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Preface
This thesis is written as part of the Master of Science program in Civil Engineering at Delft University
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Structures. The research was conducted in collaboration with ABT - Adviseurs in Bouwtechniek, an
engineering firm specializing in structural, building, and geotechnical engineering.

The study is intended for engineers and researchers with an interest in human-induced vibrations,
pedestrian bridge design, structural optimization, and external damping systems namely tuned mass
dampers (TMDs). The thesis is structured into three parts: Part I provides an extensive literature
review on human-induced vibrations and their implications for structural design. Part II focuses on the
design and assessment of a case study involving a pedestrian bridge. Finally, Part III employs multi-
objective particle swarm optimization (MOPSO) to geometrically optimize the case study, aiming to
reduce human-induced vibrations and dependence on external damping.

This research contributes to advancing knowledge in assessing human-induced vibrations, as outlined
in the literature. It presents a detailed case study of a self-anchored suspension bridge designed for
pedestrians and cyclists. Emphasis is placed on the theoretical foundation of self-anchored suspension
bridges, including the form-finding process to establish the initial stress state of the main cable system.
An extensive description of the finite element (FE) model used for analysis is provided, followed by
insights into the structural optimization process. The thesis highlights the principles of particle swarm
optimization (PSO), a stochastic, population-based algorithm leveraging swarm intelligence, and its
application in optimizing the bridge geometry to mitigate vibrations and reduce reliance on external
damping.

I am deeply grateful to my family and friends for their support throughout this journey. I would like
to express gratitude to my parents for their encouragement and for providing me with the opportunity
to pursue my studies. To my friends, thank you for your constant motivation and support.

A special note of gratitude goes to my supervisor, Joris Moen, for his guidance and interest in this project
from the beginning. I would also like to thank my supervisors from the TU Delft: Trayana Tankova,
Karel van Dalen, and Panagiota Atzampou for their patience, valuable feedback, and continuous support
throughout the thesis.

Working on this thesis has been an immensely rewarding experience. I hope this work inspires and
sparks curiosity in you as a reader!

L. van Kouwen
Delft, February 2025
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Abstract
Advancements in structural engineering increasingly lead to more slender and architecturally challenging
footbridge designs, characterized by reduced height-to-span ratios and lower self-weight. These designs,
often serving as landmarks with aesthetic and functional purposes, are becoming more susceptible to
human-induced vibrations. The increased live-to-dead load ratio and reduced eigenfrequencies increase
the risk of resonance when pedestrian step frequencies align with the structure’s natural frequencies.
This resonance amplifies deck accelerations, compromising pedestrian comfort and freedom of movement.
Synchronization effects are at risk of further intensifying amplification and obstructing movement. No
studies have demonstrated that human-induced vibrations cause structural failure in the ultimate limit
state (ULS); rather, they primarily affect user comfort in the serviceability limit state (SLS).

Over the past three decades, substantial research has focused on understanding and mitigating human-
induced vibrations in footbridges. The temporary closures of iconic structures such as the Passerelle
Solférino in Paris (1999) and the London Millennium Bridge (2000) have potentially accelerated find-
ings and highlighted the significant challenges posed by pedestrian-structure interaction. In particular,
a focus is drawn to the lateral lock-in phenomenon, which resulted in excessive lateral vibrations and
discomfort. Lateral lock-in and other human-induced incidents resulted in extensive testing, leading to
the development of new guidelines and advancing the study of lightweight footbridges across Europe
through both in-situ testing and numerical simulations. However, the literature reveals a considerable
variation in assessment methods and verification techniques, which complicates the accurate evaluation
of a footbridge’s dynamic behaviour by structural engineers. Nevertheless, a consensus is reached in
the literature that design situations must be carefully considered in every footbridge design. Pedes-
trian comfort and dynamic response are crucial design factors, requiring a thorough understanding of
expected traffic patterns and the structure’s dynamic behaviour. Design situations encompass a range
of conditions, such as daily pedestrian use or special events, to establish realistic performance limits
under ranging circumstances. Studies show that higher pedestrian density leads to reduced walking
speeds and restricted movement, which in turn influences the dynamic loads on the structure. Com-
fort is assessed through acceleration measurements during loading, with predefined ranges to categorize
acceptable performance levels. These evaluations stress the importance of a comprehensive analysis of
dynamic effects, rather than relying on a single limit criterion.

To mitigate the issues observed in the aforementioned bridge designs, external control devices are
applied to offer additional damping and reduce vibrations to acceptable levels. These control devices
are applied after footbridge construction, enabling thorough testing of the bridge to determine the
structure’s dynamic properties and ensuring the damping system is optimized and properly tuned.
External damping has various forms applied in civil engineering structures. Most notably there are
three categories to be distinguished, namely: tuned mass/liquid, viscoelastic and viscous fluid dampers.
Tuned mass dampers (TMDs) are most commonly used due to their ease of application, allowing
for effective control of vibrations post-installation. By tuning the TMD’s eigenfrequency to match
the primary structure’s critical natural frequency, energy dissipation is achieved through the mass of
the damper and its motion relative to the structure to which it is attached. TMD design is highly
effective in controlling the target frequency. However, it should be noted that this localized damping
primarily addresses the response of a single frequency, rather than the total response of the structure.
If eigenfrequencies are closely spaced, a shift in frequency could lead to a new resonant response in the
overall structure, as damping the initially critical mode may consequently amplify nearby modes.

These imposed challenges raise the question if reducing excessive human-induced vibrations within foot-
bridge design can be achieved through other means. A promising method regards the geometric modi-
fication of the structural design, providing a change of dynamic characteristics and reducing resonance
effects. Modern-day advancements enable engineers to perform more complex problem solving, namely
through computational power by utilising optimisation techniques which require many iterations. An
optimisation is characterised by its objective function, constraints, design variables and requirements it
should satisfy. Evolutionary algorithms, such as genetic behaviour from groups observed by animals in
nature provide effective results for optimisation.
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To provide context to such an optimisation algorithm, a case study is presented, showcasing how the
concept can be utilised. The optimization primarily targets reducing the structure’s mass as an objective,
improving cost and sustainability while influencing dynamic performance. Minimizing accelerations is
likewise pursued to evaluate the extent of reduction possible and identify the most influential geometric
parameters. The structure must meet ultimate limit state requirements in the optimized design to
ensure feasibility. Data from the original design, including FEM models, analysis reports, and TMD
specifications, informs the optimization process. A parametric model is developed to support geometric
optimization. Key design variables, objectives and constraints are carefully selected to maximize the
effectiveness of the optimization and achieve a design that either mitigates or eliminates the need for
external damping devices.

When footbridge design deviates significantly from conventional girder bridge design will the effective-
ness of assessment methods drop, requiring more extensive analysis to address dynamic behaviour. The
presented case study shows the closest adherence to measured results via direct time integration, being
most costly in time whilst requiring a substantial level of engineering judgment. Furthermore, does
the correct assessment of damping in footbridge design play a major role, showing agreement with the
proposed mean damping values addressed in the literature.

Optimisation to exclude the need for external damping devices through evolutionary algorithms by con-
ducting a geometric parameter study is a feasible approach. However, it requires a deep understanding
of the structural behaviour of footbridges and a robust parametric model capable of performing both
static and dynamic analyses to account for geometric changes. In the case study, significant improve-
ments were achieved through this optimization process, resulting in a new design that eliminates the
need for TMDs.
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1
Introduction

1.1 Research context
Footbridges have been a fundamental part of human infrastructure, dating back to early civilizations,
with examples like the Tarr Steps (1000 BC) and Pons Sublicius (600 BC) showcasing their historical
significance [1, 2]. Modern-day advancements in materials and engineering techniques have enabled the
construction of lightweight and architecturally intricate footbridges reaching spans of over one hundred
metres. These structures are not only designed for utility but are often intended as an eye-catcher for
the public as well. These advancements come with design challenges. The growing demand for slender
and lightweight structures has heightened the vulnerability of footbridges to human-induced vibrations,
resulting in challenges such as resonance and reduced comfort. Pedestrian movement, characterized
by walking velocity, stride length, step frequency, and loading patterns, interacts with the dynamic
properties of the structure. When step frequencies coincide with the eigenfrequencies of the footbridge,
resonance effects can amplify vibrations, leading to discomfort or, in extreme cases, structural failure.

External damping devices, such as TMDs, are effective in controlling specific eigenfrequencies and
improving dynamic performance. However, their design, implementation, and maintenance require
detailed knowledge of the structure’s dynamic behaviour, often relying on in-situ testing or empirical
data from similar structures. This process can be intensive and costly. Moreover, suboptimal tuning or
improper installation of these devices often leads to reduced effectiveness.

An alternative approach to address dynamic issues, through geometric optimization of the footbridge
design. By altering dynamic characteristics such as eigenfrequencies and stiffness, it is possible to
mitigate resonance effects without relying on external damping systems. This approach offers a ro-
bust, cost-effective solution with reduced maintenance requirements. The complexity of this problem
primarily lies in the stochastic nature of pedestrian-induced loads, explained by variations in walking
behaviour, group clustering, step frequencies, and phase lag contributions.

This research attempts to address the challenges of pedestrian-induced vibrations through a compre-
hensive methodology. By integrating assessment techniques, case study analysis, and geometric opti-
mization, the study aims to develop a framework for designing footbridges that minimize or eliminate
the need for external damping devices.

1.2 Problem statement
Due to rising demands, footbridge design has become more susceptible to human-induced vibrations.
An increase in the pedestrian-structure mass ratio combined with slender, lightweight design makes for
profound dynamic effects. Pedestrian movement is primarily defined by walking velocity, stride length,
step frequency, and the nature of dynamic loading. When the step frequency of pedestrians, whether
individuals or crowds, coincides with the eigenfrequency of a structure for a specific load, resonance
effects are triggered. These induced vibrations can lead to loss of comfort resultant from accelerations
rising to an unbearable level. Additionaly, structural failure can occur due to collapse, instability, or
unacceptable deformation.

The design and implementation of external damping devices demand an extensive understanding of a
structure’s dynamic behaviour, particularly when dealing with complex systems like footbridges. Ac-
curately determining the dynamic characteristics of such structures, specifically, their eigenfrequencies
and levels of structural damping, poses a significant challenge. Determining these characteristics is
often regarded as a complex task, relying heavily on empirical data obtained from similar structures or,
more commonly applied, through comprehensive in-situ testing. These methods, although reliable can
be intensive and time-consuming.
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When designed and tuned correctly, external damping devices can be highly effective in improving the
dynamic response of a footbridge. By targeting specific locations on the structure, damping devices
can mitigate undesirable vibrations without requiring significant material addition. This makes for
an attractive option enhancing structural performance with marginal impact on the overall design.
However, it is important to note that these damping systems are often misunderstood, leading to
suboptimal tuning or improper implementation, and frequently resulting in significant costs and delays
outweighing their implementation.

Contrary to external damping devices, if the dynamic characteristics of a footbridge could be altered
or optimized in such manner that the need for external damping is either reduced or eliminated, a
more robust and redundant design could be achieved. Such an approach would not only simplify the
structural design but likewise reduce the long-term operational and maintenance costs associated with
damping devices.

1.3 Research methodology
The research methodology is structured into three key phases: assessing human-induced vibrations,
analyzing a case study, and optimizing the bridge geometry to minimize vibrations.

The first part consists of a systematic literature review on pedestrian-induced vibrations in footbridges.
Various assessment methods are examined, evaluating their theoretical foundations, practical applicabil-
ity, and limitations. This review serves as the basis for selecting the most suitable evaluation techniques
for the case study.

In the second part, a case study is conducted using a finite element (FE) model of a pedestrian bridge
developed in SOFiSTiK. The model is validated to ensure compliance with Ultimate Limit State (ULS)
criteria, and its dynamic properties, as the eigenfrequencies, mode shapes, and maximum accelera-
tion response—are analysed under pedestrian-induced loading scenarios. Additionally, a Tuned Mass
Damper (TMD) is incorporated into the original model to assess its effectiveness in vibration mitigation.

The third part focuses on optimizing the bridge geometry to reduce human-induced vibrations and min-
imize reliance on external damping devices. A Multi-Objective Particle Swarm Optimization (MOPSO)
algorithm is employed, with the objective of improving structural efficiency while reducing peak accel-
erations. The optimization process considers key design variables, such as deck geometry and stiffness
distribution, while ensuring compliance with structural strength, serviceability limits, and pedestrian
comfort criteria. The optimized solutions are then compared with the original design to evaluate per-
formance improvements.

1.4 Research questions
The main research question is formulated as follows:

”What is the impact of parametric optimization of footbridge geometry on mitigating pedestrian-induced
vibrations, and how does it affect the necessity of external damping systems?”

To answer the main research question, the following sub-questions are proposed:

1. ”What methods are most effective for assessing pedestrian-induced vibrations in footbridges?”
(Part I & II)”

2. ”How can geometric parameter studies be performed to optimise footbridge performance, tailored
to reducing the need for external damping devices? (Part III)”

1.5 Thesis outline
The report is structured into three main parts. Part I presents a literature study on assessment meth-
ods, highlighting their differences and outlining procedures for effective evaluation. Part II introduces
a case study of a pedestrian bridge design, applying the selected assessment methods while exploring
TMD design and establishing the parametric model for optimization. Part III focuses on the opti-
mization process, employing a stochastic, meta-heuristic population-based algorithm to eliminate the
need for external damping in footbridge design. The optimized results are then compared to the initial
design, followed by a discussion of findings and their limitations. At last, conclusions are drawn and
recommendations for further research are presented.
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Part I

Assessment of pedestrian-structure
interaction

3



2
Literature review

Over the past thirty years, various studies have been conducted on the assessment of human-induced
vibrations of footbridges. One could argue that findings were accelerated by the temporary closure of the
now famous Paris’ Passerelle Solférino (1999)1 and London Millenium footbridge (2000)2. Two bridges
which during inauguration experienced pedestrian-structure interaction, a phenomenon described as
lateral lock-in, see 2.2 Lateral lock-in effect, causing excessive lateral vibrations leading to serious loss
of comfort. Following this event, the footbridges were submitted to thorough in-situ testing, resulting
in new guidelines [4, 5] and sparking the need for testing and numerical simulation of other lightweight
footbridges in Europe [6].

As stated by European guideline SYNPEX: ”Vibrations of footbridges may lead to serviceability prob-
lems, as effects on the comfort and emotional reactions of pedestrians might occur. Whilst collapse or
even damage due to human-induced dynamic forces have occurred very rarely [6]”. Additionally, the
dynamic loading of cyclists has close to no impact in comparison to pedestrians, leaving only pedestrian-
induced load models up for analysis. Whenever the structures’ eigenfrequency and the pedestrians’
pacing frequency coincide, resonance occurs, resulting in unwanted vibrations.

This literature review primarily focuses on the evaluation of human-induced vibrations that affect
footbridge serviceability leading to discomfort. By means of various methods available in literature,
namely analytical formulas and (finite element method) FEM analysis, vibrations are accessed and
verified. Lastly, the concept of external damping through use of a tuned mass damper (TMD) is
presented. This form of damping is highlighted since it is the most commonly applied method to
suppress human-induced vibrations.

2.1 Maximum acceleration
For the vibration serviceability of footbridges, numerous assessment methods exist in literature. Rang-
ing from international codes [7–10] to guidelines [4, 5, 11] and standards [12, 13]. All sources in essence
state, that maximum accelerations albeit vertical and horizontal, for any part of the bridge deck should
be lower than a certain limit value:

ai.max < ai.lim (2.1)

where:
ai.max = maximum deck acceleration for any part of the bridge deck in the ith direction,
ai.lim = limit value for acceleration in the ith direction.

1On December 15, 1999, the Passerelle Solférino footbridge, a 140 m long steel arch footbridge across the Seine in Paris,
was opened to the public for crossing. On the opening day, unexpected lateral oscillations were observed and the bridge was
subsequently closed. Installation of fourteen tuned mass dampers (TMDs) followed by vibration testing and monitoring of the
bridge. In November 2000, the bridge was reopened after almost a year of closure [3].

2The London Millennium Bridge, which connects St. Paul’s Cathedral with the Tate Modern Gallery is a shallow suspension
bridge in three spans; a south span of 108 m, a central span of 144 m and a north span of 81 m. On June 12, 2000, it was decided
to close the bridge while a retrofit solution could be developed and implemented. During the next eighteen months, an extensive
test program, similar to that in Paris was undertaken. After one and a half years, the bridge was reopened [3].
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How to obtain these maximum accelerations and what these limit values are, differs substantially. The
available methods hold regard to the acceptability of vibrations within footbridges based on human
perception levels. The ISO baseline curve [12] presents the threshold of human perception, whereas
for footbridges this curve is multiplied by a certain factor. Figure 2.1 presents the ISO baseline curve
of the peak acceleration for different loading frequencies, whereas figure 2.2 presents the root mean
square (RMS) acceleration for footbridges found in literature [14], quantifying the overall response to
human-induced vibrations.

Figure 2.1: ISO baseline curve for human
perception and vertical peak acceleration limits

for various civil structures

Figure 2.2: Vertical RMS acceleration limits found in
literature

Figure 2.3 presents vertical acceleration limits as specified in standards and guidelines. Observed can
be that both an increased and decreased maximum acceleration limit is prescribed for ranging natural
frequencies fn, resulting in contradictory results. Whereas figure 2.4 presents the vertical accelera-
tion limits according to comfort studies, in which the studies by Matsumoto [15], Wheeler and Korenev
[16] are not necessarily tailored to footbridge structures but accelerations on the human body in general.
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Figure 2.3: Limit values for vertical acceleration enlisted in
standards and guidelines
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Figure 2.4: Comfort values for vertical acceleration
enlisted in literature [6]

For horizontal limit accelerations, Eurocode EN1990 (2019) [9] specifies thresholds for normal and
exceptional use. Exceptional use refers to scenarios such as a marching band or a group of hooligans
crossing a bridge. Figure 2.5 shows these limit values, including the beginning of the lateral lock-in
effect, ah,lock−in = 0.10 ∼ 0.15 m/s2, as explained in 2.2 Lateral lock-in effect. As for comfort values,
figure 2.6 shows horizontal accelerations found in literature as outlined in the SYNPEX publication [6].
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Figure 2.5: Limit values for horizontal acceleration enlisted
in standards and guidelines[6]
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Figure 2.6: Comfort values for horizontal acceleration
enlisted in literature [6]

Observing figures 2.3 to 2.6, one could state that the available literature lacks consensus on the specified
accelerations limits. The aforementioned multiplication factor of the ISO baseline curve is not fixed,
but is influenced by various contributing factors. Furthermore, research on horizontal accelerations is
comparatively limited, for which often the lateral lock-in effect is overlooked.

In addition to defining acceleration limit values, it is essential to determine the accelerations present in
the structure. One of the earliest methods for evaluating vertical vibration serviceability was introduced
in the British Standard BS5400 (1978) [7]. Therein a simplified method is mentioned for one, two or
three-span continuous symmetric superstructures, using a configuration factor based on span layout:

a = 4π2f2o ys K ψ (2.2)
where:
fo = fundamental natural frequency [Hz]
ys = static deflection [m]
K = configuration factor (based on span layout)
ψ = dynamic response factor (based on design graph for various damping ratio’s)

Additionally, a general method for quantifying maximum vertical acceleration is mentioned. By assum-
ing dynamic loading applied by a single pedestrian represented by a pulsating point load Fped, moving
across the main span of the superstructure at a constant speed v = 0.9 fo, see equation 2.2. The code
states that the maximum obtained acceleration should be limited to amax = 0.5

√
fo m/s2, however, the

means of obtaining this maximum acceleration is unspecified.

Fped(t, v) = 180 sin (2πfot) δ(x− vt) (2.3)

where:
Fped(t, v) = dynamic load of a single moving pedestrian [kN]
fo = fundamental frequency [Hz]
δ(x− vt) = delta dirac function

As previously mentioned, do vertical and horizontal acceleration limits vary within a substantial band-
width, for which no account of the lateral lock-in effect is made. The method of determining the
maximum acceleration present is either simplified as for girder bridges or unspecified, leaving the asses-
sor limited in quantifying the response. This is why JRC-document EUR23984 [5] and French guideline
Sétra [4] enlist a more extensive and comparable design methodology, aiming for improved assessment,
as presented in figures 2.7 and 2.8 respectively.
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Figure 2.7: Design procedure enlisted in EUR23984 Figure 2.8: Design procedure enlisted in Sétra guideline

The procedure is characterized by the client specifying all possible design situations based on expected
traffic and required comfort. Natural frequencies are determined and verified whilst within critical
range. Assessment of structural damping follows, and by use of dynamic load models, the maximum
acceleration is evaluated. Furthermore, the occurrence of lateral lock-in is checked and the maximum
acceleration of the bridge deck is verified against the limit value. If needed, the structure is modified
in terms of mass, stiffness and/or by applying additional damping devices.

The newly proposed Eurocode prEN1990 (2021) [10] matches the assessment outlined by both guide-
lines, stating that: ”the assessment of human-induced vibrations should be considered to ensure that:
vibrations due to pedestrian traffic are acceptable for users; the lock-in phenomenon does not arise and
the footbridge does not collapse when subjected to intentional excitation (accidental limit state)”. The
refined assessment methodology is outlined from section 2.3 onwards, providing a better understanding
of human-induced vibrations.

2.2 Lateral lock-in effect
The lateral lock-in effect is concerned with horizontal accelerations and is to be subjected to verification
in almost all methodologies after the events of the Paris’ Passerelle Solférino and London Millenium
footbridge. When a bridge deck is subjected to lateral vibrations and a pedestrian walks across, addi-
tional movement that the pedestrian experiences is compensated for by aligning the swaying motion
of the bridge deck with its centre of gravity. The pedestrian’s behaviour is intuitive and even small
vibrations lead to an adjustment of movement. This change of movement is achieved by adapting the
walking frequency and widening of the gait, resulting in a greater dynamic load factor (DLF), see 2.6.
Looking at a group of pedestrians crossing the bridge, certain individuals will start synchronizing their
movement which will increase over time affecting more pedestrians.

A study by Živanović et al. [17] showed that the factors contributing to this synchronisation effect are:
the natural frequency of the footbridge, amplitude of the response, number of people involved, density
and velocity of the people. Fortunately, the Sétra guideline [4] states that: ”Actual synchronisation
is much weaker and when footbridge movement is such that pedestrians can no longer put their best
foot forward, they have to stop walking and the phenomenon can no longer evolve”. Figure 2.9 gives
a schematic description of synchronous walking. The increase of synchronization over time is also de-
scribed as lateral lock-in effect since people tend to get ”locked in” to a certain motion.
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Figure 2.9: Schematic description of synchronous walking

Lateral lock-in can be explained as a person’s movement being synchronised with the vibration of the
bridge, resulting in ground reaction forces being in line with ground displacement resulting in positive
work. Whenever the deck’s natural frequency matches the lateral vibration, resonance takes place which
gives rise to large vibrations over time. A publication by Ellis [18] explains that: ”The force generated
laterally by the right foot is normally in the opposite direction to the force induced by the left foot.
Therefore the time required for reproducing the same pattern of force can be counted from the left (or
right) foot to the next step of the left (or right) foot. In other words, the period of lateral forces is just
twice the period of the vertical force induced by people walking”. This means that synchronous walking
leads to double the natural frequency for lateral vibrations, see equation 2.4.

lim
t→∞

fs.sync(t) = 2 · fn.lat (2.4)

where:
fs.sync(t) = Synchronised step frequency of pedestrians over time
fn.lat = Natural frequency for lateral vibrations

Important to note is that the lock-in effect could potentially give rise to resonance via pedestrian
synchronisation. Tests on a rig in France and the Passerelle Solferino footbridge [4] indicate that lock-
in happens when the lateral natural frequency lies within a certain range of half the possible step
frequencies and the deck reaches an amplitude of 0.10 ∼ 0.15 m/s2 or higher, see condition 2.5. Results
from the test rig are also depicted in figure 2.10, showing the synchronisation starting from 0.10 m/s2
onwards.

adeck.lat > ast.lock−in & 0.8 < fn.lat < 1.2 Hz (2.5)Footbridges - Assessment of vibrational behaviour of footbridges under pedestrian loading – Practical Guidelines 19 / 127 

 

 

(N) 

Beginning of synchronisation: There is a majority of
forces the action of which participates in movement
amplification; cumulation is achieved in a better way. 

Random rate acceleration: there will be as many forces
participating in the movement as the forces opposed to it

(m/s²) 

Figure 1.7: Acceleration (m/s²) and efficient force (N) with 10 random pedestrians on the footbridge 
 
We observe that, from a given value, the force exerted by the pedestrians is clearly more 
efficient and there is some incipient synchronisation. This threshold is around 0.15 m/s² 
(straight line between the random rate zone and the incipient synchronisation zone). However, 
there is only some little synchronisation (maximum value of 100-150 N i.e. 0.2 to 0.3 times 
the effect of 10 pedestrians), but this is quite sufficient to generate very uncomfortable 
vibrations (>0.6m/s²). 

3.2.4.4 Experience gained from the Solferino footbridge test results  

Several test campaigns were carried out over several years following the closing of the 
Solferino footbridge to traffic, from the beginning these tests were intended to identify the 
issues and develop corrective measures; then they were needed to check the efficiency of the 
adopted measures and, finally, to draw lessons useful for the scientific and technical 
community. 
The main conclusions to be drawn from the Solferino footbridge tests are the following: 

- The lock-in phenomenon effectively occurred for the first mode of lateral swinging for 
which the double of the frequency is located within the range of normal walking 
frequency of pedestrians. 

- On the other hand, it does not seem to occur for modes of torsion that simultaneously 
present vertical and horizontal movements, even when the test crowd was made to 
walk at a frequency that had given rise to resonance. The strong vertical movements 
disturb and upset the pedestrians' walk and do not seem to favour maintaining it at the 
resonance frequency selected for the tests. High horizontal acceleration levels are then 
noted and it seems their effects have been masked by the vertical acceleration. 

- The concept of a critical number of pedestrians is entirely relative: it is certain that 
below a certain threshold lock-in cannot occur, however, on the other hand, beyond a 
threshold that has been proven various specific conditions can prevent it from 
occurring. 

- Lock-in appears to initiate and develop more easily from an initial pedestrian walking 
frequency for which half the value is lower than the horizontal swinging risk natural 
frequency of the structure. In the inverse case, that is, when the walking crowd has a 
faster initial pace several tests have effectively shown that it did not occur. This would 

© Sétra - 2006 

Figure 2.10: Acceleration (m/s2) [pink] and applied force (N) [blue] with ten random pedestrians on the test rig [4]
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Bachmann specifies the largest risk of excitation by pedestrians (95 % confidence interval) in vertical
direction for a range of fs = 1.6 ∼ 2.4 Hz and for horizontal direction half this frequency, giving
fs.lat = 0.8 ∼ 1.2 Hz. Other codes and guidelines differ from this interval (see table 2.6), specifying a
broader range of at maximum fn.lat = 0.3 ∼ 1.3 Hz.

An additional approach to verify lateral lock-in is to consider an equivalent amount of pedestrians NL
which triggers amplification. Equation 2.6 denotes the number of pedestrians that could lead to a
vanishing of the overall damping, producing a (sudden) amplified response.When the total number of
pedestrians on the bridge exceeds this threshold, lateral lock-in is likely to occur. This approach has
been validated through tests conducted on the Millennium Footbridge [19], as well as experiments on
footbridges in Portugal [20], which reported acceleration amplitudes in the range of 0.15 ∼ 0.20 m/s2,
suggesting these approaches might be related.

NL =
8πξ mnfn,lat

k
(2.6)

where:
NL = Number of people triggering lateral lock-in
ξ = structural damping ratio
mn = modal mass
fn.lat = natural frequency within critical range
k = constant (300 Ns/m approximately over the range of 0.5 ∼ 1.0 Hz, by Dallard et al. [19])

2.3 Design situations
Design situations are specified by the client in collaboration with the consultant, to account for all antic-
ipated traffic and desired comfort levels for each potential scenario throughout the bridge’s lifetime (see
Figure 2.11). Both the EUR23984 and Sétra guideline mention design scenarios, ensuring the comfort
level is more effectively aligned with actual events whilst addressing the bandwidth of accelerations
presented earlier.

Traffic class:
• Represents the expected level of 

traffic
• Corresponding to certain pedes-

trian density
• Accounting for freedom of move-

ment based on density

Comfort class:
• Required level of comfort
• Accounting for subjective per-

ception of pedestrains
• Based on aspects such as:
 Location
 Exposure time
 Appreance

Design situations:
• Physical conditions representing 

real life events occurring during a 
certain time interval

• Defining required dynamic be-
haviour of the footbridge

• Multiple situations to be determined 
for the lifetime of the bridge

+ =

Figure 2.11: Design situation approach

EUR23984 states that: ”It is strongly recommended to discuss comfort requirements and expected
pedestrian traffic to the obtained dynamic response with the owner to develop realistic limits and
boundary conditions for the design of the particular structure”, meaning that different design situations
account for different pedestrian comfort. An example would be a once-in-a-lifetime event, like the
inauguration of a footbridge. A persistent design situation, including the everyday density of pedestrians,
would be valued at a higher level of comfort. As for the Sétra guideline: ”Depending on footbridge class
and on the ranges within which its natural frequencies are situated, it is necessary to carry out dynamic
structure calculations for all or part of a set of three load cases.” Both design situation approaches are
shown in tables 2.1 and 2.2.
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Design
situation Description Traffic

class
Expected
occurrence

Comfort
class

1 inauguration of
the bridge TC4 once in the

lifetime CL3
2 commuter traffic TC2 daily CL1
3 rambler at the

weekend TC1 weekly CL2
... ... ... ... ...

Table 2.1: Design situations - EUR23984

Traffic Class Natural frequency range
1 2 3

sparse III case 1 nil nil
dense II case 1 case 3

very dense I case 2 case 2 case 3

Table 2.2: Design situations - Sétra guideline

By taking into account the various design situations across the lifespan of the bridge, a more realistic
assessment is achieved rather than verifying for one limit value as required for the limits given in figures
2.3 to 2.6. EN1990 (2019) [9] specifies that multiple design situations are to be adopted if required
by the client, but does not list a range of limit accelerations as per set in both EUR23984 and Sétra
guideline. The newly proposed Eurocode prEN1990 (2021) [10] fully adopts the acceleration range
specified in the JRC-document. It should be noted that these design situations do not account for
pedestrian formations or marching soldiers, which will need additional consideration if specified by the
client [5].

2.3.1 Traffic classes
Traffic classes represent the effects of pedestrians in a simplified and applicable manner to quantify
realistic behaviour for the structure in question. As for EUR23984, see figure 2.12, a pedestrian density
range of d = 0.1 ∼ 1.5 p/m2 is specified regarding the respective traffic classes.

Figure 2.12: Traffic classes in JRC-document
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A study by Oeding [21] shows a correlation between pedestrian densities and step frequencies by taking
the mean value between walking speed and traffic density. The study shows that when pedestrian
density is increased, walking velocity and subsequently step frequency is reduced. Low pedestrian
densities d < 0.5 p/m2 do not obstruct the flow of traffic, meaning that walking velocity is not reduced
and there is freedom of movement. For dense traffic d = 0.5 ∼ 1.0 p/m2, passing becomes more difficult
and a single pedestrian has to adjust walking velocity to the moving crowd. Above a density of p ≥ 1.0
p/m2, very dense traffic makes that freedom of movement is restricted and overtaking is no longer
possible. Exceptionally dense crowds p ≥ 1.5 p/m2, completely obstruct freedom of movement and the
walking velocity is greatly reduced.

French guideline Sétra specifies a pedestrian density range of d = 0.5 ∼ 1.0 p/m2, see table 2.3. There
is no traffic class enlisted for either weak or exceptionally dense traffic as for the JRC-document.

Class Density of crowd
III 0.5 pedestrians / m2

II 0.8 pedestrians / m2

I 1.0 pedestrians / m2

Table 2.3: Traffic classes in Sétra guideline

For the pedestrian densities given in both guidelines, assumed is a crowd being uniformly distributed
over the total area of the footbridge, for which the frequency and phase of the pedestrians coincide
with one or more natural frequencies of the structure in question. Important to note is that these
(general) traffic classes do not account for pedestrian formations. Formations can be characterised by
a marching lock-step, in some cases enforced by music such as parades and processions. The difference
between general traffic and pedestrians formation is that when formation takes place: ”The single
pedestrian is unable to move freely because of a given beat or linked arms. Hence the step phase is
widely synchronized [4]”. This synchronised lock-step behaviour can lead to strong dynamic loading
and loss of comfort when frequencies align, requiring additional consideration if specified by the client.

2.3.2 Comfort classes
Comfort is assessed by acceleration undergone by any part of the structure during loading. Given the
subjective nature of comfort, classes are defined by an acceleration range. Table 2.4 shows these ranges
for both the EUR23984 and Sétra guideline. Contrary to these ranges are the acceleration limits as
per specified in figures 2.3 / 2.6, for which no account is made regarding multiple design situations and
limit acceleration, both vertically and horizontally, is limited to a single value.

Comfort class Degree of comfort Vertical limit Horizontal limit
I Maximum < 0.50 m/s2 < 0.10 m/s2 3

II Medium 0.50 ∼ 1.00 m/s2 0.10 ∼ 0.30 m/s2
III Minimum 1.00 ∼ 2.50 m/s2 0.30 ∼ 0.80 m/s2
IV Unacceptable > 2.50 m/s2 > 0.80 m/s2

Table 2.4: Comfort levels in EUR23984 and Sétra guideline

In general, a comfort class is determined by the client based on its users and importance. Elderly or
disabled people frequently using a footbridge could result in a more demanding design. Additionally,
there is many other ’soft’ aspects which contribute to comfort such as: frequency of use; exposure time;
expectancy of vibration and number of users.

3Sétra guideline gives for class I a horizontal acceleration limit of ah < 0.15 m/s2
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2.4 Design steps
In addition to the general procedures outlined in EUR23984 and the Sètra guidelines, as shown in Figures
2.7 and 2.8 respectively, specific design steps are provided. These steps offer a systematic breakdown
of the assessment process, utilizing methods such as spectral analysis, SDOF, or FEM evaluation. For
each design scenario, the limits are verified, and recommendations for improving the structure and its
damping characteristics are provided. This section presents the key aspects of these design steps. Due
to their significant impact on the overall design procedure, dynamic load models and the determination
of accelerations are discussed in separate sections.

Figure 2.13: Design steps according to EUR23984 [5]

 
 

2 

The presented design according to the guideline elaborated within the SYNPEX project [1] takes into account that 
pedestrian bridges have different traffic situations that may be more or less relevant for design. One exceptional situation 
is e.g. the inauguration of a bridge with a very dense traffic that occurs often once in the life of a bridge only. 
Thus this guideline gives help to find together with the client relevant traffic situations and to define a related comfort that 
should be fulfilled under that traffic situation. Traffic class and related comfort criteria are the goal of the bridge design. 
The guideline also gives methods how to determine the relevant dynamic bridge characteristics and the bridge 
acceleration under pedestrian traffic. 
This paper concentrates on the design procedure. Further information may be found in the SYNPEX final report [1]. 
 
2. Design Procedure 
The design method aims on the proof of comfort for vertical and horizontal vibration. It does not aim in design for 
structural integrity or fatigue. 
By tests and surveys of pedestrians who have just passed a bridge - performed within the SYNPEX project [1] - it has 
been found that a general definition of comfort is not reasonable but individual definition of comfort criteria should be 
applied. Thus the specification of design scenarios is the first design step in the flow chart illustrated in Fig. 1. The flow 
chart also contains the links to the relevant chapters of this paper which include further descriptions.  
 

Specification of
design scenarios

(see 3.)

For each design scenario:
Traffic class Comfort level

acceleration limit alimit

Spectral
evaluation

For each design scenario:
Traffic class Loading of bridge
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Pre-check
(see 5.)
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(see 6.)
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Lively bridge ?
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SDOF
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Fig. 1  Procedure for vibrations design 

 
Another key point in the guideline is the evaluation of expected acceleration of the bridge. Three alternative methods � 
spectral method, Finite Element Analysis and SDOF method (single degree of freedom) � are presented in chapter 5 and 
some general information about the determination of system properties are give in chapter 3. 

Figure 2.14: Design steps according to ”European
design guide for footbridge vibration” publication [22]

2.4.1 Evaluation of natural frequencies
As prEN1991-2 states [23], natural frequencies should be computed using either analytical solutions
from closed-form expressions and iterative methods, or by use of numerical solutions with discretized
models such as Finite Element Models (FEM). When a bridge structure can be idealised by a 1D beam
element or rectangular 2D plate element, analytical calculation is possible as given by equation 2.7.

fb.n =
n2π

2L2
·

√
EI

ρA
fp.m.n =

√
D

ρh
·
[(mπ

a

)2
+
(nπ
b

)2]
(2.7)

where:
fb.n = Natural frequencies of a simply supported beam of constant characteristics for bending at n

sags
fp.m,n = Natural frequencies of a simply supported rectangular plate with length a and width b for

bending at m and n sags

Next to closed-form expressions, numerical solutions can be obtained through means of discretized mod-
els. Generally speaking, most FEM software apply modal analysis in which the method of Lanczos [24]
is widely used to obtain eigenvalues. Important to note is that the EUR23984 states that: ”It is rec-
ommended that the mass of pedestrians should be considered when calculating the natural frequencies
only when the modal mass of the pedestrians is more than 5% of the modal deck mass.” Whereas the

12



Sétra guideline states that eigenfrequency analysis is determined for two mass assumptions, namely
an empty footbridge and a footbridge loaded throughout its bearing area at one 700 N pedestrian per
square meter (70 kg/m2)”, giving a range of frequencies.

The equation of motion (EOM) for a (discritized) multiple degrees-of-freedom system is respresented by:

M
¯
ü(t) +C

¯
u̇(t) +K

¯
u(t) =

¯
f(t) (2.8)

To perform an eigenvalue analysis, the assumption is made that the response u(t) is modelled by a
mode shape vectors Φ that control the shape, and a vector

¯
q(t) that controls the amplitude:

¯
u(t) = Φ ·

¯
q(t) (2.9)

If undefined, the eigenvalue analysis is most often performed for the undamped system. ”Structures
such as buildings, bridges, dams, and offshore structures, have a damping ratio of ξ < 0.15 and thus
can be categorized as underdamped structures. The basic dynamic properties estimated using damped
or undamped assumptions are approximately the same” [25]. For which the EOM is given by:

M
¯
ü(t) +K

¯
u(t) =

¯
0 (2.10)

Substituting a harmonic function of circular frequency ωm for the modal displacement gives:

qm = Am cos(ωmt) +Bmsin(ωmt) (2.11)
where:

Am , Bm = Unknown constants, to be determined by initial conditions: u(0) = u0, u̇(0) = u̇0.

The nontrivial solution of this eigenvalue problem reads:

det
∣∣K − ω2

mM
∣∣ =

¯
0 (2.12)

Which results in N real and positive frequencies arranged ω1 < ω2 < .. < ωn. Once the eigenfrequencies
are obtained, the corresponding mode shapes are determined by:

[
K − ω2

mM
]
Φ = 0 (2.13)

In addition to undamped systems, classical damping such as modal or Rayleigh damping could be
introduced for a more accurate eigenvalue analysis, see section 2.4.4.

2.4.2 Critical range of natural frequencies
A footbridge experiences resonance whenever the structures’ eigenfrequency and the pedestrians’ pacing
frequency coincide. It is therefore possible to define a critical range where natural frequencies pose
problems due to this resonance phenomenon. The bounds of this critical range are set by the walking
behaviour of pedestrians using the footbridge.

Bachmann [26] performed a study on the stepping rate of pedestrians, stating that: ”The average
walking rate is 2 Hz with a standard deviation of 0.175 Hz. meaning that 50% of pedestrians walk at
rates between 1.9 Hz and 2.1 Hz, or alternatively, 95% of pedestrians walk at rates between 1.65 and
2.35 Hz”. Table 2.5 shows data of this study with the belonging design rate for each activity.
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Representative types of activity Range of applicability
Designation Definition Design activity rate [Hz] Actual activities Activity rate [Hz] Structure type

”walking” walking with continuous ground
contact 1.6 to 2.4

• slow walking (ambling)
• normal walking
• fast, brisk walking

∼ 1.7
∼ 2.0
∼ 2.3

• pedestrian structures (pedestrian
bridges, stairs, piers, etc.)
• office buildings

”running” running with discontinuous
ground contact 2.0 to 3.5

• slow running (jog)
• normal running
• fast running (sprint)

∼ 2.1
∼ 2.5
≥ 3.0

• pedestrian bridges on jogging
tracks, etc.

”jumping”
normal to high rhythmical
jumping on the spot with
simulteneous ground contact
of both feet

1.8 to 3.4
• fitness training with jump-
ing, skipping and running
to rythmical music
• jazz dance training

∼ 1.5 to 3.4

∼ 1.8 to 3.5

• gymnasia, sport halls
• gymnastic training rooms

”dancing” approximately equivalent to
”brisk walking” 1.5 to 3.0

• social events with classic-
al and modern dance (e.g.
English Waltz, Rumba, etc.)

∼ 1.5 to 3.0
• dance halls
• concert halls and other commu-
nity halls without fixed seating

”hand clapping
with body
bouncing while
standing”

rhythmical hand clapping in front
of one’s chest or above the head
while bouncing vertically by
forward and backward knee
movement of about 50 mm

1.5 to 3.0 • pop concerts with enthu-
siastic audience ∼ 1.5 to 3.0

• concert halls and spectator gall-
eries with and without fixed
seating and ”hard” pop concerts

”hand clapping” rhythmical hand clapping in
front of one’s chest 1.5 to 3.0 • classical concerts, ”soft”

pop concerts ∼ 1.5 to 3.0 • concert halls with fixed seat-
ing (no ”hard” pop concerts)

”lateral body
swaying”

rhythmical lateral body swaying
while being seated or standing 0.4 to 0.7 • concerts, social events • spectator galleries

Table 2.5: Pedestrian activity according to Bachmann [26]

In accordance with this study, several guidelines and codes have specified the critical natural frequency
ranges which should either be avoided entirely, or have the structure be subjected to an extensive
dynamic vibration analysis. Table 2.6 shows the critical ranges for vertical, longitudinal, lateral and
torsional vibrations. Within this research, the limits as proposed by Eurocode prEN1990-2021 are seen
as critical ranges.

Type of vibration [Hz]
Guideline / Code Vertical / longitudinal Vertical / longitudinal

including 2nd harmonic Lateral / torsional

EUR23984 1.25 ∼ 2.3 1.25 ∼ 4.6 0.5 ∼ 1.2

Sétra 1 ∼ 2.6 1 ∼ 5 0.3 ∼ 1.34

EN1990-2019 < 5 - < 2.5

prEN1990-2021

1.25 ∼ 2.3

1.9 ∼ 3.5 5

1.7 ∼ 3.0 6

1.25 ∼ 4.6 0.5 ∼ 1.2

Table 2.6: Critical frequency ranges as per specified in guidelines and codes

2.4.3 Assessment of design situations
The perception of motion is mostly subjective, meaning that people tolerate vibrations based on their
assessment of the situation. When a footbridge is located near a hospital, pedestrians might be more
sensitive to vibrations than supporters on their way to a football match. Another factor is the expecta-
tion due to the bridge’s appearance, meaning that a bridge which looks sturdy but undergoes (adequate)
vibrations will have a large impact on pedestrian assessment.

4Critical frequency range of 0.3 ∼ 2.5 Hz for the 2nd harmonic
5Range for jogger excitation
6Range for intentional excitation
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A good example of this perception bandwidth is outlined in a study by RWTH Aachen [6], which con-
sisted of a comfort questioning of pedestrians. Two bridges, namely the Wachtelsteg in Pforzheim and
the Kochenhofsteg in Stuttgart, with the same natural frequency of 2 Hz and similar dynamic charac-
teristics were referenced for this studies. Around fourty pedestrians for both bridges were questioned on
four topics of vibration perception. The data suggests that the Wachtelsteg in Pforzheim is perceived
as 30% more disturbing (see figure 2.15 and 2.16) than the Kochenhofsteg in Stuttgart, despite both
bridges having the same eigenfrequency and characteristics.
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Figure 2.15: Results of pedestrian interviews concerning
perception of vibration for the Kochenhofsteg in Stuttgart
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Figure 2.16: Results of pedestrian interviews concerning
perception of vibration for the Wachtelsteg in Pforzheim

2.4.4 Assessment of structural damping
Structural damping consists of intrinsic damping of construction materials, local effects of bearings, the
presence of non-structural elements (like handrails), and if present, damping by control devices. In
order to account for the natural damping in a structure, various guidelines and codes specify the use of
linear viscous dampers, implying damping proportional to the velocity of the bridge deck. Reason for
this application is that linear dynamic equations arise, approximating only real damping for low levels
of oscillation. This enables the use of modal analysis, greatly reducing complexity and computational
time. However, the use of control devices could lead to a non-diagonal damping matrix, requiring it-
erative calculation like direct numerical integration methods to perform analysis. Table 2.7 shows the
damping ratio’s for various construction materials as per specified in codes and guidelines.

Construction material Minimum ξ Average ξ
Reinforced concrete 0.8% 1.3%
Prestressed concrete 0.5% 1.0%
Composite steel-concrete 0.3% 0.6%
Steel 0.2% 0.4%
Timber 1.0% 1.5%

Table 2.7: Minimum and average damping ratio’s per construction type

In case of large vibrations, caused by intentional jumping or other exceptional design situations, larger
damping ratios can be observed. prEN1991-2 states that: ”For such cases, alternative values of damping
may be used as agreed for the specific project by the relevant parties.” Table 2.8 shows these increased
damping ratios as specified in guidelines.

Construction type Damping ratio ξ
Reinforced concrete 5%
Prestressed concrete 2%
Steel, welded joints 2%
Steel, bolted joints 4%

Table 2.8: Increased damping ratio’s per construction type
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Classical damping
Classical damping is deemed a valid approximation when similar damping mechanisms are distributed
throughout the structure under the assumption that it is lightly damped (ξ < 10%) [27]. This method
generates a diagonal stiffness matrix allowing for modal analysis. The most commonly applied forms
of classical damping are presented in this paragraph. Mathematically speaking, a damping matrix is
defined classical if it is diagonalisable by a set of mode shapes Φ, such that:

C = ΦT c Φ =

c1 . . .
cn

 (2.14)

Superposition of modal damping
Modal damping is a combination of elastic vibration modes, in which damping ratio’s resulting from
experiments and empirical results of comparable structures are applied. It comprises of a (classical)
damping matrix defined as:

C =

2ξ1M1ω1

. . .
2ξnMnωn

 (2.15)

where:

Mn = Generalised modal masses (ΦT
nMΦn) at mode n

ξn = Modal damping ratio
ωn = Angular frequency at mode n

The superimposed damping matrix c for N modes is given by:

C = M

(
N∑
n=1

2ξnωn
Mn

ϕnϕ
T
n

)
M (2.16)

where:
M = Mass matrix of the structure
ϕn = Mode shape at mode n
N = Number of modes considered for damping

Rayleigh damping
Rayleigh damping, also known as proportional damping, consists of a weighted sum of the mass and
stiffness matrices:

C = a0M + a1K (2.17)

Considering mass and stiffness proportional damping individually first, the following coefficients can be
distinguished:

ξm =
a0
2

1

ωm
ξm =

a1
2
ωm (2.18)
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where:
a0 = Coefficient for mass-proportional damping at mode m
a1 = Coefficient for stifness-proportional damping at mode m

What can be observed is that for mass-proportional damping a0, the damping ratio ξm is inversely
proportional to the eigenfrequency ωm. Whilst for stiffness-proportional damping a1, the damping
ratio increases linearly with the eigenfrequency ωm. Rayleigh damping combines these methods, giving
a (classical) damping matrix as defined in equation 2.17. Figure 2.17 explains the concepts of mass-
and stiffness-proportional damping and Rayleigh damping graphically.

Figure 2.17: Variation of modal damping ratios with natural frequency: (a) mass-proportional damping and
stiffness-proportional damping; (b) Rayleigh damping [28]

If the assumption is made that two modes contain the same damping ratio ξ, the coefficients a0 and a1
are determined by:

a0 = ξ
2ωiωj
ωi + ωj

a1 = ξ
2

ωi + ωj
(2.19)

where:
ωi = Lower frequency bound for the defined damping ratio
ωj = Upper frequency bound for the defined damping ratio

If the damping ratios of two principal modes are known (or can be estimated), the theory can be
extended and the values of a0 and a1 can be determined by equation 2.20. Once these constants are
obtained, a relationship can be established for the damping ratios of all orthogonal modes, allowing the
damping ratio ξi to be determined for every distinct eigenmode.

a0 =
2ω1ω2(ξ1ω2 − ξ2ω1)

ω2
2 − ω2

1

a1 =
2(ξ2ω2 − ξ1ω1)

ω2
2 − ω2

1

(2.20)

Three cases can be distinguished if construction of the structure’s damping occurs using Rayleigh
damping via the determination of two distinct principal modes ξ1 and ξ2 [29]. Figure 2.18 presents
these cases.
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Figure 2.18: Three cases of Rayleigh damping to be defined by the use of two distinct damping values ξ1 and ξ2 [29]

Case A :
[
ω1

ω2
< ξ2

ξ1
< ω2

ω1

]
All values of ξi are positive, meaning no problems will arise due to negative damping (amplifications).
Of course the condition holds that ξi ≤ 1

Case B :
[
ξ2
ξ1
< ω2

ω1

]
This may cause problems for higher frequencies since the damping ratio becomes negative for natural
frequencies ωi >

√
a0/− a1, this requires careful consideration, as it leads to physically unacceptable

results.

Case C :
[
ξ2
ξ1
> ω2

ω1

]
The last case mainly causes problems for lower natural frequencies, since the damping ratio is negative
for ωi <

√
−a0/a1. In footbridge design, low-frequency content is of the essence since step frequencies

are identified within a range of 1.0 < fs < 2.5 Hz. This makes case C an unviable case and should be
avoided in damping assessment completely.

Caughey damping
When there is more than two modes within the critical range with the same modal damping properties,
Caughey damping as an extension of Rayleigh damping can be applied for more accurate damping
values at each mode. Caughey damping c is determined for N modes by:
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C = M

N−1∑
l=0

al
[
M−1K

]l (2.21)

where:

al = Constants

Figure 2.19 explains the concept of Caughey damping for multiple modes graphically. It can be ob-
served that the damping matrix for a specified modal damping ratio ξ for three and four modes is
shown. Important to note, is that the contribution of higher modes than specified lead to either an
underestimation (substantially increased damping), or unrealistic behaviour in which (potential) nega-
tive damping values lead to a growth of free vibrations in time which is far from realistic behaviour in
conventional situations.

Figure 2.19: [28]

Important to note is that Rayleigh damping is obtained when N = 2 modes are considered, as is shown
below:

for N=2: a0M
(
M−1K

)0
= a0M , a1M

(
M−1K

)1
= a1K

C = a0M + a1K

Non-classical damping
Whenever a system is defined by subsystems with ranging damping properties, modal analysis with a
classical damping matrix cannot be performed since the principle of orthogonality no longer holds and
modal coupling arises. The solution for the complex eigenvalue problem is given by [28]:

u(t) = Ψeλt (2.22)

Which leads to the quadratic eigenvalue problem:

(λ2M + λC +K)Ψ = 0 (2.23)

A complex-conjugate pair of eigenvalues denoted by λn and λ̄n, may be expressed in the same form as
for classically damped systems:

λn, λ̄n = ξnωn ± iωnD (2.24)
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Note that ωn and ξn are related to the eigenvalues as follows:

ωn = |λn| ξn = −Re(λn)
|λn|

(2.25)

The associated pair of complex-valued eigenvectors is separated into its real and imaginary parts:

ψn, ψ̄n = ϕn ± iχn (2.26)

It is important to note that for classical damping matrices, the eigenvectors are real-valued and equal to
those of the associated undamped system i.e. χn = 0, ψn = ψ̄n = ϕn. Whereas non-classical damping
contains an imaginary component for the eigenvectors. In most cases, modal analysis is deviated from
for non-classical damping since it requires complex expression evaluation due the systems remaining
coupled. Numerical time integration is often utilised as an alternative with methods such as Newmark-
Beta or Wilson-θ. The process to obtain the damping matrix is by use of subsystem assembly, in which
the matrix is constructed by directly assembling damping matrices of the classically defined subsystems.
Figure 2.20 gives a graphical representation of this assembly methodology.

Figure 2.20: Example of subsystem assembly to account for soil-structure-interaction of different modal damping ratios [28]

2.5 Dynamic load models
According to codes and guidelines, dynamic load models are required for:

• Individual or group of hikers/pedestrians

• Individual or group of joggers

• Pedestrian streams (crowds)

• Vandals causing intentional excitation

The load models listed here should be applied as part of the procedure outlined in paragraph 2.4 Design
Steps. Given their significant impact on the assessment, additional context is provided in this section.
Pedestrian-induced forces relevant to footbridge dynamic excitation were comprehensively studied by
Wheeler [30]. The study presented the dependence of many walking parameters, such as step length,
moving velocity, peak force and contact time as a function of the pacing frequency [14]. Figure 2.21
shows the typical vertical force patterns for different types of human activities from a single footstep.
Where the dynamic load factor (DLF), i.e. force divided by static weight, is depicted for various pacing
frequencies (activities). For lower step frequencies, two force speaks and a trough are observed, whereas
the transition to running changes the shape function, converging to a single peak.
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Figure 2.21: Typical vertical force patterns for different types of human activities from a single footstep [30]

All parameters differ for each pedestrian, but the study draws general conclusions, stating that with
increasing step frequency the velocity, stride length and DLF increase whereas contact time decreases.
These conclusions are also shown in figure 2.22.

Figure 2.22: Dependence of stride length, contact time and DLF for different step frequencies [30]

Additional to vertical pedestrian-induced forces, lateral and longitudinal forces are present. As stated by
Andriacchi et al. [31]: ”general shapes for continuous forces in all three directions can be constructed if
their perfect periodicity is assumed.” Figure 2.23 shows these pedestrian-induced force shapes in vertical,
longitudinal and lateral directions.
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Figure 2.23: Periodic walking time histories in vertical, lateral and longitudinal directions. [31]

2.5.1 Step force model
In order to effectively model these step forces, a periodic function is constructed by means of a Fourier
series. A combination of harmonic functions is used to simulate the step force induced by pedestrians,
see equation 2.27. The Fourier coefficients αi can be interpreted as a DLF for every ith harmonic.
In literature, many studies have been conducted to determine the Fourier coefficients for walking and
running. Table 2.9 shows the coefficients found in studies.

Fp.vert(t, v) = P

[
1 +

n∑
i=1

αi.vert sin(2 π i l fs t− ϕi)
]
δ(x− vt)

Fp.lat(t, v) = P

n∑
i=1

αi.lat sin(πifst− ϕi) δ(x− vt)

Fp.long(t, v) = P

n∑
i=1

αi.long sin(2πifst− ϕi) δ(x− vt)

(2.27)

where:
Fp.j = periodic force due to walking or running in jth direction (vertical, lateral or longitudinal)
P = pedestrian’s weight (assumed to be between 700 to 800 N)
αi,j = fourier coefficient of the ith harmonic for vertical, lateral and longitudinal forces
fs = step frequency
ϕi = phase shift of the ith harmonic
n = total number of contributing harmonics
v = stepping velocity
δ(x) = dirac delta function
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Author(s) Fourier coefficients / Phase
angles Comments Type of activity and

load direction
Blanchard et
al.

α1 = 0.257 Walking – vertical

Bachmann &
Ammann

α1 = 0.4− 0.5; α2 = α3 = 0.1 fp = 2.0− 2.4 Hz Walking – vertical

Schulze
α1 = 0.37; α2 = 0.10;
α3 = 0.12; α4 = 0.04;
α5 = 0.015

fp = 2.0 Hz Walking – vertical

Bachmann et
al.

α1 = 0.4/0.5; α2 = α3 = 0.1
α1 = α2 = α3 = 0.1
α1/2 = 0.1; α1 = 0.2; α2 = 0.1
α1 = 1.6; α2 = 0.7; α3 = 0.3
ϕ2 = ϕ3 = π/2

fp = 2.0/2.4 Hz
fp = 2.0 Hz
fp = 2.0 Hz
fp = 2.0− 3.0 Hz

Walking – vertical
Walking – lateral
Walking – longitudinal
Running – vertical
Walking – vertical & lateral

Kerr α1, α2 = 0.07; α3 = 0.2
α1 is frequency
dependent Walking – vertical

Young
α1 = 0.37(fp − 0.95) ≤ 0.5
α2 = 0.054 + 0.0088fp
α3 = 0.026 + 0.015fp
α4 = 0.01 + 0.0204fp

Mean values for
Fourier coefficients Walking – vertical

Charles &
Hoorpah

α1 = 0.4
α1 = 0.05
α1 = 0.2

Walking – vertical
Walking – lateral
Walking - longitudinal

EC5,
DIN1074

α1 = 0.4; α2 = 0.2
α1 = α2 = 0.1
α1 = 1.2

Walking – vertical
Walking – lateral
Jogging – vertical

Table 2.9: Fourier coefficients, phase angles as proposed by studies found in literature [5]

The step force model accurately represents the loading caused by pedestrian-structure interaction, for
which account is to be made for the stochastic behaviour of pedestrians. The randomness of pedestrians
can be incorporated by assuming a normally distributed step frequency fs and a uniformly distributed
phase φi. However, its complexity poses challenges for integration in FEM software. Implementing
single-moving loads to represent pedestrian streams often results in an overly elaborate representation.
To address this, harmonic loads, both moving point loads and pedestrian streams, are introduced as
a simplified alternative. These harmonic loads assume an equivalent number of perfectly synchronized
pedestrians n′, as explained in paragraph 2.5.2.

2.5.2 Equivalent number of pedestrians
prEN1991-2 provides a specification for each traffic class regarding the equivalent number of pedestrians
n′ to be considered moving across the footbridge and crowd densities for streams. Table 2.10 shows
these values for each class, in which the equivalent amount of pedestrians moving across the bridge, hik-
ers/pedestrians and joggers, can be determined via n′ = √n, assuming a Poisson distribution regarding
the arrival probability of pedestrians [26]. The equivalent number of pedestrians is used to represent
fully synchronous behaviour, meaning the same step frequency fs and no phase φi.

Traffic Class Description Hik. group [P] Jog. group [P] Ped. stream [P/m²]
TC1 Very weak traffic 1 0 0.1
TC2 Weak traffic 2 0 0.2
TC3 Dense traffic 4 1 0.5
TC4 Very dense traffic 8 2 1.0
TC5 Excep. dense traffic 16 4 1.5

Table 2.10: Traffic classes and group sizes for harmonic load models as per prEN1991-2.
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For pedestrian streams, the equivalent number of pedestrians is not equal to the square root of the total
number of pedestrians, since a crowd is characterised by more random behaviour due to the interaction
of pedestrians with both the bridge as well as one-another. For crowd loading, the equivalent number
of pedestrians n′ represents a number of perfectly synchronised people for an idealised stream. In other
words, it considers a crowd with individuals having the same step frequency fs whilst having a phase
distribution φ+/− synchronous with that of the mode shape Φn in question.

All guidelines provide the same empirical formulas for the equivalent number of pedestrians, which
have been derived from Monte Carlo simulations to incorporate the stochastic loading and ran-
domness of crowds. The reason for using an equivalent number of pedestrians in a harmonic load
model for crowds is due to its simplicity. It eliminates the use of stochastic loading whilst still
incorporating crowd interactions, greatly reducing computational time. The equivalent number of
pedestrians in streams is provided below, for which a distinction is made between ”sparse to dense”
and ”very dense” crowds.

• Sparse to dense crowds (d < 1.0 P/m2): n′ = 10.8
√
n·ξ

S

• Very dense crowds (d ≥ 1.0 P/m2): n′ = 1.85
√
n

S

Where:
n′ = equivalent number of pedestrians
d = pedestrian density P/m2, based on the chosen traffic class as per 2.3.1
P = Persons present on the bridge
S = area of the loaded surface (bridge deck) m2

n = number of pedestrians (d · S)
ξ = structural damping ratio

To clarify how these formulas have been derived, the procedure for the Monte Carlo simulations is
explained. First, the total number of pedestrians n loading the bridge is determined via the pedestrian
density according to the traffic class in question, as per table 2.10. The loads are modelled stationary,
for which each individual load Fi(t) represents a pedestrian and is assigned a normally distributed step
frequency fi and random phase φi. The total loading F (t) is obtained by summing the individual
components, without considering any specific mode shape excitation.

The maximum acceleration response which occurs for this crowd amax,crowd within a significant period
of time, taken as the time to pass the bridge twice whilst walking at a speed of v = 1.5 m/s, is
obtained from the numerical model. Furthermore, an equivalent number of perfectly synchronised
pedestrians n′ having the same natural frequency fsyn being in phase φ+/− with the mode shape of
the natural frequency Φn, is simulated for a broad range of pedestrians. The total loading F (t) is
obtained by summing the individual synchronised components and applying the load in the direction
of the mode shape. Whenever the maximum acceleration of the random crowd response amax,crowd
matches that of the equivalent synchronised (reduced) number of pedestrians amax,syn, determined is
how many equivalent pedestrians are synchronised n′. To get a reliable response, the characteristic value
represented by 95% of the samples is selected. Figure 2.24 shows how the procedure was performed.
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Figure 2.24: Equivalent number of pedestrians derived from Monte Carlo simulations for stochastic crowd loading

Where:
Fi(t) = Individual stationary force i for a change in time t
F (t) = Total stationary force for a change in time t
P = Static load component of a pedestrian (assumed 800 N)
fi = Normally distributed step frequency fs,m = 2 Hz, σs,m = 0.175
φi = Random phase ∈ [0, 2π]
S = Surface of the bridge deck
Φn = Mode shape of the natural frequency of the bridge deck studied
fsyn = Synchronised step frequency
φ+/− = Phase synchronised with the mode shape Φn
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2.5.3 Force component
The force component Pi which is present in all harmonic load models, has been studied extensively.
A publication regarding footfall-induced vibrations presents a graph in which studies measured the
DLF for walking of the first four footfall harmonics for varying frequencies [11]. Footfall harmonics
are introduced whenever the structure’s natural frequency and the pedestrian’s walking pace align, for
which higher harmonics are reached when this is a multiple of one-another (ri = fn/fs, r being a whole
number for every ith harmonic). Observed can be a substantial scatter and greater DLF for increased
step frequency, see figure 2.25.
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Figure 4.2
The first four harmonics of footfall forces.

Harmonic 
number, h

Harmonic forcing 
frequency  (Hz)

Mean value
(DLF)

Coefficient of 
variation

Design value
(DLF)

1 1–2.8 0.37(f - 0.95),
 |  0.5

0.17 0.41(f - 0.95),  |  0.56

2 2–5.6 0.054+0.0044f 0.40 0.069+0.0056f

3 3-8.4 0.026+0.0050f 0.40 0.033+0.0064f

4 4–11.2 0.010+0.0051f 0.40 0.013+0.0065f

h>4 >11.2 0 0

>
>

Table 4.3
Average and design values and coefficients of 

variation of the footfall harmonics.

Footfall Induced Vibration of St25   25 06/12/2006   16:29:59

Explained by paper 
Arup - Fig 2. DLF's

Figure 2.25: Dynamic load factor of footfall forces observed in studies [11]

Table 2.11 shows the characteristics of the force component Pi presented in codes and guidelines. Ob-
served can be that for jogging, no longitudinal or lateral components are considered. Furthermore
is only the first harmonic enlisted, leaving discussion as to why higher harmonics are being excluded.
EUR23984 states that ”A vertical vibration excitation by the second harmonic of pedestrian forces
might take place. Until now there is no hint in the literature that significant vibration of footbridges
due to the second harmonic of pedestrians has occurred. [5]”

Code / Guideline Action Harmonic Type Component Pj
Vertical Longitudinal Lateral

prEN1991-2;
EUR23984;

Sétra

Walking 1st
Force [N ] 280 140 35

DLF 0.350 0.175 0.0438
Jogging 1st

Force [N ] 1250 - -
DLF 1.56 - -

Table 2.11: Characteristics of the Pj component specified in codes and guidelines
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2.5.4 Reduction coefficient
The last component playing a substantial role in harmonic load models is the reduction factor ψ, which
takes into account the probability that step frequency fs and the natural frequencies fn align. Codes and
guidelines have obtained this coefficient by means of statistical analysis, simulating pedestrian streams
of n pedestrians having a normally distributed step frequency fs around the natural frequency fn of the
bridge with a random phase φ. Figures 2.26 and 2.27 show these reduction factors for walking as found
in the literature. Observed can be that the Sétra guideline encompasses a larger frequency range and
gives no transition period before entering the second harmonic. Whereas EUR23984 / prEN1991-2021
do not imply a reduction coefficient for the second harmonic concerning lateral vibrations.
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Figure 2.26: Vertical and longitudinal reduction coefficient ψ for walking according to guidelines and codes
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Figure 2.27: Lateral reduction coefficient ψ for walking according to guidelines and codes

Additionally, a vertical reduction coefficient for joggers is introduced, excluding the second harmonic
as well as lateral and longitudinal vibrations. As the EUR23984 document states: ”nevertheless, it is
reasonable to suppose that the lateral component presents relatively small amplitude comparing to the
vertical one”. The Sétra guideline labels loading by joggers ’non-relevant’, giving no reduction factor
altogether.
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Figure 2.28: Vertical reduction coefficient ψ for jogging according to guidelines and codes

2.5.5 Moving harmonic point load model
In continuation of the elaborate periodic step-force model, a harmonic function can be applied to model
pedestrian-induced forcing, utilising the concept of equivalent synchronised pedestrians. This load
model concerns a single moving load which is used to simulate the behaviour of a hiker/pedestrian,
jogger or small groups of both. Equation 2.28 presents the loading model, in which a walking pace v is
to be assumed.

Fm,i(t, v) = Pi cos(2πfst) n
′ ψj δ(x− vt) (2.28)

Where:
Fm,i = harmonic point load due to walking or jogging in the ith direction (vertical, lateral or

longitudinal)
Pi = force component due to a single pedestrian walking in the ith direction (vertical,

lateral or longitudinal)
fs = step frequency, which is assumed equal to the footbridge natural frequency (fs = fn)
n′ = equivalent number of pedestrians (n′ = √n)
ψi = reduction coefficient taking into account the probability that footfall frequency ap-

proaches critical range of natural frequencies in the ith direction (vertical, lateral or
longitudinal)

v = walking velocity of the activity in question (walking or jogging). v = 1.7 m/s walking,
whereas v = 3 m/s for jogging.

δ(x) = dirac delta function

2.5.6 Harmonic load model for pedestrian streams
As the Sétra guideline states: ”Until recently, dynamic dimensioning of footbridges was mainly based
on the theoretical loading model with a single pedestrian completed by rather crude requirements con-
cerning footbridge stiffness and natural frequency floor values. Such requirements are rather insufficient
and do not cover the main problems raised by the use of footbridges in urban areas which are subject
to the action of more or less dense pedestrian groups and crowds”. In order to account for streams
of pedestrians, a likewise harmonic model is implemented. The difference being that this load model
incorporates a different number of synchronised pedestrians n′ than for moving loads, see paragraph
2.5.2. The load model for pedestrian streams is given by equation 2.29.

28



Fs,i(t) = Pi cos(2πfst) n
′ ψj (2.29)

Where:
Fs,i = harmonic force due to pedestrian stream in the jth direction (vertical, lateral or

longitudinal)
Pi = force component due to a single pedestrian walking in the jth direction (vertical,

lateral or longitudinal), see table 2.11 for walking
fs = step frequency, which is assumed equal to the footbridge natural frequency (fs = fn)

under consideration
n′ = equivalent number of pedestrians, see 2.5.2
ψi = reduction coefficient taking into account the probability that footfall frequency ap-

proaches critical range of natural frequencies in the jth direction (vertical, lateral or
longitudinal)

The harmonic load model for pedestrian streams is stationary since a constant stream of pedestrians
is assumed, in which the number of people who enter and leave the bridge is equal to one-another. A
distributed load is positioned such that the amplitude of the force is equal to the sign of the mode shape.
Figure 2.29 shows how to apply the dynamic load model based on a given torsional mode shape.

Figure 2.29: Stationary loading specifying its direction according to the given torsional mode shape [4]

Since a stationary load is applied, the loading time is not equal to the time needed to cross the bridge,
such as for moving loads. The response is obtained by observing the steady-state response, meaning
sufficient time is required to reach this state.

2.5.7 Harmonic load model for intentional excitation
In addition to single moving loads, groups and pedestrian streams, account should be made for in-
tentional excitation, often referred to as ”vandal loading”. Eurocode prEN1991-2 [23] states that: ”A
footbridge should be designed such that forced vertical vibrations caused by coordinated jumping does
not cause failure or damage of the bridge in ultimate limit state”. Intentional excitation is to be seen
as ULS rather than SLS. Studies by RWTH Aachen [6] have shown that at higher vibration amplitudes
the structure’s natural damping is increased, and that people often lose concentration and commitment
when trying to excite a footbridge into resonance over time.
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A distinction is to be made between jumping and bouncing behaviour. For which jumping is charac-
terised by a large impact or excitation force due to a single person or synchronised group, in which their
feet leave the ground and return in the next cycle. Bouncing on the other hand is explained by a persons
body moving up and down via a bending motion of the knee. Additionally, bouncing can persist for
a longer time, since synchronizing with the natural frequency of the bridge happens more easily when
staying in contact with the structure opposed to jumping. However, all guidelines concerning footbridge
design do not account for bouncing since the excitation force is less and people lose concentration and
commitment over time.

There’s no consistent approach in the literature for modeling intentional excitation, unlike the more
standardized harmonic models for pedestrians, joggers, and streams. Some methods suggest increasing
damping values, while others propose reducing them, with different dynamic load factors and varying
assumptions about how many vandals to include. The methods are outlined in the sections below.

NEN-EN1991-2 (2019)
The Dutch national annex of the current Eurocode for bridge loads NEN-EN1991-2 (2019) [32] states
that unless otherwise specified, verified must be that vibrations caused by this deliberate dynamic
loading, do not result in exceeding the ultimate limit state. The vertical loading caused by an amount
of vandals equivalent to a pedestrian stream of traffic class 5 (TC5) is applied, using the dynamic
load factor of joggers being subjected to 50 % of the nominal structural damping. The placement of
these vandals is at the most critical position of the bridge, based on mode shape characteristics Φn(x).
Combining the aforementioned aspects leads to the vandal load model described below.

Fvandal(x, t) = Pvandal · cos(2πfst) · nvandal (2.30)

Where:
Fvandal(x, t) = harmonic point load for vandals at critical location x for a change of time t
Pvandal = force component of a vandal, assumed that of joggers (Pvandal = 1250 N)
fs = step frequency, assumed equal to the natural frequency (fs = fn)

nvandal = number of vandals, based on TC5 (nvandal =
280·n′·ψ·cos(2πfst)·S

Pvandal
)

prEN1991-2 (2021)
Contrary to the previous load model, the newly proposed Eurocode prEN1991-2 (2021) [10] states that
depending on the location and use of the bridge, a range of two to five persons is to be assumed for
intentional loading. This leaves up question to the designer since it is unclear how many vandals to
consider. Larger bridges require pedestrian load class TC4 or TC5 (see Table 2.10) for the ultimate
limit state design. Since no classification of large bridges is given, the implementation is once again up
for debate.

Furthermore, claim is made that if no unacceptable vibrations from coordinated jumping are generated
within a period of twenty seconds, the load case is to be ignored. Clearly hinting at the transient
response of the structure, whereas EN1991-2 (2019) does not state a certain time period, Lastly, does
this load model not account for reduced nominal damping, but rather increased values, see table 2.8
due to large vibrations caused by coordinated jumping.

Sétra guideline
The last load model is provided by the Sétra guideline [4], mentioning that in case of vandalism or
an exceptionally large public demonstration, an accidental ultimate limit state for increased structural
damping values, see table 2.8 is to be verified. Traffic class 4 is to be assumed, not translating into an
equivalent number of vandals, but remaining the area load as presented in equation 2.29.
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2.6 Assessment methods
To evaluate the maximum acceleration of a footbridge, several methods are available in the literature.
Table 2.12 summarizes these methods, indicating whether modal analysis is required, the associated
codes or guidelines, the dynamic load models utilized, and the type of vibration. The methods are
organized in ascending order of complexity and computational effort. Analytical expressions, which can
be solved quickly using design graphs and tables, are listed first, whereas numerical simulations, capable
of incorporating stochastic loading to address uncertainties in pedestrian walking behavior, appear last
to reflect their greater computational demand.

Analysis method Modal
Analysis? Code/Guideline Dynamic load models Vibration type

Analytical Expressions
(up to 3 span grider bridges)

BS5400,
OHBDC

Moving harmonic
point load Vertical

Single Degree Of
Freedom (SDOF) x EUR23984,

Sétra
Harmonic load,

pedestrian streams All

Response spectra x EUR23984 Harmonic load,
pedestrian streams All

Four Footfall
Harmonics x Footfall ind.

vibrations
Moving harmonic,

point load Vertical

Finite Element Analysis
(numerical simulations) x

EUR23984,
Sétra,

SYNPEX

Moving harmonic
point load,

harmonic load
pedestrian streams

All

Table 2.12: Analysis methods described in literature to determine maximum bridge deck acceleration due to
pedestrian-structure interaction of footbridges

2.6.1 SDOF method
The single degree of freedom (SDOF) method for determining maximum acceleration finds application
when the dynamic behaviour can be described by modal analysis. The total response of the structure
is obtained by the linear combination of these modes. As the Sétra guideline states: ”If the function
f(t) is harmonic f sin(ωt), at the frequency of one of the modes (mode j for example), then there is
resonance of that mode. The response qj of mode j is much greater than the others and the global
response after a transitory period”, see equation 2.31.

u(t) =

N∑
i=1

ϕi qi(t) ≈ ϕj qj(t) (2.31)

Both the EUR23984 and Sétra guideline provide a formula to calculate the maximum acceleration at
resonance for the SDOF system:

amax =
p∗

m∗
π

δ
=

p∗

m∗
1

2ξ
(2.32)

where:
p∗ = modal (harmonic) load (p∗i =

∫
L
P · Φi(x) dx

m∗ = generalised (modal) mass (m∗
i =

∫
L
M ϕi(x) dx)

ξ = structural damping ratio (ξ ≈ δ
2π , for small ξ)

δ = logarithmic decrement of damping

For all modes containing an eigenfrequency within the critical ranges as per specified in 2.4.2, the
maximum obtained acceleration is to be verified against the comfort class specified in 2.3.2. Important
to note is that unconventional superstructures can have complex modal properties, making analysis
only possible through means of sophisticated FEM programs to obtain natural frequencies and mode
shapes. The generalised (modal) mass m∗ and modal load p∗ are to be obtained from the FEM program
directly, avoiding complex function evaluation.
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2.6.2 Response spectra method
To avoid time domain analysis, the response spectra method can be applied by use of modal analysis to
obtain the generalized (modal) mass. This method is derived from Monte Carlo simulations, and used
to produce a design spectrum which incorporates stochastic forces of random pedestrian streams for
various bridge geometries. Five thousand different pedestrian streams have been numerically simulated
where each pedestrian has random properties for: weight, step frequency, start position and moment of
first step. Considered are girder bridges with a span between twenty and two hundred meters, a width
between three and five metres and four different stream densities.

The maximum acceleration is determined by:

amax,d = ka.d · σa (2.33)

Where:
ka,d = Peak factor: ka,95% · ψ (ψ = 0.7 according to Eurocode design practice)
σa = Standard deviation of acceleration response

For which the standard deviation of the acceleration response is determined by:

σ2
a = k1ξ

k2
C · σ2

F

m∗2
i

(2.34)

Where:

k1 = a1f
2
i + a2fi + a3

k2 = b1f
2
i + b2fi + b3

a1, a2, a3, b1, b2, b3 = constants for either vertical or lateral accelerations based on pedestrian density
fi = considered natural frequency that coincides with the mean step frequency of

the pedestrian stream
ξ = structural damping ratio
C = constant describing the maximum of the load spectrum
σ2
F = kF · n = variance of the loading (pedestrian induced forces)
kF = constant
n = d · L ·B = number of pedestrians of the bridge with pedestrian density d, bridge length L

and bridge width B
m∗
i = modal mass of the considered mode i

d [P/m2] kF C a1 a2 a3 b1 b2 b3 ka,95%

≤ 0.5 1.20 · 10−2 2.95 −0.07 0.60 0.075 0.003 −0.040 −1.000 3.92
1.0 7.00 · 10−3 3.70 −0.07 0.56 0.084 0.004 −0.045 −1.000 3.80
1.5 3.34 · 10−3 5.10 −0.08 0.50 0.085 0.005 −0.060 −1.005 3.74

Table 2.13: Constants for vertical accelerations [5]

d [P/m2] kF C a1 a2 a3 b1 b2 b3 ka,95%

≤ 0.5 6.8 −0.08 0.50 0.085 0.005 −0.06 −1.005 3.77
1.0 2.85 · 10−4 7.9 −0.08 0.44 0.096 0.007 −0.071 −1.000 3.73
1.5 12.6 −0.07 0.31 0.120 0.009 −0.094 −1.020 3.63

Table 2.14: Constants for lateral accelerations [5]

Additionally, the guideline gives an expression to estimate the required generalised (modal) mass m∗
i

for a given pedestrian density, see equation 2.35. Making modal analysis redundant, further simplifying
the method.
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m∗
i ≥
√
n (k1 ξ

k2 + 1.65 k3 ξ
k4)

alim
(2.35)

Where:
m∗
i = modal mass for considered mode i

n = number of pedestrians on the bridge
k1, k2, k3, k4 = constants for vertical bending and torsion modes (see tables 2.30a and 2.30b)
ξ = structural damping coefficient

d [P/m2] k1 k2 k3 k4

≤ 0.5 0.7603
0.468

0.050
0.6751.0 0.5700 0.040

1.5 0.4000 0.035
(a) Vertical bending and torsional modal mass

d [P/m2] k1 k2 k3 k4

≤ 0.5 0.1205
0.45

0.012
0.64051.0 0.5700 0.040

1.5 0.4000 0.035
(b) Lateral modal mass

Figure 2.30: Constants to estimate generalised (modal) mass [5]

2.6.3 Four Footfall Harmonics
The methodology outlined in publication [11] regards the first four footfall harmonics to verify maximum
accelerations, whereas other codes and guidelines often only implement effects of the first harmonic or
observe a superstructure’s total response using numerical analysis. The reason for using the first four
harmonics is because footfall rates typically vary between 1.5 and 2.5 Hz. So any structure with modal
frequencies between 1.5 and 10.5 Hz is potentially susceptible to higher responses due to resonance.

Figure 2.31 shows the peak velocities of a structure for 882 measured time history analyses in which the
footfall harmonics ri up to the twelfth harmonic are shown. Looking at the figure, the effect of higher
harmonics contributes to the peak velocity showing (significant) contribution, whereas effects after the
fourth footfall harmonic are considered negligible. Important to note is that this methodology only
looks at vertical vibrations. Torsional modes of vibration can be quantitatively included by performing
the moving load analysis at the outer edge of the deck, whereas lateral vibrations cannot be assessed
utilizing this method.

Figure 2.31: Peak velocities of the first four harmonics of footfall forces for ranging frequencies as per found in literature [11]
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The publication states that structures with natural frequencies less than fn ≤ 10 Hz are potentially
susceptible to resonance induced by the first four harmonics. The designer is tasked with selecting a
range of walking frequencies which are suspected to occur during the lifetime of the footbridge. For
this range of walking frequencies, up until the fourth harmonic is to be determined, including the
belonging DLF, see table 2.15. Afterwards, the acceleration resulting from these harmonic loads is to
be calculated for each vertical (or torsional) mode of vibration within range of fn ≤ 10 Hz, as outlined
in the procedure below via equations 2.36 / 2.40.

Harmonic number Harmonic forcing
frequency (Hz)

Design value
(DLF)

1 1–2.8 0.41(f − 0.95), > 0.56
2 2–5.6 0.069 + 0.0056f
3 3-8.4 0.033 + 0.0064f
4 4–11.2 0.013 + 0.0065f

Table 2.15: Proposed dynamic load factors for the first four harmonics

Procedure Four Footfall Harmonics
1) Calculate the harmonic forcing frequency fh for each harmonic from h = 1 to h = 4:

fh = h · fw (2.36)
Where:

fw = Suspected walking frequency (for given range)

2) Calculate the resulting harmonic force Fh at h for each mode m within the vertical frequency
range:

Fh = DLF · P (2.37)
Where:
DLF = Dynamic load factor, calculated by means of table 2.15
P = Static weight of a pedestrian, (assumed 700 N)

3) Determine the real areal,h,m and imaginary acceleration aimag,h,m, in each mode m at harmonic
h:

areal,h,m =

(
fh
fm

)2
Fh µ ρh,m

m̂m

Am
A2
m +B2

m

aimag,h,m =

(
fh
fm

)2
Fh µ ρh,m

m̂m

Bm
A2
m +B2

m

(2.38)

Where:
fm = Natural vibration of vertical mode in consideration
µ = Vertical mode shape of the mode in question (either use FEM or analytical expression)
ρh,m = 1− e−2πξmN , with N = 0.55 hLl (L = length span, l = stride length ped.)
Am = 1−

(
fh
fm

)2
, Bm = 2ξm

fh
fm

(Constants given)
ξm = Suggested damping value for structure in question
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4) Sum the real areal,h and imaginary responses aimag,h in all modes m and take the magnitude of
this vector in order to obtain the total acceleration |ah|:

areal,h =
∑
m

areal,h,m aimag,h =
∑
m

aimag,h,m

|ah| =
√
a2real,h + a2imag,h

(2.39)

5) In order to verify the maximum acceleration |ah|, a response factor R is determined. First the
baseline peak acceleration ar=1 is determined for each harmonic forcing frequency fh by means of
figure 2.32.

Figure 2.32: Building vibration z-axis base curve for acceleration (foot-to-head vibration direction) [12]

The response factor R is determined by:

Rh=1..4 =
|ah|
aR=1,h

R =
√
R2

1 +R2
2 +R2

3 +R2
4

(2.40)

Table 2.16, presents the response factor performance targets for footbridges, ramps and walkways. A
target value of R < 64 is given for external bridges, excited by a single person at the most critical
footfall rate. Next to this threshold for the response factor R, the analysis can be used quantitatively
to see what vibration modes play a significant role in bridge deck accelerations. Additionally, the effect
of higher harmonics can be observed. Figure 2.33 shows one of these analyses, used to gain insight into
the eigenfrequencies and mode-shapes playing an important role in pedestrian-structure interaction.

Type Response factor
External bridges R ≤ 64
Indoor bridges R ≤ 32
Indoor bridges

(not lightweight) R ≤ 24

Table 2.16: Performance targets for bridges, ramps and walkways regarding the response factor [11]
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Figure 2.33: Response factors for various mode shapes and eigenvalues according to Four Footfall Harmonics [11]

2.6.4 Direct time integration method
The last and most refined method to determine maximum accelerations, is by means of numeric analysis
in FEM. Numeric analysis refers to the time-dependant behaviour of footbridges subjected to dynamic
loads. Whilst most programs offer modal analysis in order to acquire dynamic properties, some programs
additionally offer numeric (dynamic) analysis, in which direct numerical integration is performed for
each predefined time step. This can be useful for simulating highly stochastic pedestrian load models
interacting with the structure in order to obtain a dynamic response.

In order to perform full transient analysis, the dynamic properties of the structure are to be known.
This is firstly obtained via modal analysis, in which mode-shapes and eigenfrequencies within critical
range are determined. Analysis for the undamped system is performed to obtain these values, since
footbridges have low structural damping and the assumptions for lightly and undamped systems are
approximately the same. Furthermore, damping is to be assigned to the model, either assigning modal
damping ratio’s to each eigenfrequency, or through use of Rayleigh or Caughey damping, see 2.4.4.
In some cases, FEM software allow for (additional) implementation of hysteretic damping, in which
a non-linear relationship between force and displacement is prescribed. The energy is lost due to
internal friction within the material, whilst being independent of applied frequencies. At last, external
damping can be defined, which represent devices, materials, or systems introduced specifically to reduce
vibrations or oscillations.

Various load models can be constructed in ranging complexity to simulate pedestrians. Since these
models are stochastic and have large uncertainty, complex modelling is mainly done by a step-by-step
or step force model. The step-by-step model uses two force vectors which are jumping from spot to
spot, taking into account vertical and horizontal forces induced by the feet separately. Whereas the step
force model is composed of a periodic function containing multiple Fourier coefficients and phase angles,
merging the ground reaction forces of both feet into one force vector sliding along a defined footpath.
Both load models can be modified to consider imperfections in step frequency, oscillating around a
predefined mean value. Other approaches would be to implement harmonic load models mentioned in
chapter 2.5. By assuming the walking frequency to coincide with the natural frequency of the structure,
resonance phenomena are being simulated and incorporated by means of a reduction coefficient ψ.

The representation of footbridge characteristics in FEM could be done with ranging complexity. Altering
in element types and dimensions, mesh sizing, and the representation of certain structural systems and
concepts. An example would be the simplification of a cable stayed footbridge as per figure 2.34, by
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use of a single continuous equivalent beam representing the deck and springs representing the cables.
Furthermore, geometric and material non-linearity can be introduced to better represent footbridge
behaviour. Geometric non-linearity is mainly concerned with large deformations representing a non-
linear relationship, such as the structural response of suspension bridges. Whereas material non-linearity
is mainly considered in (post)-buckling behaviour for compressed areas in a the structural system. To
conclude, the main goal is to accurately model the bridge’s static and dynamic behaviour whilst keeping
computational time low to perform analysis.

Figure 2.34: Simplified FEM modelling of a cable stayed footbridge [6]

Studying pedestrian-structure interaction can involve significant non-linear time histories, which is why
most FEM software implement direct integration methods. In the section below, direct integration for
both linear and non-linear systems is presented, showcasing what methods are most suited for footbridge
analysis.

2.6.4.1 Direct Integration Method

Direct integration involves solving the equations of motion through a numerical, step-by-step procedure.
At each predefined step, static equilibrium is evaluated. The term ”direct” signifies that the equations
remain in their original form and are not transformed prior numerical integration [33].

The equations of motion governing a dynamic system are given by:

M
¯
ü(t) +C

¯
u̇(t) +K

¯
u(t) =

¯
f(t) (2.41)

It should be recalled that equation 2.41 is derived from considering static equilibrium at time t, such
that:

FI(t) + FD(t) + FE(t) = R(t) (2.42)
Where:
FI(t) = inertia forces
FD(t) = damping forces
FE(t) = elastic forces
R(t) = externally applied loads

By solving equation 2.42 numerically for each predefined time step, the structural response is obtained.
Distinction is to be made for linear and non-linear systems, and the use of implicit or explicit methods.
Since the general idea and procedures of linear and nonlinear systems for direct time integration is the
same, it is convenient to start with linear systems. Equation 2.42 represents a linear system since elastic
forces are considered.

The difference between explicit and implicit systems is that explicit integration is directly computed
from known information at the current time step. Whereas for implicit integration, the solution depends
on the unknown future state. Implicit methods are more likely to be unconditionally stable, meaning
that any error in displacements, velocities and accelerations at time t does not grow [34]. This stability
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is often concerned with a critical step size ∆tcr, which is linked to the frequencies ω of interest. An
explicit method requires less computational power but is often bounded by stability criteria. To give
an overview of the most commonly applied direct integration methods, table 2.17 shows method, type
and stability criterion.

Integration Method Type of Method Critical Step Size (∆tcr)

Newmark Method
γ = 1

2 , β = 1
6

(= Wilson-θ Method,
for θ = 1)

Implicit 3.464
ω

Newmark Method
γ = 1

2 , β = 1
4

Implicit Unconditionally stable
Newmark Method
γ = 1

2 , β = 0
(= Central Difference Method)

Explicit 2
ω

Wilson-θ Implicit Unconditionally stable
when θ ≥ 1.37

Houbolt Method Implicit Unconditionally stable

Table 2.17: Comparison of direct integration methods and their stability criterion [35]

Figures 2.35 and 2.36 show the percentage of period elongation and amplitude decay for various direct
integration methods respectively. What can be observed is that at higher frequencies (lower period T ),
period elongation and amplitude decay grows when step size ∆tcr is remained equal. Additionally, it
can be noted that the Newmark Method with parameters γ = 1

2 , β = 1
4 shows no amplitude decay, since

its designed to maintain energy.

Figure 2.35: Percentage of period decay for various ∆t
Tratios [34]

Figure 2.36: Percentage of amplitude decay for various ∆t
Tratios [34]
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2.6.4.2 Numerical damping

The choice of direct integration method is thus heavily dependant on stability criteria, step size and
frequencies of interest. In some cases, filtering out higher modes is wished for. Figure 2.37 shows the
effective filtering of higher frequencies for a displacement response after one-hundred time steps. This
decay in amplitude is often denoted as a form of numerical damping and can have a substantial influence
on numerical results.

Figure 2.37: Effective filtering of higher frequencies for a displacement
response after one-hundred steps, Wilson θ = 1.4 [34]

In footbridge design, only the eigenfrequencies within critical range, see 2.4.2, are of interest. Therefore,
it is not advisable to introduce numerical damping through amplitude decay when using direct integra-
tion methods. For this reason, the Newmark method with parameters γ = 1

2 , β = 1
4 is considered the

most appropriate choice. However, it is important to note that for large models, computational time
can become excessive. In such cases, utilizing an explicit or conditionally stable implicit method with a
controlled step size may, in some instances, reduce computational costs whilst still satisfying stability
and numerical damping criteria. Ultimately, the engineer reviewing the numerical model must carefully
evaluate the choice of method and time step.

2.6.4.3 Newmark direct integration method

The Newmark method, as mentioned previously, is unconditionally stable showing no amplitude decay
for the parameters γ = 1

2 , β = 1
4 . The section below depicts how direct numerical integration is to be

performed for a linear system using the Newmark Method for γ and β parameter selection [35].

Solve for each time step:

M ük+1 +C
(
˜̇uk+1 + ük+1γ∆t

)
+K

(
ũk+1 + ük+1β∆t

2
)
= f (tk+1) (2.43)

Predictors:

a)
ũk+1 = uk + u̇k∆t+ ük

(
1

2
− β

)
∆t2 (2.44)

b)
˜̇uk+1 = u̇k + ük (1− γ)∆t (2.45)

Correctors:

a)
uk+1 = ũk+1 + ük+1β∆t

2 (2.46)
b)

u̇k+1 = ˜̇uk+1 + ük+1γ∆t (2.47)

Algorithm:
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1.
ũk+1 ← uk + u̇k∆t+ ük

(
1

2
− β

)
∆t2 (2.48)

2.
˜̇uk+1 ← u̇k + ük (1− γ)∆t (2.49)

3.
ük+1 ←

(
M +Cγ∆t+Kβ∆t2

)−1 (
f (tk+1)−C ˜̇uk+1 −Kũk+1

)
(2.50)

4.
uk+1 ← ũk+1 + ük+1β∆t

2 (2.51)
5.

u̇k+1 ← ˜̇uk+1 + ük+1γ∆t (2.52)

Stability:

a)
Unstable if: γ < 1

2
(2.53)

b)
Unconditionally stable if: β =

1

4

(
γ +

1

2

)2

(2.54)

c)
Conditionally stable if:

(
γ +

1

2

)2

− 4β ≤ 4

ω2∆t2
(2.55)

Observed can be that for β ̸= 0 an implicit algorithm is obtained, since the displacement uk+1 becomes
dependant of ük+1, see equation 2.51. Furthermore, does the selection of γ = 1

2 allow for accuracy of
order (∆t)2. Lastly, it can be observed that for parameters γ = 1

2 , β = 1
4 , the algorithm is equivalent to

the trapezoidal rule which makes it unconditionally stable, additionally eliminating numerical damping.

2.6.4.4 Non-linear dynamics and direct integration

Incorporating non-linear effects, such as plastic material behaviour and/or large displacements, in direct
time integration methods is applicable via an iteration scheme. The obtained results are to be verified
if they meet equilibrium equations and if not, are iterated until convergence is met and residual forces
are below an acceptable level. The equilibrium equations for non linear dynamics can be written as:

M ün + r (un, u̇n) = f(tn) (2.56)
Where:
r = restoring force, dependant of displacement and velocity at time t
f = external force vector at time t

To solve for nonlinear direct integration by use of the Newmark method, the algorithm is slightly altered
by incorporating a Newton-Raphson iteration scheme. Reason for outlining this iteration scheme is due
to its wide applicability in FEM software. The predictor and corrector steps remain unchanged, likewise
the stability conditions. Presented below is the altered process as addition to the linear methodology
[35].

Solve for each time step:

M ük+1 + r
(
ũk+1 + ük+1β∆t

2 , ˜̇uk+1 + ük+1γ∆t
)
= f(tk+1) (2.57)

Algorithm:

1.
ük+1 ← 0 (2.58)
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2.
uk+1 ← uk + u̇k∆t+ ük

(
1

2
− β

)
∆t2 + ük+1β∆t

2 (2.59)

3.
u̇k+1 ← u̇k + ük (1− γ)∆t+ ük+1γ∆t (2.60)

4.
ε← f(tk+1)− r

(
uk+1, u̇k+1

)
−M ük+1 (2.61)

while: ∥ε∥ ≥ tol do:

5.
∆ük+1 ←

(
M +Cγ∆t+Kβ∆t2

)−1
ε (2.62)

6.
ük+1 ← ük+1 +∆ük+1 (2.63)

7.
u̇k+1 ← u̇k+1 +∆ük+1γ∆t (2.64)

8.
uk+1 ← uk+1 +∆ük+1β∆t

2 (2.65)
9.

ε← f(tk+1)− r
(
uk+1, u̇k+1

)
−M ük+1 (2.66)

end while

Additionally, the restoring force and stiffness matrix are updated to represent nonlinear effects according
to the Newton-Raphson iteration method, see below.

Restoring force r
(
uk+1, u̇k+1

)
:

for i = 1 to n do:

1.
ri,k+1 ← Ziuk+1 (2.67)

2.
rk+1 ← rk+1 +ZT

i ri,k+1 (2.68)

end for

Element stiffness K:

for i = 1 to n do:

1.
Ki,k+1 ← Ziuk+1 (2.69)

2.
Kk+1 ← Kk+1 +ZT

i Ki,k+1 (2.70)

end for
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Figure 2.38 shows the procedure for the Newton-Raphson iteration scheme incorporated in the Newmark
method. What can be observed is that the tangential stiffness ZTi is applied as starting point in order
to reduce the error εi,k+1 to reach convergence.

Figure 2.38: Newton-Raphson iteration scheme for Newmark Beta method [35]

2.7 External damping
External damping has various forms applied in civil engineering structures. Most notably there is
three categories to be distinguished, namely: tuned mass/liquid, viscoelastic and viscous fluid dampers.
Although there have been applications found of both viscous [36] and viscoelastic dampers [37] to
reduce pedestrian-structure interaction in footbridges, the most widely applied method is by means
of tuned mass dampers (TMD’s). ”Tuned mass dampers have often been selected over alternative
damping devices due to their low cost, high reliability and efficiency in the mitigation of vibration
under pedestrian loads. Over the last few years, research has been developed to optimize the placement
and properties of multiple tuned mass dampers through deterministic approaches in order to reduce
human-induced vibration in pedestrian bridges” [38]. The purpose of adding a mass damper is to limit
the motion of a structure when subjected to a particular (resonant) excitation. In this section, the
concept of applying a tuned mass damper to reduce pedestrian-structure interaction is outlined.

2.7.1 Den Hartog
The theory of TMD’s has its root in dynamic vibration absorbers studied as early as 1909 by Frahm [39].
This was continued by the works of Den Hartog in 1950, who proposed the theory of damped absorbers
attached to undamped main systems, subjected to a sinusoidal excitation [40]. The system is denoted
by the second order coupled differential equations per 2.71 and 2.72. A schematic representation of the
system is given by figure 2.39 .

Primary mass:
(1 + µü) + ω2u =

p

m
− µüd (2.71)

Tuned mass:
üd + 2ξdωdu̇d + ω2

dud = −ü (2.72)

Where:
µ = md

m , mass ratio
p = p̂ sin(Ωt), harmonic forcing
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range of SDOF systems connected to optimally tuned TMD and subjected to har-

monic and seismic excitations are presented. The theory is then extended to MDOF

systems, where the TMD is used to dampen out the vibrations of a specific mode.

An assessment of the optimal placement locations of TMDs in building structures is

included. Numerous examples are provided to illustrate the level of control that can

be achieved with such passive devices for both harmonic and seismic excitations.

4.2 AN INTRODUCTORY EXAMPLE

In this section, the concept of the tuned mass damper is illustrated using the two-

mass system shown in Figure 4.1. Here, the subscript d refers to the tuned mass

damper; the structure is idealized as a single degree of freedom system. Introducing

the following notation

(4.1)

(4.2)

(4.3)

(4.4)

and defining  as the mass ratio,

(4.5)

the governing equations of motion are given by

Primary mass (4.6)

FIGURE 4.1: SDOF-TMD system.
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Figure 2.39: Two-mass system with undamped primary mass and TMD [41]

Since the maximum response is of interest, the steady-state solution can be designed for when applying
TMD systems. Den Hartog found that the curves of the amplification factor of the primary structure
intersect at two fixed points, independent of the damping ratio ξd of the tuned mass. This represents
the ”fixed point” theory, which can be observed in figure 2.40. The key design parameters are the
optimum damping ξd.opt and mass ratio µ.
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Substituting for the a terms in Eq. (4.73), we obtain a quadratic equation for :

 (4.75)

The two positive roots  and  are the frequency ratios corresponding to points

 and . Similarly, Eq. (4.74) expands to

(4.76)

Figure 4.15 shows different values for  at points  and . For optimal

behavior, we want to minimize the maximum amplitude. As a first step, we require

the values of  for  and  to be equal. This produces a distribution that is

symmetrical about , as illustrated in Figure 4.16. Then, by increas-

ing the damping ratio, , we can lower the peak amplitudes until the peaks coin-

cide with points  and . This state represents the optimal performance of the

TMD system. A further increase in  causes the peaks to merge and the amplitude

to increase beyond the optimal value. 

FIGURE 4.15: Plot of  versus .
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Figure 2.40: Fixed points P and Q for various damping ratio’s ξd whilst looking at transfer function Hu of the primary mass
at different forcing frequencies Ω for µ = 0.01 and ρtune = 1 [41]

By tuning the natural frequency ratio of the damper with respect to the main system, point P and
Q can be shifted up and down at c = 0, whereas the optimum tuning ratio ρopt is obtained whenever
these points are equal, see equation 2.73. Furthermore, the optimum damping ratio ξd.opt is found by
ensuring a horizontal tangent through one of these points, see equation 2.74. Figure 2.41 shows the
transfer function of the primary mass for a tuned damper with optimal damping ratio. Important to
note is that damping values above the optimum ξd.opt result in a merge of peaks and higher amplitudes,
whereas below this optimum the amplitudes are once again higher.

43



Optimum tuning ratio

ρopt =
1

1 + µ
(2.73)

Optimum damping ratio

ξd.opt =

√
3µ

(2 + 2µ)3
(2.74)
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Requiring the amplitudes to be equal at  and  is equivalent to the follow-

ing condition on the roots:

(4.77)

Then, substituting for  and  using Eq. (4.75), we obtain a relation between the

optimal tuning frequency and the mass ratio:

(4.78)

(4.79)

The corresponding roots and optimal amplification factors are

FIGURE 4.16: Plot of  versus  for .

0.85 0.9 0.95 1 1.05 1.1 1.15
0

5

10

15

20

25

30

H
2

� � �
�

P Q

d �� d�

d �� d�

�
1 opt

d�
opt

�
2 opt

H2 ρ fopt

P Q

1 ρ1
2

1 m+( )– 1 ρ2
2

1 m+( )–=

ρ1 ρ2

fopt
1 0.5m–

1 m+
--------------------------=

ωd opt
foptω=

ConCh04v2.fm  Page 238  Thursday, July 11, 2002  4:33 PM

u

Figure 2.41: Amplification factors Hu for optimised tuning ρopt and damping ratio ξd.opt [41]

2.7.2 Damping of the primary structure
In continuation of Den Hartog’s work, Ghosh and Basu [42] found that for moderate damping ratio’s
ξ ≤ 3% of the primary system, the ”fixed point” theory still holds, but for a different optimal tuning
frequency ratio as per equation 2.75. Since a structure always exhibits some form of structural damping,
a more accurate system is acquired. It can be observed that when ξ −→ 0, the optimal tuning frequency
previously proposed by Den Hartog is once again obtained, see equation 2.73.

Improved optimum damping ratio

ρi.opt =

√
1− 4ξ2 − µ(2ξ2 − 1)

(1 + µ)3
(2.75)

Where:

ξ = Structural damping of the main system, assumed ξ ≤ 3%

Important to note is when a tuned mass is added to the structure, a new degree of freedom is introduced.
The original natural frequency is reduced in amplitude by the damper and two new resonance peaks
are formed, or merged to one if damping of the TMD is increased. The lower natural frequency ρ1.opt
represents a natural frequency in which primary system and tuned mass are in-phase, whereas the upper
natural frequency ρ2.opt depicts a natural frequency where primary structure and tuned mass move in
anti-phase φ = π.
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To further explain the concept of a TMD, the coupled second order differential equations for a two-mass
fully damped system, see equation 2.76 and 2.77, is presented. Figure 2.42 gives a graphic representation
of the system.

Primary mass:
(1 + m̄ü) + 2ξωu̇+ ω2u =

p

m
− m̄üd (2.76)

Tuned mass:
üd + 2ξdωdu̇d + ω2

dud = −ü (2.77)
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range of SDOF systems connected to optimally tuned TMD and subjected to har-

monic and seismic excitations are presented. The theory is then extended to MDOF

systems, where the TMD is used to dampen out the vibrations of a specific mode.

An assessment of the optimal placement locations of TMDs in building structures is

included. Numerous examples are provided to illustrate the level of control that can

be achieved with such passive devices for both harmonic and seismic excitations.

4.2 AN INTRODUCTORY EXAMPLE

In this section, the concept of the tuned mass damper is illustrated using the two-

mass system shown in Figure 4.1. Here, the subscript d refers to the tuned mass

damper; the structure is idealized as a single degree of freedom system. Introducing

the following notation

(4.1)

(4.2)

(4.3)

(4.4)

and defining  as the mass ratio,

(4.5)

the governing equations of motion are given by

Primary mass (4.6)

FIGURE 4.1: SDOF-TMD system.
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Figure 2.42: SDOF representation of primary mass and TMD for a fully damped system as proposed by Ghosh and Basu [41]

Assumed is a near-optimal approximation for the frequency of the damper where ωd = ω. The steady-
state response for the resonant condition Ω = ω of the primary system and tuned mass is given by
equations 2.78 and 2.79 respectively.

u =
p̂

km̄

√√√√ 1

1 +
(

2ξ
m̄ + 1

2ξd

)2 sin
(
ωt− tan−1

[
2ξ

m̄
+

1

2ξd

])
(2.78)

ud =
1

2ξd

p̂

km̄

√√√√ 1

1 +
(

2ξ
m̄ + 1

2ξd

)2 sin
(
ωt− tan−1

[
2ξ

m̄
+

1

2ξd
+
π

2

])
(2.79)

Observed can be that the steady-state response of the tuned mass is φ = 1/2π out of phase with
the response of the primary mass. This difference in phase produces energy dissipation, which is
contributed by the damper inertia force. With the introduction of the improved system, an additional
design parameter is introduced, namely the damping ratio of the primary structure ξ. Meaning that for
design, the mass ratio µ, tuning frequency ρtune and primary structure’s damping ratio ξ form the main
parameters. Furthermore, practical matters are to be considered, such as the relative displacement of
the tuned mass ud, ensuring an unrestricted motion by preventing contact with the main structure.
Lastly, practical limits rest on the tuned mass, guaranteeing it can be lifted into place and is resisted
locally by the primary structure. Figure 2.43 gives a graphical representation of a tuned mass damper,
showcasing its main components. Adjustable masses in the form of steel plates are utilised to tune the
TMD to the main structure’s observed natural frequency. Damping of the TMD is in the form of a
viscous oil damper, tuned to the optimal damping ratio.
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Spring element

Adjustable masses

Viscous damper

Guide rail (preventing rotations) 

Figure 2.43: Schematic overview TMD with its main components

2.7.3 Application to footbridges
To apply TMDs in footbridge design, the theory of the two-mass system is extended. Eigenfrequen-
cies within critical range giving a non-compliant response to serviceability (and ultimate) limits, are
dampened. Through modal analysis, the properties of the frequencies of interest are determined. By
equalling these modal properties to those of the primary mass, the two-mass system theory is applica-
ble once more. It should be noted however that primarily the response of the frequency in question is
dampened, not the total response. This means that if eigenfrequencies are in close range of one another,
a frequency shift could mean a new (damped) resonant response of the total structure by damping out
the (initial) critical mode.

46



Part II

Voldĳk bridge - design &
assessment
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3
Case study design

3.1 Introduction
The case study applied in this research for the validation of assessment methods and optimisation
of external damping is a self-anchored suspension bridge designed for cyclist and pedestrian traffic,
see figure 3.1. The bridge is located in Tilburg, the Netherlands, and crosses the Wilhelminakanaal
connecting residential neighbourhood Tuindorp de Kievit with the industrial area Vossenberg. The
bridge has a main span of 69 meters and a total length of 103 meters. It consists of three prefabricated
deck elements which are welded and connected to prefab pylons using cables. The pylons are rigidly
connected to the foundation and the horizontal component of the main suspension cable is (self)anchored
to the girders. To prevent uplift, the main suspension cable’s vertical component is anchored to the
abutment. At the pylons, the bridge girders are supported via a bevelled corbel connection with a
tension cable connecting both pylons to prevent buckling in the transverse direction.

After performing an eigenvalue analysis, three vertical modes and one torsional mode were obtained to
be within the critical frequency range, making the structure prone to pedestrian-structure interaction.
In order to prevent excessive vibrations, four tuned mass dampers (TMD’s) were incorporated in the
final design.
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Figure 3.1: Voldĳk bridge Tilburg - Graphical representation of the case study [43]
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3.2 Suspension bridges
Before the structural design of the case study is presented, context is provided for suspension bridge
design. The structural system has a large impact on the outcome of external damping in the context
of pedestrian-structure interaction.

Suspension bridges are renowned for their ability to span long distances while maintaining structural
efficiency. Their design is influenced by critical factors such as side span configuration, span continuity,
and anchoring methods, each of which plays a vital role in determining the distribution of forces and
overall performance. Designs feature either a self-supporting or suspended side span, identified as variant
A or B respectively. A suspended side span helps reduce bending moments in the side span and hogging
moments at the pylons. However, this configuration decreases the stiffness of the main span’s deck,
resulting in increased bending moments in the main span. Additionally, suspension bridges are classified
based on whether they have continuous spans or separate main and side spans. In continuous spans,
hogging moments at the pylons are reduced, but sagging moments in all spans increase. Furthermore,
the horizontal reaction forces from the main span must be absorbed by the pylons and/or abutments,
impacting the structural requirements of these components.

Self-anchored suspension bridges present a distinctly different configuration. The horizontal component
of the main cable acts as a compressive force within the bridge deck, eliminating the need for anchor
blocks. However, this design prohibits the use of separate spans due to the significant compressive forces
in the deck, which can lead to local buckling issues from pronounced P −∆ effects.

Figure 3.2: Types of suspension bridges and their structural schematics

With the insight of the various suspension bridge systems, it should be stated that the design choice of
a self-anchored suspension bridge for the analysed case study mainly resulted from poor soil conditions,
making it too costly to implement earth-anchorage for the main cables. Additionally, suspended side
spans were chosen in order to reduced bending moments and keep one girder design throughout the
entirety of the bridge.
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The structural components which form a self-anchored suspension bridge are depicted in figure 3.3. The
pylons support the main cables, which are connected to the deck by hangers, transferring vertical forces
to the foundation. Furthermore, the horizontal (and vertical) component of the main cable at the ends,
is self-anchored to the deck.

Pylon

Main cable

Hanger

Girder Self-anchor

Figure 3.3: Components of a self-anchored suspension bridge

3.3 Parallel structural system
In order to optimize for strength, a general understanding of suspension bridges is required. By knowing
how the structural system works, closed-formed analytical solutions and/or iterative use of FEM can
ensure an optimized bending moment line and target deformation, thus optimizing strength. Suspension
bridges consist of a parallel structural system, in which the main cable and girder contributions com-
bined, resisting the loads subjected to it. Generally speaking, the assumption is made that permanent
loads are mainly taken by the cable system Hw, whereas live loads are taken by the cable and girder
system as a whole, leading to an increased horizontal cable force ∆H. Deviating from this approach
by (over)stressing the main cable and providing upward forces under dead load is not wished for, since
it leads to a substantially stiffer system resulting in loss of comfort by its users and less flexibility to
sustain local forces.

In order to explain the concept of suspension bridges, first the conventional single-span earth-anchored
theory is presented, see figure 3.4. This is followed by a more elaborate self-anchored theory proposed
by Jung et al. (2015) [44], implementing three spans and a fabrication camber as shown in figure 3.6,
closely representing the case study.

3.3.1 Earth-anchored theory

x

y
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h
E

g
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H + Hw p H + Hw p

E Acc

x

w  + wD L

Figure 3.4: Structural system of a one span earth-anchored suspension bridge
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Parallel system
The parallel system of an earth-anchored one-span suspension bridge is explained by:

qc + qg = wL + wD (3.1)

Where:
wL = Additional loads
wD = Permanent loads
qc = Cable loads
qg = Girder (and deck) loads

Rewriting into the equivalent differential equation gives:

EgIg
d4η

dx4
− (Hw +∆H)

d2 (y + η)

dx2
= wL + wD (3.2)

Where:
Eg, Ig = Girder bending stiffness
Hw = Horizontal tension component of the main cable under permanent loads
∆H = Additional horizontal tension component of the main cable under live loads
y(x) = Vertical profile of the main cable
η(x) = Vertical displacement of the main girder

Resulting in a system of the final form:

EgIg
d4η

dx4
− (Hw +∆H)

d2η

dx2
= wL −

∆H

Hw
wD , with : −Hw

d2y

dx2
= wD (3.3)

Equation 3.3 shows that live loads wL lead to an increase in the horizontal cable force ∆H, resulting
in a stiffer earth-anchored suspension bridge system. Furthermore, does the second term of the right
hand side show that additional horizontal tension ∆H results in upward vertical dead load wD.

Bending moments
To gain insight into the bending moment behaviour of the system, integrating equation 3.3 twice and
applying boundary conditions y(0) = η(0) = 0, M(0) = Mq(0), y(l) = η(l) = 0, M(l) = Mq(l), gives
the expression:

M(x) =ML(x)− y(x)∆H − (Hw +∆H)η(x) (3.4)
Where:
M(x) = Total bending moments in the main girder
ML(x) = Bending moments of the main girder subjected to live loads only

Showing that bending moments resulting from live loads are reduced by cable contributions in relation
to the arm of the cable y(x) as well as deflections of the main girder η(x). It should be noted that this
bending moment behaviour differs from self-anchored suspension bridges, as per stated in equation 3.16.
Self-anchored suspension bridges do not experience a reduction of bending moment due to deflections of
the main girder η(x), since the horizontal components Hw and ∆H are being reintroduced. Figure 3.5
is presented as clarification for the bending moments present in an earth-anchored suspension bridge.
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Live loads only!

Figure 3.5: Bending moments for a main girder segment dx subjected to live loads wL only

Axial deformation
To solve the system shown in equation 3.3, an additional equation is required due to unknowns η and
Hp. The equation relates to the axial deformation of the main cable:

∫ x=l

x=0

∆HL

EcAc
dx =

∫ x=l

x=0

dy

dx

dη

dx
dx (3.5)

Where:
Ec, Ac = Cable axial stiffness
L = Cable length along the initial parabolic shape of the main cable

Final notes
It should be emphasized that this system represents an earth-anchored suspension bridge which does not
account for the horizontal main cable component as compressional force in the main girder. Furthermore,
does the current system not account for any fabrication camber to prevent drainage problems and/or
meet deflection criteria. What can be observed is that an increase of the additional load ∆H will result
in an increased stiffness. Lastly, will a stiffer main cable likewise increase overall stiffness.

One solves for the system described in equations 3.3 and 3.5, by first determining the horizontal tension
component Hw of the main cable under permanent loads, by solving the differential equation with
boundary conditions y(0) = 0 and y(l) = 0. The shape of the cable y(x) is obtained by assuming a
central sag f at mid-span x = 1/2 l. This is followed by solving for the horizontal tension component
∆H of the main cable under additional loads, and the vertical displacement of the girder η(x) whilst
assuming boundary conditions η(0) = 0, d2η(0)dx2 = 0, η(l) = 0 and d2η(l)

dx2 = 0.
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3.3.2 Self-anchored theory

2. How can the bendingmoments magnified in themain girder be
eliminated in proposing the parabolic deflection theory of self-
anchored bridges under dead loads?

3. Unlike the case of earth-anchored suspension bridges, the
application of deflection theory to self-anchored suspension
bridgesunder live loadshas not yet been developed (Ochsendorf
and Billington 1999).

This paper tries to address the aforementioned analysis issues.
For this purpose, a parabolic cable solution for self-anchored sus-
pension bridges having fabrication camber under dead loads first is
presented and then compared with that for earth-anchored bridges.
Next, a new deflection theory is derived for self-anchored suspen-
sion bridges under live loads. The new theory is used to discuss the
major differences in mechanical behavior between earth- and self-
anchored suspension bridges. An improved analytical method is
then presented to solve the deflection theory for three-span contin-
uous suspension bridges having fabrication camber. Furthermore,
the ULM, which is a comprehensive nonlinear analysis method
for cable-supported bridges, is extended by application to the FE
analysis of suspension bridges subjected to live load combinations.
Finally, an earth- and self-anchored suspension bridge model is
analyzed using both the proposed deflection method and the ULM.
The numerical results are compared to demonstrate the accuracy of
the two analysis methods.

Deflection Theory for Self-Anchored Suspension
Bridges under Live Loads

Section “Initial Configuration for Self-Anchored Suspension Bridges
under Dead Loads” outlines a parabolic cable theory for the initial
configuration for suspension bridges under dead loads. The sub-
sequent sections develop the deflection theory for self-anchored
suspension bridges under live loads and an analytical solution is
derived for three-span continuous suspension bridges. In particular, it
should be pointed out that the deflection theory for earth-anchored
suspension bridges has already been treated by Steinmann (1953),
Wollmann (2001), and Shin et al. (2013). However, in this section,
two deflection theories are presented for direct comparison with the
deflection theory proposed for self-anchored suspension bridges.

Initial Configuration for Self-Anchored Suspension
Bridges under Dead Loads

The fundamental assumptions for deriving the deflection theory for
earth- and self-anchored suspension bridges under dead and live
loads are given as follows:
1. Dead loads are uniformly distributed along each span;
2. The hanger cable tensions are considered as distributed forces;

3. The initial dead load is carried by the suspension cable system
without causing any flexural stress in the main girder;

4. The hanger cables are considered inextensible and remain
vertical; and

5. In the case of self-anchored bridges, the horizontal tension
component of the main cable anchored at both ends of the
girder is transferred to the main girder as a compressive force.

In relation to Assumption 3, it should be noted that large axial
stresses in the stiffening girder of self-anchored suspension bridges
takes place as a result of the compressive force transferred; however,
the flexural stresses as a result of bending moments can be mini-
mized or eliminated by applying an effective initial shapingmethod.

Fig. 1 depicts a typical self-anchored suspension bridge having
a fabrication camber vo in the central span and vo1 and vo3 in the side
spans. The positions on the bridge spans are defined by an x- or
x2-coordinate in the central span, an x1-coordinate in the left-side
span, and an x3-coordinate in the right-side span (see Fig. 1). The
span length of the central span is denoted by l or l2 while the left- and
right-side spans have lengths of l1 and l3, respectively.

By separating the suspension bridge system into the main cable
and the stiffening girder, the basic equilibrium equation for an initial
state of the main cable under self-weights can be written as follows:

2Hwy99 ¼ wm þ wh=2þ Th (1)

where Hw 5 horizontal tension component of the main cable; yðxÞ
5 vertical profile of the main cable, which is positive in the down-
ward direction; wm and wh 5 uniformly distributed self-weights of
the main cable and hangers, respectively; and Th 5 distributed ten-
sion of the hangers.

On the other hand, the equilibrium equations for the main girder
having fabrication cambers in earth- and self-anchored suspension
bridges, respectively, are

EgIgðvþ voÞ9999 ¼ wg þ wh
�
22 Th

EgIgðvþ voÞ9999þ Hwv99 ¼ wg þ wh
�
22 Th

(2)

where vo 5 initial camber of the main girder positive in the upward
direction; v 5 vertical deflection of the girder, which is positive in
the downward direction; and wg and EgIg 5 self-weight and flexural
rigidity of the main girder, respectively. Note that the initial camber
of the girder is usually fabricated to be convex upward because of
drainage problems. In particular, it should be emphasized that the
underlined term in Eq. (2) is included in the case of self-anchored
bridges because the main girder is subjected to very large com-
pressive forces Hw, which induce additional moments as a result of
the P-delta effect.

Fig. 1. Typical self-anchored suspension bridge with a fabrication camber
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Figure 3.6: Structural system of a three span self-anchored suspension bridge including fabrication camber [44]

The parallel system of a self-anchored three-span suspension bridge with fabricated camber is once again
explained by:

qc + qg = wL + wD (3.6)

Solving for permanent loads
In order to better understand the parallel system of a suspension bridge, the individual components
of the main cable and stiffening girder are presented for the equilibrium equation for the initial state.
Continued by the derivation of the total system for permanent wD and live loads wL.

−Hw
d2y

dx2
= wm + wh/2 + Th (3.7)

Where:
Hw = Horizontal tension component main cable under permanent loads
wm, wh = Uniformly distributed self-weights of the main cable and hangers
Th = Distributed tension of the hangers

The equilibrium equation for the initial state of the main girder is given by:

EgIg
d4 (v + v0)

dx4
+Hw

d2v

dx2
= wg + wh/2− Th (3.8)

Where:
Eg, Ig = Bending stiffness of the main girder
v(x) = Vertical deflection of the main girder, positive in downward direction
v0(x) = Initial camber of the main girder, positive in upward direction
wg = Uniformly distributed self-weight of the main girder

Comparing equation 3.2 of the earth-anchored theory to equation 3.8 of the self-anchored theory, it
can be observed that there is an additional contribution of the horizontal tension component Hw of the
main cable related to the shape of the girder v(x), due to the cable being reintroduced to the girder by
terms of self anchorage. Since the horizontal tension component is denoted with a positive term on the
left-hand-side, will an increase of Hw lead to a reduction of stiffness in the main girder system.

In order to minimize bending moments due to permanent loads, as well as reach a target deflection of
zero, the realization should be made that the vertical profile of the main girder should equal that of the
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initial camber (v = −v0), meaning that the distributed tension in the hanger cables Th is determined
as follows:

Th = wg + wh/2 +Hw
d2v0
dx2

(3.9)

Optimised initial state
The optimised initial state for self-anchored suspension bridges under permanent loads is provided
by the main cable shape and horizontal tension component. Both aspects are outlined below and
will result in a balanced bending moments for the main girder with close to zero deflections. This is
a continuation of the self-anchored suspension theory presented above and provides the components
of interest. These components were likewise implemented for the case study.

Main cable shape
Inserting equation 3.9 into 3.7, and solving for boundary conditions v̄0 = v0(0) = v0(l), will result
in a definition for the main cable of the central span as:

y(x) =
wD
2Hw

x (l − x) v0(x) + v̄0 (3.10)

Where:
y(x) = Cable shape of the central span
wD = wm + wh + wg, total permanent load
v̄0 = Camber of the main girder profile at the pylons

Solving for boundary conditions v01(0) = 0 and v01(l1) = v̄0 provides the shape of the main cable
for the side spans, such as:

y1,3(x) =
wD
2Hw

x1 (l1 − x1)− v01(x1) + v̄0
x1
l1

(3.11)

Horizontal tension component
By assuming a sag f at mid span, the horizontal tension component Hw of the main cable under
permanent loads can be determined by:

Hw =
wDl

2

8 [f + v0(l/2)− v̄0]
(3.12)

Where:
f = Sag of the parabolic cable shape at x = l/2
v0(l/2) = Camber of the main girder profile at the middle of the central span

Solving for live loads
Extending the theory to incorporate live loads, requires a new definition of both main cable and main
girder system. Due to the additional loads, the horizontal tension component is increased by ∆H, as
well as incrementally increasing the hanger tension distribution ∆Th. The equilibrium equation for the
new main cable system is given by:

− (Hw +∆H)

[
d2y

dx2
+
d2η

dx2

]
= wm + wh/2 + Th +∆Th (3.13)
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Where:
∆H = Additional horizontal tension of the main cable
∆Th = Incremental hanger tension as a result of live loads

The equilibrium equation for the main girder system subjected to additional loading is given by:

EgIg
d4η

dx4
+ (Hw +∆H)

[
−d

2v0
dx2

+
d2η

dx2

]
= wg + wh/2− Th + wL(x)−∆Th (3.14)

Eliminating Th +∆Th from equation 3.13 and 3.14, leads to a total system of:

EgIg
d4η

dx4
= wL(x)− wD

∆H

Hw
(3.15)

Bending moments
Integrating the previously obtained equation 3.15 twice and applying boundary conditions M(0) =
ML(0), y(0) = 0, M(l) =ML(l), y(l) = 0 gives the following bending moment expression:

M(x) =ML(x)− y(x)∆H (3.16)

Equation 3.16 depicts the bending moment expression for self-anchored suspension bridges. It is appar-
ent that an increase in cable tension (Hw +∆H) does not lead to a bending moment reduction of the
live loads in the main girder. This is different from the bending moment expression found for earth-
anchored suspension bridges, as per equation 3.4. To explain no additional bending moment reduction
due to deflection of the main girder via Hw +∆H, figure 3.7 is presented.
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y(x)

Δ H

 H   + Δ Hw

y(l’)

x

η (x)

a(l’)

Δ H

l’

η (l’)

wL
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y(l’)

η (l’)

 H   + Δ Hw

Δ H

Live loads only!

 H   + Δ Hw

self-anchorage 
component

v (x)0

Figure 3.7: Bending moments for a main girder segment dx subjected to live loads wL only

Axial deformation
To solve the system shown in equation 3.15, an additional equation is required once again due to
unknowns η and ∆H. The equation relates to the axial deformation of the main cable:

∫ x=l

x=0

∆HL

EcAc
dx =

∫ x=l

x=0

dy

dx

dη

dx
dx (3.17)

Solving the system of the main span is achieved by first determining the horizontal tension component
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Hi.w of the main cable under permanent loads, by solving the differential equation with boundary
conditions y(0) = 0 and y(l) = 0. The shape of the cable y(x) is obtained by assuming a central sag f
at mid span x = 1

2 l. This is followed by solving for the horizontal tension component ∆H of the main
cable under additional loads, and the vertical displacement of the girder η(x) whilst assuming boundary
conditions η(0) = 0, d2η1(l)dx2 = d2η(0)

dx2 , η(l) = 0 and d2η(l)
dx2 = d2η3(0)

dx2 . Since the boundary conditions are
linked to the side spans, solving the entire system is required and can be performed using the same
approach.

Final notes
Comparing earth-anchored to self-anchored theory, one can observe that self-anchored suspension
bridges have a smaller stiffness, due to the fact that the horizontal cable component is reintroduced to
the deck, meaning that not additional contribution by the (horizontal) stiffness Hw +∆H as result of
main girder deflections η is obtained. This should be considered the main trade off, reducing the total
system’s response whilst providing better loading conditions for the foundation since the requirement
of significant anchor blocks is reduced due to the horizontal cable component being absent.

3.3.3 Procedure for self-anchored suspension bridges
Structural design of a suspension bridge starts by finding an optimized initial state, in which bending
moments under dead loads are minimized and a target deflection close to zero is met. This should
including cable tensioning, since cables cannot be defined in a stress-free state. Many different methods
exist to determine this initial shape, which in practice is mainly obtained through use of non-linear
FE methods due to its high geometric non-linearity. Methods worth mentioning are the initial force
method [45], target configuration under dead load (TCUD) method [46], and the unstrained length
method (ULM) [47]. An iterative process is applied in order to find the initial shape, either by changing
the prestress in the cables or finding the unstrained length for set targets.

Additionally, the closed-form analytical solution presented in section 3.3.2 can be utilised. In order to
effectively apply the solution to a finite element model, one should consider that the initial state is
obtained by use of the horizontal tension component Hw and description of the main cables shape yi(x).
Meaning that the optimal shape and pretension in the cable elements is found when this horizontal
component is introduced to the main cable, and the same magnitude as compression in the main
girders. These stress states can not be applied to the model directly, which is why the horizontal force
is introduced as pair to provide both tension and compression, as per figure 3.8. The methodology to
obtain the closed-form optimised state for self-anchored suspension bridges in FEM is explained on the
next page.
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Methodology for the closed-form optimised state in FEM

1. Obtain the horizontal tension component Hw and cable shape yi(x) for each span from the
closed-form solution.

2. Apply horizontal cable force component Hw to the ends of the main cable, for which transla-
tion in longitudinal direction is permitted (roller support).

3. The same force is applied in opposite direction to the main girder, reintroducing the tension
component into the deck as compression.

4. Acquire the cable stresses of each individual cable component and store these values.

5. Create rigid links between the ends of the main cable and connection point of the main girders
(remove roller support).

6. Reduce the cable stiffness close to zeroa and apply the previously stored cable stresses to
each element.

7. Apply the geometry and cable stresses of the previously determined step whilst reintroducing
cable stiffness back to its original value.

Figure 3.8: Graphic representation of steps 2 and 3 of the methodology, in which the horizontal forces of the main
cables are parallel to those of the main girder, allowing for translation of the cable roller supports in longitudinal direction

aBy reducing the stiffness of a cable element (EA ≈ 0 kN), equilibrium is found under pure tension, resulting in an
optimised shape with minimal internal forces
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3.4 Structural design
The cross section of the bridge deck is made up of steel elements, consisting of two boxed girders
connected via secondary beams via troughs and a deck plate on top. This configuration allows for high
torsional rigidity due to the closed from cross section of the main girder, whilst providing an arm to
connect these elements via the troughs and deck. Additionally, the (shear) stability is substantial due
to the 2D element by means of the steel deck connecting to the main girders. Coupler cables provide
support to these girders by transferring vertical loads to the main cable which in turn transfers horizontal
loads to the ends of the girders and vertical loads to the pylons. The deck is constructed out of three
prefabricated elements, which are connected via bolts and afterwards welded together with steel plates
to form a rigid connection. Figure 3.9 presents the cross section of the deck with the aforementioned
components.
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Figure 3.9: Case study representing the cross section of the deck, troughs elements, coupler and deck element connection [43]

Prefabricated reinforced concrete pylons provide an arm to effectively reduce bending moments due
to the parallel system properties of a suspension bridge. The pylons have a tapered geometry and
connect from abutment to the main cable system. They support the bridge deck via a bevelled corbel
connection. A cable element is positioned below the corbel connecting both pylons, reducing buckling
length in transverse direction since translation is prevented by either the cable (tension) or the deck as
a whole (compression). In longitudinal direction the contribution of the main cable system allows for a
positive effect on buckling instability of the pylons. Figure 3.10 presents the design of the pylons.
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Figure 3.10: Prefabricated reinforced concrete pylons of the case study [43]

Supporting the bridge is done by a pinned and roller support at the abutments located at the ends of the
bridge, whereas the pylons support the deck by means of a bevelled corbel connection, allowing for both
rotation and translation in longitudinal direction utilising a sliding plate. The roller support consists
of an expansion joint to primarily deal with temperature loads, whereas the pinned support transfers
horizontal loads to the South side abutment, mainly resultant from wind, breaking forces generated by
a vehicle or (dynamic) horizontal pedestrian loads. Figure 3.11 presents the connection design of the
case study.
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Figure 3.11: Support conditions for the abutments located on the South and North side as well and bevelled corbel
connection at the pylons of the case study [43]
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The case study uses a self-anchored suspension bridge system, as previously mentioned. Figure 3.12
shows the force transfer of the bridge, for which elements in tension are denoted in red and elements
in compression blue. Reason for applying a self-anchored suspension bridge design as opposed to an
earth-anchored system is to exclude the need for large anchor blocks to effectively transfer the horizontal
tension component from the main cable to the foundation. The horizontal cable component is anchored,
reintroducing this force to the main girders resulting in compression forces. Additionally, the vertical
component of the main cable at the ends of the bridge is anchored to the abutment. This is done to
prevent the uplift of the main girder (and deck) due to increased loading.
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Figure 3.12: Self-anchored suspension bridge concept and force transfer in reference project [43]

Furthermore, observed can be that the design slightly deviates from a conventional self-anchored sus-
pension bridge due to the connection of the main cable to the main girders close to mid-span. Reducing
compression forces in the main girder between the cable-to-girder connections. The reason for this
design choice was mainly architectural, although it results in a change of structural system.

Figure 3.13 illustrates the bending moment line (BML) for the main girders in the case study, com-
paring the original configuration to the form-finding configuration. A significant reduction of nearly
90% in bending moments under permanent loads (self-weight and additional dead load) is observed.
Suspension bridges are subject to large geometric non-linearities, which must be considered during the
design process. This form-finding approach is particularly valuable for geometric parameter studies,
as it reduces bending moments and deflections while ensuring the finite element (FE) model achieves
geometric equilibrium, enabling smooth iterations required for optimization.
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Figure 3.13: Bending moment line of original and form-finding design for permanent loads (self-weight and additional dead
load) of the case study Voldĳk bridge
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3.5 Finite element model
The original design was validated by verification via finite element analysis, using SCIA Engineer 2012
[48] for static analysis and Oasys GSA [49] to assess the structure’s dynamic behaviour. These models
serve as a starting point for geometric optimisation to mitigate external damping of the case study.

Furthermore, a structural model of the case study is created in SOFiSTiK [50], which serves as a
parametric model with its primary goal of iterating to an optimal solution. SOFiSTiK is used for
its wide application in bridge engineering, providing solutions for statics, shape finding, non-linear
geometric and material, modal and transient analysis. Additionally, the database of the FEM software
can be exploited by use of its Python API, allowing for scripting of various parameters and running
optimisation algorithms for multiple iterations. Lastly, does the software incorporate verification models
based on Eurocodes and national annexes, simplifying structural verification. The finite element model
uses beam, truss, cable and plate elements. A focus is given on supporting conditions, mesh sizing and
connectivity of certain elements to provide insight of the model.

Since eigenvalue analysis plays an important role in the assessment of human-induced vibrations, are
results of both FE models results compared to one another. Additionally, field measurements of the
eigenfrequencies after installment of the bridge by means of sledgehammer tests are likewise compared
to FE results, see section 3.6.1 Eigenfrequencies in FEM. Furthermore, the TMD design of the original
case study is compared to the results of the parametric model.

3.5.1 Substructure
The substructure, consists of foundation piles, piers and abutments. Both abutments and piers are
modelled as a 3D structure consisting of 1D elements in which a primary beam connects to the super-
structure and secondary beams connect to the foundation piles. These primary and secondary beams
are connected via diagonal elements, allowing to effectively transfer vertical and horizontal forces into
the foundation. The diagonal elements are modelled with zero weight, only functioning as a connecting
element without adding weight to the total foundation. Translational springs are implemented to model
the vertical foundation pile behaviour, in which a geotechnical analysis was performed to derive pile
characteristics and point resistance. Equation 3.18 shows how the pile behaviour was captured as a
spring, whereas equation 3.19 gives the total vertical translation spring.

kpile =
EA

L
(3.18)

Where:
kpile = translational stiffness of the foundation pile
E = modulus of elasticity
A = area
L = length

ktot,vert =
1

1
kpile

+ 1
ktip

(3.19)

Where:
ktot = total vertical translational stiffness
kpile = translational stiffness of the foundation pile
ktip = tip resistance of the foundation pile

Furthermore, horizontal supports are applied at three points of the foundation to account for horizontal
forces and prevent rotations in the foundation. This approach is used to reduce computational time,
whilst accurately modelling the bridge response when subjected to vertical (dynamic) loads, since ver-
tical and torsional mode shapes have been determined most dominant, see REF. Figure 3.14 shows the
foundation of the pylons modelled in FEM.
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Translation spring 
respresenting a 
foundation pile

Horizontal supports

Primary beam connecting to pylons

Secondary beams connecting  to piles

Pylons

Diagonal beams with
zero weight

Figure 3.14: Wireframe model of the pylon foundation modelled in FEM

The abutments are modelled via the same approach, but differ at the connection to the superstructure.
The pylons are rigidly connected to the primary beam, whereas the abutments connect from the primary
beam to main girders via beam elements which do not allow for transfer of tension forces. This accurately
models the support condition, since vertical uplift of the main girder is prevented via the cable element
connected to the abutment and main cable system only. Additionally, the abutment at the South side
is free to translate in horizontal direction, which is why the beam element connecting to the main girder
and primary beam is hinged on both ends. Figure 3.15 shows the foundation of the abutments in FEM

Main girder

Main cable system

Cable element
preventing uplift

Connecting beam element with zero 
weight and no tension forces 

Hinge  in beam element to allow 
longitudinal movement, only at 
the South side abutment!

Translation spring 
respresenting a 
foundation pile

Horizontal support

Secondary beams connecting  to piles

Primary beam
Diagonal beam element 
with zero weight

Figure 3.15: Wireframe model of the abutment foundation modelled in FEM

3.5.2 Superstructure
The superstructure model includes rigid connections between the main girder, troughs, and deck plate,
with an applied eccentricity of 325 mm in the z-direction relative to the main girder. This eccentricity
ensures a more accurate representation of the load transfer from the deck plate and troughs to the main
girder, as these components will be welded to the lower part of the girder during production. The main
cable system is linked to the abutment through an additional cable element, which prevents uplift, while
the main girders are connected to the abutment using a beam element, as shown in Figure 3.16.
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Main girder

Troughs type B

Cable element
preventing uplift

Beam element connecting to 
abutment without tension forces 

Main cable

Deck

Coupler plate
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of eccentric main 
girder to abutment

Troughs type A

eezz = 325mm = 325mm

Figure 3.16: Connection detail of the superstructure at the abutment in FEM

The bevelled corbel connection between the main girders and pylons is modelled by means of a HE300A
profile, which has pinned circular profiles connecting from the main girder to the pylon directly, or
to the cantilevering HE300A profile. This configuration allows for longitudinal translations (sliding),
whilst effectively transferring vertical and transverse loads to the pylons, see figure 3.17.

Tapered pylons
Trough type A

Trough type B

Cable element

Main girder

Pinned circular sectionsHE300A functioning as    
corbel (sliding connection)

Deck

Figure 3.17: Connection detail of the superstructure at the pylons in FEM

The superstructure mainly consists of 1D beam elements, whereas the deck consists of 2D shell elements.
A maximum mesh size of 600 mm is used for all elements in the model, for which extra elements are
automatically generated to obtain connections, figure 3.18 shows the meshing of the model.
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Meshed model - full visualisation of cross sections

Meshed model - no visualisation of cross sections

Top view - meshing of deck

Figure 3.18: Meshing of the FE model for a mesh size of 600 mm

3.6 Eigenfrequencies
Eigenfrequencies play a crucial role in defining the magnitude and application of dynamic loading,
which makes accurate determination essential. The eigenfrequencies obtained from eigenvalue analysis
of the original design in Oasys GSA are outlined, followed by eigenvalue analysis in SOFiSTiK used
for parametric optimisation. Furthermore, sledgehammer tests are presented to verify the calculated
eigenfrequencies in FEM via measurements. By comparing these results, one can conclude if the model
is an accurate representation and can be used for dynamic analysis for various parametric iterations.
Lastly, the implementation of tuned mass dampers (TMDs) in the original design is presented, focusing
on the type of dampers used, their functionality, and their placement within the structure.

Before conducting an eigenvalue analysis, it is essential to recognize that adding mass to a structure,
whether from additional dead load or dynamic live load, typically causes a downward shift in the eigen-
frequency of vertical and torsional modes. In contrast, the impact on lateral and longitudinal vibration
modes is minimal, as the added mass primarily acts vertically under the influence of gravity, thereby
updating the stiffness matrix predominantly in this direction. Eurocode prEN1991-2 [23] advises: ”It
is recommended that the mass of pedestrians be considered when calculating the natural frequencies if
the modal mass of the pedestrians exceeds 5% of the modal mass of the footbridge.” Further context is
provided in the JRC document [5], which suggests that the influence of static pedestrian mass can be
readily estimated using equation 3.20.

m∗∗ = ρ

∫
LD

µd(Φ(x))
2dx = ρm∗ (3.20)

Where:
m∗∗ = modified modal mass accounting for additional pedestrian mass
ρ =

µd+µp

µd
influence factor for additional pedestrian mass

m∗ = modal mass
µd = bridge deck mass per unit span length
µp = pedestrian mass per unit span length
Φ(x) = mode shape of the eigenfrequency in question
LD = total length of the bridge deck
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Equation 3.21 shows the influence of a 5% higher modal mass results in a decrease in eigenfrequency
of 2.5%. The JRC-document states that: ”this is within the accuracy of the whole model compared to
the natural frequencies that will be measured in reality. Therefore, it is recommended to neglect the
influence of an increased modal mass lower than 5% on the natural frequency”.

f ′(ρ = 1.05) =

√
k∗

1.05m∗ = 0.976f (3.21)

Furthermore, the geometric stiffness matrix of the initial state is added to the elastic stiffness matrix
to calculate the eigenfrequencies accordingly. The initial state references the deformed (stressed) state
which the structure experiences after applying permanent loads, before dynamic loading. Transforming
these additional load cases into effective mass and applying this initial stiffness, the eigenfrequencies are
calculated accordingly. Equation 3.22 shows the non-trivial solution of the newly proposed eigenvalue
problem.

det
∣∣ [Ke +Kg]−

¯
ω2 [Msw +Madd]

∣∣ =
¯
0 (3.22)

Where:
Ke = elastic stiffness matrix of the structure
Kg = geometric stiffness matrix of the structure incorporating the initial state
Msw = mass matrix of the structure’s self weight
Madd = mass matrix obtained from conversion of add. load cases (add. dead load and weight ped.)
¯
ω = (angular) eigenfrequencies of the structure

3.6.1 Eigenvalue analysis in FEM
The eigenfrequencies obtained in Oasys GSA regarding the original case study within a range of fn =
0 ∼ 5 Hz, are listed in the table below. It presents two loading conditions, being permanent loads (i.e.
self-weight and additional dead loads) and permanent loads including the static loading of pedestrians
for traffic class 3. Only the eigenfrequencies of interest are shown, meaning that local cable oscillations
which do not influence pedestrian-structure interaction have been excluded. Figure 3.19 shows the mode
shapes and eigenfrequencies of interest for permanent loads only.

Mode nr. Perm. loads [Hz] Perm. loads + TC3 [Hz] Shift [%] Mode shape
5 1.598 1.515 −5.19 1st vertical
10 2.222 2.229 0.315 1st lateral1
16 2.841 2.698 −5.03 2nd vertical
17 2.893 2.806 −3.55 1st torsional
18 3.398 3.393 −0.147 2nd lateral
27 4.274 4.072 −4.73 3rd vertical
34 4.725 4.614 −2.349 2nd torsional
38 4.833 4.651 −3.76 3rd* vertical

Table 3.1: Eigenvalue analysis in Oasys GSA of the original design for permanent
loads and permanent loads including the static load of pedestrians for
traffic class 3 (TC3).

1One can observe small torsional contributions for the mode shape of mode 10, however, since lateral movement is dominant,
mode 10 is classified as a lateral mode shape.
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Mode 5 - Vertical mode shape 1 - 1.598 Hz Mode 10 - Lateral mode shape 1 - 2.222 Hz

Mode 16 - Vertical mode shape 2 - 2.841 Hz Mode 17 - Torsional mode shape 1 - 2.893 Hz

Mode 18 - Lateral mode shape 2 - 3.398 Hz Mode 27 - Vertical mode shape 3 - 4.274 Hz

Mode 34 - Torsion  mode shape 2 - 4.725 Hz Mode 38 - Vertical mode shape 4 - 4.833 Hz

Figure 3.19: Mode shapes and eigenfrequencies obtained from eigenvalue analysis in
Oasys GSA regarding the original design for permanent loads

The eigenfrequencies obtained in SOFiSTiK of the original design for a range fn = 0 ∼ 5Hz, are listed in
the table below. These eigenfrequencies are presented to show how they compare to the eigenfrequencies
obtained in Oasys GSA. The original design serves as a benchmark from which parametric iterations
can be applied in order to optimise external damping. It once again presents two loading conditions,
permanent loads (i.e. self-weight and additional dead loads) and permanent loads including static
loading for pedestrians of traffic class 3. Figure 3.20 presents the mode shapes and eigenfrequencies of
interest for permanent loads only.

Mode nr. Perm. loads [Hz] Perm. loads + TC3 [Hz] Shift [%] Mode shape
1 1.610 1.527 −5.155 1st vertical
2 2.062 2.098 1.746 1st lateral
7 2.801 2.661 −4.998 2nd vertical
8 2.915 2.887 −0.961 1st torsional
17 3.630 3.668 1.047 2nd lateral
19 4.610 4.550 −1.302 2nd torsional
21 4.666 4.473 −4.136 3rd vertical

Table 3.2: Eigenvalue analysis in SOFiSTiK of the original design for permanent
loads and permanent loads including the static load of pedestrians for
traffic class 3 (TC3).
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Mode 1 - Vertical mode shape 1 - 1.610 Hz Mode 2 - Lateral mode shape 1 - 2.062 Hz

Mode 7 - Vertical mode shape 2 - 2.801 Hz

Mode 8 - Torsional mode shape 1 - 2.915 Hz Mode 17 - Lateral mode shape 2 - 3.630 Hz

Mode 19 - Torsional mode shape 2 - 4.610 Hz Mode 21 - Vertical mode shape 3 - 4.663 Hz

Mode 1 - Torsional modeshape 1* - 2.420 Hz

Figure 3.20: Mode shapes and eigenfrequencies obtained from eigenvalue analysis in
SOFiSTiK regarding the original design for permanent loads

The eigenvalue analysis reveals that the FEM software produces comparable eigenfrequencies and mode
shapes, as summarized in Table 3.3. Notably, SOFiSTiK identifies only one third-order vertical mode
shape (mode 19), whereas Oasys GSA identifies two such mode shapes (modes 27 and 38).

Perm. loads [Hz] Perm. loads + TC3 [Hz]
Oasys GSA SOFiSTiK Difference [%] Oasys GSA SOFiSTiK Difference [%] Mode shape

1.598 1.610 0.625 1.515 1.527 0.331 1st vertical
2.222 2.062 −7.20 2.229 2.098 6.554 1st lateral
2.841 2.801 −1.79 2.698 2.661 1.696 2nd vertical
2.893 2.915 −0.933 2.806 2.887 0.140 1st torsional
3.398 3.630 7.210 3.393 3.668 9.077 2nd lateral
4.274 - 9.80 4.072 - - 3rd∗ vertical
4.725 4.601 2.695 4.614 4.518 1.585 2nd torsional
4.833 4.663 - 4.651 4.550 2.219 3rd vertical

Table 3.3: Comparison of eigenvalue analysis for permanent loads and permanent loads including traffic class 3 (TC3)
obtained in Oasys GSA and SOFiSTiK
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3.6.2 Sledgehammer tests
Besides eigenvalue analysis in FEM software, sledgehammer tests have been performed. The case study
was excited by a sledgehammer positioned three meters from midspan at the edge of the bridge deck.
The response was measured by 64 piezoelectric accelerometers, spaced 3.2 m across the entire length
of the bridge. Figure 3.21 shows the location of the sledgehammer excitation and the position of the
accelerometers.
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Excitation point sledge hammer
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i

Figure 3.21: Excitation point of sledgehammer and position accelerometers for performed sledgehammer tests

Fast Fourier Transform (FFT) analysis was performed within a frequency range of 0 Hz to 100 Hz.
Results have been processed via modal analysis software DIAMOND [51] and the measured eigenfre-
quencies are presented in table 3.4 and the corresponding mode shapes in figure 3.22.

Mode nr. Eigenfrequency [Hz] Mode shape
1 1.681 1st vertical
2 2.789 2nd vertical
3 3.137 1st torsional
4 4.587 3rd vertical

Table 3.4: Eigenfrequencies derived from sledgehammer tests

Mode 4 - Vertical mode shape 3 - 4.587 Hz

Figuur 5: Mode shape eerste torsie mode.

Figuur 6: Mode shape derde verticale mode.

Modale test fietsbrug Voldijk te Tilburgsonus

projectnummer: 13034 5
documentnummer: 132564.3

Figuur 5: Mode shape eerste torsie mode.

Figuur 6: Mode shape derde verticale mode.

Modale test fietsbrug Voldijk te Tilburgsonus

projectnummer: 13034 5
documentnummer: 132564.3

Mode 2 - Vertical mode shape 2 - 2.789 Hz

Figuur 3: Mode shape eerste verticale mode.

Figuur 4: Mode shape tweede verticale mode.

In de figuren 5 en 6 zijn de mode shapes van de eerste torsie- en de derde verticale mode

opgenomen.

Modale test fietsbrug Voldijk te Tilburgsonus

projectnummer: 13034 4
documentnummer: 132564.3

Mode 1 - Vertical mode shape 1- 1.681 Hz

Figuur 3: Mode shape eerste verticale mode.

Figuur 4: Mode shape tweede verticale mode.

In de figuren 5 en 6 zijn de mode shapes van de eerste torsie- en de derde verticale mode

opgenomen.

Modale test fietsbrug Voldijk te Tilburgsonus

projectnummer: 13034 4
documentnummer: 132564.3

Mode 3 - Torsional mode shape 1- 3.137 Hz

Figure 3.22: Mode shapes obtained from sledgehammer tests
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3.6.3 Comparison of eigenfrequencies
Before comparison of results, an account should be made for the fact that the eigenfrequencies obtained
from hammer impact tests only consider self weight and dead load, excluding the static load from
pedestrians since no crowd loading is present during testing. The comparison for eigenfrequencies
under permanent loads is presented in table 3.5.

Sledge hammer [Hz] Oasys GSA [Hz] SOFiSTiK [Hz] Mode shape
1.681 1.598 1.610 1st vertical
2.789 2.841 2.801 2nd vertical
3.137 2.893 2.915 1st torsional
4.587 4.833 4.663 3rd vertical

Table 3.5: Comparison of eigenfrequencies obtained from eigenvalue analysis and hammer impact tests for permanent loads

Since the sledgehammer was excited vertically, only account for vertical and torsional modes of vibration
was made, leading to the exclusion of lateral frequencies in the measured results. Furthermore, can be
observed that the eigenvalue analysis from FEM accounts for the second torsional mode as well as the
fourth vertical mode, whereas the sledgehammer tests do not.

Eurocode pr-EN1991-2 states that ”when assessing the footbridge natural frequencies, an allowance
should be made for possible differences observed on the constructed structure, which often occur due
to different than predicted boundary conditions or to other modelling insufficiencies. In the absence of
a sensitivity test, a frequency variation of 5 % can be considered”.

The difference in eigenfrequencies from Oasys GSA and SOFiSTiK in comparison to sledgehammer
tests is presented in table 3.6. Showing that the results exceed the 5% variation stated earlier. Various
explanations could be given for these differences. Primarily, shortcomings in FEM modelling are to be
identified.

Sledge Hammer - Oasys GSA Sledge Hammer - SOFiSTiK Mode shape
4.94% 4.34% 1st vertical
1.86% 0.42% 2nd vertical
7.78% 7.708% 1st torisonal
6.82% 1.63% 3rd vertical

Table 3.6: Difference between measured and FEM-derived eigenfrequencies

3.7 Structural damping
For the case study, a minimum structural damping value for welded steel bridges of ξs,min = 0.2% is
considered, according to EUR23984 [5]. The reason for applying a minimum structural damping value
is to obtain conservative acceleration results. Since no modal damping values have been derived from
testing and the literature does not mention damping values of comparable structures, has been opted
for the lower bound value.

The newly proposed Eurocode prEN1991-2-2021 [23] states that ”in the absence of other information,
damping ratios for serviceability conditions with average amplitudes of vibration may be taken in
accordance with Table G.4”. The table is based on construction material and enlists a critical damping
ratio of ξs,avr = 0.4%. Whereas the Dutch national annex of Eurocode EN1991-2-2019 [32] refers to
a logarithmic decrement of δs,weld = 0.02 for welded steel bridges and truss structures. Equation 3.23
gives the relation between critical damping value and logarithmic decrement, which converts to a critical
damping value of ξs,weld = 0.318%.

ξ =
δ√

δ2 + (2π)2
(3.23)

The FE model uses Rayleigh damping with one damping value (ξs,min = 0.2%) as outlined in section
2.4.4 - Assessment of structural damping, which is applied to all modes within the critical range.
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3.8 Design situations
With the determination of eigenfrequencies can be concluded that the structure is prone to pedestrian-
structure interaction, as outlined in section 2.4.2 - Critical range of natural frequencies. Giving implica-
tion to account for dynamic effects according to 2.4 - Design steps. Assessment of the design situations
is performed to determine if maximum deck accelerations are within the given limit. This regards a
serviceability limit state, for which the comfort of its users is verified.

What follows is the determination of design situations based on associated traffic and comfort classes.
These account for the anticipated traffic whilst reflecting the comfort requirements for its users. Four
specific design situations are considered in this case study, as outlined in table 3.7. Each scenario
must adhere to the specified maximum acceleration limits to satisfy the serviceability limit state crite-
ria. However, analysis has shown that external damping is necessary to mitigate pedestrian-induced
vibrations effectively.

Situation Description Traffic class Occurance Comfort class
1 Small group of hikers TC1 Daily CL1
2 Commuting traffic TC2 Daily CL1
3 Dense traffic TC3 Weekly CL2
4 Inauguration TC4 Once CL3

Table 3.7: Design situations to be considered for the case study

3.9 External damping
Tuned mass dampers (TMDs) have been applied to limit pedestrian-induced vibrations to an acceptable
level. Transient analysis is performed in Oasys GSA for all critical modes to verify the maximum
response. The original analysis is presented and compared to the parametric model in SOFiSTiK,
followed by a description of the TMD design, its belonging characteristics and placement within the
structure.

3.9.1 Evaluation of response
The evaluation of the response is only performed for pedestrian streams since moving loads have been
deemed non-dominant in the original design. The analysis of moving loads, i.e. pedestrians/hikers
and joggers as enlisted in 2.5.5 - Moving harmonic point load model, is presented in for completeness.
The eigenfrequencies inside the critical range considered for the analysis are shown in table 3.8. The
third vertical mode fvert,3 = 4.274 Hz is excluded since its frequency is within range of the second
harmonic, giving a reduction factor of ψ = 0.25, greatly reducing its response and excluding the need
for verification2. No account for horizontal accelerations has been made since the lateral modes of
vibration flat,1 = 2.229 Hz and flat,2 = 3.393 Hz fall outside the critical frequency range.

Mode nr. Frequency Mode shape
5 1.598 1st vertical
16 2.698 2nd vertical
17 2.806 1st torsional

Table 3.8: Eigenfrequencies obtained in Oasys GSA, subjected to transient
analysis for tuned mass damper design of the case study

Transient analysis is used to determine the maximum vertical acceleration of each critical mode, in
which dynamic loading for pedestrian steams is applied according to its mode shape for a frequency
range of 1 ∼ 3 Hz. Plotting a range of frequencies can account for modal coupling if present, although
it should be stated this only occurs when frequencies are in close proximity to one another. The total
response of the original analysis is obtained by taking the square root of the sum of squares (SRSS), see
equation 3.24. However, use of the SRSS seems excessive since modal coupling is unlikely to happen
and using transient analysis accounts for the contribution of all modes simultaneously.

2A single transient analysis was performed at resonance frequency to determine if the third vertical mode could be of potential
risk to pedestrian-structure interaction, which was deemed non-dominant.
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atot,vert =

√√√√ n∑
i,vert

a2i,vert +

n∑
i,tor

a2i,tor (3.24)

where:
atot,vert = total vertical accelerations
ai,vert = acceleration from vertical critical mode i
ai,tor = acceleration from torsional critical mode i

Structural damping is assumed with a lower bound value of ξs,min = 0.2%. The reduction factor ψ
has not been applied yet, giving better insight into the dynamic behaviour. The response has been
measured at four points of the bridge deck, namely at midspan and one-fourth from midspan (points
A1 to B2). The placement of these points is in the middle and outer edge of the bridge deck to account
for vertical and torsional vibrations. Figure 3.23 shows these points used for measurement.
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Point B1 - midspan

Point B2 - 1/4 midspan

Point A1 - midspan

Point A2 - 1/4 midspan

Figure 3.23: Measurement points - Transient analysis Oasys GSA

The results for vertical modes of vibration in point A1 and A2 are shown in figure 3.24. Observed can
be that the walking frequency exhibits resonance phenomena at the eigenfrequencies of the structure.
The second vertical mode shape does not resonate in point A1, since measurements are taken mid span
which forms a nodal point for this mode.

Furthermore, the eigenfrequency shifts downward for increased traffic classes, resultant from increased
static loading, as explained in 3.6 Eigenvalue analysis in FEM. Additionally, point A2 shows that a
new resonance peak is obtained at f2,vert∗ = 2.643 Hz. This was deemed a local cable oscillation
at first, having no contribution to the overall response of the structure, but is better described as an
alteration of the second vertical mode. Determining the response for a range of frequencies prevents
the underestimation of critical mode contributions and their magnitude.
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datum: 10/07/2012 referentie: wnb code: 12103K blad: 18/22 
 
 
 
 
 
 

 

 

5.2.1. Resultaat voor knoop 876 (midden knoop) 
 
Berekende versnellingen: 
 

 
 
 
De zwarte lijn geeft de reductiefactor (Ѱ) weer waarmee de versnelling wordt vermenigvuldigd. 
 

 
 
 
De optredende versnelling zijn erg groot en overschrijden het comfortlimiet zoals vastgesteld in 
hoofdstuk 2. Er wordt aangeraden om rekening te houden met de toepassing van tuned massa 
dampers.  
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datum: 10/07/2012 referentie: wnb code: 12103K blad: 19/22 
 
 
 
 
 
 

 

 

5.2.2. Resultaat voor knoop 618 (op 1/4 overspanning) 
 
Berekende versnellingen: 
 

 
 
Net zoals bij de midden knoop wordt ook knoop 618 in beweging gebracht door de 1e natuurlijke 
frequentie (~1.5hz). Echter treden er ook nog versnelling op rond het gebied 2.4 tot 2.8 Hz, 
veroorzaakt door het aanslaan van 8e , 19e en 22/23e natuurlijke frequentie. 
 

 
 
Na het toepassen van de reductiefactoren blijkt dat alleen een loopfrequentie van ~1.5 Hz te grote 
versnelling oplevert. Ook uit deze resultaten volgt een advies om rekening te houden met TMD’s. 
  

f       = 1.598 Hz1,vert

f       = 2.841 Hz2,vert

f        = 2.643 Hz2,vert* 

2
2

reductioncoefficient Ψ

reductioncoefficient Ψ

Figure 3.24:
Obtained vertical accelerations in point A1 and A2 via transient analysis via Oasys
GSA, depicting the reduction coefficient still to be applied for dynamic loading
based on walking frequency

Figure 3.25 presents torsional vibrations for points B1 and B2. Observed can be the resonance peak of
the first torsional mode shape. Furthermore, does a small peak form around fw = 1.7 Hz. Since the
comfort limit for traffic class 4 (TC4) is set at comfort class 3 (CL3, minimum comfort) with a limit of
amax < 2.5 m/s2, the contributions are ignored.
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datum: 10/07/2012 referentie: wnb code: 12103K blad: 22/22 
 
 
 
 
 
 

 

 

 
6.1.2. Resultaat voor knoop 618 (op 1/4 overspanning) 

 
Berekende versnellingen: 
 

 
 
Na toepassen reductie Ѱ: 
 

 
 
Beperkt risico voor  torsietrillingen. 
  

datum: 10/07/2012 referentie: wnb code: 12103K blad: 21/22 
 
 
 
 
 
 

 

 

 
6.1.1. Resultaat voor knoop 873 (midden knoop) 

 
Berekende versnellingen: 
 

 
 
Na toepassing reductiefactor: 
 

 
 
Na het toepassen van de reductiefactor blijkt dat de versnelling bij een loopfrequentie van 2.8Hz 
niet kritisch is. De piek nabij 1.7 Hz valt binnen de comforteis. Het gevaar van hinderlijke 
torsietrillingen is beperkt. 
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f      = 2.893 Hz1,tor

Figure 3.25:
Obtained torsional accelerations in point B1 and B2 from transient analysis via
Oasys GSA, depicting the reduction coefficient still to be applied for dynamic
loading based on walking frequency

To obtain the total response, the contributions of the vertical and torsional accelerations presented in
figure 3.24 and 3.25 are combined to a total response via the SRSS. However, based on the accelerations
from all four points (A1 to B2), can it be concluded that only the first vertical mode shape fvert,1 = 1.598
Hz is considered dominant, excluding the need to obtain the total response. The contribution of the
other mode shapes is diminished due to the reduction factor present. Since the first vertical eigenmode
results in accelerations outside the stated limits, external damping is required to mitigate the pedestrian-
induced motion.
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3.9.2 TMD design
The design process for TMDs begins with the selection of a mass ratio µ, which represents the damper’s
mass relative to the target modal mass. A mass ratio of µ = 4% was selected for the case study,
resulting in a damper mass of md = 2000 kg. However, due to potential transportation and installation
challenges, four TMDs with a mass of 500 kg each was considered in the final design. Besides the mass
ratio, are there two key parameters to be identified, namely the optimum tuning ρopt and damping ratio
ξd, as explained in 2.7 - External damping. Tuning the design according to these parameters will yield
an optimum damper design.

The TMDs target the first vertical eigenmode, having a frequency of f1,vert = 1.680 Hz as derived
from sledgehammer tests. Results of the TMD design in FEM are slightly contrary, since a lower
eigenfrequency of f1,vert = 1.598 Hz and f1,vert = 1.610 Hz in Oasys GSA and SOFiSTiK has been
derived respectively. Figure 3.26 presents the TMDs and its positions within the structure.
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Figure 3.26: Positioning of four TMDs according to final design
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Properties TMDs

m = 50 t - modal mass of the damped mode
f1,vert = 1.680 Hz - target frequency
ξ = 0.2% - structural damping
µ = 4% - mass ratio
ξd,opt = 11.5% - optimal damping ratio of the damper, see 2.75
md = 0.5 t - damper mass
n = 4 - number of dampers
fd,opt = 1.492 - optimal frequency of the damper, see 2.73
cd = 1.173 Ns/mm - damping constant of the damper
kd = 12.9 N/mm - spring constant of the damper

To validate TMD design, transient analysis was performed using FEM. Figure 3.27 gives a schematic
overview of how the TMDs are modelled. Results are presented exclusively from the parametric model
in SOFiSTiK, as the original TMD design in Oasys GSA featured a different configuration. Transient
analysis is performed to account for the local damping effects the TMDs have on the structure.
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Figure 3.27: Modelling of TMDs in FEM

By adding mass to the structure in the form of a TMD, an additional degree of freedom is obtained.
TMD instalment present an additional eigenfrequency and shifts the targeted frequency downwards
due to added mass. The lower eigenfrequency consists of TMD movement in phase with the structure,
whereas the newly introduced eigenfrequency has TMD movement in anti-phase relative to the structure.
Figure 3.28 shows these eigenfrequencies after TMD instalment.
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Figure 3.28: Eigenfrequencies obtained after instalment TMDs
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Following the measurements from sledgehammer testing of eigenfrequencies after instalment of the
footbridge, a revised TMD design was proposed. The parametric model was verified using the final
TMD design. It is important to note that the target frequency of the dampers is tuned to the first
vertical eigenfrequency obtained from FE analysis rather than the measured eigenfrequency. Using
the measured eigenfrequency would yield unsatisfactory results, as the design philosophy focuses on
damping an eigenfrequency, not an arbitrary frequency.

Figure 3.29 presents the transient response spectrum for ranging traffic classes of the final TMD design
with its proposed target frequency f1,vert = 1.610 Hz. Observed can be the increased maximum
acceleration for higher traffic classes and a shift in eigenfrequencies due to the added mass resultant
from increased pedestrian density. The fixed points P and Q are shown for each traffic class. According
to the TMD design theory is an optimal design achieved when the magnitude of these points is equal
to one another. This holds best when the eigenfrequency of the traffic class in question is closest to
the target frequency, being TC 1. TC4 shows a sub optimal design, where the first resonance peak
(TMD and strucure moving in-phase) has a greater acceleration content than the second resonance
peak (anti-phase movement).

One could make the claim that by tuning the TMDs to a lower target frequency, results will be improved
for the highest traffic class. However, since the increased mass due to pedestrians leads to a downward
shift of the first resonance peak, will the reduction coefficient ψ be of such magnitude that the response
will be considerably lower. Reduction of the dynamic loading has not been implemented in figure 3.29,
giving better insight into the dynamic response.
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Table 3.9 presents the results of the transient analysis of the parametric model in SOFiSTiK as opposed
to the set limits regarding the design situations stated earlier. Observed can be that the serviceability
limit state in terms of comfort is satisfied.

Design Situation Traffic class Comfort class Limit [m/s2] Max. acc. [m/s2]

1 TC1 CL1 0.50 0.12
2 TC2 CL1 0.50 0.16
3 TC3 CL2 1.00 0.30
4 TC4 CL3 2.50 1.83

Table 3.9: Verification TMD design case study excluding reduction factor ψ

Since test results of the response after instalment of the TMDs is missing, no comparison can be
made between the results from transient analysis and the measured response. However, even with
response measurements will it be hard to quantify the behaviour. An approach would be to obtain the
acceleration response after stationary loading by pedestrians according to the modeshape of the first
vertical eigenmode, for which no account for the reduction coefficient ψ is made in FE analysis.

It is important to recognize that a TMD design is never perfectly tuned, as the bridge deck is subjected
to varying traffic classes, causing the eigenfrequency to shift away from the tuned frequency. This
variability in loading introduces significant challenges in maintaining optimal performance, as the dy-
namic characteristics of the structure evolve over time. Figure 3.29 illustrates a suboptimal response
for TC4, where one peak is higher than the other, highlighting the impact of this frequency shift on the
effectiveness of the TMD.

The limitations of TMD tuning frequency mean that achieving ideal performance across all design
scenarios is impractical. Instead, designers must make decisions about which loading conditions or
traffic scenarios to prioritize. For instance, scenarios with the highest likelihood of inducing resonance
or those representing the most critical design cases will dominate.
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4
Case study assessment

Accurately assessing the maximum acceleration across the bridge deck is critical for mitigating the ex-
ternal damping of pedestrian bridges. Part I, Assessment of pedestrian-structure interaction, introduces
various methods for evaluating this behaviour. This chapter centres around the case study, demonstrat-
ing the application of these methods and comparing their results. Analytical expressions for predicting
the response of girder bridges are excluded, as the case study focuses on a suspension bridge with a
parallel structural system, which differs significantly from girder bridge designs.

The response spectrum method is likewise excluded since its design spectrum is once again tailored
to girder bridges. As noted in EUR23984: ”The design method was elaborated with beam bridge
models. If the structural behaviour of a bridge differs significantly from that of a beam bridge, limits
of application of the spectral method may be reached” [5]. The 4FFH, SDOF and transient analysis
methods are applied for the assessment of modes in the critical frequency range as shown in the table
below. Every method is subjected to a minimum structural damping value of ξs,min = 0.2%, as outlined
in 3.7 - Structural damping.

Mode nr. Frequency Mode shape
5 1.610 1st vertical
4 2.420 1st* torsional
7 2.801 2nd vertical
8 2.915 1st torsional

Table 4.1: Critical eigenfrequencies obtained in SOFiSTiK used for assessment

Both crowd-loading and moving loads are assessed according to codes and guidelines. The parametric
model created in SOFiSTiK of the original design is used for verification since it will likewise serve in
the optimisation. According to the design procedure, an assessment should be performed for various
dynamic load types. The response to a single pedestrian (4FFH), pedestrian crowds and moving loads
such as hikers and joggers is presented. Lastly, measurements obtained from sledgehammer testing
are presented and conclusions are drawn on the most suitable assessment methods. Table 4.2 gives an
overview of the relevant methods and their purpose.

Load type Method Use
Single moving

pointload 4FFH Qualitative

Crowd-loading SDOF
Direct time Quantitative

Moving loads
(pedestrians/joggers)

SDOF
Direct time Quantitative

Table 4.2: Assessment methods utilised for the case study
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4.1 Four Footfall Harmonics
The Four Footfall Harmonics (4FFH) method, outlined in 2.6.3 - Four Footfall Harmonics, provides a
spectrum of acceleration responses generated by a single pedestrian walking across the footbridge. This
method incorporates higher harmonics up to the fourth, enabling the analysis of vertically induced vibra-
tion responses. Originally developed for indoor flooring environments, the method can be adapted for
outdoor pedestrian bridge design. Figure 4.1 gives a schematic representation of the analysis regarding
the case study.

It is important to note the 4FFH method has limitations. It does not account for pedestrian streams
or joggers, which restricts its ability to accurately predict the maximum acceleration as required. Addi-
tionally, it only evaluates vertically induced loads, leaving laterally induced vibrations to be analysed
using an alternative assessment method.
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Figure 4.1: Representation of 4FFH analysis of the case study

EUR23984 states that ”A vertical vibration excitation by the second harmonic of pedestrian forces
might take place. Until now there is no hint in the literature that significant vibration of footbridges
due to the second harmonic of pedestrians have occurred” [5]. This contrasts the 4FFH method, which
incorporates effects up to the fourth harmonic. Figure 4.2 presents the full response spectrum of the
4FFH analysis, for which point A1 at midspan has been analysed. The placement of the point at the
outer edge of the bridge deck accounts for both vertical and torsional vibrations. Resonance peaks
are observed at the eigenfrequencies previously identified in table 3.2 - Eigenvalue analysis in FEM.
Mode VM3 and TM3 show modal coupling, for which two resonant peaks are centered around the
eigenfrequency. A second torsional mode TM2 is identified in close occurance of VM3, whereas a fourth
vertical mode VM4 shows coupling with TM3. Even though these modes represent antinodes at the
observed point A1, modal coupling can lead to interference and closely spaced resonant peaks.
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Figure 4.2: Full spectrum of the 4FFH analysis observed at point A1 of the bridge deck , assuming ξs,min = 0.2%

Figure 4.3 presents the combined contributions according to the square root of sum of squares (SRSS)
principle, presenting the response factor according to the ISO 10137 guideline [12] as specified. It is
evident that the response to human-induced vibrations is dominated by the first vertical mode VM1,
followed by the first torsional mode TM1. The influence of higher harmonics is mainly present via the
second harmonic. The conclusion can be drawn that the effect of higher harmonics is small compared
to the first harmonic, confirming the statement of EUR23984 as afore mentioned. Furthermore, the
contribution of higher modes is small compared to the first modes due to a lower dynamic load factor
at higher frequencies and the squared total response.
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Figure 4.3: Combined response of the 4FFH analysis observed at point A1 of the bridge deck, assuming ξs,min = 0.2%

According to the 4FFH analysis, a response factor limit of R ≤ 64 is specified for outdoor bridges,
making the case study compliant. However, it should be noted that the method accounts for single
moving loads, for which primarily the perception of other users of the structure is verified. An example
would be an indoor office environment, where vibrations induced by individual co-workers do not lead
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to a loss of comfort. The methodology does not address vibrations caused by large groups, nor does
it account for their comfort under complex stochastic loading conditions. Instead, the 4FFH method
is designed to evaluate the influence of a structure’s mode shapes and their contribution to higher
harmonics, making it a qualitative tool for assessing human-induced vibrations.

4.2 Pedestrian crowds
The dynamic loading induced by crowds is presented here. Both the SDOF and transient analysis serve
as assessment methods. It is important to note that the loading is stationary since the assumption is
made that the amount of people that enter and leave the bridge is equal. The load is applied according
to its mode shape, representing a harmonic area load that matches the eigenfrequency of the structure
according to the equivalent amount of pedestrians.

4.2.1 SDOF
The Single Degree of Freedom (SDOF) method, as described in 2.6.1 - SDOF method, offers a straight-
forward approach to assessing human-induced vibrations. Through modal analysis, eigenfrequencies
within the critical range are identified, and the maximum response under full resonant behaviour is cal-
culated. The method simplifies the analysis by assuming that the response of the SDOF system under
full resonance exceeds the total response of the structure. However, this assumption seems shortcoming,
since the total response can either be constructive or destructive via the superposition of the eigenmodes.
Consequently, the SDOF method is primarily used to estimate the magnitude of accelerations resulting
from pedestrian-structure interaction, rather than serve as a means of actual verification. It can be
utilized during early design stages to determine whether pedestrian-structure interaction is significant
and requires further consideration in later design stages.

Furthermore, does the use of modal analysis require that the system behaves linearly, meaning that
geometric and material non-linear effects are not accounted for. Additionally, obtaining accurate modal
damping values can be challenging, requiring testing (i.e. logarithmic decrement or half-power band-
width method), measurements from literature of comparable structures, or the use of sophisticated FEM
simulations. The maximum deck accelerations for the critical modes, subjected to loading by pedestrian
streams under design situation three, are summarized in Table 4.3.

Mode shape Traffic class p∗ [N] m∗ [kg] amax [m/s2]

1st vertical
TC1 381.61 47,454 2.010
TC2 539.73 48,724 2.769
TC3 853.02 51,797 4.117
TC4 16,599 56,904 20.57

2nd vertical
TC1 220.56 47,489 0.290
TC2 316.18 48,736 0.405
TC3 499.96 51,797 0.603
TC4 2,315.7 56,902 2.583

Table 4.3: Maximum deck accelerations for the critical vertical modes, assuming ξs,min = 0.2%

Only vertical modes are presented, as the FEM software does not support determining the modal load
for torsional mode shapes. This limitation arises because, in SOFiSTiK, eigenvectors are normalized
such that the generalized modal mass equals one to simplify algebraic equations. To calculate the
modal load, it must be scaled by a proportionality factor αk, as defined in equation 4.1. However, when
the maximum rotation is used to derive the proportionality factor αk for torsional modes, the results
become unreliable, producing responses up to ten times higher than the vertical accelerations. This
could be explained by the large contribution of lateral displacements in addition to rotational effects.

αk =
1.0

max
1≤j≤n

(ϕj,k)
(4.1)

where:
αk = proportionality factor
max
1≤j≤n

(ϕj,k) = maximal component of the original eigenvector for node j at mode k
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4.2.2 Direct time
The most elaborate means of vibration assessment is via transient, numerical (direct) time integration.
An extensive outline of the assessment method is provided in 2.6.4 - Transient numerical analysis in
FEM. The total response of all modes is obtained, contrary to the SDOF or response spectrum method
utilising modal analysis. Furthermore, it enables geometric and material non-linear analysis, as linear
modal analysis is no longer necessary. The Newmark Beta method with coefficients γ = 1

2 , β = 1
4 is

selected, whilst the account is made for geometric non-linearity of the suspension bridge system.

The selection of an adequate time step is of great importance to accurately determine the dynamic
response. Transient simulations should generally have twenty time steps for the highest frequency of
interest. However, the SYNPEX guideline [6] states a sensitivity analysis regarding step size ∆t should
be performed to ensure accurate results. Figure 4.4 presents the acceleration response for the first
vertical mode of the case study for various time steps. Observed can be that a large time step 10/fmax
results in no clear resonance peak, whereas a decrease in step size provides convergence to a steady state
response. For all transient analyses in this study, a step size of 30/fmax is applied to ensure accurate
results whilst keeping computational time limited.
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Figure 4.4: Time step sensitivity analysis of the first vertical eigenmode, assuming ξs,min = 0.2%

In addition to determining the maximum acceleration for each mode of interest, provides the analysis
insight into the (non-linear) behaviour of the structure over time. According to the theory, the loading
should be applied under resonance conditions, where fstep = fn, thereby exciting the structure in the
mode shape of interest. Figures 4.5 to 4.8 illustrate the transient response and Fast Fourier Transform
(FFT) of the critical modes for traffic class three (TC3).

The torsional mode shapes exhibit a beating behaviour. To explain this, a Fast Fourier Transform (FFT)
analysis is performed to investigate whether the response arises from modal coupling and/or non-linear
effects. The analysis reveals that both torsional modes display a secondary amplitude at approximately
f = 2.91 [Hz]. This is attributed to the excitation of the torsional eigenfrequency of the pylons by the
torsional crowd loading. The transient analysis further shows interference effects caused by the phase
lag between the deck and the pylons, leading to the observed beating pattern. Conversely, the vertical
modes are nearly in complete resonance, with no significant energy content at other frequencies.
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Figure 4.5: Transient response of the first vertical mode shape for TC3, assuming ξs,min = 0.2%
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Figure 4.6: Transient response of the first torsional* mode shape for TC3, assuming ξs,min = 0.2%
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Figure 4.7: Transient response of the second vertical mode shape for TC3, assuming ξs,min = 0.2%
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Figure 4.8: Transient response of the first torsional mode shape for TC3, assuming ξs,min = 0.2%

Table 4.4 presents the maximum accelerations obtained in the original design via Oasys GSA and the
parametric model in SOFiSTiK regarding transient analysis for all eigenmodes assuming ξs,min = 0.2%
damping. The first torsional* mode shape is excluded since this mode was not obtained through modal
analysis in Oasys GSA. It shows that the original design and the parametric model yield comparable
results.

mode shape traffic class org. design - OasysGSA param. model - SOFiSTiK
eigenfrequency [Hz] max. acc. [m/s2] eigenfrequency [Hz] max. acc. [m/s2]

1st vertical
TC1 1.594 1.41 1.592 1.46
TC2 1.568 1.73 1.576 1.91
TC3 1.515 3.23 1.529 3.34
TC4 1.437 15.2 1.458 15.45

2nd vertical
TC1 2.784 0.49 2.770 0.48
TC2 2.751 0.61 2.740 0.62
TC3 2.681 0.66 2.662 0.73
TC4 2.556 3.145 2.540 3.31

1st torsional
TC1 2.872 0.71 2.878 0.53
TC2 2.849 1.01 2.852 0.63
TC3 2.801 1.54 2.843 1.35
TC4 2.752 13.20 2.780 10.8

Table 4.4: Results of the transient analysis of both FE models due to dynamic loads of pedestrian streams for all specified
traffic classes, assuming ξs,min = 0.2%

4.2.3 Sledgehammer tests
In addition to the SDOF and direct time method, sledgehammer tests were performed at three meters
from midspan. Accelerometers have been placed at 64 nodes evenly spaced across the bridge deck and
the acceleration response for a unit force has been measured. A reference area of Aref = 58m2 is
assumed to have the same acceleration as the excited node. By applying the equivalent crowd-loading
to the acceleration response for a unit load in accordance with the reference area, a total response is
obtained. Table 4.5 presents the response of the measured critical modes at the reference node.

mode shape amax [m/s2]
1st vertical 2.561
2nd vertical 0.375
1st torsional 0.680

Table 4.5: Acceleration response derived from sledgehammer tests

84



4.2.4 Comparison
Table 4.6 shows the acceleration responses for both assessment methods. Observed can be that results
are not comparable. This is expected since the SDOF method is deemed shortcoming, only to be
used to get an estimate for the magnitude of accelerations. The response of the first critical vertical
mode shows an overestimation, whereas the second vertical mode depicts an underestimation of the
acceleration response.

mode shape traffic class SDOF [m/s2] direct time [m/s2] difference [%]

1st vertical
TC1 2.010 1.462 37
TC2 2.769 1.908 45
TC3 4.117 3.340 23
TC4 20.57 15.45 33

2nd vertical
TC1 0.290 0.481 -39
TC2 0.405 0.623 -34
TC3 0.603 0.727 -17
TC4 2.580 3.310 -22

Table 4.6: Comparison SDOF and direct time assessment methods, assuming ξs,min = 0.2%

The measured results from sledgehammer tests can only be compared to the direct time method, as the
response is recorded at a node excited three meters from midspan, while the SDOF method assumes full
resonant response at the antinodes based on the mode shape. For the second vertical mode, maximum
displacement occurs approximately at a quarter of the span, making direct comparison impractical.
However, the direct time analysis allows for comparison with measured results, as it can evaluate the
response at any specific node of interest—in this case, three meters from midspan.

Table 4.7 presents the results of the direct time method and the measurements. For the direct time
method, results are provided for minimum structural damping, ξs,min = 0.2% and average structural
damping, ξs = 0.4%. The findings show that for the first vertical mode, there is close agreement between
the acceleration response obtained using the average damping value (ξs,avr = 0.4%) and the measured
results. In contrast, results for higher modes are not directly comparable.

These results indicate that applying the average structural damping value is sufficient for practical
applications of steel bridges. However, the use of Rayleigh damping is less accurate for higher modes,
as it overestimates the response.

mode shape sledgehammer [m/s2]
direct time [m/s2]

ξs,avr = 0.4% ξs,min = 0.2%
1st vertical 2.561 2.515 3.430
2nd vertical 0.375 0.583 0.731
1st torsional 0.680 1.353 1.721

Table 4.7: Comparison direct time method and measured results sledgehammer testing
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4.3 Moving loads
Besides crowd loading, moving loads in the form of pedestrians/hikers and joggers should be assessed.
The codes and guidelines [5], [4], [23] mention the SDOF and direct time method to be utilised. It
should be noted that moving loads are primarily dictated by the passing time to cross the bridge, see
equation 4.2. A slower walking velocity will lead to a longer passing time in which greater resonance
build-up can occur. The assumption is made that the effects of synchronised crowd-loading will have
a more profound effect on maximum deck accelerations than the response of moving loads induced by
pedestrians and joggers.

tpass = L/v (4.2)
where:
tpass = passing time to cross the bridge
L = length of the bridge deck
v = walking velocity of the user (vped = 1.7 m/s, vjog = 3.0 m/s)

Critical velocity can play a major role in moving load analysis. The critical velocity relates to the
wavelength of the dynamic response, which is a spatial property. If the load’s movement causes the
structure’s deflection pattern to match this wavelength, (spatial) resonance occurs. Equation 4.3 denotes
the critical velocity of the structure. It becomes evident that the moving load velocity is not near
the first vertical critical value (vcr,1 = 210 m/s) and the influence of (spatial) resonance is marginal.
However, the load model does account for full resonance conditions for the harmonic forcing equalling
the eigenfrequency fs = fn, meaning resonance still occurs being influenced by the force in time.

vcr,n =
2L

n
∗ fn (4.3)

where:
vcr,n = critical velocity of the bridge for mode n
L = length of the bridge deck
n = wave number of mode n
fn = eigenfrequency of mode n

4.3.1 SDOF
It should be noted that the SDOF method assumes a steady-state response under full resonant condi-
tions, excluding the effect of a moving load. Table 4.8 presents the results of the SDOF method for
the first vertical mode under traffic class three (TC3). Only one traffic class and critical mode are con-
sidered, as it is assumed that crowd-loading dominates, only providing context to the effect of moving
loads.

mode shape type p∗ [N ] m∗ [kg] amax [m/s2]

1st vertical pedestrians 866.45 46,158 4.693
joggers 990.23 46,158 5.364

Table 4.8: Steady-state response of moving loads for the first vertical mode, assuming ξs,min = 0.2%

Observed can be that the response for pedestrians and joggers yields higher results than the equivalent
crowd-loading as proposed previously. However, the assumption is made that the steady-state response
is reached, which is not directly apparent in the case study. It would suffice to either expand the SDOF
theory to account for the full transient response and obtain the maximum response for the moving load
during its passing time tpass, or use the direct time method to obtain the transient response directly as
outlined in the following section.
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4.3.2 Direct time
In a moving load analysis, the direct time method takes into account the effects of the moving load
and the passing time of the bridge. Figure 4.9 shows the transient response for pedestrians and joggers.
It can be seen that the maximum acceleration response is obtained at different time values because
the walking speed of the pedestrians and joggers differs, the response is asymmetric since damping is
present. It can likewise be seen that the acceleration response is greater for pedestrians than for joggers.
This could be explained by the fact that the pedestrians have a longer time to pass, providing a longer
period for the resonance to build up.
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Figure 4.9: Transient response of pedestrians and joggers for the first vertical mode according to TC3, assuming
ξs,min = 0.2%

4.3.3 Comparison
Table 4.9 shows the results of the SDOF and direct time methods for moving loads and provides
results for the equivalent crowd load concerning TC3. It can be seen that the SDOF method gives an
overestimation of the response as it does not take into account the moving nature of the load, which
explains the higher acceleration response for joggers than pedestrians. For the direct time method, the
responses are smaller, with the response for pedestrians being greater than that for joggers. When
the responses are compared with the equivalent crowd load, it is clear that they are within close
range, meaning that the crowd load is dominant, but not by a significant margin. This leads to the
recommendation to include moving load analysis for all traffic classes in the optimisation procedure
outlined in section 5.5 - Optimisation procedure case study.

type load [kN ] number DLF velocity [m/s] SDOF [m/s2] direct time [m/s2]
pedestrians 2.24 8 0.35 1.7 4.693 3.182

joggers 2.5 2 1.56 3.0 5.364 2.721
crowd 2.19 (eq.) - 0.35 - 4.117 3.430

Table 4.9: Comparison moving load analysis SDOF and direct time method plus equivalent crowd-loading analysis for TC3,
assuming ξs,min = 0.2%
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Part III

Geometric optimisation to reduce
human-induced vibrations and

external damping reliance
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5
Optimisation

5.1 Methodology
Engineers must exercise caution when formulating optimisation problems, as the structure of the prob-
lem significantly impacts the effectiveness. To ensure meaningful and reliable results, the methodology
outlined in figure 5.1 is adopted. This approach is rooted in the principles of Engineering Design Opti-
mization [52], which offers an extensive framework for guiding the optimization process toward effective
solutions.

Figure 5.1: Optimisation methodology [52]

One starts by describing the system and outlining the goals and requirements. The case study represents
a footbridge with a suspension bridge system incorporating TMDs to mitigate pedestrian-structure
interaction to an acceptable level. Four design situations are specified to assess the pedestrian’s dynamic
behaviour, which occurs via transient analysis of dynamic loads according to the eigenfrequencies within
the critical range. Rather than performing analysis for all design situations, only design situation
three is considered as outlined in the table below. This scenario represents dense pedestrian traffic
under medium comfort conditions, providing a practical and realistic basis for analysis. Restricting the
assessment to a single design scenario reduces the number of dynamic analyses required for verification.
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Situation Type Class Characteristics Context

3 Traffic TC3 0.5 persons / m2 Still unrestricted walking,
overtaking inhibited

Comfort CL2 0.50 m/s2 ∼ 1.00 m/s2 2

0.10 m/s2 ∼ 0.30 m/s2 3 Medium comfort

Table 5.1: Design situation three considered for assessment of the case study, see 3.8 - Design situations.

A structural damping value of ξs,min = 0.2% is considered as outlined in 3.7 - Structural damping. The
damping has been applied in the form of Rayleigh damping with one damping value to all modes within
the critical range.

The main goal is to reduce or eliminate the need for TMDs by adjusting the structure’s geometric
parameters, primarily through mass reduction. While minimizing acceleration may seem impractical
due to compliance constraints, understanding to what degree deck acceleration can be reduced and which
geometric parameters are of influence. Another objective is to reduce the structure’s mass, benefiting
both cost and sustainability. The structure must remain compliant to ultimate limit state requirements
in the optimal solution to ensure no physically unfeasible designs are produced. Information for the
case study is gathered from the original design, including a FEM model, static and dynamic analysis
reports, and TMD manufacturing data. Additionally, a parametric model is developed to support the
geometric optimization. The design variables, objectives, and constraints significantly influencing the
optimization outcome, are discussed in more detail.

5.2 Design variables
Understanding geometric modifications by their static and dynamic effects is crucial for effective op-
timization. Human-induced vibrations are primarily influenced by the reduction coefficient ψ, as it
quantifies the magnitude of dynamic loading, which is governed by the eigenfrequencies of the structure.
Successful optimization depends on identifying design variables that influence these eigenfrequencies and
understanding how to modify their characteristics. For instance, increasing the structural mass lowers
eigenfrequency, whereas increasing the stiffness has the opposite effect. Beyond eigenfrequencies and
the resulting dynamic loads, there are other design variables which can have profound effects. Notably,
changes in the static scheme of the structure might have minimal impact on eigenfrequencies but can
effectively reduce deck accelerations, think of an increase in the amount of vertical hangers.

In this section, the design variables which have been selected for optimisation are presented. The
selection provides a broad range in both static and dynamic properties of the structure, since one is
intrinsically linked to another. The effectiveness of the parameter selection will be assessed based on
the evaluation of the optimization results, potentially providing insights for more refined analyses and
recommendations.

5.2.1 Pylon height
Modification of the pylon height in a self-anchored suspension bridge system results in a change of
cable sag f , influencing both static and dynamic properties. Lower pylon height will result in lower
sag, increasing horizontal force in the main cable and anchorage component to the girders. The vertical
component of the tension force will reduce, leading to decreased vertical cable stiffness and thus eigen-
frequency. Figure 5.2 shows the effect of a change in pylon height for the case study. Further details
on the characteristics of self-anchored suspension bridges are provided in 3.3.2 Self-anchored theory.
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Figure 5.2: Schematic representation of pylon height influence of the case study

It can be observed that a greater pylon height h1,pylon results in a smaller horizontal forceH1 and greater
cable sag f1, for which the resultant vertical force (V1 − V1′) in the main cable is greater. Conversely,
a decrease in pylon height h2,pylon results in a greater horizontal force H2, smaller resultant vertical
force (V2 − V2′) and decreased cable sag f2. Vertical eigenfrequencies will shift upward for increased
pylon height due to the increased resultant vertical force in the main cable, increasing the structure’s
total stiffness. Additionally, due to the self-anchored nature of the suspension bridge, a reduction in
pylon height increases compressive forces in the girders due to the larger horizontal force. Variations
in pylon height significantly affect both the static and dynamic behaviour of the bridge, making it a
critical geometric parameter. Equation 5.1 shows the design variable.

10 ≤ hp ≤ 18 [m] (5.1)

5.2.2 Number of hangers
The number of vertical hangers connecting the main cable system to the girders significantly influences
the deck accelerations. Resonance occurs when the step frequency aligns with the structure’s natural
frequency. Restricting the deck’s vertical motion at specific points reduces acceleration by impeding
movement in its true eigenmode. Figure 5.3 illustrates this concept schematically.

Φ(x)

nhangers

Figure 5.3: Schematic representation of the influence of hangers of the case study.

Important to note is that altering the number of hangers does not affect the structure’s eigenfrequency.
The main cable’s shape remains unchanged, preserving its stiffness. While increasing the number of
hangers introduces only minor changes to the mass and stiffness, it proves beneficial for the static be-
haviour of the main girders. With more contact points to the main cable system, bending moments
and deflections are reduced, resulting in a more effective parallel structural system. The hanger config-
urations applied for the case study are presented in figure 5.4. By ensuring an even spacing of hangers
will the static scheme of the main girder remain optimal.
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nhangers = 6 nhangers = 8 n hangers = 12

Figure 5.4: Hanger configurations considered for the case study.

The design variable nhangers contains discrete values and is defined by equation 5.2. The jump from
eight to twelve hangers is explained by the side span containing two vertical hangers, requiring more
hangers at midspan to ensure an even bending moment line distribution along the length of the bridge.

nhangers = [6, 8, 12] (5.2)

5.2.3 Main girder
A change in girder dimensions results in modified mass and stiffness, influencing both static and dynamic
properties of the structure. Important to note is that the box girder of the original case study is
identified as a class four cross-section, requiring linear-elastic material analysis. This has been applied
to all iterations to simplify analysis. Figure 5.5 presents the original girder design of the case study.
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Figure 5.5: Main girder design of the original case study.

Two parameters are introduced, namely the height hgird and width wgird of the main girder. The ratio
between height and width is remained equal to retain its original shape. Equation 5.3 presents the
continuous parameters and their bounds within the design space.

700 < hgird < 1500 [mm]

225 < wgird < 500 [mm]
(5.3)

5.3 Objectives and constraints
Before optimization can take place, a distinction must be made between objectives and constraints.
Objectives define specific targets that should be either minimized or maximized. Constraints refer to
the restriction of the design space, limiting certain design solutions to a specific value via an equality
denoted as h(x) = 0 or an inequality, denoted as g(x) ≤ 0. Engineering optimisations know many forms
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of constraints enabling us to find useful solutions with physical meaning. ”An example of the distinction
between objectives and constraints is to minimize the stress in a structure, but this would inevitably
result in an over-designed, heavy structure. Instead, we might want minimum weight (or cost) with
sufficient safety factors in stress, which an inequality constraint can enforce [52]”.

Multi-objective (MO) optimization aims to find the best solution for multiple objectives simultaneously.
However, this is in theory not entirely possible, as only one truly optimal solution exists. Instead, MO
optimization is a process of balancing trade-offs between different metrics, offering engineers valuable
insights into their relationships and enabling them to identify the most suitable solution. The concept
of Pareto optimality is often used in MO optimisation and refers to a concept used to identify solutions
that are non-dominated for all objectives. A solution is considered Pareto optimal if there is no other
solution that improves at least one objective without worsening another. In other words, a Pareto
optimal solution represents the best trade-off between the objectives. Figure 5.6 presents the concept
of Pareto dominance, whereas figure 5.7 presents the Pareto front, which is a depicted by all solutions
being non-dominant.

Figure 5.6: Three designs, A, B, and C, are plotted
against two objectives, f1 and f2. The region in the

shaded rectangle highlights points that are dominated by
design A [52]

Figure 5.7: Pareto front of a MO optimisation, Pareto
optimal solutions are denoted in red [52]

The total mass and maximum deck accelerations are two objectives considered to be minimized in
the case study, see equation 5.4. The objectives are related since a structure’s total mass has direct
implications for accelerations. However, since the design variables provide stiffness and geometric
changes is expected that the minimized outcome will not reveal a direct correlation.

minimize f(x̄) =
[
fmass(x̄)
fa.max(x̄)

]
(5.4)

where:
fmass(x̄) = total structural mass
fa.max(x̄) = maximum deck acceleration
x̄ = vector representing a unique solution for all design variables

To validate if a solution dominates, an objective function, in other words, fitness, is constructed. This
function shows how the solution compares and will be used to either minimize or maximize to obtain an
optimal solution. MO optimisation contains various optimisation functions, most notably the weighted
sum, epsilon-constraint method and normal boundary intersection are utilised by engineers. These
methods optimise one objective whilst constraining the remaining objectives in some form. To illustrate
the concept of an objective function is the weighted sum method presented, combining all objectives
into one, per equation 5.5. Conceptually this represents a line, for which the slope is selected by
determination of weights for each objective. Iteration of the weights is required to construct the Pareto
front.
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f(x̄) =

nf∑
i=1

wifi(x̄) (5.5)

where:
wi = weight for each objective (wi ∈ [0, 1])
fi(x̄) = individual objective, ought to be normalised for comparison
x̄ = vector representing a unique solution for all design variables

The weighted sum method knows limitations, since the weights wi to be assigned are difficult to estimate,
requiring (many) iterations to obtain the Pareto front. Furthermore, it will lead to inconsistent spacing,
generating solutions only for the convex portions of the objective function, which is explained by figure
5.8.

Figure 5.8: Weighted sum method as a function for objectives f1 and f2, with results for the convex parts of the function,
showing inconsistent spacing along the Pareto front [52]

Since the epsilon-constraint and normal boundary intersection objective functions apply constraints to
one or more objectives, it is preferable to use an approach where objectives are equal. This eliminates
the estimation of constraint values and costly iterations to construct the Pareto front. Evolutionary
algorithms can be utilised for direct application of Pareto dominance, meaning no specific fitness defi-
nition is required resulting in a direct approach. If no domination is obtained after particle evaluation,
the particle is excluded from the Pareto front. Pareto dominance logic for an evolutionary algorithm is
explained below.

Pareto Dominance

For two solutions A = (fA1 , f
A
2 , · · · , fAn ) , B = (fB1 , f

B
2 , · · · , fBn )

A dominates B if :

fAi ≤ fBi ∀i (A no worse than B in all)

and:

fAi < fBi ∃i (A better than B at least once)

It is important to note that Pareto dominance requires normalisation of objectives to ensure they are
treated equal. The difference in magnitude between total mass and deck accelerations would make
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for an incorrect fitness evaluation. Min-max normalisation is applied to both objectives, for which
the lower and upper bound values have been determined before optimisation. Equation 5.6 shows
this normalisation, the optimisation considers greater values if these are obtained during the iteration
process.

fi(x̄)− fi,min(x̄)
fi,max(x̄)− fi,min(x̄)

(5.6)

where:
fi(x̄) = objective value i
fi,min(x̄) = minimum objective value obtained in the optimisation
fi,max(x̄) = maximum objective value obtained in the optimisation

Two constraints are applied in the case study to limit design solutions to meaningful designs. The
first constraint is presented in equation 5.7 and enforces strength verification of the structure in the
ultimate limit state for all load cases present in the bridge by its respective unity check using a penalty
function. Appendix B - Load cases & combinations provides the load cases and combinations used for
ULS verification. A linear transition occurs for unity checks between 0.50 and 1.0, promoting feasible
strength designs. At 1.0 a sharp transition is implemented to penalize physically impossible designs. It
is important to note that alternative penalty functions could be developed, featuring higher-order and
smoother transitions. However, it is advisable to first conduct optimizations using the simplest form of
the penalty function and adjust constraints as necessary. The penalty value of 1.0 is used because the
objectives are normalized within their respective design space, meaning that a penalty function value
of 1.0 will have the same effect as the worst feasible solution.

puc,ULS(x̄) =


1.0 if x̄ < 0.5

1− x̄ if 0.5 ≤ x̄ < 1.0

1.0 if x̄ ≥ 1

(5.7)

where:
puc,ULS(x̄) = constraint in the form of a penalty function as ULS unity check
x̄ = feasible design option in the specified domain

The second design constraint regards the number of hangers nhang, see equation 5.8. The penalty
function provides a higher value for hanger configurations with a greater amount of hangers. This
function encourages fewer hangers, resulting in less connection detailing and a reduction of costs. Once
again the maximum penalty value of 1.0 is applied since the objectives are normalized within their
respective design space, meaning that a penalty function value of 1.0 will have the same effect as the
worst feasible solution.

phang(x̄) =


0.0 if x̄ ≤ 6

0.5 if 6 < x̄ < 8

1.0 if x̄ ≥ 8

(5.8)

where:
phang(x̄) = constraint in the form of a penalty function for hanger configurations
x̄ = feasible design option in the specified domain

Optimisation of the case study is performed via an evolutionary algorithm to which the concepts of
Pareto dominance are applied. Equation 5.9 is presented as fitness for dominance evaluation including
the defined penalty functions.

minimize f(x̄) =
[
fmass(x̄) + puc(x̄) + phang(x̄))
fa.max(x̄+ puc(x̄)) + phang(x̄))

]
(5.9)

where:
fmass(x̄) = objective function for total mass evaluation
fa,max(x̄) = objective function for maximum deck acceleration evaluation
puc,ULS(x̄) = ULS unity check penalty constraint
phang(x̄) = hanger configuration penalty constraint
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5.4 Particle Swarm Optimisation (PSO)
Particle Swarm Optimization (PSO) is a stochastic, population-based genetic and evolutionary optimiza-
tion algorithm which uses ”swarm intelligence”. Swarm intelligence describes the collective behaviour
of individuals interacting locally with their environment to produce a global best. Inspired by the
movement of bird flocks or schools of fish searching for food or navigating toward a destination, PSO
models result in complex, coordinated group (swarm) behaviour.

The algorithm exhibits evolutionary characteristics through its mutational behaviour and genetic traits
signified by particle generation. PSO is selected for this case study because it effectively explores
a significant portion of the design space through the random generation of particles and individual
exploration. By utilisation of crowd intelligence, it will converge toward an optimized solution efficiently.

In PSO, the ”swarm” consists of design points, also known as particles which navigate an n-dimensional
space in search of an optimal solution. Although these particles are essentially design points, their
individual histories play a crucial role in the algorithm. Each particle moves through the design space
influenced by a velocity vector which is updated based on two factors: the particle’s own best position (its
personal best) and the swarm’s collective best position (the global best). By utilizing this combination
of individual experience and shared information, particles iteratively converge toward optimal solutions
[52].

A set amount of particles n is stochastically generated within a predefined design space. The position
of each particle i for iteration k + 1 is updated according to equation 5.10 for a constant artificial time
step ∆t.

x
(i)
k+1 = x

(i)
k + v

(i)
k+1∆t (5.10)

The velocity of each particle is updated via equation 5.11. Figure 5.9 gives a graphical presentation of
the velocity components.

Figure 5.9: Inertia, memory and social components of the velocity vector in PSO[52].

v(i) = α · v(i)k + β ·
xbest − x(i)k

∆t
+ γ ·

xbest − x(i)k
∆t

(5.11)

where:
α · v(i)k = Inertia term, where α determines how similar the new velocity is to the previous iteration.

The inertia parameter α is usually in the interval of [0.8, 1.2]
.

β · xbest−x(i)
k

∆t = Memory term, pointing its velocity component to the best position particle i has seen
in all its iterations (local best), β consists of a random number in the interval [0, βmax].

γ · xbest−x(i)
k

∆t = Social term, directing towards the best point the entire swarm has found, γ is a random
number between [0, γmax].
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Since the time step ∆t is artificial, equation 5.11 can be simplified to:

x
(i)
k+1 = α ·∆x(i)k + β · (xbest − x(i)k ) + γ · (xbest − x(i)k ) (5.12)

For which equation 5.10 becomes:

x
(i)
k+1 = x

(i)
k +∆x

(i)
k+1 (5.13)

The optimization algorithm is described in the following procedure, using a coding-based approach to
clarify its functionality

1. Initialize particles

for i = 1 to n do:

a) Generate position x(i)0 within specified domain.

b) Initialize velocity ∆x
(i)
0 .

end for

2. Main iteration loop

while not converged do:

for i = 1 to n do:
if f(x(i)) < f(x

(i)
best) then: (Individual best)

x
(i)
best = x(i)

end if
if f(x(i)) < f(xbest) then: (Swarm best)

xbest = x(i)

end if

end for

for i = 1 to n do:
∆x

(i)
k+1 = α ·∆x(i)k + β · (x(i)best − x

(i)
k ) + γ(xbest − x(i)k ) (Obtain velocity)

x
(i)
k+1 = x

(i)
k +∆x

(i)
k+1 (Update position)

x
(i)
k+1 = max (min(x(i)k+1, x̄, x)) (Set bounds)

end for

k = k + 1

end while
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Figure 5.10 presents a Single Objective Particle Swarm Optimisation (SOPSO) of the case study re-
garding the design variables pylon height hp and amount of hangers nhang for minimization of deck
acceleration as objective. It shows a selection of inertia α = 0.8, memory β = 1.5 and social γ = 0.5
components, for ten particles and one-hundred iterations. Observed can be a shift in global best, de-
noted by the magenta dot. Higher iterations show its evolutionary behaviour, converging to a lower
deck acceleration since the global best shifts to lower accelerations.

Figure 5.10: Single objective PSO of the case study presenting optimisation for two design variables at iteration 0, 50, 75 and
100 respectively

It is evident that the SOPSOmethod for the chosen design variables is not particularly effective. Notably,
the number of hangers has no significant impact on the maximum deck acceleration, reducing the
problem to a one-dimensional SOPSO. The results are presented primarily to provide the reader with
an illustrative example of a single-objective approach, as it can be effectively visualized in 3D space.
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5.5 Optimisation procedure case study
Figure 5.11 presents context to the optimisation of the case study, showing the Multi-Objective Particle
Swarm Optimisation (MOPSO) algorithm and main optimisation loop. It provides context to the
sequence of actions used to arrive at the next iteration in the optimisation process.

2. Parametric model generates new iteration 
according to specified design variables 3. Form finding is applied to obtain the initial 

stress state of the cable system providing opti-
mised bending moments and deflections
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Figure 5.11: Optimisation procedure of the case study
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1. Random generation of particles in the design space
The first step in the optimisation process generates particles that represent possible solutions
in the design space, denoted by vector x̄. The α-component determines similarity to the pre-
vious iteration (if applicable), whereas the β- and γ-components take random values between
their specified bounds, stimulating local and global exploration respectively.

2. Parametric model generates new iteration according to specified design variables
A parametric model of the case study is generated based on the design variables defined in
the particle generation in the previous step, starting the main optimisation loop.

3. Form finding is applied to obtain the initial stress state of the cable system pro-
viding optimised bending moments and deflections
Utilising the theory of self-anchored suspension bridges, an optimised initial stress state for
the cable system is obtained and applied to the FE model accordingly.

4. Required load cases are parametrically generated for each model
Every particle with its specified design variables is subjected to the load cases required for
the ultimate limit state verification. Appendix B - Load cases & combinations provides the
load cases and combinations used for verification.

5. Strength verification is performed for the ultimate limit state according to the
Eurocode
The defined load combinations are evaluated via FE analysis to verify the design. Linear
analysis is performed and the maximum von Mises stress is verified for the main girders and
cables.

6. Modal analysis is performed to obtain the eigenfrequencies and mode shapes
The FE model is subjected to modal analysis to determine the dynamic properties of the
structure. The eigenfrequencies and mode shapes are obtained to simulate the crowd-loading
of pedestrians. Moving load analysis is excluded, since the assumption is made that crowd
loading leads to a higher acceleration response.

7. Clustering algorithm is utilised to apply dynamic loading according to mode
shapes for eigenfrequencies in the critical range
DBSCAN clustering [53] is used for which the nodal displacements from the modal analysis
in SOFiSTiK are analysed for each critical mode shape. The clustering algorithm detects
areas with the same loading direction to apply loading in accordance with its mode shape.

8. Transient analysis is performed to evaluate the maximum deck acceleration
According to the Newmark-Beta method, direct numerical integration is applied with the
factors γ = 1/2, β = 1/4 for all critical modes to evaluate maximum deck acceleration.

9. Results are retrieved from FEM and used for fitness evaluation to generate the
Pareto front
The defined fitness function is evaluated for the mass and maximum acceleration objective.
Based on Pareto dominance, the Pareto front is obtained, containing results in which solu-
tions are dominant.

10. Update particle location based on velocity vector MOPSO
Based on the previous iteration, the particle’s position is updated. The α component deter-
mines how similar the new velocity is to the previous iteration. The β component refers to
the local best solution and the γ component to the global best solution. With this position
update, the process can be repeated until the most optimal design is found.
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6
Results

6.1 Effect design variables
The effect of each design parameter of the case study is presented in this section. The geometric
modification of the design variables shows their influence on the dynamic characteristics of the structure
and their effect on the maximum deck acceleration. It is important to note that the range of design
variables presented is consistent with ULS verification. As the coupler plate length cp had no direct
effect on the torsional eigenfrequencies after a small sensitivity analysis, this design variable is excluded
from the results.

6.1.1 Pylon height
Figure 6.1 illustrates the maximum deck acceleration corresponding to changes in pylon height, high-
lighting the mode shapes that dominate the dynamic analysis within the critical range and shows the
eigenfrequency belonging to the design variable. The first vertical mode shape exceeds the comfort limit
for design situation three, where amax < 1.0 m/s². Additionally, the first vertical mode shows a linear
relationship between maximum acceleration and pylon height. This behaviour is explained by the linear
reduction coefficient ψ, as explained in 2.5.4 Reduction coefficient ψ. To further clarify this trend, the
eigenfrequencies for each mode shape are plotted for all pylon heights. The pylon height of the original
design is indicated in the figure, revealing a response well above the set limit confirming the need for a
tuned mass damper (TMD) design as anticipated.
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Figure 6.1: Maximum acceleration for the effect of varying pylon height plotted for dominant mode shapes within the critical
range
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6.1.2 Cross-section dimensions
The cross-sectional dimensions of the main girders are also considered as design variables in the opti-
mization. Figure 6.2 illustrates the effect of modifying the girder dimensions on the maximum deck
acceleration for the dominant critical mode shapes, where the height of the web and width of the flange
are provided respectively. Observed can be that the second vertical mode shape falls below the accelera-
tion limit as the girder dimensions increase. A linear relationship is evident for the second vertical mode
shape, and the corresponding eigenfrequencies are plotted to emphasize this trend. The dimensions of
the original design are again shown, confirming the need for a tuned mass damper (TMD) design as
expected.
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Figure 6.2: Maximum acceleration for the effect of varying cross-sections of the main girder plotted for dominant mode shapes
within the critical range

6.1.3 Number of hangers
Figure 6.3 shows the effect of different hanger configurations on the maximum deck accelerations for
all mode shapes within the critical range. The impact is minimal, leading to the conclusion that this
design variable has no significant effect on the optimization and should be excluded. The original design
of the case study, which incorporates six vertical hangers, is preferred in the optimized solution as it
requires less connection detailing, reducing engineering effort and cost.
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Figure 6.3: Influence hanger configuration regarding the maximum deck accelerations of the case study for each critical mode
shape
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6.2 Multi-Objective Particle Swarm Optimisation (MOPSO)
Figures 6.4a to 6.4d illustrate the progression of the multi-objective particle swarm optimization (MOPSO)
applied to the case study. The horizontal axis represents the normalized maximum acceleration, while
the vertical axis corresponds to the normalized total mass, both based on the min-max normalization
principle. Each black point indicates a potential solution derived from the defined design variables and
their specified domains.

As the MOPSO algorithm advances, a transition from global to local exploration is evident, reflected in
the shift from coarse to dense particle spacing across iterations. A total of ten particles were randomly
initialized and iterated over twelve steps to approximate the Pareto front, with velocity components α =
0.9, β = 1.5, γ = 0.5. This choice balances comprehensive exploration with manageable computational
effort. After twelve iterations, the Pareto front was deemed satisfactory, leading to the termination of
the MOPSO algorithm. It is important to note that there rest many approaches to generate a Pareto
front. One could utilise fewer initial particles over reduced iterations, analyse the Pareto front and start
a new MOPSO algorithm with refined bounds of the design variables. This approach will most likely
result in reduced computational benefiting the user. Initialising more particles over increased iterations
will explore a broader design space at the cost of significantly increased computational time.

(a) First iteration for the MOPSO of the case study (b) Fourth iteration for the MOPSO of the case study

(c) Eighth iteration for the MOPSO of the case study (d) Twelth iteration for the MOPSO of the case study

Figure 6.4: Comparison of different iterations for the MOPSO of the case study showing the progression of solutions. A black
point represents a particle containing a design solution whereas a red point represents a Pareto dominant solution.

Each iteration shows a diagonally spaced particle field, meaning that the design variables chosen hold
close to a linear relationship. The pylon height has the greatest influence, as has become evident from
the results of the individual design variables, see section 5.2 - Design variables. Lower pylon height
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results in lower eigenfrequencies hence lower dynamic crowd-loading due to the reduction coefficient ψ,
resulting in decreased total mass and lower maximum accelerations. The girders only affect the second
vertical mode shape for decreased dimensions, increasing maximum acceleration, whereas the number
of hangers holds no influence.

Analyzing the effect of design variables individually before optimization can be highly beneficial. Vari-
ables with minimal impact on dynamic characteristics and maximum deck accelerations can be excluded
from the optimization process, significantly reducing computational time. In the case study, the opti-
mization procedure required just two days, compared to twenty days for evaluating the entire design
space. This demonstrates the algorithm’s effectiveness in generating the Pareto front. Nonetheless,
further reductions in computational time are both feasible and desirable. This can be achieved by
narrowing the design variables and conducting multiple MOPSO runs with domain restrictions.

6.3 Comparison of designs
Table 6.1 presents the Pareto front obtained by the MOPSO, for which four dominant solutions in the
design space are depicted. The design vector x̄ represents a unique solution for all design variables and
is constructed as shown in equation 6.1.

x̄ =


hw
wf
hp

nhang

 (6.1)

The fitness function as defined in equation 5.9 is evaluated and returns a value for both the total mass
fmass(x̄) and maximum acceleration fa,max(x̄), whilst subjected to penalties for unity checks puc(x̄)
and hanger configurations phang(x̄). The results indicate that the stresses in the main cable dominate
the case study. Since the ultimate limit state is incorporated into the MOPSO via penalties for unity
checks of the main girders and cables, the algorithm identifies unfeasible design solutions. However, the
lack of a design variable specifically addressing the ultimate limit state unity check for the main cable
leads to exceedances.

hw [mm] wf [mm] hp [m] nhang amax [m/s2] mode shape fn [Hz] fa.max(x̄) fmass(x̄) ucgirder uccable
1002.06 357.88 10.0 8 0.8921 1st vertical 1.1015 1.1784 1.5185 0.6947 1.0262
1028.82 367.44 10.0 8 0.8738 1st vertical 1.1152 1.1748 1.5280 0.6740 1.0173
1124.15 401.48 10.0 8 0.8272 1st vertical 1.1662 1.1654 1.5620 0.6078 0.9871
1052.94 376.05 10.0 8 0.8342 1st vertical 1.1275 1.1668 1.5366 0.6565 1.0096

Table 6.1: Pareto front obtained from MOPSO of the case study

It can be observed that one design solution remains within the stress limits of the main cables, making it
the optimal solution. The maximum deck acceleration, governed by the first vertical mode shape, stays
below the set limit for design situation three alim < 1.0 m/s2. To facilitate effective comparison, the
mass and acceleration objectives are normalized using min-max normalization. As previously mentioned,
the height of the pylon hp has the greatest influence on the dynamic properties of the case study. Other
design variables show minimal to no deviation from the original design, as summarized in Table 6.2.
A 12.9% reduction in total mass is achieved, while the maximum deck acceleration remains within the
specified limit and satisfies the ultimate limit state requirements. The design effectively excludes the
need of external damping by use of TMDs for the first vertical mode shape.

type hw [mm] wf [mm] hp [m] nhang amax [m/s2] mode shape fn [Hz] total mass [t] ucgirder uccable

optimal 1124.15 401.48 10.0 8 0.8272 1st vertical 1.166 385 0.608 0.987
original 1100 390 16 8 3.43 1st vertical 1.610 442 0.559 0.684

Table 6.2: Comparison of optimal solution to original design case study
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The mode shapes within the critical range of the optimal solution are shown in table 6.3. It becomes
evident that the behaviour of the optimised solution is comparable to the original design as outlined in
chapter 4 - Case study assessment. The critical modes show the same mode shapes at slightly different
frequencies.

Original design Optimised solution
Mode nr. Frequency Mode shape Mode nr. Frequency Mode shape

5 1.527 1st vertical 1 1.166 1st vertical
4 2.098 1st* torsional 2 2.137 1st torsional
7 2.661 2nd vertical 3 2.549 2nd vertical
8 2.887 1st torsional 4 2.991 1st* torsional

Table 6.3: Critical eigenfrequencies original design and optimised solution for design scenario 3

The transient responses obtained via direct time integration for all critical modes are shown in the
figures below. Important to note, is that once again the torsional modes experience a beating-like
behaviour. This is explained by the eigenfrequency of the pylons interfering with the pure torsional
response.
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Figure 6.5: Transient response of the first vertical mode shape for TC3, assuming ξs,min = 0.2%
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Figure 6.6: Transient response of the first torsional mode shape for TC3, assuming ξs,min = 0.2%
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Figure 6.7: Transient response of the second vertical mode shape for TC3, assuming ξs,min = 0.2%
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Figure 6.8: Transient response of the first torsional* mode shape for TC3, assuming ξs,min = 0.2%

Observed is that all modes exhibit acceleration responses below the specified comfort limit of avert =
1.0 m/s2. The first and second vertical modes show comparable maximum accelerations, which can
be attributed to the same load magnitude, as the reduction coefficient remains equal. While the
first vertical mode technically falls outside the critical frequency range fcrit = 1.25 ∼ 4.60 Hz, the
eigenfrequency obtained from FEM may differ from the actual frequency after the bridge is installed.
Therefore, a reduced loading magnitude was maintained for the frequency ranges, as expressed in
equation 6.2. This approach enhances the robustness of the optimization, accounting for potential
deviations in eigenfrequency estimation.

ψ(fn) = 0.25 if 0.75 ≤ fn ≤ 1.25 Hz or 4.60 ≤ fn ≤ 5.10 Hz (6.2)

where:
ψ(fn) = reduction coefficient determined by the critical frequency
fn = critical frequency obtained from modal analysis in FEM
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7
Discussion

The research demonstrates that geometric optimization of pedestrian bridge design is a viable approach
to mitigate human-induced vibrations and reduce dependence on external damping. However, the find-
ings must be interpreted with caution, considering the study’s limitations. This chapter examines the
research outcomes, their significance, and the constraints that may influence its applicability. Addi-
tionally, it discusses key assumptions made to simplify the analysis or approximate specific structural
behaviour. Recommendations for further research are outlined in chapter 8 - Conclusions and recom-
mendations.

7.1 Interpretation
The research shows that geometric optimisation is a feasible solution for reducing human-induced vi-
brations and external damping reliance. This section explains the interpretation used to arrive at this
outcome and the key findings which resulted from this.

Assessment method
The method employed to evaluate the maximum deck accelerations is direct time integration, imple-
mented using the Newmark-Beta method. The parameters γ = 1/2 and β = 1/4 are selected for the
numerical scheme, with a time step of ∆t = 30/fmax, where fmax represents the maximum frequency
within the critical range. This specific parameter selection eliminates amplitude and period decay,
ensuring the stability and accuracy of the results. The Newmark-Beta method is preferred over alterna-
tive assessment methods due to its capability to account for modal coupling and (geometric) non-linear
effects, which could be critical in dynamic systems with complex interactions. By incorporating these
effects, the method provides reliable acceleration responses.

All eigenfrequencies within the identified critical range are subjected to direct time integration. The
process conforms to the crowd-loading pattern, applied according to each mode shape. Consequently,
performing this analysis over multiple iterations requires a systematic and robust workflow to identify
the relevant eigenfrequencies and carry out the integration for all modes. While being thorough and
precise, is it computationally intensive due to the significant time required for handling structural
systems with various modes of vibration.

MOPSO
Multi-Objective Particle Swarm Optimization (MOPSO) has been applied to obtain the Pareto front,
focusing on dominant solutions that minimize the total mass and maximum deck acceleration. The
velocity components for the algorithm were set as α = 0.9 (inertial), β = 1.5 (memory), and γ = 0.5
(social). To achieve these results, ten particles were generated and iterated over twelve cycles, producing
a Pareto front representing the best possible design solutions within these parameters. It is worth
discussing that the algorithm’s performance could have been influenced by different tuning parameters
or alternative utilisation. For instance, an initial run with fewer particles and a stronger emphasis on
exploratory behaviour over fewer iterations could serve to define preliminary bounds. Subsequently, a
second run of the MOPSO algorithm could be conducted with a larger particle initialization and more
iterations, refining the search within these defined bounds for improved convergence.
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Design variables
The design variables selected for the geometric optimisation of the case study include the pylon height,
girder dimensions, number of hangers, and coupler plate length. Analysis of the results revealed that the
coupler plate length and the number of hangers have negligible influence on the dynamic properties of the
structure. Despite this, all design variables were included in the MOPSO process, leading to increased
computational time. Conducting a sensitivity analysis of the individual design variables before the
optimization process could provide valuable insight into their impact, allowing less influential variables
to be excluded and significantly reducing computation time. Furthermore, the introduction of new
design variables could lead to a better design, minimizing total mass and maximum deck acceleration.

Determination of eigenfrequencies
Modal analysis in finite element (FE) models was utilized to determine the eigenfrequencies of the
structure, which plays a critical role in the magnitude of the applied loading. Accurate determination
of eigenfrequencies is essential because they directly influence the dynamic response of the structure to
human-induced vibrations. The transition periods defined by the reduction coefficient ψ are relatively
small, resulting in significant changes in load magnitude over narrow frequency ranges. To validate
the FE model experimentally, sledgehammer tests were conducted to obtain the mode shapes and
eigenfrequencies of the structure. When comparing the eigenfrequencies derived from the FE model
with those obtained from testing, discrepancies were no greater than 7.7%. This level of agreement
indicates that the FE model provides a reasonably accurate representation of the dynamic properties.
However, even small inaccuracies in the eigenfrequency determination can have significant implications.
An underestimation of the eigenfrequencies could result in an incorrect prediction of the dynamic
response, potentially leading to excessive vibrations and a reduction in pedestrian comfort. Caution
should be made when assessing eigenfrequencies in FEM due to their potential shortcomings.

7.2 Implications
The findings of this study regard implications for pedestrian bridge design and optimization in the
context of human-induced vibrations. The ability to mitigate excessive vibrations through geometric
optimization without relying on external damping, suggests a more prominent role in vibration con-
trol strategies. This challenges conventional design approaches, where tuned mass dampers (TMDs)
are often considered a necessity, despite their limitations due to eigenfrequency shifts under varying
pedestrian loads.

From a methodological perspective, this research highlights the advantages of using direct time integra-
tion for accurately capturing geometric and material non-linearities and ensuring modal coupling effects
are considered. While this method introduces higher computational costs, it provides a more reliable
assessment of pedestrian-induced vibrations compared to simplified approaches.

Practically, these insights emphasize the importance of integrating optimization techniques in the prelim-
inary design stages of pedestrian bridges. By considering crowd-loading effects within the optimization
framework, designers can develop more resilient and cost-effective solutions that reduce reliance on
external damping. This approach leads to faster construction timelines, lower maintenance costs, and
improved long-term performance, making optimized bridge designs more feasible.

7.3 Limitations
This research is subject to several limitations, primarily stemming from the constrained time frame, the
chosen optimization approach, and the necessary assumptions made to reduce computational demands.
The restricted duration has imposed constraints on the depth of parametric studies, sensitivity analyses,
and validation efforts, potentially limiting the generalizability of the findings.

Additionally, the optimization approach, while effective in balancing multiple objectives, may not ex-
plore the full design space due to trade-offs in computational efficiency. First of all, the design situations
are limited to a single scenario, assumed to be representable and accurate. Secondly, does the clustering
algorithm impose limitations on its accuracy for higher mode shapes. Thirdly, moving loads induced
by pedestrians and joggers are excluded from the optimisation even though these seem to have pro-
found effects. Fourthly, the assumption of a singular structural damping value leads to a conservative
assessment of the dynamic response of the case study. Lastly, intentional excitation by a group of
vandals deliberately trying to damage the structure should be considered, which is excluded from the
optimisation.
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Design situations
Design situation three is considered to evaluate comfort under human-induced vibrations, see table 7.1.
It represents dense pedestrian traffic under medium comfort conditions. The selection of a single design
situation aims to balance computational efficiency with representative loading and comfort limits.

Situation Type Class Characteristics Context

3 Traffic TC3 0.5 persons / m2 Still unrestricted walking,
overtaking inhibited

Comfort CL2 0.50 m/s2 ∼ 1.00 m/s2 2

0.10 m/s2 ∼ 0.30 m/s2 3 Medium comfort

Table 7.1: Design situation three considered for assessment of the case study, see 3.8 - Design situations.

In the optimization, close to a linear response between the magnitude of crowd loading and maximum
acceleration is observed. This justifies the reduction to one specific situation for which the most dom-
inant is observed. However, if certain mode shapes show coupling effects or non-linear behaviour, all
design situations should be assessed individually. This leads to a substantial increase in computational
time.

Clustering algorithm
A DBSCAN [53] clustering algorithm is applied to determine the direction of crowd-loading based on
the mode shape. Nodal displacement data is transferred from SOFiSTiK to Python, where clustering
is performed. The resulting clusters are then returned to SOFiSTiK to apply the corresponding loads.
However, it has been observed that the algorithm’s precision decreases for higher mode shapes, partic-
ularly torsional ones, due to the lower magnitude of nodal displacements. This can lead to incorrect
clustering, potentially producing non-viable results that might dominate certain design solutions. The
case study shows that the dominant responses are correctly identified as the first and second vertical
mode shapes. However, extending the optimisation process to different footbridge designs will ask for
caution. To address cases where no clear mode shapes dominate the response, improved algorithm
tuning or a more efficient clustering approach may be necessary. Figure 7.1 shows the algorithm clus-
tering for mode shapes of a certain design solution. Observed can be that for the second torsional*, a
derivation of the pure second torsional mode shape, three negative and two positive clusters are iden-
tified, even though they should both contain four. This could lead to incorrect load application and
insufficient results from direct time integration.
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1st vertical modeshape 1st torsional modeshape

2nd vertical modeshape 2nd torsional modeshape

3rd vertical modeshape 2nd torsional* modeshape

Figure 7.1: DBSCAN algorithm identifying clustering of the mode shapes, where the second torsional* mode shape shows
incorrect clustering

Moving loads
The exclusion of moving loads within the optimization process is to be discussed. This decision is based
on the assumption that crowd-induced loading will have a more profound impact on the structural re-
sponse. However, this assumption introduces potential uncertainties, as moving loads such as individual
pedestrians or joggers can contribute to localized dynamic effects that differ from the distributed nature
of crowd loading. While pedestrian comfort has been assessed based on existing literature, the omission
of moving load effects means that certain scenarios, particularly those involving resonant build-up due
to periodic footfalls, may not be fully captured. In some cases, these effects could lead to acceleration
responses that exceed those predicted by crowd-loading alone.
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Structural damping
Minimum structural damping has been applied using Rayleigh damping for all critical modes. The
damping value is selected to ensure a robust Pareto front, particularly in the absence of modal damping
values from testing or similar structures. Notably, the conversion of unit load results from sledgeham-
mer testing into values comparable to direct time integration highlights a strong correlation between the
average structural damping and the first mode shape. Higher modes tend to be overestimated for both
structural damping values. This observation suggests that incorporating the average damping value in
the optimization process yields better results. Such an approach will enhance the prediction of acceler-
ation responses while ensuring that optimized solutions remain reliable. This trade-off underscores the
importance of carefully considering the damping assumptions when interpreting the results and refin-
ing the optimization methodology. The optimisation should enable engineers to account for different
structural damping values or implementation of modal damping values from comparable structures.

Intentional excitation
In addition to crowd loading and moving loads, codes and guidelines state that deliberate dynamic load-
ing caused by intentional, coordinated jumping by vandals should be considered. Figure 7.2 illustrates
the stress response of the main girder of the original design when subjected to five vandals exerting a
force with a dynamic load factor of 1.6 at midspan, as specified in prEN1991-2-2021 [23]. The analysis
considers only the first vertical mode shape, as the resulting stress response remains well below the
yield limit of fy = 355 N/mm2. The assumption is made that higher modes will likewise remain below
this stress level. Alternative methodologies are presented in the literature, namely NEN-EN1991-2-2019
[54] and the Sétra guideline [4], which use different structural damping values and load models. The
newly proposed Eurocode prEN1991-2-2021 assumes increased structural damping for ULS verification,
which is confirmed by the literature. However, it states that large bridges require pedestrian load class
TC4 or TC5. Since no classification of large bridges is given, the implementation of this load model is
up for debate. For conventional bridges, two to five vandals are to be considered, for which the upper
limit of five vandals was selected for this verification.
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Figure 7.2: Stress response of the main girder at the support and midspan for intentional excitation according to
prEN1991-2-2021 subjected to five vandals located at midspan with DLF=1.6
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8
Conclusion and recommendations

8.1 Conclusion
This research seeks to optimize bridge geometry to reduce human-induced vibrations and lessen the
dependence on external damping. The main research question is formulated as follows:

”What is the impact of parametric optimisation for footbridge geometry on reducing
human-induced vibrations, and how does it affect the necessity of external damping sys-
tems?”

To effectively address the main research question, two sub-research questions have been formulated
and addressed. Answering the sub-questions will build a logical progression of insights, leading to a
conclusive response of the main research question.

Sub-question 1: ”What methods are most effective for assessing pedestrian-induced vibrations in
footbridges?”.

• The single degree of freedom (SDOF) method can be utilised in the preliminary stages of design
to gain an order of magnitude for the acceleration response. It shows a large scatter compared
to the response obtained by direct time integration and measurements. FEM software needs
to ensure the modal mass and load can be retrieved to evaluate the maximum response. In
this research, only vertical modes of vibration could be obtained due to incorrect scaling of the
modal load by the proportionality factor αk since the response is a combination of torsional and
lateral contributions. The scaling refers to mass matrix diagonalization, used by FE software
to reduce the computational time for solving algebraic equations. Scaling the modal load by a
proportionality factor αk allows for the correct response evaluation for pure modes.

• Direct time integration proves to be a powerful approach for achieving high accuracy in human-
induced vibration analysis. By accounting for geometric and material non-linearities, this method
captures the full transient response of the structure, inherently incorporating modal coupling
effects without requiring the superposition of modal responses. The Newmark-Beta method, with
parameter selection γ = 1/2, β = 1/4, ensures numerical stability, preventing frequency and
amplitude decay as the ∆t/T ratio increases. This approach provides valuable insight into the
transient and steady-state response of the structure. A case study of a pedestrian bridge has been
optimised according to the procedure outlined in this research. When compared to experimental
validation through sledgehammer tests, similar accelerations are observed for the first vertical
mode shape for an average structural damping value of ξs,avr = 0.4%. However, higher mode
shapes tend to be overestimated under the same damping assumption.

• Higher harmonics, signified by a multiple integer of the step frequency of pedestrians can impose
contributions to the acceleration response. However, the literature mentions these effects are only
observed up to the second harmonic, never leading to significant vibration of footbridges. This
is confirmed by the Four Footfall Harmonics (4FFH) method, which considers the acceleration
response induced by loading up to the fourth harmonic of pedestrians. Results show that only the
first two harmonics show a notable response, for which major contributions stem from the first
harmonic. This confirms that methods which include up to the second harmonic are most suited
for assessment, ensuring accuracy and restricted computational time.
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Sub-question 2: ”How can geometric parameter studies be performed to optimise footbridge perfor-
mance, tailored to reducing the need for external damping devices?”

• Employing a robust optimisation process with limited computational time, careful consideration of
design variables and sound fitness evaluation tailored to the engineer’s needs will provide a fruitful
geometric optimisation of pedestrian bridges. In the context of the case study, it is observed that
external damping through tuned mass dampers (TMDs) becomes unnecessary and the total mass
of the structure is reduced by 12.9%. Furthermore, the form-finding procedure for self-anchored
suspension bridges gives a reduction of 90 % of the bending moments in the initial stress state of
the optimised solution compared to the original design.

• Reducing the number of design situations considered for all critical modes through direct time
integration will significantly decrease computational time. A design situation is characterised
by a traffic class denoting the dynamic loading in terms of pedestrian density and a comfort
class specifying the allowable maximum acceleration. Analysing the transient responses of critical
modes before the optimisation can offer valuable insights into the dynamic behaviour. As for
the case study, a linear relationship between loading magnitude and acceleration response is
established. This signifies the use of one design situation which represents dense traffic under
medium comfort.

• Deploying a stochastic, meta-heuristic population-based genetic optimization algorithm stimu-
lates a diverse exploration of the design space. It enables an efficient trade-off between multiple
conflicting objectives, in this research signified by total mass and maximum deck accelerations.
The optimisation progressively evolves optimal footbridge configurations that adhere to structural
constraints and dynamic performance criteria. Different optimisation strategies can be utilised,
such as coarse to fine exploration of the design space via velocity vector modification or multiple
runs of the algorithm whilst being subjected to bound restrictions of the design variables.

• Design variable freedom can be seen as a double-edged sword in the optimization process. It allows
for a comprehensive exploration of the design space, providing the flexibility to identify the most
suitable solutions along the Pareto front, which represent the best trade-offs between competing
objectives. This freedom facilitates the discovery of optimal configurations that might otherwise
be overlooked if the design space were more restricted. However, the increased number of design
variables introduces higher computational costs. The larger the design space, the more time and
resources are required to evaluate potential solutions, leading to a trade-off between exploration
and efficiency, where balancing these aspects is deemed crucial.

• An optimised solution among the Pareto front gives further implications for detailed design, such
as the design of connections. The optimisation process allows for seamless integration of the op-
timised solution back to the FE software, enabling engineers to perform detailed analysis with
refined elements. An example would be conversion from beam to shell elements and perform-
ing a geometric and material non-linear imperfection buckling analysis for localised buckling of
connection details.

Main research question
To answer the main research question, the conclusions obtained in the sub-research questions are com-
bined and extended. Parametric optimisation of footbridge geometry has profound effects on the dy-
namic characteristics, reducing human-induced vibrations and external damping reliance. Modification
of design variables of the case study shows that maximum deck accelerations of the critical modes
drop below the stated comfort limits whilst reducing the total mass of the structure. The modification
of eigenfrequencies reduces crowd-loading since step- and eigenfrequency no longer coincide. Exter-
nal damping by tuned mass damper design is excluded, leading to faster construction timelines, lower
maintenance costs, and improved long-term performance.

In practical terms, the optimisation process emphasizes the importance of integrating optimization
techniques in the early design stages of pedestrian bridges. Designers can develop more resilient and
cost-effective solutions that reduce reliance on external damping. In the context of the case study:
form-finding the optimal stress in the main cable system; performing strength verification of the girders
and cables; utilising a clustering algorithm for dynamic crowd-load appliance; assessing the dynamic
response by direct time integration and applying an optimisation algorithm for multiple iterations has
shown optimised results. By applying Multi-Objective Particle Swarm Optimisation (MOPSO), the
computational time has been reduced from twenty days to calculate the entire design space, to two days
providing a satisfactory Pareto front.

Design variable freedom will harness the full potential of the optimisation, since the ability to explore
a wide range of parameters and designs is wishful. However, it comes with implications for the compu-
tational time and the means of verifying strength and the dynamic response. The optimisation process
requires a robust integration scheme which performs a detailed analysis of the dynamic response.
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8.2 Recommendations
The research is paired with recommendations for its intended use and its belonging limitations. This
section aims to provide recommendations for how geometric optimisation of pedestrian bridges can be
utilised in other designs whilst cohering to the verification outlined in the literature.

Moving load analysis
Incorporating the analysis of moving loads related to pedestrian and jogger comfort into the optimization
process is strongly recommended. Results indicate that the loading magnitude of individual pedestrians
and joggers is comparable to that of an equivalent number of perfectly synchronized pedestrians in a
crowd-loading scenario. The resulting acceleration responses from moving loads closely match those
induced by crowds, suggesting that moving load analysis could be critical for certain design configu-
rations. Moving loads are primarily characterized by the time required to cross the footbridge, which
depends on the users’ walking velocity. A longer crossing time increases the potential for resonance
build-up. However, critical velocity considerations are unnecessary, as they are typically relevant only
for high-speed trains or similar loads.

Early stages of design
The optimisation process utilised in this research will prove to be most fruitful in early stages of
the design. Ensuring greater variable freedom leads to a greater optimised Pareto front generation,
thus a better-optimised solution. The writer identifies that incorporation in early stages is not easily
implemented, requiring a robust optimisation process with seamless integration of all components to
arrive at a stable iteration scheme. Furthermore, a detailed analysis performed to reduce human-induced
vibrations is not always wishful in engineering practice.

Recommended is the generalisation of geometric parameter-driven design, for which new design solutions
are easily generated. Utilising eigenfrequency identification and clustering algorithms to correctly apply
crowd-loading responses needed for comfort evaluation. One could think of the development of an
optimisation loop in which standardised engineering practice for geometric parameter-driven design by
use of Rhino Grasshopper [55] is incorporated in further aspects of the optimisation process.

Design variable selection
Prioritizing variables that have a strong correlation with dynamic performance can enhance the conver-
gence rate of the optimization process. Key parameters such as stiffness distribution, mass distribution,
and damping characteristics should be carefully evaluated, as they play a fundamental role in shaping
the structure’s vibrational response. A comprehensive sensitivity analysis of these variables is recom-
mended before initiating the optimization to ensure their direct impact on the structural dynamics.
This preliminary step helps refine the selection of variables, eliminating those with negligible effects,
thereby significantly reducing computational effort and improving the efficiency of the optimization
algorithm. Additionally, constraints related to feasibility, constructibility, and material limitations
should be integrated into the selection process to balance performance improvements with practical
implementation.
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A
Appendix A - Python source code

Within the optimisation process, four Python scripts have been utilised to apply the MOPSO algorithm
and generate the Pareto front. These scripts and their respective part in the optimisation process, see
figure 5.11 in Chapter 5.5 - Optimisation procedure case study, are explained below.

• Parametric script of the case study - Step 2
Parametric script of the case study according to the specified design variables, including modal
analysis and load case generation.

• ULS verification - Step 5
Parametric script for the ULS verification of the main girders and cable system.

• Mode shape clustering - Step 7
The parametric script for the mode shape clustering according to the DBSCAN algorithm for
crowd-induced loading.

• MOPSO algorithm - Steps 1, 9 & 10
Parametric script for the multi-objective particle swarm optimisation of the case study and the
generated Pareto front with its export to a csv-file.

A.1 Parametric script of the case study - Step 2
The parametric script of the case study according to the specified design variables, including modal
analysis and load case generation is presented in the Python script below.

1 """Python script of the parametric case study"""
2
3 import numpy as np
4 from os.path import isfile
5 import matplotlib.pyplot as plt
6 from mpl_toolkits.mplot3d import Axes3D
7 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
8 from matplotlib import cm
9 from matplotlib.gridspec import GridSpec

10 from PIL import Image, ImageOps
11
12 def par_model(hang_ss, hang_ms, hang_ms_p, con_ms, hp, fz_p, c_d, tw, tf, wl, wu, hw, wf,

filename):
13
14 # Variables
15 if ((hp + 0.85) - fz_p) < 6.78:
16 fz_p = (hp + 0.85) - 6.78
17
18 rein_r = 0.6 # reinforcement ratio
19 A_rl = ((rein_r / 100) * wl ** 2 / 100)
20 A_ru = (2 * rein_r / 100) * wu ** 2 / 100
21
22 w = 5.10 # width deck [m]
23
24 del_hw = (hw - 1100) / 2
25 del_wf = (wf - 390) / 2
26
27 hc = 200 # height coupler plate
28 bc = 20 # thickness coupler plate
29
30 alph = np.deg2rad(13.8) # angle pylons [degrees] 13.8
31
32 cables = 1
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33 cab_type = ["CZ", "CE"]
34
35 # Cable variables
36 alph_cs = np.deg2rad(15)
37 girders_cs = 2 * (2 * (hw / np.cos(alph_cs)) * tw + 2 * (wf * tf))
38 red_cs = 2 * (2 * (1100 / np.cos(alph_cs)) * 10 + 2 * (390 * 20)) - girders_cs
39 red_sw = red_cs * 1e-6 * 78.5
40
41 wd = 13.65 - red_sw #13.65 self weight to be resisted [kN/m]
42
43 # Curvature variables
44 v0 = 5.51 # at ends bridge [m]
45 v1 = 6.78 # at midspan bridge [m]
46 l = 103.2 # total length bridge [m]
47
48 # Locations pylons (pos. foundation)
49 zp = hp + 0.85
50 yp = hp * np.tan(alph) + 2.07
51
52
53 # plotting the bridge
54 plt_model = []
55 plt_model_deck = []
56 plt_model_deck_test = []
57
58 plt_g_ss = []
59 plt_g_ms = []
60 plt_c_ss = []
61 plt_c_ms = []
62 plt_tr_ss = []
63 plt_tr_ms = []
64 plt_pyl = []
65 plt_p_ss = []
66 plt_p_ms = []
67 plt_h_ss = []
68 plt_h_ms = []
69
70 # loading deck
71 sln = []
72 sar_ss = []
73 sar_ms = []
74 cab = []
75
76 # wind loads
77 sln_w_xx = []
78 sln_w_xx_p = []
79 sln_w_yy = []
80 sln_w_zz = []
81 sln_w_p = []
82
83 # add moments pylons
84 pnt_pyl = []
85
86
87 #region A) Girder elements side span
88 div_ss = hang_ss + 1
89
90 x1_g_ss = -51.5100000
91 x2_g_ss = -34.5100000
92 l_ss = abs(x1_g_ss - x2_g_ss)
93 y_g_ss = - (w / 2)
94 z1_g_ss = 5.51000000
95 z2_g_ss = 6.19000000
96 elnr_g_ss = 700
97
98 xh_ss_values = [i * (abs(x1_g_ss) - abs(x2_g_ss)) / div_ss + x1_g_ss for i in range(1,

div_ss)]
99

100 zg_ss_values = [
101 (4 * (v0 - v1) / (l ** 2)) * (i * (abs(x1_g_ss) - abs(x2_g_ss)) / (div_ss)) ** 2 +
102 (-4 * (v0 - v1) / l) * (i * (abs(x1_g_ss) - abs(x2_g_ss)) / (div_ss)) + v0
103 for i in range(1, div_ss)
104 ]
105
106 def print_lines_g_ss(start_num, sign_x, sign_y, sno):
107 output = ""
108 for i in range(div_ss):
109
110 if i < 1:
111
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112 elnr = start_num + i
113 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣5␣STYP␣'B'␣SNO␣{sno}␣TITL␣\"Line\""
114
115 x1 = sign_x * xh_ss_values[i - 1] if i > 0 else sign_x * x1_g_ss
116 y1 = sign_y * abs(y_g_ss)
117 z1 = abs(zg_ss_values[i - 1]) if i > 0 else abs(z1_g_ss)
118
119 x2 = sign_x * xh_ss_values[i] if i < hang_ss else sign_x * x2_g_ss
120 y2 = sign_y * abs(y_g_ss)
121 z2 = abs(zg_ss_values[i]) if i < hang_ss else abs(z2_g_ss)
122
123 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{

round(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
124 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
125 sln.append(elnr)
126
127 sln_w_yy.append(elnr)
128 sln_w_zz.append(elnr)
129
130 if sign_y == -1:
131 sln_w_xx.append(elnr)
132
133 else:
134 elnr = start_num + i
135 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣4␣STYP␣'B'␣SNO␣{sno}␣TITL␣\"Line\""
136
137 x1 = sign_x * xh_ss_values[i - 1] if i > 0 else sign_x * x1_g_ss
138 y1 = sign_y * abs(y_g_ss)
139 z1 = abs(zg_ss_values[i - 1]) if i > 0 else abs(z1_g_ss)
140
141 x2 = sign_x * xh_ss_values[i] if i < hang_ss else sign_x * x2_g_ss
142 y2 = sign_y * abs(y_g_ss)
143 z2 = abs(zg_ss_values[i]) if i < hang_ss else abs(z2_g_ss)
144
145 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{

round(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
146 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
147 sln.append(elnr)
148
149 sln_w_yy.append(elnr)
150 sln_w_zz.append(elnr)
151
152 if sign_y == -1:
153 sln_w_xx.append(elnr)
154
155 return output
156
157 result_g_ss = (
158 print_lines_g_ss(elnr_g_ss, -1, -1, 2) + # Negative xh_ms, negative y_g_ms
159 print_lines_g_ss(elnr_g_ss + div_ss, -1, 1, 1) + # Negative xh_ms, positive y_g_ms
160 print_lines_g_ss(elnr_g_ss + 2 * div_ss, 1, -1, 1) + # Positive xh_ms, negative

y_g_ms
161 print_lines_g_ss(elnr_g_ss + 3 * div_ss, 1, 1, 2) # Positive xh_ms, positive y_g_ms
162 )
163
164 #endregion
165
166
167 #region B) Girder elements main span
168 div_ms = hang_ms + 1
169 div_ms_p = hang_ms_p + 1
170 l_ms = l - 2 * l_ss # length main span [m]
171 l_ms_1 = 29.571
172
173 x1_g_ms = -34.51
174 x2_g_ms = -4.93
175 x3_g_ms = 34.51
176 y_g_ms = - (w / 2)
177 z1_g_ms = 6.19
178 z2_g_ms = 6.78
179 elnr_g_ms = 800
180
181 if con_ms == 1:
182 xh_ms_values = [i * (abs(x1_g_ms) - abs(x2_g_ms)) / div_ms + x1_g_ms for i in range

(1, div_ms)]
183
184 zg_ms_values = [
185 (4 * (v0 - v1) / (l ** 2)) * (i * (abs(x1_g_ms) - abs(x2_g_ms)) / (div_ms) + l_ss

) ** 2 +
186 (-4 * (v0 - v1) / l) * (i * (abs(x1_g_ms) - abs(x2_g_ms)) / (div_ms) + l_ss) + v0
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187 for i in range(1, div_ms)
188 ]
189 div = div_ms
190 ind = 1
191 elif con_ms == 0:
192 delt_x_ms = l_ms / (div_ms_p)
193 xh_ms_values = [(i * delt_x_ms) - (l_ms / 2) for i in range(1, div_ms_p)]
194 zg_ms_values = [
195 (4 * (v0 - v1) / (l ** 2)) * ((i * delt_x_ms) + l_ss) ** 2 +
196 (-4 * (v0 - v1) / l) * ((i * delt_x_ms)+ l_ss) + v0
197 for i in range(1, div_ms_p)
198 ]
199 div = div_ms_p
200 ind = 0
201
202 def print_lines_g_ms(start_num, sign_x, sign_y, sno, div, ind):
203 output = "" # Initialize an empty string to store the appended lines
204 for i in range(div):
205 elnr = start_num + i
206 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣4␣STYP␣'B'␣SNO␣{sno}␣TITL␣\"Line\""
207
208 if ind == 1:
209 x1 = sign_x * xh_ms_values[i - 1] if i > 0 else sign_x * x1_g_ms
210 y1 = sign_y * abs(y_g_ms)
211 z1 = abs(zg_ms_values[i - 1]) if i > 0 else abs(z1_g_ms)
212
213 x2 = sign_x * xh_ms_values[i] if i < (div - 1) else sign_x * x2_g_ms
214 y2 = sign_y * abs(y_g_ms)
215 z2 = abs(zg_ms_values[i]) if i < (div - 1) else abs(z2_g_ms)
216
217 if ind == 0:
218 x1 = xh_ms_values[i - 1] if i > 0 else x1_g_ms
219 y1 = sign_y * abs(y_g_ms)
220 z1 = abs(zg_ms_values[i - 1]) if i > 0 else z1_g_ms
221
222 x2 = xh_ms_values[i] if i < (div - 1) else x3_g_ms
223 y2 = sign_y * abs(y_g_ms)
224 z2 = abs(zg_ms_values[i]) if i < (div - 1) else z1_g_ms
225
226 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
227 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
228 sln.append(elnr)
229
230 sln_w_yy.append(elnr)
231 sln_w_zz.append(elnr)
232
233 if sign_y == -1:
234 sln_w_xx.append(elnr)
235
236 return output # Return the appended lines
237
238 def print_lines_g_ms_mid(start_num, sign_y, sno):
239 output = ""
240 elnr = start_num
241 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣4␣STYP␣'B'␣SNO␣{sno}␣TITL␣\"Line\""
242
243 x1 = x2_g_ms
244 y1 = sign_y * abs(y_g_ms)
245 z1 = z2_g_ms
246
247 x2 = -1*x2_g_ms
248 y2 = sign_y * abs(y_g_ms)
249 z2 = z2_g_ms
250
251 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
252 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
253 sln.append(elnr)
254
255 sln_w_yy.append(elnr)
256 sln_w_zz.append(elnr)
257 sln_w_xx_p.append(elnr)
258
259 return output # Return the appended lines
260
261 # Collect results from multiple calls
262 result_g_ms = ""
263
264 if con_ms == 1:
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265 result_g_ms = (
266 print_lines_g_ms(elnr_g_ms, -1, -1, 2, div, ind) + # Negative xh_ms, negative

y_g_ms
267 print_lines_g_ms(elnr_g_ms + div_ms, -1, 1, 1, div, ind) + # Negative xh_ms,

positive y_g_ms
268 print_lines_g_ms(elnr_g_ms + 2 * div_ms, 1, -1, 1, div, ind) + # Positive xh_ms,

negative y_g_ms
269 print_lines_g_ms(elnr_g_ms + 3 * div_ms, 1, 1, 2, div, ind) + # Positive xh_ms,

positive y_g_ms
270 print_lines_g_ms_mid(880, -1, 1) +
271 print_lines_g_ms_mid(881, 1, 2)
272 )
273
274 elif con_ms == 0:
275 result_g_ms = (
276 print_lines_g_ms(elnr_g_ms, 1, -1, 1, div, ind) + # Negative xh_ms, negative

y_g_ms
277 print_lines_g_ms(elnr_g_ms + div, 1, 1, 2, div, ind) # Negative xh_ms, positive

y_g_ms
278 )
279
280 #endregion
281
282
283 # Cable values (SA theory)
284 sno_mc = 6
285
286 v0_mid = (4 * (v0 - v1) / (l ** 2)) * (l / 2) ** 2 + (-4 * (v0 - v1) / l) * (l / 2) #

curvature mid span [m]
287 v0_bar = (4 * (v0 - v1) / (l ** 2)) * (l_ss) ** 2 + (-4 * (v0 - v1) / l) * (l_ss) #

curvature at pylons [m]
288 vy = 2.990 + c_d # position cable at midspan [m]
289
290 fz = zp - v1 # drape in vertical direction [m]
291 fy = yp - vy # drape in horizontal direction [m]
292
293 Hw = (wd * l_ms ** 2) / (8 * (fz + v0_mid - v0_bar))
294
295 Hw_p = (wd * l_ms ** 2) / (8 * (fz_p + v0_mid - v0_bar))
296
297
298 #region C) Cable elements side span
299 elnr_c_ss = 900
300 grp_ss = np.arange(21, 21 + div_ss + 1, 1)
301
302 # constants linear function for sidespan
303 a1_c_ss_lin = ((hp + 0.85) - v0) / l_ss
304 b1_c_ss_lin = v0
305
306 # constants curvature bridge
307 a_curv = 4 * (v0 - v1) / (l ** 2)
308 b_curv = -4 * (v0 - v1) / l
309
310 # x-values cables
311 delt_x_ss = (abs(x1_g_ss) - abs(x2_g_ss)) / (div_ss)
312
313 # y-values cables
314 ay_ss = (fy * fact1) / (l_ss ** 2)
315 yc_ss_values = [ay_ss * (i * delt_x_ss) ** 2 + vy
316 for i in range(1, div_ss)
317 ]
318
319 # z-values cables
320 zc_ss_values = [a1_c_ss_lin * (i * delt_x_ss) + b1_c_ss_lin -
321 ((wd / (2 * Hw)) * (i * delt_x_ss) * (l_ss - (i * delt_x_ss))) -
322 (a_curv * (i * delt_x_ss) ** 2 + b_curv * (i * delt_x_ss)) +
323 (v0_bar * (i * delt_x_ss) / l_ss)
324 for i in range(1, div_ss)
325 ]
326
327 def print_lines_c_ss(start_num, sign_x, sign_y, grp, sno):
328 output = "" # Initialize an empty string to store the appended lines
329 for i in range(div_ss):
330 elnr = start_num + i
331 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[i]}␣STYP␣'{cab_type[cables]}'␣SNO␣{sno}␣

TITL␣\"Line\""
332
333 x1 = sign_x * xh_ss_values[i - 1] if i > 0 else sign_x * x1_g_ss
334 y1 = sign_y * abs(yc_ss_values[i - 1]) if i > 0 else sign_y * vy
335 z1 = abs(zc_ss_values[i - 1]) if i > 0 else z1_g_ss
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336
337 x2 = sign_x * xh_ss_values[i] if i < hang_ss else sign_x * x2_g_ss
338 y2 = sign_y * abs(yc_ss_values[i]) if i < hang_ss else sign_y * yp
339 z2 = abs(zc_ss_values[i]) if i < hang_ss else zp
340
341 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
342 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
343
344 return output # Return the appended lines
345
346
347 # Collect results from multiple calls
348 result_c_ss = (
349 print_lines_c_ss(elnr_c_ss, -1, -1, grp_ss, sno_mc) + # Negative xh_ms, negative

y_g_ms
350 print_lines_c_ss(elnr_c_ss + div_ss, -1, 1, grp_ss, sno_mc) + # Negative xh_ms,

positive y_g_ms
351 print_lines_c_ss(elnr_c_ss + 2 * div_ss, 1, -1, grp_ss, sno_mc) + # Positive xh_ms,

negative y_g_ms
352 print_lines_c_ss(elnr_c_ss + 3 * div_ss, 1, 1, grp_ss, sno_mc) # Positive xh_ms,

positive y_g_ms
353 )
354 #endregion
355
356
357 #region D) Cable elements main span
358 elnr_c_ms = 1000
359
360 # constants curvature bridge
361 a_curv = 4 * (v0 - v1) / (l ** 2)
362 b_curv = -4 * (v0 - v1) / l
363
364 if con_ms == 1:
365 grp_ms = np.arange(21+div_ss, 21+div_ss+div_ms+1, 1)
366
367 delt_x_ms = (abs(x1_g_ms) - abs(x2_g_ms)) / (div_ms)
368
369 xc_ms_values = [(i * delt_x_ms) - (l_ms / 2) for i in range(1, div_ms)]
370
371 ay_ms = (fy * fact2) / (l_ms_1 ** 2)
372 yc_ms_values = [round(ay_ms * (l_ms_1 - (i * delt_x_ms)) ** 2 + vy, 3) for i in range

(1, div_ms)]
373
374 zc_ms_values = [zp - ((wd / (2 * Hw)) * (i * delt_x_ms) * (l_ms - (i * delt_x_ms)) -
375 (a_curv * (i * delt_x_ms + l_ss) ** 2 + b_curv * (i * delt_x_ms + l_ss)) +
376 v0_bar) for i in range(1, div_ms)]
377
378 div = div_ms
379 ind = 1
380
381 elif con_ms == 0:
382 grp_ms = np.arange(21+div_ss, 21+div_ss+div_ms_p, 1)
383
384 delt_x_ms = l_ms / (div_ms_p)
385
386 xc_ms_values = [(i * delt_x_ms) - (l_ms / 2) for i in range(1, div_ms_p)]
387
388 ay_ms = (fy * fact2) / ( (l_ms / 2) ** 2)
389 yc_ms_values = [round(ay_ms * ((l_ms / 2) - (i * delt_x_ms)) ** 2 + vy, 3) for i in

range(1, div_ms_p)]
390
391 zc_ms_values = [zp - ((wd / (2 * Hw_p)) * (i * delt_x_ms) * (l_ms - (i * delt_x_ms))

-
392 (a_curv * (i * delt_x_ms + l_ss) ** 2 + b_curv * (i * delt_x_ms + l_ss)) +
393 v0_bar) for i in range(1, div_ms_p)]
394
395 div = div_ms_p
396 ind = 0
397
398 def print_lines_c_ms(start_num, sign_x, sign_y, grp, sno, div, ind):
399 output = "" # Initialize an empty string to store the appended lines
400 for i in range(div):
401 elnr = start_num + i
402 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[i]}␣STYP␣'{cab_type[cables]}'␣SNO␣{sno}␣

TITL␣\"Line\""
403
404 if ind == 1:
405 x1 = sign_x * abs(xh_ms_values[i - 1]) if i > 0 else sign_x * abs(x1_g_ms)
406 y1 = sign_y * abs(yc_ms_values[i - 1]) if i > 0 else sign_y * yp
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407 z1 = abs(zc_ms_values[i - 1]) if i > 0 else zp
408
409 x2 = sign_x * abs(xh_ms_values[i]) if i < (div - 1) else sign_x * abs(

x2_g_ms)
410 y2 = sign_y * abs(yc_ms_values[i]) if i < (div - 1) else sign_y * vy
411 z2 = abs(zc_ms_values[i]) if i < (div - 1) else z2_g_ms
412
413 elif ind == 0:
414 x1 = xc_ms_values[i - 1] if i > 0 else x1_g_ms
415 y1 = sign_y * abs(yc_ms_values[i - 1]) if i > 0 else sign_y * yp
416 z1 = abs(zc_ms_values[i - 1]) if i > 0 else zp
417
418 x2 = xc_ms_values[i] if i < (div - 1) else x3_g_ms
419 y2 = sign_y * abs(yc_ms_values[i]) if i < (div - 1) else sign_y * yp
420 z2 = abs(zc_ms_values[i]) if i < (div - 1) else zp
421
422 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
423 plt_model.append([(x1,y1,z1), (x2,y2,z2)])
424
425 return output # Return the appended lines
426
427 def print_lines_c_ms_mid(start_num, sign_y, sno):
428 output = ""
429 elnr = start_num
430 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣30␣STYP␣'{cab_type[cables]}'␣SNO␣{sno}␣TITL␣\"Line

\""
431
432 x1 = x2_g_ms
433 y1 = sign_y * abs(vy)
434 z1 = z2_g_ms
435
436 x2 = -1*x2_g_ms
437 y2 = sign_y * abs(vy)
438 z2 = z2_g_ms
439
440 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
441 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
442
443 return output # Return the appended lines
444
445 # Collect results from multiple calls
446 if con_ms == 1:
447 result_c_ms = (
448 print_lines_c_ms(elnr_c_ms, -1, -1, grp_ms, sno_mc, div, ind) + # Negative xh_ms

, negative y_g_ms
449 print_lines_c_ms(elnr_c_ms + div, -1, 1, grp_ms, sno_mc, div, ind) + # Negative

xh_ms, positive y_g_ms
450 print_lines_c_ms(elnr_c_ms + 2 * div, 1, -1, grp_ms, sno_mc, div, ind) + #

Negative xh_ms, positive y_g_ms
451 print_lines_c_ms(elnr_c_ms + 3 * div, 1, 1, grp_ms, sno_mc, div, ind) +
452 print_lines_c_ms_mid(1080, -1, sno_mc) + # Negative xh_ms, positive y_g_ms
453 print_lines_c_ms_mid(1081, 1, sno_mc) # Negative xh_ms, positive y_g_ms
454 )
455 elif con_ms == 0:
456 result_c_ms = (
457 print_lines_c_ms(elnr_c_ms, 1, -1, grp_ms, sno_mc, div, ind) + # Negative xh_ms,

negative y_g_ms
458 print_lines_c_ms(elnr_c_ms + div, 1, 1, grp_ms, sno_mc, div, ind) # Negative

xh_ms, positive y_g_ms
459 )
460 #endregion
461
462
463 #region E) Through elements side span
464 el_nr_tr = 1200
465 grp_tr = np.arange(6, 8, 1)
466 sno_tr = np.arange(3, 5, 1)
467 sp_tr_ss = 0.599 # spacing throughs
468
469 x_tr_g_ss_values = [x1_g_ss] + xh_ss_values + [x2_g_ss]
470 z_tr_g_ss_values = [z1_g_ss] + zg_ss_values + [z2_g_ss]
471
472 def print_lines_tr_ss(start_num, sign_x, grp, sno, div_ss):
473
474 x_tr_ss_values = []
475 z_tr_ss_values = []
476 x_tr_ss_values_end = []
477 z_tr_ss_values_end = []
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478
479
480 # Generate x_tr_ss_values and z_tr_ss_values based on provided x_tr_g_ss_values and

z_tr_g_ss_values
481 for i in range(len(x_tr_g_ss_values) - 1):
482 nr_tr_ss_values = int(np.sqrt( (x_tr_g_ss_values[i + 1] - x_tr_g_ss_values[i]) **

2 +
483 (z_tr_g_ss_values[i + 1] - z_tr_g_ss_values[i]) ** 2)

/ sp_tr_ss)
484
485 del_x_tr_ss_values = (abs(x_tr_g_ss_values[i]) - abs(x_tr_g_ss_values[i + 1])) /

nr_tr_ss_values
486 del_z_tr_ss_values = (z_tr_g_ss_values[i + 1] - z_tr_g_ss_values[i]) /

nr_tr_ss_values
487
488 for j in range(nr_tr_ss_values):
489 x_tr_ss_values.append(x_tr_g_ss_values[i] + j * del_x_tr_ss_values)
490 z_tr_ss_values.append(z_tr_g_ss_values[i] + j * del_z_tr_ss_values)
491
492 x_tr_ss_values_end.append(del_x_tr_ss_values + abs(x_tr_g_ss_values[-1]))
493 z_tr_ss_values_end.append(z_tr_ss_values[-1])
494
495
496 # Generate lines based on the created x_tr_ss_values and z_tr_ss_values lists
497
498 output = "" # Initialize an empty string to store the appended lines
499
500 for i in range(len(x_tr_ss_values) - 1):
501 elnr = start_num + i
502
503 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[0]}␣STYP␣'N'␣SNO␣{sno[0]}␣TITL␣\"Line\""
504
505 x1 = sign_x * abs(x_tr_ss_values[i])
506 y1 = -y_g_ss # y1 set to vy as requested
507 z1 = z_tr_ss_values[i]
508
509 x2 = sign_x * abs(x_tr_ss_values[i])
510 y2 = y_g_ss # y2 set to vy as requested
511 z2 = z_tr_ss_values[i]
512
513 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣␣{round(z2,␣3)}"
514 plt_model.append([(x1, y1, z1), (x2, y2, z2)])
515
516 for j in range(2):
517
518 output += f"\nSLN␣␣␣␣␣␣{elnr␣+␣j␣+␣1}␣GRP␣{grp[0]}␣STYP␣'N'␣SNO␣{sno[0]}␣TITL␣\"

Line\""
519
520 x1 = sign_x * x_tr_ss_values_end[0]
521 y1 = -y_g_ss # y1 set to vy as requested
522 z1 = z_tr_ss_values_end[0]
523
524 x2 = sign_x * x_tr_ss_values_end[0]
525 y2 = y_g_ss # y2 set to vy as requested
526 z2 = z_tr_ss_values_end[0]
527
528 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣␣{round(z2,␣3)}"
529 plt_model.append([(x1, y1, z1), (x2, y2, z2)])
530
531
532 return output # Return the appended lines
533
534
535 result_tr_ss = (
536 print_lines_tr_ss(el_nr_tr, -1, grp_tr, sno_tr, div_ss) + # Negative xh_ms, negative

y_g_ms
537 print_lines_tr_ss(el_nr_tr + 100, 1, grp_tr, sno_tr, div_ss) # Negative xh_ms,

positive y_g_ms
538 )
539 #endregion
540
541
542 #region F) Through elements main span
543 el_nr_tr_ms = 1600
544 sp_tr_ms = 0.576 # spacing throughs
545
546 if con_ms == 1:
547 x_tr_g_ms_values = [x1_g_ms] + xh_ms_values + [x2_g_ms]
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548 z_tr_g_ms_values = [z1_g_ms] + zg_ms_values + [z2_g_ms]
549 x_tr_g_ms_values_mid = [x2_g_ms, abs(x2_g_ms)]
550 z_tr_g_ms_values_mid = [z2_g_ms, z2_g_ms]
551
552 if con_ms == 0:
553 x_tr_g_ms_values = [x1_g_ms] + xh_ms_values + [x3_g_ms]
554 z_tr_g_ms_values = [z1_g_ms] + zg_ms_values + [z1_g_ms]
555
556
557 def print_lines_tr_ms(start_num, sign_x, grp, sno, x_tr_g_ms_values, z_tr_g_ms_values,

div):
558
559 x_tr_ms_values = []
560 z_tr_ms_values = []
561
562 # Generate x_tr_ss_values and z_tr_ss_values based on provided x_tr_g_ss_values and

z_tr_g_ss_values
563 for i in range(len(x_tr_g_ms_values) - 1):
564 nr_tr_ms_values = int(np.sqrt((x_tr_g_ms_values[i] - x_tr_g_ms_values[i + 1]) **

2 +
565 (z_tr_g_ms_values[i] - z_tr_g_ms_values[i + 1]) ** 2)

/ sp_tr_ms)
566
567 del_x_tr_ms_values = abs((x_tr_g_ms_values[i] - x_tr_g_ms_values[i + 1])) /

nr_tr_ms_values
568
569
570 del_z_tr_ms_values = abs((z_tr_g_ms_values[i] - z_tr_g_ms_values[i + 1]) /

nr_tr_ms_values)
571
572 for j in range(nr_tr_ms_values + 1):
573 x_tr_ms_values.append(x_tr_g_ms_values[i] + j * del_x_tr_ms_values)
574 if con_ms == 1:
575 z_tr_ms_values.append(z_tr_g_ms_values[i] + j * del_z_tr_ms_values)
576 elif con_ms == 0 and x_tr_g_ms_values[i + 1] <= 0:
577 z_tr_ms_values.append(z_tr_g_ms_values[i] + j * del_z_tr_ms_values)
578 else:
579 z_tr_ms_values.append(z_tr_g_ms_values[i] - j * del_z_tr_ms_values)
580
581
582 # Generate lines based on the created x_tr_ss_values and z_tr_ss_values lists
583 # Initialize an empty string to store the appended lines
584
585 output = ""
586
587 if con_ms == 0:
588 output += f"\nSLN␣␣␣␣␣␣{el_nr_tr_ms␣+␣750}␣GRP␣{grp[0]}␣STYP␣'N'␣SNO␣{sno[0]}␣

TITL␣\"Line\""
589 output += f"\nSLNB␣X1␣␣{round(abs(x1_g_ms),␣3)}␣␣{round(y_g_ms,␣3)}␣␣␣{round(

z1_g_ms,␣3)}␣X2␣␣{round(abs(x1_g_ms),␣3)}␣␣{round(abs(y_g_ms),␣3)}␣␣␣␣␣{round
(z1_g_ms,␣3)}"

590
591 for i in range(len(x_tr_ms_values) - 1):
592
593 elnr = start_num + i
594
595 # Check if the index of x_tr_ss_values equals any x_tr_ss_values[j] / len(div_ss)
596 if con_ms == 0:
597 for j in range(div):
598 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[0]}␣STYP␣'N'␣SNO␣{sno[0]}␣TITL␣\"

Line\""
599 break
600 # if i == int((len(x_tr_ms_values) / div)) * (j + 1) or i == (int((len(

x_tr_ms_values) / div)) * (j + 1) + 1) or i == (int((len(
x_tr_ms_values) / div)) * (j + 1) + -1) or i == 0 or i == 1:

601 # output += f"\nSLN {elnr} GRP {grp[1]} STYP 'N' SNO {sno[1]}
TITL \"Line\""

602 # break # Exit the loop once a match is found
603 # else:
604 # output += f"\nSLN {elnr} GRP {grp[0]} STYP 'N' SNO {sno[0]}

TITL \"Line\""
605 # break
606
607 elif con_ms == 1:
608 for j in range(div):
609 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[0]}␣STYP␣'N'␣SNO␣{sno[0]}␣TITL␣\"

Line\""
610 break
611
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612 # if i == int((len(x_tr_ms_values) / (div / 2 + 1))) * (j + 1) or i == (
int((len(x_tr_ms_values) / (div / 2 + 1))) * (j + 1) + 1) or i == (
int((len(x_tr_ms_values) / (div / 2 + 1))) * (j + 1) + -1) or i == 0
or i == 1:

613 # output += f"\nSLN {elnr} GRP {grp[1]} STYP 'N' SNO {sno[1]}
TITL \"Line\""

614 # break # Exit the loop once a match is found
615 # else:
616 # output += f"\nSLN {elnr} GRP {grp[0]} STYP 'N' SNO {sno[0]}

TITL \"Line\""
617 # break
618
619 x1 = sign_x * x_tr_ms_values[i]
620 y1 = -y_g_ss
621 z1 = z_tr_ms_values[i]
622
623
624 x2 = sign_x * x_tr_ms_values[i]
625 y2 = y_g_ss
626 z2 = z_tr_ms_values[i]
627
628 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣␣{round(z2,␣3)}"
629 plt_model.append([(x1, y1, z1), (x2, y2, z2)])
630 plt_tr_ms.append([(x1, y1, z1), (x2, y2, z2)])
631
632 return output # Return the appended lines
633
634
635 def print_lines_tr_ms_mid(elnr, grp, sno, x_tr_g_ms_values_mid , z_tr_g_ms_values_mid):
636 output = ""
637 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[0]}␣STYP␣'N'␣SNO␣{sno[0]}␣TITL␣\"Line\""
638
639 x1 = x_tr_g_ms_values_mid[0]
640 y1 = -y_g_ss
641 z1 = z_tr_g_ms_values_mid[0]
642
643
644 x2 = x_tr_g_ms_values_mid[0]
645 y2 = y_g_ss
646 z2 = z_tr_g_ms_values_mid[0]
647
648 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣␣␣␣␣␣{round(z2,␣3)}"
649 plt_model.append([(x1, y1, z1), (x2, y2, z2)])
650
651
652 output += f"\nSLN␣␣␣␣␣␣{elnr␣+␣1}␣GRP␣{grp[0]}␣STYP␣'N'␣SNO␣{sno[0]}␣TITL␣\"Line\""
653
654 x1 = x_tr_g_ms_values_mid[1]
655 y1 = -y_g_ss
656 z1 = z_tr_g_ms_values_mid[1]
657
658
659 x2 = x_tr_g_ms_values_mid[1]
660 y2 = y_g_ss
661 z2 = z_tr_g_ms_values_mid[1]
662
663 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣␣␣␣␣␣{round(z2,␣3)}"
664
665 plt_model.append([(x1, y1, z1), (x2, y2, z2)])
666 return output
667
668
669 if con_ms == 1:
670 result_tr_ms = (
671 print_lines_tr_ms(el_nr_tr_ms, -1, grp_tr, sno_tr, x_tr_g_ms_values,

z_tr_g_ms_values, div_ms) + # Negative xh_ms, negative y_g_ms
672 print_lines_tr_ms(el_nr_tr_ms + 200, 1, grp_tr, sno_tr, x_tr_g_ms_values,

z_tr_g_ms_values, div_ms) +
673 print_lines_tr_ms(el_nr_tr_ms + 400, 1, grp_tr, sno_tr, x_tr_g_ms_values_mid ,

z_tr_g_ms_values_mid , div_ms) + # Negative xh_ms, positive y_g_ms
674 print_lines_tr_ms_mid(el_nr_tr_ms + 450, grp_tr, sno_tr, x_tr_g_ms_values_mid ,

z_tr_g_ms_values_mid)
675 )
676 elif con_ms == 0:
677 result_tr_ms = (
678 print_lines_tr_ms(el_nr_tr_ms, 1, grp_tr, sno_tr, x_tr_g_ms_values,

z_tr_g_ms_values, div_ms_p) # Negative xh_ms, positive y_g_ms
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679 )
680 #endregion
681
682
683 #region G) Pylon elements
684 elnr_pyl = 2600
685 sno_pyl = '8.9'
686 grp_pyl = []
687
688 def print_lines_pyl(start_num, sign_x, sign_y, sno):
689 output = "" # Initialize an empty string to store the appended lines
690
691 elnr = start_num
692 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{start_num␣-␣2300}␣STYP␣'N'␣SNO␣'{sno}'␣TITL␣\"Line

\""
693
694 x1 = sign_x * x1_g_ms
695 y1 = sign_y * 2.07
696 z1 = 0.85
697
698 x2 = sign_x * x1_g_ms
699 y2 = sign_y*yp
700 z2 = zp
701
702 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
703 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
704 plt_pyl.append([(x1,y1,z1),(x2,y2,z2)])
705
706 sln_w_p.append(start_num)
707 pnt_pyl.append([x2, y2, z2])
708 grp_pyl.append(start_num - 2300)
709
710
711 return output # Return the appended lines
712
713
714 # Collect results from multiple calls
715 result_pyl = (
716 print_lines_pyl(elnr_pyl + 1, -1, -1, sno_pyl) + # Negative xh_ms, negative y_g_ms
717 print_lines_pyl(elnr_pyl + 2, -1, 1, sno_pyl) + # Negative xh_ms, positive y_g_ms
718 print_lines_pyl(elnr_pyl + 3, 1, -1, sno_pyl) + # Positive xh_ms, negative y_g_ms
719 print_lines_pyl(elnr_pyl + 4, 1, 1, sno_pyl) # Positive xh_ms, positive y_g_ms
720 )
721
722 #endregion
723
724
725 #region H) Plate coupling elements side span
726 sno_p = 20
727 elnr_p_ss = 2700
728
729 def print_lines_p_ss(start_num, sign_x, sign_y, sno):
730 output = "␣" # Initialize an empty string to store the appended lines
731 for i in range(hang_ss):
732 elnr = start_num + i
733
734 x1 = sign_x * xh_ss_values[i]
735 y1 = sign_y * abs(vy)
736 z1 = zg_ss_values[i]
737
738 x2 = sign_x * xh_ss_values[i]
739 y2 = sign_y * abs(y_g_ss)
740 z2 = zg_ss_values[i]
741
742 output += f"\n␣SPT␣{elnr}␣X␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}"
743 output += f"\n␣SPT␣{elnr␣+␣50}␣X␣{round(x2,␣3)}␣␣{round(y2,␣3)}␣␣␣{round(z2,␣3)}"
744 output += f"\n␣SPTP␣TYPE␣PPMM␣REF␣{elnr}"
745
746 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
747 plt_p_ss.append([(x1,y1,z1),(x2,y2,z2)])
748
749 return output # Return the appended lines
750
751
752 # Collect results from multiple calls
753 result_p_ss = (
754 print_lines_p_ss(elnr_p_ss, -1, -1, sno_p) + # Negative xh_ms, negative y_g_ms
755 print_lines_p_ss(elnr_p_ss + div_ss, -1, 1, sno_p) + # Negative xh_ms, positive

y_g_ms
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756 print_lines_p_ss(elnr_p_ss + 2 * div_ss, 1, -1, sno_mc) + # Positive xh_ms, negative
y_g_ms

757 print_lines_p_ss(elnr_p_ss + 3 * div_ss, 1, 1, sno_mc) # Positive xh_ms, positive
y_g_ms

758 )
759
760 #endregion
761
762
763 #region I) Plate coupling elements main span
764 sno_p = 20
765 elnr_p_ms = 2800
766
767 if con_ms == 1:
768 ind = hang_ms
769 x_p_ms = [x2_g_ms, abs(x2_g_ms)]
770 z_p_ms = [z2_g_ms, abs(z2_g_ms)]
771
772 elif con_ms == 0:
773 ind = hang_ms_p
774
775 def print_lines_p_ms(start_num, sign_x, sign_y, sno, ind, xh_ms_values, zg_ms_values):
776 output = "" # Initialize an empty string to store the appended lines
777 for i in range(ind):
778 elnr = start_num + i
779
780 if con_ms == 1:
781 x1 = sign_x * xh_ms_values[i]
782 y1 = sign_y * abs(vy)
783 z1 = zg_ms_values[i]
784
785 x2 = sign_x * xh_ms_values[i]
786 y2 = sign_y * abs(y_g_ms)
787 z2 = zg_ms_values[i]
788
789
790 elif con_ms == 0:
791 x1 = sign_x * xh_ms_values[i]
792 y1 = sign_y * abs(vy)
793 z1 = zg_ms_values[i]
794
795 x2 = sign_x * xh_ms_values[i]
796 y2 = sign_y * abs(y_g_ms)
797 z2 = zg_ms_values[i]
798
799
800 output += f"\n␣SPT␣{elnr}␣X␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}"
801 output += f"\n␣SPT␣{elnr␣+␣50}␣X␣{round(x2,␣3)}␣␣{round(y2,␣3)}␣␣␣{round(z2,␣3)}"
802 output += f"\n␣SPTP␣TYPE␣PPMM␣REF␣{elnr}"
803
804 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
805 plt_p_ms.append([(x1,y1,z1),(x2,y2,z2)])
806 return output # Return the appended lines
807
808
809 # Collect results from multiple calls
810 if con_ms == 1:
811 result_p_ms = (
812 print_lines_p_ms(elnr_p_ms, -1, -1, sno_p, ind, xh_ms_values, zg_ms_values) + #

Negative xh_ms, negative y_g_ms
813 print_lines_p_ms(elnr_p_ms + 20, -1, 1, sno_p, ind, xh_ms_values, zg_ms_values) +

# Negative xh_ms, positive y_g_ms
814 print_lines_p_ms(elnr_p_ms + 40, 1, -1, sno_p, ind, xh_ms_values, zg_ms_values) +
815 print_lines_p_ms(elnr_p_ms + 60, 1, 1, sno_p, ind, xh_ms_values, zg_ms_values) +
816 print_lines_p_ms(elnr_p_ms + 80, 1, -1, sno_p, 2, x_p_ms, z_p_ms) +
817 print_lines_p_ms(elnr_p_ms + 100, 1, 1, sno_p, 2, x_p_ms, z_p_ms) # Positive

xh_ms, positive y_g_ms
818 )
819 if con_ms == 0:
820 result_p_ms = (
821 print_lines_p_ms(elnr_p_ms, 1, -1, sno_p, ind, xh_ms_values, zg_ms_values) +
822 print_lines_p_ms(elnr_p_ms + 20, 1, 1, sno_p, ind, xh_ms_values, zg_ms_values)
823 )
824
825 #endregion
826
827
828 #region J) Vertical hangers side span
829 elnr_h_ss = 3000
830 grp_h_ss = np.arange(41, 41 + hang_ss, 1)
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831 sno_h_ss = 7
832
833
834 def print_lines_h_ss(start_num, sign_x, sign_y, grp, sno):
835 output = "" # Initialize an empty string to store the appended lines
836 for i in range(hang_ss):
837 elnr = start_num + i
838 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[i]}␣STYP␣'{cab_type[cables]}'␣␣SNO␣{sno}␣

TITL␣\"Line\""
839
840 x1 = sign_x * xh_ss_values[i]
841 y1 = sign_y * abs(vy)
842 z1 = zg_ss_values[i]
843
844 x2 = sign_x * xh_ss_values[i]
845 y2 = sign_y * yc_ss_values[i]
846 z2 = zc_ss_values[i]
847
848 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
849 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
850
851 return output # Return the appended lines
852
853
854 # Collect results from multiple calls
855 result_h_ss = (
856 print_lines_h_ss(elnr_h_ss, -1, -1, grp_h_ss, sno_mc) + # Negative xh_ms, negative

y_g_ms
857 print_lines_h_ss(elnr_h_ss + div_ss, -1, 1, grp_h_ss, sno_mc) + # Negative xh_ms,

positive y_g_ms
858 print_lines_h_ss(elnr_h_ss + 2 * div_ss, 1, -1, grp_h_ss, sno_mc) + # Positive xh_ms

, negative y_g_ms
859 print_lines_h_ss(elnr_h_ss + 3 * div_ss, 1, 1, grp_h_ss, sno_mc) # Positive xh_ms,

positive y_g_ms
860 )
861 #endregion
862
863
864 #region K) Vertical hangers main span
865 elnr_h_ms = 3200
866 sno_h_ms = 7
867
868
869 if con_ms == 1:
870 grp_h_ms = np.arange(41 + hang_ss, 41 + hang_ss + hang_ms, 1)
871 ind = hang_ms
872 else:
873 grp_h_ms = np.arange(41 + hang_ss, 41 + hang_ss + hang_ms_p, 1)
874 ind = hang_ms_p
875
876 def print_lines_h_ms(start_num, sign_x, sign_y, grp, sno, ind):
877 output = "" # Initialize an empty string to store the appended lines
878
879 for i in range(ind):
880 elnr = start_num + i
881 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣{grp[i]}␣STYP␣'{cab_type[cables]}'␣SNO␣{sno}␣

TITL␣\"Line\""
882
883 if con_ms == 1:
884 x1 = sign_x * xh_ms_values[i]
885 y1 = sign_y * abs(vy)
886 z1 = zg_ms_values[i]
887
888 x2 = sign_x * xh_ms_values[i]
889 y2 = sign_y * yc_ms_values[i]
890 z2 = zc_ms_values[i]
891
892 elif con_ms == 0:
893 x1 = xh_ms_values[i]
894 y1 = sign_y * abs(vy)
895 z1 = zg_ms_values[i]
896
897 x2 = xh_ms_values[i]
898 y2 = sign_y * yc_ms_values[i]
899 z2 = zc_ms_values[i]
900
901 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round

(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
902 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
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903
904 return output # Return the appended lines
905
906 # Collect results from multiple calls
907 if con_ms == 1:
908 result_h_ms = (
909 print_lines_h_ms(elnr_h_ms, -1, -1, grp_h_ms, sno_h_ms, ind) + # Negative xh_ms,

negative y_g_ms
910 print_lines_h_ms(elnr_h_ms + 50, -1, 1, grp_h_ms, sno_h_ms, ind) + # Negative

xh_ms, positive y_g_ms
911 print_lines_h_ms(elnr_h_ms + 100, 1, -1, grp_h_ms, sno_h_ms, ind) + # Positive

xh_ms, negative y_g_ms
912 print_lines_h_ms(elnr_h_ms + 150, 1, 1, grp_h_ms, sno_h_ms, ind) # Positive

xh_ms, positive y_g_ms
913 )
914 elif con_ms == 0:
915 result_h_ms = (
916 print_lines_h_ms(elnr_h_ms, 1, -1, grp_h_ms, sno_h_ms, ind) + # Negative xh_ms,

negative y_g_ms
917 print_lines_h_ms(elnr_h_ms + 50, 1, 1, grp_h_ms, sno_h_ms, ind) # Negative xh_ms,

positive y_g_ms
918 )
919
920 #endregion
921
922
923 #region L) Deck plate elements side span
924 elnr_d_pl_ss1 = np.arange(1, div_ss + 1, 1)
925 elnr_d_pl_ss2 = np.arange(div_ss + 1, div_ss * 2 + 1, 1)
926 grp_d_pl_ss1 = np.arange(10, 10 + div_ss + 1, 1)
927 grp_d_pl_ss2 = np.arange(10 + div_ss, 10 + div_ss * 2 + 1, 1)
928
929
930 def print_lines_d_pl_ss(start_num, sign_x, grp):
931 output = "" # Initialize an empty string to store the appended lines
932 for i in range(div_ss):
933 elnr = start_num
934 output += f"\nSAR␣{elnr[i]}␣GRP␣{grp[i]}␣MNO␣1␣NRA␣7␣T␣10␣CB␣0␣CT␣0␣MCTL␣REGM␣

TITL␣\"Area\"\nSARB␣OUT"
935
936 x1 = sign_x * abs(xh_ss_values[i - 1]) if i > 0 else sign_x * abs(x1_g_ss)
937 y1 = - abs(y_g_ss)
938 z1 = zg_ss_values[i - 1] if i > 0 else z1_g_ss
939
940 x2 = sign_x * abs(xh_ss_values[i]) if i < (div_ss -1) else sign_x * abs(x2_g_ss)
941 y2 = - abs(y_g_ss)
942 z2 = zg_ss_values[i] if i < (div_ss -1) else z2_g_ss
943
944 x3 = sign_x * abs(xh_ss_values[i]) if i < (div_ss -1) else sign_x * abs(x2_g_ss)
945 y3 = abs(y_g_ss)
946 z3 = zg_ss_values[i] if i < (div_ss -1) else z2_g_ss
947
948 x4 = sign_x * abs(xh_ss_values[i - 1]) if i > 0 else sign_x * abs(x1_g_ss)
949 y4 = abs(y_g_ss)
950 z4 = zg_ss_values[i - 1] if i > 0 else z1_g_ss
951
952 output += (f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{

round(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}\nSARB␣OUT"
953 f"\nSLNB␣X1␣{round(x2,␣3)}␣{round(y2,␣3)}␣{round(z2,␣3)}␣X2␣{round(x3,␣3)}␣{round

(y3,␣3)}␣␣{round(z3,␣3)}\nSARB␣OUT"
954 f"\nSLNB␣X1␣{round(x3,␣3)}␣{round(y3,␣3)}␣{round(z3,␣3)}␣X2␣{round(x4,␣3)}␣{round

(y4,␣3)}␣␣{round(z4,␣3)}\nSARB␣OUT"
955 f"\nSLNB␣X1␣{round(x4,␣3)}␣{round(y4,␣3)}␣{round(z4,␣3)}␣X2␣{round(x1,␣3)}␣{round

(y1,␣3)}␣␣{round(z1,␣3)}")
956
957 plt_model_deck.append([(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4)])
958 sar_ss.append(elnr[i])
959
960 return output # Return the appended lines
961
962 result_d_pl_ss = (
963 print_lines_d_pl_ss(elnr_d_pl_ss1, -1, grp_d_pl_ss1 + 100) +
964 print_lines_d_pl_ss(elnr_d_pl_ss2, 1, grp_d_pl_ss2 + 100)
965 )
966
967
968
969 #endregion
970
971
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972 #region M) Deck plate elements main span
973
974 if con_ms == 1:
975 div = div_ms
976 x_d_pl_ms = [x2_g_ms, abs(x2_g_ms)]
977 z_d_pl_ms = [z2_g_ms, abs(z2_g_ms)]
978
979 grp_d_pl_ms1 = np.arange(10 + div_ss * 2, 10 + div_ss * 2 + div_ms + 1, 1)
980 grp_d_pl_ms2 = np.arange(10 + div_ss * 2 + div_ms, 10 + div_ss * 2 + div_ms * 2, 1)
981
982 elnr_d_pl_ms1 = np.arange(div_ss * 2 + 1, div_ss * 2 + div_ms + 1, 1)
983 elnr_d_pl_ms2 = np.arange(div_ss * 2 + div_ms + 1, div_ss * 2 + div_ms * 2 + 1, 1)
984
985
986 elif con_ms == 0:
987 div = hang_ms_p + 1
988 grp_d_pl_ms = np.arange(10 + div_ss * 2, 10 + div_ss * 2 + div_ms_p + 1, 1)
989 elnr_d_pl_ms = np.arange(div_ss * 2 + 1, div_ss * 2 + div_ms_p + 1, 1)
990
991 def print_lines_d_pl_ms(start_num, sign_x, grp, div, xh_ms_values, zg_ms_values):
992 output = "" # Initialize an empty string to store the appended lines
993 for i in range(div):
994 elnr = start_num
995 output += f"\nSAR␣{elnr[i]}␣GRP␣{grp[i]}␣MNO␣1␣NRA␣7␣T␣10␣CB␣0␣CT␣0␣MCTL␣REGM␣

TITL␣\"Area\"\nSARB␣OUT"
996
997 if con_ms == 1:
998 x1 = sign_x * abs(xh_ms_values[i - 1]) if i > 0 else sign_x * abs(x1_g_ms)
999 y1 = - abs(y_g_ms)

1000 z1 = zg_ms_values[i - 1] if i > 0 else z1_g_ms
1001
1002 x2 = sign_x * abs(xh_ms_values[i]) if i < (div_ms -1) else sign_x * abs(

x2_g_ms)
1003 y2 = - abs(y_g_ms)
1004 z2 = zg_ms_values[i] if i < (div_ms -1) else z2_g_ms
1005
1006 x3 = sign_x * abs(xh_ms_values[i]) if i < (div_ms -1) else sign_x * abs(

x2_g_ms)
1007 y3 = abs(y_g_ms)
1008 z3 = zg_ms_values[i] if i < (div_ms -1) else z2_g_ms
1009
1010 x4 = sign_x * abs(xh_ms_values[i - 1]) if i > 0 else sign_x * abs(x1_g_ms)
1011 y4 = abs(y_g_ms)
1012 z4 = zg_ms_values[i - 1] if i > 0 else z1_g_ms
1013
1014 elif con_ms == 0:
1015 x1 = xh_ms_values[i - 1] if i > 0 else x1_g_ms
1016 y1 = - abs(y_g_ms)
1017 z1 = zg_ms_values[i - 1] if i > 0 else z1_g_ms
1018
1019 x2 = xh_ms_values[i] if i < (div_ms_p -1) else x3_g_ms
1020 y2 = - abs(y_g_ms)
1021 z2 = zg_ms_values[i] if i < (div_ms_p -1) else z1_g_ms
1022
1023 x3 = xh_ms_values[i] if i < (div_ms_p -1) else x3_g_ms
1024 y3 = abs(y_g_ms)
1025 z3 = zg_ms_values[i] if i < (div_ms_p -1) else z1_g_ms
1026
1027 x4 = xh_ms_values[i - 1] if i > 0 else x1_g_ms
1028 y4 = abs(y_g_ms)
1029 z4 = zg_ms_values[i - 1] if i > 0 else z1_g_ms
1030
1031
1032 output += (f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{

round(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}\nSARB␣OUT"
1033 f"\nSLNB␣X1␣{round(x2,␣3)}␣{round(y2,␣3)}␣{round(z2,␣3)}␣X2␣{round(x3,␣3)}␣{round

(y3,␣3)}␣␣{round(z3,␣3)}\nSARB␣OUT"
1034 f"\nSLNB␣X1␣{round(x3,␣3)}␣{round(y3,␣3)}␣{round(z3,␣3)}␣X2␣{round(x4,␣3)}␣{round

(y4,␣3)}␣␣{round(z4,␣3)}\nSARB␣OUT"
1035 f"\nSLNB␣X1␣{round(x4,␣3)}␣{round(y4,␣3)}␣{round(z4,␣3)}␣X2␣{round(x1,␣3)}␣{round

(y1,␣3)}␣␣{round(z1,␣3)}")
1036
1037 plt_model_deck.append([(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4)])
1038 sar_ms.append(elnr[i])
1039
1040 return output # Return the appended lines
1041
1042
1043 def print_lines_d_pl_ms_mid(start_num, sign_x, grp, div, xh_ms_values, zg_ms_values):
1044 output = "" # Initialize an empty string to store the appended lines
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1045 for i in range(1):
1046 elnr = start_num + i
1047 output += f"\nSAR␣{elnr}␣GRP␣{grp}␣MNO␣1␣NRA␣7␣T␣10␣CB␣0␣CT␣0␣MCTL␣REGM␣TITL␣\"

Area\"\nSARB␣OUT"
1048
1049 x1 = xh_ms_values[0]
1050 y1 = - abs(y_g_ms)
1051 z1 = zg_ms_values[0]
1052
1053 x2 = xh_ms_values[1]
1054 y2 = - abs(y_g_ms)
1055 z2 = zg_ms_values[1]
1056
1057 x3 = xh_ms_values[1]
1058 y3 = abs(y_g_ms)
1059 z3 = zg_ms_values[1]
1060
1061 x4 = xh_ms_values[0]
1062 y4 = abs(y_g_ms)
1063 z4 = zg_ms_values[0]
1064
1065 output += (f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{

round(x2,␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}\nSARB␣OUT"
1066 f"\nSLNB␣X1␣{round(x2,␣3)}␣{round(y2,␣3)}␣{round(z2,␣3)}␣X2␣{round(x3,␣3)}␣{round

(y3,␣3)}␣␣{round(z3,␣3)}\nSARB␣OUT"
1067 f"\nSLNB␣X1␣{round(x3,␣3)}␣{round(y3,␣3)}␣{round(z3,␣3)}␣X2␣{round(x4,␣3)}␣{round

(y4,␣3)}␣␣{round(z4,␣3)}\nSARB␣OUT"
1068 f"\nSLNB␣X1␣{round(x4,␣3)}␣{round(y4,␣3)}␣{round(z4,␣3)}␣X2␣{round(x1,␣3)}␣{round

(y1,␣3)}␣␣{round(z1,␣3)}")
1069
1070 plt_model_deck.append([(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4)])
1071 sar_ms.append(elnr_d_pl_ms2[-1] + 1)
1072
1073 return output # Return the appended lines
1074
1075
1076 if con_ms == 1:
1077 result_d_pl_ms = (
1078 print_lines_d_pl_ms(elnr_d_pl_ms1, -1, grp_d_pl_ms1 + 100, div, xh_ms_values,

zg_ms_values) +
1079 print_lines_d_pl_ms(elnr_d_pl_ms2, 1, grp_d_pl_ms2 + 100, div, xh_ms_values,

zg_ms_values) +
1080 print_lines_d_pl_ms_mid(elnr_d_pl_ms2[-1] + 1, 1, grp_d_pl_ms2[-1] + 1 + 100,

div, x_d_pl_ms, z_d_pl_ms)
1081 )
1082 elif con_ms == 0:
1083 result_d_pl_ms = (
1084 print_lines_d_pl_ms(elnr_d_pl_ms, 1, grp_d_pl_ms + 100, div, xh_ms_values,

zg_ms_values)
1085 )
1086 #endregion
1087
1088
1089 #region N) Coupling elements pylons
1090 elnr_c_pyl = 3400
1091
1092 def print_lines_c_pyl(start_num, sign_x, sign_y):
1093 output = "" # Initialize an empty string to store the appended lines
1094
1095 elnr = start_num
1096 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣8␣STYP␣'N'␣SNO␣5␣FIXA␣'MYMZ'␣FIXE␣'MYMZ'␣TITL␣\"

Line\""
1097
1098 x1 = sign_x * abs(x2_g_ss)
1099 y1 = sign_y * abs(y_g_ss)
1100 z1 = z2_g_ss
1101
1102 x2 = sign_x * abs(x2_g_ss)
1103 y2 = sign_y * abs(y_g_ss)
1104 z2 = 5.840
1105
1106 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
1107 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
1108
1109 output += f"\nSLN␣␣␣␣␣␣{elnr␣+␣1}␣GRP␣8␣STYP␣'N'␣SNO␣10␣TITL␣\"Line\""
1110
1111 x1 = sign_x * abs(x2_g_ss)
1112 y1 = sign_y * (abs(np.tan(alph) * (5.84-0.85)) + 2.07)
1113 z1 = 5.840
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1114
1115 x2 = sign_x * abs(x2_g_ss)
1116 y2 = sign_y * abs(y_g_ss)
1117 z2 = 5.840
1118
1119 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
1120 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
1121
1122
1123 output += f"\nSLN␣␣␣␣␣␣{elnr␣+␣2}␣GRP␣8␣STYP␣'N'␣SNO␣5␣FIXA␣'MYMZ'␣FIXE␣'MYMZ'␣TITL␣

\"Line\""
1124
1125 x1 = sign_x * abs(x2_g_ss)
1126 y1 = sign_y * abs(y_g_ss)
1127 z1 = z2_g_ss
1128
1129 x2 = sign_x * abs(x2_g_ss)
1130 y2 = sign_y * (abs(np.tan(alph) * (5.84-0.85)) + 2.07)
1131 z2 = 5.840
1132
1133 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
1134 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
1135
1136 return output # Return the appended lines
1137
1138 # Collect results from multiple calls
1139 result_c_pyl = (
1140 print_lines_c_pyl(elnr_c_pyl, -1, -1) + # Negative xh_ms, negative y_g_ms
1141 print_lines_c_pyl(elnr_c_pyl + 10, -1, 1) + # Negative xh_ms, positive y_g_ms
1142 print_lines_c_pyl(elnr_c_pyl + 20, 1, -1) + # Positive xh_ms, negative y_g_ms
1143 print_lines_c_pyl(elnr_c_pyl + 30, 1, 1) # Positive xh_ms, positive y_g_ms
1144 )
1145
1146 #endregion
1147
1148
1149 #region O) Cable pylons
1150 elnr_cab_pyl = 3500
1151
1152 def print_lines_cab_pyl(start_num, sign_x):
1153 elnr = start_num
1154
1155 output = "" # Initialize an empty string to store the appended lines
1156 output += f"\nSLN␣␣␣␣␣␣{elnr}␣GRP␣61␣STYP␣'CZ'␣SNO␣13␣TITL␣\"Line\""
1157
1158 x1 = sign_x * abs(x2_g_ss)
1159 y1 = abs(y_g_ss)
1160 z1 = 5.840
1161
1162 x2 = sign_x * abs(x2_g_ss)
1163 y2 = - abs(y_g_ss)
1164 z2 = 5.840
1165
1166 output += f"\nSLNB␣X1␣␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣X2␣␣{round(x2,

␣3)}␣␣{round(y2,␣3)}␣␣{round(z2,␣3)}"
1167 plt_model.append([(x1,y1,z1),(x2,y2,z2)])
1168
1169 return output
1170
1171 result_cab_pyl = (
1172 print_lines_cab_pyl(elnr_cab_pyl, -1) + # Negative xh_ms, negative y_g_ms
1173 print_lines_cab_pyl(elnr_cab_pyl + 1, 1) # Negative xh_ms, positive y_g_ms
1174 )
1175
1176 #endregion
1177
1178
1179 #region P) Define rollers main cable
1180 pointnr_rol_cab = 100
1181
1182 def print_lines_rol_cab(pointnr, sign_x, sign_y):
1183 output = "" # Initialize an empty string to store the appended lines
1184
1185 x1 = sign_x * abs(x1_g_ss)
1186 y1 = sign_y * abs(vy)
1187 z1 = z1_g_ss
1188
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1189 output += f"\nSPT␣␣{pointnr}␣X␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣FIX␣XP
␣TITL␣\"Point\""

1190 return output # Return the appended lines
1191
1192 result_rol_cab = (
1193 print_lines_rol_cab(pointnr_rol_cab, -1, -1) +
1194 print_lines_rol_cab(pointnr_rol_cab + 1, -1, 1) +
1195 print_lines_rol_cab(pointnr_rol_cab + 2, 1, -1) +
1196 print_lines_rol_cab(pointnr_rol_cab + 3, 1, 1)
1197 )
1198
1199 #endregion
1200
1201
1202 #region Q) Define points main girder
1203 pointnr_con_mg = 200
1204
1205 def print_lines_con_mg(pointnr, sign_x, sign_y):
1206 output = "" # Initialize an empty string to store the appended lines
1207
1208 x1 = sign_x * abs(x1_g_ss)
1209 y1 = sign_y * abs(y_g_ss)
1210 z1 = z1_g_ss
1211
1212 output += f"\nSPT␣␣{pointnr}␣X␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣TITL␣

\"Point\""
1213 # output += f"\nSPTP TYPE PPMM REF {pointnr - 100}"
1214 return output # Return the appended lines
1215
1216 result_con_mg = (
1217 print_lines_con_mg(pointnr_con_mg, -1, -1) +
1218 print_lines_con_mg(pointnr_con_mg + 1, -1, 1) +
1219 print_lines_con_mg(pointnr_con_mg + 2, 1, -1) +
1220 print_lines_con_mg(pointnr_con_mg + 3, 1, 1)
1221 )
1222 #endregion
1223
1224
1225 #region R) LOAD - SW DL and static mass!
1226
1227 def print_sw_and_dl(sar, sln):
1228 output = """
1229 +PROG SOFILOAD
1230 HEAD EXPORT FROM DATABASE
1231 UNIT TYPE 5
1232 LC 1 'G' 1 FACD 1 TITL "Selfweight"
1233
1234 LC 2 'G' 1 TITL "Additional deadload"
1235 """
1236 for i in range(len(sar)):
1237 output += f"\nAREA␣SAR␣'{sar[i]}'␣TITL␣'Epoxy␣Finish'␣WIDE␣0␣TYPE␣PG␣0.100000"
1238
1239 for j in range(len(sln)):
1240 output += f"\nLINE␣SLN␣'{sln[j]}'␣TITL␣'Edge␣+␣cable'␣WIDE␣0␣TYPE␣PG␣0.4"
1241
1242 output+= "\n␣\nLC␣␣␣3␣'G'␣FACT␣1.0␣TITL␣'Static␣load␣pedestrians␣(TC3)!'"
1243
1244 for k in range(len(sar)):
1245 output += f"\nAREA␣SAR␣'{sar[k]}'␣TITL␣'Pedestrian␣weight'␣WIDE␣0␣TYPE␣PG␣0.35"
1246
1247 return output
1248
1249 sar = sar_ss + sar_ms
1250
1251 result_sw_and_dl = (
1252 print_sw_and_dl(sar, sln)
1253 )
1254
1255 #endregion
1256
1257
1258 #region S) Fixed connection main girder
1259 pointnr_con_mg2 = 150
1260
1261 def print_lines_con_mg2(pointnr, sign_x, sign_y):
1262 output = "" # Initialize an empty string to store the appended lines
1263
1264 x1 = sign_x * abs(x1_g_ss)
1265 y1 = sign_y * abs(y_g_ss)
1266 z1 = z1_g_ss
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1267
1268 output += f"\nSPT␣␣{pointnr}␣X␣{round(x1,␣3)}␣␣{round(y1,␣3)}␣␣␣{round(z1,␣3)}␣TITL␣

\"Point\""
1269 output += f"\nSPTP␣TYPE␣PPMM␣REF␣{pointnr␣-␣50}"
1270
1271 return output # Return the appended lines
1272
1273 result_con_mg2 = (
1274 print_lines_con_mg2(pointnr_con_mg2, -1, -1) +
1275 print_lines_con_mg2(pointnr_con_mg2 + 1, -1, 1) +
1276 print_lines_con_mg2(pointnr_con_mg2 + 2, 1, -1) +
1277 print_lines_con_mg2(pointnr_con_mg2 + 3, 1, 1)
1278 )
1279
1280 #endregion
1281
1282
1283 #region S2) Point moments pylon (eccentricity)
1284 pointnr_pyl = 2600
1285
1286 def print_points_pylon(pointnr):
1287 output = "" # Initialize an empty string to store the appended lines
1288
1289 for i in range(len(pnt_pyl)):
1290 output += f"\nSPT␣␣{pointnr␣+␣i}␣X␣{pnt_pyl[i][0]}␣␣{pnt_pyl[i][1]}␣␣␣{pnt_pyl[i

][2]}␣TITL␣\"Point\""
1291
1292 return output # Return the appended lines
1293
1294 result_points_pylon = (
1295 print_points_pylon(pointnr_pyl)
1296 )
1297 #endregion
1298
1299
1300 #region T) Cross section and material generation
1301
1302 cs_generation = f"""
1303
1304 +PROG AQUA urs:1
1305
1306 HEAD Voldijkbrug_definitief_V1
1307 UNIT 5
1308 NORM 'NEN' 'en199x -200x' COUN 31 CAT 'A2' UNIT 5
1309 STEE 1 S '355' TITL "=Structural Steel - S 355 (EN 199"
1310 SSLA EPS SERV SIG 1[-] TYPE EXT
1311 SSLA EPS ULTI SIG 1[-] TYPE EXT
1312 HMAT 1 TYPE FOUR NSP 0 A 1
1313 MATE 2 E 205000 MUE 0.300000 G 73077 GAM 78.50000 FY 460 FT 610 TITL "Steel - Macalloy

460 Cables"
1314 CONC 3 C '45' TYPR B TITL "=Concrete Pylons - C45/55 (EN 19"
1315 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1316 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1317 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1318 HMAT 3 TYPE FOUR NSP 0.030000 A 1
1319 CONC 4 C '30' TYPR B TITL "=Concrete Foundation - C 30/37 (E"
1320 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1321 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1322 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1323 HMAT 4 TYPE FOUR NSP 0.030000 A 1
1324 CONC 5 C '30' GAM 0 TYPR B RHO 0 TITL "=Concrete Zero Weight - C 30/37 ("
1325 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1326 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1327 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1328 HMAT 5 TYPE FOUR NSP 0.030000 A 1
1329 CONC 6 C '30N' TYPR B TITL "=Concrete Pylons - C 30/37 N (EN"
1330 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1331 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1332 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1333 HMAT 6 TYPE FOUR NSP 0.030000 A 1
1334 STEE 7 B '500B' TMAX 32 TITL "=Reinforcement Steel - B 500 B (E"
1335 SSLA EPS SERV SIG 1.150000[-] TYPE EXT
1336 SSLA EPS ULTI SIG -1.150000[-] TYPE EXT
1337 SSLA EPS CALC SIG -1.150000[-] TYPE EXT
1338 HMAT 7 TYPE FOUR NSP 0 A 1
1339 STEE 8 S '355' TITL "=Structural Steel - S 355 (EN 199"
1340 SSLA EPS SERV SIG 1[-] TYPE EXT
1341 SSLA EPS ULTI SIG 1[-] TYPE EXT
1342 HMAT 8 TYPE FOUR NSP 0 A 1
1343 STEE 9 S '460Q' TITL "=Steel - Macalloy 460 Cables"
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1344 SSLA EPS SERV SIG 1[-] TYPE EXT
1345 SSLA EPS ULTI SIG 1[-] TYPE EXT
1346 HMAT 9 TYPE FOUR NSP 0 A 1
1347 CONC 10 C '45N' TYPR B TITL "=Concrete Piles - C45/55 N (EN 19"
1348 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1349 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1350 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1351 HMAT 10 TYPE FOUR NSP 0.030000 A 1
1352 CONC 11 C '30' TYPR B TITL "=Concrete Foundation - C 30/37 (E"
1353 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1354 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1355 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1356 HMAT 11 TYPE FOUR NSP 0.030000 A 1
1357 CONC 12 C '30' GAM 0 TYPR B RHO 0 TITL "=Concrete Zero Weight - C 30/37 ("
1358 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1359 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1360 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1361 HMAT 12 TYPE FOUR NSP 0.030000 A 1
1362 CONC 13 C '30N' TYPR B TITL "=Concrete Pylons - C 30/37 N (EN"
1363 SSLA EPS SERV SIG 1.500000[-] TYPE LIM
1364 SSLA EPS ULTI SIG 1.500000[-] TYPE LIM
1365 SSLA EPS CALC SIG -1.500000[-] TYPE LIM
1366 HMAT 13 TYPE FOUR NSP 0.030000 A 1
1367 STEE 14 B '500B' TMAX 32 TITL "=Reinforcement Steel - B 500 B (E"
1368 SSLA EPS SERV SIG 1.150000[-] TYPE EXT
1369 SSLA EPS ULTI SIG -1.150000[-] TYPE EXT
1370 SSLA EPS CALC SIG -1.150000[-] TYPE EXT
1371 HMAT 14 TYPE FOUR NSP 0 A 1
1372 $ --------------------------
1373 $ SMAT definition
1374 $ --------------------------
1375 SMAT 1 LTYP STD MTYP PLAS ALPH 0 TITL "compression only"
1376 $ Reaction type ---------
1377 $ Curve (P-level)
1378 SFLA U -1000[mm] F -1.00000E+06[kN] S POL TYPE P
1379 SFLA U 0[mm] F 0[kN] S POL
1380 SFLA U 1000[mm] F 0[kN] S POL
1381 $ --------------------------
1382 $ SMAT definition
1383 $ --------------------------
1384 SMAT 2 LTYP IHNG MTYP PLAS ALPH 0
1385 $ Reaction type ---------
1386 $ Curve (P-level)
1387 SFLA U -1000[mm] F -1.00000E+09[kN] S POL TYPE N
1388 SFLA U 0[mm] F 0[kN] S POL
1389 SFLA U 1000[mm] F 0[kN] S POL
1390 CTRL
1391 CTRL RFCS 1
1392 CTRL FACE -1
1393 CTRL REFD 0
1394 CTRL STYP FEM
1395 CTRL SCUT 16
1396 CTRL PLAS 1
1397 SECT 1 MNO 8 MRF 0 FSYM NONE BTYP BEAM TITL "Girder - Right"
1398 SV IT 100[o/o]
1399
1400 $ Excentric girder results
1401 PLAT 'fl1' YB -342.5000-{del_wf} ZB 220+{del_hw} YE 47.50000+{del_wf} ZE 220+{del_hw} T {

tf} MNO 8
1402 PLAT 'web1' YB -52.50000-{del_wf} ZB -860-{del_hw} YE -342.5000-{del_wf} ZE 220+{del_hw}

T {tw} MNO 8
1403 PLAT 'web2' YB 347.5000+{del_wf} ZB -860-{del_hw} YE 47.50000+{del_wf} ZE 220+{del_hw} T

{tw} MNO 8
1404 PLAT 'fl2' YB -52.50000-{del_wf} ZB -860-{del_hw} YE 347.5000+{del_wf} ZE -860-{del_hw} T

{tf} MNO 8
1405
1406 CTRL
1407 CTRL RFCS 1
1408 CTRL FACE -1
1409 CTRL REFD 0
1410 CTRL STYP FEM
1411 CTRL SCUT 16
1412 CTRL PLAS 1
1413 SECT 2 MNO 8 MRF 0 FSYM NONE BTYP BEAM TITL "Girder - Left"
1414 SV IT 100[o/o]
1415
1416 $ Excentric girder results
1417 PLAT 'fl1' YB 342.5000+{del_wf} ZB 220+{del_hw} YE -47.50000-{del_wf} ZE 220+{del_hw} T {

tf} MNO 8
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1418 PLAT 'web1' YB 52.50000+{del_wf} ZB -860-{del_hw} YE 342.5000+{del_wf} ZE 220+{del_hw} T
{tw} MNO 8

1419 PLAT 'web2' YB -347.5000-{del_wf} ZB -860-{del_hw} YE -47.50000-{del_wf} ZE 220+{del_hw}
T {tw} MNO 8

1420 PLAT 'fl2' YB 52.50000+{del_wf} ZB -860-{del_hw} YE -347.5000-{del_wf} ZE -860-{del_hw} T
{tf} MNO 8

1421
1422 CTRL
1423 CTRL RFCS 1
1424 CTRL FACE -1
1425 CTRL REFD 0
1426 CTRL STYP FEM
1427 CTRL SCUT 16
1428 CTRL PLAS 1
1429 SECT 3 MNO 8 MRF 0 FSYM NONE BTYP BEAM TITL "Trough - Type 1"
1430 SV IT 100[o/o]
1431 PLAT 'T3' YB -152.3896 ZB -117 YE -25 ZE 233 T 6 MNO 8
1432 PLAT '0800' YB -25 ZB 233 YE 25 ZE 233 T 6 MNO 8
1433 PLAT '0900' YB 25 ZB 233 YE 152.3896 ZE -117 T 6 MNO 8
1434 CTRL
1435 CTRL RFCS 1
1436 CTRL FACE -1
1437 CTRL REFD 0
1438 CTRL STYP FEM
1439 CTRL SCUT 16
1440 CTRL PLAS 1
1441 SECT 4 MNO 8 MRF 0 FSYM NONE BTYP BEAM TITL "Trough - Type 2"
1442 SV IT 100[o/o]
1443 PLAT 'T4' YB -149.1893 ZB -117 YE -100 ZE 233 T 12 MNO 8
1444 PLAT '0200' YB -100 ZB 233 YE 100 ZE 233 T 12 MNO 8
1445 PLAT '0300' YB 100 ZB 233 YE 149.1893 ZE -117 T 12 MNO 8
1446 CTRL
1447 CTRL PLAS 0
1448 SECT 5 MNO 8 MRF 0 BTYP BEAM BCY 'A' BCZ 'A' TITL "Compr. Sup. - CHS 101.6 x 4"
1449 PROF TYPE 'CHS' Z1 101.6000 Z3 4 MNO 8 ALPH 0 YM 0 ZM 0 DTYP S REF C
1450 CTRL
1451 CTRL RFCS 0
1452 SCIT 6 D 72 MNO 9 MRF 0 IT 100[o/o] AY 100[o/o] AZ 100[o/o] TITL "Primary Cable - D 72"
1453 CTRL
1454 CTRL RFCS 0
1455 SCIT 7 D 36 MNO 9 MRF 0 IT 100[o/o] AY 100[o/o] AZ 100[o/o] TITL "Secondary Cable - D 36"
1456
1457 SREC 8 H {wl}[mm] B {wl}[mm] SO 45[mm] SU 45[mm] MNO 3 MRF 7 ASO {A_rl}[cm2] ASU {A_rl}[

cm2] RTYP cu DASO 20 DASU 20 TITL "Pylon - Part 1"
1458
1459 SREC 9 H {wu}[mm] B {wu}[mm] SO 45[mm] SU 45[mm] MNO 3 MRF 7 ASO {A_rl}[cm2] ASU {A_rl}[

cm2] RTYP cu DASO 20 DASU 20 TITL "Pylon - Part 2"
1460
1461 CTRL
1462 CTRL PLAS 0
1463 SECT 10 MNO 8 MRF 0 BTYP BEAM BCY 'B' BCZ 'C' TITL "Cant. Sup. - HE 300 A"
1464 PROF TYPE 'HEA' Z1 300 MNO 8 ALPH 0 YM 0 ZM 0 DTYP S REF C
1465 CTRL
1466 CTRL RFCS 1
1467 CTRL FACE -1
1468 CTRL REFD 0
1469 CTRL STYP FEM
1470 CTRL SCUT 17
1471 CTRL PLAS 1
1472 SECT 11 MNO 11 MRF 14 FSYM NONE BTYP BEAM TITL "Foundation Beam Pylon"
1473 SV IT 100[o/o]
1474 LAY 1 TYPE MIN MRF 14
1475 LAY 2 TYPE MIN MRF 14
1476 LAY 3 TYPE MIN MRF 14
1477 LAY 4 TYPE MIN MRF 14
1478 POLY TYPE O MNO 11
1479 VERT '0100' Y 500 Z -850 EXP 1
1480 VERT '0101' Y 500 Z 850 EXP 1
1481 VERT '0102' Y -500 Z 850 EXP 1
1482 VERT '0103' Y -500 Z -850 EXP 1
1483 VERT '0100' Y 500 Z -850 EXP 1
1484 CUT 'ZS' ZB 'S' NS 0 MS 0 MNO 11 MRF 14 LAY 1 TYPE WEB VYFK 0 INCL 90
1485 CTRL
1486 CTRL RFCS 0
1487 SCIT 12 D 56 MNO 9 MRF 0 IT 100[o/o] AY 100[o/o] AZ 100[o/o] TITL "End Cable - D 56"
1488 CTRL
1489 CTRL RFCS 0
1490 SCIT 13 D 48 MNO 9 MRF 0 IT 100[o/o] AY 100[o/o] AZ 100[o/o] TITL "Pylon Cable - D 48"
1491 CTRL
1492 CTRL RFCS 1
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1493 CTRL FACE -1
1494 CTRL REFD 0
1495 CTRL STYP FEM
1496 CTRL SCUT 17
1497 CTRL PLAS 1
1498 SECT 14 MNO 11 MRF 14 FSYM NONE BTYP BEAM TITL "Pier - Pylon"
1499 SV IT 100[o/o]
1500 LAY 1 TYPE MIN MRF 14
1501 LAY 2 TYPE MIN MRF 14
1502 LAY 3 TYPE MIN MRF 14
1503 LAY 4 TYPE MIN MRF 14
1504 POLY TYPE O MNO 11
1505 VERT '0100' Y 500 Z -300 EXP 1
1506 VERT '0101' Y 500 Z 300 EXP 1
1507 VERT '0102' Y -500 Z 300 EXP 1
1508 VERT '0103' Y -500 Z -300 EXP 1
1509 VERT '0100' Y 500 Z -300 EXP 1
1510 CUT 'ZS' ZB 'S' NS 0 MS 0 MNO 11 MRF 14 LAY 1 TYPE WEB VYFK 0 INCL 90
1511 CTRL
1512 CTRL RFCS 1
1513 CTRL FACE -1
1514 CTRL REFD 0
1515 CTRL STYP FEM
1516 CTRL SCUT 17
1517 CTRL PLAS 1
1518 SECT 15 MNO 11 MRF 14 FSYM NONE BTYP BEAM TITL "Pier - Abutment"
1519 SV IT 100[o/o]
1520 LAY 1 TYPE MIN MRF 14
1521 LAY 2 TYPE MIN MRF 14
1522 LAY 3 TYPE MIN MRF 14
1523 LAY 4 TYPE MIN MRF 14
1524 POLY TYPE O MNO 11
1525 VERT '0100' Y 625 Z -400 EXP 1
1526 VERT '0101' Y 625 Z 400 EXP 1
1527 VERT '0102' Y -625 Z 400 EXP 1
1528 VERT '0103' Y -625 Z -400 EXP 1
1529 VERT '0100' Y 625 Z -400 EXP 1
1530 CUT 'ZS' ZB 'S' NS 0 MS 0 MNO 11 MRF 14 LAY 1 TYPE WEB VYFK 0 INCL 90
1531 CTRL
1532 CTRL RFCS 1
1533 CTRL FACE -1
1534 CTRL REFD 0
1535 CTRL STYP FEM
1536 CTRL SCUT 17
1537 CTRL PLAS 1
1538 SECT 16 MNO 11 MRF 14 FSYM NONE BTYP BEAM TITL "Compression Element"
1539 SV IT 100[o/o]
1540 LAY 1 TYPE MIN MRF 14
1541 LAY 2 TYPE MIN MRF 14
1542 LAY 3 TYPE MIN MRF 14
1543 LAY 4 TYPE MIN MRF 14
1544 POLY TYPE O MNO 11
1545 VERT '0100' Y 200 Z -200 EXP 1
1546 VERT '0101' Y 200 Z 200 EXP 1
1547 VERT '0102' Y -200 Z 200 EXP 1
1548 VERT '0103' Y -200 Z -200 EXP 1
1549 VERT '0100' Y 200 Z -200 EXP 1
1550 CUT 'ZS' ZB 'S' NS 0 MS 0 MNO 11 MRF 14 LAY 1 TYPE WEB VYFK 0 INCL 90
1551 CTRL
1552 CTRL RFCS 1
1553 CTRL FACE -1
1554 CTRL REFD 0
1555 CTRL STYP FEM
1556 CTRL SCUT 17
1557 CTRL PLAS 1
1558 SECT 17 MNO 10 MRF 14 FSYM NONE BTYP BEAM TITL "Foundation Piles"
1559 SV IT 100[o/o]
1560 LAY 1 TYPE MIN MRF 14
1561 LAY 2 TYPE MIN MRF 14
1562 LAY 3 TYPE MIN MRF 14
1563 LAY 4 TYPE MIN MRF 14
1564 POLY TYPE O MNO 10
1565 VERT '0100' Y 200 Z -200 EXP 1
1566 VERT '0101' Y 200 Z 200 EXP 1
1567 VERT '0102' Y -200 Z 200 EXP 1
1568 VERT '0103' Y -200 Z -200 EXP 1
1569 VERT '0100' Y 200 Z -200 EXP 1
1570 CUT 'ZS' ZB 'S' NS 0 MS 0 MNO 10 MRF 14 LAY 1 TYPE WEB VYFK 0 INCL 90
1571 CTRL
1572 CTRL RFCS 1
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1573 CTRL FACE -1
1574 CTRL REFD 0
1575 CTRL STYP FEM
1576 CTRL SCUT 17
1577 CTRL PLAS 1
1578 SECT 18 MNO 12 MRF 0 FSYM NONE BTYP BEAM TITL "Pier - Pylon (Coupler)"
1579 SV IT 100[o/o]
1580 POLY TYPE O MNO 12
1581 VERT '0100' Y 500 Z -300 EXP 1
1582 VERT '0101' Y 500 Z 300 EXP 1
1583 VERT '0102' Y -500 Z 300 EXP 1
1584 VERT '0103' Y -500 Z -300 EXP 1
1585 VERT '0100' Y 500 Z -300 EXP 1
1586 CUT 'ZS' ZB 'S' NS 0 MS 0 MNO 12 LAY 1 TYPE WEB VYFK 0 INCL 90
1587 CTRL
1588 CTRL RFCS 1
1589 CTRL FACE -1
1590 CTRL REFD 0
1591 CTRL STYP FEM
1592 CTRL SCUT 17
1593 CTRL PLAS 1
1594 SECT 19 MNO 12 MRF 0 FSYM NONE BTYP BEAM TITL "Pier - Abutment (Coupler)"
1595 SV IT 100[o/o]
1596 POLY TYPE O MNO 12
1597 VERT '0100' Y 500 Z -400 EXP 1
1598 VERT '0101' Y 500 Z 400 EXP 1
1599 VERT '0102' Y -500 Z 400 EXP 1
1600 VERT '0103' Y -500 Z -400 EXP 1
1601 VERT '0100' Y 500 Z -400 EXP 1
1602 CUT 'ZS' ZB 'S' NS 0 MS 0 MNO 12 LAY 1 TYPE WEB VYFK 0 INCL 90
1603 CTRL
1604 SREC 20 H {hc} B {bc} MNO 8 MRF 0 REF C IT 100[o/o] AY 100[o/o] AZ 100[o/o] BCYZ '0'

SPT 0 TITL "Coupler Plate Hangers"
1605 CTRL
1606 SREC 21 H 30 B 380 MNO 8 MRF 0 REF C IT 100[o/o] AY 100[o/o] AZ 100[o/o] BCYZ '0' SPT

0 TITL "Coupler Plate Hangers Horizontal"
1607 CTRL
1608 CTRL RFCS 1
1609 CTRL FACE -1
1610 CTRL REFD 0
1611 CTRL STYP FEM
1612 CTRL SCUT 17
1613 CTRL PLAS 1
1614 SECT 22 MNO 8 MRF 0 FSYM NONE BTYP BEAM TITL "Coupler Abutment"
1615 SV IT 100[o/o]
1616 POLY TYPE O MNO 8
1617 VERT '0100' Y -189.1276 Z -126.8099 EXP 1
1618 VERT '0101' Y 218.7109 Z 63.36833 EXP 1
1619 VERT '0102' Y 189.1276 Z 126.8099 EXP 1
1620 VERT '0103' Y -218.7109 Z -63.36833 EXP 1
1621 VERT '0100' Y -189.1276 Z -126.8099 EXP 1
1622 CTRL
1623 SREC 99 H 400 B 400 MNO 5 MRF 0 REF C IT 100[o/o] AY 100[o/o] AZ 100[o/o] BCYZ '0' SPT

0 TITL "B/H = 400 / 400 mm"
1624
1625
1626 END
1627
1628 """
1629
1630 #endregion
1631
1632
1633 #region U) Smoothen out CS
1634
1635 smoothen_cs ="""
1636
1637 +prog aqua urs:7
1638 head
1639
1640 inte all
1641
1642 end
1643
1644 """
1645
1646 #endregion
1647
1648
1649 #region V) Foundation code
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1650
1651 def foundation(mesh):
1652
1653 foundation_code = f"""
1654
1655 +prog sofimshc
1656
1657 UNIT 5
1658 SYST SPAC GDIV 10000 GDIR NEGZ
1659 CTRL TOPO 0
1660 CTRL TOLG VAL 0.010000[m]
1661 CTRL DELN 0
1662 CTRL MESH 1
1663 CTRL EDRL 1
1664 CTRL HMIN VAL {mesh}[m]
1665
1666 SPT 21 X 51.5100 2.55500 4.24999 NX 0 0 -1 SX -1.83697E-16 -1 0 TITL "

Point"
1667 SPT 25 X -35.1100 -3.00000 -0.30000 FIX PY NX 0 0 -1 SX 1 0 0 TITL "Point"
1668 SPTS TYPE 'CZZ' CP 290000 AR 1
1669 SPT 26 X 33.9100 -3.00000 -0.30000 FIX PY NX 0 0 -1 SX 1 0 0 TITL "Point"
1670 SPTS TYPE 'CZZ' CP 290000 AR 1
1671 SPT 33 X -35.1100 0.000000 -0.30000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1672 SPTS TYPE 'CZZ' CP 290000 AR 1
1673 SPT 34 X -33.9100 0.000000 -0.30000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1674 SPTS TYPE 'CZZ' CP 290000 AR 1
1675 SPT 35 X -33.9100 3.00000 -0.30000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1676 SPTS TYPE 'CZZ' CP 290000 AR 1
1677 SPT 36 X -35.1100 3.00000 -0.30000 FIX PX NX 0 0 -1 SX 1 0 0 TITL "Point"
1678 SPTS TYPE 'CZZ' CP 290000 AR 1
1679 SPT 37 X -33.9100 -3.00000 -0.30000 FIX PY NX 0 0 -1 SX 1 0 0 TITL "Point"
1680 SPTS TYPE 'CZZ' CP 290000 AR 1
1681 SPT 46 X 4.93000 0.000319 6.78000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1682 SPT 52 X -52.2599 1.98995 3.45000 FIX PX NX 0 0 -1 SX 1 0 0 TITL "Point"
1683 SPTS TYPE 'CZZ' CP 178000 AR 1
1684 SPT 53 X -50.7600 2.99000 3.45000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1685 SPTS TYPE 'CZZ' CP 178000 AR 1
1686 SPT 54 X -50.7599 1.99000 3.45000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1687 SPTS TYPE 'CZZ' CP 178000 AR 1
1688 SPT 55 X 52.2599 1.98995 3.45000 FIX PX NX 0 0 -1 SX -1 0 0 TITL "Point"
1689 SPTS TYPE 'CZZ' CP 178000 AR 1
1690 SPT 56 X -50.7600 0.98988 3.45001 NX 0 0 -1 SX 1 0 0 TITL "Point"
1691 SPTS TYPE 'CZZ' CP 178000 AR 1
1692 SPT 58 X -50.7600 -1.01004 3.45001 NX 0 0 -1 SX 1 0 0 TITL "Point"
1693 SPTS TYPE 'CZZ' CP 178000 AR 1
1694 SPT 59 X 50.7600 2.99000 3.45000 NX 0 0 -1 SX -1 0 0 TITL "Point"
1695 SPTS TYPE 'CZZ' CP 178000 AR 1
1696 SPT 60 X -50.7600 -2.01004 3.45001 NX 0 0 -1 SX 1 0 0 TITL "Point"
1697 SPTS TYPE 'CZZ' CP 178000 AR 1
1698 SPT 61 X -50.7600 -3.01000 3.45002 FIX PY NX 0 0 -1 SX 1 0 0 TITL "Point"
1699 SPTS TYPE 'CZZ' CP 178000 AR 1
1700 SPT 62 X 50.7599 1.99000 3.45000 NX 0 0 -1 SX -1 0 0 TITL "Point"
1701 SPTS TYPE 'CZZ' CP 178000 AR 1
1702 SPT 63 X 50.7600 0.98988 3.45001 NX 0 0 -1 SX -1 0 0 TITL "Point"
1703 SPTS TYPE 'CZZ' CP 178000 AR 1
1704 SPT 65 X 50.7600 -1.01004 3.45001 NX 0 0 -1 SX -1 0 0 TITL "Point"
1705 SPTS TYPE 'CZZ' CP 178000 AR 1
1706 SPT 66 X 50.7600 -2.01004 3.45001 NX 0 0 -1 SX -1 0 0 TITL "Point"
1707 SPTS TYPE 'CZZ' CP 178000 AR 1
1708 SPT 67 X 50.7600 -3.01000 3.45002 FIX PY NX 0 0 -1 SX -1 0 0 TITL "Point"
1709 SPTS TYPE 'CZZ' CP 178000 AR 1
1710 SPT 72 X 33.9100 0.000000 -0.30000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1711 SPTS TYPE 'CZZ' CP 290000 AR 1
1712 SPT 73 X 35.1100 0.000000 -0.30000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1713 SPTS TYPE 'CZZ' CP 290000 AR 1
1714 SPT 74 X 35.1100 3.00000 -0.30000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1715 SPTS TYPE 'CZZ' CP 290000 AR 1
1716 SPT 75 X 33.9100 3.00000 -0.30000 FIX PX NX 0 0 -1 SX 1 0 0 TITL "Point"
1717 SPTS TYPE 'CZZ' CP 290000 AR 1
1718 SPT 76 X 35.1100 -3.00000 -0.30000 FIX PY NX 0 0 -1 SX 1 0 0 TITL "Point"
1719 SPTS TYPE 'CZZ' CP 290000 AR 1
1720 SPT 77 X -52.2599 -0.01005 3.45000 NX 0 0 -1 SX 1 0 0 TITL "Point"
1721 SPTS TYPE 'CZZ' CP 178000 AR 1
1722 SPT 78 X -52.2599 -2.01001 3.45000 FIX PX NX 0 0 -1 SX 1 0 0 TITL "Point"
1723 SPTS TYPE 'CZZ' CP 178000 AR 1
1724 SPT 79 X 52.2599 -0.01005 3.45000 NX 0 0 -1 SX -1 0 0 TITL "Point"
1725 SPTS TYPE 'CZZ' CP 178000 AR 1
1726 SPT 80 X 52.2599 -2.01001 3.45000 FIX PX NX 0 0 -1 SX -1 0 0 TITL "Point"
1727 SPTS TYPE 'CZZ' CP 178000 AR 1
1728
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1729
1730 SLN 1 GRP 2 STYP 'N' SNO 16 DRX 1 3.63269E-12 -9.70173E-05 FIXE 'MYMZ' TITL "

Line"
1731 SLNB X1 51.5098778 -2.55499292 4.24993531 X2 51.5100000 -2.55499292

5.51000000
1732 SLN 2 GRP 2 STYP 'N' SNO 19 DRX -0.729563 -2.51634E-05 -0.683914 TITL "Line"
1733 SLNB X1 -50.7600039 -3.00999955 3.45001569 X2 -51.5098677 -3.00999955

4.24993000
1734 SLN 3 GRP 2 STYP 'N' SNO 19 DRX 0.729563 -2.51634E-05 -0.683914 TITL "Line"
1735 SLNB X1 50.7600039 -3.00999955 3.45001569 X2 51.5098677 -3.00999955

4.24993000
1736 SLN 4 GRP 2 STYP 'N' SNO 16 DRX 0.994643 0.103371 -7.65231E-06 FIXE 'MYMZ' TITL

"Line"
1737 SLNB X1 51.5099904 2.55499900 4.24999493 X2 51.5100000 2.55500000

5.50999872
1738
1739
1740 SLN 17 GRP 2 STYP 'N' SNO 15 DRX 3.55255E-19 5.32907E-15 -1 TITL "Line"
1741 SLNB X1 -52.2599333 2.99000000 3.45000000 X2 -52.2599333 1.98995000

3.45000000
1742 SLN 18 GRP 2 STYP 'N' SNO 15 DRX 3.55255E-19 5.32907E-15 -1 TITL "Line"
1743 SLNB X1 -52.2599333 1.98995000 3.45000000 X2 -52.2599333 0.99000000

3.45000000
1744 SLN 19 GRP 2 STYP 'N' SNO 15 DRX 3.55255E-19 5.32907E-15 -1 TITL "Line"
1745 SLNB X1 -52.2599333 0.99000000 3.45000000 X2 -52.2599333 -0.01004955

3.45000000
1746 SLN 20 GRP 2 STYP 'N' SNO 15 DRX -6.14988E-11 0 -1 TITL "Line"
1747 SLNB X1 -52.2599333 -0.01004955 3.45000000 X2 -52.2599333 -1.00998438

3.45000000
1748 SLN 21 GRP 2 STYP 'N' SNO 15 DRX 9.84329E-10 -4.44076E-16 -1 TITL "Line"
1749 SLNB X1 -52.2599333 -1.00998438 3.45000000 X2 -52.2599333 -2.01001330

3.45000000
1750 SLN 22 GRP 2 STYP 'N' SNO 15 DRX 9.84359E-10 -7.10224E-15 -1 TITL "Line"
1751 SLNB X1 -52.2599333 -2.01001330 3.45000000 X2 -52.2599333 -3.00999956

3.45000000
1752 SLN 23 GRP 2 STYP 'N' SNO 15 DRX -3.07609E-11 -2.61475E-06 -1 TITL "Line"
1753 SLNB X1 -50.7600000 2.99000000 3.45000000 X2 -50.7599451 1.98999726

3.45000261
1754 SLN 24 GRP 2 STYP 'N' SNO 19 DRX 0 0 -1 TITL "Line"
1755 SLNB X1 -50.7600000 2.99000000 3.45000000 X2 -52.2599333 2.99000000

3.45000000
1756 SLN 25 GRP 2 STYP 'N' SNO 19 DRX 1.74318E-06 5.49193E-11 -1 TITL "Line"
1757 SLNB X1 -50.7599451 1.98999726 3.45000261 X2 -52.2599333 1.98995000

3.45000000
1758 SLN 26 GRP 2 STYP 'N' SNO 19 DRX 3.48660E-06 -2.86251E-10 -1 TITL "Line"
1759 SLNB X1 -50.7599569 0.98987685 3.45000523 X2 -52.2599333 0.99000000

3.45000000
1760 SLN 27 GRP 2 STYP 'N' SNO 19 DRX 5.22961E-06 1.74302E-10 -1 TITL "Line"
1761 SLNB X1 -50.7599686 -0.009999553 3.45000784 X2 -52.2599333 -0.01004955

3.45000000
1762 SLN 28 GRP 2 STYP 'N' SNO 19 DRX 6.97294E-06 -7.82388E-10 -1 TITL "Line"
1763 SLNB X1 -50.7599804 -1.01003866 3.45001046 X2 -52.2599333 -1.00998438

3.45000000
1764 SLN 29 GRP 2 STYP 'N' SNO 19 DRX 8.71624E-06 1.30186E-10 -1 TITL "Line"
1765 SLNB X1 -50.7599922 -2.01004284 3.45001307 X2 -52.2599333 -2.01001330

3.45000000
1766 SLN 30 GRP 2 STYP 'N' SNO 19 DRX 1.04595E-05 3.09897E-14 -1 TITL "Line"
1767 SLNB X1 -50.7600039 -3.00999955 3.45001569 X2 -52.2599333 -3.00999956

3.45000000
1768 SLN 31 GRP 2 STYP 'N' SNO 15 DRX 2.56281E-10 -2.61475E-06 -1 TITL "Line"
1769 SLNB X1 -50.7599451 1.98999726 3.45000261 X2 -50.7599569 0.98987685

3.45000523
1770 SLN 32 GRP 2 STYP 'N' SNO 15 DRX 8.30525E-10 -2.61475E-06 -1 TITL "Line"
1771 SLNB X1 -50.7599569 0.98987685 3.45000523 X2 -50.7599686 -0.009999553

3.45000784
1772 SLN 33 GRP 2 STYP 'N' SNO 15 DRX 1.33274E-10 -2.61475E-06 -1 TITL "Line"
1773 SLNB X1 -50.7599686 -0.009999553 3.45000784 X2 -50.7599804 -1.01003866

3.45001046
1774 SLN 34 GRP 2 STYP 'N' SNO 15 DRX -9.22752E-11 -2.61475E-06 -1 TITL "Line"
1775 SLNB X1 -50.7599804 -1.01003866 3.45001046 X2 -50.7599922 -2.01004284

3.45001307
1776 SLN 35 GRP 2 STYP 'N' SNO 15 DRX -3.07610E-11 -2.61475E-06 -1 TITL "Line"
1777 SLNB X1 -50.7599922 -2.01004284 3.45001307 X2 -50.7600039 -3.00999955

3.45001569
1778 SLN 36 GRP 2 STYP 'N' SNO 19 DRX 0.729568 -1.79758E-11 -0.683909 TITL "Line"
1779 SLNB X1 -52.2599333 2.99000000 3.45000000 X2 -51.5100000 2.99000000

4.25000000
1780 SLN 37 GRP 2 STYP 'N' SNO 19 DRX 0.729553 -4.30007E-10 -0.683925 TITL "Line"
1781 SLNB X1 -52.2599333 1.98995000 3.45000000 X2 -51.5099780 1.98992896

4.24998833
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1782 SLN 38 GRP 2 STYP 'N' SNO 19 DRX 0.729538 -2.10957E-11 -0.683941 TITL "Line"
1783 SLNB X1 -52.2599333 0.99000000 3.45000000 X2 -51.5099559 0.98995000

4.24997667
1784 SLN 39 GRP 2 STYP 'N' SNO 19 DRX 0.729523 -3.95296E-10 -0.683957 TITL "Line"
1785 SLNB X1 -52.2599333 -0.01004955 3.45000000 X2 -51.5099339 -0.01002938

4.24996500
1786 SLN 40 GRP 2 STYP 'N' SNO 19 DRX 0.729508 1.17355E-09 -0.683973 TITL "Line"
1787 SLNB X1 -52.2599333 -1.00998438 3.45000000 X2 -51.5099118 -1.01001795

4.24995334
1788 SLN 41 GRP 2 STYP 'N' SNO 19 DRX 0.729492 1.54991E-09 -0.683989 TITL "Line"
1789 SLNB X1 -52.2599333 -2.01001330 3.45000000 X2 -51.5098898 -2.01004274

4.24994167
1790 SLN 42 GRP 2 STYP 'N' SNO 19 DRX 0.729477 1.90275E-09 -0.684005 TITL "Line"
1791 SLNB X1 -52.2599333 -3.00999956 3.45000000 X2 -51.5098677 -3.00999955

4.24993000
1792 SLN 43 GRP 2 STYP 'N' SNO 15 DRX -3.55255E-19 5.32907E-15 -1 TITL "Line"
1793 SLNB X1 52.2599333 2.99000000 3.45000000 X2 52.2599333 1.98995000

3.45000000
1794 SLN 44 GRP 2 STYP 'N' SNO 19 DRX -0.729553 -2.88858E-05 -0.683924 TITL "Line"
1795 SLNB X1 -50.7599922 -2.01004284 3.45001307 X2 -51.5098898 -2.01004274

4.24994167
1796 SLN 45 GRP 2 STYP 'N' SNO 19 DRX -0.729544 -2.88889E-05 -0.683934 TITL "Line"
1797 SLNB X1 -50.7599804 -1.01003866 3.45001046 X2 -51.5099118 -1.01001795

4.24995334
1798 SLN 46 GRP 2 STYP 'N' SNO 19 DRX -0.729535 -2.88853E-05 -0.683944 TITL "Line"
1799 SLNB X1 -50.7599686 -0.009999553 3.45000784 X2 -51.5099339 -0.01002938

4.24996500
1800 SLN 47 GRP 2 STYP 'N' SNO 19 DRX -0.729525 -2.88920E-05 -0.683954 TITL "Line"
1801 SLNB X1 -50.7599569 0.98987685 3.45000523 X2 -51.5099559 0.98995000

4.24997667
1802 SLN 48 GRP 2 STYP 'N' SNO 19 DRX -0.729516 -2.88841E-05 -0.683964 TITL "Line"
1803 SLNB X1 -50.7599451 1.98999726 3.45000261 X2 -51.5099780 1.98992896

4.24998833
1804 SLN 49 GRP 2 STYP 'N' SNO 19 DRX -0.729537 -2.88870E-05 -0.683941 TITL "Line"
1805 SLNB X1 -50.7600000 2.99000000 3.45000000 X2 -51.5100000 2.99000000

4.25000000
1806 SLN 50 GRP 2 STYP 'N' SNO 15 DRX -3.46631E-10 1.16659E-05 -1 TITL "Line"
1807 SLNB X1 -51.5100000 2.99000000 4.25000000 X2 -51.5098677 -3.00999955

4.24993000
1808 SLN 53 GRP 2 STYP 'N' SNO 16 DRX -1 8.16666E-09 -9.70148E-05 FIXA 'MYMZ' FIXE '

MYMZ' TITL "Line"
1809 SLNB X1 -51.5098778 -2.55485504 4.24993531 X2 -51.5100000 -2.55500000

5.51000000
1810 SLN 54 GRP 2 STYP 'N' SNO 16 DRX -1 1.23032E-10 -7.61128E-06 FIXA 'MYMZ' FIXE '

MYMZ' TITL "Line"
1811 SLNB X1 -51.5099904 2.55500001 4.24999493 X2 -51.5100000 2.55500000

5.51000000
1812
1813
1814
1815 SLN 77 GRP 2 STYP 'N' SNO 18 DRX -0.390616 0.605455 -0.693429 TITL "Line"
1816 SLNB X1 -33.9100000 -3.00000000 -0.30000000 X2 -34.5100000 -2.07000000

0.85000000
1817 SLN 78 GRP 2 STYP 'N' SNO 14 DRX -1.45680E-30 -2.96059E-16 -1 TITL "Line"
1818 SLNB X1 -35.1100000 3.00000000 -0.30000000 X2 -35.1100000 0.0

-0.30000000
1819 SLN 79 GRP 2 STYP 'N' SNO 14 DRX -3.88095E-30 1.77636E-15 -1 TITL "Line"
1820 SLNB X1 -35.1100000 0.0 -0.30000000 X2 -35.1100000 -3.00000000

-0.30000000
1821 SLN 80 GRP 2 STYP 'N' SNO 14 DRX 3.80697E-31 2.07242E-15 -1 TITL "Line"
1822 SLNB X1 -33.9100000 3.00000000 -0.30000000 X2 -33.9100000 0.0

-0.30000000
1823 SLN 81 GRP 2 STYP 'N' SNO 14 DRX 1.29365E-30 -5.92119E-16 -1 TITL "Line"
1824 SLNB X1 -33.9100000 0.0 -0.30000000 X2 -33.9100000 -3.00000000

-0.30000000
1825 SLN 82 GRP 2 STYP 'N' SNO 18 DRX 0.390616 -0.605455 -0.693429 TITL "Line"
1826 SLNB X1 -35.1100000 3.00000000 -0.30000000 X2 -34.5100000 2.07000000

0.85000000
1827 SLN 83 GRP 2 STYP 'N' SNO 18 DRX 0.886585 -1.13183E-14 -0.462566 TITL "Line"
1828 SLNB X1 -35.1100000 0.0 -0.30000000 X2 -34.5100000 0.0

0.85000000
1829 SLN 84 GRP 2 STYP 'N' SNO 18 DRX 0.390616 0.605455 -0.693429 TITL "Line"
1830 SLNB X1 -35.1100000 -3.00000000 -0.30000000 X2 -34.5100000 -2.07000000

0.85000000
1831 SLN 85 GRP 2 STYP 'N' SNO 11 DRX 1.57638E-31 8.58143E-16 -1 TITL "Line"
1832 SLNB X1 -34.5100000 2.07000000 0.85000000 X2 -34.5100000 -2.07000000

0.85000000
1833 SLN 86 GRP 2 STYP 'N' SNO 18 DRX -0.886585 5.41250E-15 -0.462566 TITL "Line"
1834 SLNB X1 -33.9100000 0.0 -0.30000000 X2 -34.5100000 0.0

0.85000000
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1835 SLN 87 GRP 2 STYP 'N' SNO 18 DRX -0.390616 -0.605455 -0.693429 TITL "Line"
1836 SLNB X1 -33.9100000 3.00000000 -0.30000000 X2 -34.5100000 2.07000000

0.85000000
1837
1838
1839
1840 SLN 313 GRP 2 STYP 'N' SNO 18 DRX 3.05311E-15 -1.52493E-29 -1 TITL "Line"
1841 SLNB X1 -35.1100000 -3.00000000 -0.30000000 X2 -33.9100000 -3.00000000

-0.30000000
1842 SLN 314 GRP 2 STYP 'N' SNO 18 DRX 3.05311E-15 -1.52493E-29 -1 TITL "Line"
1843 SLNB X1 -35.1100000 0.0 -0.30000000 X2 -33.9100000 0.0

-0.30000000
1844 SLN 315 GRP 2 STYP 'N' SNO 18 DRX 3.05311E-15 -1.52493E-29 -1 TITL "Line"
1845 SLNB X1 -35.1100000 3.00000000 -0.30000000 X2 -33.9100000 3.00000000

-0.30000000
1846 SLN 316 GRP 2 STYP 'N' SNO 19 DRX 0 0 -1 TITL "Line"
1847 SLNB X1 50.7600000 2.99000000 3.45000000 X2 52.2599333 2.99000000

3.45000000
1848 SLN 317 GRP 2 STYP 'N' SNO 14 DRX -1.26111E-15 -2.96059E-16 -1 TITL "Line"
1849 SLNB X1 35.1100000 3.00000000 -0.30000000 X2 35.1100000 0.0

-0.30000000
1850 SLN 318 GRP 2 STYP 'N' SNO 14 DRX -1.26111E-15 1.77636E-15 -1 TITL "Line"
1851 SLNB X1 35.1100000 0.0 -0.30000000 X2 35.1100000 -3.00000000

-0.30000000
1852 SLN 319 GRP 2 STYP 'N' SNO 14 DRX -1.26111E-15 2.07242E-15 -1 TITL "Line"
1853 SLNB X1 33.9100000 3.00000000 -0.30000000 X2 33.9100000 0.0

-0.30000000
1854 SLN 320 GRP 2 STYP 'N' SNO 14 DRX -1.26111E-15 -5.92119E-16 -1 TITL "Line"
1855 SLNB X1 33.9100000 0.0 -0.30000000 X2 33.9100000 -3.00000000

-0.30000000
1856 SLN 321 GRP 2 STYP 'N' SNO 18 DRX -0.390616 -0.605455 -0.693429 TITL "Line"
1857 SLNB X1 35.1100000 3.00000000 -0.30000000 X2 34.5100000 2.07000000

0.85000000
1858 SLN 322 GRP 2 STYP 'N' SNO 18 DRX -0.886585 -4.35056E-14 -0.462566 TITL "Line"
1859 SLNB X1 35.1100000 0.0 -0.30000000 X2 34.5100000 0.0

0.85000000
1860 SLN 323 GRP 2 STYP 'N' SNO 18 DRX -0.390616 0.605455 -0.693429 TITL "Line"
1861 SLNB X1 35.1100000 -3.00000000 -0.30000000 X2 34.5100000 -2.07000000

0.85000000
1862 SLN 324 GRP 2 STYP 'N' SNO 11 DRX -1.26111E-15 8.58143E-16 -1 TITL "Line"
1863 SLNB X1 34.5100000 2.07000000 0.85000000 X2 34.5100000 -2.07000000

0.85000000
1864 SLN 327 GRP 2 STYP 'N' SNO 19 DRX -1.74318E-06 5.49193E-11 -1 TITL "Line"
1865 SLNB X1 50.7599451 1.98999726 3.45000261 X2 52.2599333 1.98995000

3.45000000
1866 SLN 328 GRP 2 STYP 'N' SNO 19 DRX -3.48660E-06 -2.86251E-10 -1 TITL "Line"
1867 SLNB X1 50.7599569 0.98987685 3.45000523 X2 52.2599333 0.99000000

3.45000000
1868 SLN 329 GRP 2 STYP 'N' SNO 19 DRX -5.22961E-06 1.74302E-10 -1 TITL "Line"
1869 SLNB X1 50.7599686 -0.009999553 3.45000784 X2 52.2599333 -0.01004955

3.45000000
1870 SLN 330 GRP 2 STYP 'N' SNO 19 DRX -6.97294E-06 -7.82388E-10 -1 TITL "Line"
1871 SLNB X1 50.7599804 -1.01003866 3.45001046 X2 52.2599333 -1.00998438

3.45000000
1872 SLN 331 GRP 2 STYP 'N' SNO 19 DRX -8.71624E-06 1.30186E-10 -1 TITL "Line"
1873 SLNB X1 50.7599922 -2.01004284 3.45001307 X2 52.2599333 -2.01001330

3.45000000
1874 SLN 332 GRP 2 STYP 'N' SNO 19 DRX -1.04595E-05 3.09897E-14 -1 TITL "Line"
1875 SLNB X1 50.7600039 -3.00999955 3.45001569 X2 52.2599333 -3.00999956

3.45000000
1876 SLN 333 GRP 2 STYP 'N' SNO 15 DRX -3.55255E-19 5.32907E-15 -1 TITL "Line"
1877 SLNB X1 52.2599333 1.98995000 3.45000000 X2 52.2599333 0.99000000

3.45000000
1878 SLN 334 GRP 2 STYP 'N' SNO 15 DRX -3.55255E-19 5.32907E-15 -1 TITL "Line"
1879 SLNB X1 52.2599333 0.99000000 3.45000000 X2 52.2599333 -0.01004955

3.45000000
1880 SLN 335 GRP 2 STYP 'N' SNO 18 DRX 0.390616 0.605455 -0.693429 TITL "Line"
1881 SLNB X1 33.9100000 -3.00000000 -0.30000000 X2 34.5100000 -2.07000000

0.85000000
1882 SLN 336 GRP 2 STYP 'N' SNO 18 DRX 0.886585 3.75998E-14 -0.462566 TITL "Line"
1883 SLNB X1 33.9100000 0.0 -0.30000000 X2 34.5100000 0.0

0.85000000
1884 SLN 337 GRP 2 STYP 'N' SNO 18 DRX 0.390616 -0.605455 -0.693429 TITL "Line"
1885 SLNB X1 33.9100000 3.00000000 -0.30000000 X2 34.5100000 2.07000000

0.85000000
1886 SLN 338 GRP 2 STYP 'N' SNO 15 DRX 6.14988E-11 0 -1 TITL "Line"
1887 SLNB X1 52.2599333 -0.01004955 3.45000000 X2 52.2599333 -1.00998438

3.45000000
1888 SLN 339 GRP 2 STYP 'N' SNO 15 DRX -9.84329E-10 -4.44076E-16 -1 TITL "Line"
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1889 SLNB X1 52.2599333 -1.00998438 3.45000000 X2 52.2599333 -2.01001330
3.45000000

1890 SLN 340 GRP 2 STYP 'N' SNO 15 DRX -9.84359E-10 -7.10224E-15 -1 TITL "Line"
1891 SLNB X1 52.2599333 -2.01001330 3.45000000 X2 52.2599333 -3.00999956

3.45000000
1892 SLN 341 GRP 2 STYP 'N' SNO 15 DRX 3.07609E-11 -2.61475E-06 -1 TITL "Line"
1893 SLNB X1 50.7600000 2.99000000 3.45000000 X2 50.7599451 1.98999726

3.45000261
1894 SLN 342 GRP 2 STYP 'N' SNO 15 DRX -2.56281E-10 -2.61475E-06 -1 TITL "Line"
1895 SLNB X1 50.7599451 1.98999726 3.45000261 X2 50.7599569 0.98987685

3.45000523
1896 SLN 343 GRP 2 STYP 'N' SNO 15 DRX -8.30525E-10 -2.61475E-06 -1 TITL "Line"
1897 SLNB X1 50.7599569 0.98987685 3.45000523 X2 50.7599686 -0.009999553

3.45000784
1898 SLN 344 GRP 2 STYP 'N' SNO 15 DRX -1.33274E-10 -2.61475E-06 -1 TITL "Line"
1899 SLNB X1 50.7599686 -0.009999553 3.45000784 X2 50.7599804 -1.01003866

3.45001046
1900 SLN 345 GRP 2 STYP 'N' SNO 15 DRX 9.22752E-11 -2.61475E-06 -1 TITL "Line"
1901 SLNB X1 50.7599804 -1.01003866 3.45001046 X2 50.7599922 -2.01004284

3.45001307
1902 SLN 346 GRP 2 STYP 'N' SNO 15 DRX 3.07610E-11 -2.61475E-06 -1 TITL "Line"
1903 SLNB X1 50.7599922 -2.01004284 3.45001307 X2 50.7600039 -3.00999955

3.45001569
1904 SLN 347 GRP 2 STYP 'N' SNO 19 DRX -0.729568 -1.79758E-11 -0.683909 TITL "Line"
1905 SLNB X1 52.2599333 2.99000000 3.45000000 X2 51.5100000 2.99000000

4.25000000
1906 SLN 348 GRP 2 STYP 'N' SNO 19 DRX -0.729553 -4.30007E-10 -0.683925 TITL "Line"
1907 SLNB X1 52.2599333 1.98995000 3.45000000 X2 51.5099780 1.98992896

4.24998833
1908 SLN 349 GRP 2 STYP 'N' SNO 19 DRX -0.729538 -2.10957E-11 -0.683941 TITL "Line"
1909 SLNB X1 52.2599333 0.99000000 3.45000000 X2 51.5099559 0.98995000

4.24997667
1910 SLN 350 GRP 2 STYP 'N' SNO 19 DRX -0.729523 -3.95296E-10 -0.683957 TITL "Line"
1911 SLNB X1 52.2599333 -0.01004955 3.45000000 X2 51.5099339 -0.01002938

4.24996500
1912 SLN 351 GRP 2 STYP 'N' SNO 19 DRX -0.729508 1.17355E-09 -0.683973 TITL "Line"
1913 SLNB X1 52.2599333 -1.00998438 3.45000000 X2 51.5099118 -1.01001795

4.24995334
1914 SLN 352 GRP 2 STYP 'N' SNO 19 DRX -0.729492 1.54991E-09 -0.683989 TITL "Line"
1915 SLNB X1 52.2599333 -2.01001330 3.45000000 X2 51.5098898 -2.01004274

4.24994167
1916 SLN 353 GRP 2 STYP 'N' SNO 19 DRX -0.729477 1.90275E-09 -0.684005 TITL "Line"
1917 SLNB X1 52.2599333 -3.00999956 3.45000000 X2 51.5098677 -3.00999955

4.24993000
1918 SLN 354 GRP 2 STYP 'N' SNO 19 DRX 0.729553 -2.88858E-05 -0.683924 TITL "Line"
1919 SLNB X1 50.7599922 -2.01004284 3.45001307 X2 51.5098898 -2.01004274

4.24994167
1920 SLN 355 GRP 2 STYP 'N' SNO 19 DRX 0.729544 -2.88889E-05 -0.683934 TITL "Line"
1921 SLNB X1 50.7599804 -1.01003866 3.45001046 X2 51.5099118 -1.01001795

4.24995334
1922 SLN 356 GRP 2 STYP 'N' SNO 19 DRX 0.729535 -2.88853E-05 -0.683944 TITL "Line"
1923 SLNB X1 50.7599686 -0.009999553 3.45000784 X2 51.5099339 -0.01002938

4.24996500
1924 SLN 357 GRP 2 STYP 'N' SNO 19 DRX 0.729525 -2.88920E-05 -0.683954 TITL "Line"
1925 SLNB X1 50.7599569 0.98987685 3.45000523 X2 51.5099559 0.98995000

4.24997667
1926 SLN 358 GRP 2 STYP 'N' SNO 19 DRX 0.729516 -2.88841E-05 -0.683964 TITL "Line"
1927 SLNB X1 50.7599451 1.98999726 3.45000261 X2 51.5099780 1.98992896

4.24998833
1928 SLN 359 GRP 2 STYP 'N' SNO 19 DRX 0.729537 -2.88870E-05 -0.683941 TITL "Line"
1929 SLNB X1 50.7600000 2.99000000 3.45000000 X2 51.5100000 2.99000000

4.25000000
1930 SLN 378 GRP 2 STYP 'N' SNO 15 DRX 3.46630E-10 1.16659E-05 -1 TITL "Line"
1931 SLNB X1 51.5100000 2.99000000 4.25000000 X2 51.5098677 -3.00999955

4.24993000
1932
1933
1934 SLN 381 GRP 2 STYP 'N' SNO 18 DRX -4.31422E-15 -1.25860E-28 -1 TITL "Line"
1935 SLNB X1 35.1100000 -3.00000000 -0.30000000 X2 33.9100000 -3.00000000

-0.30000000
1936 SLN 382 GRP 2 STYP 'N' SNO 18 DRX -4.31422E-15 -1.25860E-28 -1 TITL "Line"
1937 SLNB X1 35.1100000 0.0 -0.30000000 X2 33.9100000 0.0

-0.30000000
1938 SLN 383 GRP 2 STYP 'N' SNO 18 DRX -4.31422E-15 -1.25860E-28 -1 TITL "Line"
1939 SLNB X1 35.1100000 3.00000000 -0.30000000 X2 33.9100000 3.00000000

-0.3000000
1940
1941
1942 """
1943
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1944 return foundation_code
1945
1946 #endregion
1947
1948
1949 #region Y) Apply cable stress
1950 grp_ss = np.arange(21, 21 + div_ss, 1)
1951 cab.extend(grp_ss)
1952
1953 # Group MS
1954 if con_ms == 1:
1955 grp_ms = np.arange(21 + div_ss, 21 + div_ss + div_ms, 1)
1956 cab.extend(grp_ms)
1957 else:
1958 grp_ms = np.arange(21 + div_ss, 21 + div_ss + div_ms_p, 1)
1959 cab.extend(grp_ms)
1960
1961
1962 # Append the final value
1963 if con_ms == 1:
1964 cab.append(30)
1965
1966 pointnr_con_mom = 250
1967
1968 def print_lines_con_mom(pointnr, sign_x, sign_y):
1969 output = "" # Initialize an empty string to store the appended lines
1970
1971 if con_ms == 1:
1972 output += f"\nNODE␣{pointnr␣-␣100}␣TYPE␣MYY␣{-sign_x␣*␣(Hw␣/␣2)␣*␣0.325}"
1973 elif con_ms == 0:
1974 output += f"\nNODE␣{pointnr␣-␣100}␣TYPE␣MYY␣{-sign_x␣*␣(Hw_p␣/␣2)␣*␣0.325}"
1975
1976 return output
1977
1978 result_con_mom = (
1979 f"\n␣+prog␣sofiload"+
1980 f"\nLC␣␣␣5␣'Q'␣1␣TITL␣\"Moment\"" +
1981 print_lines_con_mom(pointnr_con_mom, -1, -1) +
1982 print_lines_con_mom(pointnr_con_mom + 1, -1, 1) +
1983 print_lines_con_mom(pointnr_con_mom + 2, 1, -1) +
1984 print_lines_con_mom(pointnr_con_mom + 3, 1, 1) +
1985 f"\nend"
1986 )
1987
1988
1989
1990
1991 # apply prestressing
1992 if con_ms == 1:
1993 H = Hw / 2
1994 else:
1995 H = Hw_p / 2
1996
1997
1998 start_plc = 20
1999 end_plc = 40
2000
2001 if hang_ms <= 2:
2002 apply_cable_stress = f"""
2003 +prog ase
2004
2005 syst prob th3
2006
2007 grp -
2008
2009 """
2010
2011 for j in range(len(cab)):
2012 apply_cable_stress += f"\ngrp␣{cab[j]}␣prex␣{H}␣'hori'␣facs␣1e-4"
2013
2014 apply_cable_stress += f"\n␣\nlc␣{start_plc}␣facd␣1.0␣\nlcc␣5␣␣\n␣\nend"
2015
2016 elif hang_ms > 2:
2017
2018 apply_cable_stress = f"""
2019 +prog ase
2020
2021 syst prob th3
2022
2023 grp -
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2024
2025 sto#f 1.05
2026
2027 """
2028
2029 for j in range(len(cab)):
2030 apply_cable_stress += f"\ngrp␣{cab[j]}␣prex␣#f*{H}␣'hori'␣facs␣1e-2"
2031
2032 apply_cable_stress += f"\n␣\nlc␣{start_plc}␣facd␣1.0␣\nlcc␣5␣␣\n␣\nend"
2033
2034 elif hang_ms > 4:
2035
2036 apply_cable_stress = f"""
2037 +prog ase
2038
2039 syst prob th3
2040
2041 grp -
2042
2043 sto#f 1.025
2044
2045 """
2046
2047 for j in range(len(cab)):
2048 apply_cable_stress += f"\ngrp␣{cab[j]}␣prex␣#f*{H}␣'hori'␣facs␣1e-2"
2049
2050 apply_cable_stress += f"\n␣\nlc␣{start_plc}␣facd␣1.0␣\nlcc␣5␣␣\n␣\nend"
2051
2052 adjust_cable_stress = f"""
2053 +prog ase urs:6
2054
2055 syst prob th3 plc {start_plc}
2056
2057 grp - facs 1.0
2058
2059 lc {start_plc + 10} facd 1.0
2060 lcc 5
2061
2062 end
2063
2064 """
2065
2066
2067 #endregion
2068
2069
2070 #region AA) Static load cases
2071 q_wind = 0.5 * 1.25 * 24.5 ** 2 * 3.2 * ((hw / 1000) + 1.2) / 1000
2072 q_wind_pyl_1 = 0.5 * 1.25 * 24.5 ** 2 * 5.6 * (wl / 1000) / 1000
2073 q_wind_pyl_2 = 0.5 * 1.25 * 24.5 ** 2 * 5.6 * (wu / 1000) / 1000
2074
2075 def print_loadcases(sar_ss, sar_ms, sln_w_xx, sln_w_xx_p, sln_w_yy, sln_w_zz, sln_w_p,

pnt_pyl):
2076
2077 if con_ms == 1:
2078
2079 sln = sln_w_zz
2080
2081 output = f"""
2082
2083 +PROG SOFILOAD
2084 HEAD EXPORT FROM DATABASE
2085 UNIT TYPE 5
2086
2087 LC 1 'G' 1 FACD 1 TITL "Selfweight"
2088
2089 LC 2 'G' 1 TITL "Additional deadload"
2090 """
2091
2092 for i in range(len(sar)):
2093
2094 output += f"\nAREA␣SAR␣'{sar[i]}'␣TITL␣'Epoxy␣Finish'␣WIDE␣0␣TYPE␣PG␣0.10"
2095
2096 for i in range(len(sln)):
2097 output += f"\nLINE␣SLN␣'{sln[i]}'␣TITL␣'Edge␣+␣cable'␣WIDE␣0␣TYPE␣PG␣0.4"
2098
2099 output += "\n␣\nLC␣␣␣3␣'G'␣FACT␣1.0␣TITL␣'Static␣load␣pedestrians␣(TC3)!'"
2100
2101 for i in range(len(sar)):
2102
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2103 output+= f"\nAREA␣SAR␣'{sar[i]}'␣TITL␣'Pedestrian␣weight'␣WIDE␣0␣TYPE␣PG␣0.35
"

2104
2105 output += f"""\n \nLC 4 'Q' 1 TITL 'Moment'
2106 NODE 150 TYPE MYY 149.3186281074653
2107 NODE 151 TYPE MYY 149.3186281074653
2108 NODE 152 TYPE MYY -149.3186281074653
2109 NODE 153 TYPE MYY -149.3186281074653
2110 """
2111
2112 output += "\n␣\nLC␣␣␣5␣'Q'␣1␣TITL␣'pedestrians␣full'␣"
2113
2114 for i in range(len(sar_ss)):
2115 output += f"\nAREA␣SAR␣'{sar_ss[i]}'␣TITL␣'Pedestrian␣load␣full'␣WIDE␣0␣TYPE␣

PG␣4.55"
2116
2117 for j in range(len(sar_ms)):
2118 output += f"\nAREA␣SAR␣'{sar_ms[j]}'␣TITL␣'Pedestrian␣load␣full'␣WIDE␣0␣TYPE␣

PG␣3.25"
2119
2120 # Pedestrian load midspan
2121 output+= "\n␣\nLC␣␣␣6␣'Q'␣FACT␣1.0␣TITL␣'Pedestrian␣load␣midspan'"
2122
2123 for k in range(len(sar_ms)):
2124 output += f"\nAREA␣SAR␣'{sar_ms[k]}'␣TITL␣'Pedestrian␣weight'␣WIDE␣0␣TYPE␣PG␣

3.25"
2125
2126 # Pedestrian load sidespan
2127 output+= "\n␣\nLC␣␣␣7␣'Q'␣FACT␣1.0␣TITL␣'Pedestrian␣load␣sidespan'"
2128
2129 for l in range(len(sar_ss)):
2130 output += f"\nAREA␣SAR␣'{sar_ss[l]}'␣TITL␣'Pedestrian␣weight'␣WIDE␣0␣TYPE␣PG␣

4.55"
2131
2132 # Pedestrian load half midspan
2133 output+= "\n␣\nLC␣␣␣8␣'Q'␣FACT␣1.0␣TITL␣'Pedestrian␣load␣midspan␣half'"
2134
2135 for m in range(len(sar_ms) // 2):
2136 output += f"\nAREA␣SAR␣'{sar_ms[m]}'␣TITL␣'Pedestrian␣weight'␣WIDE␣0␣TYPE␣PG␣

3.90"
2137
2138 output+= f"\nAREA␣SAR␣'{sar_ms[-1]}'␣TITL␣'Pedestrian␣weight'␣WIDE␣0␣TYPE␣PG␣3.90

"
2139
2140 # Wind x-direction
2141 output+= "\n␣\nLC␣␣␣9␣'W'␣1␣TITL␣'Wind␣x-direction'"
2142
2143 for n in range(len(sln_w_xx)):
2144 output += f"\nLINE␣SLN␣'{sln_w_xx[n]}'␣TITL␣'Wind␣x-direction'␣WIDE␣0␣TYPE␣

PYY␣{q_wind}"
2145
2146 output += f"\nLINE␣SLN␣'{sln_w_xx_p[0]}'␣TITL␣'Wind␣x-direction'␣WIDE␣0␣TYPE␣PYY␣

{q_wind}"
2147
2148 for o in range(len(grp_pyl)):
2149 output += f"\nBEAM␣GRP␣{grp_pyl[o]}␣TYPE␣PYY␣PA␣{q_wind_pyl_1}␣PE␣{

q_wind_pyl_2}"
2150
2151 # Wind y-direction
2152 output += f"\n␣\nLC␣␣␣10␣'W'␣1␣TITL␣'Wind␣y-direction'"
2153
2154 for p in range(len(sln_w_yy)):
2155 output += f"\nLINE␣SLN␣'{sln_w_yy[p]}'␣TITL␣'Wind␣girders'␣WIDE␣0␣TYPE␣PXX␣{

q_wind␣*␣0.4}"
2156
2157 for q in range(len(grp_pyl)):
2158 output += f"\nBEAM␣GRP␣{grp_pyl[q]}␣TYPE␣PXX␣PA␣{q_wind_pyl_1}␣PE␣{

q_wind_pyl_2}"
2159
2160 # Wind z-direction
2161 output+= "\n␣\nLC␣␣␣11␣'W'␣1␣TITL␣'Wind␣z-direction'"
2162
2163 for p in range(len(sln_w_zz)):
2164 output += f"\nLINE␣SLN␣'{sln_w_zz[p]}'␣TITL␣'Wind␣girders'␣WIDE␣0␣TYPE␣PZZ␣2"
2165
2166 # Add. moment ULS
2167 output+= "\n␣\nLC␣␣␣12␣'Q'␣1␣TITL␣'Add.␣moment␣ULS'"
2168
2169 output+= f"\nPOIN␣NODE␣'2600'␣WIDE␣0␣TYPE␣MXX␣-200"
2170 output+= f"\nPOIN␣NODE␣'2602'␣WIDE␣0␣TYPE␣MXX␣-200"
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2171
2172 output+= f"\nPOIN␣NODE␣'2601'␣WIDE␣0␣TYPE␣MXX␣200"
2173 output+= f"\nPOIN␣NODE␣'2603'␣WIDE␣0␣TYPE␣MXX␣200"
2174
2175 # Add. moment ALS
2176 output+= "\n␣\nLC␣␣␣13␣'A'␣1␣TITL␣'Add.␣moment␣ALS'"
2177
2178 output+= f"\nPOIN␣NODE␣'2600'␣WIDE␣0␣TYPE␣MXX␣-120"
2179 output+= f"\nPOIN␣NODE␣'2602'␣WIDE␣0␣TYPE␣MXX␣-120"
2180
2181 output+= f"\nPOIN␣NODE␣'2601'␣WIDE␣0␣TYPE␣MXX␣120"
2182 output+= f"\nPOIN␣NODE␣'2603'␣WIDE␣0␣TYPE␣MXX␣120"
2183
2184 # Ship impact loading
2185 output+= "\n␣\nLC␣␣␣14␣'A'␣1␣TITL␣'Ship␣impact␣loading'"
2186 output+= f"\nLINE␣AUTO␣TITL␣'Accidental␣l'␣PROJ␣N␣0.500000␣TYPE␣PYY␣P1␣1000␣

27.60957␣-2.555000␣6.378248␣P2␣1000␣28.60957␣-2.555000␣6.378248"
2187
2188 # Imperfection ULS
2189 output += """\n
2190 LC 15 'Q' 1 TITL 'Imperfection ULS'
2191 BEAM grp 301,304 type UYS PA 0 PE 1/300
2192 BEAM grp 302,303 type UYS PA 0 PE -1/300
2193
2194 LC 16 'Q' 1 TITL 'Imperfection ALS'
2195 BEAM grp 302,304 type UZS PA 0 PE 1/300
2196 BEPL grp 301,303 type UZS P -1/300 A 50[%]
2197 """
2198
2199 if con_ms == 0:
2200 sln = sln_w_zz
2201
2202 output = f"""
2203
2204 +PROG SOFILOAD
2205 HEAD EXPORT FROM DATABASE
2206 UNIT TYPE 5
2207
2208 LC 1 'G' 1 FACD 1 TITL "Selfweight"
2209
2210 LC 2 'G' 1 TITL "Additional deadload"
2211 """
2212
2213 for i in range(len(sar)):
2214
2215 output += f"\nAREA␣SAR␣'{sar[i]}'␣TITL␣'Epoxy␣Finish'␣WIDE␣0␣TYPE␣PG␣0.10"
2216
2217 for i in range(len(sln)):
2218 output += f"\nLINE␣SLN␣'{sln[i]}'␣TITL␣'Edge␣+␣cable'␣WIDE␣0␣TYPE␣PG␣0.4"
2219
2220 output += "\n␣\nLC␣␣␣3␣'G'␣FACT␣1.0␣TITL␣'Static␣load␣pedestrians␣(TC3)!'"
2221
2222 for i in range(len(sar)):
2223
2224 output+= f"\nAREA␣SAR␣'{sar[i]}'␣TITL␣'Pedestrian␣weight'␣WIDE␣0␣TYPE␣PG␣0.35

"
2225
2226 output += f"""\n \nLC 4 'Q' 1 TITL 'Moment'
2227 NODE 150 TYPE MYY 149.3186281074653
2228 NODE 151 TYPE MYY 149.3186281074653
2229 NODE 152 TYPE MYY -149.3186281074653
2230 NODE 153 TYPE MYY -149.3186281074653
2231 """
2232
2233 output += "\n␣\nLC␣␣␣5␣'Q'␣1␣TITL␣'pedestrians␣full'␣"
2234
2235 for i in range(len(sar_ss)):
2236 output += f"\nAREA␣SAR␣'{sar_ss[i]}'␣TITL␣'Pedestrian␣load␣full'␣WIDE␣0␣TYPE␣

PG␣4.55"
2237
2238 for j in range(len(sar_ms)):
2239 output += f"\nAREA␣SAR␣'{sar_ms[j]}'␣TITL␣'Pedestrian␣load␣full'␣WIDE␣0␣TYPE␣

PG␣3.25"
2240
2241 # Pedestrian load midspan
2242 output+= "\n␣\nLC␣␣␣6␣'Q'␣FACT␣1.0␣TITL␣'Pedestrian␣load␣midspan'"
2243
2244 for k in range(len(sar_ms)):
2245 output += f"\nAREA␣SAR␣'{sar_ms[k]}'␣TITL␣'Pedestrian␣load'␣WIDE␣0␣TYPE␣PG␣

3.25"
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2246
2247 # Pedestrian load sidespan
2248 output+= "\n␣\nLC␣␣␣7␣'Q'␣FACT␣1.0␣TITL␣'Pedestrian␣load␣sidespan'"
2249
2250 for l in range(len(sar_ss)):
2251 output += f"\nAREA␣SAR␣'{sar_ss[l]}'␣TITL␣'Pedestrian␣load'␣WIDE␣0␣TYPE␣PG␣

4.55"
2252
2253 # Pedestrian load half midspan
2254 output+= "\n␣\nLC␣␣␣8␣'Q'␣FACT␣1.0␣TITL␣'Pedestrian␣load␣midspan␣half'"
2255
2256 for m in range(len(sar_ms) // 2):
2257 output += f"\nAREA␣SAR␣'{sar_ms[m]}'␣TITL␣'Pedestrian␣load'␣WIDE␣0␣TYPE␣PG␣

3.90"
2258
2259 # Wind x-direction
2260 output+= "\n␣\nLC␣␣␣9␣'W'␣1␣TITL␣'Wind␣x-direction'"
2261
2262 for n in range(len(sln_w_xx)):
2263 output += f"\nLINE␣SLN␣'{sln_w_xx[n]}'␣TITL␣'Wind␣x-direction'␣WIDE␣0␣TYPE␣

PYY␣{q_wind}"
2264
2265 for o in range(len(grp_pyl)):
2266 output += f"\nBEAM␣GRP␣{grp_pyl[o]}␣TYPE␣PYY␣PA␣{q_wind_pyl_1}␣PE␣{

q_wind_pyl_2}"
2267
2268 # Wind y-direction
2269 output += f"\n␣\nLC␣␣␣10␣'W'␣1␣TITL␣'Wind␣y-direction'"
2270
2271 for p in range(len(sln_w_yy)):
2272 output += f"\nLINE␣SLN␣'{sln_w_yy[p]}'␣TITL␣'Wind␣girders'␣WIDE␣0␣TYPE␣PXX␣{

q_wind␣*␣0.4}"
2273
2274 for q in range(len(grp_pyl)):
2275 output += f"\nBEAM␣GRP␣{grp_pyl[q]}␣TYPE␣PXX␣PA␣{q_wind_pyl_1}␣PE␣{

q_wind_pyl_2}"
2276
2277 # Wind z-direction
2278 output+= "\n␣\nLC␣␣␣11␣'W'␣1␣TITL␣'Wind␣z-direction'"
2279
2280 for p in range(len(sln_w_zz)):
2281 output += f"\nLINE␣SLN␣'{sln_w_zz[p]}'␣TITL␣'Wind␣girders'␣WIDE␣0␣TYPE␣PZZ␣2"
2282
2283 # Add. moment ULS
2284 output+= "\n␣\nLC␣␣␣12␣'Q'␣1␣TITL␣'Add.␣moment␣ULS'"
2285
2286 output+= f"\nPOIN␣NODE␣'2600'␣WIDE␣0␣TYPE␣MXX␣-200"
2287 output+= f"\nPOIN␣NODE␣'2602'␣WIDE␣0␣TYPE␣MXX␣-200"
2288
2289 output+= f"\nPOIN␣NODE␣'2601'␣WIDE␣0␣TYPE␣MXX␣200"
2290 output+= f"\nPOIN␣NODE␣'2603'␣WIDE␣0␣TYPE␣MXX␣200"
2291
2292 # Add. moment ALS
2293 output+= "\n␣\nLC␣␣␣13␣'A'␣1␣TITL␣'Add.␣moment␣ALS'"
2294
2295 output+= f"\nPOIN␣NODE␣'2600'␣WIDE␣0␣TYPE␣MXX␣-120"
2296 output+= f"\nPOIN␣NODE␣'2602'␣WIDE␣0␣TYPE␣MXX␣-120"
2297
2298 output+= f"\nPOIN␣NODE␣'2601'␣WIDE␣0␣TYPE␣MXX␣120"
2299 output+= f"\nPOIN␣NODE␣'2603'␣WIDE␣0␣TYPE␣MXX␣120"
2300
2301 # Ship impact loading
2302 output+= "\n␣\nLC␣␣␣14␣'A'␣1␣TITL␣'Ship␣impact␣loading'"
2303 output+= f"\nLINE␣AUTO␣TITL␣'Accidental␣l'␣PROJ␣N␣0.500000␣TYPE␣PYY␣P1␣1000␣

27.60957␣-2.555000␣6.378248␣P2␣1000␣28.60957␣-2.555000␣6.378248"
2304
2305 # Imperfection ULS
2306 output += """
2307 LC 15 'Q' 1 TITL 'Imperfection ULS'
2308 BEAM grp 301,304 type UYS PA 0 PE 1/300
2309 BEAM grp 302,303 type UYS PA 0 PE -1/300
2310
2311 LC 16 'Q' 1 TITL 'Imperfection ULS'
2312 BEAM grp 302,304 type UZS PA 0 PE 1/300
2313 BEPL grp 301,303 type UZS P -1/300 A 50[%]
2314 """
2315
2316 return output
2317
2318 result_loadcases = (
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2319 print_loadcases(sar_ss, sar_ms, sln_w_xx, sln_w_xx_p, sln_w_yy, sln_w_zz, sln_w_p,
pnt_pyl)

2320 )
2321
2322 #endregion
2323
2324
2325 #region BB) Girder load combinations
2326 grider_combinations = f"""
2327
2328 +prog ase
2329 head calculate all linear loadcases
2330 CTRL WARN 398
2331
2332 lc (1 15 1)
2333
2334 end
2335
2336 +prog ase urs:16
2337 head
2338
2339 syst prob th3 plc {start_plc}
2340
2341 lc 100 facd 1.2 type (D) titl 'ULS girder full'
2342 lcc 2 fact 1.20
2343 lcc 4 fact 1.00
2344 lcc 5 fact 1.35
2345 lcc 9 fact 0.45
2346 lcc 10 fact 0.18
2347 lcc 11 fact -0.45
2348 end
2349
2350
2351 +prog ase urs:17
2352 head
2353
2354 syst prob th3 plc {start_plc}
2355
2356 lc 110 facd 1.2 type (D) titl 'ULS girder mid'
2357 lcc 2 fact 1.20
2358 lcc 4 fact 1.00
2359 lcc 6 fact 1.35
2360 lcc 9 fact 0.45
2361 lcc 10 fact 0.18
2362 lcc 11 fact -0.45
2363 end
2364
2365 +prog ase urs:18
2366 head
2367
2368 syst prob th3 plc {start_plc}
2369
2370 lc 120 facd 1.2 type (D) titl 'ULS girder side'
2371 lcc 2 fact 1.20
2372 lcc 4 fact 1.00
2373 lcc 7 fact 1.35
2374 lcc 9 fact 0.45
2375 lcc 10 fact 0.18
2376 lcc 11 fact -0.45
2377 end
2378
2379 +prog ase urs:19
2380 head
2381
2382 syst prob th3 plc {start_plc}
2383
2384 lc 130 facd 1.2 type (D) titl 'ULS girder half mid'
2385 lcc 2 fact 1.20
2386 lcc 4 fact 1.00
2387 lcc 8 fact 1.35
2388 lcc 9 fact 0.45
2389 lcc 10 fact 0.18
2390 lcc 11 fact -0.45
2391 end
2392
2393 +prog ase urs:20
2394 head
2395
2396 syst prob th3 plc {start_plc}
2397
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2398 lc 140 facd 1.00 type (D) titl 'ALS girder'
2399 lcc 2 fact 1.00
2400 lcc 4 fact 1.00
2401 lcc 5 fact 0.40
2402 lcc 9 fact 0.30
2403 lcc 10 fact 0.12
2404 lcc 11 fact -0.30
2405 lcc 14 fact 1.0
2406 end
2407
2408 """
2409
2410 #endregion
2411
2412
2413 #region CC) Von mises stress check girder + cables
2414 grp_cables = np.concatenate((cab, grp_h_ss, grp_h_ms))
2415
2416
2417 von_mises_stress_check = f"""
2418 +prog aqb urs:25.1
2419 ctrl msel stee
2420 echo full full
2421
2422 lc (100 140 10)
2423 beam grp 4 type beam
2424
2425 nstr ulti ksv ul chks +1.0
2426 comb gmax lcst 150
2427 stre e styp m0
2428
2429 end
2430
2431 +prog aqb
2432
2433 beam grp {(','.join(map(str, grp_cables)))} type cabl
2434
2435 lc (100 140 10)
2436
2437 nstr ulti ksv ul chks +1.0
2438 comb gmax lcst 160
2439 stre e styp m0
2440
2441 end
2442 """
2443
2444 #endregion
2445
2446
2447 #region DD) Calculate eigenfrequencies
2448
2449 plc_ef = f"""
2450
2451 +prog ase
2452 head TH3 for cable shape
2453
2454 syst prob th3 plc {start_plc + 10}
2455
2456 lc {end_plc} facd 1.00 type -
2457 lcc 2 fact 1.0
2458 lcc 3 fact 1.0
2459
2460 end
2461 """
2462
2463 eigenfrequencies = f"""
2464
2465 +prog ase
2466 head calculate eigenfrequencies
2467
2468 syst prob line plc {end_plc}
2469
2470 MASS 0
2471 MASS LC 2 SELE PZZ MX 100[%] MY 100[%] MZ 100[%]
2472 MASS LC 3 SELE PZZ MX 100[%] MY 100[%] MZ 100[%]
2473
2474 eige 40 etyp lanc lc 200
2475
2476 end
2477 """
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2478
2479 if isfile(rf"E:\Python-CDB\Runs\{filename}-part1.pdf"):
2480 pass
2481 else:
2482 eigenfrequencies += f"""
2483 +sys nowait ursula "{filename}-part1.plb" -printto:"pdf" -page:2-3
2484 """
2485
2486 #endregion
2487
2488
2489 #region EE) Pylon buckling load combinations
2490 pylon_buckling_combinations = f"""
2491
2492 +prog ase
2493
2494 syst prob th3 plc {start_plc + 10} stor yes
2495
2496 end
2497
2498
2499 -prog ase urs
2500 CTRL WARN 293
2501 syst prob th3 iter 40
2502 rein mod beam rmod SAVE
2503
2504 grp - line
2505 grp (301 302 1) full
2506
2507 rein lcr 300
2508 DESI ULTI KSV ULD KSB ULD C1 3.50 S1 24 S2 50 SMOD YES tana 45 tanb 45
2509 NSTR S1 KSV ULD KSB ULD CHKC 30 CHKR 469
2510
2511 lc 300 facd 1.2 type (D) titl 'ULS pylon + imp.'
2512 lcc 2 fact 1.20
2513 lcc 4 fact 1.00
2514 lcc 5 fact 1.35
2515 lcc 9 fact 0.45
2516 lcc 10 fact 0.18
2517 lcc 11 fact -0.45
2518 lcc 12 fact 1.00
2519 lcc 15 fact 1.00
2520
2521 end
2522
2523 -prog aqb
2524 head lc 300
2525 echo full full
2526
2527 BEAM GRP (301 302 1)
2528
2529
2530 LC 300
2531 REIN BEAM LCR 300 RMOD SING
2532 DESI ULTI KSV ULD KSB ULD C1 3.50 S1 24 S2 50 SMOD YES tana 45 tanb 45
2533 NSTR S1 KSV ULD KSB ULD CHKC 30 CHKR 469
2534
2535 end
2536
2537 +prog ase
2538 CTRL WARN 293
2539 syst prob th3 plc 30 fmax 1.1 tol -2
2540
2541 grp - line
2542 grp (301 304 1) full
2543
2544 $rein lcr 310 rmod save
2545 $desi serv ksv sld ksb sld c1 2.1 s1 2.4 s2 5.0 smod yes tana 45 tanb 45
2546 nstr k1 ksv sld ksb sld crac yes cw 0.2 fmax 0.85 $chkc 45 chkr 500
2547
2548 lc 310 facd 1.00 type (D) titl 'SLS pylon + imp.'
2549 lcc 2 fact 1.00
2550 lcc 4 fact 1.00
2551 lcc 5 fact 1.00
2552 lcc 9 fact 0.30
2553 lcc 10 fact 0.12
2554 lcc 11 fact -0.30
2555 lcc 12 fact 0.67
2556 end
2557
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2558 +prog aqb
2559 head lc 310
2560 echo full full
2561
2562 BEAM GRP (301 304 1)
2563
2564 LC 310
2565 rein beam lcr 310 rmod sing
2566 desi serv ksv sld ksb sld c1 3.5 s1 24 s2 50 smod yes tana 45 tanb 45
2567 nstr k1 ksv sld ksb sld chkc 45 chkr 500 crac yes cw 0.2
2568
2569 end
2570
2571 +prog ase
2572 CTRL WARN 293
2573 syst prob th3 plc 30 fmax 1.1 tol -2
2574 rein mod beam rmod save
2575
2576 grp - line
2577 grp (301 304 1) full
2578
2579 $rein lcr 320
2580 $DESI ULTI KSV ULD KSB ULD C1 2.1 S1 2.4 S2 5.0 SMOD YES tana 45 tanb 45
2581 NSTR K1 KSV ULD KSB ULD FMAX 0.85 $CHKC 30 CHKR 469
2582
2583 lc 320 facd 1.0 type (D) titl 'ALS pylon + imp.'
2584 lcc 2 fact 1.00
2585 lcc 4 fact 1.00
2586 lcc 5 fact 0.40
2587 lcc 9 fact 0.30
2588 lcc 10 fact 0.12
2589 lcc 11 fact -0.30
2590 lcc 13 fact 1.00
2591 lcc 14 fact 1.00
2592 $lcc 16 fact 1.00
2593
2594 end
2595
2596 +prog aqb
2597 head lc 320
2598 echo full full
2599
2600 BEAM GRP (301 304 1)
2601
2602 LC 320
2603 REIN BEAM LCR 320 RMOD SING
2604 DESI ULTI KSV ULD KSB ULD C1 3.50 S1 24 S2 50 SMOD YES tana 45 tanb 45
2605 NSTR K1 KSV ULD KSB ULD CHKC 30 CHKR 469
2606
2607 end
2608
2609 """
2610 #endregion
2611
2612
2613
2614 # Part 1 - Stress check girders + cables & eigenfrequency calculation
2615 with open(rf"E:\Python-CDB\Runs\{filename}-part1.1.txt", "w") as file:
2616
2617 # Print cs_generation to the file
2618 file.write(f"{cs_generation}\n")
2619
2620 # SOFIMSHC run geometry
2621
2622 file.write(f"{foundation(mesh␣=␣0.30)}\n")
2623
2624 # SOFIMSHC for additional geometry
2625 file.write(f"{result_g_ss}\n")
2626 file.write(f"{result_g_ms}\n")
2627 file.write(f"{result_c_ss}\n")
2628 file.write(f"{result_c_ms}\n")
2629 file.write(f"{result_tr_ss}\n")
2630 file.write(f"{result_tr_ms}\n")
2631 file.write(f"{result_pyl}\n")
2632 file.write(f"{result_p_ss}\n")
2633 file.write(f"{result_p_ms}\n")
2634 file.write(f"{result_h_ss}\n")
2635 file.write(f"{result_h_ms}\n")
2636 file.write(f"{result_d_pl_ss}\n")
2637 file.write(f"{result_d_pl_ms}\n")
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2638 file.write(f"{result_c_pyl}\n")
2639 file.write(f"{result_cab_pyl}\n")
2640 file.write(f"{result_rol_cab}\n")
2641 file.write(f"{result_con_mg2}\n")
2642 file.write(f"{result_points_pylon}\n")
2643 file.write(f"end\n")
2644
2645 # AQUA smoothen cross sections
2646 file.write(f"{smoothen_cs}\n")
2647
2648 # SOFILOAD apply moment and cable stress
2649 file.write(f"{result_con_mom}\n")
2650 file.write(f"{apply_cable_stress}\n")
2651 file.write(f"{adjust_cable_stress}\n")
2652
2653 # SOFILOAD apply static loadcases
2654 file.write(f"{result_loadcases}\n")
2655 file.write(f"end\n")
2656
2657 # ASE run girder
2658 file.write(f"{grider_combinations}\n")
2659
2660 # AQB von mises stress check
2661 file.write(f"{von_mises_stress_check}\n")
2662
2663 file.write(f"{plc_ef}\n")
2664
2665 with open(rf"E:\Python-CDB\Runs\{filename}-part1.2.txt", "w") as file:
2666 # Calculate eigenfrequencies
2667 file.write(f"{eigenfrequencies}\n")
2668
2669
2670 # Part 2 - Dynamic analysis
2671 with open(rf"E:\Python-CDB\Runs\{filename}-part2.1.txt", "w") as file:
2672
2673 file.write(f"{cs_generation}\n")
2674
2675 # SOFIMSHC run geometry
2676
2677 file.write(f"{foundation(mesh␣=␣0.60)}\n")
2678
2679 # SOFIMSHC for additional geometry
2680 file.write(f"{result_g_ss}\n")
2681 file.write(f"{result_g_ms}\n")
2682 file.write(f"{result_c_ss}\n")
2683 file.write(f"{result_c_ms}\n")
2684 file.write(f"{result_tr_ss}\n")
2685 file.write(f"{result_tr_ms}\n")
2686 file.write(f"{result_pyl}\n")
2687 file.write(f"{result_p_ss}\n")
2688 file.write(f"{result_p_ms}\n")
2689 file.write(f"{result_h_ss}\n")
2690 file.write(f"{result_h_ms}\n")
2691 file.write(f"{result_d_pl_ss}\n")
2692 file.write(f"{result_d_pl_ms}\n")
2693 file.write(f"{result_c_pyl}\n")
2694 file.write(f"{result_cab_pyl}\n")
2695 file.write(f"{result_rol_cab}\n")
2696 file.write(f"{result_con_mg2}\n")
2697 file.write(f"{result_points_pylon}\n")
2698
2699
2700 with open(rf"E:\Python-CDB\Runs\{filename}-part2.3.txt", "w") as file:
2701 file.write(f"end\n")
2702
2703 # AQUA smoothen cross sections
2704 file.write(f"{smoothen_cs}\n")
2705
2706 # SOFILOAD apply moment and cable stress
2707 file.write(f"{result_con_mom}\n")
2708 file.write(f"{apply_cable_stress}\n")
2709 file.write(f"{adjust_cable_stress}\n")
2710
2711 # SOFILOAD apply static loadcases
2712 file.write(f"{result_loadcases}\n")
2713 file.write(f"end\n")
2714
2715
2716 # Part 3 - Pylon buckling
2717 with open(rf"E:\Python-CDB\Runs\{filename}-part3.txt", "w") as file:
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2718
2719 file.write(f"{cs_generation}\n")
2720
2721 # SOFIMSHC run geometry
2722
2723 file.write(f"{foundation(mesh␣=␣0.60)}\n")
2724
2725 # SOFIMSHC for additional geometry
2726 file.write(f"{result_g_ss}\n")
2727 file.write(f"{result_g_ms}\n")
2728 file.write(f"{result_c_ss}\n")
2729 file.write(f"{result_c_ms}\n")
2730 file.write(f"{result_tr_ss}\n")
2731 file.write(f"{result_tr_ms}\n")
2732 file.write(f"{result_pyl}\n")
2733 file.write(f"{result_p_ss}\n")
2734 file.write(f"{result_p_ms}\n")
2735 file.write(f"{result_h_ss}\n")
2736 file.write(f"{result_h_ms}\n")
2737 file.write(f"{result_d_pl_ss}\n")
2738 file.write(f"{result_d_pl_ms}\n")
2739 file.write(f"{result_c_pyl}\n")
2740 file.write(f"{result_cab_pyl}\n")
2741 file.write(f"{result_rol_cab}\n")
2742 file.write(f"{result_con_mg2}\n")
2743 file.write(f"{result_points_pylon}\n")
2744 file.write(f"end\n")
2745
2746 # AQUA smoothen cross sections
2747 file.write(f"{smoothen_cs}\n")
2748
2749 # SOFILOAD apply moment and cable stress
2750 file.write(f"{result_con_mom}\n")
2751 file.write(f"{apply_cable_stress}\n")
2752 file.write(f"{adjust_cable_stress}\n")
2753
2754 # SOFILOAD apply static loadcases
2755 file.write(f"{result_loadcases}\n")
2756 file.write(f"end\n")
2757
2758 # Perform pylon buckling check
2759 file.write(f"{pylon_buckling_combinations}\n")
2760
2761
2762
2763 def plot_3d_lines(coordinates, points, name=filename):
2764 fig = plt.figure(figsize=(20, 10))
2765
2766 # Adjust margins and spacing
2767 plt.subplots_adjust(hspace=0.3, wspace=0.3)
2768
2769 # First subplot: Sideview (elev=0, azim=90)
2770 ax1 = fig.add_subplot(121, projection='3d') # Top-left subplot
2771 for (x1, y1, z1), (x2, y2, z2) in coordinates:
2772 ax1.plot([x1, x2], [y1, y2], [z1, z2], color='b', linewidth=0.5)
2773 ax1.scatter([x1, x2], [y1, y2], [z1, z2], color='r', s=3)
2774 for (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) in points:
2775 poly_points = [
2776 [x1, y1, z1],
2777 [x2, y2, z2],
2778 [x3, y3, z3],
2779 [x4, y4, z4]
2780 ]
2781 poly = Poly3DCollection([poly_points], color='grey', edgecolor='black', alpha

=0.7)
2782 # ax1.add_collection3d(poly) # Uncomment if polygons need to be plotted
2783 ax1.set_box_aspect([100, 20, 20])
2784 ax1.view_init(elev=10, azim=90)
2785
2786 # Second subplot: Perspective view (elev=20, azim=60)
2787 ax2 = fig.add_subplot(122, projection='3d') # Top-right subplot
2788 for (x1, y1, z1), (x2, y2, z2) in coordinates:
2789 ax2.plot([x1, x2], [y1, y2], [z1, z2], color='b', linewidth=0.5)
2790 ax2.scatter([x1, x2], [y1, y2], [z1, z2], color='r', s=3)
2791 for (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) in points:
2792 poly_points = [
2793 [x1, y1, z1],
2794 [x2, y2, z2],
2795 [x3, y3, z3],
2796 [x4, y4, z4]
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2797 ]
2798 poly = Poly3DCollection([poly_points], color='grey', edgecolor='black', alpha

=0.7)
2799 # ax2.add_collection3d(poly) # Uncomment if polygons need to be plotted
2800 ax2.set_box_aspect([100, 20, 20])
2801 ax2.view_init(elev=30, azim=50)
2802
2803 fig.suptitle(f"Iteration␣{filename}", fontsize=16)
2804
2805 # Save the figure as a .png file
2806 plt.tight_layout()
2807 plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0.3)
2808 plt.savefig(rf"E:\Python-CDB\Plots\{name}.png", dpi=300)
2809
2810 #endregion
2811
2812 plot_3d_lines(coordinates=plt_model,points=plt_model_deck)
2813
2814 return end_plc
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A.2 ULS verification - Step 5
The parametric script for the ULS verification of the main girders and cable system is presented in the
Python script below.

1 """ULS verification of the parametric model"""
2
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
7 from matplotlib import cm
8 from sofistik_daten import *
9 import os

10 import platform
11 from ctypes import *
12 import tabula
13 import pandas as pd
14 import csv
15 import time
16 import sys, subprocess
17 import matplotlib.pyplot as plt
18 import re
19 import PyPDF2
20 import matplotlib.pyplot as plt
21 import matplotlib.font_manager as fm
22 from sklearn.cluster import AffinityPropagation
23 from sklearn.cluster import DBSCAN
24 from matplotlib.backends.backend_pdf import PdfPages
25 from matplotlib import image as mpimg
26
27 #region Connect to CDB
28 os.add_dll_directory(r"E:\SOFiSTiK\2024\SOFiSTiK␣2024\interfaces\64bit")
29 os.add_dll_directory(r"E:\SOFiSTiK\2024\SOFiSTiK␣2024")
30
31 # Get the DLL functions
32 myDLL = cdll.LoadLibrary("sof_cdb_w_edu -2024.dll")
33 py_sof_cdb_get = cdll.LoadLibrary("sof_cdb_w_edu -2024.dll").sof_cdb_get
34 py_sof_cdb_get.restype = c_int
35 py_sof_cdb_kenq = cdll.LoadLibrary("sof_cdb_w_edu -2024.dll").sof_cdb_kenq_ex
36
37 # Connect to CDB
38 Index = c_int()
39 cdbIndex = 99
40
41
42 def stress_check_girder_cables(fileName):
43 uc_girder = []
44 uc_cable = []
45
46 Index.value = myDLL.sof_cdb_init(fileName.encode('utf-8'), cdbIndex)
47
48 cdbStat = c_int() # get the CDB status
49 cdbStat.value = myDLL.sof_cdb_status(Index.value)
50
51 print("CDB␣Status:", cdbStat.value)
52
53 a = c_int()
54 ie = c_int(0)
55 RecLen = c_int(sizeof(cbeam_de0))
56
57 while ie.value < 2:
58 ie.value = py_sof_cdb_get(Index, 107, 100, byref(cbeam_de0), byref(RecLen), 1)
59 uc_girder.append(cbeam_de0.m_tcf)
60 break
61
62 while ie.value < 2:
63 ie.value = py_sof_cdb_get(Index, 107, 110, byref(cbeam_de0), byref(RecLen), 1)
64 uc_girder.append(cbeam_de0.m_tcf)
65 break
66
67 while ie.value < 2:
68 ie.value = py_sof_cdb_get(Index, 107, 120, byref(cbeam_de0), byref(RecLen), 1)
69 uc_girder.append(cbeam_de0.m_tcf)
70 break
71
72 while ie.value < 2:
73 ie.value = py_sof_cdb_get(Index, 107, 130, byref(cbeam_de0), byref(RecLen), 1)
74 uc_girder.append(cbeam_de0.m_tcf)
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75 break
76
77 while ie.value < 2:
78 ie.value = py_sof_cdb_get(Index, 107, 140, byref(cbeam_de0), byref(RecLen), 1)
79 uc_girder.append(cbeam_de0.m_tcf)
80 break
81
82
83 a = c_int()
84 ie = c_int(0)
85 RecLen = c_int(sizeof(ccabl_str))
86
87 while ie.value < 2:
88 ie.value = py_sof_cdb_get(Index, 165, 160, byref(ccabl_str), byref(RecLen), 1)
89 uc_cable.append((ccabl_str.m_sig / 1000) / 460)
90 break
91
92 myDLL.sof_cdb_close(0)
93
94 return max(uc_girder), uc_cable
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A.3 Mode shape clustering - Step 7
The parametric script for the mode shape clustering according to the DBSCAN algorithm for crowd-
induced loading is presented in the code below.

1 """Mode shape clustering algorithm and conversion to SOFiSTiK for crowd-induced loading"""
2
3 from sofistik_daten import *
4 import os
5 import platform
6 from ctypes import *
7 import pandas as pd
8 import matplotlib.pyplot as plt
9 import numpy as np

10 from sklearn.cluster import AffinityPropagation
11 from mpl_toolkits.mplot3d import Axes3D
12 from sklearn.cluster import DBSCAN
13 from matplotlib.lines import Line2D
14 from matplotlib.backends.backend_pdf import PdfPages
15 from matplotlib import image as mpimg
16
17
18 #region Connect to CDB
19 os.add_dll_directory(r"E:\SOFiSTiK\2024\SOFiSTiK␣2024\interfaces\64bit")
20 os.add_dll_directory(r"E:\SOFiSTiK\2024\SOFiSTiK␣2024")
21
22
23 # Get the DLL functions
24 myDLL = cdll.LoadLibrary("sof_cdb_w_edu -2024.dll")
25 py_sof_cdb_get = cdll.LoadLibrary("sof_cdb_w_edu -2024.dll").sof_cdb_get
26 py_sof_cdb_get.restype = c_int
27 py_sof_cdb_kenq = cdll.LoadLibrary("sof_cdb_w_edu -2024.dll").sof_cdb_kenq_ex
28
29
30 # Connect to CDB
31 Index = c_int()
32 cdbIndex = 99
33
34 def modeshape_loading(filename, fileName, lc):
35
36 lc_dyn = []
37 ef_dyn = []
38 point = []
39 pointnr = []
40
41 with open(rf"E:\Python-CDB\Runs\{filename}load.txt", "w") as file:
42 file.write(f"+prog␣sofiload␣\n")
43
44 for num, k in enumerate(lc): #CHANGE BACK TO ALL lc
45
46 # important: Unicode call!
47 Index.value = myDLL.sof_cdb_init(fileName.encode('utf-8'), cdbIndex)
48
49 cdbStat = c_int() # get the CDB status
50 cdbStat.value = myDLL.sof_cdb_status(Index.value)
51
52 # Print the Status of the CDB
53 print("CDB␣Status:", cdbStat.value)
54
55 pos = c_int(0)
56 datalen = c_int(0)
57
58 a = c_int()
59 ie = c_int(0)
60 datalen.value = sizeof(CNODE)
61 RecLen = c_int(sizeof(cnode))
62
63 nr, x, y, z = [], [], [], []
64 id, uz = [], []
65
66 while ie.value < 2:
67 ie.value = py_sof_cdb_get(Index, 20, 0, byref(cnode), byref(RecLen), 1)
68 if 2.555 > cnode.m_xyz[1] > 0.05 or - 2.555 < cnode.m_xyz[1] < -0.05:
69 nr.append(cnode.m_nr) # Node number
70 x.append(cnode.m_xyz[0]) # X coordinates
71 y.append(cnode.m_xyz[1]) # Y coordinates
72 z.append(cnode.m_xyz[2]) # Z coordinates
73
74 a = c_int()
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75 ie = c_int(0)
76 datalen.value = sizeof(CN_DISPC)
77 RecLen = c_int(sizeof(cn_dispc))
78
79 while ie.value < 2:
80 ie.value = py_sof_cdb_get(Index, 24, k, byref(cn_dispc), byref(RecLen), 1)
81 id.append(cn_dispc.m_id) # node-number
82 uz.append(cn_dispc.m_uz) # displacement Z
83
84 ef = []
85
86 ie = c_int(0)
87 RecLen = c_int(sizeof(clc_eige))
88
89 while ie.value < 2:
90 ie.value = py_sof_cdb_get(Index, 12, k, byref(clc_eige), byref(RecLen), 1)
91 ef.append(clc_eige.m_omega / (2*np.pi)) # node-number
92
93 myDLL.sof_cdb_close(0)
94
95 ef_dyn.append(ef[-1])
96
97 nr2 = []
98 uz2 = []
99 x2 = []

100 y2 = []
101 z2 = []
102
103 for i in range(len(nr)):
104 for j in range(len(id)):
105 if nr[i] == id[j]:
106 nr2.append(nr[i])
107 x2.append(x[i])
108 y2.append(y[i])
109 uz2.append(uz[j])
110 z2.append(z[i])
111
112 # Create the node variable with 3D points
113 node = [(x2[i], y2[i], uz2[i]) for i in range(len(x2))]
114
115 # Create points to read maximum acceleration
116 max_node = max(node, key=lambda n: n[2])
117 index_max = node.index(max(node, key=lambda n: n[2]))
118 min_node = min(node, key=lambda n: n[2])
119 index_min = node.index(min(node, key=lambda n: n[2]))
120
121 # Compare the absolute values of uz2
122 if abs(max_node[2]) > abs(min_node[2]):
123 point.append((x2[index_max], y2[index_max], z2[index_max])) # point.append(nr[

index_max])
124 else:
125 point.append((x2[index_min], y2[index_min], z2[index_min]))
126
127 # Separate points into pos_node and neg_node based on z2 (uz2)
128 pos_node = []
129 neg_node = []
130
131 # Now, node contains all the 3D points
132 for i in range(len(node)):
133 if node[i][2] < 0 and -2.555 < node[i][1] < 2.555 and -51.51 < node[i][0] <

51.51:
134 neg_node.append(node[i])
135 elif node[i][2] > 0 and -2.555 < node[i][1] < 2.555 and -51.51 < node[i][0] <

51.51:
136 pos_node.append(node[i])
137
138 # Convert pos_node and neg_node to NumPy arrays for clustering
139 neg_node_array = np.array(neg_node)
140 pos_node_array = np.array(pos_node)
141
142 # Check if neg_node contains enough points for clustering
143 if len(neg_node_array) < 2:
144 raise ValueError("Not␣enough␣points␣in␣neg_node␣for␣clustering.")
145 if len(pos_node_array) < 2:
146 raise ValueError("Not␣enough␣points␣in␣pos_node␣for␣clustering.")
147
148
149 # Apply DBSCAN with Manhattan distance for neg_node
150 dbscan_neg = DBSCAN(eps=0.5, min_samples=7, metric='euclidean')
151 labels_neg = dbscan_neg.fit_predict(neg_node_array)

161



152
153 # Apply DBSCAN with Manhattan distance for pos_node
154 dbscan_pos = DBSCAN(eps=0.5, min_samples=7, metric='euclidean')
155 labels_pos = dbscan_pos.fit_predict(pos_node_array)
156
157 # Get the unique cluster labels (excluding noise)
158 unique_labels_neg = np.unique(labels_neg[labels_neg != -1])
159 unique_labels_pos = np.unique(labels_pos[labels_pos != -1])
160
161 # Initialize a dictionary to hold the boundaries for each cluster in neg_node
162 boundaries_neg = {}
163 boundaries_pos = {}
164
165 # Plot the clusters for neg_node
166 for i, label in enumerate(unique_labels_neg):
167
168 # Filter points belonging to the current cluster
169 cluster_points = neg_node_array[labels_neg == label]
170
171 # Calculate boundaries
172 min_x = np.min(cluster_points[:, 0])
173 max_x = np.max(cluster_points[:, 0])
174 min_y = np.min(cluster_points[:, 1])
175 max_y = np.max(cluster_points[:, 1])
176
177 # Find the index of the points with min_x, max_x, min_y, max_y
178 min_x_idx = np.where(cluster_points[:, 0] == min_x)[0][0]
179 max_x_idx = np.where(cluster_points[:, 0] == max_x)[0][0]
180 min_y_idx = np.where(cluster_points[:, 1] == min_y)[0][0]
181 max_y_idx = np.where(cluster_points[:, 1] == max_y)[0][0]
182
183 # Store boundaries and indices in the dictionary
184 boundaries_neg[label] = {
185 'min_x': min_x,
186 'max_x': max_x,
187 'min_y': min_y,
188 'max_y': max_y,
189 'min_x_idx': min_x_idx,
190 'max_x_idx': max_x_idx,
191 'min_y_idx': min_y_idx,
192 'max_y_idx': max_y_idx
193 }
194
195 # Plot the clusters for pos_node
196 for i, label in enumerate(unique_labels_pos):
197
198 # Filter points belonging to the current cluster
199 cluster_points = pos_node_array[labels_pos == label]
200
201 # Calculate boundaries
202 min_x = np.min(cluster_points[:, 0])
203 max_x = np.max(cluster_points[:, 0])
204 min_y = np.min(cluster_points[:, 1])
205 max_y = np.max(cluster_points[:, 1])
206
207 # Find the index of the points with min_x, max_x, min_y, max_y
208 min_x_idx = np.where(cluster_points[:, 0] == min_x)[0][0]
209 max_x_idx = np.where(cluster_points[:, 0] == max_x)[0][0]
210 min_y_idx = np.where(cluster_points[:, 1] == min_y)[0][0]
211 max_y_idx = np.where(cluster_points[:, 1] == max_y)[0][0]
212
213 # Store boundaries and indices in the dictionary
214 boundaries_pos[label] = {
215 'min_x': min_x,
216 'max_x': max_x,
217 'min_y': min_y,
218 'max_y': max_y,
219 'min_x_idx': min_x_idx,
220 'max_x_idx': max_x_idx,
221 'min_y_idx': min_y_idx,
222 'max_y_idx': max_y_idx
223 }
224
225 lc_dyn.append(300 + num)
226
227 output = f"\nLC␣␣␣{300␣+␣num}␣type␣none␣fact␣1␣TITL␣\"Dyn.␣ped.␣loading\"␣␣␣"
228
229 # Define function for loading (psi)
230 if 1.25 < ef[-1] < 1.70:
231 psi = 0.25 + (1.00 - 0.25) / (1.70 - 1.25) * (ef[-1] - 1.25)
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232 elif 1.70 < ef[-1] < 2.10:
233 psi = 1.00
234 elif 2.10 < ef[-1] < 2.30:
235 psi = 1 + ((0.25 - 1.00) / (2.30 - 2.10) * (ef[-1] - 2.10))
236 else:
237 psi = 0.25
238
239 n_p = (10.8 * np.sqrt((5.10 * 103 * 0.5) * 0.002)) / (5.10 * 103)
240
241 q = 0.280 * n_p * psi
242
243 # Print the boundaries and indices for each cluster
244 for label, bounds in boundaries_neg.items():
245 output += (f"\nAREA␣AUTO␣TITL␣\'NEG␣CLUSTER␣{label+1}\'␣PROJ␣ZZ␣WIDE␣5␣TYPE␣PG␣"
246 f"P1␣-1␣{bounds['min_x']:.3f}␣{bounds['min_y']:.3f}␣7␣"
247 f"P2␣-1␣{bounds['min_x']:.3f}␣{bounds['max_y']:.3f}␣7␣"
248 f"P3␣-1␣{bounds['max_x']:.3f}␣{bounds['max_y']:.3f}␣7␣"
249 f"P4␣-1␣{bounds['max_x']:.3f}␣{bounds['min_y']:.3f}␣7")
250
251 for label, bounds in boundaries_pos.items():
252 output += (f"\nAREA␣AUTO␣TITL␣\'POS␣CLUSTER␣{label+1}\'␣PROJ␣ZZ␣WIDE␣5␣TYPE␣PG␣"
253 f"P1␣1␣{bounds['min_x']:.3f}␣{bounds['min_y']:.3f}␣7␣"
254 f"P2␣1␣{bounds['min_x']:.3f}␣{bounds['max_y']:.3f}␣7␣"
255 f"P3␣1␣{bounds['max_x']:.3f}␣{bounds['max_y']:.3f}␣7␣"
256 f"P4␣1␣{bounds['max_x']:.3f}␣{bounds['min_y']:.3f}␣7")
257
258 output += f"\nFUNC␣T␣1/{round(ef[-1],␣3)}␣F␣{q}␣TMIN␣{round(ef[-1]␣/␣(2␣*␣np.pi),␣3)}

"
259
260
261 with open(rf"E:\Python-CDB\Runs\{filename}load.txt", "a") as file:
262 file.write(f"{output}\n")
263
264 with open(rf"E:\Python-CDB\Runs\{filename}load.txt", "a") as file:
265 file.write(f"\nEND")
266
267 #store points with maximum displacement for dynamic analysis
268
269 for i in range(len(point)):
270 current_point = point[i]
271 while point.count(current_point) > 1: # Check if duplicates exist
272 # Increment x2 value by 0.1
273 current_point = (current_point[0] + 0.1, current_point[1], current_point[2])
274 point[i] = current_point # Update the point in the list
275
276 output = ""
277
278 for i in range(len(point)):
279 output += f"\nSPT␣␣{3000␣+␣i}␣X␣{point[i][0]}␣␣{point[i][1]}␣␣␣{point[i][2]}␣TITL␣\"

Point\""
280 pointnr.append(3000 + i)
281
282 with open(rf"E:\Python-CDB\Runs\{filename}-part2.2.txt", "w") as file:
283 file.write(f"{output}\n")
284
285
286 return pointnr, ef_dyn, lc_dyn
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A.4 MOPSO algorithm - Steps 1, 9 & 10
The Python script for the multi-objective particle swarm optimisation of the case study and the gener-
ated Pareto front with its export to a csv-file is presented in the code below.

1 """MOPSO algorithm with Pareto front generation and export to csv-file"""
2
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
7 from matplotlib import cm
8 from sofistik_daten import *
9 import os

10 import platform
11 from ctypes import *
12 import tabula
13 import pandas as pd
14 import csv
15 import time
16 import sys, subprocess
17 import matplotlib.pyplot as plt
18 import re
19 import PyPDF2
20 import matplotlib.pyplot as plt
21 import matplotlib.font_manager as fm
22 import multiprocessing
23 from sklearn.cluster import AffinityPropagation
24 from matplotlib.cm import get_cmap
25 from sklearn.cluster import DBSCAN
26 from matplotlib.backends.backend_pdf import PdfPages
27 from matplotlib import image as mpimg
28 from Parametric_model import par_model
29 from Stresses_AQB import stress_check_girder_cables
30 from Read_eigenfrequencies import read_eigenfrequencies
31 from Modeshape_loading import modeshape_loading
32 from Dynamic_analysis import dynamic_analysis
33 from Dynamic_analysis import dynamic_results
34 from Optimisation_script import optimisation
35 import shutil
36 import platform
37
38 start_time = time.time()
39
40
41 # PSO Parameters
42 num_particles = 15
43 num_iterations = 100
44 inertia = 0.7 # Inertia parameter
45 c1 = 1.5 # Memory parameter 1.5
46 c2 = 1.5 # Social parameter 1.5
47
48
49 # Initialize bounds for each objective (min-max normalisation)
50 objective_bounds = [
51 [0, 4], # Bounds for 'a_max'
52 [350, 450], # Bounds for 'mass'
53 ]
54
55
56 # Set the uc_total constraint bounds and penalty parameters
57 uc_lower_bound = 0.5 # Lower bound for uc_total
58 uc_upper_bound = 1.0 # Upper bound for uc_total
59 penalty_factor = 1.0
60
61
62
63 # Define utility functions (1/2)
64 def dominates(score1, score2):
65 """
66 Check if score1 dominates score2.
67 A solution dominates another if it's no worse in all objectives
68 and strictly better in at least one.
69 """
70 return np.all(score1 <= score2) and np.any(score1 < score2)
71
72
73 # Define utility functions (1/2)
74 def find_global_best_position(personal_best_scores):
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75 """
76 Find the global best position using Pareto dominance.
77 A solution is considered the best if it is not dominated by any other.
78 If no dominance occurs, return the first particle.
79 """
80 num_particles = len(personal_best_scores)
81 dominated = [False] * num_particles # To track if a particle is dominated by any other
82
83 for i in range(num_particles):
84 for j in range(num_particles):
85 if i != j and dominates(personal_best_scores[j], personal_best_scores[i]):
86 dominated[i] = True
87 break # No need to check further if already dominated
88
89 # Get the indices of the non-dominated particles (Pareto-optimal)
90 pareto_optimal_indices = [i for i, dom in enumerate(dominated) if not dom]
91
92 if not pareto_optimal_indices:
93 # If no Pareto-optimal particles found, select the first particle
94 print("No␣Pareto␣dominance␣found.")
95 return 0 # Index of the first particle
96
97 # Otherwise, select the first Pareto-optimal solution
98 global_best_index = pareto_optimal_indices[0]
99

100 return global_best_index
101
102
103 # Global dictionary to store evaluated particles and their fitness values
104 evaluated_particles = {}
105
106
107 # Define fitness function with caching to avoid repetitive evaluation
108 def fitness_func(particle, objective_bounds, uc_lower_bound, uc_upper_bound, penalty_factor):
109 # Convert particle to a tuple for hashing (since lists are not hashable)
110 particle_tuple = tuple(particle)
111
112 # Check if this particle has been evaluated before
113 if particle_tuple in evaluated_particles:
114 print(f"Particle␣{particle}␣has␣already␣been␣evaluated.")
115 return evaluated_particles[particle_tuple] # Return cached fitness value
116
117 # Extract individual parameters
118 hw, wf, hp, cp, hang_ss, hang_ms = particle
119
120 # Define the hanger penalty based on the number of hangers
121 if hang_ms == 2:
122 hanger_penalty = 0
123 elif hang_ms == 3:
124 hanger_penalty = 0.5 # Penalty for 3 hangers
125 elif hang_ms == 4:
126 hanger_penalty = 1 # Penalty for 4 hangers
127
128 # Perform computation
129 tw = 10
130 tf = 20
131 wl = 1100
132 wu = 600
133 fz_p = 10
134 hang_ms_p = 4
135 runtime = 8000 # Adjust runtime as needed
136 stepsize = 40
137
138
139
140 # Run optimization and compute objectives
141 a_max, a_max_index, a_max_p, mode, ef_dyn, uc_girder, uc_cable, mass = optimisation(
142 hp, int(hang_ss), int(hang_ms), int(hang_ms_p), fz_p, hw, wf, tw, tf, wl, wu, cp,

runtime, stepsize
143 )
144
145 # Compute unity_checks, uc_total, and penalty
146 unity_checks = [uc_girder, uc_cable[0]]
147 uc_total = np.max(unity_checks)
148 penalty = 0
149 if uc_total < uc_lower_bound:
150 penalty = penalty_factor
151 elif uc_lower_bound > uc_total > uc_upper_bound:
152 penalty = abs(penalty_factor * ((uc_total - uc_upper_bound) / (uc_lower_bound -

uc_upper_bound)))
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153 else:
154 penalty = penalty_factor
155
156 # Normalize objectives
157 objectives = [a_max, mass[0]]
158 normalized_objectives = []
159 for i, obj in enumerate(objectives):
160 lower_bound, upper_bound = objective_bounds[i]
161 # Dynamically update bounds
162 objective_bounds[i][0] = min(obj, lower_bound)
163 objective_bounds[i][1] = max(obj, upper_bound)
164 # Normalize
165 normalized_value = abs((obj - lower_bound) / (upper_bound - lower_bound))
166 normalized_objectives.append(normalized_value)
167
168 normalized_objectives = np.array(normalized_objectives)
169
170 # Total fitness
171 total_fitness = normalized_objectives + penalty + hanger_penalty
172
173 # Nominal values
174 nominal_values = [a_max, mass[0], uc_total]
175
176 # Cache the fitness value for the particle
177 evaluated_particles[particle_tuple] = (total_fitness, (a_max_index, a_max_p, mode, ef_dyn

), nominal_values, unity_checks)
178
179 return total_fitness, (a_max_index, a_max_p, mode, ef_dyn), nominal_values, unity_checks
180
181
182
183 # Initialize particles
184 girder = ['500x180', '700x250', '900x320', '1100x390', '1200x425']
185 girder_mapping = {girder: idx for idx, girder in enumerate(girder)}
186
187 particle_cs = np.random.choice(list(girder_mapping.keys()), num_particles)
188
189 particle_hw = np.array([int(cs.split('x')[0]) for cs in particle_cs]) # Girder height
190 particle_wf = np.array([int(cs.split('x')[1]) for cs in particle_cs]) # Girder width
191
192 hp_bounds = [10, 22] # Height of pylon
193 particle_hp = np.round(np.random.randint(hp_bounds[0], hp_bounds[1], num_particles), 0)
194
195 hangers = ['1x2', '1x3', '2x4']
196 hanger_mapping = {hanger: idx for idx, hanger in enumerate(hangers)}
197
198 particle_hangers = np.random.choice(list(hanger_mapping.keys()), num_particles)
199
200 particle_hang_ss = np.array([int(cs.split('x')[0]) for cs in particle_hangers]) # Hangers (

short span)
201 particle_hang_ms = np.array([int(cs.split('x')[1]) for cs in particle_hangers]) # Hangers (

main span)
202
203 cp_bounds = [-0.5, 0.5] # Some control parameter
204 particle_cp = np.random.choice(cp_bounds, num_particles)
205
206 # Combine particles into one array
207 particles = np.column_stack((particle_hw, particle_wf, particle_hp, particle_cp,

particle_hang_ss, particle_hang_ms))
208 # print("Particles:\n", particles)
209
210 # Determine ranges for each variable
211 hw_range = max(particle_hw) - min(particle_hw)
212 wf_range = max(particle_wf) - min(particle_wf)
213 hp_range = hp_bounds[1] - hp_bounds[0]
214 cp_range = max(cp_bounds) - min(cp_bounds)
215 hang_ss_range = max(particle_hang_ss) - min(particle_hang_ss)
216 hang_ms_range = max(particle_hang_ms) - min(particle_hang_ms)
217
218 # Ranges for velocity scaling
219 ranges = np.array([hw_range, wf_range, hp_range, cp_range, hang_ss_range, hang_ms_range])
220
221 # Initialize velocities scaled to the ranges
222 velocities = np.random.uniform(-ranges, ranges, particles.shape)
223
224 # Determine personal and global best
225 personal_best_positions = particles.copy()
226
227
228 # Determine personal and global best scores
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229 personal_best_scores = [fitness_func(p, objective_bounds, uc_lower_bound, uc_upper_bound,
penalty_factor)[0] for p in particles]

230
231
232 # Retrieve global best index
233 global_best_index = find_global_best_position(personal_best_scores)
234
235
236 # Retrieve the global best position
237 global_best_position = personal_best_positions[global_best_index]
238
239
240 # Initialize total archive and Pareto archive
241 total_archive = []
242 pareto_archive = []
243
244
245 # Define pareto update function
246 def update_pareto_archive(pareto_archive, particle, objectives, metadata):
247 """
248 Update the Pareto archive with a new particle.
249
250 Parameters:
251 pareto_archive (list): Current Pareto archive [(particle, objectives, metadata)].
252 particle (ndarray): New particle to consider for the archive.
253 objectives (ndarray): Objectives of the new particle.
254 metadata (dict): Additional information about the particle.
255
256 Returns:
257 list: Updated Pareto archive.
258 """
259 to_remove = []
260 for i, (archive_particle, archive_objectives, archive_metadata) in enumerate(

pareto_archive):
261 if dominates(objectives, archive_objectives):
262 to_remove.append(i) # Current particle dominates archive_particle
263 elif dominates(archive_objectives, objectives):
264 return pareto_archive # Current particle is dominated, no update needed
265
266 # Add the current particle and its objectives to the archive
267 pareto_archive.append((particle, objectives, metadata))
268
269 # Remove dominated particles
270 for index in reversed(to_remove):
271 pareto_archive.pop(index)
272
273 return pareto_archive
274
275
276 # Define back to csv function
277 def save_archive_to_csv(archive, filename, archive_type="total"):
278 """
279 Save the archive to a CSV file, including total fitness values.
280 """
281 with open(filename, "w", newline="") as csvfile:
282 writer = csv.writer(csvfile)
283 if archive_type == "total":
284 # Include total fitness as a new column
285 writer.writerow(["Particle␣Parameters␣(hw,␣wf,␣hp,␣cp,␣hang_ss,␣hang_ms)", "

Metadata␣(a_max_index,␣a_max_p,␣mode,␣ef_dyn)", "Nominal␣values␣(a_max,␣mass,
␣uc_total)", "Unity␣Checks␣(uc_girder,␣uc_cable)"])

286 for particle_data, metadata in archive:
287 # Calculate the fitness for each particle
288 total_fitness, _, nominal_values, unity_checks = fitness_func(np.array(

particle_data), objective_bounds, uc_lower_bound, uc_upper_bound,
penalty_factor)

289 writer.writerow([particle_data, metadata, nominal_values, total_fitness,
unity_checks])

290 elif archive_type == "pareto":
291 # Include total fitness as a new column
292 writer.writerow(["Particle␣Parameters␣(hw,␣wf,␣hp,␣cp,␣hang_ss,␣hang_ms)", "

Metadata␣(a_max_index,␣a_max_p,␣mode,␣ef_dyn)", "Total␣Fitness␣(a_max,␣mass)"
, "Unity␣Checks␣(uc_girder,␣uc_cable)"])

293 for particle_data, total_fitness, metadata in archive:
294 # Calculate the fitness for each particle
295 score, _, _, unity_checks = fitness_func(np.array(particle_data),

objective_bounds, uc_lower_bound, uc_upper_bound, penalty_factor)
296 writer.writerow([particle_data, metadata, total_fitness, unity_checks])
297
298
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299 # PSO Algorithm
300 history = [] # To store positions for visualization
301 fitness_history = [] # To store global best fitness over iterations
302
303
304 # Define bounds for clipping
305 hw_bounds = [min(particle_hw), max(particle_hw)] # Use min/max of particle_hw
306 wf_bounds = [min(particle_wf), max(particle_wf)] # Use min/max of particle_wf
307 hp_bounds = [min(particle_hp), max(particle_hp)] # Use min/max of particle_hp
308 cp_bounds = [min(particle_cp), max(particle_cp)] # Use min/max of particle_cp
309 hang_ss_bounds = [min(particle_hang_ss), max(particle_hang_ss)] # Use min/max of

particle_hang_ss
310 hang_ms_bounds = [min(particle_hang_ms), max(particle_hang_ms)] # Use min/max of

particle_hang_ms
311
312
313 # Main optimization loop
314 for iteration in range(num_iterations):
315 start_time = time.time()
316
317 # Evaluate fitness for each particle
318 for i, particle in enumerate(particles):
319 objectives, metadata, nominal_values, unity_checks = fitness_func(
320 particle, objective_bounds, uc_lower_bound, uc_upper_bound, penalty_factor
321 )
322 total_archive.append((particle.tolist(), metadata)) # Store in total archive
323 pareto_archive = update_pareto_archive(pareto_archive, particle.tolist(), objectives,

metadata)
324
325 # Update personal best if dominated
326 if dominates(objectives, personal_best_scores[i]):
327 personal_best_positions[i] = particle
328 personal_best_scores[i] = objectives
329
330 # Update global best using Pareto dominance
331 non_dominated_indices = [
332 i for i in range(num_particles)
333 if not any(dominates(personal_best_scores[j], personal_best_scores[i]) for j in range

(num_particles) if j != i)
334 ]
335
336 global_best_position = personal_best_positions[np.random.choice(non_dominated_indices)]

# Random non-dominated
337
338 # Track Pareto front
339 pareto_front = [personal_best_scores[i] for i in non_dominated_indices]
340 fitness_history.append(pareto_front)
341
342
343 # Update particle velocities and positions
344 for i, particle in enumerate(particles):
345 r1, r2 = np.random.rand(), np.random.rand()
346 cognitive = c1 * r1 * (personal_best_positions[i] - particle)
347 social = c2 * r2 * (global_best_position - particle)
348
349 # Update velocity and position
350 velocities[i] = inertia * velocities[i] + cognitive + social
351 particles[i] += velocities[i]
352
353 # Clip particle values to the nearest specified range or value
354
355 # Cross section dimension (continuous range)
356 particles[i][0] = round(np.clip(particles[i][0], hw_bounds[0], hw_bounds[1]), 2)

# Nearest height
357 particles[i][1] = round(np.clip(particles[i][0] / 2.8, wf_bounds[0], wf_bounds[1]),

2) # Nearest width
358
359
360 # Pylon height (continuous range)
361 particles[i][2] = round(np.clip(particles[i][2], hp_bounds[0], hp_bounds[1]), 2)
362
363
364 # Coupler plate (discrete values)
365 # cp_candidates = np.array(cp_bounds)
366 # particles[i][3] = cp_candidates[np.argmin(np.abs(cp_candidates - particles[i][3]))]
367
368
369 # Coupler plate (continuous range)
370 particles[i][3] = round(np.clip(particles[i][3], cp_bounds[0], cp_bounds[1]), 2)
371
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372
373 # Hangers short span and main span (discrete values)
374 hang_ss_candidates = np.array([int(cs.split('x')[0]) for cs in hangers])
375 hang_ms_candidates = np.array([int(cs.split('x')[1]) for cs in hangers])
376 particles[i][4] = hang_ss_candidates[np.argmin(np.abs(hang_ss_candidates - particles[

i][4]))] # Nearest short span
377 particles[i][5] = hang_ms_candidates[np.argmin(np.abs(hang_ms_candidates - particles[

i][5]))] # Nearest main span
378
379
380 # Save positions for visualization
381 history.append(particles.copy())
382
383
384 # Save archives to CSV
385 if iteration % 1 == 0: # Adjust frequency as needed
386 save_archive_to_csv(total_archive, rf"total_archive_iteration_{iteration}.csv",

archive_type="total")
387 save_archive_to_csv(pareto_archive, rf"pareto_archive_iteration_{iteration}.csv",

archive_type="pareto")
388 print(f"Iteration␣{iteration}:␣Archives␣saved.")
389
390 elapsed_time = time.time() - start_time
391 print(f"Iteration␣{iteration␣+␣1}␣completed␣in␣{elapsed_time:.2f}␣seconds.")
392
393
394 # Final output
395 print("\nFinal␣Pareto␣Archive:")
396 for particle_data, objectives, metadata in pareto_archive:
397 print("Particle:", particle_data)
398 print("Objectives:", objectives)
399 print("Metadata␣(a_max_index,␣a_max_p,␣mode,␣ef_dyn):", metadata)
400
401
402 # Randomly select global best from Pareto archive
403 global_best_position = pareto_archive[np.random.randint(len(pareto_archive))]
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B
Appendix B - Load cases &

combinations
The load cases considered for the ultimate limit state (ULS) verification are:

• Self-weight.

• Additional dead loads.

• Pedestrian loads.

• Wind loads.

Loading by special vehicles is excluded since this concerns localised effects in the deck which have been
verified in the original design. Furthermore, temperature loads have been excluded since the bridge can
deform horizontally due to a horizontal roller support at the north side abutment and an expansion
joint.

B.1 Self-weight
The self-weight of the structure is automatically generated in the FE software SOFiSTiK and considered
in the analysis.

B.2 Additional dead loads
Additional dead loads in the form of a railing for pedestrians, ramp and epoxy finishing on top of the
steel deck plate are considered. These are given by:

qrailing = 0.12 kN/m (B.1)
where:
qrailing = dead load of the steel railing to guide pedestrians across the bridge

qramp = 0.24 kN/m (B.2)
where:
qramp = dead load of the ramp to guide cyclists away from the outer edges of the bridge

qepoxy = 0.10 kN/m2 (B.3)
where:
qepoxy = epoxy finish layer on top of the steel deck plate
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B.3 Pedestrian loads
Pedestrain loads are considered according to EN-1991-2-2019 [56] load model 4 (crowds of pedestrians):

qfk = 2 +
120

L+ 30
where: qfk ≥ 2.5 kN/m2 ; qfk ≤ 5.0 kN/m2 (B.4)

where:
qfk = distributed load of pedestrians
L = length of the loaded area

For the case study, the following crowd-loading is considered as specified below, see figure B.1. The
side span has a length of 17 m and the main span has a length of 35 m.

qfk,1.1 = 2 +
120

69 + 30
= 3.25 kN/m2 (B.5)

qfk,1.2 = 2 +
120

69/2 + 30
= 3.90 kN/m2 (B.6)

qfk,2 = 2 +
120

17 + 30
= 4.55 kN/m2 (B.7)
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Figure B.1: Load cases considered for pedestrian loads
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B.4 Wind loads
Wind loads are considered according to EN-1991-1-4-2011 in the x-, y- and z-directions. The width of
the deck is 6 m and the height 1.6 m, see figure B.2.

qw,x = 1/2 · ρ · v2b · C · dtot = 3.30 kN/m (B.8)
where:
qw,x = Wind loading in x-direction
ρ = air density = 1.25 kg/m3

vb = basic windspeed = 24.5 m/s (zone III)
C = ce · cf,x where ce = 2.34, and cf,x = 1.33
dtot = total height of the structure

qw,y = 0.4 · qw,x = 1.32 kN/m (B.9)
where:

qw,y = Wind loading in y-direction (40% of the loading in x-direction according to NEN-EN1991-1-4-NA-2011 [57])

qw,z = 1/2 · ρ · v2b · C · b = 3.90 kN/m (B.10)
where:
qw,z = Wind loading in z-direction
C = ce · cf,z where ce = 2.34, and cf,z = 0.75

qpyl,x,y;min = 1/2 · ρ · v2b · C · dmin = 1.50 kN/m (B.11)
where:
qpyl,x,y;min = Minimum wind load in x- and y-direction for the pylons (rectangular)
dmin = 0.70 m

qpyl,x,y;min = 1/2 · ρ · v2b · C · dmax = 3.10 kN/m (B.12)
where:
qpyl,x,y;max = Maximum wind load in x- and y-direction for the pylons (rectangular)
dmax = 1.5 m
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Figure B.2: Load cases considered for wind loads
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B.5 Load combinations
The load combinations for ULS verification by equation 6.10a and 6.10b are considered according to
EN1990-2019 [9]: ∑

j≥1

γG,jGk,j + γpP + γQ,1ψ0,1Qk,1 +
∑
i>1

γQ,jψ0,iQk,i (6.10a)

∑
j≥1

ξjγG,jGk,j + γpP + γQ,1Qk,1 +
∑
i>1

γQ,jψ0,iQk,i (6.10b)

According to NEN-EN1990-NA-2019 [32], the equations for footbridges specify to:

1.30 ·Gk,perm + 1.35 · ψ0,ped ·Qk,ped +
∑
i>1

1.50 · ψ0,var ·Qk,var (6.10a*)

1.20 ·Gk,perm + 1.35 ·Qk,ped +
∑
i>1

1.50 · ψ0,var ·Qk,var

or
1.20 ·Gk,perm + 1.35 ·Qk,var +

∑
i>1

1.50 · ψ0,ped ·Qk,ped

(6.10b*)

This means that 6.10a* dominates if the self-weight and additional dead load are larger than the variable
loads, in other words:

1.30 ·Gk,perm − 1.20 ·Gk,perm > 1.35 ·Qped − 1.35 ·Qped · ψ0,ped

or
1.30 ·Gk,perm − 1.20 ·Gk,perm > 1.50 ·Qvar − 1.50 ·Qvar · ψ0,var

(B.13)

In the original design, it is verified that the condition stated in equation B.13 is not met, meaning that
6.10b* dominates. The contributions of variable loads are greater than permanent loads.
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Figure B.3 presents the ψ-factors and load combinations to consider.

Figure B.3: ψ factors and load combinations according to NEN-EN-1990-2019 [32]

This narrows down to the following load combinations:

Combination Self-weight Additional deadload Pedestrian loading Wind loading
full midspan sidespans half midspan x y z

6.10.B.1 1.20 1.20 1.35 0.18 0.45 -0.45
6.10.B.2 1.20 1.20 1.35 0.18 0.45 -0.45
6.10.B.3 1.20 1.20 1.35 0.18 0.45 -0.45
6.10.B.4 1.20 1.20 1.35 0.18 0.45 -0.45
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C
Appendix C - SOFiSTiK output

C.1 Original design - ULS & direct time integration
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Design Code
EuroNorm: NEN EN 1993-1-1:2005 Design of steel structures (Netherlands) V 2024
          Safety Class: A2 (Buildings Safety Class 2)

Materials
Mat Classification                  
  1 Structural Steel - S 355 (EN 199
  2 Steel - Macalloy 460 Cables     
  3 Concrete Piles - C45/55 N (EN 19
  4 Concrete Foundation - C 30/37 (E
  5 Concrete Zero Weight - C 30/37 (
  6 Concrete Pylons - C 30/37 N (EN 
  7 Reinforcement Steel - B 500 B (E
  8 Structural Steel - S 355 (EN 199
  9 Steel - Macalloy 460 Cables     
 10 Concrete Piles - C45/55 N (EN 19
 11 Concrete Foundation - C 30/37 (E
 12 Concrete Zero Weight - C 30/37 (
 13 Concrete Pylons - C 30/37 N (EN 
 14 Reinforcement Steel - B 500 B (E
 15 Steel - Macalloy 460 Cables     

Maximum Utilisation Level
                          N     Vy     Vz     My     Mz    Mtp    Mts     Mb    Ncr      SCL    Total
                        σ-x    σ+x      τ    σ-v    σ-s  σ-dyn   As-l   As-v  crack
Section            1   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -     (4)    0.553
Girder - Right         0.553  0.400  0.225  0.480      -      -      -      -      -
Section            2   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -     (4)    0.559
Girder - Left          0.559  0.403  0.228  0.464      -      -      -      -      -
Total                  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -     (4)    0.559
                      0.559  0.403  0.228  0.480      -      -      -      -      -

N        normal force                            τ      shear stress
Vy,Vz    shear force                             σ-v    principal or von Mises stress
My,Mz    bending                                 σ-s    stress in reinforcements
Mtp,Mts  torsion (p)rimary and (s)econdary       σ-dyn  stress range
Mb       warping moment                          As-l   longitudinal reinforcements
Ncr      flexural buckling                       As-v   transverse reinforcements or concrete shear strength
SCL      cross-section class                     crack  crack width
σ-x      longitud. compressive stress            Total  most unfavorable utilisation for all checks
σ+x      longitud. tensile stress
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Design Code
EuroNorm: NEN EN 1992-1-1:2004 (NA:2011) Design of concrete structures (Netherlands) V 2024
EuroNorm: NEN EN 1993-1-1:2005 Design of steel structures
          Safety Class: A2 (Buildings Safety Class 2)

Materials
Mat Classification                  
  1 Structural Steel - S 355 (EN 199
  2 Steel - Macalloy 460 Cables     
  3 Concrete Piles - C45/55 N (EN 19
  4 Concrete Foundation - C 30/37 (E
  5 Concrete Zero Weight - C 30/37 (
  6 Concrete Pylons - C 30/37 N (EN 
  7 Reinforcement Steel - B 500 B (E
  8 Structural Steel - S 355 (EN 199
  9 Steel - Macalloy 460 Cables     
 10 Concrete Piles - C45/55 N (EN 19
 11 Concrete Foundation - C 30/37 (E
 12 Concrete Zero Weight - C 30/37 (
 13 Concrete Pylons - C 30/37 N (EN 
 14 Reinforcement Steel - B 500 B (E
 15 Steel - Macalloy 460 Cables     

Maximum Utilisation Level
                          N     Vy     Vz     My     Mz    Mtp    Mts     Mb    Ncr      SCL    Total
                        σ-x    σ+x      τ    σ-v    σ-s  σ-dyn   As-l   As-v  crack
Section            6   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -        -    0.684
Primary Cable - D 72   0.000  0.684  0.000  0.684      -      -      -      -      -        -
Section            7   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -        -    0.615
Secondary Cable - D 36  0.000  0.615  0.000  0.615      -      -      -      -      -        -
Total                  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -        -    0.684
                      0.000  0.684  0.000  0.684      -      -      -      -      -        -

N        normal force                            τ      shear stress
Vy,Vz    shear force                             σ-v    principal or von Mises stress
My,Mz    bending                                 σ-s    stress in reinforcements
Mtp,Mts  torsion (p)rimary and (s)econdary       σ-dyn  stress range
Mb       warping moment                          As-l   longitudinal reinforcements
Ncr      flexural buckling                       As-v   transverse reinforcements or concrete shear strength
SCL      cross-section class                     crack  crack width
σ-x      longitud. compressive stress            Total  most unfavorable utilisation for all checks
σ+x      longitud. tensile stress



SOFiSTiK AG - Educational-Version -
SOFiSTiK 2024-4.0   DYNA - Dynamic of Structures

Page 19
2025-02-04

Voldijkbrug_definitief_V1
 VM1

SO
Fi

ST
iK

 A
G

 - 
w

ww
.s

of
is

tik
.d

e

Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
Primary load case    20

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     460.987    460.987    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.000     -0.002      5.016  7.179E+03 -2.750E-01  3.208E+00
                                     -2.750E-01  6.333E+05  5.835E-01
                                      3.208E+00  5.835E-01  6.315E+05
active¹    455.087    457.937    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.001      0.018      5.016  7.241E+03 -2.870E-01  4.793E-01
                                     -2.870E-01  6.333E+05 -4.413E+01
                                      4.793E-01 -4.413E+01  6.261E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  300
          amplitude    period     phase     T-min     T-max      S[-]
            0.00481   0.64977   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0     169.8      0.00      0.00      0.00

Parameter of System of Equations
Number of unknowns                 43268 (Direct sparse Gauss-Solver)
Total entries                    1065492
Total entries after fill in      4763489
Mass matrix                       268618  (consistent), incl. rotational masses
Damping matrix                   1065313  (consistent)

Results
Time history for Nodal accelerations
  Node    901 (E   401) a-Z  MINIMUM =     -3.04 MAXIMUM =      3.04  [m/sec2]
stored in database for DYNR with identification no  700
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Plotting results
Acceleration a-Z 901

Time
[sec]10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Acceleration a-Z [m/sec2]

-3.00

-2.00

-1.00

1.00

2.00

3.00

reduced scale factor 0.917
      Plotting results
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System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     20 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 43268
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               2.529E-02
damping factor B               2.471E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   7 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
   9 FULL               1.000    0.000000    0.000000   0.00
  10 FULL               1.000    0.000000    0.000000   0.00
  11 FULL               1.000    0.000000    0.000000   0.00
  12 FULL               1.000    0.000000    0.000000   0.00
  13 FULL               1.000    0.000000    0.000000   0.00
  14 FULL               1.000    0.000000    0.000000   0.00
  15 FULL               1.000    0.000000    0.000000   0.00
  16 FULL               1.000    0.000000    0.000000   0.00
  17 FULL               1.000    0.000000    0.000000   0.00
  18 FULL               1.000    0.000000    0.000000   0.00
  19 FULL               1.000    0.000000    0.000000   0.00
  20 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  50 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading



SOFiSTiK AG - Educational-Version -
SOFiSTiK 2024-4.0   DYNA - Dynamic of Structures

Page 22
2025-02-04

Voldijkbrug_definitief_V1
 TM1

SO
Fi

ST
iK

 A
G

 - 
w

ww
.s

of
is

tik
.d

e

Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
Primary load case    20

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     460.987    460.987    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.000     -0.002      5.016  7.179E+03 -2.750E-01  3.208E+00
                                     -2.750E-01  6.333E+05  5.835E-01
                                      3.208E+00  5.835E-01  6.315E+05
active¹    455.087    457.937    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.001      0.018      5.016  7.241E+03 -2.870E-01  4.793E-01
                                     -2.870E-01  6.333E+05 -4.413E+01
                                      4.793E-01 -4.413E+01  6.261E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  301
          amplitude    period     phase     T-min     T-max      S[-]
            0.00396   0.40519   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0       0.6      0.00      0.00      0.00

Parameter of System of Equations
Number of unknowns                 43268 (Direct sparse Gauss-Solver)
Total entries                    1065492
Total entries after fill in      4763489
Mass matrix                       268618  (consistent), incl. rotational masses
Damping matrix                   1065313  (consistent)

Results
Time history for Nodal accelerations
  Node    901 (E   401) a-Z  MINIMUM =     -0.31 MAXIMUM =      0.31  [m/sec2]
stored in database for DYNR with identification no  701
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Plotting results
Acceleration a-Z 901

Time
[sec]10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Acceleration a-Z [m/sec2]

-0.30

-0.20

-0.10

0.10

0.20

0.30

reduced scale factor 0.917
      Plotting results
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System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     20 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 43268
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               2.529E-02
damping factor B               2.471E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   7 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
   9 FULL               1.000    0.000000    0.000000   0.00
  10 FULL               1.000    0.000000    0.000000   0.00
  11 FULL               1.000    0.000000    0.000000   0.00
  12 FULL               1.000    0.000000    0.000000   0.00
  13 FULL               1.000    0.000000    0.000000   0.00
  14 FULL               1.000    0.000000    0.000000   0.00
  15 FULL               1.000    0.000000    0.000000   0.00
  16 FULL               1.000    0.000000    0.000000   0.00
  17 FULL               1.000    0.000000    0.000000   0.00
  18 FULL               1.000    0.000000    0.000000   0.00
  19 FULL               1.000    0.000000    0.000000   0.00
  20 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  50 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading
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Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
Primary load case    20

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     460.987    460.987    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.000     -0.002      5.016  7.179E+03 -2.750E-01  3.208E+00
                                     -2.750E-01  6.333E+05  5.835E-01
                                      3.208E+00  5.835E-01  6.315E+05
active¹    455.087    457.937    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.001      0.018      5.016  7.241E+03 -2.870E-01  4.793E-01
                                     -2.870E-01  6.333E+05 -4.413E+01
                                      4.793E-01 -4.413E+01  6.261E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  302
          amplitude    period     phase     T-min     T-max      S[-]
            0.00480   0.37467   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0       1.3      0.00      0.00      0.00

Parameter of System of Equations
Number of unknowns                 43268 (Direct sparse Gauss-Solver)
Total entries                    1065492
Total entries after fill in      4763489
Mass matrix                       268618  (consistent), incl. rotational masses
Damping matrix                   1065313  (consistent)

Results
Time history for Nodal accelerations
  Node   1301 (E  1959) a-Z  MINIMUM =     -2.37 MAXIMUM =      2.37  [m/sec2]
stored in database for DYNR with identification no  702
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Plotting results
Acceleration a-Z 1301

Time
[sec]10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Acceleration a-Z [m/sec2]

-2.50

-2.00

-1.50

-1.00

-0.50

0.50

1.00

1.50

2.00

reduced scale factor 0.917
      Plotting results
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System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     20 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 43268
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               2.529E-02
damping factor B               2.471E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   7 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
   9 FULL               1.000    0.000000    0.000000   0.00
  10 FULL               1.000    0.000000    0.000000   0.00
  11 FULL               1.000    0.000000    0.000000   0.00
  12 FULL               1.000    0.000000    0.000000   0.00
  13 FULL               1.000    0.000000    0.000000   0.00
  14 FULL               1.000    0.000000    0.000000   0.00
  15 FULL               1.000    0.000000    0.000000   0.00
  16 FULL               1.000    0.000000    0.000000   0.00
  17 FULL               1.000    0.000000    0.000000   0.00
  18 FULL               1.000    0.000000    0.000000   0.00
  19 FULL               1.000    0.000000    0.000000   0.00
  20 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  50 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading
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Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
Primary load case    20

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     460.987    460.987    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.000     -0.002      5.016  7.179E+03 -2.750E-01  3.208E+00
                                     -2.750E-01  6.333E+05  5.835E-01
                                      3.208E+00  5.835E-01  6.315E+05
active¹    455.087    457.937    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.001      0.018      5.016  7.241E+03 -2.870E-01  4.793E-01
                                     -2.870E-01  6.333E+05 -4.413E+01
                                      4.793E-01 -4.413E+01  6.261E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  303
          amplitude    period     phase     T-min     T-max      S[-]
            0.00590   0.34542   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0       1.7      0.00      0.00      0.00

Parameter of System of Equations
Number of unknowns                 43268 (Direct sparse Gauss-Solver)
Total entries                    1065492
Total entries after fill in      4763489
Mass matrix                       268618  (consistent), incl. rotational masses
Damping matrix                   1065313  (consistent)

Results
Time history for Nodal accelerations
  Node    901 (E   401) a-Z  MINIMUM =     -0.74 MAXIMUM =      0.73  [m/sec2]
stored in database for DYNR with identification no  703
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Plotting results
Acceleration a-Z 901

Time
[sec]10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Acceleration a-Z [m/sec2]

-0.80

-0.60

-0.40

-0.20

0.20

0.40

0.60

reduced scale factor 0.917
      Plotting results



SOFiSTiK AG - Educational-Version -
SOFiSTiK 2024-4.0   DYNA - Dynamic of Structures

Page 30
2025-02-04

Voldijkbrug_definitief_V1
 VM3

SO
Fi

ST
iK

 A
G

 - 
w

ww
.s

of
is

tik
.d

e

System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     20 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 43268
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               2.529E-02
damping factor B               2.471E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   7 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
   9 FULL               1.000    0.000000    0.000000   0.00
  10 FULL               1.000    0.000000    0.000000   0.00
  11 FULL               1.000    0.000000    0.000000   0.00
  12 FULL               1.000    0.000000    0.000000   0.00
  13 FULL               1.000    0.000000    0.000000   0.00
  14 FULL               1.000    0.000000    0.000000   0.00
  15 FULL               1.000    0.000000    0.000000   0.00
  16 FULL               1.000    0.000000    0.000000   0.00
  17 FULL               1.000    0.000000    0.000000   0.00
  18 FULL               1.000    0.000000    0.000000   0.00
  19 FULL               1.000    0.000000    0.000000   0.00
  20 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  50 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading
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Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
Primary load case    20

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     460.987    460.987    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.000     -0.002      5.016  7.179E+03 -2.750E-01  3.208E+00
                                     -2.750E-01  6.333E+05  5.835E-01
                                      3.208E+00  5.835E-01  6.315E+05
active¹    455.087    457.937    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.001      0.018      5.016  7.241E+03 -2.870E-01  4.793E-01
                                     -2.870E-01  6.333E+05 -4.413E+01
                                      4.793E-01 -4.413E+01  6.261E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  304
          amplitude    period     phase     T-min     T-max      S[-]
            0.00481   0.22346   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0      25.8      0.00      0.00      0.00

Parameter of System of Equations
Number of unknowns                 43268 (Direct sparse Gauss-Solver)
Total entries                    1065492
Total entries after fill in      4763489
Mass matrix                       268618  (consistent), incl. rotational masses
Damping matrix                   1065313  (consistent)

Results
Time history for Nodal accelerations
  Node    901 (E   401) a-Z  MINIMUM =     -1.17 MAXIMUM =      1.17  [m/sec2]
stored in database for DYNR with identification no  704
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Plotting results
Acceleration a-Z 901

Time
[sec]10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Acceleration a-Z [m/sec2]

-1.00

-0.50

0.50

1.00

reduced scale factor 0.917
      Plotting results
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System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     20 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 43268
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               2.529E-02
damping factor B               2.471E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   7 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
   9 FULL               1.000    0.000000    0.000000   0.00
  10 FULL               1.000    0.000000    0.000000   0.00
  11 FULL               1.000    0.000000    0.000000   0.00
  12 FULL               1.000    0.000000    0.000000   0.00
  13 FULL               1.000    0.000000    0.000000   0.00
  14 FULL               1.000    0.000000    0.000000   0.00
  15 FULL               1.000    0.000000    0.000000   0.00
  16 FULL               1.000    0.000000    0.000000   0.00
  17 FULL               1.000    0.000000    0.000000   0.00
  18 FULL               1.000    0.000000    0.000000   0.00
  19 FULL               1.000    0.000000    0.000000   0.00
  20 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  50 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading
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Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
Primary load case    20

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     460.987    460.987    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.000     -0.002      5.016  7.179E+03 -2.750E-01  3.208E+00
                                     -2.750E-01  6.333E+05  5.835E-01
                                      3.208E+00  5.835E-01  6.315E+05
active¹    455.087    457.937    460.987  4.279E+01  5.873E+01  3.563E+01         -
                       S[m]²                          RM(S)³
            0.001      0.018      5.016  7.241E+03 -2.870E-01  4.793E-01
                                     -2.870E-01  6.333E+05 -4.413E+01
                                      4.793E-01 -4.413E+01  6.261E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  305
          amplitude    period     phase     T-min     T-max      S[-]
            0.00104   0.21939   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0      -1.6      0.00      0.00      0.00

Parameter of System of Equations
Number of unknowns                 43268 (Direct sparse Gauss-Solver)
Total entries                    1065492
Total entries after fill in      4763489
Mass matrix                       268618  (consistent), incl. rotational masses
Damping matrix                   1065313  (consistent)

Results
Time history for Nodal accelerations
  Node   1301 (E  1959) a-Z  MINIMUM =     -0.12 MAXIMUM =      0.12  [m/sec2]
stored in database for DYNR with identification no  705
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Plotting results
Acceleration a-Z 1301

Time
[sec]10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Acceleration a-Z [m/sec2]

-0.10

-0.05

0.05

0.10

reduced scale factor 0.917
      Plotting results
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C.2 Optimised design - ULS & direct time integration
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Design Code
EuroNorm: NEN EN 1993-1-1:2005 Design of steel structures (Netherlands) V 2024
          Safety Class: A2 (Buildings Safety Class 2)

Materials
Mat Classification                  
  1 Structural Steel - S 355 (EN 199
  2 Steel - Macalloy 460 Cables     
  3 Concrete Pylons - C45/55 (EN 19 
  4 Concrete Foundation - C 30/37 (E
  5 Concrete Zero Weight - C 30/37 (
  6 Concrete Pylons - C 30/37 N (EN 
  7 Reinforcement Steel - B 500 B (E
  8 Structural Steel - S 355 (EN 199
  9 Steel - Macalloy 460 Cables     
 10 Concrete Piles - C45/55 N (EN 19
 11 Concrete Foundation - C 30/37 (E
 12 Concrete Zero Weight - C 30/37 (
 13 Concrete Pylons - C 30/37 N (EN 
 14 Reinforcement Steel - B 500 B (E

Considered Load Cases
  LC ACT   REF   CS     Designation                       γ-u   γ-f    ψ₀    ψ₁    ψ₂ ψ₁inf SUP    
 100 (D)   U.L.         ULS girder full                 
 110 (D)   U.L.         ULS girder mid                  
 120 (D)   U.L.         ULS girder side                 
 130 (D)   U.L.         ULS girder half mid             
 140 (D)   U.L.         ALS girder                      

LC   load case                                    CS   section the load case is acting on
ACT  action                                       SUP  action type, group and superposition category
REF  reference point for forces and moments

Elastic Stress Check

Maximum Utilisation Level
                          N     Vy     Vz     My     Mz    Mtp    Mts     Mb    Ncr      SCL    Total
                        σ-x    σ+x      τ    σ-v    σ-s  σ-dyn   As-l   As-v  crack
Section            1   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -     (4)    0.608
Girder - Right         0.591  0.549  0.200  0.608      -      -      -      -      -
Section            2   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -     (4)    0.608
Girder - Left          0.592  0.552  0.198  0.608      -      -      -      -      -
Total                  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -     (4)    0.608
                      0.592  0.552  0.200  0.608      -      -      -      -      -

N        normal force                            τ      shear stress
Vy,Vz    shear force                             σ-v    principal or von Mises stress
My,Mz    bending                                 σ-s    stress in reinforcements
Mtp,Mts  torsion (p)rimary and (s)econdary       σ-dyn  stress range
Mb       warping moment                          As-l   longitudinal reinforcements
Ncr      flexural buckling                       As-v   transverse reinforcements or concrete shear strength
SCL      cross-section class                     crack  crack width
σ-x      longitud. compressive stress            Total  most unfavorable utilisation for all checks
σ+x      longitud. tensile stress
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Elastic Stress Check

Maximum Utilisation Level
                          N     Vy     Vz     My     Mz    Mtp    Mts     Mb    Ncr      SCL    Total
                        σ-x    σ+x      τ    σ-v    σ-s  σ-dyn   As-l   As-v  crack
Section            6   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -        -    0.987
Primary Cable - D 72   0.000  0.987  0.000  0.987      -      -      -      -      -        -
Section            7   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -        -    0.251
Secondary Cable - D 36  0.000  0.251  0.000  0.251      -      -      -      -      -        -
Total                  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000      -        -    0.987
                      0.000  0.987  0.000  0.987      -      -      -      -      -        -

N        normal force                            τ      shear stress
Vy,Vz    shear force                             σ-v    principal or von Mises stress
My,Mz    bending                                 σ-s    stress in reinforcements
Mtp,Mts  torsion (p)rimary and (s)econdary       σ-dyn  stress range
Mb       warping moment                          As-l   longitudinal reinforcements
Ncr      flexural buckling                       As-v   transverse reinforcements or concrete shear strength
SCL      cross-section class                     crack  crack width
σ-x      longitud. compressive stress            Total  most unfavorable utilisation for all checks
σ+x      longitud. tensile stress
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Plotting results
Displacement u-Z 3000

Time
[sec]10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Displacement u-Z [mm]

-15.000

-10.000
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10.000

reduced scale factor 0.917
      Plotting results



SOFiSTiK AG - Educational-Version -
SOFiSTiK 2024-4.0   DYNA - Dynamic of Structures

Page 77
2025-02-04

 Test according to EC

SO
Fi

ST
iK

 A
G

 - 
w

ww
.s

of
is

tik
.d

e

System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     40 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 22230
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               2.685E-02
damping factor B               1.490E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   5 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 110 FULL               1.000    0.000000    0.000000   0.00
 111 FULL               1.000    0.000000    0.000000   0.00
 112 FULL               1.000    0.000000    0.000000   0.00
 113 FULL               1.000    0.000000    0.000000   0.00
 114 FULL               1.000    0.000000    0.000000   0.00
 115 FULL               1.000    0.000000    0.000000   0.00
 116 FULL               1.000    0.000000    0.000000   0.00
 117 FULL               1.000    0.000000    0.000000   0.00
 118 FULL               1.000    0.000000    0.000000   0.00
 119 FULL               1.000    0.000000    0.000000   0.00
 120 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading

Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
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Beam Elements
Primary load case    40

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     417.357    417.357    417.357  4.111E+01  5.664E+01  3.097E+01         -
                       S[m]²                          RM(S)³
            0.001     -0.002      4.490  4.662E+03  1.278E-03  1.166E+00
                                      1.278E-03  5.802E+05  6.994E-01
                                      1.166E+00  6.994E-01  5.795E+05
active¹    411.457    414.269    417.319  4.111E+01  5.664E+01  3.097E+01         -
                       S[m]²                          RM(S)³
            0.003      0.020      4.490  4.707E+03 -2.350E-02 -1.296E+00
                                     -2.350E-02  5.801E+05 -3.920E+01
                                     -1.296E+00 -3.920E+01  5.740E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  301
          amplitude    period     phase     T-min     T-max      S[-]
            0.00356   0.46751   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0      -0.7      0.80      0.00      0.00
Loads on kinematic constraints have been transfered to their master

Parameter of System of Equations
Number of unknowns                 22230 (Direct sparse Gauss-Solver)
Total entries                     518538
Total entries after fill in      1781586
Mass matrix                       120897  (consistent), incl. rotational masses
Damping matrix                    518522  (consistent)

Results
Time history for Nodal accelerations
  Node   3001 (E  2643) a-Z  MINIMUM =     -0.37 MAXIMUM =      0.37  [m/sec2]
stored in database for DYNR with identification no 3001

Time history for Nodal Displacements
  Node   3001 (E  2643) u-Z  MINIMUM =    -2.016 MAXIMUM =     2.014      [mm]
stored in database for DYNR with identification no 4001
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Plotting results
Acceleration a-Z 3001
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Plotting results
Displacement u-Z 3001
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System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     40 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 22230
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               3.203E-02
damping factor B               1.249E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   5 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 110 FULL               1.000    0.000000    0.000000   0.00
 111 FULL               1.000    0.000000    0.000000   0.00
 112 FULL               1.000    0.000000    0.000000   0.00
 113 FULL               1.000    0.000000    0.000000   0.00
 114 FULL               1.000    0.000000    0.000000   0.00
 115 FULL               1.000    0.000000    0.000000   0.00
 116 FULL               1.000    0.000000    0.000000   0.00
 117 FULL               1.000    0.000000    0.000000   0.00
 118 FULL               1.000    0.000000    0.000000   0.00
 119 FULL               1.000    0.000000    0.000000   0.00
 120 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading

Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam



SOFiSTiK AG - Educational-Version -
SOFiSTiK 2024-4.0   DYNA - Dynamic of Structures

Page 82
2025-02-04

 Test according to EC

SO
Fi

ST
iK

 A
G

 - 
w

ww
.s

of
is

tik
.d

e

Beam Elements
Primary load case    40

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     417.357    417.357    417.357  4.111E+01  5.664E+01  3.097E+01         -
                       S[m]²                          RM(S)³
            0.001     -0.002      4.490  4.662E+03  1.278E-03  1.166E+00
                                      1.278E-03  5.802E+05  6.994E-01
                                      1.166E+00  6.994E-01  5.795E+05
active¹    411.457    414.269    417.319  4.111E+01  5.664E+01  3.097E+01         -
                       S[m]²                          RM(S)³
            0.003      0.020      4.490  4.707E+03 -2.350E-02 -1.296E+00
                                     -2.350E-02  5.801E+05 -3.920E+01
                                     -1.296E+00 -3.920E+01  5.740E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  302
          amplitude    period     phase     T-min     T-max      S[-]
            0.00104   0.39231   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0      -0.1      0.00      0.00      0.00
Loads on kinematic constraints have been transfered to their master

Parameter of System of Equations
Number of unknowns                 22230 (Direct sparse Gauss-Solver)
Total entries                     518538
Total entries after fill in      1781586
Mass matrix                       120897  (consistent), incl. rotational masses
Damping matrix                    518522  (consistent)

Results
Time history for Nodal accelerations
  Node   3002 (E  2649) a-Z  MINIMUM =     -0.76 MAXIMUM =      0.76  [m/sec2]
stored in database for DYNR with identification no 3002

Time history for Nodal Displacements
  Node   3002 (E  2649) u-Z  MINIMUM =    -2.945 MAXIMUM =     2.946      [mm]
stored in database for DYNR with identification no 4002
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Plotting results
Acceleration a-Z 3002
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      Plotting results
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Plotting results
Displacement u-Z 3002
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      Plotting results



SOFiSTiK AG - Educational-Version -
SOFiSTiK 2024-4.0   DYNA - Dynamic of Structures

Page 85
2025-02-04

 Test according to EC

SO
Fi

ST
iK

 A
G

 - 
w

ww
.s

of
is

tik
.d

e

System- and Control Information
Control Information
QUAD-elements with higher non conforming modes   3
QUAD-elements with all rotational degrees of freedom
Primary load case                     40 t =   0.0000 [sec]   +Opt:add_GS
Number of unknowns                 22230
unknowns per node                      6
Number of timesteps                10000
Time-step                         0.0100
Printing intervall                     1
damping factor A               3.759E-02
damping factor B               1.064E-04
Integr.Parameter beta               0.25
Integr.Parameter delta              0.50
Integr.Parameter theta              1.00

Groups
 Grp Option        CS    Factor  Rayleigh-A  Rayleigh-B      ξ        Wind
                                [1/sec]       [sec]  [o/o]
   0 FULL               1.000    0.000000    0.000000   0.00
   2 FULL               1.000    0.000000    0.000000   0.00
   4 FULL               1.000    0.000000    0.000000   0.00
   5 FULL               1.000    0.000000    0.000000   0.00
   6 FULL               1.000    0.000000    0.000000   0.00
   8 FULL               1.000    0.000000    0.000000   0.00
  21 FULL               1.000    0.000000    0.000000   0.00
  22 FULL               1.000    0.000000    0.000000   0.00
  23 FULL               1.000    0.000000    0.000000   0.00
  24 FULL               1.000    0.000000    0.000000   0.00
  25 FULL               1.000    0.000000    0.000000   0.00
  30 FULL               1.000    0.000000    0.000000   0.00
  41 FULL               1.000    0.000000    0.000000   0.00
  42 FULL               1.000    0.000000    0.000000   0.00
  43 FULL               1.000    0.000000    0.000000   0.00
  61 FULL               1.000    0.000000    0.000000   0.00
 110 FULL               1.000    0.000000    0.000000   0.00
 111 FULL               1.000    0.000000    0.000000   0.00
 112 FULL               1.000    0.000000    0.000000   0.00
 113 FULL               1.000    0.000000    0.000000   0.00
 114 FULL               1.000    0.000000    0.000000   0.00
 115 FULL               1.000    0.000000    0.000000   0.00
 116 FULL               1.000    0.000000    0.000000   0.00
 117 FULL               1.000    0.000000    0.000000   0.00
 118 FULL               1.000    0.000000    0.000000   0.00
 119 FULL               1.000    0.000000    0.000000   0.00
 120 FULL               1.000    0.000000    0.000000   0.00
 301 FULL               1.000    0.000000    0.000000   0.00
 302 FULL               1.000    0.000000    0.000000   0.00
 303 FULL               1.000    0.000000    0.000000   0.00
 304 FULL               1.000    0.000000    0.000000   0.00

CS          construction stage                    Rayleigh-B  stiffness proportional daming ratio
Factor      Factor on stiffness                   ξ           modal damping ratio
Rayleigh-A  mass proportional damping ratio       Wind        options for dynamic wind loading

Beam Elements
Finite beam elements without intermediate sections
Shear deformations accounted for with nonconforming SOFiSTiK-Timoshenko beam
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Beam Elements
Primary load case    40

Sum of masses and mass moments of inertia
   Node TM RM       RMB
             X[t]       Y[t]       Z[t]     X[tm2]     Y[tm2]     Z[tm2]     [tm2]
total¹     417.357    417.357    417.357  4.111E+01  5.664E+01  3.097E+01         -
                       S[m]²                          RM(S)³
            0.001     -0.002      4.490  4.662E+03  1.278E-03  1.166E+00
                                      1.278E-03  5.802E+05  6.994E-01
                                      1.166E+00  6.994E-01  5.795E+05
active¹    411.457    414.269    417.319  4.111E+01  5.664E+01  3.097E+01         -
                       S[m]²                          RM(S)³
            0.003      0.020      4.490  4.707E+03 -2.350E-02 -1.296E+00
                                     -2.350E-02  5.801E+05 -3.920E+01
                                     -1.296E+00 -3.920E+01  5.740E+05

¹  sum of the total and the active nodal masses
²  coordinates of the center of gravity
³  3x3 rotational mass matrix at the center of gravity
TM   translational masses in X-, Y- and Z-direction
RM   rotational masses about X-, Y- and Z-axis
RMB  warping mass

Processing
Load Cases
-- Loadcase  303
          amplitude    period     phase     T-min     T-max      S[-]
            0.00104   0.33411   0.00000
     Node        PX        PY        PZ        MX        MY        MZ        Mb
               [kN]      [kN]      [kN]     [kNm]     [kNm]     [kNm]    [kNm2]
      sum       0.0       0.0       0.1      0.63      0.00      0.00
Loads on kinematic constraints have been transfered to their master

Parameter of System of Equations
Number of unknowns                 22230 (Direct sparse Gauss-Solver)
Total entries                     518538
Total entries after fill in      1781586
Mass matrix                       120897  (consistent), incl. rotational masses
Damping matrix                    518522  (consistent)

Results
Time history for Nodal accelerations
  Node   3003 (E  2655) a-Z  MINIMUM =     -0.21 MAXIMUM =      0.21  [m/sec2]
stored in database for DYNR with identification no 3003

Time history for Nodal Displacements
  Node   3003 (E  2655) u-Z  MINIMUM =    -0.592 MAXIMUM =     0.592      [mm]
stored in database for DYNR with identification no 4003
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Plotting results
Acceleration a-Z 3003
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Plotting results
Displacement u-Z 3003
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