. Colors indicate the complex variable from which the resonance wavelength has
been obtained, where 𝑍1(𝑡),𝑍2(𝑡) and 𝑍3(𝑡) are defined in Eq. (5.30). The crosses indicate the time
instants at which the solutions obtained from Method 1 swap. (d), (e) Zoomed resonance wavelengths
𝛿1(𝑡) and 𝛿2(𝑡) for 𝑡 < 10.
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equations, respectively. The distortion of function 𝛿3(𝑡) observed in both figures is
caused by crosstalk: although not visible in Figs. 5.6(a) and (b), the disturbances
of the function 𝛿3(𝑡) follow the modulation of 𝛿1(𝑡) and 𝛿2(𝑡). Comparing the res
onance obtained by solving the symmetric and the original system of equations,
shown in Figs. 5.6, the crosstalk is much less present in the solution of the orig
inal system. This indicates that the accuracy of coefficients 𝑏1 and 𝑏2 impact the
crosstalk, although some crosstalk is still visible in Fig. 5.6(b). In the next section,
spurious solutions obtained using Method 1 are used to reduce the crosstalk.

5.5.2. Optimization of the solutions
Despite the higher crosstalk, the resonance wavelength modulations calculated
from the spurious solutions are of similar value to the values shown in Figs. 5.5(a),
(b) and (c). The similarity can be explained by the fact that the algebraic system
is quasisymmetric. If 𝑏1 ≅ ... ≅ 𝑏𝑀 ≅ 1, it follows from the Proposition of Sec
tion 5.3.2 that the locus in the complex plane of spurious solutions lies close to
the actual solution. Fig. 5.4(c) experimentally demonstrates this phenomenon, as
discussed in the previous section. The closer the coefficients 𝑏1, ..., 𝑏𝑚 are to a value
of one, the closer the nonphysical solutions are to the actual solution, and the less
crosstalk they feature. One of the spurious solutions, however, showed an unusual
behaviour. As expected, for 𝑡 < 40s, when larger stresses are applied to FBG 3, its
crosstalk was higher compared to the actual solution. For 𝑡 > 40s, on the other
hand, the crosstalk diminishes significantly, becoming smaller compared to the ac
tual solution. A possible explanation for this is inaccuracies of the parameters 𝑏1, 𝑏2
and 𝑎𝑚,𝑟𝑒𝑓 (for 𝑚 = 1, 2, 3) retrieved in the calibration procedure. Eqs. (5.22) gives
the relationship between the radius of the circle arc fitted and the modulus of the
variables 𝑎𝑚𝑘. Hence, inaccuracies in the fitting lead to inaccuracies of variables
𝑎𝑚𝑘 and 𝑏𝑘. As a result, the modulus of complex variables must change to keep
the equality in Eqs. (5.25). Moreover, with the presence of some noise level, circle
centres obtained from the fitting can also be inaccurate, resulting in |𝑧𝑚| ≠ 1 for
|𝑧𝑚| ≠ 1 for 𝑚 = 1, 2, 3.

In order to improve the current solution, the following optimization procedure
has been implemented:

Minimize 𝐹𝑜𝑝𝑡(Δ𝑏1, Δ𝑏2, 𝐺𝑣1, 𝐺𝑣2, 𝐺𝑣3, Δ�̂�1, Δ�̂�2, Δ�̂�3, Δ𝑎3) =
2

∑
𝑖=0
𝑤𝑡𝑖 ∫

𝑡𝑜𝑝𝑡,𝑖
∑
𝑚
|− (𝑔𝑣𝑚

�̂�𝑚(𝑡)
𝑎𝑚,3

+ Δ𝑉𝑚) + (𝑏1 + Δ𝑏1) exp [𝑖𝑚 𝑎𝑟𝑔𝑧1(𝑡)]+

(𝑏2 + Δ𝑏2) exp [𝑖𝑚 𝑎𝑟𝑔𝑧2(𝑡)] + exp [𝑖𝑚 𝑎𝑟𝑔𝑧3(𝑡)]|, (5.34)

where 𝑤𝑡1 = 1 and 𝑤𝑡2 = 25 are the weights of the intervals considered in the
optimization procedure: 0 < 𝑡𝑜𝑝𝑡,1 < 6𝑠 and 62𝑠 < 𝑡𝑜𝑝𝑡,2 < 72𝑠. The complex
exponentials in Eq. (5.34) impose the condition |𝑧1| = ... = |𝑧𝑀| = 1, according to
Eq. (5.10). Parameters Δ𝑏1, Δ𝑏2, 𝑔𝑣1, 𝑔𝑣1, 𝑔𝑣3, compensate for inaccuracies in the
radius of the circle arcs, while parameters Δ�̂�1,Δ�̂�2 and Δ�̂�3 compensate for voltage
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offsets introduced by inaccuracies in the centers of the circle arcs. During the
optimization, the values of the complex variables 𝑧1(𝑡), 𝑧1(𝑡) and 𝑧3(𝑡) depend on
the reference chosen. The first optimization interval uses the current solution from
Method 1 as a reference in order to avoid an increase in the cross talk for large
stresses applied to FBG 3. The second interval, in contrast, as reference, uses the
spurious solution found in Method 1 whose resonance modulation for sensor 3 is
shown in Figs. 5.6(b). The results of the optimization are shown in Table 5.3.

Figure 5.6: (a)(d) Zoomed resonance wavelengths obtained for sensor 3. The thermal background,
shown in the inset of Fig. 5.5(a), has been subtracted for a better visualization. (a) Compares the
optimized and symmetric solution; (b) compares the spurious and original solution; (c) compares the
original and the optimized solution and (d) compares the optimized solution and one of the spurious
solutions of the optimized system of equations. (e) Amplitude of the resonance wavelength modulation
as a function of the strain. (f) Zoom of the amplitude of the resonance wavelength modulation as a
function of the strain.

After the optimization, the parameters of the equations have been adjusted
using the corrections shown in Table 5.3. The algebraic system of Eqs. (5.25) has
been solved using Methods 1 and 2 and the resonance wavelength modulations
𝛿𝑜𝑝𝑡.1 (𝑡) and 𝛿𝑜𝑝𝑡.2 (𝑡) and 𝛿𝑜𝑝𝑡.3 (𝑡) have been computed according to the procedure
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Table 5.3: Parameters obtained from the optimization

Δ𝑏1 Δ𝑏2 𝐺𝑣1 𝐺𝑣2
3.327 10−3 11.14 10−3 0.983 1.004

𝐺𝑣3 Δ𝑣1 (𝜇V) Δ𝑣2 (𝜇V) Δ𝑣3 (𝜇V)
0.974 (2.848 + 8.991 i) (15.61 22.52 i) (72.49 + 28.10 i)

described in Section 5.3.2. A meaningful overall reduction of the crosstalk can be
observed, especially for small stresses applied to FBG3, as seen in Figs. 5.6(a) and
(c). The figures show a maximum crosstalk of approx. 100 fm observed for 𝛿𝑜𝑝𝑡3 (𝑡)
, which is around three times smaller than for 𝛿3(𝑡). For the other time instants,
the values of 𝛿𝑜𝑝𝑡.1𝑚 (𝑡) and 𝛿𝑚(𝑡) (for 𝑚 = 1, 2, 3) are very similar. Some differences
can be observed in sensors 1 and 2 for 𝑡 < 10s, as shown in Figs. 5.5(d) and (e).
The maximum crosstalk increases to about 1% (resonance wavelength pertubation
of about 1.5 pm), observed in resonance wavelengths obtained from the original
system of equations, to about 2.0 pm for the optimized resonance wavelength
modulations. Crosstalk also affects the moduli of complex variables. Fig. 5.4(d)
compares the function Δ(𝑡), calculated for the solutions of the optimized and of
the original system of equations. For 𝑡 < 20 s, the complex variable moduli of the
optimized solution feature a larger deviation from unity compared to the solution
of the original system of equations. For 𝑡 > 60 s, however, function Δ(𝑡) is around
four times smaller for the optimized solution.

Although the optimization significantly reduces crosstalk, some crosstalk re
mains present. Fig. 5.6(d) compares the resonance wavelength modulation ob
tained from one of the spurious solutions from the optimised system of equations
and function 𝛿𝑜𝑝𝑡3 (𝑡). The spurious solution shown in Fig. 5.6(d) is very similar to the
one used as a reference in the optimization procedure: for small stresses of FBG3,
the crosstalk is slightly smaller than for the one observed in 𝛿𝑜𝑝𝑡3 (𝑡). In Eq. (5.9),
it has been assumed that the lineshapes 𝑠𝑘(𝜆) are identical except by a constant
which specifies the peak height of the spectrum. However, this is not the case: the
FWHM of 𝑠1(𝜆), 𝑠2(𝜆) and 𝑠3(𝜆) are 100 pm, 125 pm, and 110 pm, respectively,
making this assumption inaccurate. This results in some crosstalk for either large
or small stresses applied to the fibers. By increasing the ratio of the optimization
weights 𝑤𝑡2/𝑤𝑡1 , it is possible to achieve a similar crosstalk level, compared to the
spurious solution, at the cost of a crosstalk enhancement for 𝑡 < 10 s.

Figs. 5.6(e) and (f) show the modulation amplitude of FBG 3 as a function of
the strain in the fiber. The modulation amplitude is defined as:

Δ𝜆(1)𝑗 = |𝛿dip1,𝑗 − 𝛿max1,3𝑗 | , (5.35)

where 𝛿dip1,𝑗 is the average of the function 𝛿1(𝑡) when the stepper motor rests at
the position 𝑥 = Δ𝑥𝑗; 𝛿max1,𝑗 is the average of the function 𝛿1(𝑡) when the stepper
motor is at the position 𝑥 = 0, immediately after the stepper motor has returned
from 𝑥 = Δ𝑥𝑗. The stress applied by the stepper motor is always negative, keeping



5.5. Experimental results

5

113

the function 𝛿3(𝑡) at a minimum while it rests at 𝑥 = Δ𝑥𝑗. In contrast, a local
maximum is observed in function 𝛿3(𝑡) when the stepper motor returns to 𝑥 = 0
and stresses the fiber. Since the stepper motor travels 3 times to 𝑥 = Δ𝑥𝑗, as
indicated in Fig. 5.3(b), the three dips in function 𝛿3(𝑡)(for 𝑥 = Δ𝑥𝑗) are considered
in the 𝑗th value of 𝛿dip1,𝑗 . Similarly, the datapoints of three consecutive maxima of
function 𝛿3(𝑡) are considered in the calculation of 𝛿max1,𝑗 . The strain of the fiber is
given by:

𝜀𝑗 =
Δ𝑥𝑗
𝓁3
, (5.36)

where 𝓁3 = 1.65 m is the fiber length. The strain in the fiber is assumed to be
uniform so that the strain in the FBGs is given by Eq. (5.36). The angular co
efficients of the curves shown in Fig. 5.6(e) are 1.245 ± 0.001 pm/𝜇𝜖, 1.266 ±
0.002 pm/𝜇𝜖 and 1.242 ±0.002 pm/𝜇𝜖 for the symmetric, original and optimized
system of equations respectively. These values match the nominal slope provided
by the manufacturer (1.2 pm//𝜇𝜖) and are consistent with the values presented in
our previous article. The minimum scattering of the data points around the straight
line shown in Figs. 5.6(e) and (f) occur for the optimized solution, which features
the smallest crosstalk. The minimum resonance amplitude experimentally resolved
was 365 fm. The signal to noise ratio is given by:

𝑆𝑁𝑅 = 20 log10
𝑅
𝜎 , (5.37)

where 𝜎 is the noise standard deviation of �̂�1(𝑡) and 𝑅 = 283 mV is the radius of
sensor 3 traced in the Lissajous curve (ℜ�̂�1(𝑡), ℑ�̂�1(𝑡)) shown in Fig. 5.4 (b). The
SNR is 58 dB.

Limitations of FT interrogator can be enumerated as:

• Crosstalk caused by errors during calibration. This effect has been mitigated
by the optimization procedure.

• Crosstalk due to the assumption the FWHM of the sensors is identical. This
is a minor cause of the noise, which can also be compensated using Newton’s
method. However, in the context of interrogating highspeed sensors, inte
grated photonics allows the design of sensors with very similar Quality factor
values, so that this effect can be neglected.

• Noise. The primary source of noise is electronic.

The noise RMS value of the demodulated signal is given by:

𝜎𝑅𝑀𝑆𝐸 =
√∑

𝑁𝑝𝑡𝑠.
𝑖 (𝛿𝑜𝑝𝑡.3 − 𝛿𝑜𝑝𝑡.3 )

2

𝑁𝑝𝑡𝑠.
, (5.38)

𝑁𝑝𝑡𝑠. is the number of data points and 𝛿𝑜𝑝𝑡.3 is the average value of 𝛿𝑜𝑝𝑡.3 for the
stepper motor is at rest. Thus, 𝜎𝑅𝑀𝑆𝐸 is the standard deviation of the noise and its
value is 65 fm.
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5.5.3. Comparison with other Interrogators

Table 5.4: Limit of detection of the FT Interrogator compared to other common interrogation methods.
Focus is given to integrated interrogators, but some fiber interrogators are also presented. MRW is the
minimum resonance wavelength experimentally resolved.

Author/Reference Interrogation method Limit of Detection

This work
Fourier Transform interrogator,
algebraic formulation

𝜎𝑅𝑀𝑆𝐸 = 218 fm,
𝑆0 = 1.66 n𝜀/√𝐻𝑧,
MRW= 700 fm

D. Tosi[41] Spectrometer, KLT
𝜎𝑅𝑀𝑆𝐸 = 0.003 C
𝜎𝑅𝑀𝑆𝐸 ∼30 fm

D. Tosi[42] Spectrometer, KLT 𝜎𝑅𝑀𝑆𝐸 = 4.9 fm
Pustakhod et. el [43] Integrated Spectrometer MRW = 320 fm
Li et. al [44] Integrated Spectrometer MRW = 1 pm
Guo et. al [45] Integrated Spectrometer MRW < 1 pm

Orr et. al.[11]
MZI + Spectrometer +
Optical Switch 𝑆0 = 10 n𝜀/√𝐻𝑧

Perry et. al.[12]
MZI + Spectrometer +
Optical Switch 𝑆0 = 10 n𝜀/√𝐻𝑧

Merlin et. al. [46]
MZI, active modulation +
Integrated spectrometer 𝑆0 = 4.56 n𝜀/√𝐻𝑧

Merlin et. al. [47]
MZI, active modulation +
External spectrometer 𝑆0 = 73 n𝜀/√𝐻𝑧

He et. al [48] Tunneable laser 𝑆0 < 10 n𝜀
I4g FAZ Optics 11[49] Tunneable laser 𝑆0< 0.83 n𝜀/√𝐻𝑧@ 1kHz

Results presented in Sections 5.5.1 and 5.5.2 have been obtained after applying
a low pass filter to the complex voltages �̂�1(𝑡), �̂�2(𝑡) and �̂�3(𝑡). Indeed, effects such
as the signals’ crosstalk and the optimization performed in Section 5.5.2 are only
visible for a reduced noise. Hence, the bandwidth has been limited. To properly
compare the FT interrogator with others available in the literature, the algebraic
systems of equations have been solved without applying any filter to the input
complex voltages. In this section, we use the notation 𝛿3(𝑡) = 𝛿𝑜𝑝𝑡.3 (𝑡), as the
analysis has been done using the optimized parameters (see table 5.3). Fig. 5.7(a)
shows 𝛿3(𝑡) as a function of time: the SNR reduces to about 42 dB, while the
bandwidth increases to about 1 kHz (Nyquist frequency is 5 kHz, but electronic
PCBs provide a nearly flat response up to 1 kHz). For a moderate values of SNR
= 40 dB, FTinterrogator is limited by the noise. The 𝜎𝑅𝑀𝑆𝐸 increases to 218 fm,
giving a 3 𝜎𝑅𝑀𝑆𝐸 = 654 fm. The minimum resonance wavelength resolved is about
700 fm, as shown in the inset of Fig. 5.7(a).

Fig. 5.7 shows the power spectral density (PSD) of 𝛿3(𝑡). The multiple peaks,
shown in the range 𝑓 < 100 Hz, originate from the fact that the applied stress
to FBG3 consists of an array of trapezoidal signals (see Fig. 5.3(b)) with different
amplitudes, causing multiple harmonics to be present in the PSD of 𝛿3(𝑡). The PSD
also shows high peaks at multiples of the frequency 𝑓𝑒𝑙. =50 Hz, corresponding to
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Figure 5.7: (a) Demodulated 𝛿3(𝑡) for no applied low pass filter. (b) Power spectral density of 𝛿3(𝑡).

the harmonics of the electric signal (50 Hz in Europe). They represent a major
contribution to 𝜎𝑅𝑀𝑆𝐸: filtering these frequencies reduces 𝜎𝑅𝑀𝑆𝐸 to 140 fm (112 n𝜀,
in units of strain) and 3 𝜎𝑅𝑀𝑆𝐸 to 420 fm (338 n𝜀, in units of strain). PSD reaches
its noise floor at approximately 300 Hz, and its value is 𝑁20 = 4.23𝑓𝑚2/𝐻𝑧 and
𝑁0 = 2.05𝑓𝑚/√𝐻𝑧, where 𝑁0 is the noise amplitude spectral density. The dynamic
strain resolution is given by:

𝑆0 = 𝑁0 (
𝑑Δ𝜆
𝑑𝜀 )

−1
, (5.39)

where 𝑑Δ𝜆/𝑑𝜀 = 1.242 𝑝𝑚/𝜇𝜀 is the slope of the curve wavelength shift per strain
shown in Fig. (5.6) (e). The dynamic strain is given by 𝑆0 = 1.66 𝑛𝜀/√𝐻𝑧.

Table 5.4 compares the performance of FT spectrometer with other common
interrogation methods described in the literature. Different authors characterize
the interrogator limit of detection(LOD) using different parameters. These param
eters, such as the minimum resonance wavelength demodulated and the noise rms
value, depend on the SNR and the bandwidth at which measurements have been
taken. Unfortunately, this information is not available for all the references listed
in Table 5.4. Thus, the table gives only an idea of the performance of the various
interrogation methods but is sufficient to demonstrate the high resolution of the
FTinterrogator compared to other interrogators.

Tosi et al. [41, 42] use Karhunen Loeve Transform(KLT) algorithm to interrogate
an array of FBG sensors. The noise RMS of the FT spectrometer is 218 fm, to be
compared with 30 fm, reported in [41] and 4.9 fm in [42]. Tosi et. al[41, 42] applies
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the KLT algorithm using commercial spectrometers, whose sampling frequencies
are usually limited up to kHz range. The design of broadband, highresolution
integrated and highspeed spectrometers, although possible, is challenging. In
terms of computational complexity, KLT requires the eigenvalue evaluation of a large
matrix: matrices should be larger than 30×30 (typically 50×50) for about 10 FBG
sensors [42]. The algebraic approach for the FT interrogator, on the other hand,
requires evaluating roots of polynomial, which is equivalent to finding eigenvalues
of M×M matrix, for M sensors. Efficient eigenvalue algorithms are available to
compute roots of polynomials given the sparsity of the companion matrix [37].
For nonsymmetric systems, corrections using Newton’s method are also required.
Alternatively, it is possible to implement the approach of [38], which consists of
solving an M×M linear system + computing the roots of an 𝑀 order polynomial.

Marin et. al. [46, 47] interrogates FBG sensors using an integrated MZI and an
AWG spectrometer. The method offers high strain resolution (4.56 n𝜀/√𝐻𝑧) and
could be applied to fast sensors. The modulator employed in the design, however,
is thermalbased, whose time constant is 7 𝜇𝑠[46], limiting the sensors’ speed. A
redesign of the chip using faster modulators would extend the interrogation method
for higher speeds sensors. Refs. [11, 12] use a similar approach (using a passive
MZI instead). A spectrometer separates the spectrum from the sensors and an
optical switch selects one of the channels to be interrogated and guides it to an
MZI. The noise floor reported is 𝑆0 = 10n𝜀/√𝐻𝑧. The demodulation approach of
MZI+spectrometer [11, 12, 46, 47] requires the alignment of the wavelength of
the center of the sensor’s spectrum of one of the spectrometer channels. The
FT interrogator’s key benefit is the flexibility, being tolerant to variations in the
resonance wavelength of the sensors.

The interrogators based on integrated spectrometers proposed by Pustakhod et.
al [43] and others [44, 45] use a different demodulation strategy compared to the
demodulation methods described by D. Tosi in [50]. Although the spectral resolution
of these integrated spectrometers is much limited (a few nm), the minimum value
of resonance wavelength obtained is about 320 fm in [43], in the same order of
magnitude as the one presented in this work (700 fm, for no low pass filter applied).
The approach is suitable for demodulating highspeed sensors and provides a high
interrogation resolution. It consists of placing the sensor’s resonance wavelengths
close to the AWG channels’ border, where the lineshape of the AWG channels can be
linearized. As previously explained, this is an issue for integrated sensors, given the
fact that the resonance wavelengths cannot be predicted during the sensor design.

High interrogation resolution is achieved for interrogators based on tunnelable
lasers. He et. al [48] reports a minimum strain of 10 n𝜀, to be compared with
868 n𝜀 (for no digital filter applied) obtained for the FT interrogator. The dynamic
strain resolution of I4g FAZ/Optics 11 [49] interrogator is better than 0.83 n𝜀/√𝐻𝑧
for a wavelength sweep of 1 kHz, being able to resolve wavelength modulations of
about 20 pm. The method is also tolerant for variation of resonance wavelength of
sensors, but different strategies are needed for sensors operating in tens of kHz to
MHz range.

In summary, the FT features a high interrogation resolution, being tolerant to
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variation of resonance wavelength modulations. Here the bandwidth has been lim
ited up to 1 kHz, but the method is suitable for a much higher speeds. Integrated
photodetectors in this chip can reach hundreds of MHz, although a redesign of the
electronic PCBs would be needed for such speeds. InP platform offers RF photode
tectors at speeds up to tens of GHz. However, for a larger number of sensors,
a higher optical power is needed, given that optical power is shared among the
MZIs. Kita et. al [51] handles this issue using integrated optical switches so that
no power splitting occurs. In this case, for applications at sensors that operate
at MHz range, the design of highspeed optical switches is needed. Electrooptic
phase modulators, available in InP platform, can reach speeds up to GHz range.

5.6. Conclusion
In this paper, we have interrogated an array of photonic sensors by solving an
algebraic system of equations derived from an integrated Fourier transform inter
rogator. It has been shown that the modulus of the complex variables of the sys
tem of equations is theoretically one, while their argument is proportional to the
resonance wavelength of the sensors. The experiments confirmed the theoretical
prediction: the modulus of the complex variables deviates no more than 2% from
unity; moreover, the plot amplitude modulation, derived from the argument of the
complex variables, as a function of the strain, results in a straight line. The slope,
for the optimal case, is 1.242 pm/𝜇m in agreement with the results presented in
our previous article and the specification provided by the FBG manufacturer.

The coupled equations have been solved using two semianalytical approaches.
The first one consists of solving the system of equations by computing the Gröbner
basis of the polynomial ideal using lexicographical monomial order. The retrieved
system of equations has been solved using a semianalytical method since the poly
nomials’ degree is higher than 4. For three sensors, six retrieved solutions have
been obtained per time step where 5 of these are nonphysical. The spurious so
lutions have been used to improve the actual solution, reducing both the crosstalk
among the sensors and also the minimum amplitude modulation to 365 fm (for a
bandwidth of 45 Hz). The dynamic strain resolution, obtained for no digital filter
applied, is 1.66 n𝜀/𝑠𝑞𝑟𝑡𝐻𝑧.

If the spectra of all photonic sensors are equal, the derived algebraic system of
equations is symmetric. The second approach exploits this symmetry. Then, the
algebraic system can be reduced to a single univariate polynomial whose roots give
the solution of the algebraic system. The results of the calibration procedure are
that the coefficients 𝑏1 and 𝑏2 of the equation terms deviate around 4% from unity,
breaking the symmetry of the algebraic system. For that reason, the solution of the
symmetric system is taken as an initial guess and updated using Newton’s method.
Convergence has been achieved with 3 iterations. By processing with a GPU, it was
possible to solve a system of 1 026 000 equations in 9 ms. The processing time per
equation is 9 ns, allowing for real time interrogation of highspeed sensors.

The FT interrogator is a promising candidate for interrogating arrays of inte
grated arrays of photonic ultrasound sensors. If the lineshapes of the sensor spectra
are the same, but they have varying peak values, the algebraic system of equations
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can be solved using the approach described in [38]. That requires a redesigning
of the chip so that the attenuation caused by the finite coherence length of the
sensors can be neglected in larger MZIs.
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Appendix A: Mathematical analysis of the Proposi
tion of Section 5.3.2
In this Section, the mathematical details of the Preposition in Section 5.3.2 are
presented. Although some steps required for a formal mathematical proof are not
shown, we present valid reasoning for the Preposition’s items.

Proposition. Let (𝛿1(𝑡),...,𝛿𝑀(𝑡)) be the resonance wavelength modulation of
𝑀 sensors, encoded in the argument of the complex variables 𝑧1(𝑡), 𝑧2(𝑡), ..., 𝑧𝑀(𝑡)
defined by Eq. (5.10). The spectrum of the sensors is finite and their lineshapes are
all equal, except each having a slightly different peak height. The combined spec
trum of the sensors interfere in 𝑀 interferometers according to the FT interrogator
description presented in Section 5.2. Eq. (5.11), given by:

∑
𝑘
𝑏𝑘𝑧𝑚𝑘 = �̂�𝑚/𝑎𝑚,𝑟𝑒𝑓 , (5.40)

satisfy the following properties:

1. The polynomials in Eq. (5.40) intersect in 𝑀! points;
2. If 𝑍𝑠𝑜𝑙 = (𝑧1, ..., 𝑧𝑀) is a solution of Eq. (5.40) and the coefficients 𝑏1, ..., 𝑏𝑀
are all equal, the other solutions are given by all possible permutations of the
coordinates of 𝑍𝑠𝑜𝑙. Moreover, |𝑧𝑚| = 1, for 𝑚 = 1, ..., 𝑀;

3. If the coefficients 𝑏1 ≠ 𝑏2 ≠ ... ≠ 𝑏𝑀 are all different, there is only one
solution whose complex variables satisfy |𝑧1| = ... = |𝑧𝑀| = 1. For all the other
solutions, there is at least one complex variable whose modulus is different
from one.

Assumptions

• If the coefficients 𝑏1 ≠ 𝑏2 ≠ ... ≠ 𝑏𝑀 are all different, their values are assumed
to be sufficiently close to one so that the solutions can be obtained by linear
correction of Eq. (5.40), where the starting point is the solution for the system
where 𝑏1 = ... = 𝑏𝑀 = 1

• For any value of 𝑡, the arguments of complex variables are sufficiently different
from each other so that matrix Q𝐻, defined by Eq. (5.57) is positivedefinite
and the jacobian of Eq. (5.40) is wellconditioned.

• The interrogator is noiseless.



5.6. Conclusion

5

119

Mathematical Analysis / Justification
Item (1). It can be shown that the solution of Eq. (5.40) always exits and the
number of solutions is finite. Since polynomials in Eq. (5.40) intersect in a finite
number of points, Bezout’s theorem for M variables [25, 26] states that the maxi
mum number of solutions is given by the product of the degrees of the polynomial
equations. Hence, for Eqs. (5.40), the maximum number of solutions is given by𝑀!.
If the coefficients 𝑏1, ..., 𝑏𝑀 = 1 the polynomial in the lefthand side of Eqs. (5.40)
is said to be symmetric: any transformation given by

𝑧𝑘 → 𝑧𝑗
𝑧𝑗 → 𝑧𝑘 (5.41)

for (𝑗 ≠ 𝑘) does not change the lefthand side of Eqs. (5.40). Therefore if 𝑍𝑠𝑜𝑙 =
(𝑧1, ..., 𝑧𝑀) is a solution, any permutations of 𝑍𝑠𝑜𝑙 coordinates also satisfies Eqs. (5.40).
Since there exists 𝑀! permutations of (𝑧1, ..., 𝑧𝑀), there are 𝑀! solutions. If the co
efficients 𝑏1, ..., 𝑏𝑚 are slightly different from one, each solution of the symmetric
system is corrected using a linear approximation of Eq. (5.40) and the number of
solutions remains the same.

Item (2). The algebraic system (Eqs. (5.11)) is equivalent to Eqs. (5.8), given
by:

�̂�𝑚(𝑡)
𝑎𝑟𝑒𝑓,𝑚

=
𝐾

∑
𝑘=1

∫∞−∞ 𝑠𝑘(𝜆′) exp (𝑖2𝜋
𝑚
𝐹1
𝜆′) 𝑑𝜆′

∫∞−∞ 𝑠𝑟𝑒𝑓(𝜆′) exp (𝑖2𝜋
𝑚
𝐹1
𝜆′) 𝑑𝜆′

exp [𝑖2𝜋𝑚𝐹1
(𝜆0𝑘 − 𝜆0𝑟𝑒𝑓 + 𝛿𝑘(𝑡))].

(5.42)

The complex variables have been defined according to Eq. (5.10), are here re
peated:

𝑧𝑘(𝑡) = exp [𝑖 2𝜋𝐹1
(𝜆0𝑘 − 𝜆0𝑟𝑒𝑓 + 𝛿𝑘(𝑡))] , (5.43)

where 𝑘 = 1, ..., 𝑀. Replacing the definition of Eq. (5.43) into Eq. (5.42), we see that
(𝑧1, ..., 𝑧𝑀) satisfies Eqs. (5.11) and |𝑧1(𝑡)| = ... = |𝑧𝑀(𝑡)| = 1. Hence, at least one
of the solutions of Eqs. (5.11) has all its variables with unitary modulus. From Item
(1), it is known that there are, in total, 𝑀! solutions, each given by the 𝑀! possible
permutations of the coordinates of 𝑍𝑠𝑜𝑙 = (𝑧1(𝑡), ..., 𝑧𝑀(𝑡)), where 𝑧1(𝑡), ..., 𝑧𝑀(𝑡) are
defined in Eq. (5.43).

Item (3). Let (𝑧1, ..., 𝑧𝑀) and (𝑤1, ..., 𝑤𝑀) be two of the solutions of Eq. (5.40).
Eq. (5.40) can be rewritten according to:

�̂�𝑚(𝑡) =
𝑀

∑
𝑘=1

𝑏𝑘𝑧𝑚𝑘 =
𝑀

∑
𝑘=1

𝑏𝑘𝑤𝑚𝑘 . (5.44)

As explained in Item (3), one of the solutions of Eq. (5.40) has all the complex
variables with unitary modulus. Let |𝑧1| = ... = |𝑧𝑀| = 1. We want to show that the
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modulus of at least one of complex variables in the solution (𝑤1, ..., 𝑤𝑀) is different
from one. Although the permutations of (𝑧1, ..., 𝑧𝑀) no longer satisfy Eqs. (5.11),
since 𝑏1 ≅ ... ≅ 𝑏𝑀 ≅ 1, the solution (𝑤1, ..., 𝑤𝑀) is in the neighbourhood of one of
the permutations of complex variables (𝑧1, ..., 𝑧𝑀). Let 𝑅(𝑘) be an operator that re
arrange the summation indexes according to the permutation of complex variables.
For instance, if solution (𝑧1, 𝑧2, ..., 𝑧𝑀) is in the solution (𝑤2, 𝑤1, ..., 𝑤𝑀) neighbour
hood, then (𝑅(1), 𝑅(2), ..., 𝑅(𝑀)) = (2, 1, ..., 𝑀). By manipulating Eq. (5.44), we
obtain:

𝑀

∑
𝑘=1

[𝑏𝑅[𝑘]𝑧𝑚𝑅[𝑘] − 𝑏𝑘𝑤𝑚𝑘 ] =

𝑀

∑
𝑘=1

𝑧𝑚𝑅[𝑘] [𝑏𝑅[𝑘] − 𝑏𝑘
𝑤𝑚𝑘
𝑧𝑚𝑅[𝑘]

] =

𝑀

∑
𝑘=1

𝑒𝑖𝑚𝜙𝑅[𝑘] [𝑏𝑅[𝑘] − 𝑏𝑘 (|𝑤𝑘|
𝑚 𝑒𝑖𝑚(𝜃𝑘−𝜙𝑅[𝑘]))] = 0. (5.45)

In the last step, we wrote the complex variables as 𝑧𝑘 = exp(𝑖𝜙𝑘) and 𝑤𝑘 =
|𝑤𝑘| exp(𝑖𝜃𝑘) (for 𝑘 = 1, ..., 𝑀), where (𝜙1, ..., 𝜙𝑀) and (𝜃1, ..., 𝜃𝑀) are the arguments
of complex variables (𝑧1, ..., 𝑧𝑀) and (𝑤1, ..., 𝑤𝑀), respectively. Let

Δ𝐴𝑘 ≡ |𝑤𝑘| − |𝑧𝑅[𝑘]| = |𝑤𝑘| − 1
Δ𝜃𝑘 ≡ 𝜃𝑘 − 𝜙𝑅[𝑘], (5.46)

for 𝑘 = 1, ..., 𝑀. Δ𝐴𝑘 and Δ𝜃𝑘 represents the corrections of the modulus and phase
of complex variable 𝑤𝑘, respectively. Given that coefficients 𝑏1 ≅ ... ≅ 𝑏𝑀 ≅ 1,
|Δ𝐴𝑘| << 1 and Δ𝜃𝑘 ≅ 0. As a result

exp (𝑖𝑚Δ𝜃𝑘) = 1 + 𝑖𝑚Δ𝜃𝑘 + 𝑂(Δ𝜃2𝑘)
|𝑤𝑘|𝑚 = (1 + Δ𝐴𝑘)

𝑚 = 1 +𝑚Δ𝐴𝑘 + 𝑂(𝐴2𝑘), (5.47)

according to Taylor series expansion. By substituting Eqs. (5.47) into Eq. (5.45)
and neglecting the second order terms, we obtain:

𝑀

∑
𝑘=1

𝑒𝑖𝑚𝜙𝑅[𝑘] [(𝑏𝑅[𝑘] − 𝑏𝑘) − 𝑚𝑏𝑘 (Δ𝐴𝑘 + 𝑖Δ𝜃𝑘)] = 0

1
√𝑀

𝑀

∑
𝑘=1

𝑒𝑖𝑚𝜙𝑅[𝑘] (𝑏𝑘𝑚Δ𝜁𝑘) =
1
√𝑀

𝑀

∑
𝑘=1

𝑒𝑖𝑚𝜙𝑅[𝑘] (𝑏𝑅[𝑘] − 𝑏𝑘), (5.48)

where Δ𝜁𝑘 = Δ𝐴𝑘+𝑖Δ𝜃𝑘. Both sides of Eq. (5.48) have been multiplied by the factor
1/√𝑀 so that the columns of matrix V, defined later in Eq. (5.52), are normalized.
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Eq. (5.48) represents a linear system of equations, which can be written using
matrices, according to:

CVBΔ𝜁 = VΔb (5.49)

where 𝐵 and 𝐶 are diagonal matrices:

C = 𝑑𝑖𝑎𝑔(1, 2, ..., 𝑀),
B = 𝑑𝑖𝑎𝑔(𝑏1, 𝑏2, ..., 𝑏𝑀); (5.50)

Δb and Δ𝜁 are column vectors:

Δb = [𝑏𝑅[1] − 𝑏1, ..., 𝑏𝑅[𝑀] − 𝑏𝑀]𝑇

Δ𝜁 = [Δ𝜁1, Δ𝜁2, ..., Δ𝜁𝑀]𝑇 (5.51)

and V is the modified Vandemonde matrix:

V = 1
√𝑀

⎛

⎝

𝑧𝑅(1) 𝑧𝑅(2) ... 𝑧𝑅(𝑀)
𝑧2𝑅(1) 𝑧2𝑅(2) ... 𝑧2𝑅(𝑀)
...
𝑧𝑀𝑅(1) 𝑧𝑀𝑅(2) ... 𝑧𝑀𝑅(𝑀)

⎞

⎠

, (5.52)

where the factor 1
√𝑀 normalizes the columns of matrix V. The determinants of

matrices B and C are real and nonzero, implying that B−1 and C−1 exist. Matrix
V determinant can be shown to be zero only, and if only, the modulus of one of
the complex variables in the solution (𝑧1, ..., 𝑧𝑀) is zero or if two or more complex
variables are equal [52]. Since the arguments 𝜙1, ..., 𝜙𝑀 are by assumption different
from each other and |𝑧1| = ... = |𝑧𝑀| = 1 ≠ 0, the determinant of 𝑉 is nonzero.
Hence, the linear system has always a solution for an arbitrary value of Δb. Also,
we assumed that coefficients 𝑏1, ..., 𝑏𝑀 are different from each other, implying that
Δb = 0 if only no permutation of complex variables (𝑧1, ..., 𝑧𝑀) is considered in
Eq. (5.45). In this case, Δ𝜁 = 0 and solutions (𝑤1, ..., 𝑤𝑀) = (𝑧1, ..., 𝑧𝑀) are the
same. The analysis below is done for the case where �b ≠ 0. The linear system
can be rewritten as:

BΔz = V−1C−1VΔb = QΔb, (5.53)

where Q ≡ V−1C−1V. Matrices Q and C−1 are similar, and their eigenvalues are
1, 1/2, 1/3, ..., 1/𝑀. The columns of the matrix V−1 give eigenvectors of matrix Q.

The goal is to show that at least one of the elements of the vector ℜ{Δ𝜁} = ΔA
is nonzero, causing the modulus of one of the complex variables (𝑤1, ..., 𝑤𝑀) to be
different from one. By multiplying both sides of Eq. (5.53) by Δb𝑇, we obtain:

Δb𝑇BΔ𝜁 = Δb𝑇QΔb (5.54)

We start by analysing the case where the arguments of the complex variables
(𝑧1, ..., 𝑧𝑀) are equally distributed along the unit circle, i. e, the complex variables
are given by 𝑧𝑘 = exp(𝑖2𝜋𝑘/𝑀+𝑖𝜙0) (for 𝑘 = 0, .., 𝑀−1 and 𝜙0 ∈ [0, 2𝜋)). For this
case, it can be shown that VH = V−1, so that Matrix Q becomes Hermitian. Eigen
values of Q are given by 1, 1/2, ..., 1/𝑀, i. e., they are real and positive. Therefore,
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Q is definite positive, making the righthand side of Eq. (5.54) real and positive for
any nonzero vector Δb. As a result, the real and imaginary parts of the left side of
Eq. (5.54) are given by:

ℑ{Δb𝑇BΔ𝜁} = 0

ℜ{Δb𝑇BΔ𝜁} = Δb𝑇Bℜ{Δ𝜁} =∑
𝑘
Δ𝑏𝑘𝑏𝑘ℜ{Δ𝜁𝑘} > 0. (5.55)

Hence, at least one of the vector ℜ{Δ𝜁} elements must be different from zero, so
that the sum in Eq. (5.55) is real and positive. As a result, the modulus of at least
one of the complex variables in the solutin (𝑤1, ..., 𝑤𝑀) must be different from one.

Figure 5.8: Minimum eigenvalue of matrix Q𝐻 as a function of distance among the arguments (Δ𝜙),
defined in the inset.

The analysis made for the case where 𝑧𝑘 = exp(𝑖2𝜋𝑘/𝑀+𝑖𝜙0) (for 𝑘 = 0, .., 𝑀−1
and 𝜙0 ∈ [0, 2𝜋)) can be extended. As long as 𝜙1 ≠ ... ≠ 𝜙𝑀, the expression
ℜ{Δb𝑇B��} can be shown to be a continuous function of the arguments 𝜙1, ..., 𝜙𝑀.
For an arbitrary distribution of the arguments 𝜙1, ..., 𝜙𝑀 (where 𝜙1 ≠ ... ≠ 𝜙𝑀) along
the unit circle, the real part of Eq. (5.54) is given by:

ℜ{Δb𝑇BΔ𝜁} = ℜ {Δb𝑇QΔb} = Δb𝑇Q𝐻Δb, (5.56)

where Q𝐻 is the Hermitian component of matrix Q, given by:

Q𝐻 =
1
2 [V

−1C−1V+ (V−1C−1V)𝐻] . (5.57)

Q𝐻 = Q for 𝑧𝑘 = exp(𝑖2𝜋𝑘/𝑀+𝑖𝜙0). Eigenvalues of Q𝐻 are real since the matrix is
Hermitian. ΔA = ℜ{Δ𝜁} is guaranteed to be nonzero and positive if Q𝐻 is positive
definite.

Although analytical expressions for eigenvalues of matrix Q𝐻 are difficult to
be obtained for a larger number of sensors, eigenvalues of Q𝐻 can be evaluated
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numerically. Fig. 5.8 shows the minimum eigenvalue of matrix Q𝐻 as a function of
the relative phase distance of the arguments (Δ𝜙), as indicated in the inset. As long
as Δ𝜙 is larger than Δ𝜙𝑙𝑖𝑚 =52.02𝑜, Q𝐻 is definite positive, and ΔA is nonzero.
For Δ𝜙 smaller than Δ𝜙𝑙𝑖𝑚, matrix Q𝐻 is indefinite, and Δb𝑇Q𝐻Δb can be either
zero, positive or negative. However, even for Δ𝜙 < 52.02𝑜 no values of Δb have
been found so that ΔA = 0. For Δ𝜙 < Δ𝜙𝑙𝑖𝑚 and in the unlikely situation when
ΔA = 0, so that two or more solutions cannot be distinguished, Method 2 described
in the main text could be used to make such distinction. A similar analysis can be
performed for 𝑀 > 3 sensors.

Appendix B: Analytical solutions for the symmetric
system of equations
The goal of this appendix is to derive an analytical solution for Eq. (5.11) for 𝑏1 =
... = 𝑏𝑀 = 1. For this case, Eq. (5.11) can be rewritten as:

�̂�𝑚(𝑧1, ..., 𝑧𝑀) =
𝑀

∑
𝑘=1

𝑧𝑚𝑘 , (5.58)

where �̂�𝑚 = �̂�𝑚/𝑎𝑚,𝑟𝑒𝑓. The time dependence has been withheld for simplifying
the notation. According to Eq. (5.9) in Section 5.3.1, the 𝑏𝑘 coefficients are equal
to unity only if the lineshapes of the photonic sensors 𝑠𝑘(𝜆) (for 𝑘 = 1...𝑀) are
equal. In this case, the polynomial in the righthand side of Eqs. (5.58) is said to
be symmetric: any transformation given by

𝑧𝑘 → 𝑧𝑗
𝑧𝑗 → 𝑧𝑘 (5.59)

for (𝑗 ≠ 𝑘) does not change the lefthand side of Eqs. (5.58). Therefore, if {𝑧1, ..., 𝑧𝐾}
is a solution set, any permutation of the complex variables within this solution also
satisfies Eqs. (5.58).

According to Newton’s theorem (see chapter 7 of [26]), symmetric polynomials
can be expressed as linear combinations of elementary symmetric polynomials,
defined as:

𝑒𝑚(𝑧1, ..., 𝑧𝑀) = ∑
1<𝑗1<𝑗2<...<𝑗𝑀

𝑧𝑗1 × 𝑧𝑗2 × ... × 𝑧𝑗𝑀 , (5.60)

where 𝑒𝑚 is the𝑚th symmetric polynomial for𝑀 complex variables. The symmetric
polynomials for 3 variables are given by:

𝑒0(𝑧1, 𝑧2, 𝑧3) = 1
𝑒1(𝑧1, 𝑧2, 𝑧3) = 𝑧1 + 𝑧2 + 𝑧3
𝑒2(𝑧1, 𝑧2, 𝑧3) = 𝑧1𝑧2 + 𝑧1𝑧3 + 𝑧2𝑧3
𝑒3(𝑧1, 𝑧2, 𝑧3) = 𝑧1𝑧2𝑧3. (5.61)
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The relation between the elementary symmetric polynomials (𝑒0,...,𝑒𝑀) and the sum
of power monomials (�̂�1,...,�̂�𝑀) is given by [34]:

𝑚𝑒𝑚(𝑧1, ..., 𝑧𝑀) =
𝑀

∑
𝑗=1
(−1)𝑗−1�̂�𝑗𝑒𝑚−𝑗 . (5.62)

Eq. (5.62) represents a triangular system of 𝑀 equations (𝑚 = 1...𝑀) with variables
{𝑒1, ..., 𝑒𝑀}. The system is nonhomogeneous since the last term of the summation
is proportional to 𝑒0 = 1. Thus, it is always possible to write the complex voltages
as a function of the symmetric polynomials. The inverse relation for three complex
voltages is given by:

𝑒1(𝑧1, 𝑧2, 𝑧3) = �̂�1

𝑒2(𝑧1, 𝑧2, 𝑧3) =
�̂�21
2 − �̂�22

𝑒3(𝑧1, 𝑧2, 𝑧3) =
�̂�33
6 − �̂�1�̂�22 + �̂�33 . (5.63)

In order to solve the algebraic system in Eqs (5.58), we build a polynomial
whose roots are {𝑧1, 𝑧2, 𝑧3}, i. e., the roots are equal to one of the solution sets of
Eq. (5.58). In this case, the polynomial is given by

𝐹(𝑍) = (𝑍 − 𝑧1)(𝑍 − 𝑧2)(𝑍 − 𝑧3). (5.64)

The roots of 𝐹(𝑍) give the solution set {𝑧1, 𝑧2, 𝑧3}. Expanding the righthand side
of Eq. (5.64), we obtain:

𝐹(𝑍) = 𝑍3 − (𝑧1 + 𝑧2 + 𝑧3)𝑍2 + (𝑧1𝑧3 + 𝑧1𝑧3 + 𝑧2𝑧3)𝑍 − (𝑧1𝑧2𝑧3). (5.65)

The coefficients of 𝑍𝑚 (for 𝑚 = 0, 1, 2) in the righthand side of Eq. (5.65) can be
recognized as the fundamental symmetric polynomials. Eq. (5.65) can be general
ized for 𝑀 complex variables using the NewtonGerard identities:

𝐹(𝑍) =
𝑀

∑
𝑚=0

(−1)𝑚𝑒𝑚𝑍𝑀−𝑚 . (5.66)

The solution sets {𝑧1, ..., 𝑧𝑀} are then obtained by substituting the relations 𝑒𝑚 =
𝑒𝑚(�̂�1, ..., �̂�𝑀) into Eq. (5.66) and by calculating the roots of the polynomial 𝐹(𝑍).
For the case of 3 variables, 𝐹(𝑍) is given by:

𝐹(𝑍) = 𝑍3 − 𝑣1𝑍2 + (
�̂�21
2 − �̂�22 )𝑍 − (

�̂�33
6 − �̂�1�̂�22 + �̂�33 ) (5.67)

Eq. (5.67), except for a constant factor of 6, is identical to the univariate polynomial
of the Gröbner basis shown in Section 5.5. By obtaining the roots of Eq. (5.67), we
obtain the solution set {𝑧1, 𝑧2, 𝑧3}.
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In Section 5, we demonstrate that the solution sets swap their values over time.
Since the swapping depends on how the cubic roots are evaluated, the cubic root
derivation is detailed here. A similar derivation is presented in [53]. Eq. (5.67) is
first written as a general cubic polynomial, according to:

𝑐1𝑍3 + 𝑐2𝑍3 + 𝑐3𝑍 + 𝑐4 = 0, (5.68)

where the coefficients are defined by Eq. (5.67). Eq. (5.68) can be simplified by
substituting 𝑍 = 𝑦 − 𝑐2/(3𝑐1):

𝑦3 + 𝑃𝑦 + 𝑄 = 0, (5.69)

Eq. (5.69) is known as a depressed cubic equation where 𝑃 and 𝑄 are depressed
cubic coefficients, given by:

𝑃 = 𝑐3
𝑐1
− 𝑐22
3𝑐21

𝑄 = 𝑑
𝑐1
− 𝑐2𝑐
3𝑐21

+ 2𝑐32
27𝑐31

. (5.70)

In order to obtain the roots of Eq. (5.69), the following transformation is applied:

𝑦 = 𝑊 − 𝑃
3𝑊 . (5.71)

Substituting Eq. (5.71) into Eq. (5.69), we obtain:

𝑊3 + 𝑄 − 𝑃3
27𝑊3 = 0. (5.72)

Assuming 𝑊 is nonzero, both sizes of Eq. (5.72) are multiplied by 𝑊3. Next, we
substitute 𝑈 = 𝑊3:

𝑈2 + 𝑄𝑈 − 𝑃
3

27 = 0. (5.73)

Solving the second degree equation, we obtain:

𝑈± =
−𝑄
2 ± √𝑃

3

27 +
𝑄2
4 . (5.74)

𝑊 is obtained by taking the cubic root of Eq. (5.74):

𝑊𝑗+ = 𝜉𝑗𝑈1/3+

𝑊𝑗− = 𝜉𝑗𝑈1/3− , (5.75)

where 𝜉𝑗 = (1, exp(−𝑖2𝜋/3), exp(𝑖2𝜋/3) are the cubic roots of 1. By substituting
the values of 𝑊 into Eq. (5.71) and substituting the value of 𝑦 in its definition
𝑍𝑗 = 𝑦𝑗 − 𝑐2/(3𝑐1), we obtain:

𝑍𝑗(𝑡) = 𝑊𝑗(𝑡) −
𝑃(𝑡)

3𝜉𝑗𝑊𝑗(𝑡)
− 𝑐2
3𝑐1

. (5.76)

It can be shown that both sets {𝑊1+,𝑊2+,𝑊3+} and {𝑊1−,𝑊2−,𝑊3−} of Eq. (5.75)
result in the same solution set {𝑍1, 𝑍2, 𝑍3}.
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6
Conclusion

In this thesis, two types of interferometric interrogators for photonic sensors have
been designed and characterized. In the first part of the thesis, an ultrasound sen
sor based on an integrated ringresonator (RR) in the MHz range was interrogated.
In this case, a single fiber Mach Zehnder interferometer(MZI) was employed, and
no demultiplexing is needed. The results from the fiber interrogator, presented in
Chapter 3, have been used to develop a novel interrogator method, presented in
Chapters 4 and 5. The novel interrogator is based on an integrated Fourier trans
form (FT) spectrometer where many interferometers are employed to demultiplex
and demodulate an array of sensors. The experiments presented in Chapters 4 and
5 were conducted using an array of FBGs strain sensors, but the novel interrogator
is suitable to interrogate RR arrays.

The work on the fiber interrogator represents an important step towards the
interrogation in realtime. The long term goal of this project is for medical appli
cations and IVUS imaging. The ring resonators presented in Chapter 3 are much
smaller than the conventional piezoelectric devices used for different types of med
ical imaging, and it is possible to integrate large arrays of RRs in a single die fea
turing a small cross talk. Results shown in Chapter 3 indicate that the minimum
amplitude modulation detected by the interrogator is comparable to the state of
art ultrasound sensors based on piezoelectric devices. However, the realization of
a commercial device requires an enhancement of the acoustic bandwidth. This is
possible by reducing the membrane diameter and its thickness[1], which increases
the membrane acoustic resonance frequency.

The mathematical model of the interrogator presented in Chapter 3 allows a
geometrical interpretation of the interrogation parameters. The interferometric in
terrogator converts the resonance wavelength modulation into a phase modulation:
by combining the output voltages of the interrogator, two 90 ∘ phase shifted volt
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ages were calculated, whose Lissajous curve describes an arc of a circle:

𝑉𝑥(𝑡) = 𝑅 cos(Φ(𝑡) + 𝜓𝑒) + 𝑥0
𝑉𝑦(𝑡) = 𝑅 sin(Φ(𝑡) + 𝜓𝑒) + 𝑦0, (6.1)

where 𝑅 is the circle radius, (𝑥0, 𝑦0) is its centre, 𝜓𝑒 is a phase which drifts accord
ing to local variations of temperature within the MZI and Φ(𝑡) is a phase which
is proportional to the resonance wavelength. The external excitation (ultrasound,
in this case) causes the resonance wavelength to shift, inducing a modulation of
the phase Φ(𝑡). Since the coherence lengths of the transmission spectrum of the
RR pass port and of the FBG reflection spectrum have comparable values, both
signals undergo interference within the fiber MZI. While the resonance wavelength
modulation induces a modulation of the angle Φ(𝑡), the interference of the FBG
reflection spectrum causes the circle arc centre to shift from the origin and causes
a deformation of the circle arc. Also, as a result of the interference of the FBG
spectrum, this centre depends on the drift of the phase 𝜓𝑒. These phenomena
have been taken into account in one hand, by fitting a circle to the Lissajous curve
of the experimental curve (𝑉𝑥(𝑡), 𝑉𝑦(𝑡)) in order to retrieve the radius and the cir
cle centre; on the other hand, by introducing a correction factor, which accounts
for the deformation of the circle arc. A novel version of this interrogator, already
demonstrated by [5], uses the FWHM of the FBG reflection is much larger than that
of the RR transmission spectrum. As a result, the interference of the FBG curve to
vanish. The new version, however, does not perform demultiplexing and still only
interrogates a single photonic sensor.

The theoretical model presented in the appendix of Chapter 3 has been used
as the basis for the development of the Fourier transform interrogator of Chapter
4. In this case, a large list of applications is possible, as discussed in Chapters 1
and 2. In special, FTinterrogator has been designed to monitor the ultrasound
sensors based on RR: this novel interrogator can be applied to demultiplex and
demodulate arrays of integrated sensors whose resonance wavelengths cannot be
predicted during their design stage. The same flexibility could not be achieved
using conventional interferometric interrogators, which typically use a combination
of a dispersive spectrometer (such as an AWG) and an array of MZIs, as discussed
in Chapter 2.

The demultiplexing and demodulation of the resonance wavelengths are per
formed simultaneously for the FTinterrogator. Given 𝑀 interferometers and 𝐾 pho
tonic sensors, the complex output voltages of the FT interrogator can be written
as:

�̂�𝑚(𝑡) =
𝐾

∑
𝑘=1

𝑅𝑚 exp(𝑚Φ𝑘(𝑡)) (6.2)

where Φ𝑘(𝑡) is the induced phase modulation of the 𝑘th sensor and the equa
tion subindex 𝑚 = 1, ..., 𝑀. The method consists of solving a nonlinear system of
equations, described by Eq. (6.2), for each instant of time. Eq. (6.2) reduces to
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Eq. (6.1), for 𝐾 = 1 (one sensor) and 𝑀 = 1 (one interferometer) and by taking
𝑉𝑥 = ℜ(𝑉1) and 𝑉𝑦 = ℑ(𝑉1) indicating that the method presented in Chapter 4 gen
eralizes the method presented in Chapter 3. Another benefit of the FT interrogator
is its high measurement resolution. The experiments presented in Chapter 4 show
that the measurement resolution experimentally retrieved was about two orders of
magnitude smaller than the FT spectrometer resolution.

One of the main drawbacks of the FT interrogator is its high computational cost.
In Chapter 4, Eq. (6.2) has been solved numerically using Newton’s method. In
Chapter 5, Eq. (6.3) is solved using semianalytical methods. Eq. (6.2) is rewrit
ten as a coupled system of polynomial equations and solved using semianalytical
methods. In the case of 3 sensors, Eq. (6.2) can be written as:

𝑓1(𝑧1, 𝑧2, 𝑧3) = 𝑏1𝑧1 + 𝑏2𝑧2 + 𝑏3𝑧3 = �̂�1/𝑎1,3
𝑓2(𝑧1, 𝑧2, 𝑧3) = 𝑏1𝑧21 + 𝑏2𝑧22 + 𝑏3𝑧23 = �̂�2/𝑎2,3
𝑓3(𝑧1, 𝑧2, 𝑧3) = 𝑏1𝑧31 + 𝑏2𝑧32 + 𝑏3𝑧33 = �̂�3/𝑎3,3,

(6.3)

where 𝑏1, 𝑏2, 𝑏3, 𝑎1,3, 𝑎2,3 and 𝑎3,3 are coefficients determined by the calibration
procedure (see Sections 4.3.2 and 5.4.2). Suppose the lineshapes of the sensors
are equal. In that case, 𝑏1 = 𝑏2 = 𝑏3 = 1 and the polynomials 𝑓1(𝑧1, 𝑧2, 𝑧3),
𝑓2(𝑧1, 𝑧2, 𝑧3) and 𝑓3(𝑧1, 𝑧2, 𝑧3) are said to be symmetric. As shown in Appendix B
of Chapter 5, the system can be reduced to a single polynomial equation, whose
roots give this system’s solution. In case coefficients 𝑏1, 𝑏2 and 𝑏3 are different
from each other, the Gröbner basis[7, 8] of the polynomial ideal 𝐼 =< 𝑝1, 𝑝2, 𝑝3 > is
calculated for a lex monomial order, where 𝑝1 = 𝑓1 − �̂�1/𝑎1,3, 𝑝2 = 𝑓2 − �̂�1/𝑎2,3 and
𝑝3 = 𝑓3 − �̂�3/𝑎1,3. �̂�1,�̂�2, and �̂�3 are kept as are parameters. The polynomials of the
basis satisfy:

𝑔1(𝑧1, 𝑧2, 𝑧3) =0
𝑔2(𝑧2, 𝑧3) =0
𝑔3(𝑧3) =0, (6.4)

where 𝑔𝑗 (𝑗 = 1, 2, 3) are the polynomials of the Gröbner basis. Eq. (6.4) can be
solved analytically, enhancing the processing speed. Two main issues have been
identified with this approach: for 𝑀 sensors, the number of solutions is 𝑀!, and
in general, only one of these solutions is valid. Moreover, computation of Gröbner
basis using lex monomial order of Eq. (6.3) is not feasible for a larger number of
sensors. Thus, Eq.(6.4) is solved using two steps: we first compute the solution
of Eq. (6.4) by approximating coefficients 𝑏1 = ... = 𝑏𝑀 = 1; subsequently, we
correct the solutions using the Newton method. The algebraic system has been
solved in a GPU, resulting in a 9.0 ns/equation performance, allowing the realtime
interrogation of highspeed sensors.

Improvements in the calibration procedure are required for the interrogation of
a large array of sensors. In Chapters 4 and 5, each sensor is individually excited,
and coefficients of the nonlinear equations are retrieved from the properties of the
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ellipses fitted against the Lissajous Curves (𝑉𝑥,𝑚(𝑡𝑐𝑎𝑙,𝑘), 𝑉𝑦𝑥,𝑚(𝑡𝑐𝑎𝑙,𝑘)) for 𝑚 = 1...𝑀,
where M are the number of interferometers and 𝑡𝑐𝑎𝑙 the calibration time of 𝑘th
sensor. The algebraic formulation presented in Chapter 5 simplifies the procedure,
and the excitation of the reference sensor is needed. Coefficients 𝑏𝑘(for 𝑘 = 1...𝑀),
which are realvalued, are given by the ratio of the peaks of the sensor spectrum.
Excitation of other sensors is only needed in order to retrieve the voltage offsets. As
an alternative to individual excitation of the sensors (to be explored in the future),
offsets can also be obtained by exciting all sensors simultaneously and using an
optimization procedure similar presented in Section 5.5.2 of Chapter 5.

Chapter 5 exploits the fact that coefficients 𝑏1, ..., 𝑏𝑀 are close to one, so that
polynomials 𝑓1(𝑧1, 𝑧2, 𝑧3), 𝑓2(𝑧1, 𝑧2, 𝑧3) and 𝑓3(𝑧1, 𝑧2, 𝑧3) in Eq. (6.3) are nearly sym
metric. This is obtained if the sensors’ spectra lineshapes are all similar. For
FBG sensors, the fabrication technology is sufficiently mature to meet such con
dition [9, 10]. For arrays of ring resonator sensors integrated into the same chip,
this can be achieved by designing an array of identical rings except for a small
difference in the ring’s length. As explained in Section 1.2.1, ring resonators may
present multiple resonances along the Cband, and an optical filter needs to be ap
plied at the output of each ring to isolate one of the resonances. Such filters could
differently affect the height of the curves 𝑠𝑘(𝜆), resulting in 𝑏1 ≠ ... ≠ 𝑏𝑀. Hence,
the spectra of the optical filters have to be considered. If coefficients 𝑏1, ..., 𝑏𝑀 are
much different from the unity, other methods can be applied to solve equations’
algebraic system. For instance, the method proposed by Connell et al. [11] is quite
advantageous. On the one hand, the method uses nearly twice the number of
complex voltages, increasing the device footprint and the number of MachZehnder
interferometers. On the other hand, the method requires no calibration procedure.
However, applying such an approach may require the chip redesign since the com
plex voltages obtained from larger MZI are much attenuated due to the coherence
length of the FBG reflection spectrum (typically given by hundreds of pm).

Finally, another application of the FTinterrogator, not explored in the thesis, is
the interrogation of arrays of sensors based on low Q FabryPerot interferometers
(FPI). The manufacturing costs of such sensors is quite low since they typically use
a cleaved fiber and a moving mirror. The external excitation modulates the mirror
position and the cavity length as a function of time. Assuming that the optical
path(OP) of the 𝑘th FPI sensor matches the OPD of the 𝑚th interferometer within
the chip, it can be shown that the𝑚th complex voltage encodes in its argument the
modulation of the FPI sensor. The demodulation is much simplified for an array of
FPI sensors, as no algebraic system of equations needs to be solved. A key benefit
of our technique would be the speed, being possible the demodulation of sensors
that operate at hundreds of MHz or even a few GHz, depending on the electronics.
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