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Summary

We propose a microscopy scheme for the controlled modulation of the electron wave
front that utilizes patterned electron mirrors. The ability to control the wave front
of the electron finds many applications in electron microscopy, for instance in con-
trast enhancement techniques, beam mode conversion, low-dose imaging techniques
such as quantum electron microscopy (QEM) and multi-pass transmission electron
microscopy (MP-TEM), or structural hypothesis testing.

Wave front modulation is a technique that enables one to locally alter the wave
front of an electron that is spread out in space. We have studied the possibilities
of using electron mirrors for that. The electron mirror is an optical element that
decelerates and thereafter reflects an incident electron beam, by means of an elec-
trostatic potential that is more negative than that of the field-free energy of the
electron. Electron mirrors are most commonly used for aberration correction in
electron microscopy.

When a topographic pattern is applied onto the mirror electrode, the nearby
electric field in front of the mirror electrode becomes modulated in space, and ad-
heres to the shape of the applied pattern. We studied the effect that a diffraction
line grating pattern has on the phase of the reflected wave front. For this, we have
developed a numerical method that solves the time independent Schrödinger equa-
tion for the modulated potential in front of the mirror. This is a computationally
expensive task. The process can be sped up by making use of the WKB approxi-
mation method, however the use of this method close to the turning point of the
electron in front of the mirror is not valid in general. We have compared the ex-
act numerical solutions to those obtained with the WKB approximation method,
and found empirically that a quantitative agreement is obtained when the obtained
results of both methods are expressed as a function of the thickness of the (mod-
ulated) classical turning point. The obtained results indicate that when a single
spatial frequency (or pitch) is used at the mirror pattern, this results in a far field
diffraction pattern with the intensities of the various order diffraction spots given
by the square of Bessel functions of the same order, as a function of the thickness
of the turning point. We refer to a mirror that diffracts the reflected wave front as
an ‘electron grating mirror’.

The electron mirror fully reflects the incident wave front, and thus no absorption
processes can take place. For this reason, the mirror can only be used to modulate
the phase, and not the amplitude, during the reflection near the mirror electrode.
The resulting phase modulation can be expressed as an amplitude contrast when
the reflected wave front is defocused on a plane conjugate to the plane of reflection.
We suggest that a second electron mirror can be placed here, that can be used to
modulate again the phase of the incident wave front that is already amplitude mod-
ulated now. Alternative to that, the second mirror can also be placed in the Fourier
plane of the first mirror. That way, the second mirror can be used to modulate the
phase of the diffraction spots that are formed due to the phase modulation at mirror
1. In both cases, the use of two electron mirrors can in principle provide full control
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over the wave front of the electron.
The proposed scheme avoids any interaction between the electron beam and

optical elements. Therefore, we expect to avoid the typical disadvantages such as
built up of charge at phase plates, and reduced life time and transmissivity, that
are usually associated to conventional transmission based methods for wave front
shaping that relies on phase plates or amplitude masks. For this reason, we coin the
term virtual phase plate for the technique that we introduce here.

To study the feasibility of the technique, we have constructed numerical methods
that enable to relate the effect that an arbitrary mirror topography has on the phase
of the reflected wave front. For the inverse problem, we have constructed a numerical
model that provides the pattern topography that is required to obtain a target wave
front distribution. For this, we make use of the WKB approximation method and
apply it either on each spatial frequency that is part of the mirror topography,
or the targeted phase distribution after reflection. We recognize that in general
it is not allowed to linearly add the resulting pattern height components, but we
reason that for small phase modulation amplitudes, below π/6 radian per spatial
frequency, linear addition only results in small (≤ 1%) errors in the reconstructed
phase. This result may be referenced to as the electron mirror analog of the weak
phase approximation that is used in transmission techniques. We have applied the
reconstruction model to several optical problems, and demonstrated that the use of
two electron mirrors can for instance realize beam mode conversion of plane waves
into vortex beams that carry orbital angular momentum, or for instance to sculpt
a wave front that shows resemblance to the institute logo of the Delft University of
Technology.

We further analyzed the deteriorating effects of mechanical tolerances on the
reflected beam. The effect of a tilt error between the mirror electrode and the
optical axis is found to be small and results in a beam deflection angle of ≤ 10% of
the tilt error. Modern manufacturing techniques allow for tilt errors below 1 mrad,
and thus we do not expect problems with that. We are more concerned about the
possible curvature of the mirror electrode that exceeds the spread of the beam as
a result of mechanical stress. For instance, astigmatism may form when the mirror
electrode contains a non-flatness of order single digit nanometers or less in height,
that spans across the beam width.

A practical design for a prototype setup must not only contain the two electron
mirrors, but in addition to that also the necessary lenses to focus the beam. The
combination of a mirror electrode with a three aperture lens is commonly referred
to as a tetrode mirror, and we use this as a basis for the two mirror elements. Such
a setup is however usually characterized by high values of spherical and chromatic
aberrations, that deteriorate the resolution that can be obtained with a microscope.
We have analyzed how the shape of the tetrode mirror can help to reduce these
aberration coefficients, by means of electron ray trace calculations. From these
calculations, we found that it is important to choose the spacing between the mirror
electrode and the field limiting aperture that is positioned above the mirror electrode
to be small, with respect to the radius of this aperture. This way, the third order
coefficient of spherical aberration can be made negative, and the resulting tetrode
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mirror becomes limited only by the fifth order coefficient of spherical aberration,
allowing for a broader beam spread in front of the mirror.

We suggest to position the two tetrode mirrors on a common optical axis, such
that the mirror electrodes terminate both sides of this axis. This axis can run in
parallel to that of an existing microscope system in which the mirror system becomes
integrated. A series of deflectors can then be used to first deflect the beam away
from the microscope axis towards the mirror axis, and subsequently to coordinate
the electron trajectory in between the mirrors and back towards the point of origin
at the microscope axis. The electron beam is thus effectively removed from the
optical axis, and reinserted at the same position after a double mirror reflection.
This requires a deflection in front of both mirrors that is dependent on the direction
of incidence of the beam, which may be realized by making use of crossed electric
and magnetic fields, that are in turn oriented perpendicular to the optical axis of
the mirror system. This is commonly referred to as the Wien configuration, and the
optical element associated to this configuration is generically referred to as a Wien
filter.

By keeping the deflection angles between the two axes small, to within 100 mrad,
it can be shown that the deteriorating effects of beam deflection dispersion can be
kept small. For this reason, we suggest to make use of miniature optics that can be
fabricated by means of lithographic techniques. However, conventional Wien filters
are rather large devices. In addition, they usually do not accommodate for two axes
that are in close proximity to each other. For these reasons, we have developed a
new type of Wien filter, that we refer to as EBE beam separator. The acronym EBE
refers to the separation of the perpendicular electric (E) and magnetic (B) fields
inside the device, which is in contrast to most Wien filters, in which these fields are
found to overlap. By separating the fields, we can create an electrostatic deflection
field in the top and bottom layers of the device that is oriented in opposite direction
on both axes and points towards each other, and a common magnetic field at the
middle layer that is oriented perpendicular to the electric fields.

We have built and experimentally tested an EBE beam separator that has two
optical axes that are separated by only one millimeter. In the characterization ex-
periment, we propagate the beam of a scanning electron microscope (SEM) through
the EBE beam separator, and focus the beam onto the unpolished side of a silicon
wafer. At steps of increasing deflection field strength, we record micrographs of
the silicon wafer. Displacements between consecutive micrographs as a result of
the beam deflection are obtained numerically through Speeded-Up Robust Features
(SURF) image registration. From the obtained displacement maps, we extracted
the deflection (dipole) and higher order quadrupole and hexapole field coefficients
of the EBE separator. From this, we obtained an electric dipole strength of 1.98
mrad/V and a magnetic strength of 0.275 mrad/mA, valid at a 2 keV beam energy.
The higher order distortion fields currently limit the resolution at the image plane
that is in between the two tetrode mirrors to approximately 500 nm due to astig-
matism, and 150 nm due to the hexapole distortion. We expect that more accurate
machining of the electrode poles can help to eliminate at least the astigmatism, as
this distortion most likely originates from the non-parallelism of the electrode plates.
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We are currently integrating two patterned tetrode electron mirrors, combined
with the EBE beam separator and additional required deflection optics into the spec-
imen chamber of a scanning electron microscope. Initial progress has been made on
deflection and reflection of the beam towards and at the first electron mirror. We
have however not yet managed to obtain a double reflection with the beam. This
will be our first next attempt. After that, the feasibility of using patterned mirrors
for arbitrary wave front modulation may initially be demonstrated by imaging the
diffraction pattern of the wave front reflected from the grating mirror onto a scin-
tillator detection screen. When two electron grating mirrors are used for this, the
experiment may serve as an experimental demonstration of Mach-Zehnder interfer-
ometry with electrons. At a more advanced stage, the deflector at the microscope
axis may be replaced with a temporally controlled fast deflector, as this may allow
to trap the electron in a loop and reflect the electron multiple times at each mirror
before reaching the detector screen. That way, the setup that we propose here can
also be used as a proof of concept for QEM and MP-TEM.
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Samenvatting

Wij stellen een microscopietechniek ter wille van elektron golffrontmodulatie voor,
welke gebruik maakt van elektronenspiegels. De mogelijkheid om het golffront van
een elektron te kunnen controleren kent vele toepassingen in de elektronenmicro-
scopie, zoals bijvoorbeeld voor contrastverbetering, bundel coördinaattransforma-
tie, microscopie met lage stralingsdosis zoals kwantum elektronen microscopie en
meervoudige transmissie elektron microscopie, of voor het testen van een structuur-
hypothese van het preparaat.

Golffrontmodulatie is een techniek die de gebruiker in staat stelt om lokale wijzi-
gingen aan het golffront van een over de ruimte uitgespreid elektron aan te brengen.
We hebben gekeken naar de mogelijkheid om dit met behulp van elektronenspiegels
uit te voeren. De elektronenspiegel is een optisch element welke een inkomend elek-
tron vertraagd alvorens het in zijn geheel te reflecteren, en maakt hiervoor gebruik
van een elektrostatisch potentiaal dat negatiever is dan dat van de veld-vrije energie
van het elektron. Elektronenspiegels vinden tegenwoordig al veelal een toepassing
in aberratiecorrectie voor elektronenmicroscopen.

Wanneer een elektronenspiegel topografisch van een patroon wordt voorzien, dan
zal het nabije elektrische veld een soortgelijke vorm aannemen. Wij hebben bestu-
deerd wat het effect van een lijndiffractiepatroon op de fase van het gereflecteerde
golffront is. Hiertoe hebben wij een numerieke methode ontwikkeld, welke de Schrö-
dinger vergelijking voor het gemoduleerde elektrisch veld in de nabijheid van de
spiegel oplost. Dit is numeriek een kostbare taak. Het proces kan versneld wor-
den door gebruik te maken van de WKB benaderingsmethode, alhoewel het gebruik
hiervan juist in de nabijheid van het spiegelvlak niet in het algemeen toegestaan is.
Wij hebben de exacte numerieke oplossing en oplossingen verkregen via de WKB
benaderingsmethode met elkaar vergeleken, en empirisch bevonden dat een kwan-
titatieve overeenkomst tussen de uitkomsten verkregen wordt, indien de resultaten
worden uitgedrukt als functie van de dikte van het gemoduleerde spiegelvlak. Uit
de verkregen resultaten kan worden afgeleid dat bij gebruik van een enkele spa-
tiele frequentie (of herhaalafstand) in het spiegelpatroon, dat dit resulteert in een
diffractiepatroon in het optische verre veld. De intensiteit van de verscheidene dif-
fractiepunten is dan gegeven door Besselfuncties van de orde gelijk aan die van het
diffractiepunt, als functie van de dikte van het spiegelvlak. Wij verwijzen vanaf nu
naar een spiegel welke een dergelijke karakteristiek vertoond als een ‘diffractiespiegel
voor elektronen’.

Aangezien een elektronenspiegel de inkomende bundel in zijn geheel reflecteert,
vinden er geen absorptieprocessen plaats bij de elektrode. Om deze reden kan een
elektronenspiegel alleen gebruikt worden om de fase, en dus niet de amplitude, van
het golffront te beïnvloeden in de directe nabijheid van de spiegel. Deze nabije fa-
semodulatie kan echter tot amplitudemodulatie ter expressie worden gebracht, wan-
neer deze gedefocusseerd word afgebeeld op een optisch vlak dat geconjugeerd is aan
dat van de spiegel. Wij suggereren om in dit geconjugeerde vlak een tweede spiegel
te plaatsen, waar nogmaals fasemodulatie op het invallende golffront toegepast kan
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worden. Als alternatief op deze methode zou het ook mogelijk zijn om de tweede
spiegel in een Fouriervlak van de eerste spiegel te plaatsen. Beide methodes zouden
bij een combinatie van twee spiegels de mogelijkheid kunnen bieden tot volledige
controle over de amplitude en fase van het elektronengolffront.

De door ons voorgestelde techniek voorkomt enige vorm van interactie tussen
de elektronenbundel en de optische elementen. Om deze reden verwachten wij geen
gevoeligheid te ondervinden voor typische nadelen als ladingsopbouw, verminderde
levensduur, en verminderde doorlaatbaarheid welke normaal gesproken geassocieerd
worden met tegenhangende technieken uit in transmissie elektronen microscopie.
Om deze reden spreken wij in referentie naar onze techniek ook wel over een ‘virtuele
faseplaat’ voor elektronen.

Om de haalbaarheid van de techniek te onderzoeken, hebben wij numerieke mo-
dellen opgesteld waarmee we het verband tussen een willekeurig gekozen spiegel-
patroon en de resulterende fase in het golffront kunnen bepalen. Ook voor het
omgekeerde probleem, waarin een spiegelpatroon moet worden gevonden welke een
gewenste fasemodulatie ten gevolge heeft, hebben wij een model opgesteld. Hiertoe
maken wij gebruik van de WKB benaderingsmethode en passen dit toe op iedere
spatiele frequentie van dan wel het spiegelpatroon, of anders de gewenste fasemo-
dulatie. Wij erkennen dat het in het algemeen niet toegestaan is om de op deze
wijze verkregen patrooncomponenten lineair bij elkaar op te tellen, maar maken
aannemelijk dat dit voor fasemodulaties kleiner dan π/6 radialen slechts leid tot
beperkte fouten (< 1%) in de gereconstrueerde fase. Dit resultaat kan vergeleken
worden met dat wat bekend is als de zwakke fasebenadering voor transmissietech-
nieken. Wij hebben onze reconstructietechniek toegepast op verscheidene optische
vraagstukken, en hiermee laten zien dat het gebruik van twee elektronenspiegels bij-
voorbeeld het omzetten van vlakke golven in spiraalvormige golven kan realiseren,
alsook het omzetten van een vlakke golf in een golffront dat gelijkenis vertoond met
het beeldmerk van de Technische Universiteit Delft.

Wij hebben ook gekeken naar de effecten van mechanische toleranties op de ge-
reflecteerde bundel. Het effect van een hoekfout tussen de spiegelelektrode en de
optische as is klein bevonden, namelijk met een afbuighoek voor de bundel welke
≤ 10% is aan de mechanische hoekfout. Moderne fabricagemethoden leveren een
hoekfout van minder dan 1 mrad, en hier verwachten wij dan ook geen problemen.
Wij zijn meer bezorgt over de mogelijk kromming van de spiegelelektrode over een
afstand welke groter is dan de spreiding van de elektronenbundel. Dit kan veroor-
zaakt worden door mechanische spanning in de spiegelelektrode en kan astigmatisme
ten gevolge hebben, wanneer de niet-vlakheid over de breedte van de bundel in de
orde van (sub)nanometers schaalt.

Een praktisch ontwerp voor een prototype opstelling omhelst meer dan alleen de
plaatsing van twee elektronenspiegels, en vereist ook de plaatsing van onder andere
elektronenlenzen om de bundel te focusseren. De combinatie van een spiegelelek-
trode met een lens bestaande uit drie elektrodes met daarin op elkaar uitgelijnde
openingen staat ook wel bekend als een tetrodespiegel. Wij gebruiken deze gangbare
opbouw als basis voor onze twee spiegelelementen. Een dergelijke samenstelling is
echter doorgaans gekenmerkt door hoge waardes van sferische en chromatisch aber-
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raties, welke de resolutie van de techniek sterk kunnen benadelen. Wij hebben
geanalyseerd hoe de vorm van de lens elektrodes kan helpen om de aberraties te
beperken, door middel van elektronenstraalsimulaties. Uit deze berekeningen is ge-
bleken dat het met name van belang is om de afstand tussen de spiegelelektrode en
de eerste bovenliggende electrode klein te houden, ten opzichte van de straal van de
opening in deze elektrode. Op deze manier kan de derde orde sferische lensfout ne-
gatief gemaakt worden, waardoor de haalbare resolutie van de tetrodespiegel slechts
beperkt wordt door de vijfde orde sferische fout, wat een verdere uitspreiding van
het golffront op het spiegelvlak mogelijk maakt.

We stellen voor om de twee tetrodespiegels op een gemeenschappelijke optische as
te plaatsen, zodanig dat de beide spiegels elk een kant van de as afsluiten. Deze spie-
gel as kan parallel aan de optische as van een bestaand microscoopsysteem geplaatst
worden. Er is dan een aantal deflecterende elementen nodig, welke opeenvolgend de
bundel afbuigen van de microscoop as richting de spiegel as, en vervolgens ook de
stralengang tussen de spiegels en terug naar de microscoop as coördineren. Effectief
gezien wordt de elektronenbundel op deze manier tijdelijk van de microscoop as
afgehaald, om na een dubbele reflectie weer op hetzelfde punt terug te keren. Dit
vereist een afbuiging van de bundel vlak voor de spiegels, welke afhankelijk is van
de invalsrichting. Een manier om dit mogelijk te maken is door de combinatie van
gekruiste elektrische en magnetische velden, welke op hun beurt weer loodrecht op
de spiegel as zijn georiënteerd. Dit wordt ook wel een Wien configuratie genoemd,
en wordt toegepast in zogenaamde Wien filters.

Door de afbuighoeken klein te houden, namelijk binnen 100 mrad, kunnen ef-
fecten als afbuigdispersie welke een nadelig effect op de bundel hebben binnen de
perken gehouden worden. Om deze reden stellen we voor om gebruik te maken van
miniatuuroptiek, welke door middel van moderne lithografische processen gefabri-
ceerd kunnen worden. Conventionele Wien filters zijn echter behoorlijk omvangrijk.
Daarnaast bevatten ze doorgaans niet de ruimte om twee assen vlak naast elkaar te
omvatten. Om deze redenen hebben wij een nieuwe type Wien filter ontwikkeld, naar
welke wij refereren als een EBE bundelscheider. Het acroniem EBE verwijst hier
naar de ruimtelijke scheiding van de loodrecht op elkaar georiënteerde elektrische
(E) en magnetische (B) velden in de bundelscheider, wat afwijkt van de gangbare
configuratie in Wien filters waarin deze velden met elkaar overlappen. Door de vel-
den ruimtelijk van elkaar te scheiden, kunnen we in de boven- en onderlaag van de
EBE bundelscheider op beide assen een elektrisch veld aanleggen, welke naar elkaar
toe wijst, en op de middelste laag een gedeeld magnetisch veld aanleggen.

We hebben een EBE bundelscheider gebouwd en getest, waarin de twee parallelle
assen slecht een millimeter uit elkaar liggen. Tijdens het karakteriseren propageren
we een bundel uit de rasterscan elektronenmicroscoop door de EBE bundelscheider,
en focusseren deze bundel op de ongepolijste zijde van een silicium substraat. Terwijl
de afbuigvelden stapsgewijs worden verhoogd, worden tussentijds afbeeldingen van
het substraat opgeslagen. De verplaatsing tussen twee opeenvolgende afbeeldingen
wordt vervolgens numeriek bepaald met behulp van een beeldregistratietechnieken.
Uit de hiertoe verkregen data kunnen we de afbuigsterkte (tweepolig) en hogere
orde vierpolige en zespolige stoorvelden afleiden. We hebben een elektrische afbuig-

Samenvatting | xv



sterkte van 1.98 mrad/V, en een magnetische afbuigsterkte van 0.275 mrad/mA
gevonden, geldig voor een bundelenergie van 2 keV. Door de aanwezigheid van ho-
gere orde storingsvelden is de huidige resolutie op het afbeeldingsvlak tussen de twee
tetrodespiegels in momenteel beperkt tot 500 nm vanwege astigmatisme, en 150 nm
vanwege de zespolige verstoring. Wij verwachten echter dat met name de beperking
vanwege de astigmatisme verminderd kan worden door een meer zorgvuldiger fabri-
cageproces van de polen, aangezien een hoekfout tussen twee polen direct leid tot
astigmatisme.

Momenteel zijn we in de fase aanbeland waarin twee tetrodespiegels, voorzien
van een patroon, gecombineerd met een EBE bundelscheider en de overige vereiste
afbuigelementen worden samengebracht in een experimentele testopstelling, welke
in de preparaatkamer van een rasterscan elektronenmicroscoop past. We hebben
het echter nog niet voor elkaar gekregen om een dubbele reflectie te bewerkstelligen.
Dat zou nu het eerst volgende doel moeten zijn. Daarna zou de haalbaarheid van
het gebruik van spiegelpatronen voor gecontroleerde fasemodulatie aangetoond kun-
nen worden, door het diffractiepatroon van een gereflecteerde bundel af te beelden
op een scintillatiescherm. Wanneer twee diffractiespiegels voor elektronen worden
toegepast, zou dit kunnen dienen als een experimentele demonstratie van Mach-
Zehnder interferentie voor elektronen. In een later stadium van ontwikkeling zou
het afbuigelement welke op de microscoop as staat vervangen kunnen worden door
een variant welke snel in de tijd geschakeld kan worden, zodanig dat een elektron
tussen de twee spiegels opgesloten kan worden en er meerdere reflecties per spie-
gel plaats kunnen vinden, alvorens het elektron op het scintillatiescherm bekeken
gaat worden. Met een dergelijke aanpak, kan de door ons beschreven opstelling ook
gebruikt worden als demonstratiemodel voor bijvoorbeeld QEM en MP-TEM.
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1.1. Introduction
When the electron wave front is spread out in space due to the uncertainty principle,
local variations in its phase may occur when the electron wave front is send through
an object. This suggests that a single electron may contain a lot of information
about an object that it interacted with. However, when this principle is applied
in practice, what is done routinely nowadays in transmission electron microscopy,
the information that the electron has about the object becomes visible as only a
single point on the detector, due to the wave function collapse. For this reason,
many electrons must be send through the object under investigation (the ‘sample’,
or ‘specimen’) before a sufficient contrast that reveals the nature of the specimen at
the detector is obtained.

The use of high energy electrons in all forms of transmission based electron mi-
croscopy is well known to cause radiation damage to the specimen under inspection,
in the form of knock-on displacement damage, or ionization damage [1]. Because of
that, the resulting detector image may very well not be representative of the unaf-
fected specimen that was inserted into the microscope, and the attainable resolution
is said to have become electron dose-limited. A naïve solution to this limitation
would be to reduce the electron dose, but this is at the expanse of the signal to
noise ratio or measurement error and thus the information that can be extracted
from the formed micrograph.

Another way to improve the measurement error is realized by making use of
correlated probe particles. The measurement error can then be improved from
1/
√
N (shot-noise, for uncorrelated probe particles) to 1/N (Heisenberg limit, for

correlated probe particles), with N the number of probe-specimen interactions [2].
However, such correlated states are difficult to obtain in electron microscopy, and
instead it is suggested to make use of a single probe particle that interacts with the
specimen multiple times [3].

1.2. Quantum electron microscopy
Ideally, one should avoid exposure of the specimen by the electron beam and still
obtain information about the specimen. While this may sound contradictory, this
may very well be possible by making use of the quantum nature of matter. In 1993,
Elitzur and Vaidman suggested that the absence or presence of a specimen could
be detected, without directly interacting with it, by positioning the object in one
of the arms of a Mach-Zehnder interferometer [4], such as shown in [Fig. 1.1]. The
interferometer could be aligned such that detection of the probing particle in the
dark field detector (D2) would only result in the presence of the specimen inside
the interferometer, while detection of the particle in the bright field detector (D1)
would yield an inconclusive outcome about the presence or absence of the specimen.
The detection of the specimen in the absence of interaction of the specimen with the
probe particle is referred to as an interaction-free measurement. It can be shown
that up to 25% of the cases in which the object was present in the interferometer
leads to a dark field detection event and thus not the absorption, or interaction, of
the probe particle with the specimen.
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D2
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B

Figure 1.1: Mach-Zehnder interferometer with a specimen in one of the beam paths. The detection
of the specimen is performed interaction-free when the probing particle enters the interferometer
at port A, and is detected by detector D2. The probability of interaction-free detections can be
brought arbitrarily close to 1 by circulating the interferometer output channels in front of the
detectors back to ports A and B multiple times, before performing the detection.

The percentage of interaction-free detections can in principle be increased up to
100%, when the output at the ports of the interferometer in front of the detectors
are circulated back to the input ports [5]. The presence of the object in the inter-
ferometer then prohibits the coherent built-up of signal in the respective arm of the
interferometer, that would have otherwise occurred in the absence of the object. For
this to work, it is required that the beam splitting ratio is adjusted such that after
the chosen number of circulations the full intensity of the probe particle exits the
interferometer towards detector D1 in the absence of a specimen.

The first design for an interaction-free measurement method that uses electrons
was proposed in 2009, and relies on the transition of probability amplitude in a two-
level quantum system that consists of a double well potential [6]. It was suggested
that a practical realization of the required double well potential could be realized
by bending a linear Paul trap into a circle, therewith confining the single electron
to a circular trajectory that intersects with the specimen plane.

Interaction-free measurement schemes for electrons are nowadays referred to as
quantum electron microscopy (QEM). More recent work has identified the develop-
ments that are still required to realize a practical implementation of the imaging
scheme into a microscope [7]. These developments include a coherent beam splitter
and combiner for electrons, that serve the role of the adjustable beam splitters in
the Mach-Zehnder interferometer from [Fig. 1.1], an electron resonator that enables
the repeated imaging of the specimen with a single electron, and a temporally gated
‘barn door’ that regulates the entry and exit of the electron into and from this
resonator.

Close to the development of QEM stands the development of multi-pass trans-
mission electron microscopy (MP-TEM). Here, instead of splitting the electron wave
front, the electron wave is spread out over the sample plane and this spread out wave
is repeatedly transmitted through the sample in order to increase the phase contrast
at the resulting micrograph [3] at lower dose compared to obtaining an equal num-

1.2. Quantum electron microscopy
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ber of direct images with multiple electrons. In contrast to QEM, the realization
of MP-TEM is not depending on the development of a coherent beam splitter for
electrons, but does share the need for an electron resonator and barn door device.

1.3. Designing a prototype QEM
Only in the very recent past practical prototype designs that implement QEM [8]
and MP-TEM [9] imaging schemes into existing electron microscopes have been
reported, with parts of that progress based on work that is presented in this thesis.
In this thesis, the ground work for using electron mirrors as adjustable coherent
beam splitters is presented in chapter 2. For this to work, it is required to pattern
the mirror electrode with a grating structure and apply an electric potential that is
more negative than the energy of the incident electron.

Later, we realized that the use of not one but instead two electron mirrors could
enable a more general approach to electron wave front shaping. In chapter 3 we lay
out the theoretical and numerical framework for a double mirror setup that could
enable amplitude and phase shaping of the electron wave front, and a practical design
for what we now refer to as a virtual phase plate for electron beams is presented in
chapter 4. The setup enables one in principle to demonstrate QEM, MP-TEM, as
well as arbitrary amplitude and phase shaping of the electron wave front in general,
all in one setup. A prototype for this setup is designed such that it can be tested
inside the specimen chamber of a scanning electron microscope.

From the experimental design it will become apparent that additional electron
optics components must be developed to realize the electron trajectories in the pro-
totype setup. A miniature electron beam separator is designed and tested and the
results of this work are presented in chapter 5. In addition to this development, we
found that the application of electron mirrors is severely limited by optical aberra-
tions that form during mirror reflections. A numerical study is presented in chapter
6 that treats this problem, and a geometrical design for a flat electron mirror with
only small aberrations that results from this study is presented.
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2
Grating mirror for diffraction of

electrons

Abstract.
The ability to imprint a phase pattern onto a coherent electron wave would find
many applications in electron optics, in analogy to what is already possible with
photons in light optics. Spatially dependent phase manipulation is achieved in
transmission electron microscopy by passing the beam through a phase plate. How-
ever, in transmission mode this technique suffers from crystal imperfections and
electron-matter interaction. If instead the electron wave is reflected of a spatially
modulated potential, these difficulties can be circumvented.
To demonstrate this principle, we consider here a periodic topological mirror struc-
ture that results in a sinusoidal plane of reflection for the incident electron. The
reflection of the electron then takes place just above the physical mirror surface.
Such ‘electron grating mirror’ is expected to diffract the incident wave upon reflec-
tion by the introduced path length difference. The mirror can then be used as an
electron beam splitter and coupler, analogous to semi-transparent mirrors used in
light optics. This enables for instance a loss-less Mach-Zehnder interferometer for
electrons.
A numerical model that solves the Schrödinger equation for this system is obtained
to enable a quantitative description of the grating mirror. The results show that
the obtained diffraction order intensities behave like squared Bessel function of their
respective order, and thus for instance the results show how an increase in grating
pitch reduces the sensitivity to energy spread in the incident electron beam. Addi-
tionally, we show how the use of the WKB approximation enables faster calculations
in the case of general patterns.

This chapter has been published as M. A. R. Krielaart, and P. Kruit, Grating mirror for diffraction
of electrons, Physical Review A 98 (2018), 10.1103/physreva.98.063806.
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2.1. Introduction
Quantum electron microscopy (QEM) aims at the interaction free imaging of beam
sensitive materials [1]. To realize this technique, new electron optical devices are
required. One of these new devices is a grating mirror for electrons. The physics
of an electron grating mirror is not described before and we will introduce it here.
We show how a grating mirror can be used to reflect an incident coherent electron
beam and subsequently re-arrange the amplitude of the several created sub-beams.

The grating mirror consists of a topological pattern of rectangular bars that is
kept at a potential just above the beam energy, thus effectively creating a period-
ically modulated mirror potential in space. Alternatively, a grating mirror can be
realized by a pattern of lines kept at varying voltage levels but this is not treated
here. In QEM, a grating mirror fulfills the role of coherent beam splitter and coupler:
it enables the transfer of the beam intensity from a reference beam into a sample
beam and vice versa, analogous to an optical beam splitter found in interference
experiments.

2.1.1. Grating parameters
The geometry of the grating mirror [Fig. 2.1(a, b)] is described by a pattern pitch (p)
and amplitude (δ). To obtain an order of magnitude estimate for these parameters,
we draw an analogy with a multiple slit experiment. Here, the angles of the k-vectors
with the optical axis are related via the pitch and wave length (λ) by approximately
θ ≈ λ/p. The resulting diffraction pattern can then be imaged onto a screen via a
(system of) lens(es). The diffraction spot separation is then approximately given by
dspot ≈ θf , where f is the focal length of the lens system.

For initial experiments, we will use low beam energies (1 − 4 keV) and MEMS
fabricated lenses. Plugging in these energies and the small (10 − 30 mm) focal
lengths of the lenses, typical values for pitch are in the range of p = 100 − 500
nm. This should then result in spot separations on our detector screen in the
order of micrometers. When the pattern amplitude δ is then in the same order of
magnitude as the pitch, the resulting equipotentials that form above the physical
mirror structure exhibit the required sinusoidal shape. Grating mirrors with pitch
and amplitude in the range mentioned can be fabricated from a flat silicon waver
using lithography processes. An electrostatic potential is applied to the pattern and
the resulting field is confined in space by a (grounded) field-limiting aperture, placed
at a distance d above the pattern.

For {p, δ} ≪ d, the electric field in the confined region can be approximated
analytical by solving the Laplace equation. To do so, we describe the potential
applied to the pattern on a straight line by

U(0, y) = Up

[
1 +

δ

d
cos
(
2π

p
y

)]
. (2.1)

Here, Up is the pattern bias potential (a constant) and the second term modulates
the potential to mimic the presence of the pattern. By using separation of variables,
the potential inside the confined region can then be shown to satisfy
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Figure 2.1: (a) Parameters describing the grating mirror and coordinate system. (b) Details of re-
gion I, defining the pitch and amplitude of the pattern. Equipotential lines are shown schematically.
(c) Axial and side potential corresponding to the details of region I.

U(x, y) = Up

[
1 + d−1 (δ sin(kpy) exp(kpx)− x)

]
. (2.2)

This result is valid for x < 0,∀y. The wave number kp is directly related to the
pitch of the pattern, kp = 2π/p. From [Eq. 2.2] it is observed that the modulation of
the potential attenuates exponentially fast away from the mirror surface (region I in
[Fig. 2.1]). For a distance ∼ 5/kp ≪ d above the pattern (region II) the equipotential
surfaces are virtually flat again.

An electron incident to the mirror decelerates first on the linear potential ramp
inside region II. By spreading out the electron beam over the pattern, path length
differences occur within the electron wave as it is being reflected inside region I. It
is expected that this leads to a modulation of the phase of the wave function of
the electron with corresponding diffraction effects in the far field. As the mirror is
an amplitude splitter, consecutive illumination is expected to result in a coherent
build-up of phase modulation, leading to increased probability amplitudes in the
diffracted beams.

In this paper, we describe quantitatively how the pattern parameters (pitch,
amplitude, applied potential and field strength) dictate the physics of the electron
grating mirror.

2.2. Methods
Approximation methods, such as WKB [2] or convolution methods [3], allow for first
order estimation of the pattern effects. When applied along one spatial dimension
parallel to the optical axis of the system (see [Fig. 2.2(a)]), the WKB method yields
an integral over the selected electron trajectory that calculates the accumulated

2.2. Methods
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Figure 2.2: (a) WKB approximation with integral paths parallel to the optical axis of the system.
The arrows indicate (schematically) the starting point for the integration. (b) Obtained phase
accumulation as a function of pattern potential (legend items with respect to −2000 V beam
energy) and transverse coordinate. The offset is subtracted such that only the modulated part of
the phase is shown. (c) The effect of grating pitch on the relative phase accumulation.

phase of an electron with given momentum p(x) =
√
2meK and K the kinetic

energy of the electron, related by,

ϕ(x, y) = h̄−1

∫
p(x, y)dx. (2.3)

Here, the transverse coordinate y is treated as a parameter, that allows to select
different paths parallel to the optical axis. The phase modulation in the presence of
the grating mirror can now be calculated by integration along various parallel paths
starting and ending at the interface of regions I and II. This reveals an increase in
phase modulation as the spread out electron reflects closer to the physical grating
structure [Fig. 2.2(b, c)] as may physically be expected.

When the incident electron is described as a plane wave, ψin = a exp(ikinx0),
where kin is the appropriate wave number, then the obtained spatial phase modula-
tion ϕ(x, y) from [Eq. 2.3] enables us to write the reflected wave at the interface of
Regions I and II (x0) as ψout = a exp(iϕ(x0, y)). A Fourier transform of the reflected
wave with imprinted phase pattern ϕ(x, y) then yields the spectrum of all k-vectors
and their intensities.

However, the WKB approximation is generally not valid in the vicinity of the
classical turning point of the electron just in front of the pattern [2]. This follows
from the WKB ansatz, resulting in an inverse proportionality of the amplitude of the
wave function and momentum p. Since the momentum p(x, y) → 0 at the turning
point, the wave function diverges here. It is just at this location, where the influence
of the mirror pattern is dominant. Because of this, we do not trust a priori results
obtained by using the WKB method. For this reason, we also calculate the effect of
the mirror potential by numerically solving the Schrödinger equation inside region I,

2
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by coupling it to known analytical solutions of region II. Details of this more time
consuming calculation are included in [App. A]. Afterward, we compare the results
of the WKB and numerical method in order to validate the use of the WKB method.

2.3. Results
In the full numerical solution of the Schrödinger equation, we describe the interface
between region I and region II of respectively unknown and known solution by the
wave function ψb(xb, y) as

ψb(xb, y) =
∑
n

AnAi−(un(xb)) exp(iky,ny)

+
∑
n

BnAi+(un(xb)) exp(iky,ny). (2.4)

Here, the coefficients An represent probability amplitudes of incident waves with
wave vector k⃗ determined by the angle with respect to the optical axis. Coefficients
Bn are obtained from the calculation and yield directly the probability amplitudes
of the respective k-vectors of reflected waves.

When we consider an incident plane wave that travels parallel to the optical axis,
all coefficients An = 0 are set to zero, except for A0 = 1. In the following, a field
free electron energy of E = 2 keV is assumed. This requires a pattern potential
of Up ≤ −2 kV. When we assume a field strength of 10 kV/mm, the field limiting
aperture is positioned at a distance d = 200 µm above the grating mirror.

The effect of a 500 nm pitch grating pattern is studied for various pattern poten-
tials in order to show the effect of field modulation on the reflected electron. The in-
tensities In = conj(Bn)×Bn of the most dominant diffraction orders (n = 0,±1,±2)
are plotted as a function of the pattern potential [Fig. 2.3(a)]. From this, it is ob-
served that a maximum intensity of 34% is obtained in the first order diffracted beam.
This compares to transmission studies of diffractive gratings [4] and motivates the
term ‘electron grating mirror’ for the studied device.

To study the effect of a tilt angle between the incident beam and the normal of
the mirror surface, two options are considered. First, we set all but one of the An

coefficients to zero. This simulates the effect entering the mirror field at exactly one
allowed angle. The results of this simulation (not shown) indicate no sensitivity to
angle of incidence but rather shift the entire spectrum of coefficients Bn such that
it is centered around the selected incidence coefficient An. Next, the effect of a tilt
angle between the incident beam and the normal of the mirror that is smaller than
the first order angle is studied. This is possible by adding multiple pitches to the
numerical domain. Again, it is found that the resulting spectrum of Bn is centered
around the incidence coefficient.

The diffractive properties of the mirror invite to treat the system in a way similar
to a diffractive crystal. One then studies the intensity of the various orders of
diffraction as function of the crystal thickness. Here, we consider the amplitude
of classical mirror plane equipotential (given by Uclass. = E/e) as effective ‘crystal’

2.3. Results
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Figure 2.3: (a) The intensity of the four most dominant orders as function of pattern potential.
Solid lines (direct solution) and dashed lines (WKB approximation) of the Schrödinger equation are
shown. (b) The amplitude (δxR) of the classical mirror plane Uclass. = E/e [V] and corresponding
diffraction order intensities are shown.

thickness. The thickness δxR of the crystal can then be tuned by changing the
pattern potential.

In [Fig. 2.3(b)] the diffraction intensities are plotted as a function of this effective
thickness δxR. As it can be seen from the figure, the intensity in the first order
diffracted beam increases linear as function of effective thickness for amplitudes
close to zero. This linear increase is at the expense of intensity of the zeroth-order
(central) beam and can be interpreted as an exchange of intensity between the two
modes. In this range of effective thickness, the grating mirror can be applied as a
non-symmetrical beam splitter, meaning that a non-50/50 splitting ratio is achieved.
It should be noted though that both the positive and negative orders are generated
equally.

Earlier, we derived the exponential attenuation of the field modulation as func-
tion of pitch. As a result, it should be expected that the pitch influences the bias po-
tential interval, over which the central beam becomes fully attenuated. In [Fig. 2.4]
we show the intensity of the first orders of diffraction for a grating mirror with pitch
of 500 nm and 1000 nm. Indeed, it is evident from the plots shown that an increase
in pitch stretches the interval over which the first order diffracted beam is generated,
from approximately 2.3 V to 5.0 V.

The implications of this last result for an experiment are evident when one con-
siders the energy spread inherent to an electron beam. By increasing the pitch, the
sensitivity for energy spread is reduced, leading to better spatially defined diffrac-
tion spots. However, by increasing the pitch, one also has to increase the width
of the beam that is spread out over the mirror surface, in order to illuminate an
equal number of pitches when compared to the smaller pitch. As an alternative
to increasing the pitch, one can also increase the field strength between the mirror
and field-limiting aperture, by reducing the distance between the two or applying a
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Figure 2.4: Diffraction order intensities for a fixed pitch of (a) 500 nm and (b) 1000 nm. An
increase in pitch results in a wider bias potential window for complete attenuation of the central
order beam.

positive bias to the field limiting aperture.
The above results are all obtained from the numerical solution of the Schrödinger

equation, which is a computationally demanding procedure. We now compare the
obtained results to the outcome of the WKB method in order to assert the validity of
the latter. For this, we consider again a single pitch of the grating mirror. We use
our analytical expression for the equipotential above the grating mirror [Eq. 2.2]
and integrate the momentum along paths running parallel to the optical axis, in
order to obtain the spatial phase modulation. The obtained phase profile is then
decomposed in the various spectral components using Fourier analysis and this yield
the intensity of the diffracted beams.

In [Fig. 2.3(a)], the intensity of the central, first and second order beams (dashed
lines) are plotted as a function of applied pattern potential. Comparison to the ex-
act solution (solid lines) shows good qualitative agreement. Quantitatively however,
the WKB result is shifted approximately 1 volt with respect to the exact solution.
It thus appears that the electron approaches the mirror more closely in the WKB
approximation as compared to the exact case. Indeed, this is the case when one
considers the Airy function solution of the exact case. The maximum of the proba-
bility |ψ|2 for finding the electron is positioned not at, but just before the classical
turning point (also see [Fig. A.1(a)]) and thus the electron spends more time at this
point then at the classical turning point itself.

From the above, it appears to be evident that the WKB approximation does
not yield useful quantitative results when the beam intensities are expressed as a
function of applied pattern potential. However, we found that by expressing the
beam intensities as function of classical turning point thickness (δxR) instead, a
perfect agreement between the WKB and exact method is obtained, as shown in
[Fig. 2.3(b)]. One can then calculate the potential necessary for this thickness in
hind sight.

2.3. Results

2

| 13



2.4. Discussion
The physics of a constant pitch grating mirror is studied via two different methods.
We observe a physical correspondence of the studied grating mirror with that of a
diffractive crystal. Different pattern parameters are studied as well and these show
similar results.

It should be noted that the diffraction order intensities as function of effective
crystal thickness [Fig. 2.3(b)] are remarkably similar to the square of Bessel functions
of corresponding orders. This may suggest that an analytical solution for the studied
system exists. This would enable a general description of diffraction order intensities
for any periodic grating mirror.

We demonstrated in the previous section that the WKB and exact method show
remarkable quantitative agreement, when the beam intensities are expressed as a
function of classical turning point thickness instead of applied bias potential. This
observation allows speeding up of future calculations, since the calculation of the
WKB integral takes only a few seconds. This is an improvement over the use of
exact solutions, the calculation of which takes up to 30 minutes on the PC used for
the shown calculations. Additionally, the WKB method allows more flexibility for
studying non-periodic patterns.

Finally, we discuss several effects which might prevent us from obtaining the
coherent diffraction as we described. The most obvious disturbing effect is a pos-
sible low-frequency distortion of the mirror topography, for instance the effect of
curvature of the surface due to stress inside the material. We can approximate the
maximum allowable curvature by assuming illumination of the mirror with a beam
of 20 µm diameter. Then, for the generation of the first order diffracted beam, a
field modulation of the classical turning point of 0.5 nm is required1. From [Eq. 2.2],
we can then estimate a maximum thickness variation of 1 nm is tolerated within
this region. A further increase in curvature will ultimately lead to blurring of the
diffracted beams in the image plane of the mirror system. Similarly, the poten-
tial on the surface of the mirror is assumed to be very uniform. At 10 kV/mm, a
topography change of 1 nm, as just discussed, is equivalent to a potential change
of 10 mV. This sets requirements for the surface treatment of the mirror surface.
Also, contamination should be avoided because this could lead to local charging. In
principle, the electron beam does not need to touch the mirror surface ever, but
during the alignment procedures it will be hard to really avoid electrons reaching
the surface.

A more subtle effect is that of the induced mirror charges inside the mirror. At
the sub-nA current that will be used, electrons can be treated as arriving individu-
ally. The proximity of an electron near a wall induces an image charge (distribution)
inside this wall [5]. At the point of nearest approach to the mirror surface (approx-
imately 500 nm when only the first order diffracted beam is induced) this yields
an increase of the potential at the classical turning point. A simple calculation
shows that this is in the order of millivolts. The force from the mirror charge on
the electron is always perpendicular to the surface, so we do not expect any effect
1Assuming 2 keV beam, 500 nm pitch and mirror potential of −2004 V. Numbers are approxima-
tions.
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from this. However, as the electron moves towards and away from the mirror, the
induced surface charges on the mirror surface are dragged along, possibly causing
dissipation [6, 7]. In the which-way setup of [7], this dissipation due to Joule heat-
ing is recognized as the mechanism that leads to dephasing of the state of the wave
function associated with the respective path. As a result, decoherence is observed
as the electron propagates alongside the wall.

A similar effect is observed for intensity splitting in nanofabricated gratings [8].
Here, the dissipative effect of the image charge can be related to the side walls
of the slits that the electron passes through. The question is if this effect could
cause decoherence in our proposed set-up. The effect would be that a localized
excitation in the mirror surface would cause the electron to lose energy, in the
process collapsing the wave function to a smaller area than the original 20 µm. This
would affect the diffraction. We do not have a full theory from which we can derive
the probability of this effect. However, we point out that in all of the cases in the
literature, the dephasing of the wave function is the result of splitting the wave
function and successive dissipation in one of the resulting trajectories as it travels
for some distance parallel and very close to a surface. As this is not the case for
the reflective grating mirror that we present here, we expect that the probability
of decoherence will be smaller than in those cases. Also, earlier experimental work
involving electron holography [3] with reflected electrons did not indicate any effects
of decoherence.

A final effect to be considered is bremsstrahlung, the emission of a photon
while decelerating and accelerating the electron. Potentially this could cause en-
ergy spread or local collapse and thus loss of coherence. However, a non-relativistic
estimate of the average energy that is lost per electron to bremsstrahlung for an
initial electron energy of 2 keV reflected in a 10 kV/mm field gives 1 × 10−9 eV,
which can safely be neglected.

Further requirements on experimental set-ups for demonstration of the grating
mirror for electrons would require stable power supplies, with an accuracy that is
well below the energy spread of the electron beam. This criterion is easily satisfied
with modern supplies and the optional use of an additional low-pass filter on the
output.

This all said, we must admit that we have tried to observe the diffraction exper-
imentally and so far have not obtained convincing results.

Future work requires experimental verification of the grating mirror. This de-
mands the micro fabrication of the grating mirror and (lens) apertures. The spatial
coherence of the electron beam should then extend across a distance of multiple
pitches. From our simulations it is obtained that a small pitch requires the electron
to approach the mirror to such proximity that higher order diffracted beams may
not be generated. On the other hand, a too large pitch places a more demanding
condition on spatial beam coherence.

The realization of a quantum electron microscope can benefit from the presented
work, as we describe accurately the intensity of the diffracted beams for given op-
eration parameters. One should however take into account the coherent built-up of
signal in the higher order diffracted beams [9].

2.4. Discussion
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3
Principles of Electron Wave Front
Modulation with Two Miniature

Electron Mirrors

Abstract.
We have analyzed the possibilities of wave front shaping with miniature patterned
electron mirrors through the WKB approximation. Based on this, we propose a
microscopy scheme that uses two miniature electron mirrors on an auxiliary optical
axis that is in parallel with the microscope axis. A design for this microscopy
scheme is presented for which the two axes can be spatially separated by as little as
1 mm. We first provide a mathematical relationship between the electric potential
and the accumulated phase modulation of the reflected electron wave front using
the WKB approximation. Next, we derive the electric field in front of the mirror, as
a function of a topographic or pixel wise excited mirror pattern. With this, we can
relate the effect of a mirror pattern onto the near-field phase, or far field intensity
distribution and use this to provide a first optical insight into the functioning of
the patterned mirror. The equations can only be applied numerically, for which we
provide a description of the relevant numerical methods. Finally, these methods
are applied to find mirror patterns for controlled beam diffraction efficiency, beam
mode conversion, and an arbitrary phase and amplitude distribution. The successful
realization of the proposed methods would enable arbitrary shaping of the wave front
without electron-matter interaction, and hence we coin the term virtual phase plate
for this design. The design may also enable the experimental realization of a Mach-
Zehnder interferometer for electrons, as well as interaction-free measurements of
radiation sensitive specimen.
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3.1. Introduction
The use of spatial light modulators [1] and digital micromirror devices [2, 3] in light
optics has enabled the controlled and dynamic shaping of photon beams. Methods
for the shaping of charged particle beams are unfortunately not as versatile yet. To
the electron microscopy community its development would provide many opportuni-
ties, such as beam mode conversion [4], or low-dose imaging of unstained biological
specimen [5, 6]. Recent experimental work indicates promising progress towards a
programmable transmission-based phase plate [7] for use in transmission electron
microscopy (TEM), although upscaling of the number of addressable pixels, as well
as increasing the transmissivity of the phase plate, may prove challenging.

3.1.1. Electron wave front shaping
Electron wave front modulation is realized by passing the electron through an in-
homogeneous optical medium, such as a spatially modulated electric field, or a
topographically shaped phase plate. In the basis, electron beam shaping requires a
medium that acts spatially on the phase of the electron wave front. The build-up
of electrical charge at the surface of this medium will influence the resulting wave
front modulation, which is avoided by making use of electrically conducting ma-
terials only. Spatial coherence of the electron across the phase modulator can be
realized by a combination of a high brightness source and a small beam current [8].
These requirements can be fulfilled in a number of ways.

Most commonly, electric and magnetic fields are used for charged particle beam
deflection and focusing, which can be described as electron wave front manipula-
tions. The fields are then generated external to the optical axis of the microscope
and the use of electrically conductive elements prevents charging of the electrodes.
Series of magnetic and electric multipole elements are seen in transmission electron
microscopes and have been demonstrated to correct imaging system aberrations [9].
The combination of a multipole electrode with an annular aperture for vortex beam
creation is reported as well [10].

Alternatively, patterned thin film amorphous carbon or silicon nitride mem-
branes that cross the beam path can modulate the phase of the beam [11]. On
the one hand this enables contrast enhancement [12], such as Zernike phase con-
trast [13, 14], while on the other hand beam mode conversion of plane waves into
vortex beams [15–18], non-diffracting Bessel beams [19], and probability preserving
Airy beams [20] are realized. Although transmission phase plates offer an increased
flexibility for beam shaping with respect to externally generated fields, the limited
operational life time and sensitivity to contamination [12, 21] are still factors that
limit the long-time application of these methods.

In contrast to the former methods that rely on transmission of the electron, elec-
tron mirrors slow down and reflect the incident beam prior to reaching the mirror
electrode. This facilitates an alternative method to electron beam shaping that
avoids electron beam-matter interaction. In the past, the use of tetrode electron
mirrors for aberration correction [22] has been experimentally demonstrated [23].
Furthermore, mirror electron microscopy [24] has been successfully employed to mea-
sure the roughness of supersmooth surfaces, by electrically biasing the specimen just
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below the cathode potential of the source [25]. Also, it is suggested that a pixelwise
deformable electron mirror could be used for adaptive phase contrast enhancement
[26], and can as well be applied for electron beam lithography [27]. Electron mirrors
are usually combined with a beam separator [28] in order to separate the trajectory
of the incident and reflected electrons.

The drawbacks of transmission optics, such as phase plate contamination, oper-
ational life-time, electrical charge built up at surfaces and reduced optical transmis-
sivity do not present themselves to mirrors. In comparison to transmission based
techniques, the use of reflection based optics becomes increasingly advantageous
when more than one reflective element is present in the beam line. The use of
multiple beam reflective elements is seen with the recent development of an aberra-
tion corrected low energy electron microscopy/photo-emission electron microscopy
(LEEM/PEEM) [29, 30] instrument. The mirror assemblies are mounted here onto
the microscope column under a 90 degree angle, which is a necessity due to the large
volume claim of conventional beam separators.

More recent instrumentation developments allow for miniaturization of beam
separators [31]. This enables for instance the realization of a proposal for aberration
correction in scanning electron microscopy (SEM) based on two miniature electron
mirrors [32]. The latter paper describes a miniature column with two parallel optical
axes. The use of parallel optical axes enables one to reduce the deflection angles in
the beam separator to below 100 mrad. In turn, this limits the deflection dispersion
in the corrector, that may ordinarily limit the performance of such instrument [28].

The miniature mirrors in the above mentioned proposal for aberration correction
may be replaced by mirrors that contain freely chosen patterns. For the resulting
optical setup, we coin the term virtual phase plate. In this work, we describe the
influence that the mirror pattern topography has on the phase modulation of the
reflected electron, and then turn it around to find the surface topography or voltage
distribution for a required wave front shape. The results are demonstrated by means
of numerical examples.

3.2. Phase modulation with an electron mirror
Electrons are decelerated by an electrode with a negative electric potential that
spans across the propagation axis. At a sufficiently negative electrode potential, the
incident electron is completely stopped and will be reflected back towards the direc-
tion of origin. This requires an equipotential value that equals that of the extraction
voltage at the electron source. As the electric field in front of the mirror electrode
must satisfy the Laplace equation, the velocity of the electron gradually changes as
it approaches the mirror electrode. Hence electron mirrors are characterized by soft
reflection fields that act as inhomogeneous refractive medium [33]. This is different
from mirrors in light optics, for which a hard reflection of the photon at the mirror
surface takes place.

The electric field in front of the mirror electrode satisfies the Laplace equation,
and thus any spatial topographic or charge pattern at the mirror electrode will
result in the spatial modulation of the electric field in front of the electrode as
well. As the electric field of the mirror extends from the mirror electrode into the

3.2. Phase modulation with an electron mirror
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path of the incident electron beam, a continues modulation of the wave front takes
place as the wave front approaches the mirror. Non-flat, structured electron mirrors
have the property to locally alter the phase of the wave front of a spatially spread
out incident electron, and the quantum mechanical effect of a mirror perturbation
[34], and periodic structures [35, 36] have been studied in the past analytically and
numerically. It was suggested that the use of controlled wave front modulation with
arbitrarily patternable mirrors could be used for structural hypothesis testing [26],
but this has to our knowledge not been demonstrated experimentally yet.

Here we will focus our attention to generalized mirror patterns and their resulting
effect on the wave front of the reflected electron wave front. For this, we will first
provide a relationship between the electric potential and the accumulated phase
modulation of the reflected electron wave front. Next, we will derive the electric
field in front of the mirror, as a function of the topographic or pixel wise excited
mirror pattern. With this, we can then relate the effect of a mirror pattern onto
the near-field phase, or far field intensity distribution and use this to provide a first
optical insight into the functioning of the patterned mirror. We will conclude this
section with a discussion on chromatic effects.

3.2.1. Electron phase as a function of electric potential
In transmission electron microscopy, the acceleration of the electron beam by the
(mean inner) potential of a phase plate is usually small in comparison to the nominal
beam energy. This justifies the use of the projection assumption, which describes
the exit wave ψout after passing a plane wave electron through a phase plate as [37]

ψout = exp(iσVz). (3.1)

The term inside the exponent in [Eq. 3.1] may be considered as a phase transfer
function, as it describes in the essence the effect that the electric potential has on
the phase of the transmitted electron. In this equation, σ is an interaction constant
that is proportional to the electron wave length, and Vz = Vz(x, y) is the projected
potential along the propagation axis,

Vz(x, y) =

∫ ∞

−∞
V (x, y, z)dz. (3.2)

This approach does not work for electron mirrors, for a number of reasons. Fore-
most, the projection assumption is invalid as the mirror potential equals that of
the beam energy. In addition, we note that the upper boundary of the integral is
ill-defined, as the wave function of the electron will actually penetrate the mirror
field to some extend behind the classical turning point. The situation complicates
even further when the mirror electrode is not flat, but instead contains a spatial
pattern.

Convolution model
Earlier work related to mirror electron interference microscopy has resulted in a
relationship between the mirror profile h(x, y) and the phase modulation ϕ(x, y) of
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the reflected beam [25, 38]. Although the work in [38] is not available to us, it is
reproduced by Lichte in [35] and we make use of that here. It was demonstrated
that under the assumption h≪ zR ≪ z1, with the mirror electrode at z = 0 and the
field limiting aperture electrode at z1, and with zR the coordinate plane of reflection,
or turning point, in front of the mirror surface, that the phase difference between
the reflected object and reference beam in a mirror electron interference microscope
can be obtained through [35],

ϕ(x, y) =
2π

λe
· [h(x, y) ∗G(x, y, zR)] . (3.3)

In the equation, G(x, y, zR) is called the blurring function, and λe is the field free
electron wave length. The blurring function as a function of one transverse spatial
dimension is plotted in [Fig. 3.1(a)] for a range of turning point coordinates. From
the plot it is observed that the blurring function becomes steeper when the turning
point of the beam is positioned closer to the mirror substrate. The increased steep-
ness of the curve renders the convolution more sensitive to high spatial frequency
components residing in the mirror pattern, as the beam is reflected closer to the
mirror electrode.

The blurring function is the Fourier transform of the ‘spectral transfer function’
P (k, zR), which is given by [25]

P (k, zR) =

√
π

kz1
× exp(−kzR)× erf

(√
kzR

)
. (3.4)

This function provides a direct relation between the attenuation of different
spatial components at a fixed mirror bias potential. The spectral transfer function
is plotted in [Fig. 3.1(b)], for a linear electric field strength of 10 kV/mm that we
assume throughout our work.

WKB approximation
The validity of the convolution model is connected to the requirement h≪ zR ≪ z1,
and thus potentially reduces when micromachined electron mirrors are considered
for which h . zR. As the original work in which the spectral transfer function was
derived [38] is not available to us, we pursue a second line of analysis in which we
study the effect of the pattern profile and applied potentials through the WKB ap-
proximation. This approximation method assumes the separability of the amplitude
a(r⃗) and phase ϕ(r⃗) of the wave function in the form ψ(r⃗) = a exp(iϕ), for which
it is then demonstrated that the phase distribution is related to the scalar electric
field through [39],

ϕ(x, y) = h̄−1

∫ zR(x,y)

z1

p(x, y, z)dz = h̄−1

∫ zR

z1

√
2me (E − V (x, y, z)). (3.5)

The classical momentum p(x, y, z) of the electron with field-free energy E is inte-
grated along paths that run in parallel with the optical axis. For an incident plane
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(a) (b)

Figure 3.1: (a) Blurring function G(x, zR), and (b) Spectral transfer function P (k, zR), for different
values of turning point coordinates zR. Plot and calculations based on methods described in [38]
that we reproduced here from [25].

wave, the electron trajectory is defined to coincide with the z-axis here. The classical
momentum is related to the scalar electric field (U) through the potential energy
function, V = eU(x, y, z). The integration is performed between the coordinates of
the field limiting aperture z1 and the classical turning point zR(x, y). The classical
turning point coincides with the lateral coordinate, at which the electric potential
equals that of the extraction voltage of the electron source (E = V ), and this is
influenced by the electric perturbations due to the pattern at the mirror electrode.

In order to assess the effect that the pattern at the mirror electrode has on the
phase of the reflected electron, we suggest to treat the contributions from the mirror
pattern in terms of its Fourier components. This approach is similar to what we have
used in previous work, where we demonstrated the agreement between the obtained
phase modulation amplitudes through the WKB method and direct solutions to the
Schrödinger equation [36], and note that solutions through the WKB method are
less computational expense. Then the spatial phase modulation may be obtained for
every component of the field separately. For a modulus of spatial frequency k = |⃗k|
at the pattern, this surmounts to finding the integrated phase difference Ak of the
two electron trajectories that coincide with the crest and trough of the component
of the field, given as

Ak = ϕ(0)− ϕ(1/(2k)). (3.6)
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In this expression, Ak denotes the amplitude of the phase modulation associated
with spatial frequency k, and essentially corresponds to the maximum of phase
difference that would result from application of the convolution model in [Eq. 3.3].
The integration boundary zR in [Eq. 3.5] is different for both terms in [Eq. 3.6] as
the electron approaches the mirror electrode closer at the trough of the modulated
electric field. The values of zR corresponding to the trough and crest of the field
can be obtained analytically through the Lambert-W function [see Appendix B], or
numerically by solving for U(z) = E. The complex wave function after reflection
associated with this solution is reconstructed by,

ψ(k) = exp (iAk cos(2πkr + θk)) . (3.7)

This expression may be compared to Eq. (31) in [35], where the effect of a single
harmonic perturbation at a mirror surface was studied. The full wave function of
the incident initial plane wave when exiting the reflection field is then described by
the sum of all harmonic components that are present in the pattern at the mirror
electrode, and generalizes to

ψM (r) = exp
(
i

∞∑
n=0

Akn
cos(2πknr + θkn

)

)
. (3.8)

The angle θk fixes the relative position of each term with respect to other spatial
contributions in the pattern.

Validity of the convolution model
We can now directly compare the phase modulation that is obtained through the
convolution model to that of the WKB approximation. This comparison may offer
a more quantitative bound on the restriction h ≪ zR ≪ z1 that is placed on the
validity of the convolution based model. For this, we obtain the phase modulation
through the WKB method for a number of pattern heights, and normalize the
obtained data to the lowest spatial frequency that we analyze. Note that the spectral
transfer function [Eq. 3.4] in the convolution model is not dependent on the pattern
height, and can thus be obtained at once.

In [Fig. 3.2] we have plotted the spectral transfer function that is obtained from
the convolution model (dashed lines) and the WKB approximation (solid lines),
at a linear electric field strength of 10 kV/mm. In the comparison, we assumed
z1 = 200 µm and a pattern height of (a) 100 nm, and (b) 500 nm. The distance of
closest approach towards the mirror electrode (zR) is varied between 0 and 500 nm
in this analysis.

In both data sets we observe that the two models are in good agreement in
general. However, when zR ≤ 2h we start to observe a deviation. It is thus in
principle possible to use the convolution model, as long as the former strict inequality
is satisfied. We choose to use the WKB method instead in the remainder of this
work.
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Figure 3.2: Spectral transfer function obtained through the convolution model (dashed lines) and
WKB approximation (solid lines), at a profile height of (a) 100 nm, and (b) 500 nm, as a function
of spatial frequency k and closest approach zR.

Far field intensity at one spatial frequency
In the following we relate the near field phase modulation to the resulting intensity
in the far field. The far field intensity can be obtained through Fresnel propagation
of ψM . We can also place a lens in front of the mirror, and use a Fourier transform
to obtain the intensity distribution at the image plane that coincides with the focal
plane of this lens. The resulting far field diffraction intensity of a WKB phase modu-
lation amplitude Ak can be obtained directly through the Jacobi-Anger relationship,
that expands a modulated complex exponential on the left hand side into an infinite
sum that contains Bessel functions Jn(ξ) of order n on the right hand side [40],

exp(iξ cos(χ)) =
∞∑

n=−∞
inJn(ξ) exp(inχ). (3.9)

The infinite sum may be interpreted as a Fourier series, which results in that
the intensity of diffraction spots at the far field due to the single spatial frequency k
is given explicitly by |Jn(Ak)|2 where n labels for the harmonic tones of k. In [Fig.
3.3(a)] we show the intensity of the unscattered (n = 0) and the first (green trian-
gles), second (blue squares), and third (gray stars) order scattered beam intensities,
as a function of phase modulation amplitude Ak. From this figure it is apparent
that a single spatial frequency in the mirror pattern results in a set of diffraction
spots, with intensities that cannot be chosen independently.

A practical limit of phase modulation amplitude emerges from the Jacobi-Anger
expansion, above which it becomes no longer possible to modulate the intensity of a
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Figure 3.3: (a) Intensity distribution at the image plane, as a function of phase modulation am-
plitude (Ak) for a single and fundamental spatial frequency k. Plotted orders n correspond to
harmonic frequencies nk, with n = 0 representing the unscattered component of the beam. (b)
Relative error of the intensity of the diffraction intensity due to the generation of higher order
spots.

diffraction spot with only a single spatial frequency in the mirror pattern, without
generating higher order spots as well. If we allow for 1% of the intensity to be
directed into a higher order diffraction spot at the image plane, the amount of
phase modulation that can be achieved with a single spatial frequency is upper
bound to π/6 ≈ 0.5 rad [Fig. 3.3(b)]. Higher values of phase modulation are then
only attainable, when the development of the higher harmonics is suppressed by
adding to the fundamental pattern a θ = π rad out of phase contribution of the
respective higher harmonic spatial frequencies.

Addition of multiple spatial frequencies
In the following we analyze the extend of the validity of using the results from [Eq.
3.9] and [Fig. 3.3(a)] when multiple spatial frequency components are present in
the mirror pattern. The result as shown in [Fig. 3.3(a)] is invariant for a change
in spatial frequency k. Hence, we consider for instance the effect of combining two
spatial frequencies that are both characterized by a phase modulation amplitude Ak
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of say Ak = π/3. From the data shown in [Fig. 3.3(a)] we observe that the intensity
of the unscattered beam is reduced from 1 to approximately 0.58, thus an intensity
reduction of 1− 0.58 = 0.42. Meanwhile, the intensity in the first order diffraction
spots related to both pattern components increases to approximately 0.20, yielding
an apparent total intensity increase in the scattered beam of 2 × 2 × 0.20 = 0.80.
This suggests that intensity is created in the scattered beam, as a result of adding
an additional pattern component. Where did this intensity come from?

It appears that linear addition of the effect of multiple pattern components yields
physically incompatible results. We can understand this, by carefully analyzing the
effect of multiple spatial frequencies when inserted into [Eq. 3.8], and expanding
into the far field intensities using [Eq. 3.9]. For two given spatial frequency k1 and
k2 (and k1 ̸= k2) the near field wave front is described as

ψM (r) = exp(iAk[cos(2πk1x) + cos(2πk2x)])
= exp(iAk cos(2πk1x))× exp(iAk cos(2πk2x)). (3.10)

In the far field, the intensities are then described by the product of the Jacobi-
Anger expansion of both terms, given as

I =

{ ∞∑
n=−∞

inJn(Ak) exp(in2πk1)
}

×

{ ∞∑
n=−∞

inJn(Ak) exp(in2πk2)
}

=

{ ∞∑
n=−∞

cn,1 exp(in2πk1)
}

×

{ ∞∑
n=−∞

cn,2 exp(in2πk2)
}
. (3.11)

Effectively, the result in [Eq. 3.11] describes a product of two Fourier sums,
which can generally be expressed as a convolution of its coefficients cn,1 and cn,2.
From this it is concluded that the linear addition of the effect of multiple spatial
frequency components in the pattern is not allowed in general. However, if only
values of Ak ≪ 1 are considered, the effect of the cross terms in the product in [Eq.
3.11] become negligible, since then J0(Ak) ≈ 1. This can be made more explicit by
considering two pattern components, that satisfy k2 = 2k1 and contribute a phase
modulation amplitude Ak1

and Ak2
to the reflected electron. Then, the product

in [Eq. 3.11] can be evaluated explicitly for the lower order terms and yields the
following intensities,

Ifar field ∝


[J0(Ak1

)J0(Ak2
)]2 ∼ 1 Unscattered beam

[J1(Ak1)J0(Ak2)]
2 ∼ J2

1 (Ak1) First order of k1
[J0(Ak1)J1(Ak2)− J2(Ak1)J0(Ak2)]

2 ∼ J2
1 (Ak2) First order of k2

.

(3.12)

In this result, the similarity conditions are satisfied if and only if J0(Ak2
) ≈ 1 and

J1(Ak1
) ≈ 0, thus in general when Akn

≪ 1. We use this result as a justification for
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linear addition of the effect that multiple pattern contributions have on the phase of
the reflected electron, and we believe that this result is in line with the weak phase
object approximation [41] that is conventionally adhered to in the context of thin
phase plates.

3.2.2. Electric field as a function of mirror pattern
In the following, a description for the electric scalar potential is derived as a function
of topographic and pixel wise patterning. This requires a solution for the Laplace
equation of the scalar potential U(x, y, z) in transverse coordinates x and y, and
beam propagation direction z. It is assumed [also see Fig. 3.4] that the mirror
electrode is positioned at z = 0 and the beam incidence and reflection takes place
in the region for which z < 0. A field limiting aperture electrode is positioned at
z = z1 < 0, that connects the mirror electric field to a region of constant potential
U(x, y, z < z1) = u1.

(a)

z = 0

z1

(b)

Mirror electrode Mirror electrode

Figure 3.4: Schematic geometry of the mirror electrode, in the case of (a) topographically patterned
electron mirror and (b) pixel wise patterned electron mirror. The field limiting aperture at z = z1
connects the mirror electric field to a region of constant potential u1.

Solutions to the Laplace equation in Cartesian coordinates can be obtained
through the method of separation of variables. The method ordinarily invites to
look for solutions in the form U(x, y, z) = X(x)Y (y)Z(z), but this will limit the
shape of the pattern potential to products of XY ≃ cos(f(x))× cos((g(y)) that in-
troduce a fixed grid of zero crossings. Instead, we will obtain solutions that describe
the pattern with cross-terms, U(x, y, z) = P (x, y)Z(z) in which P (x, y) is the mirror
pattern function, and Z(z) describes the electric field attenuation above the mirror
surface. We must then obtain a solution for

∂2P (x, y)Z(z)

∂x2
+
∂2P (x, y)Z(z)

∂y2
+
∂2P (x, y)Z(z)

∂z2
= 0. (3.13)

This can be cast in the separated form given as,

1

P (x, y)

[
∂2P (x, y)

∂x2
+
∂2P (x, y)

∂y2

]
+

1

Z(z)

∂2Z(z)

∂z2
= 0 ⇒ C2

p + C2
z = 0. (3.14)
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The separation constants, (Cp, Cz) ∈ C must be allowed complex valued in
order to satisfy the sum of separated squared coefficients. There are two boundary
conditions that the above equation must satisfy:

1. At z = z0 the potential distribution at the mirror electrode is described by
U0(x, y, z) = u0+∆u0(x, y, z0) in the case of pixel wise patterning. Here, u0 is
the bias potential and ∆u0(x, y) describes the (harmonic) potential variation
across the mirror surface. In the case of topographic patterning, only a bias
u0 is present, and we approximate ∆u0 based on the pattern amplitude δ and
the linear field strength Ez = u0/(z1 − z0), such that ∆u0 = Ezδ. We choose
z0 = 0 is positioned at the origin of the coordinate system.

2. At z = z1 < 0, a field limiting aperture electrode is positioned and it is
assumed that at this point the scalar potential is uniform in the transverse
direction, U1(x, y, z ≤ z1) = u1.

Solutions at the mirror electrode
The first boundary condition relates to the potential variation at the mirror electrode
that is due to the pattern. A general solution for P (x, y) is given (for constants p0
and p1) by

P0(x, y) = p0 exp(i2π[kxx+ kyy + θ]) + p1 exp(−i2π[kxx+ kyy + θ]). (3.15)

The coefficients kx and ky are spatial frequencies of the mirror pattern and θ is
a constant phase offset. From [Eq. 3.14], this provides the relationship

(2πikx)
2 + (2πiky)

2 = C2
p . (3.16)

From this it is seen that C2
p < 0 (since k > 0, and i2 = −1) and consequently

C2
z > 0. In the current form, [Eq. 3.15] would allow for only one spatial frequency

in the mirror pattern. Solutions to the Laplace equation are linearly independent,
which enables us to include multiple spatial components by linear addition,

P0(x, y) =
∑
(n,m)

Fn,m cos (2π[kn,xx+ km,yy] + θn,m). (3.17)

Here we implicitly assume p0 = p1 = 1/2, such that the resulting sum of com-
ponents represents a discrete Fourier sum of amplitudes Fn,m and corresponding
angles θn,m. The amplitude term Fn,m relates to the electric potential (in volt,
∆u0 in boundary condition 1) that the corresponding spatial frequency adds to the
mirror potential, and its expression depends on the method of mirror excitation.

For topographic patterned mirrors, there is only the bias potential u0 that is
applied to the mirror electrode. The profile amplitude of the topographical features
at the electrode surface (δn,m) and the linear electric field strength Ez = (u1 −
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u0)/(z1 − z0) is then used to approximate the effective potential at z = z0. The
local potential at z = z0 = 0 is then approximated through the amplitude δn,m of
the harmonic contribution and the linear field strength,

Fn,m = Ezδn,m. (3.18)

In the case of pixel wise applied potentials, the relationship between Fn,m and
the individual pixel potential is somewhat more complicated due to the finite size
of the pixels. The set of potentials {up} that is used to realize a harmonic variation
across the entire mirror electrode then consists of discrete increments, rather than
the smooth transition that is the case for topographic patterning. The high spectral
frequency components that are associated with the harmonics of the individual pixels
are neglected here, as we will demonstrate that such high spectral components (that
is, smaller than the width of a single pixel) are not likely to significantly influence
the phase of the reflected electron.

Next, a solution for Z(z) must be obtained. Earlier we derived the requirement
C2

z > 0 and this in turn yields the general solution,

Z0(z) = ξ1 exp(2πkzz) + ξ2 exp(−2πkzz). (3.19)

This leads to the relationship C2
z = (2π)2k2z and we require ξ2 → 0 in order to

prevent the potential from diverging in the region of reflection. In addition, the
constant ξ1 corresponds to the local potential value, ξ1 ≡ Fn,m for z = z0. Finally,
as C2

p +C
2
z = 0, we obtain the common wave optical relationship k2x+k2y = k2z , from

which we can construct the solutions for the Laplace equation that satisfy boundary
condition 1) as,

U0(x, y, z) = P0(x, y)Z(z)

=
∑
(n,m)

{
Fn,m cos (2π[kn,xx+ km,yy] + θn,m)

× exp
(
−2π|z|

√
k2n,x + k2m,y

)}
. (3.20)

Solutions at the field limiting aperture
A solution that satisfies the second boundary condition is less involved than that
at the mirror electrode. It is assumed that the electric field is terminated at an
equipotential surface that is flat in the plane perpendicular to the propagation (z)
axis, such that the function P1(x, y) = constant. In a practical situation, an aperture
is needed at this plane that allows the electron beam to enter and exit the mirror field.
The effect of this aperture is not treated here and may best be treated separately
as part of a lens system in front of the mirror. The constant is absorbed into Z1(z),
and we are thus only concerned with finding a solution for Z1(z), that has to satisfy
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1

Z1(z)

d2Z1(z)

dz2
= 0 ⇒ d2Z1(z)

dz2
= 0. (3.21)

The general solution is a first order polynomial, Z1(z) = az + b. From the
boundary conditions Z(z1) = u1 and Z(z0) = u0, a solution is readily obtained in
the form of,

Z1(z) = u0

[
1− z

z1

]
− u1z

z1
. (3.22)

In this equation, the second term drops out under the assumption of a field-free
region of constant potential at or beyond z1, for which u1 = 0.

Analytical expression for the mirror electric scalar potential
A full solution for the electric potential that is created by a topographic or pixel
wise patterned mirror is provided by addition of the separate solutions that were
obtained, and is given in full as

U(x, y, z) = P0(x, y)Z(z) + Z1(z)

=
∑

(n,m)>0

{
Fn,m cos (2π[kn,xx+ km,yy] + θn,m)

× exp
(
−2π|z|

√
k2n,x + k2m,y

)}
+u0

[
1− z

z1

]
− u1

z

z1
. (3.23)

In this expression, we have shifted the contribution of the DC component of the
mirror pattern outside of the sum, and it is now explicitly accounted for by the
linear potential ramp provided by u0. The equation is applicable to both pixel wise
and topographically patterned mirrors, and the elements in the sum only account
for the spatial variations that resemble the surface topography.

The derived expression for the electric potential will be used in the calculation of
the spatial phase modulation of a spread out beam that is reflected by this potential.
The expression essentially describes a Fourier sum over all spatial frequencies that
are contained in the mirror topography. The DC contribution outside the sum
contains the linear potential ramp.

Qualitative influence of the pattern components on the phase modu-
lation
We can now combine the obtained description of the mirror electric field [Eq. 3.23]
and the WKB approximation [Eq. 3.5] and use this to obtain an initial qualitative
understanding of the influence that the spatial frequency components of the mirror
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pattern have on the phase of the reflected electron. According to the WKB approx-
imation the phase ϕ(r⃗) ∝

∫ √
U(r⃗)dz. Because of the square root dependence, a

direct solution that yields the phase modulation amplitude [as defined in Eq. 3.6]
as a function of the electric field modulation amplitude is not trivial. Instead, we
will derive here an approximate analytical relationship between the mirror scalar
potential and the resulting phase modulation and use this to obtain an initial un-
derstanding of the effect that the pattern frequency component has on the phase
modulation amplitude. At a later stage a numerical implementation of [Eq. 3.6]
will be provided which serves as the basis of our pattern calculations.

Starting from the WKB approximation, we cast [Eq. 3.5] into an alternative
form:

ϕ(x, y, z) = h̄−1
√
2meeE

∫ √
1− U(x, y, z)/Edz. (3.24)

The square root inside the integral can be approximated by a power series for
which the first terms are given below,

√
1− x ≈ 1− 1

2
x− 1

8
x2 − 1

16
x3 −O(x4). (3.25)

This approximation is valid and converges, provided that |x| ≤ 1. Here, x ≡ U/E
satisfies the convergence condition, exactly up to the turning point of the beam
where U = E and thus the use of the approximation is justified.

The full evaluation of [Eq. 3.24] requires to obtain the integral of the polynomial
terms xn, for which we use the electric scalar potential that from [Eq. 3.23],

xn = E−n

[
F cos(2πkr) exp(−2πkz) + u0

(
1− z

z1

)]n
. (3.26)

As the integral over the terms in [Eq. 3.26] is bounded by z1 and zR, it is noted
that for terms n > 1 the exponential contribution quickly diminishes the cross terms,
since

[exp(−2πkzR)]
n = exp(−2πnkzR) → 0 for 1/k ≈ zR, n > 1. (3.27)

To understand at least qualitatively the effect that the single spatial frequency
k has on the phase modulation, we can drop all but the first term in the expansion,
even though this hinders us to quantitatively compare this initial result with any ear-
lier work. The procedure yields the following result for the approximate integrated
phase ϕ̂ along one axis,
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ϕ̂(x0, y0, k) = −h̄−1

√
mee

2E

∫ zR

z1

{
F cos (2πkr(x0, y0)) exp(−2πkz)

+u0

(
1− z

z1

)}
dz

= −h̄−1

√
mee

2E

[
F cos(2πkr(x0, y0)) exp(−2πkz)

−2πk

+u0z

(
1− z

2z1

)]z=zR

z=z1

. (3.28)

The net phase modulation amplitude for a single spatial frequency Ak [as defined
in Eq. 3.6], is obtained by evaluating the result in [Eq. 3.28] at the crest and trough
of the modulated electric potential, at which points F cos  (2πkr) = ±F ,

Ak = ϕ̂(0, 0, k)− ϕ̂(1/(2k), 0, k)

= −h̄−1

√
mee

2E

(
F

2πk
[exp(−2πkz+R)− exp(−2πkz−R)]

+u0

[
z+R − z−R −

z
2(+)
R − z

2(−)
R

2z1

])
. (3.29)

The contribution of the exponential terms at the lower boundary z = z1 is set
to zero explicitly here, since 1/k ≪ z1, and z±R labels the turning point for the
crest and trough of the field. An analytical form of the turning point coordinates
is given in Appendix B, and can be obtained by solving U(z) = E by means of the
Lambert-W function [42].

From the obtained expression it is confirmed that, at equal excitation parame-
ter F , higher spatial frequency components in the mirror electrode attenuate faster
and consequently can modulate the reflected beam less than low spatial frequen-
cies. This behavior could also be understood from the increased sharpening of the
blurring function in [Fig. 3.1] as the electron reflects closer to the mirror electrode.
Conversely, one may state that the turning point coordinate zR → z0 must be posi-
tioned closer to the mirror pattern in order to have high spatial frequencies in the
pattern influence the modulation of the phase of the reflected beam. The linear
dependence Ak ∝ F demonstrates that alternative to the former, the phase mod-
ulation in the reflected beam can also be increased by increasing the amplitude of
the mirror profile, or the excitation potential in the case of pixelwise programmable
mirrors.

3.2.3. Phase modulation as a function of pattern pitch and
bias voltage

We have obtained a description of the scalar potential as a function of mirror topog-
raphy [Eq. 3.29], as well as a relationship between the scalar potential and the phase
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modulation [Eq. 3.5] as a function of spatial frequency [Eq. 3.6]. With that, we can
now study the effect that the spatial frequency k, and the bias potential ∆U (with
respect to the electron beam energy) has on the phase modulation amplitude of the
reflected electron. For this, we are limiting ourselves to a maximum allowed electric
field strength of 10 kV/mm, which is considered as a feasible value that should not
result in electrical break down or arcing. In a setup that we are currently building
[43], we aim at using a beam energy of 2 keV and hence the following results are
also based on this value.

We have already found [Fig. 3.3] that the phase modulation amplitude must
be kept small, and based on this we searched for a parameter space that fits this
requirement. We consider that for a mirror pattern, spatial frequencies in the range
of k0 ∈ [0.5 · · · 10] µm−1 can be manufactured for instance with ion beam lithography.
In [Fig. 3.5] we show the phase modulation amplitudes that can be realized in
this range of spatial frequencies, as a function of profile height amplitude and bias
potential (in volt) with respect to the beam energy. This data has been obtained for
a 2 keV electron beam energy and a linear field strength of 10 kV/mm. As a general
trend, we observe an increase in phase modulation amplitude, as a function of both
decreasing spatial frequency (increasing pattern pitch), as well as decreasing bias
potential. An increase of the profile height amplitude is seen to lead to an increase
of the phase modulation amplitude, and consequently to phase rollovers of 2π at
increasing height values.

The obtained data indicates the sensitivity to phase modulation that may arise
for instance due to non-flatness of the electrode wafer source material. This non-
flatness may be introduced as a result of mechanical stress inside the material, and
from the data shown in [Fig. 3.5] we see that this may especially pose a limitation
for very low spatial frequency surface height modulation.

3.2.4. Mirror pattern as a function of target phase distri-
bution

In a practical application of patterned electron mirrors, it is likely that the mirror
pattern will be based on a desired or ‘target’ phase distribution ϕtarget(x, y) in the
near field (diffraction plane). By obtaining the Fourier transform Φtarget(k) of this
target distribution, the phase modulation amplitude Ak = |Φtarget(k)| of the target
distribution is directly obtained in terms of the spatial frequencies that form the
mirror pattern.

We make use of the proportionality Ak0
∝ F ≡ δk, such that the reference

pattern amplitude δ0 [for instance, δ0 = 1 nm is shown in Fig. 3.5(b)] can be scaled
directly to match the phase modulation amplitude Ak, by solving for δk in

Φk =
δk
δ0
ϕ
[δ0]
WKB. (3.30)

In this equation, ϕ[δ0]WKB is the data set that contains the phase modulation am-
plitude as a function of bias voltage and spatial frequency of the mirror pattern, at
a fixed reference profile amplitude δ0 as shown before in [Fig. 3.5].

3.2. Phase modulation with an electron mirror
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Figure 3.5: Phase sensitivity of a reflected plane wave as a function of the bias potential (with
respect to the beam energy) and spatial frequency component of the pattern, for a reference
profile pixel voltage amplitude δu0 of (a) 1 mV (correspondents to 1 Åheight variation), (b) 10
mV (correspondents to 1 nm height variation), and (c) 1 V (correspondents to 100 nm height
variation). A free electron energy of E = 2 keV and a linear field strength of 10 kV/mm is used in
the calculation. The dashed black line in (b) indicates the line of constant phase that is used for
the study of sensitivity to energy spread. Phase wrapping is performed on data that corresponds
to a phase modulation greater than 2π.
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When the scaling is performed for each spatial frequency of the target phase
distribution, the obtained pairs {Φk, δk} return the complete description of the
mirror pattern in Fourier space. The pattern is then constructed in real space
through a Fourier sum

P (x, y) =
∑
(n,m)

δ(n,m) cos
(
2π[kn,xx+ km,yy] + ∠Φk,(n,m)

)
. (3.31)

The electric potential in front of the mirror substrate can be reconstructed in a
similar approach.

3.2.5. Chromatic effects as a function of pattern parame-
ters

Practical electron beams contain an inherent energy spread (about 0.6 eV for Schott-
ky sources), and the value of this spread can be reduced by means of beam mono-
chromatizating at the expense of beam current. The energy spread in the incident
electron beam results in a deviation from the nominal turning point coordinate
(zR). As the modulation of the electric field decays exponentially as a function of
this coordinate [Eq. 3.23], the resulting phase modulation will deviate from the
nominal target value.

We computed the effect of the beam energy spread through the WKB approx-
imation. The calculation is performed on the basis of the data that was shown
in [Fig. 3.5(b)] for a reference profile height of 1 nm. From this data, coordinate
pairs of bias potential and spatial frequency {Ubias, k0} were collected that provide
π phase shift at the nominal beam energy (the dashed black line in the plot). Next,
the WKB approximation is performed numerically for the obtained parameter pairs,
at varying beam energies in a range E = E0 ±∆E0.

The obtained phase modulation as a function of the energy deviation ∆E0 with
respect to the nominal beam energy E and spatial frequency k that was obtained
this way is shown in [Fig. 3.6]. This data indicates an increased sensitivity for phase
dispersion towards higher spatial frequencies of the mirror pattern, and at increased
energy deviation. Notably at spatial frequencies above 2 µm−1 a complete phase
rollover of 2π already occurs within the 1 V analysis domain. This result suggests
that it is necessary to monochromatize the beam. In addition, the data shown
motivates the use of a high linear electric field strength as this leads to a reduced
spacing between the equipotential surfaces that reflect the slower and faster parts of
the beam. A linear field strength of 10 kV/mm that we used in the above analysis
is generally considered as feasible in an electron optical setup.

3.3. Amplitude and phase modulation with elec-
tron mirrors

The electron mirror is the reflective counterpart of the transmission phase plate that
is used in transmission electron microscopy. As the electron mirror fully reflects the
incident wave front, the amplitude of the reflected wave front cannot be modulated

3.3. Amplitude and phase modulation with electron mirrors
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Figure 3.6: Phase sensitivity of the reflected electron as a function of energy variation in the
incident beam, for a range of spatial frequency components. Computations are performed for an
equal target phase value of π rad, for data points that are indicated by the dashed black line in
[Fig. 3.5(b)]. The color map labels the deviation of the phase as a function of energy variation
∆E0 in the incident beam. Data obtained for a fixed profile amplitude of 1 nm, 2 keV nominal
beam energy and linear field strength Ez = 10 kV/mm.

at the mirror plane. A single electron mirror can thus be used for phase modulation
only, and the effect of this phase modulation appears as an amplitude contrast
at a diffraction plane of the mirror. This is good enough for many applications,
however, in order to fully control the wave front, not only phase but also amplitude
modulation must be realized.

Amplitude modulation in transmission optics is realized by using a comparatively
thick amplitude mask that partially blocks the beam. This approach is not viable in
the context of mirrors, as no absorption processes take place in front of the mirror.
It is however possible to express the modulated phase of a wave front as amplitude
contrast at a plane that is conjugated to that of the mirror, by means of defocusing
the electron at this conjugate plane. The effect of a defocus of the beam at the
conjugated plane is given by the phase contrast transfer function CTF = sin (χ(u)),
in which [44],
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χ(u) =
2π

λ

(
∆fλ2u2

2
+
Csλ

4u4

4

)
. (3.32)

Here, λ is the wave length of the electron, u the spatial frequency component of
the modulated wave front, and ∆f the amount of defocus. The second term inside
the brackets accounts for spherical aberration (Cs) of the imaging system in between
the two conjugate planes.

When we position a second mirror at the plane conjugate to that of the first
mirror, the wave front at a later image plane of the microscope is related to the sum
of the individual spatial phase contributions ϕM1 and ϕM2 due to mirror M1 and
mirror M2,

ψout = F {ψin exp(i[ϕM1 + ϕM2])} . (3.33)

Here, F{·} denotes a Fourier transform. From this expression it is apparent that
only one mirror is in principle sufficient to perform phase only modulation, since
the contributions of ϕM1 and ϕM2 to the output wave front are interchangeable and
add linearly.

If we now provide a defocus ∆f at M2, then the phase modulation due to reflec-
tion at mirror M1 expresses as an amplitude contrast at mirror M2. Mirror M1 is
then used to modulate the amplitude of the wave front at mirror M2, and mirror
M2 is used to perform the phase modulation. It then becomes possible to arbitrarily
modulate both the phase and the amplitude of the electron beam at a later image
plane of the microscope. An alternative mode of operation would require to place
mirror M2 in the Fourier plane of mirror M1. One can then adjust the turning point
of the distinct diffraction spots in front of mirror M2, that are formed as a result of
the phase modulation at mirror M1.

3.3.1. Virtual phase plate based on two electron mirrors
A practical realization of the virtual phase plate requires the positioning of two
electron mirrors and additional lenses inside the electron microscope column. An
extensive discussion of integrating multiple electron mirrors in a microscope is pro-
vided recently by Dohi and Kruit [32]. From that work, it is concluded that through
the use of miniature electron optical components it is possible to position the two
mirrors at an axis parallel to the optical axis of the microscope. The coupling of the
microscope and mirror axis trajectories can be performed by an electrostatic deflec-
tor, and two miniature Wien filter type deflectors. By making use of miniaturized
optical components, the deflection angles can be kept small, such that deteriorating
effects from deflection dispersions can be avoided.

In [Fig. 3.7] we show a schematic design for a virtual phase plate. In this
schematic, the two mirrors are positioned opposite of each other on a common
axis and the mirror patterns face each other. The mirror axis is parallel with the
optical axis of the microscope. The coupling of the beam trajectory between the

3.3. Amplitude and phase modulation with electron mirrors
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microscope axis and mirror axis can be performed with an electrostatic deflector that
is positioned at the optical axis on the halfway plane in between the two mirrors,
referenced to as the common cross-over plane (C.C.P.). The beam trajectory on the
mirror axis demands a deflection towards and away from the mirrors that depends on
the sign of the velocity vector (v⃗) of the beam. This sign dependent deflection could
be realized by deflectors with crossed electric (E⃗) and magnetic (B⃗) fields if these
fields are both perpendicular to each other and the beam path. When the electric
and magnetic fields in such deflector satisfy the Wien condition (E⃗ = v⃗ × B⃗), the
resulting force on the electron beam enables either a straight passage or a deflection
path for the beam, depending on the direction of incidence. The recent development
of a miniature electron beam separator with two parallel axes can explicitly allow
for the close proximity of both axes in the described scheme [31].

Entry

Exit

E x B

E x B

(1) (2)

E x B separator
(MEMS) Lens
(MEMS) Mirror
Deflection optics

Legend

Beam outline
(1) (2) Deflection sequence

C.C.P.

Figure 3.7: Design of a double mirror system for integration inside (the column of) electron micro-
scopes. The beam enters the setup on the microscope axis from the top. Coupling to the mirror
axis is performed at the common crossover plane (C.C.P.) by means of an electrostatic deflector.
Two Wien filter type beam separators (E × B) are used to perform the direction-of-incidence de-
pendent deflection at the mirror axis. After reflection at both mirror planes, the beam is coupled
back to the optical axis and exits the setup on the microscope axis downwards, now with phase
and amplitude modulation. Schematic reproduced from [31].

Remarkably, when the Wien condition for straight passage is also enforced onto
the straight passages on the optical axis near the entry and exit, a full trip of a beam
through the double mirror system does not suffer from deflection dispersion in first
order at the common cross-over plane. The system can be miniaturized by making
use of MEMS technology, such that the deflection angles can be kept small (below 50
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mrad) and thus suppressing deflection dispersions [32]. An in-depth electron optical
and mechanical description of the system is provided in [43].

3.4. Numerical methods
We use MATLAB for all numerical calculations. The numerical work consists of the
following subroutines:

• WKB approximation solver.

• WKB lookup table interpreter.

• Fresnel propagator.

• Target phase and amplitude solver.

• Scalar potential constructor.

In the following sections we discuss the specifics for implementing the above
listed routines into MATLAB.

3.4.1. WKB approximation solver
The WKB approximation [Eq. 3.5] is numerically evaluated for a single parameter
set consisting of spatial frequency (k0), pattern amplitude (δ0), cap electrode spacing
(z1) and excitation parameters beam energy (E), and pattern potential (Upattern).
The WKB approximation is calculated along two trajectories that run parallel to
the propagation (z) axis and coincide with a crest and through of the considered
spatial frequency, in accordance with [Eq. 3.6].

The WKB approximation integral is computed over the full length of the two axss,
and is terminated at points z0 and z1. To this end, we first calculate the integrated
momentum along the both trajectories. This procedure generates complex valued
results, as the argument to the square root becomes negative as |z| < |zR|. We only
keep the real valued part, as this represents the data in front of the turning point.

Listing 3.1: Definition of axial momentum for crest and trough field.

1 % Zero pitch potential
2 U_zero = @(z) Up *(1+1/ d*(+ delta*exp (2* pi*kp*z)-z));
3 % Half pitch potential
4 U_half = @(z) Up *(1+1/ d*(- delta*exp (2* pi*kp*z)-z));
5
6 % Electron momentum per axis
7 p_zero = @(z) real( sqrt (2* me*ee*(E- U_zero (z))) );
8 p_half = @(z) real( sqrt (2* me*ee*(E- U_half (z))) );

As the non-linear behavior of the electric potential is confined in the region close
to the turning point zR ≈ z0, the numerical integration is performed on logarithmi-
cally spaced waypoints, with increased waypoint density near zR.

3.4. Numerical methods
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Listing 3.2: Definition of axial momentum for crest and trough field.

1 % Definition of waypoints for integration .
2 waypoints = -logspace ( log10(-z1), -9,

number_of_waypoints );
3 % Numerical integration and phase extraction .
4 int_zero = 2/ hbar* integral (p_zero , z1 , z0 , 'WayPoints ',

points );
5 int_half = 2/ hbar* integral (p_half , z1 , z0 , 'WayPoints ',

points );
6 % Phase in correspondence with [Eq. (3.5) ]
7 phi = int_zero - int_half ;

3.4.2. WKB lookup table generator
The WKB lookup table data, as shown for three reference amplitudes in [Fig. 3.5] is
generated by repetitive calls to the WKB approximation routine. The lookup tables
that are used for this work are obtained for parameter space E = 2 keV, linear
field strength Ez = 10 kV/mm (z1 = −200 µm) and 105 waypoints in the WKB
approximation integral. The construction of the lookup table data is a relatively
time consuming task, but has to be performed in principle only one time. We note
that the use of a lookup table reduces the calculation time at a later stage, when
the data is used to construct mirror topographies.

Listing 3.3: WKB lookup table generator.

1 for k0 = list_k0
2 for Up = list_Upattern
3 WKB_data (i_k , i_U) = WKB_approximation ( k0 ,

delta0 , 'PatternPotential ', Up , 'BeamEnergy ',
E0 , 'ApertureSpacing ', z1 , '

NumberOfWaypoints ', 1e5);
4 end
5 end

The generated data matrix WKB_data and the associated list of spatial frequen-
cies and bias potentials are stored and used as lookup table during the pattern
reconstruction. We make use of linear interpolation in the spatial frequency data
points in order to compute a pattern frequency component that is not part of the
original lookup data.

Listing 3.4: Obtaining the profile scaling parameter for a target phase.

1 % Find interpolated reference amplitudes (for 1 AA).
2 phase_per_reference_amplitude = interp1 (k0 , WKB_data ,

pattern_k0_values );
3 % Scale with respect to the required angle .
4 amplitudes = delta0 ./ phase_per_reference_amplitude .* (

myPhaseTerms );
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3.4.3. Fresnel propagator
The relationship between image plane (ψ1) and diffraction plane (ψM ) distributions
is described by a Fresnel propagation and intermediate lens action [41],

ψM =

(
ψ1 ∗ exp

[
−i2πke

R2

2f

])
︸ ︷︷ ︸

Propagation

× exp
[
i2πke

R2

2f

]
︸ ︷︷ ︸

Focusing

. (3.34)

In the equation, the wave front ψ1 at the common cross-over plane is convoluted
(∗) with a propagation function that depends on the modulus of the beam wave
number (ke), transverse radial coordinate perpendicular to the optical axis (R) and
focal length (f) of the lens, and next focused by the focusing term.

Listing 3.5: Fresnel propagation from image to diffraction plane.

1 % Based on Cowley (1975) Ch. 3, Fresnel propagator .
2 prop = exp( -1i*2* pi*k*(X.^2+Y.^2) /(2*f));
3 lens = exp( 1i*2* pi*k*(X.^2+Y.^2) /(2*f));
4 % Obtain the complex wave function at the diffraction

plane
5 % This calculation may take a while , depending on the

image size.
6 diffraction_plane = conv2(psi1 , prop , 'same ') .* lens /

sqrt(numel(lens));

3.4.4. Target phase and pattern solver
The Fourier transform of the phase distribution at the mirror plane is obtained and
the complex valued terms provide the basis for the pattern reconstruction. For each
phase value of the Fourier term and associated spatial frequency, the WKB lookup
is performed on the magnitude of the Fourier term. This provides the amplitude
for this mirror topography contribution. The complex angle of the Fourier term is
used in the reconstruction of the mirror pattern in order to provide proper relative
positioning of the wave components. The number of Fourier terms that is considered
is limited by a threshold value that can be set arbitrarily close to zero. The threshold
allows to limit computation time by skipping very high frequency components that
add virtually no phase to the reflected beam, or that would otherwise result in an
excessive pattern profile height.

Listing 3.6: Relating phase to pattern topography.

1 reduced_diffraction_plane = angle( diffraction_plane );
2
3 % Obtain spectral components of the angle distribution .

3.4. Numerical methods
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4 spectral_components = fft2( reduced_diffraction_plane ) /
numel( reduced_diffraction_plane );

5 spectrum = fftshift ( spectral_components );
6
7 % Loop over all spectral components
8 for row = 1: length (ky)
9 for col = 1: length (kx)

10 thisPhi = abs( spectrum (row ,col));
11 thisK = sqrt( kx^2 + ky^2 );
12 % WKB lookup
13 amplitude = WKB_lookup (WKBdata , thisPhi , thisK ,

Up);
14 % Add the geometrical pattern angle to this value
15 GeoAngle = angle( spectrum (row ,col));
16 % Save for pattern reconstruction
17 reconstruct (end +1 ,:) = [ky kx amplitude *exp (1i*

GeoAngle )];
18 end
19 end

The mirror topography is reconstructed based on the coefficients that were ob-
tained in the previous step. For each spatial component, the contribution to the
topography is determined as a Fourier term.

Listing 3.7: Reconstructing the mirror topography.

1 % reconstruct = (3 x1) double complex [ky kx amp*exp (1i*
phi)]

2 full_field = zeros(size(X));
3 for index = 1: size( reconstruct ,1)
4 el = reconstruct (index ,:);
5 ky = real(el (1));
6 kx = real(el (2));
7 % Verified reconstruction sum.
8 component = abs(el (3)) .* ( cos( 2*pi*(kx.*X + ky.*Y)

+ angle(el (3)) ) );
9 full_field = full_field + component ;

10 end
11 % Scale the field to units of nanometer .
12 full_field = 1e9 * fftshift ( full_field );

3.4.5. Scalar potential constructor
The shape of the scalar electric potential, as a function of pattern topography is
calculated in accordance with [Eq. 3.23]. We make use of anonymous function
declarations in MATLAB for this calculation.
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Listing 3.8: Scalar potential reconstruction.

1 % Bias at analysis point (zz), assuming U1 = 0.
2 U0 = Up *(1 -( zz/z1));
3 % Modulated potential as Anonymous function .
4 UU = @(X,Y,zz , kx , ky , amp , theta) b@x ...
5 amp .* cos( 2* pi*(kx.*X + ky.*Y) + theta ) * ...
6 exp(-abs(zz)*2* pi*sqrt(kx ^2+ ky ^2) );
7
8 for index = 1: size( reconstruct ,1)
9 % Row elements of reconstruction array .

10 el = reconstruct (index ,:);
11 ky = real(el (1));
12 kx = real(el (2));
13 amp = abs(el (3));
14 theta = angle(el (3));
15 % Calculate contribution for this term.
16 component = UU(X, Y, zz , kx , ky , amp , theta);
17 potential = potential + component ;
18 end

3.5. Application examples for electron mirrors
We demonstrate possible applications for patterned electron mirrors. Throughout
this section we assume a beam energy of 2 keV and a linear electric field strength of
10 kV/mm in the mirror region. These numbers are based on a proof of principle
experiment that we are currently designing.

3.5.1. Zernike phase mirror
The use of a Zernike phase plate in TEM results in a change to the contrast transfer
function provided in [Eq. 3.32] as given by [44],

CTF = sin (χ (u)) → − cos (χ (u)) for u > uh. (3.35)

In words, the equation states that the contrast is enhanced from near-zero to near
unity for spatial frequencies u that exceed the modulus of the spatial frequency uh of
the central hole in the phase plate. The mirror equivalent of such Zernike phase plate
would require an alteration in the reflected beam such that the unscattered (on-axis)
component is shifted −π/2 rad with respect to the scattered wave components.

In the past it is already suggested that this could be achieved with a pixel wise
programmable mirror simply by applying a bias in the order of 70 mV (assuming a
linear field strength of 10 kV/mm) to the central pixel [26], and here we apply the
method that we derived above to the same model system. As we only aim to shift
the phase of the unscattered beam, the desired phase profile shows resemblance with
a top hat function and it should thus be expected that a large number of spatial
frequencies is involved in the resulting mirror topography.

3.5. Application examples for electron mirrors
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(a) (b)

Figure 3.8: Mirror topography for Zernike phase manipulation. (a) Full field reconstruction of
the pattern, for a bias potential of 7 V with respect to the beam energy. (b) Cross section of the
reconstructed pattern, through the center of the topography.

The result of the analysis is shown in [Fig. 3.8] for an assumed 200 nm hole size
in the Zernike phase plate. We observe a peak in excitation close to the optical
axis that is representative of this hole size, followed by a damped oscillation of
higher harmonic contributions. It should be noted that the effective value for uh is
determined in the case of an electron mirror by the focal distance of the mirror-lens
system towards the image plane. For instance, one could increase the spread out the
wave front over the mirror surface, thereby effectively increasing the magnification.
If the mirror topography is not scaled laterally by an equal factor, this effectively
changes the range of spatial frequencies in the reflected wave front that are phase
shifted by the Zernike mirror pattern.

3.5.2. Tuning diffraction efficiency
The origin of this work stems from the question if interaction-free measurements [45]
can be performed with electrons [46] in a practical manner, in order to reduce elec-
tron beam induced radiation damage [47] in electron microscopy [48]. Subsequent
proposals for designs of a quantum electron microscopes [49, 50] that could perform
this type of experiment introduces the need for a two-port diffractive element for
electron beams [51]. The electron grating mirror is one means to this end, but in
its current form suffers from the disadvantage of generating a two-sided diffracted
beam, instead of the targeted one-sided first order diffracted beam [36].

Here we study how the diffraction efficiency of the intensity that is directed into
the first order spot can be maximized, while at the same time keeping the intensity
in the higher order spots to a minimum. We already discussed the effect of a single
spatial frequency at the mirror pattern that would result from a sinusoidal pattern,
and concluded that the intensity of the resulting diffraction spots are provided by
the squared Bessel function of the respective diffraction order as a function of phase
modulation amplitude (Ak) [ref. Eq. 3.9, and dashed line in Fig. 3.9].

The generation of the higher order diffraction spots could be in principle sup-
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Figure 3.9: First order diffraction spot intensity dependence on the mirror patterning approach.
The first order diffraction spot intensity at the image plane that results from the use of one
spatial frequency in the mirror pattern (dashed line) can be increased by inclusion of higher order
spatial frequencies into the pattern. We demonstrate the efficiency that can be reached when
performing phase-only modulation with one patterned mirror (circles), and when performing phase
and amplitude modulation by using two mirrors (squares). Shown intensities are the sum of positive
and negative contribution per order.

pressed, by adding higher order spatial frequency components to the mirror pattern.
These pattern components must cancel the out-of-phase contribution to their respec-
tive diffraction spot at the image plane, with respect to the higher harmonic spot
that is due to the fundamental pattern frequency.

Numerically the pattern that is required for this is found by providing a target
image plane distribution consisting of only a central spot and the two first order
diffraction spots. The target phase of the central spot relative to the two first
order diffraction spots is set to −π/2, which is a physical requirement for a first
order diffracted beam when only a single mirror reflection takes place [also see sct.
3.2.1, and sct. 3.3]. The image plane distribution is then Fresnel propagated to the
diffraction plane, in order to obtain the amplitude and phase modulation that must
be provided for by the mirror pattern.

We have performed this computation using two different approaches. First, we
considered the use of only one mirror, thus limiting ourselves to phase-only modu-
lation. The obtained diffraction spot intensities that could be realized this way are
plotted in [Fig. 3.9] with circle markers. The range of phase modulation amplitude
values that are shown in the plot are realized by adjusting the ratio of the targeted

3.5. Application examples for electron mirrors

3

| 45



central and diffracted spot amplitudes at the image plane. The target image plane
distribution is propagated towards the mirror plane, at which we obtain the plotted
phase modulation amplitude as the largest absolute phase difference at this plane.
Note that this definition for A{k} is somewhat broader than what we used before in
[Eq. 3.6], where Ak was used to label for the phase modulation amplitude related
to a specific spatial frequency k, instead of that of the entire spectrum {k}.

From the shown data it is observed, that by making use of an image plane target
distribution (circle markers) instead of a single spatial frequency mirror topography
(dashed lines), the first order diffraction efficiency is increased. However, we do
observe that 20% intensity is still diffracted to higher order spots when the central
beam becomes fully attenuated, although this may also be due to a limitation in
the current numerical methods that we use. A possible explanation for this effect
is given by the fact that at increasing attenuation of the central spot, the phase
modulation amplitude that is responsible for the two first order diffraction spots
increases. Consequently, this also leads to an increase of the higher order diffraction
spot intensities at the image plane. In principle, the amount of phase that must
be compensated to cancel the generation of the higher order beams is numerically
known, and accounted for by the mirror pattern reconstruction. However, what
is currently not accounted for in the reconstruction routine is the special case, in
which the phase modulation amplitude correction of these higher orders exceeds the
threshold phase of ∼ π/6 rad [also see Eq. 3.9, and Fig. 3.3]. In that case, an
iterative scheme must be used that also accounts for the resulting higher harmonics.
This correction is not yet performed in the current work that is presented here.

Another effect that leads to the generation of the higher orders is the neglection of
the amplitude contrast at the mirror plane. When we propagate the targeted image
plane distribution towards the mirror plane, the resulting wave front distribution
shows both an amplitude and a phase modulation. In the foregoing analysis, we
were required to neglect the amplitude information and instead assume a uniform
amplitude distribution at the mirror plane, as with a single mirror we can only
realize phase modulation.

We can include the effect of amplitude modulation to our calculations, by making
use of two mirror reflections. In the image plane reconstruction routines, we then
assume that first mirror reflection enables the required amplitude modulation at
the second mirror plane. With this modification in place, we can show that the
diffraction efficiency is increased. This is indicated by the square markers in [Fig.
3.9]. From this, it is observed that all intensity of the central beam can be directed
into the first order positive and negative diffraction spot.

For use as a beam splitter in Quantum Electron Microscopy, it is necessary
that the intensity of the central beam is directed into only either the positive, or
negative first order diffraction spot. Optically this would be performed by a blazed
grating, which adds a linear phase ramp into the reflected wave front. Blazed grating
diffraction has already been demonstrated in TEM with phase plates [52]. We have
studied the feasibility of doing this with one electron mirror by providing a phase-
only distribution at the mirror plane, and gradually increased the phase modulation
amplitude of this phase ramp. We note that such computation can in principle
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also be performed by starting out with a target wave front at the image plane and
propagate this wave front towards the mirror plane. However, this would require a
significant increase of the numerical grid at the image plane without any expected
advantages in terms of accuracy of the wave front description at the image plane.

In [Fig. 3.10] the obtained intensity of the central spot (circles), blazed spot
(rectangles), and other spots combined (triangles) is plotted as a function of the
maximum phase modulation amplitude A{k} across the entire spectrum of the linear
phase ramp at the diffraction plane. From this it is seen that a high diffraction
efficiency can be obtained especially for weak or strong exchange of spot intensity
between the central and blazed spot. The maximum intensity loss towards other
orders is limited to 19% and is found when the intensities of the central and blazed
spots are equal.

Figure 3.10: Blazed grating diffraction efficiency with one electron mirror, as a function of phase
modulation amplitude A{k} of the linear phase ramp at the diffraction plane. The values of A{k}
are realized by adjusting the ratio of the targeted central and blazed diffraction spot intensities
at the image plane. The blazed spot intensity (squares) indicates the intensity of the first order
positive diffraction spot.

A direct comparison of the potential variation near the turning point of the
beam, in the case of (a) regular and (b) blazed diffraction is provided in [Fig. 3.11].
In the figure, the bold lines indicate the shape of the equipotential at the classical
turning point of the beam. Each next equipotential is obtained in steps of 0.5 V,
and these are included in the plot to demonstrate how the higher spatial frequency
components in the field attenuate faster away from the mirror electrode than the
slower spatial components. Also, from the shown equipotential lines the importance

3.5. Application examples for electron mirrors

3

| 47



of working with a beam with low energy spread can be directly understood, as the
spatial components that create the characteristic shape of the equipotential lines
attenuate within the range of energy spread of a conventional Schottky source that
is not monochromatized.
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Figure 3.11: Comparison of the potential landscapes corresponding to (a) a regular diffraction
pattern and (b) a blazed diffraction mirror pattern near the classical turning point zR. The bold
line plots the potential at the classical turning point (−2000 V), and each consecutive line is
obtained in steps of 0.5 V.

For the regular diffraction we observe the fundamental spatial frequency that
is associated with the first order diffraction, and near the classical turning point
an additional higher spatial component is visible as well. It is the higher spatial
component that provides attenuation of the undesired higher order beams that result
from the fundamental frequency.

The equipotential lines that are associated to the blazed diffraction pattern ex-
hibit a distinct (near)-linear slope. This is to be expected for blazed diffraction,
as a linear phase ramp must be added to the reflected beam and the phase scales
proportional to the square root of the potential. From the equipotential lines above
the classical turning point the fast attenuation of higher spatial frequencies in the
field is observed, and at approximately 5 V above the classical turning point only
the fundamental frequency is distinctly visible.
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3.5.3. Beam mode conversion
The conversion of plane waves into vortex beams has gained increasing interest in the
recent decade. Vortex beams are solutions to the Schrödinger equation in cylindrical
coordinates and are characterized by carrying an Orbital Angular Momentum (OAM,
ℓ), which expresses itself through an azimuthal component in the wave front [15, 16].

Vortex beam generation in TEM can be realized both by using a phase plate, or
an amplitude mask. On a phase plate, a spiral ramp is applied [15], where as in the
case of an amplitude mask a diffraction grating pattern with a dislocation at the
optical axis is used [16]. The number of dislocations N then dictates the Orbital
Angular Momentum (ℓ) that is added into the diffracted beam.

With the use of one mirror, we can only adjust the phase of the reflected electron
and thus the proper mirror pattern can be obtained by modeling a spiral phase
pattern at the mirror plane. Such phase pattern is shown in [Fig. 3.12(d)] and
corresponds to ℓ = 3 here. In [Fig. 3.12(a)] we show the equivalent phase pattern
that corresponds to a diffracted beam with ℓ = ±2 in the first order.

Phase distribution Topography Ulin. = -2000 V
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Grid tick 1   mµ

(a) (b) (c)

(d) (e) (f)

Figure 3.12: Two methods for beam mode conversion from plane wave illumination to an orbital
angular momentum carrying beam. Reflection on the vortex pattern (a-c) generates a diffraction
pattern, in which the diffracted beams carry orbital angular momentum. Two dislocations are
applied in this pattern, leading to a lowest value ℓ = ±2 in the reflected beam. Reflection on
the spiral pattern (d-f) generates an on-axis spot with orbital angular momentum, with ℓ = 3 in
the presented case. (Last column) For both patterns, the potential at the classical turning point
is shown and these display resemblance to the phase or amplitude masks that would produce a
similar effect in TEM. Colormap ranges: phase distribution [−π, π], topography ±400 nm (vortex)
and ±200 nm (spiral) and ±2 mV at the classical turning point. Results obtained for pattern bias
potential of 3 V.

The reconstructed mirror pattern topographies are shown in [Fig. 3.12(b, e)] and
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consist of high spatial frequency components with an amplitude of up to ±400 nm
(b) and ±200 nm (e) at the edges. Near the center of the vortex pattern, the profile
height amplitudes are smaller and range around ±20 nm. We note that overall, the
spatial frequencies in the mirror pattern appear higher than those observed at either
the phase pattern at the diffraction plane, or the potential variation near the classical
turning point. This is explained by the attenuation of high frequency components,
which occur faster away from the mirror electrode compared to the lower frequency
components. Hence, the profile amplitude of these higher spatial frequencies at the
mirror electrode are relatively high in comparison to the lower spatial frequencies,
in line with the observations made in [sct. 3.2.3]. The effect of the high spatial
frequency components in the pattern quickly attenuates in the electric field, as can
be observed from the potential variation around the averaged coordinate of the
turning plane [Fig. 3.12(c, f)]. At this plane, a potential modulation of ±2 mV
remains, and the shape of the potential variation mimics closely to that of the
targeted phase distribution at this plane.

3.5.4. Arbitrary phase and amplitude modulation
We conclude this section with a demonstration of the generality of electron beam
modulation with patterned mirrors. For this, we attempt to create a probe at the
image plane after a double mirror reflection that shows resemblance to the institute
logo of Delft University of Technology. The logo contains a flame, and our goal
here is to obtain the mirror patterns that are required to realize the amplitude and
phase modulation as shown in [Fig. 3.13(a)]. As a first step, the targeted image
plane distribution is Fresnel propagated to the first mirror plane. This provides
us with the amplitude and phase distribution that we must imprint into the beam.
However, note that a mirror cannot be used for near field amplitude modulation.
Hence, we consider here the situation where mirror 2 is positioned in the Fourier
plane of mirror 1. We can then realize the required amplitude distribution in front
of mirror 2, by means of phase modulation at mirror 1. We then use the reflection
at mirror 2 to add the phase modulation, such that at a Fourier plane of mirror 2
the target wave front is realized.

In [Fig. 3.13(b)] we show the Fourier spectrum of the phase components that
must be added by mirror 2. From this data it is seen that a large number of spatial
frequencies are required in the mirror pattern. Note, however, that all of the required
phase modulation amplitudes satisfy Ak ≤ 0.2 rad, which in turn is well below the
limit for addition of multiple spatial frequencies of π/6 rad as set forth in [sct. 3.2.1].
Based on this spectrum, the mirror topography is constructed and the result of this
is shown in [Fig. 3.13(c)]. The resulting modulation of the electric potential in the
vicinity of the classical turning point, corresponding to the plane at which the linear
electric potential equals -2 kV, is shown in [Fig. 3.13(d)].

Admittedly, this result is not very intuitive as it does not clearly resemble any
feature of our targeted image plane distribution. In order to verify the effect on the
beam at the image plane after the double mirror reflection, we reconstruct the wave
front directly after the reflection at mirror 2 through [Eq. 3.8], and by multiplying
this result with the amplitude distribution that resulted from the reflection at mirror

3

50 | 3. Principles of Electron Wave Front Modulation with Two
Miniature Electron Mirrors



α = 1, φ = π/2
α = 1, φ = 0.0

(a)

Target amplitude and phase Fourier spectrum [rad]

-3 -2 -1 0 1 2 3
kx (1/µm)

-3

-2

-1

0

1

2

3

k y
 (1

/µ
m

)

0.2

0.1

0.0

(b)

-5.0 -2.5 0.0 2.5 5.0
Pattern grid (µm)

-5.0

-2.5

0.0

2.5

5.0

Pa
tte

rn
 g

rid
 (µ

m
)

600

0

-600

Pattern topography [nm]

(c)

Potential at the turning point [mV]
2.5

1.5

0.5

-0.5

-1.5

-2.5
-5.0 -2.5 0.0 2.5 5.0

Pattern grid (µm)

-5.0

-2.5

0.0

2.5

5.0

Pa
tte

rn
 g

rid
 (µ

m
)

(d)
Reconstructed phase

π/2

π

0

−π/2

−π
(f)

[rad]

0.6

0.4

0.2

0.0

Reconstructed intensity [1]

(e)

Figure 3.13: Demonstration of controlled amplitude and phase modulation with two patterned
mirrors. (a) Target amplitude and phase at the image plane. (b) Fourier spectrum of target
phase modulation amplitude in front of mirror 2. (c) Pattern topography of mirror 2. (d) Electric
potential variation in the vicinity of the classical turning point plane of mirror 2. (e) Reconstructed
intensity at the image plane after double mirror reflection. (f) Reconstructed phase distribution
at the image plane after double mirror reflection, with partial transparency at pixels for which the
reconstructed intensity is less than 0.05 for visual clarity.
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1, as we currently do not yet have a proper model for propagating the reflected beam
from mirror 1 onto mirror 2. The obtained intensity and phase distribution at the
image plane are shown in [Fig. 3.13(e-f)] and here we can identify what shows a
resemblance with the targeted image plane distribution. The recovery of the targeted
image plane distribution as demonstrated here provides to us an initial evidence for
the feasibility of controlled wave front shaping with two patterned electron mirrors.

3.6. Discussion and conclusion
We outlined above that in principle it is possible to gain control over the electron
beam wave front through the application of two patterned electron mirrors. This
may be referenced to methods in light optics, where the use of two spatial light
modulators (SLMs) and polarizers [53], or the use of multiple deformable mirrors
[54] enable full spatial beam control.

The effect that a mirror pattern has on the phase of the reflected wave front can
in principle be obtained through an existing convolution model, that we discussed in
[sct. 3.2.1]. Lichte made use of this model when he successfully demonstrated its use
for the measurement of the roughness of ‘supersmooth’ electrodes by using electron
mirror interference microscopy [25]. The validity of this method is however limited
to situations where the mirror roughness is much smaller than the distance of closest
approach of the electron beam towards the mirror electrode. This is generally not
the case for electron mirrors that are intentionally being patterned, especially for
the micromirror setup that we are currently designing [43].

For this reason, we have generalized the method by numerically obtaining the
phase difference through application of the WKB method. In fact, our method
of integrating the electric field along the crest and through of the modulated field
to obtain the phase modulation shows some form of analogy to the experimental
work of Lichte, when one considers the integral along the crest and trough as the
object and reference beam in an interference microscope. Regardless, for this we
must rely on the validity of the WKB approximation in the vicinity of the turning
point of the electron beam. The validity of this has been suggested by our earlier
calculations [36] on grating mirrors that are characterized with a single pitch value.
We have compared our WKB method to the example data of figure 5 in [25]. For this
comparison, we estimated from the cited work a mirror field length of z1 = 6 mm and
found a good agreement, indicating that our method converges to the convolution
model at large values of pitch. At the same time, we have demonstrated empirically
that the validity of the convolution model breaks down whenever zR ≤ 2h, i.e., when
the beam approaches the mirror pattern to within the height variations inside that
pattern.

Further, we have assumed the generality of the method and have motivated that
linear addition of the effect of multiple spatial frequencies in the mirror topography
is at least valid when the individual components do not add more than π/6 rad
phase modulation to the reflected wave front. If we prefer to include stronger phase
modulation terms, this would require some form of iterative scheme that removes
the unwanted higher order spots that form during the first step of the topography
construction.
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The use of replaceable, or otherwise dynamically programmable mirror patterns
would significantly increase experimental flexibility. Although we recognize that this
is technologically challenging, we also stipulate the advantage that the backplane of
the mirror does not obscure the beam path, thus leaving plenty of access for any
control logic or circuitry. A good deal of progress with programmable mirrors is
made in the past with the development of Reflective Electron Beam Lithography
(REBL) [27]. Albeit that the geometry of the mirrors in the REBL deviate from
our implementation, since the REBL mirror contains an individual Einzel lens in
front of each pixel, it has demonstrated the use of CMOS technology for (individual)
addressing of mirror pixels through the back plane of the device. If a practical linear
mirror field strength of Ez = 10 kV/mm is assumed, this yields a correspondence
between pattern profile amplitude and pixel potential of U = Ezδ/δ0 ≈ 10 mV/nm.
The use of pixelwise programmable mirrors instead of relying on a topographic
pattern would require a smoothness that is less strict than that of an etched pattern,
under the assumption that each pixel can be addressed individually.

The advantage of a pixelwise programmable mirror instead of a topographic pat-
terned mirror is also apparent from the ability to correct for mechanical tolerances.
Tilt is the simplest form of a mechanical error that can arise in a mirror setup. The
effect of tilt is a linear field strength gradient perpendicular to the optical axis. This
resembles a dipole field that acts perpendicular to the electron beam propagation
and results in a sideways beam deflection.

The effect of this dipole field on the beam deflection can be approximated. For
an assumed mirror tilt angle θ, and beam width w, the dipole strength along the
propagation axis becomes E2 = Uθw/(z1(z1 + θw)). Here, z1 is the length of the
mirror field, and U the mirror electrode bias potential. In most practical cases,
θw ≪ z1. For an average beam energy in the mirror field equal to half the electrode
potential, the deflection angle in the field may then become approximately given
as α ≈ 2θw/z1 if we assume a top hat field distribution. In a setup that we are
currently developing, we have w = 10 µm, and z1 = 200 µm, which leads to α ≈ 0.1θ,
i.e., the deflection due to a tilt error equals roughly 10% of that tilt error. With the
use of silicon based mirror electrodes and flat glass spacers, the tilt error is easily
limited below θ ≤ 1 mrad.

Other optical effects may arise from the non-flatness of the mirror electrode
that extends the mirror pattern topography. Non-flatness can arise for instance
from mechanical stress in the mirror electrode. Stress in one direction may lead
to astigmatism in the reflected beam, and the effect of this on the reflected beam
can actually be modeled by adding a spatial frequency with the assumed curvature
into the mirror calculations. In reference to [Fig. 3.5] we note that a beam width
of 10 µm (i.e., a spatial frequency of 0.1 µm−1) already adds phase modulation
amplitude to the reflected beam when the curvature of the electrode is in the order
of single or double digit nanometers, depending on the bias potential. While we
recognize the non-flatness of the mirror electrode as a possible technology barrier
during the initial development of a double mirror system based on topographic
patterned mirrors, the development of pixelwise programmable mirrors will offer a
solution to this limitation.

3.6. Discussion and conclusion
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We conclude the discussion on optical effects by noting that the high coefficient
of spherical aberration that is usually associated with flat electron mirrors can to
a large extend be compensated for by the geometry of the imaging lens in between
the mirror electrode and the image plane [55]. For use of the virtual phase plate
with high energy electron beams, such as those found inside a transmission electron
microscope, we recognize the risk of electrical breakdown as one of the main limita-
tions. As we rely on mirrors, this implies slowing down of the incident beam to zero
kinetic energy and thus the mirror potential must always be slightly more negative
than that of the electron source cathode. However, we believe that this issue can be
circumvented for instance by placing the double mirror system in front of the beam
accelerator, close to the source module of the microscope.

Controlled wave front shaping requires a coherent electron beam. As the degree
of coherence is directly related to the reduced brightness Br of the source, a high-
quality source is required. For a coherent beam, the beam current must be limited
to less than Ibeam ≤ 10−18Br [8]. In practice this leads to a beam current in the
order of 1–100 pA for a Schottky source. The throughput of the microscope then
becomes limited as a trade of for beam coherence, as is similar to other phase plate
techniques.

Finally, we discuss various opportunities that present themselves even when only
fixed mirror patterns are used. In the integrated double mirror setup as it is shown in
[Fig. 3.7], there is room for the placement of a specimen in between the two mirrors
at the mirror axis, at the cross-over plane of the beam next to the electrostatic
deflector. If one would apply a grating pattern on both the top and bottom mirror,
the diffractive action of both mirrors constitutes an amplitude splitter (first mirror)
and amplitude combiner (second mirror). Placement of a specimen in the common
cross over plane of the mirror axis that may or may not block the surroundings
of the mirror axis, while leaving the on-axis region free, creates a Mach-Zehnder
interferometer and thus enables an experimental demonstration of interaction-free
measurement for electrons [45, 46].

As a next step, we now imagine further possibilities when pulsed operation of
the electrostatic deflector on the optical axis becomes possible. When given the pos-
sibility to double the low-voltage deflection field strength of this deflector within the
time spent by the electron at the mirror axis, the electron will be cycled back to the
mirror axis upon passing the deflector for the second time, since the deflection angle
doubles as well. This would enable multi-pass interaction free measurements with
electrons [56]. When a grating pattern is used as beam splitter and combiner, the
setup also offers a feasible method for experimentally performing quantum electron
microscopy [49], although additional alignment difficulties must be considered for
this [50]. Of course, this would only demonstrate the principles of quantum electron
microscopy, because a real application on beam sensitive materials would require at
least 60 keV beam energy instead of the 2 keV that was used in our calculations.

In conclusion, we have described a novel microscopy scheme that could poten-
tially enable the manipulation of both phase and amplitude of an electron beam.
This is realized by using two patterned electron mirrors inside a microscope. The
scheme makes use of reflective electron optical components to modulate the phase
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of the reflected wave front, and in this way we expect to avoid typical issues that
are encountered in transmission based approaches to beam shaping.
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4
Design of a miniature double

mirror setup for electron wave
front shaping

Abstract.
Wave front shaping is the controlled manipulation of the amplitude or phase distribu-
tion of for instance a photon or electron. It significantly increases the experimental
degrees of freedom, and is routinely applied in light optics. The electron microscopy
society would as well benefit from the development of a programmable phase modu-
lator, an effort that only recently gained traction. Here, we present the experimental
design of an electron wave front modulator that relies on two patterned electron mir-
rors. The mirrors face each other and are placed on an axis parallel to the optical
axis of the microscope column. Miniature electron optical components, including
lenses, deflectors and liner tubes are designed, and allow for the integration of the
setup into the column of an electron microscope. In addition, the use of miniature
optics enables to keep deflection angles inside the setup small, therewith reducing
dispersive effects inside the beam. In addition to the use of the setup for wave front
shaping, we will discuss the potential application of the setup as an electron cavity
or resonator for use in quantum electron microscopy (QEM).
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4.1. Introduction
The controlled shaping of the amplitude and phase of an electron beam is not yet as
versatile as that what is seen in light optics. There, the use of digital micromirror
devices, and spatial light modulators, has enabled full and dynamic control over
the wave front of the light beam. In contrast, electron beam shaping is mainly
achieved by transmission of the electron wave front through an amplitude mask or
phase plate. And, although their use has been successfully applied to cases like
beam mode conversion [1], off-axis holography [2], and Zernike phase contrast [3],
the inability of dynamically changing the transmission mask pattern puts a serious
constraint on the experimental freedom, as a new mask must be designed depending
on the experimental needs.

Recent developments to overcome the static limitation of transmission mask
techniques show great promise towards programmable transmission phase plates.
Verbeeck et al. [4] demonstrated that vortex beam generation can be achieved with
as little as a 2× 2 array of miniature electron lenses. However, practical limitations
remain, in terms of addressing more than four pixels, increasing transmissivity of
the phase plate, and avoiding electrical charge from building up in the device.

Contrary to relying on transmission optics, it is possible to modulate the phase
of an electron beam with electron mirrors. Programmable electron mirrors, with in-
dividual Einzel lenses on top of each pixel, have been used in the Reflective Electron
Beam Lithography (REBL) project in the past [5]. This mirror configuration may
be regarded as the electron optical counterpart of the digital micromirror device
from light optics, and would allow for amplitude shaping of the beam.

4.1.1. Electron microscopy with two mirrors
Okamoto has suggested that a programmable, pixelated electron mirror can act as a
programmable phase shifter [6], which would allow to alter the phase of the electron
wave front when it is spread out over the mirror surface. We are expanding this idea
by adding a second electron mirror that may in principle allow for both amplitude
and phase shaping [7]. That way, an alternative method to electron beam shaping
is provided that does not require the transmission of the beam through amplitude
masks or phase plates, therewith avoiding the typical difficulties such as charge build
up and reduced transmissivity.

A wide variety of electron optical techniques could potentially benefit from a
setup that contains two electron mirrors. In the most basic configuration, the com-
bination of two aperture mirrors can be used to enable aberration correction in
(critical dimension) scanning electron microscopy (CD-SEM) [8]. This concept re-
volves around the placement of two electron mirrors on an axis parallel to the optical
axis of a conventional SEM, and could be implemented as an extension module to
existing microscope column designs.

The more generic application of two electron mirrors concerns the use of closed
surface, flat mirror electrodes, that contain a topographical or pixel wise applied
pattern. The electric field in front of the mirror will then adhere to the shape of the
pattern. When the electron wave front is spread-out over the mirror surface, the
phase of the reflected beam becomes modulated accordingly [7], similar to what is
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seen in mirror electron microscopy [9], and low energy electron microscopy (LEEM).
Quantum electron microscopy (QEM) is potentially a low-dose imaging technique

[10, 11] that would benefit from the development of electron mirror-based optics.
In QEM, a two-beam condition that consists of a sample and a reference beam
inside a cavity or resonator is needed. The sample beam is used to repeatedly
probe a specimen, and after each pass through the sample plane the two beams are
recombined at a coherent beam splitter, at which point the two beams exchange
intensity.

A coherent beam splitter for electrons can be realized with an electron mirror
that contains a weak phase grating [12]. A practical realization consists of a grating
pattern at the mirror electrode. A grating pattern that consists of parallel grooves
will modulate the electric field in front of the mirror electrode. When the electron
wave front is spread out over this modulated potential, the phase of the reflected
wave front becomes modulated accordingly. At the sample plane, this phase mod-
ulation expresses as a diffraction pattern [13]. The intensity of the central order
and diffracted beams can be tuned by adjusting the bias potential of the mirror
electrode.

If two electron grating mirrors are positioned symmetrically opposite around a
shared image plane, the beam splitting effect of the first mirror can in principle be
amplified by reflection at the second mirror. QEM relies on the stepwise exchange
of beam intensity to complete a full Rabi cycle [14] and in this way reduces the radi-
ation that is received by the specimen when compared to conventional microscopy
techniques [15].

Essentially, the approach to QEM that is just described is based on a cascade of
Mach-Zehnder interferometers with non-50/50 ratio beam splitters [16]. At the same
time, it must then be noted that two electron mirrors, in the absence of more than
one reflection per mirror inside a cavity provide a realization for a Mach-Zehnder
interferometer for electrons.

Two electron mirrors can also be used to realize multi-pass TEM (MP-TEM),
a low-dose imaging technique in which phase contrast is enhanced by passing a
spread-out electron wave through the sample multiple times, therewith removing the
necessity of averaging over many separate images [17]. Practical implementations
of this technique make use of temporally gated aperture mirrors that fulfill the dual
role of providing a beam entrance and exit to the resonator cavity in the open state,
as well as providing aberration correction in the closed state of the mirror [18].

Instead of letting the electron enter the resonator through the aperture electron
mirror, we suggest to position the resonator at a separate axis parallel to that
of the microscope column. In this arrangement, the electron mirrors are positioned
sideways of the optical axis of the microscope, and instead of using temporally gated
electron mirrors, the use of an ultrafast deflector at the microscope axis enables the
transition of the beam between the microscope axis and the resonator (or mirror)
axis. A schematic implementation of this concept as an extension module to an
existing TEM column is shown in [Fig. 4.1(a)]. Admittedly, this suggestion calls
for an involved timing sequence for the deflectors, and we do not deem it practical
to commence the development of a full TEM prototype based on this principle just

4.1. Introduction
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Figure 4.1: Proposal for integration of two mirror modules that contain ultrafast deflectors into
a TEM column. (a) MP-TEM and QEM implementation. (b) Pre- and post-specimen wave front
shaping. (c) Prototype optical setup for experiments with two electron mirrors that can be mounted
on the stage platform of a scanning electron microscope.

yet.
A more feasible approach is based on the positioning of two electron mirrors

inside a mirror module, as is shown in [Fig. 4.1(b)]. In this design, the temporally
gated deflectors are replaced by static field deflectors. In front of the mirror, the use
of a miniature beam separator that makes use of combined electric and magnetic
deflection fields enables an electron trajectory that continues downwards the TEM
column after a double reflection. An overview of the optical design of this double
mirror approach is shown in [Fig. 4.1(c)].

Here, we present the optical and mechanical design for this ‘double mirror’ setup.
The design will be suitable for the placement of a double mirror unit at the stage
platform of a scanning electron microscope (SEM). This enables a feasible method of
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access to the optical and mechanical components and in general offers more flexibility
in terms of modifying the setup, when compared to the immediate integration of
the setup inside a TEM column.

4.1.2. Experimental modalities
The presented experimental designs could in principle be used as a prototype for
QEM and MP-TEM [Fig. 4.1(a)], and structural hypothesis testing and wave front
shaping in general [Fig. 4.1(b)]. Unique to the double mirror prototype proposal is
that it does not require (sub) nanosecond switching of the mirror electric potentials.
Instead, we make use of an electrostatic deflector that is positioned next to the
sample plane of the resonator to insert and remove the electron from the resonator.
The use of static field operated Wien filters in front of the electron mirrors enables
the direction dependent deflection angles at the resonator axis.

This approach offers a number of advantages compared to designs with tempo-
rally gated mirrors. We already mentioned the relaxed requirement on switching of
high voltage potentials. In addition, the proposed setup can be used in a constant-
current mode that does not require switching of any field, when no more than one
reflection per mirror is required. This is for instance the case for the realization of a
Mach-Zehnder interferometer for electrons, and more generally the demonstration of
phase and amplitude modulation of the electron wave front with patterned mirrors.

4.2. Optical design
The schematic optical design of the SEM based prototype is shown in [Fig. 4.1(c)].
In the setup, the incident beam is focused onto the deflector that is in the middle
layer of the setup. This deflector can be operated with a static potential to enable
a constant-current mode in which one round trip in the resonator is performed,
or at a gated potential that allows for multiple round trips through the resonator.
Inside the resonator, crossed electric and magnetic fields (E × B) are oriented in
the Wien configuration in front of both mirrors. This configuration results in a
deflection path that depends on the direction of incidence of the beam, and realizes
the shown trajectory inside the resonator. A collimator lens is placed in front of
both mirrors, and these are used to spread out the beam over the mirror pattern,
as well as providing a focus at the common crossover plane that coincides with the
middle layer.

At the optical axis that coincides with the microscope column objective lens
(right hand side in the figure), an additional lens and quadrupole deflector pair is
placed both above and below the sample plane. The entrance lens and quadrupole
deflector above the sample plane are used for alignment and projection of the last vir-
tual source of the probe onto the electrostatic (E) deflector. The lens and quadrupole
pair below the sample plane are used to coordinate the image formation of the sam-
ple plane onto the detection optics that are positioned below the setup.

4.2. Optical design
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4.2.1. Miniature electron mirrors
The use of an electron mirror as part of a microscope column always introduces the
need to separate the incident and reflected beam trajectories, in order to avoid the
electron from propagating back to the source module [19]. For this reason, electron
mirrors are usually integrated into a microscope column in a separate module that
is mounted under an angle with respect to the source and detection axes of the mi-
croscope. At the intersection of these axes, a beam separator provides the necessary
deflection fields that transits the beam between the various optical axes.

The volume claim of a mirror and beam separator unit is typically large due
to the use of conventionally machined mechanical parts and the high voltages that
are present in such setups. And, while aberration corrected low energy/photoe-
mission electron microscopy (LEEM/PEEM) machines even feature multiple beam
separators and mirror units [20], one for the specimen and one for performing the
aberration correction, the dispersion of the large angle deflections in the beam sep-
arators may limit the use of such setup for controlled beam shaping.

In a recent proposal for low-voltage aberration correction in SEM by Dohi and
Kruit, an extensive overview on using multiple miniature electron mirrors in a micro-
scope column has been provided [8]. The advantage of miniaturizing a multi-mirror
setup is found in the reduction of the inherent deflection induced dispersion and
deflection aberrations of the beam separator. By keeping the deflection angle of
the beam between the axes small, deflection dispersions can be avoided. However,
the necessity of small deflection angles introduces the need for miniaturized electron
optics, in order to keep the total system within a reasonable length.

4.2.2. Electron ray trajectory
We based our experimental design on that for aberration correction in SEM from
Dohi and Kruit [8] and to some extend modified the beam path, as shown in [Fig.
4.1(c)]. In our current proposal, we suggest that the electron beam is deflected away
from the optical axis at the common crossover plane at the middle layer, where the
beam is focused. After a double reflection at the electron mirrors the beam returns
to this same position and is being deflected back onto the microscope axis. This
is in contrast to the original K-path corrector proposal, in which this deflection is
performed at the top and bottom layers of the setup. We refer to this beam deflector
as a ‘barn door’, due to its role of inserting and removing the electron beam from
the resonator.

This modification is at first sight not a necessary one. However, we note here
already that this modification allows us to place an ultrafast deflector at the common
crossover plane at a later stage of development. Consequently, that would allow to
trap the electron in a loop, enabling multi-pass electron microscopy [11, 18] with
this setup. This requires that the deflection field strength of the fast deflector can
be doubled in the order of nanoseconds, and we don’t consider this feasible with the
original K-path corrector design, where a magnetic field must be switched in the
same time period as well. The disadvantage of this approach is that we need two
Wien deflectors instead of the one in the original K-path corrector. Conventional
Wien deflectors usually place a large volume claim, and the presence of two parallel
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optical axes must be explicitly taken into account in the design of the Wien deflector.

4.2.3. Round trip dispersion
When the electron beam is deflected in an electric (E) or magnetic (B) field, the
inherent energy spread of the beam results in a spread in deflection angle as well.
This is an effect known as deflection dispersion. When the electron is deflected by an
angle α, the resulting error in deflection angle (δα) depends on the type of deflection
field. For a magnetic and electric field that yield an equal deflection angle for the
nominal beam energy, it can be shown that the electric field introduces twice the
dispersion error when compared to the magnetic field, such that

δαB

αB
=

1

2

δαE

αE
. (4.1)

When the deflection takes place outside of an image plane of the probe, the
resulting blurring of the probe at the image plane depends on the distance (u)
between the image plane and the principal plane of the deflection field, such that
dspot ∼ δα×u. From this first order relationship it is also directly observed that no
additional dispersion effects at the image plane can take place, when the deflected
electron beam is focused onto the principal plane of the deflection field.

In our setup, the incident beam is focused onto the principal deflection plane of
the barn door. Hence, no dispersion effects at the cross-over plane are induced when
the electron beam is deflected initially away from the microscope axis, and at a later
stage back onto the microscope axis. This is however not the case for deflections
that take place in the Wien filter fields in front of the electron mirrors. These fields
are positioned in the top and bottom layers of the setup, at which location the beam
is spread out.

For a systematic study of the net dispersion effects at the common crossover
plane of a full round trip of the electron through the setup [based on the trajectories
shown in Fig. 4.1(c)], it is convenient to define a unit ∆ as the probe shift at the
common crossover plane due to deflection dispersion. This is possible here, since
the deflection angles at each deflector are fixed. For a given full angle α at the barn
door, the Wien filter fields are adjusted such that αB = αE = α/2. The smallest
amount of dispersion is then provided by the deflection action of the magnetic field
inside the Wien filter, which yields ∆ ≡ δαB×u. Reasoning along similar lines then
shows that the electric field contributes 2∆ at the Wien filter. Depending on the
direction of incidence towards the Wien filter, the beam (at nominal beam energy)
either passes straight through the Wien filter when αE = −αB , or the beam is
deflected in the case where αE = αB .

An estimate for the unit quantity ∆ is provided by the relation between the
deflection angle due to the magnetic field at deflector (αB), and the energy (E) and
energy spread (δE) of the beam through

δαB

αB
=

1

2

dE
E

⇒ ∆ = δαBu =
1

2

dE
E
αBu. (4.2)

4.2. Optical design
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In our initial experiments we aim at a beam energy of 2 keV, and we can reduce
the energy spread to 0.3 eV. In combination with the requirement of small deflection
angles, say αB ∼ 25 mrad, and u = 15 mm (see sct. 4.4 for a justification of these
values), this leads to ∆ ≈ 30 nm.

With the above definitions in place, the effect of a straight passage of the beam
through the Wien turns out to be +2∆(E)−1∆(B) = ∆, where the first contribution
comes from the electric field, and the second contribution comes from the magnetic
field as indicated by the superscript. From a similar reasoning, for a net deflection
angle α in the beam separator, the resulting dispersion induced probe shift at the
image plane becomes 2∆(E)+∆(B) = 3∆. Finally, it should be noted that a reflection
on either mirror at the mirror axis places the resulting image at the opposite side
of the optical axis at the common crossover plane.
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Figure 4.2: Systematic dispersion analysis for a single round trip started and terminated at the
barn door deflector. (a) Deflection towards the mirror axis does not disperse the beam as the
barn door plane coincides with an common crossover plane (C.C.P.) of the beam. (b-c) Passage
towards and away from the bottom mirror, through the mixed electric and magnetic (E×B) fields
of the bottom Wien filter. (d-e) Passage towards and away from the top mirror, through the mixed
electric and magnetic fields of the top Wien filter. (f) Net effect of the top Wien filter, deflecting
the beam back onto the barn door deflector. A full round trip does not add dispersion to the beam
in first order at the common crossover plane.

With the above, we can trace out the deflection dispersion of the setup in first

4

66 | 4. Design of a miniature double mirror setup for electron wave
front shaping



order. In this analysis, we assume that the incident beam is initially not-dispersed
at the common crossover plane when it is imaged onto the barn door plane, that
coincides with an image plane at the common crossover plane of the setup. The steps
in the analysis are shown in [Fig. 4.2], where the position of the virtual probe with
nominal (green) and reduced (red) energy are traced through the resonator. At each
step, open circles label the position of the last image point, and closed circles label
the position of the new image point after passing through the respective deflection
fields.

At the barn door, the beam is deflected by an angle α towards the mirror axis, as
shown in [Fig. 4.2(a)]. As the deflection takes place at an image plane, the virtual
image of the probe at the mirror axis does not show any effect of dispersion at the
common crossover plane. Next, we consider the effect of the first passage (downward)
through the Wien filter. This passage deflects the beam (at nominal beam energy)
by an angle α, and the slower part of the beam experiences an additional deflection,
which places the probe image at 3∆ units of dispersion at the image plane to the
left of the optical axis [Fig. 4.2(b)].

After the first reflection of the beam at the bottom mirror, the image of the probe
at the image plane is shifted to the opposite side of the optical axis. In addition,
the upward passage through the Wien filter field adds an addition ∆ unit to the
dispersion effect at this image plane. Consequently, after a full first reflection the
beam arrives at the image plane with a dispersion of 4∆ units [Fig. 4.2(c)].

The second halve of the round trip through the resonator is opposite of the first
halve, consisting now of first a straight upwards pass through the Wien filter at the
top layer, followed by a reflection and a downward deflection pass through the same
Wien filter. Following a reasoning similar to that above, it can be shown that after a
double passing through the Wien filter, and a single reflection at the top mirror, the
beam is imaged back at the barn door without suffering from first order dispersion
effects [Fig. 4.2(d-f)] at this plane. From this it can be concluded that one round
trip through the resonator does not add dispersion to the beam at the image plane
that coincides with the barn door deflector.

4.3. Optical components
We aim for designs of optical components that will fit inside a TEM column extension
after we have finished our initial experiments with the SEM stage platform based
setup. For this reason, the length of the optical system is limited to approximately 50
to 100 mm. By keeping the deflection angles below 50− 100 mrad, the second order
deflection aberrations can be kept small [8]. The combination of these requirements
leads to a close proximity of the two parallel axes in the system. In [sct. 4.4], we
will elaborate more on the exact dimensions that are involved in the experimental
design. Here, we already note that the axial separation that our design is based
on is only 1 mm, and the mirror electrodes are positioned at approximately 25
mm distance away from the common crossover plane. This motivates the use of
miniature electron optical components.

4.3. Optical components
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Figure 4.3: (a) Naïve implementation of lenses at the microscope and mirror axis at the same level.
This results in severe design and experimental limitations as the focal strength of the lenses cannot
be tuned independently, unless the electrode is split somehow. (b) Stacked approach, in which the
lens action at both axes can be tuned independently. The (yellow) cap electrode can now be used
to tune the electric field in front of the mirror.

4.3.1. Miniature electron optics
Various lenses in the setup provide means to focus the beam onto the common
crossover plane, and spread-out the beam over the mirrors. The refractive action of
an electron lens is usually realized through either a magnetic or electric field that
acts on the beam. The use of magnetic lenses in a miniature system would require to
embed coils in close proximity of the lens aperture, and magnetic shielding material
must be used to limit the extend of fringe fields. Small magnetic lenses and deflectors
with embedded coils have been successfully manufactured with microfabrication
techniques in the past [21–23], however the dimensionality of these methods does
not suit our needs and does not easily scale. For the miniature system that we are
building, the use of magnetic lenses is thus not considered a feasible approach.

Electrostatic lenses on the other hand consist of a stack of electrodes that contain
an aperture through which the beam can pass. By applying an electric potential
onto the electrodes, the focal length is readily adjusted and no additional embedded
circuitry is required. Very round apertures can be fabricated from Silicon wafers
by means of Bosch-etching or Reactive Ion Etching [24] and the mutual alignment
of the apertures can be accurately performed with a dedicated 6-degree of freedom
(6-DOF) aligner [25]. Electrostatic lenses thus potentially offer a feasible method
for application in multi-axes miniature systems when compared to magnetic lenses.
The combination of lithographic processes for manufacturing very round apertures,
and the sub-micron alignment precision that can be achieved with the 6-DOF aligner
prevents sources of astigmatism in the optics, and thus avoid the need for additional
stigmators in the setup.

At the top and bottom layers, a total of two lenses (one at each axis), one mirror,
one cap electrode, and one beam deflector are required. Naïvely, a single electrode
with two apertures could be used to provide the lens action at both axis [Fig. 4.3(a)].
One could then choose the radius of the apertures in such ratio as to provide the
required focal strength at each axis, at equal and fixed value of excitation. However,
this would severely impact the degrees of freedom for tuning the focal strength on
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Figure 4.4: Schematic design of a flat electrode patterned electron mirror, with small aberrations
at the image plane. Electrodes and pattern not to scale, dimensions based on results from [26].

both axes independently as well as put a severe design tolerance on the setup.
Instead, we suggest to separate the two lenses spatially from each other, and

shield the beam at the microscope axis from the mirror axis [Fig. 4.3(b)]. This
way, the cap electrode (yellow in the figure) that is in between the lens and mirror
electrode can also be used to further tune to electric field in front of the mirror, inde-
pendently of the beam propagation at the microscope axis. A method for shielding
the electric field of both axes by means of miniature liner tubes is discussed in the
next section.

The combination of three aperture electrode lens elements and an electron mirror
is commonly referred to as a tetrode mirror and is historically found in mirror based
setups for aberration correction [20, 27]. The aberration correcting properties then
usually stems from the hyperbolic shape of the mirror surface, which is realized
through an indentation at the mirror electrode. In the absence of the hyperbolic
shaped mirror field, large aberrations may result upon reflection from the flat mirror
surface. In recent work, we found a mechanical configuration for the tetrode mirror
system that exhibits only very small aberrations [26], which is shown in [Fig. 4.4]. As
a result of this, topographic mirror patterns may now be applied onto the otherwise
flat mirror electrode.

Based on the results obtained in [26], at a 2 keV beam energy that we initially
aim to use the setup at, the spot size at the common crossover plane can be kept
diffraction limited up to a beam semi-angle of 2.3 mrad. This results in a possible
beam width at the mirror plane of approximately 40 µm. For this, respectively a
ground, lens, and cap radius of Rground = 500 µm, Rlens = 250 µm, and Rcap =
375 µm, valid under the assumption of a thickness of 300 µm for all electrodes, and
500 µm spacing of the apertured electrodes are required. The spacing between the
cap and mirror electrode is much smaller than this and equals 100 µm. The resulting
design is shown in [Fig. 4.4].
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4.3.2. Miniature liner tubes
Following the dual axis lens electrode design shown in [Fig. 4.3(a)], the close proxim-
ity of the two parallel electron optical axes towards one another, results in a shared
electric potential of some electrodes among both axes. The one aperture aligns with
the mirror axis, whereas the other aperture provides a passage for the beam at the
microscope axis. This approach inherently introduces severe cross talk between the
two axes, since the potential at the electrode cannot be set independently for one
of both axes.

In what follows, we suggest to make use of electrically grounded miniature liner
tubes to resemble to situation shown in [Fig. 4.3(b)]. This liner tube is to be inserted
through the aperture in the electrode for which the electrode potential should not
be applied. In the example shown in [Fig. 4.3], the miniature liner tube is inserted
through the right hand side aperture. In this way, the optical configuration as shown
in [Fig. 4.1(c)] can be realized. This is achieved by placing the lens electrodes for
lenses on the mirror and microscope axis, at different vertical positions. The lenses
in front of the electron mirrors at the top and bottom layers of the mirror axis can
be tuned independently this way from the entry and exit lenses at the microscope
axis.

A consequence of placing the (electrically grounded) miniature liner tube is that
it disturbs the shape of the electric field at the neighboring axis, at which the lens
action takes place. The effect of this disturbance could be understood from [Fig.
4.5(a)] that shows a cross section of a three-electrode (Einzel) lens at the mirror
axis, and a miniature liner tube positioned at the microscope axis. The presence of
the grounded liner tube results in a dipole disturbance of the electric field at the
mirror axis, that increases as a function of increased spacing between the electrodes.

As a result of this dipole disturbance, a beam passing through the lens field
will experience an undesired deflection component. In principle, this effect could be
compensated for by adding a second, ‘dummy’, miniature liner tube at the oppo-
site side of the mirror axis. This would result in an equal but oppositely oriented
dipole disturbance at the mirror axis, and this consequently eliminates the dipole
disturbance. This situation is shown in [Fig. 4.5(b)].

With the addition of the ‘dummy’ liner tube, the dipole distortion is cancelled
out. However, a quadrupole distortion will develop since the perpendicularly ori-
ented out-of-plane fields are not influenced by the presence of grounded liner tubes.
We suggest to place another set of two liner tubes, as shown (top view) in the
schematic of [Fig. 4.5(c)]. This configuration will lead to a suppression of the
quadrupole distortion at the lens plane as well, and the lowest distortion that could
develop is an eight-pole. A photograph of a manufactured holder plate with four
miniature liner tubes that are positioned around the aperture of the mirror axis is
shown in [Fig. 4.5(d)].

In [Appendix C] the quantitative effects that placement of one or multiple minia-
ture liner tubes have on field distortions is numerically analyzed. The findings that
are presented there support the qualitative analysis that is provided in the above
text. The numerical findings indicate an expected spot size blurring at the image
plane after reflection in the range of 10-100 nm.
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Figure 4.5: The effect of positioning miniature liner tubes on the generation of electric field (con-
tours) disturbances. (a) (Cross section) The use of a single miniature liner tube results in a dipole
distortion of the electric field at the mirror axis. (b) The addition of a ‘dummy’ miniature liner tube
opposite to the lens plane prevents the development of the dipole distortion. Instead, a quadrupole
distortion will be generated at the mirror axis. (c) Four-fold liner tube symmetry (seen from above)
suppresses the quadrupole distortion. (d) Photograph of a holder plate showing four miniature
liner tubes positioned around the (in the photograph partially obscured) mirror axis aperture.

4.3.3. Slit deflector (‘Barn door’)
At the central layer of the system, a beam deflector is required that performs the
deflection of the incident beam at the microscope axis towards the mirror axis,
and vice versa for the returning beam after double reflection. This deflector acts
as entrance and exit deflector for the mirror axis, hence it is also referred to as
‘barn door’, in analogy to its role in a QEM design [10]. In order to operate this
deflector with time-independent (static) fields, the deflector must be positioned in
the symmetry plane with respect to the top and bottom layer of the setup, such
that the principal plane of the deflector coincides with the common crossover plane
of the setup.

Basic electrostatic deflectors consist of multiple poles and are operated with an
antisymmetric potential. As the deflection takes place in one direction only, it is in
principle sufficient to make use of two elongated deflector plates. The parallelism
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of the plates is of importance, as harmonic field distortions are introduced into the
deflection field in the form of astigmatism when the electrodes are not parallel to
each other. An additional deflector electrode pair must be positioned perpendicular
to the elongated plates in order to enable alignment correction in the direction
perpendicular to the main deflection path. A mechanical configuration that enables
both the main and correction deflection is included in [sct. 4.4.2].

The deflection angle θ from a parallel plate deflector is obtained in first order
by relating the electrode thickness t, spacing w, and electric bias potential U and
beam acceleration voltage Φ, through

θ =
Ut

Φw
. (4.3)

It is thus seen that a high aspect ratio AR ≡ t⁄w leads to a lower electrode
potential, and vice versa. In our current design we use Silicon wafers of thickness
t = 300 µm, and a gap width of w = 200 µm. This yields an electrode excitation of
U = ±67 V. The actual value will be smaller due to the fringe fields that are not
accounted for in the above expression. Initial experiments have pointed towards an
actual excitation of Uexp. = ±48 V.

4.3.4. Quadrupole deflector
The quadrupole deflector enables the optical alignment with respect to the optics
in between which the double electron mirror setup is positioned. In our prototype
setup, the quadrupole deflector that is positioned at the top layer enables alignment
between the microscope objective lens and the barn door deflector. The quadrupole
deflector that is positioned at the bottom layer of the setup enables the alignment
between the barn door and the YAG scintillator screen. Additionally, a raster scan
signal can be applied onto the quadrupole electrodes which aids in the optical align-
ment of the setup.

4.4. Mechanical design
In this section we discuss the mechanical design of the SEM prototype setup. We
start by identifying the dimensional constraints that follow from the available space
inside the SEM specimen chamber that holds the setup. Based on these constraints,
we develop and present practical designs for the barn door deflector, beam separators
in front of the electron mirrors, and means of combining the various components
into a setup. We conclude this section with a discussion on alignment tolerance.

4.4.1. Dimensional constraints
The initial dimensions for the setup [Fig. 4.6(a)] are constraint by the space that
is available in the specimen chamber of the electron microscope that we will use
for our experiments. A commercially available FEI Verios 460 Nanolab SEM that
is equipped with a monochromator will be used for our future experiments, which
offers a usable system length L = 80 mm in between the pole piece and the stage
platform. The use of a miniature tetrode mirror design as presented in [sct. 4.3.1]
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places the electron mirror close to the principal plane of the intermediate lens that
is used to spread out the beam over the mirror, and focus the beam back onto
the common crossover plane after reflection. This leads to a focal length of the
intermediate lenses that approximately equals the semi-height of the resonator that
is formed by the mirrors, i.e., u1 ≈ f . The full length of the system then becomes
L = 2u1 + v1 and a magnification of the common crossover plane towards the YAG
detection screen of M = v1⁄u1 = [L− 2u1]⁄u1 is obtained.
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Figure 4.6: (a) Dimensional design constraints in order to fit the setup into the specimen chamber
of a commercial electron microscope. For our system, the overall length L = 80 mm determines
the focal length of the double mirror lens system, and the magnification (M) from the common
crossover plane (C.C.P.) towards the YAG detection screen. (b) Inter-axial design constraints are
dictated by the radius of the apertures and the miniature liner tube that provides optical separation
between the two axes. (c) Relationship between grating pitch (p), free electron wave length λ, the
focal length (f ≈ u1) of the double mirror lens system, and first order diffraction spot spacing (d).

In order to choose u1, we first examine its effect on electric breakdown. For
this, we consider the aperture configuration in [Fig. 4.6(b)]. This shows a cross
section and top view of a single electrode with two apertures, that coincide with
the mirror and microscope optical axes and are separated by a distance t. Cross
talk between the axes is eliminated by inserting an electrically grounded miniature
liner tube around one of the optical axes, resulting in a strong in-plane electric field
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between the electrode and the (grounded) liner tube. The strength of this field is
determined by the gap (g) between the miniature liner tube and the aperture wall,
as well as the electric potential difference.

The lens potential ranges in between 1 − 5 kV, which leads to a minimum gap
g ∼ 250 µm when a breakdown field through vacuum of 15 kV/mm is allowed for.
Minimum practical liner tube diameters range around 500 µm and the radius for
the non-filled aperture may be expected in the same range. This leads to an axial
separation of the microscope and mirror axis that is given by

t = R2 + s+ g +R1

= 750 µm + s. (4.4)

The variable (s) accounts for electrode body material in between the two aper-
tures and must not be chosen too small, in order to guarantee the mechanical
strength of the system. We choose s = 250 µm, leading to an axial separation
of t = 1 mm.

The separation distance (t) between the two parallel optical axes relates to the
semi-height of the cavity by θ = t⁄u1. On the one hand, maximum magnification of
the probe onto the detector is achieved at minimum u1 and thus a high deflection
angle θ. On the other hand, large angles introduce deflection dispersions and deflec-
tion aberrations to the system. From the earlier work of Dohi and Kruit [8] it is
known that a deflection angle of θ = 50 mrad is sufficiently small to avoid deflection
aberrations, and in [sct. 4.2.3] we have demonstrated that no additional deflection
dispersion is created at the common crossover plane after a round trip in the setup.
At this angle, u1 = t⁄θ = 2 cm, leading to a magnification of M = 2 from the
common crossover plane to the YAG scintillator screen.

The effect that the mirror pattern has on the reflected beam can be studied
with the setup by imaging the common crossover plane onto the YAG screen. That
way, we are effectively imaging the electron diffraction pattern that results from the
reflection at the mirror. From the obtained magnification, the minimum detectable
diffraction spot separation at the common crossover plane can be estimated. At 2
keV beam energy, the approximate diffraction limited spot size at the YAG screen is
in the order of λY AG/2NA ∼ 200 nm for a numerical aperture (NA) that equals one
(1). In order to comfortably distinguish diffraction spots on the screen, we require a
spacing of D ≥ 2 µm at the YAG screen. For the given magnification between the
common crossover plane and the YAG detector screen, this results in a diffraction
spot separation at the common crossover plane of d ≥ 1 µm.

A spot size separation of 1 µm is related to the spatial frequencies (k = p−1) at
the mirror pattern [Fig. 4.6(c)] and the free electron wavelength (λ) through the
optical Young’s double slit equation,

d =
λu1
p

= λu1k. (4.5)

From this, a maximum pitch (p) [or minimum spatial frequency (k)] at the mirror
pattern is found to be pmax = 27 pm× 20 mm⁄1 µm = 540 nm. From earlier work,
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Table 4.1: Overview of dimensional design constraints for a proof-of-concept double electron mirror
setup that is positioned inside the specimen chamber of a commercial scanning electron microscope.

Parameter Label Value Unit
System length L 80 mm
Mirror system focal length f 25 mm
Max. mirror structure pitch p 540 nm
Magnification C.C.P. to YAG M 2 –
Axial separation t 1 mm
Distance C.C.P. to beam separator – 18 mm
Deflection angle at the barn door θ 55 mrad

(a) (b) (c)

Figure 4.7: Barn door manufacturing. (a) The deflector geometry of the barn door consists of
two elongated deflector electrodes (top and bottom electrode). Small angle deflections in the
perpendicular plane are accomplished through the side deflectors (left and right electrode). (b)
The barn door electrode as a whole is glued to a glass insulator that also acts as a spacer. After
curing of the glue, the electrode poles are electrically separated by dicing across the red dashed
line. (c) Manufactured barn door deflector (external optical shields removed). The phosphor bronze
contacts are used to apply an electric potential at the deflector electrodes, and at a later stage the
electric contact may be provided with wire bond contacts onto a dedicated custom printed circuit
board.

we concluded that the electron beam is increasingly more sensitive to energy spread
as a function of reduced pitch [13]. However, at a monochromatized beam energy
spread of 0.3 eV that is attainable with the used electron microscope, we expect
that a mirror pattern with a 500 nm pitch structure will provide sufficient contrast
for the diffracted spots at the common crossover plane.

An overview of the obtained dimensional design constraints is provided in [Table
4.1].

4.4.2. Deflector manufacturing
In order to achieve parallelism between deflector pole electrodes of the barn door
[Fig. 4.7(a)], we suggest a manufacturing protocol in which the deflector plates are
machined from a single silicon wafer. The etching pattern is shown in [Fig. 4.7(b)]
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(a) (b) (c)

Figure 4.8: (a) Top view and (b) cross sectional view of an EBE beam separator of the main
deflection plane. The direction of the electric fields in the top and bottom layer are indicated by
arrows and the magnetic field in the central layer is orientated perpendicular to these fields. (c)
The effective beam path through the EBE beam separator, dependent on the axis and direction of
incidence. By configuration of the fields, all deflection paths are point-symmetric with respect to
the hearth of the device. Figures and schematic styles are reproduced from [28].

and is created such that during the etching process the individual deflector poles
do not become detached from to each other. After development, the etched wafer
is glued onto a glass insulator that also acts as a spacer for the deflector towards
field limiting apertures above and below the deflector electrode. After curing the
glue, the wafer is diced across the dashed line that is indicated in the figure, and
this process electrically separates the various poles. A similar process is used to
manufacture the quadrupole electrodes.

A photograph of the completed barn door assembly, including field limiting aper-
tures and electrical contacts, is shown in [Fig. 4.7(c)]. In order to optically shield
the returning beam (at the mirror axis) from the deflection dipole field on the mi-
croscope axis, miniature liner tubes are applied on this layer at the mirror axis as
well as on the opposite side of the microscope axis.

4.4.3. Beam separator
The required deflection angles in front of the mirrors are dependent on the direction
of incidence of the electron beam. To realize this, one must resort to combining
electric and magnetic fields. The close proximity of the two optical axis (t = 1 mm)
hinders the use of conventional beam separators, as miniature beam separators that
we know of usually do not accommodate multiple parallel axis [23]. An exception
to this is the miniature electric-magnetic-electric field (EBE) beam separator [28]
that we recently developed.

The EBE beam separator consists of three stacked dipole electrode pairs that
are positioned around both axes of the setup, with the middle dipole pair positioned
perpendicular to the remaining pairs. The acronym EBE refers to the sequence of
field excitation inside the beam separator, which is sequentially electric, magnetic,
and again electric. A top-down view [Fig. 4.8(a)] and a cross sectional view [Fig.
4.8(b)] are shown, with the orientation of the main deflection fields indicated by the
arrows and crosses in the figure. The direction of the fields in the top and bottom
layer of the beam separator are anti-parallel between both axes, whereas the field
generated at the middle layer is shared and thus in parallel among both axes. The
resulting deflection paths for an electron entering on either axis, for either top or
bottom incidence is shown in [Fig. 4.8(c)].
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4.4.4. Integrated design
A schematic mechanical representation of a fully integrated setup is shown in [Fig.
4.9(a)]. The schematic shows the three distinct layers that compose the full setup.
At the top and bottom layer, a holder plate is positioned that supports on the one
side the stack of MEMS electrode elements, and on the other side the EBE beam
separator. Note from the schematic that the MEMS electrodes are stacked in a stair
case fashion. This way, a part of each electrode is left uncovered and an electrical
wire bond connection can be made between the electrode and a flexible printed
circuit board that is positioned at the support plate, as shown in [Fig. 4.9(c)].

4.4.5. Layer alignment tolerance
By design of the EBE beam separator, the deflection field that is generated in
the middle layer of the separator is shared among both axes and thus forms an
explicit source of cross talk between the beam propagation at both axes. That is,
the deflection action of an EBE beam separator is anti-symmetric for its two axes
around the center of the device. This would possess no problem to a mechanically
perfect aligned system. In a practical system misalignment is to be expected and
consequently the electron beam trajectory at the microscope axis becomes altered
as soon as the EBE beam separator is intentionally mistuned in order to correct
for mechanical misalignment at the mirror axis, and vice versa. This may cause a
problem that may occur at two explicit positions in the beam trajectory through
the system:

• At the top layer. The beam deflection correction angle when passing
through the top layer EBE beam separator, prior to reflection on the top
layer mirror is explicitly coupled to the beam trajectory of the incident beam
on the microscope axis [angles τ, τ ′ in Fig. 4.10(a)].

• At the bottom layer. The beam deflection correction angle after reflecting
from the first mirror and passing through the EBE beam separator is explicitly
coupled to the beam trajectory prior to leaving the system on the microscope
axis [angles β, β′ in Fig. 4.10(b)].

At the top layer, the misalignment is compensated for by placing an additional
(electrostatic) quadrupole deflector at the beam entrance of the setup. Such deflector
can be fabricated by means of MEMS techniques similar to the method that we
outlined above for the barn door.

At the bottom layer, there is no sufficient space available to position an additional
quadrupole deflector in between the beam separator and the exit lens, and thus the
cross talk cannot be compensated for at this stage. Consequently, this part of the
beam trajectory dictates the mechanical precision of layer alignment that must be
accomplished.

We set out to approximate the effect of this on the resulting beam trajectory [Fig.
4.10(c)]. Considering that the lateral misalignment of the mirror axis in the top and
bottom layer is given by ∆t and these layers are separated in the miniature setup by
L ≈ 50 mm, a correction angle β ≡ ∆t/L at the bottom layer EBE beam separator
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Figure 4.9: (a) Schematic cross section of the setup, containing all electron optical components.
Ray trajectories are indicated for a beam entering the setup at the microscope axis from the top,
and for a flat mirror at the bottom and a grating mirror at the top level layer. (b) Principle of
electron wave front modulation at a patterned electron mirror. (c) Stair case stacking of MEMS
electrodes, allowing for room to perform wire bonding between the electrodes and the flexible
printed circuit board. Schematics are not to scale.

would be needed. This angle will offset the beam at the exit lens (on the microscope
axis) by an approximate distance of B′′ = βℓ where ℓ is the spacing between the
bottom EBE separator and the exit lens. A tolerable offset of ϵtol then yields a
manufacturing precision of ∆t ≤ ϵtolL/ℓ. With conventional mechanical machining
techniques, a reasonable precision of ∆t = 10 µm would yield a beam offset in the
exit lens of approximately 1 µm, which is small compared to the expected width of
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Figure 4.10: Requirements on mechanical alignment based on cross talk between the axes of the
beam separator. (a, b) Compensation steering of the beam towards the coma free point on the
mirror induces a cross talk deflection angle on the adjacent axis. (c) Axial misalignment ∆t leading
to an additional deflection angle in the top and bottom beam separators. At the top layer, the effect
in the incident beam (green) is corrected for by the entry quadrupole. This correction cannot be
performed at the bottom layer, leading to an off-axis propagation of the beam through the exiting
lens (B′′). (d) Kinematic precision ball positioning of the (top) layer, using a compression spring
(P) that provides point contact positioning at (K). Two clamps (C) prevent out-of-plane movement.
The holder is mounted on a two-direction piezo stage (blue elements).

the beam at this plane (order of magnitude larger).
The alignment of the three layers of the setup within the above mentioned ac-

curacy is mechanically achieved by machining a support bracket by means of spark
erosion. This bracket supports the base plates that hold the optical components
at each of the three functional layers. Placement of these base plates with respect
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to each other and onto the bracket can be performed through kinematic coupling
design [29] with precision balls [Fig. 4.10(d)].

4.5. Integration of parts
We have commenced the manufacturing and integration of various components into
a setup that fits on a custom made specimen stage of a scanning electron microscope.
In this section, we share photographs of the completed mechanical parts.

4.5.1. Top and bottom layer
The top and bottom layer consist each of a mechanical support plate, that on the
one side provides support for the beam separator, and on the other side provides
support for the MEMS optics. The MEMS electrodes are stacked on one side of
the support plate by making use of a 6 degree of freedom (6-DOF) aligner that is
described in [25]. After the stacking is completed, a (flexible) printed circuit board
is glued onto the support plate, and wire bond connections are used to provide the
electrical contact between the MEMS electrodes and the contact pads at the circuit
board.

(a) (b) (c)

(d) (e)

* *
*

* *
* * * *

Figure 4.11: Integration of the beam separator and MEMS optics on a support plate. (a) Beam
separator with wire threaded poles (indicated by asterisk). (b) Positioning of the support plate that
already contains the stack of MEMS electrodes and (flexible) printed circuit board. The support
plate and beam separator are clamped together with stand-of poles (indicated by asterisk). (c)
Protective cover that provides mechanical protection and shielding from stray electric fields. The
cover is supported on the stand-of poles. (d) Perspective view photograph of the assembled unit,
with the cover removed to visualize the wire bonds. (e) Side view of the assembled unit.
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Next, the beam separator is positioned at the opposite side of the support plate.
The enclosure of the beam separator contains wire threaded poles [indicated by
asterisk in Fig. 4.11(a)] that protrude through the support plate. This allows to
fasten the beam separator against the support plate. For this, we make use of
stand-of tubes with an inner wire thread. The resulting composition is shown in
[Fig. 4.11(b)].

As a last step, a metal cover is positioned above the stack of MEMS electrodes,
as shown in [Fig. 4.11(c)]. This cover both serves the purpose of providing a
mechanical protection for the MEMS, as well as to provide additional shielding from
stray electric fields that may be present in the specimen chamber of the scanning
electron microscope. A perspective and side view photograph of the assembled unit
is shown in [Fig. 4.11(d, e)].

4.5.2. Middle layer

+U

-U
(a) (b)

Figure 4.12: Barn door layer assembly. (a) Photograph of a completed middle layer. The barn
door is shielded from stray fields with a metal cover that contains a large aperture near the optical
axis. The inset shows the barn door electrodes that are positioned below the metal cover. (b)
Micrograph (top-down view) of the barn door, showing the miniature liner tubes that coincide
with the mirror axis and the opposite ‘dummy’ axis, and showing the field limiting electrode and
alignment markers of the barn door. The inset shows a magnified view around the slit, including
the alignment markers that are used for stacking, and a schematic indication of the orientation of
the main deflector poles.

The middle layer consists of a support plate that holds the barn door deflector
on one side, and is void of components at the other side. A photograph of the
assembled layer is shown in [Fig. 4.12(a)], and shows the presence of a metal cover
that provides mechanical protection to the barn door electrodes, as well as shielding
from stray electric fields. The metal cover contains a large aperture near the optical
axis. In the current design, we make use of phosphor bronze electrical contacts that
at a later stage may be replaced with a custom printed circuit board.

The barn door electrodes are stacked using the 6-DOF aligner in a similar way
as to how the MEMS electrodes in the top and bottom layers are stacked. A top-
down micrograph of the barn door [Fig. 4.12(b)] shows the field limiting aperture

4.5. Integration of parts
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and the alignment markers around the entrance slit that are used to accomplish
sub-micrometer alignment precision. Also, the presence of the miniature liner tube
around the mirror axis, as well as the ‘dummy’ liner tube at the opposite side of the
slit deflector are visible in the photograph.

4.5.3. Combination of layers
The top and bottom layers that contain the beam separator and MEMS optics, as
well as the middle layer that contains the barn door deflector, are each placed at
the respective stage of the E-bracket that was already shown schematically as the
gray element in [Fig. 4.10(d)]. A photograph of the assembled unit is shown in
[Fig. 4.13(a)]. After placing each layer in the E-bracket, the assembly is mounted
onto the specimen stage of the scanning electron microscope [Fig. 4.13(b)]. The
flexible circuits boards are connected to an electrical patch panel that is positioned
at the vacuum side of the microscope stage. In [Fig. 4.13(c)] a detail photograph
shows the compression spring, clamps, and kinematic precision balls that were earlier
discussed in [sct. 4.4.5].

4.6. Discussion and conclusion
The double mirror setup that we proposed here can in principle be integrated as
a column extension into a transmission electron microscope (TEM). This would
potentially enable novel imaging schemes, including multi-pass electron microscopy,
quantum electron microscopy, structural hypothesis testing, and wave front shaping
in general. At the current stage of progress, we have designed a prototype setup
that is currently being tested inside the specimen chamber of a scanning electron
microscope.

The initial tests have indicated that the titanium miniature liner tubes that we
used are prone to the built up of electrical charge inside the cylinder walls. This has
so far prohibited us from obtaining a full round trip through the setup. Attempts
of suppressing this problem by means of increasing the electron beam energy are
limited due to the sensitivity of the MEMS electrodes for electrical break down.
Additional research is needed into materials and processing methods that reduce or
eliminate the charge built-up inside the miniature liner tube. Early attempts at this
indicate Molybdenum-based tubes as a relatively cost-effective method, although
these have only been tested in an isolated test setup and are currently not yet
integrated in the assembled setup.

The current optical design of the setup is shown theoretically to be free of disper-
sions at the sample plane after a round trip through the resonator. This is however
not the case for the dispersion at the mirror planes. We do not expect that this is
a problem, as long as only a single round trip is considered and only one mirror is
used for beam shaping. Thus, the setup in its present form can be used to validate
design principles and to obtain initial experience with double mirror based minia-
ture optics. However, a problem may arise when the setup is used for multi-pass
microscopy, or when both mirrors are patterned for controlled wave front shaping.
In that case a field lens at the common crossover plane in between the mirrors may

4
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(a)

(b) (c)

Figure 4.13: Assembly of top, middle, and bottom layer onto the E-bracket. (a) Photograph of the
assembly with all layers placed. (b) Photograph of the assembled unit positioned at the specimen
stage inside the scanning electron microscope. (c) Detail of the top layer placement, showing the
compression spring, clamps, and kinematic precision ball parts.

be needed, but we do not have a detailed design available for that at this moment.
With an improved optical design in place that provides a dispersion free plane

in front of the mirrors, a further extension to the setup would be to replace the
static barn door by an ultrafast deflector. At a 2 keV beam energy, the time it
takes to complete a round trip in the resonator is approximately 4− 5 ns. In order
to trap the electron inside the resonator loop, this requires to double the deflection
potential within that time frame. It is then preferable to work with a small deflection
potential, which should be possible by reducing the width of the gap between the
deflector poles.

An alternative approach to the design of this ultrafast deflector would be to
distribute the deflector potential among two stacked electrodes, as shown in [Fig.
4.14]. Two independent power supplies can then be used to provide the deflection
potentials. The phase difference between the outputs of these supplies can be tuned
with relative ease, and this enables one to vary the number of round trips inside the

4.6. Discussion and conclusion
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Figure 4.14: Design for an ultrafast barn door deflector that consists of two deflection layers. The
tapered design enables a reduced gap width between the electrode pairs and helps to reduce the
needed deflection potential. (a) Excitation of only the lower electrode pair enables the entrance to
the resonator. (b) Excitation of both electrode pairs traps the electron inside the resonator. (c)
Excitation of only the upper electrode pair enables the exit from the resonator.

resonator.
The excitation of only the bottom electrode pair in this configuration provides

the entrance field for the electron to enter the resonator, as is shown in [Fig. 4.14(a)].
The electron is next trapped inside the resonator by excitation of both the upper
and lower electrode pair [Fig. 4.14(b)]. After an integer amount of round trip times
tN the electron is removed from the resonator by only exciting the upper electrode
pair [Fig. 4.14(c)]. The tapered design of the electrodes as shown in the schematic
enables one to reduce the gap width between the electrode pairs and therewith
help to further reduce the switching potential V = VA = VB , and additionally also
increases the clearance of the electron with respect to the side wall of the electrodes.

In conclusion, we have described an experimental setup that provides a way of
using two patterned electron mirrors inside the specimen chamber of a scanning
electron microscope. Initial numerical and experimental results show the potential
of using miniature electron optics to realize the proposed experimental design. We
are currently performing initial experimental tests with the double mirror unit.

References
[1] G. Guzzinati, L. Clark, A. Béché, R. Jucht-

mans, R. V. Boxem, M. Mazilu, and
J. Verbeeck, Prospects for versatile phase
manipulation in the TEM: Beyond aber-
ration correction, Ultramicroscopy 151, 85
(2015).

[2] C. W. Johnson, J. S. Pierce, R. C. Moraski,
A. E. Turner, A. T. Greenberg, W. S.
Parker, and B. J. McMorran, Exact design
of complex amplitude holograms for produc-
ing arbitrary scalar fields, Optics Express
28, 17334 (2020).

[3] R. Danev and K. Nagayama, Transmission
electron microscopy with Zernike phase
plate, Ultramicroscopy 88, 243 (2001).

[4] J. Verbeeck, A. Béché, K. Müller-Caspary,
G. Guzzinati, M. A. Luong, and M. D.
Hertog, Demonstration of a 2×2 pro-
grammable phase plate for electrons, Ultra-
microscopy 190, 58 (2018).

[5] A. M. Carroll, Pattern generators for re-
flective electron-beam lithography (REBL),

4

84 | References

http://dx.doi.org/ 10.1016/j.ultramic.2014.10.007
http://dx.doi.org/ 10.1016/j.ultramic.2014.10.007
http://dx.doi.org/10.1364/oe.393224
http://dx.doi.org/10.1364/oe.393224
http://dx.doi.org/ 10.1016/s0304-3991(01)00088-2
http://dx.doi.org/10.1016/j.ultramic.2018.03.017
http://dx.doi.org/10.1016/j.ultramic.2018.03.017


in Advances in Imaging and Electron
Physics (Elsevier, 2015) pp. 1–23.

[6] H. Okamoto, Adaptive quantum mea-
surement for low-dose electron mi-
croscopy, Physical Review A 81 (2010),
10.1103/physreva.81.043807.

[7] Chapter 3 in this thesis.

[8] H. Dohi and P. Kruit, Design for an aberra-
tion corrected scanning electron microscope
using miniature electron mirrors, Ultrami-
croscopy 189, 1 (2018).

[9] A. B. Bok, J. B. le Poole, J. Roos, and
H. de Lang, Mirror electron microscopy, in
Advances in Imaging and Electron Physics
(Elsevier, 2017) pp. 99–192.

[10] P. Kruit, R. Hobbs, C.-S. Kim, Y. Yang,
V. Manfrinato, J. Hammer, S. Thomas,
P. Weber, B. Klopfer, C. Kohstall, T. Juff-
mann, M. A. Kasevich, P. Hommelhoff,
and K. K. Berggren, Designs for a quan-
tum electron microscope, Ultramicroscopy
164, 31 (2016).

[11] M. Turchetti, C.-S. Kim, R. Hobbs,
Y. Yang, P. Kruit, and K. K. Berggren,
Design and simulation of a linear electron
cavity for quantum electron microscopy, Ul-
tramicroscopy 199, 50 (2019).

[12] Y. Yang, C.-S. Kim, R. G. Hobbs,
P. Kruit, and K. K. Berggren, Efficient
two-port electron beam splitter via a quan-
tum interaction-free measurement, Phys-
ical Review A 98 (2018), 10.1103/phys-
reva.98.043621.

[13] M. A. R. Krielaart and P. Kruit, Grating
mirror for diffraction of electrons, Phys-
ical Review A 98 (2018), 10.1103/phys-
reva.98.063806.

[14] W. P. Putnam and M. F. Yanik, Noninva-
sive electron microscopy with interaction-
free quantum measurements, Physical
Review A 80 (2009), 10.1103/phys-
reva.80.040902.

[15] S. V. Loginov, M. A. R. Krielaart, and
P. Kruit, Shot noise limited phase contrast
in quantum electron microscopy, In prepa-
ration (2020).

[16] P. Kwiat, H. Weinfurter, T. Herzog,
A. Zeilinger, and M. A. Kasevich,
Interaction-free measurement, Physical Re-
view Letters 74, 4763 (1995).

[17] T. Juffmann, S. A. Koppell, B. B. Klopfer,
C. Ophus, R. M. Glaeser, and M. A.
Kasevich, Multi-pass transmission electron
microscopy, Scientific Reports 7 (2017),
10.1038/s41598-017-01841-x.

[18] S. A. Koppell, M. Mankos, A. J. Bowman,
Y. Israel, T. Juffmann, B. B. Klopfer, and
M. A. Kasevich, Design for a 10 keV multi-
pass transmission electron microscope, Ul-
tramicroscopy 207, 112834 (2019).

[19] H. Müller, D. Preikszas, and H. Rose,
A beam separator with small aberrations,
Journal of Electron Microscopy 48, 191
(1999).

[20] R. M. Tromp, J. B. Hannon, A. W. El-
lis, W. Wan, A. Berghaus, and O. Schaff,
A new aberration-corrected, energy-filtered
LEEM/PEEM instrument. I. Principles
and design, Ultramicroscopy 110, 852
(2010).

[21] R. Rong, H. S. Kim, S. S. Park, N. W.
Hwang, B. J. Kim, and C. H. Ahn, A novel
magnetic microdeflector for electron beam
control in electron beam microcolumn sys-
tems, IEEE Transactions on Magnetics 42,
3237 (2006).

[22] J. Harrison, O. Paydar, Y. Hwang, J. Wu,
E. Threlkeld, P. Musumeci, and R. N.
Candler, Fabrication process for thick-film
micromachined multi-pole electromagnets,
Journal of Microelectromechanical Systems
23, 505 (2014).

[23] J. Harrison, Y. Hwang, O. Paydar, J. Wu,
E. Threlkeld, J. Rosenzweig, P. Musumeci,
and R. Candler, High-gradient microelec-
tromechanical system quadrupole electro-
magnets for particle beam focusing and
steering, Physical Review Special Top-
ics - Accelerators and Beams 18 (2015),
10.1103/physrevstab.18.023501.

[24] P. Kruit, The role of MEMS in mask-
less lithography, Microelectronic Engineer-
ing 84, 1027 (2007).

[25] A. Zonnevylle, Individual beam control in
multi electron beam systems, Ph.D. thesis,
Delft University of Technology (2017), ch.
5.

References

4

| 85

http://dx.doi.org/10.1016/bs.aiep.2015.02.001
http://dx.doi.org/10.1016/bs.aiep.2015.02.001
http://dx.doi.org/ 10.1103/physreva.81.043807
http://dx.doi.org/ 10.1103/physreva.81.043807
http://dx.doi.org/10.1016/j.ultramic.2018.03.009
http://dx.doi.org/10.1016/j.ultramic.2018.03.009
http://dx.doi.org/10.1016/bs.aiep.2017.07.005
http://dx.doi.org/ 10.1016/j.ultramic.2016.03.004
http://dx.doi.org/ 10.1016/j.ultramic.2016.03.004
http://dx.doi.org/ 10.1016/j.ultramic.2019.01.010
http://dx.doi.org/ 10.1016/j.ultramic.2019.01.010
http://dx.doi.org/ 10.1103/physreva.98.043621
http://dx.doi.org/ 10.1103/physreva.98.043621
http://dx.doi.org/ 10.1103/physreva.98.043621
http://dx.doi.org/ 10.1103/physreva.98.063806
http://dx.doi.org/ 10.1103/physreva.98.063806
http://dx.doi.org/ 10.1103/physreva.98.063806
http://dx.doi.org/10.1103/physreva.80.040902
http://dx.doi.org/10.1103/physreva.80.040902
http://dx.doi.org/10.1103/physreva.80.040902
http://dx.doi.org/10.1103/physrevlett.74.4763
http://dx.doi.org/10.1103/physrevlett.74.4763
http://dx.doi.org/10.1038/s41598-017-01841-x
http://dx.doi.org/10.1038/s41598-017-01841-x
http://dx.doi.org/10.1016/j.ultramic.2019.112834
http://dx.doi.org/10.1016/j.ultramic.2019.112834
http://dx.doi.org/ 10.1093/oxfordjournals.jmicro.a023670
http://dx.doi.org/ 10.1093/oxfordjournals.jmicro.a023670
http://dx.doi.org/ 10.1016/j.ultramic.2010.03.005
http://dx.doi.org/ 10.1016/j.ultramic.2010.03.005
http://dx.doi.org/ 10.1109/tmag.2006.878426
http://dx.doi.org/ 10.1109/tmag.2006.878426
http://dx.doi.org/10.1109/jmems.2014.2315763
http://dx.doi.org/10.1109/jmems.2014.2315763
http://dx.doi.org/ 10.1103/physrevstab.18.023501
http://dx.doi.org/ 10.1103/physrevstab.18.023501
http://dx.doi.org/ 10.1103/physrevstab.18.023501
http://dx.doi.org/10.1016/j.mee.2007.01.082
http://dx.doi.org/10.1016/j.mee.2007.01.082
http://resolver.tudelft.nl/uuid:a4727159-9a32-4d48-9a4d-65e9e9912a10


[26] M. A. R. Krielaart and P. Kruit, Flat elec-
tron mirror, Ultramicroscopy 220, 113157
(2021).

[27] D. Preikszas and H. Rose, Correction prop-
erties of electron mirrors, Journal of Elec-
tron Microscopy 46, 1 (1997).

[28] M. A. R. Krielaart, D. J. Maas, S. V. Logi-

nov, and P. Kruit, Miniature electron beam
separator based on three stacked dipoles,
Journal of Applied Physics 127, 234904
(2020).

[29] A. H. Slocum, Precision machine design;
ISBN: 0-13-690918-3, Ch. 7, Sct. 7, Soci-
ety of Manufacturing Engineers: Dearborn,
MI, USA (1992).

4

86 | References

http://dx.doi.org/10.1016/j.ultramic.2020.113157
http://dx.doi.org/10.1016/j.ultramic.2020.113157
http://dx.doi.org/ 10.1093/oxfordjournals.jmicro.a023484
http://dx.doi.org/ 10.1093/oxfordjournals.jmicro.a023484
http://dx.doi.org/ 10.1063/5.0008089
http://dx.doi.org/ 10.1063/5.0008089


5
Miniature electron beam separator

based on three stacked dipoles

M. A. R. Krielaart, D. J. Maas, S. V. Loginov, P. Kruit

Abstract.
We designed and built a compact bi-axial electron beam separator. This sepa-
rator is an indispensable electron optical element in the development of MEMS-
mirror-based miniaturized concepts for quantum electron microscopy (QEM) and
aberration-corrected low-voltage scanning electron microscopy (AC-SEM). The sep-
arator provides the essential cycling of the electron beam between the two parallel
optical axes that are part of these systems. This requires crossed electric and mag-
netic fields perpendicular to the beam path, as can be found in Wien-filter type beam
separators. In our miniaturized QEM or AC-SEM concepts, the parallel axes are
separated by only one millimeter. Conventional Wien-filter-based beam separator
concepts rely on in-plane electric and magnetic multipole electrode configurations
that are larger than the restricted available volume in these miniaturized QEM/AC-
SEM systems. Our compact beam separator design introduces three stacked dipole
electrode layers which enables simultaneous beam separation at two parallel axes
that are in close proximity. The outer layer electrodes maintain an electric field
for which the direction on the one axis is opposed to that on the other axis. The
middle layer generates a perpendicularly oriented magnetic field that spans both
axes. The total field configuration enables deflection of the beam on one axis and si-
multaneously provides a straight passage on the other axis. The deflection strength
and distortion fields of the beam separator are experimentally obtained with a 2
keV electron beam energy. The results validate the use of the beam separator for
electron energies up to 5 keV and deflection angles up to 100 mrad.

This chapter has been published as M. A. R. Krielaart, D. J. Maas, S. V. Loginov, and P. Kruit,
Miniature electron beam separator based on three stacked dipoles, Journal of Applied Physics 127,
234904 (2020).
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5.1. Introduction
Advanced inspection and analysis equipment such as electron microscopes, mass
spectrometers and focused ion beam systems contain sophisticated optical elements.
These elements control both the charged particles in the primary beam, and in the
secondary electron or ion signals. In most of these instruments, a beam separator
is an important element in which the primary beam and the secondary beams are
separated with a negligible impact on both the qualities of the primary beam and
the secondary beam strength [1], thus enabling efficient high quality imaging and
analysis.

Charged particle beams can be manipulated with electric and magnetic fields
through the Lorentz force. While propagating through a dipole field, a charged
particle beam is accelerated and/or deflected. In the special case of a spread out
beam that traverses a cleverly arranged series of multipole fields, also aberration
correction is achieved [2]. As the Lorentz force is dependent on both beam energy
and direction, crossed electric (E) and magnetic (B) dipole fields provide zero de-
flection for exactly one beam energy only, for which the Wien condition E = vB is
satisfied. Consequently, a polychromatic beam that propagates a crossed E and B
field is dispersed. The amount of dispersion is controlled by the magnitude of the
fields. Beam energy analyzers such as a Wien filter [3] make use of the latter effect
to measure the energy spectrum of a beam [4], and to restore longitudinal coherence
in interferometers [5]. When a Wien filter is combined with a narrow aperture slit
positioned behind the exit port, a monochromator is realized [6, 7]. Furthermore,
overlapping perpendicular electric and magnetic fields find application in beam sep-
arators, for which the deflection angle upon propagation depends on the sign of the
velocity vector.

When combining a beam separator with a beam-reflecting element, for instance
an aperture mirror as in (aberration corrected) low energy electron microscopy [8],
and/or a specimen at cathode potential as seen in low energy/photo emission elec-
tron microscope (LEEM/PEEM) [9–11] and mirror electron microscopy [12], again
the need arises to separate the trajectories of the incident and reflected particles.
For these cases there are even more challenging constraints on e.g. the separator
size and its optical properties [1], since the uncorrectable aberrations cannot easily
be de-magnified to have a negligible impact on the (improved) primary beam probe
size.

Especially for recent suggestions for aberration correction [8] and beam pattern-
ing [13], both setups [Fig. 5.1] are enabled by the use of sub-mm-sized accurate
electrodes which are manufactured using MEMS production technology [14]. As a
consequence of the miniaturization, the lateral separation between the microscope
axis and the mirror axis is only one or two mm, leaving a too restricted space for
both conventional and state of the art miniature [15, 16] beam separators.

In this paper, we present the design, construction and evaluation of a compact
electron optical beam separator that facilitates most of the above mentioned con-
figurations. In our novel beam separator design, crossed E- and B-dipole fields are
applied after each other, rather than at the same axial position as in conventional
Wien filter designs. Our prototype consists of three layers of perpendicularly ar-
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Figure 5.1: MEMS based multi-axes electron optical setups, based on proposals for (a) miniaturized
double electron mirror based aberration correction for scanning electron microscopy, and (b) mirror
based beam patterning. The beam enters from the top on the right hand side axis, and propagates
through the setup as indicated by the beam outline (green) and deflection sequence (numbered
arrow). The use of MEMS electron optics enables small deflection angles (below 100 mrad), such as
to limit deflection dispersion errors. The EBE separator units indicate optical planes that require
a directional dependent deflection. Other deflection optics relies on electrostatic deflection fields
only.

ranged dipoles. Similar to what is seen in Mook’s monochromator [6], the magnetic
poles can also be used as electrostatic poles, which has the practical benefit of well-
matching fringe fields. The beam is deflected in one plane by passing a sequence of
E-B-E dipole fields, and in the perpendicular plane by a sequence of B-E-B dipole
fields. We coin the term EBE separator for this device.

Because of the initial application of the beam separator in Low-Voltage SEM,
and for miniature setups as we described above, the design that we present here
is aimed at single digit keV beam energies, and deflection angles up to 100 mrad.
The axes are laterally separated by 1 mm. We will obtain multipole distortion
coefficients that enable to determine the limit of the beam spread in the device that
is tolerable in the case of integration with setups in which the crossover plane of the
beam does not coincide with the device, such as shown in [Fig. 5.1(b)].

5.1. Introduction
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(a) (b)

Figure 5.2: (a) Schematic beam path through two consecutive dipole fields (one electric, one
magnetic) and (b) the schematic beam path through three consecutive dipole fields (two electric,
one magnetic). The electric field is distributed equally among the top and bottom layer and
balances the deflection through the middle magnetic field. Notice that the role of magnetic and
electric fields can be interchanged.

5.2. EBE Electron optics
5.2.1. Beam separator
The function of a beam separator is to provide either a deflection trajectory or
straight path for the incident beam [1], depending on the sign of the velocity vector.
Simple beam separators exhibit (shared) in-plane magnetic and electric fields, and
require a single electric and a single magnetic field that are rotated 90◦ in-plane
with respect to each other in order to facilitate both trajectories. Consequently, the
electrode geometry will not only result in a dipole (deflection) field but also a higher
order hexapole field is generated.

For this reason, we separate the electric and magnetic fields spatially behind one
another. This enables the use of flat dipole electrodes. However, the use of only
two dipole layers would not suffice as the net effect for the supposed straight path
would result in a beam shift as the dipole fields don’t overlap in space [Fig. 5.2(a)].
Hence, it is required to add a third dipole layer and distribute either the electric
or magnetic field contribution equally over the top and bottom layers [Fig. 5.2(b)].
This way, the straight path through the beam separator will not suffer from a beam
shift, while the deflection trajectory angle can still be set independently.

Two configurations of fields comply with the above:

1. E-B-E, the electric dipole is equally distributed among the first and third level
dipole and the magnetic field is generated on the second layer [Fig. 5.3(b)].

2. B-E-B, the magnetic field is equally distributed among the first and third level
dipole and the electric field is generated on the second layer [Fig. 5.3(c)].

Both configurations can be set independently of each other, and the two resulting
deflection planes are perpendicular to one another.

The first order effect of an excitation in one of the dipole layers can be obtained by
calculating the velocity change in the direction of the resulting force upon traversing
the field. For an electric dipole, the deflection angle (αE) is dependent on the beam
energy Φ (in V) and the strength of the electric field (Ex) as well as the effective
length ℓeff, via
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Figure 5.3: Schematic representation of the electrodes and field orientation inside the beam sepa-
rator. (a) Top view, with the elongated entrance slit (grey), primary electric (red and blue) and
magnetic (green) poles visible. (b) Horizontal cross section view of the beam separator, with the
in-plane electric field and out-of-plane magnetic field arrows. (c) Vertical cross section view, per-
pendicular to the view of (b), showing the direction of the generated fields. The signs of the fields
are all interchangeable.

αE =
Exℓeff
2Φ

. (5.1)

The effective length relates to the thickness ℓ of the electrode that generates the
field through the constant k ≡ ℓeff/ℓ and accounts for the fringe fields in the first
order top hat model. A value for the effective length can be obtained either through
numerical modeling or matching of the deflection term to experimental data. For a
magnetic induction field (By) dipole the deflection angle is by

αB =

√
e

m

Byℓeff√
2Φ

. (5.2)

In both equations a top hat field is assumed in order to account for the fringe
fields. The net deflection angle α that the beam obtains upon passage through the
device is given by the sum of the contribution from each of the three layers.

From a numerical COMSOL model the on-axis magnetic and electric field strength
is obtained for the E-B-E configuration (in plane deflection) as well as the B-E-B
configuration (out of plane deflection) [Fig. 5.4]. In the model, an excitation current
of 1 A, and electric potential of ±1 V across the optical axis is used. From this data,
the effective length is determined by equating the integrated on-axis fields to the
top hat model, given by

∫
F (z) dz = F0ℓeff. (5.3)

Here, F (z) represents the numerical solution data for the electric or magnetic
field and F0 is the nominal field strength that is used in the top hat model. Ap-
plication of [Eq. 5.3] on the numerical data yields a value of kt+b = 1.88 for a
combined excitation of the field at the top and bottom layer and km = 1.75 for a
field excitation at the middle layer.

5.2. EBE Electron optics
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Figure 5.4: Axial (left) magnetic induction, and (right) electric field strength components, for fields
that provide a net force on the beam in the in-plane (solid) and out-of-plane (dashed) direction.
An excitation current of 1 A, and potential of ±1 V were used for this calculation. The definitions
for the electrode thickness (ℓ) and effective field length (ℓeff) are indicated for the middle layer.

5.2.2. Beam separator for two parallel axes
We discussed in the introduction two microscope schemes [Fig. 5.1] that would
benefit from the presence of a second axis. This axis should run in parallel and
be separated with the optical axis over a lateral distance of order of magnitude
one millimeter. The concept of the beam separator with one optical axis can be
extended to include this second axis that is placed in parallel with the first axis.
The resulting E-B-E and B-E-B field configurations [Fig. 5.5] then explicitly take
into account the presence of the entry or exit trajectories for MEMS based setups
that contain reflective elements.

The geometry of the beam separator for two parallel axes differs from the single
axis design only in the top and bottom dipole layer. In these layers, an anti-parallel
electric or magnetic field is added with respect to the single-axis design, whereas
the geometry of the middle layer is unchanged from the single axis design. Hence,
the effect of the middle layer field is the same for a both axes, whereas the effect of
the top and lower layer is opposite for both axes.

For this two-axes design the E-B-E field configuration will deflect the beam in
the direction of the parallel axis and thus realize the electron trajectories as shown
earlier [Fig. 5.1]. Simultaneously, the B-E-B field configuration enables the deflection
of the beam perpendicular to the plane that is spanned by the two axes. The latter
offers a practical means of correcting for small (mechanical) alignment errors.

5.2.3. Energy filter
The dispersion relationships for the electric and magnetic fields are derived by ob-
taining the derivative of the deflection angle formulas with respect to the beam
energy. This yields two simple equations that relate the deviation in deflection an-
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Figure 5.5: Schematic representation of the electrodes and field orientation inside the beam separa-
tor for two parallel axes. (a) Top view showing the entrance apertures (grey) and inside electrodes.
(b) Direction of the fields inside the device, with respect to the various electrodes. The field in the
top and bottom layer always points in opposite direction for both axes. The central field is shared
across both axes and thus performs an axis-independent action on the beam. Resulting beam
trajectories for electrode excitations that satisfy the Wien condition are shown. The perpendicular
cross section is unchanged from the single-axis design and not shown here again.

gle (∆α) as a function of the deviation of the beam energy (∆Φ) from the nominal
energy (Φ), given by

∆αE =
∆Φ

Φ
α, (5.4)

and,

∆αB =
1

2

∆Φ

Φ
α, (5.5)

for respectively the electric and magnetic deflection dispersion. Ordinary energy
filters rely on the factor two difference between the magnetic and electric dispersion
relation since the fields that provide the net zero deflection, αE = −αB overlap,

∆Φ

Φ
=

∆αE

αE
= 2

∆αB

αB
. (5.6)

In our device, the three dipole fields are separated in space, which does not
change the outcome of the above analysis to first order.

5.2.4. Higher order effects
Our main motivation for splitting the electric and magnetic deflection layers results
from the attempt of reducing the generation of higher order distortion fields. By
choosing the sideways extend of the electrodes much larger than the longitudinal
spacing between the dipole electrodes, we aim to eliminate the higher harmonic field
distortions that are associated with more complex shaped electrodes.

The geometry that we described for the beam separator with either one axis or
two axes allows for the generation of dipole fields. In the presence of a single dipole

5.2. EBE Electron optics
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layer, no higher order distortion can develop, neither in between the electrodes nor
as a result of the fringe fields at the edge of the electrode pair.

However, the addition of multiple crossed layers of dipole electrodes may cause
a 3-dimensional influence, such that the fringe fields of the separate electrode pairs
become deformed under the presence of the neighboring electrode pair. Due to
the symmetry of the stacked electrode geometry, and due to the asymmetry of the
electric and magnetic excitations of the electrode pairs per layer, no quadrupole
distortion can be generated. Instead, the first harmonic distortion field that is
associated with the device geometry and field configuration is a hexapole.

The deflection and distortion field strength are described quantitatively by a
projected potential along the optical axis. This is obtained as the solution of the
Laplace equation for non-rotationally symmetric fields [17] with excitation ampli-
tude U0, given by

U(r, ϕ) = −U0

N∑
n=1

cnnr
n−1 cos(2πn[ϕ+ θn]). (5.7)

The magnitude (cn) and orientation angle (θn) correspond to the optical dipole
field (n = 1), astigmatism or quadrupole field (n = 2) and higher order fields. Since
the deflection angle α ∝ U is proportional to the above expression for the potential,
the effect of beam propagation through the above field results in a spatial position
dependent beam deflection. It must be observed that, except for the dipole field
itself, all higher harmonic fields contain an off-axis radial dependence.

Consequently, the first higher order field causes astigmatism to a spread out
beam due to the quadrupole field which degrades the size of the (virtual) probe size,
and the second higher harmonic causes a hexapole distortion in the (virtual) probe.
The resulting blur is then obtained by calculating the additional beam deflection αn

for each order, and tracing the distinct contributions back to the last image plane
at distance u away from the EBE separator. For a beam of radius R0 inside the
separator, the contribution to the probe size degradation is then given by

dspot
n = ucnnU0R

n−1
0 . (5.8)

It depends on the final application what degree of blurring is tolerated. For the
special case where the crossover of the beam coincides with the EBE separator [for
instance, in Fig. 5.1(a)], the effects of higher orders can usually be neglected.

5.3. Electromechanical design
In this section we discuss the construction of the beam separator for two parallel
axes. The two-axes implementation covers the functionality that is required for
both one-axis and two-axes beam separation, as well as the other applications that
we discussed before. We will discuss the outline, placement and machining of the
electrode poles and device enclosure, the mechanical requirements on alignment, and
the integration of the electrical signals into the device.
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Figure 5.6: (a) Gap width mismatch as seen from the side between both axes results in a net
deflection error that is proportional to the deflection angle and variation in gap width. (b) A
wedge geometry as seen from above leads to a quadrupole contribution to the deflection field, that
would ordinarily be absent when β → 0.

5.3.1. Machining tolerances
The tolerances on machining accuracy and mechanical alignment of the electrodes
are dictated by the application of the device. As the device is built up from different
layers of dipole geometry, any longitudinal stacking error will affect both axes equally
and is of limited concern. In contrast, it is expected machining tolerances will result
in variations of dipole gap spacing within the individual layers.

For both magnetic and electric dipole fields, the resulting deflection angle α ∝
w−1

gap is inversely proportional to the separation gap width (wgap) of the dipole
[Fig. 5.6(a)]. Hence, a width variation dw = w2 − w1 between the dipole pair on
the one and on the other axis will introduce a deflection angle error (dα) that is
approximated by

dα = − α

wgap
dw. (5.9)

In turn, for the mentioned deflection angles for use as a beam separator of up to
100 mrad, the electron trajectory through the effective straight path gets erroneously
deflected by approximately 0.1 mrad/µm gap width variation. The above result is
mainly applicable to the top and bottom layer of the device, as the dipole fields on
these layers are not shared across both axes.

A rotation misalignment of a dipole electrode pair leads to multiple optical dis-
tortions. The dipole field at the central layer of the device is shared by both axes.
Hence, an in-plane rotational placement error between the two electrodes leads to the
wedged geometry when seen from the top. The gap width variation dwgap = L tan(β)
then provides the variation in deflection strength across both axes for a given wedge
angle (β).

Additionally, the wedge angle leads to a symmetric non-uniformity in the dipole
field. This is understood by comparing the dipole field strength, leading to a force
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Figure 5.7: Optical and SEM inspection photo- and micrograph (tilted) of a spark eroded electrode
pole before (left) and after (right) polishing with a fine grain abrasive paper. Notice the yellowish
colored sediment in the photograph of the unpolished electrode, which suggests that the spark wire
deposits material onto the electrode. No traces of this deposited material were found after surface
treatment.

F1 on the beam for a parallel plate geometry (β = 0), to the additional force F2

that develops for an increasing wedge angle [see Fig. 5.6(b)]. The wedge angle β
can then be obtained by comparing the (experimentally obtained) dipole (c1) and
quadrupole (c2) coefficients, which are related through

β = tan
(
c2
c1
wgap

)
. (5.10)

A method for obtaining these coefficients in an experiment are discussed in the
Experimental Methods section of this work.

5.3.2. Electrodes and enclosure
All electrodes are fabricated from metal that exhibits high magnetic permeability.
We used µ-metal to this end, an alloy consistent of 77% Ni, 16% Fe and traces of Cu
and Cr. The combination of high magnetic relative permeability of up to 3×105 and
limited susceptibility to oxidization of the NiFe makes that magnetic and electric
fields can be injected away from the optical axis of the device. In addition, µ-metal
is known for its limited sensitivity to magnetic hysteresis [18].

Mechanical stress is known to deteriorate the magnetic properties of µ-metal.
For this reason, all electrodes are manufactured through the use of spark erosion.
The absolute machining accuracy for this technique is limited to approximately 10
µm and thus by following the earlier reasoning we may expect deflection errors up
to 0.1 mrad. During manufacturing we also noticed that the spark wire deposits
material onto the electrode surface, which causes surface roughness of up to 30 µm
that is afterwards reduced to bulk roughness by a surface polish [Fig. 5.7].

The mechanical enclosure of the device is milled out of aluminum alloy Al 7075-
T6 (AlZnMgCu1,5). Tangent surfaces are milled into the enclosure to enable the
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Figure 5.8: Mechanical outline of the device enclosure (inset for perspective view) and shape and
orientation for (a) the top and bottom layer electrodes and (b) the central layer electrodes. All
electrodes are manufactured by spark erosion from mu-metal. The alignment of the elements relies
on the tangent surfaces and grips at the circumference of the device enclosure. Electrical contact
and magnetic flux injection are achieved through (c) the flexible printed circuit boards (fPCBs).
The turquoise islands provide electrical contact for the electrodes and these are surrounded by
12 turn coils (distributed over four layers, 3 turns per layer). The circles inside the black square
indicate the position of both optical axes.

mechanical alignment of the electrodes [Fig. 5.8(a) and Fig. 5.8(b)]. After milling,
the enclosure is dimensionally stable anodized in order to provide electrical insula-
tion of the enclosure towards the electrodes.

The demonstration of principle experiments that we carried out for this work
were performed inside an SEM at a beam energy of 2 keV. Because of possible
application areas of the EBE beam separator that we showed before [Fig. 5.1], the
two axes in the manufactured device are separated by 1 mm and a deflection angle
of approximately 50 mrad must be realized during operation. In the design, care
must be taken that the deflected beam path does not collides with the entrance or
exit apertures of the device. The use of 0.5 mm thick electrode material, and a
comparable spacing between the layers results in sufficient clearance between the
beam path and the apertures.

5.3.3. Electromechanical integration
The electric potentials and the magnetic fluxes are injected into the device through
flexible printed circuit boards (fPCBs) [Fig. 5.8(c)] that are positioned in between
the various dipole layers. A total of four identical fPCBs is used for this. The fPCBs
each contain four electrical contact pads that are exposed on one side of the fPCBs.
The contact pads are rotationally separated by an angle of 90◦.

Around each contact pad a multi-layer coil is integrated in the fPCBs, that is
electrically independent of the included contact pad. Each mu-metal electrode is
sandwiched in between two of these coils. Consequently, an opposite direction of

5.3. Electromechanical design

5

| 97



1 cm

Figure 5.9: Photograph of the assembled EBE separator that was used during the experiments.
The outer diameter of the holder measures 38 mm and the total thickness of the device (including
the cover) measures 9.4 mm.

current through the coil pair that is formed this way allows to either source or sink
magnetic flux from the in-between sandwiched mu-metal electrode. This way, the
magnetic dipole fields at the optical axis are generated independently for the top
and bottom layers, or middle layer. The magnetic field lines are closed through the
lid of the EBE separator.

Because of the thickness that the multi-layer coils add to the fPCBs, a µ-metal
disc is inserted in each of the coils and acts as a magnetic bore. The inserted
disc performs a dual role by also providing the electrical interface between the
embedded contact pad from the one side, and the metal electrode on the other
side. The reliability of the electrical contact of the disc towards the electrode may
be further improved by gold plating of the disc, although our current results were
obtained without performing this step and no indications of poor electrical contact
were observed.

5.4. Experimental methods
We have manufactured and assembled the two-axis beam separator [Fig. 5.9] and as-
sess the performance through beam deflection measurements. These measurements
are performed by positioning the EBE separator on an xy-translation stage inside
the specimen chamber of a scanning electron microscope. A series of micrographs is
obtained of a specimen that is positioned behind the separator, at increasing excita-
tion field strength and at a beam energy of 2 keV. The resulting deflection strength
and higher order multipole coefficients are obtained through numerical analysis of
the micrographs.

5.4.1. Experimental setup
The experiments are performed inside the specimen chamber of a FEI Verios 640
scanning electron microscope (SEM) by mounting the device onto a custom stage.
The mounting structure consists of two vertically separated levels such that the
device can be positioned at a fixed distance above the sample plane. By means of
two piezo actuators (Physik Instrumente, PI Q-545), we can translate the mounting
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Figure 5.10: Schematic of the experimental setup. The beam separator and specimen are placed
together on an xy-translation stage inside the specimen chamber of the microscope. The scan
system of the microscope provides the scanning and detector logic, and the beam is focused onto
the specimen by the normal-mode objective lens of the microscope.

structure in a plane perpendicular to the optical axis of the microscope for alignment
purposes [Fig. 5.10].

The voltage and current supplies that are used for excitation of the deflection
fields are designed and built in-house. The voltage supplies are bipolar with an out-
put range of ±300 V and are built around a PA91 Apex Microtechnology amplifier
chip. The current supply has an output current of ±500 mA and is centered around
a Texas Instruments LM675T amplifier. We make use of a LabVIEW application to
control the DT9854 digital-analog converters that are used to program the amplifier
output signals. Micrographs are recorded by collecting secondary electrons with the
ETD positioned inside the SEM chamber.

5.4.2. Deflection and distortion fields
Series of micrographs are obtained by scanning the electron beam with the micro-
scope scanning system through one of the axes of the device, while focusing the
beam onto a specimen that is positioned behind the separator. The field excita-
tion of the EBE separator is stepwise increased in between the acquisition of each
micrograph, which results in a change of beam angle [Fig. 5.10]. After the acqui-
sition, image registration is performed on consecutively recorded micrographs and
in this way we obtain displacement maps that relate corresponding regions in both
micrographs. The image registration is performed numerically through an imple-
mentation of Speeded-Up Robust Features (SURF) based feature recognition [19] in
MATLAB [20]. We found that the unpolished side of a single side polished (SSP) Si
wafer provides us with sufficient and detailed unique features for the SURF method
to work.

From the proportionality [see Eq. 5.7] between the projected electric field U(r, ϕ)
and the distortion field coefficients cn, the spatial displacement map v⃗(r, ϕ) of a
narrow beam that passes through this field upon small changes (∆U) in excitation
of the field is given by
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v⃗(r, ϕ) = −W∆U

N∑
n=1

cnnr
n−1 cos(2πn[ϕ+ θn]). (5.11)

W is the work distance between the EBE separator and the image plane. The
coefficients are extracted from the displacement maps by placement of an analysis
circle that is centered on the optical axis [Fig. 5.11(a)]. The dot product of the
tangential vectors that describe the circle (κ⃗) and local displacement vector (v⃗)
offer a quantitative scalar description of local distortion f(ϕ), where ϕ is the angle
with the positive horizontal axis [Fig. 5.11(b)]. Analysis of the spectrum of f(ϕ) by
means of a Fourier transform yields the complex valued coefficients Fn at the circle
radius R. These coefficients are related to the multipole coefficients of [Eq. 5.11]
through

cn =
|Fn|

nWRn−1
. (5.12)

The field orientation angle is obtained from the angle of the complex valued
coefficient Fn. For n > 1, phase wrapping occurs at field orientation angles of 2π/n,
which is accounted for in the numerical implementation of the method.

5.4.3. Detection limit and errors
The deflection caused by order n is dependent on the radial distance from the optical
axis, as given by [Eq. 5.1]. Hence, the minimum detectable field magnitude varies
for each multipole order as the effect only shows up in the displacement map when
the effect is at least equal to the distance that corresponds to (a multiple of) one
pixel in the recorded micrographs. Hence, weak distortion coefficients can only be
discerned from the data when both a large field of view and a small pixel and probe
size is used.

In the results that we obtained, the Fourier analysis is performed on a circle
radius of 100 µm and this radius is limited by the field of view of the micrograph.
The micrographs are recorded at a resolution of 162.8 nm per pixel. Evaluation of
[Eq. 5.12] then directly provides the detection threshold for the various distortion
coefficients, for a given excitation step ∆U of the field. In the data that we present
next, the electrode potential is increased by 0.5 V between each measurement, thus
resulting in a detection threshold of c2,E0

= 174 mrad m−1 V−1 and c3,E0
= 1.7 ×

106 mrad V−1 m−2. Likewise, for a step wise increase of the coil current by 4 mA,
the detection threshold for magnetic deflection measurements is given by c2,B0

=
21 mrad m−1 mA−1 and c3,B0 = 2.2× 105 mrad mA−1 m−2.

5.5. Results and discussion
5.5.1. Dipole strength
The electric and magnetic deflection field strengths are independently measured, for
both the E-B-E configuration that provides a deflection in the direction of both
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Figure 5.11: Outline of the detection method. (a) The displacement map data is interpolated onto
a regular spaced grid and the displacement map vectors are shown (blue arrows). The dot product
is calculated for the analysis circle tangent vectors κ⃗ (red arrow) and interpolated displacement
vectors v⃗ (green arrows). (b) Result of the dot product calculation for the displacement map shown,
a sparse data set shown for clarity.

axes, as well as for the B-E-B configuration that deflects the beam in the per-
pendicular plane. The deflection field strength is measured for both axes separately
(distinctively labeled Axis 1 and Axis 2), and we could obtain dipole and quadrupole
contributions that exceed the detection limit.

The obtained electrostatic dipole contribution for both axes [Fig. 5.12(a) and
Fig. 5.12(b)] yield c1,E = 1.95 mrad/V and the data for both axes overlaps within
the uncertainty of the measurement. This value is in agreement with the theoretical
expectation [Eq. 5.1], which yields an expectation of c̃1,E = 1.9 mrad/V for an
effective length factor of kt+b = 1.88. For the range of data that is shown here, an
electrostatic excitation of U = ±20 V corresponds to a net deflection angle of 40
mrad.

The origin of the seemingly structured noise that is observed in the electric dipole
measurement results is most likely caused by the digital to analog converter (DAC).
We use a 16 bit DAC that outputs over a voltage span of ±10 V. This signal is fed
to an instrumentation amplifier with a gain of 50, thus leading to a least significant
bit resolution of 15 mV. As the electrode potential is increased by 0.5 V in between
each measurement, the output steps are confined around (0.5/0.015 = 32 = 25) the
fifth bit of the DAC.

The magnetic dipole contributions for both axes do not fully overlap within the
uncertainty of the measurement. In addition, the dipole magnitude first increases
with approximately 1% of the initial value and afterwards reduces back to the initial
value. The average magnetic dipole magnitude reads c1,B = 0.27 mrad/mA for Axis
1, and c1,B = 0.28 mrad/mA for Axis 2. We make use of the numerically determined
km = 1.75 for deflection in the middle layer in order to estimate the effective value
µ of the magnetic material [through Eq. 5.2, and B = µµ0NI, with N the number
of coil turns and I the current through the coils], and this yields a value of µ = 800
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Figure 5.12: (a) Electric and (b) magnetic dipole magnitudes, and quadrupole (c) electric and (d)
magnetic magnitudes obtained for both axes in the E-B-E configuration. Results obtained at 2
keV beam energy.

for the magnetic circuit.

5.5.2. Multipole strength
The obtained quadrupole contributions display a linear increase as function of ex-
citation parameter [Fig. 5.12(c) and Fig. 5.12(d)]. This is a nontrivial result, since
the coefficients are supposed to be independent of excitation. However, the former
is strictly true only when an increasing excitation would not modify the position
of the beam inside the field. This is not the case here, since the dipole fields, that
act simultaneously with the distortion field on the beam, move the beam off-axis
[Fig. 5.13(a)].

From the geometry that is shown [Fig. 5.13(a)], the off-axis effect is most appar-
ent for the characterization of the electric field. Then, the beam propagation through
the top layer is responsible for an initial deflection angle of Uc1,E/2. This results in
an off-axis position for the beam on the third layer that is given by δ = Uλc1,E/2.

For a fixed azimuth angle ϕ = ϕ0, the multipole description [Eq. 5.8] can be
simplified to
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Figure 5.13: The effect of a hexapole distortion shows up as a quadrupole contribution that is
dependent on the off-axis distance δ. The effect is most pronounced for (a) simultaneous deflection
in the top and bottom layer, either electrically or magnetically. (b) A narrow beam that propagates
off-axis through a hexapole field initially suffers a quadrupole field, which gradually is taken over
by an apparent dipole field. (c) When the deflection is performed by the middle layer only, a
definition of δ that is consistent with the former is nontrivial.

U(r, ϕ0) ∝ c1 + 2c2r + 3c3r
2 +O(r3). (5.13)

The field that is generated by an on-axis hexapole can be described by two
quadrupole fields that are positioned opposite of one another, and rotated with
respect to each other by 90◦ [Fig. 5.13(b)]. Since a hexapole increases radially
quadratic in strength, the incremental change for a fixed azimuthal angle at off-axis
position r = δ is given by

dU3

dr

∣∣∣∣
r=δ

= 6c3δ. (5.14)

This term increases linearly off-axis and we recognize it as the local quadrupole
contribution, through 6c3δ ≡ 2c2. By plotting the obtained c2 terms as a function of
δ [Fig. 5.14(a)], the hexapole strength is approximated from the slope of the linear
curve that fits the data, and we find c3 = 3.3 × 105 mrad V−1 m−2. When the
offset of the linear fit is interpreted as the residual quadrupole distortion, a value of
c2,E = 7.5× 101 mrad V−1 m−1 is obtained.

A similar analysis that would yield the hexapole magnitude of the central mag-
netic layer is less trivial, since an expression for the off-axis position δ would be less
intuitive [Fig. 5.13(c)]. For this, we assumed a value of δ that corresponds to the
off-axis position of the beam as it is propagated half way through the field. A linear
fit through the data points is obtained with this assumption [Fig. 5.14 (b)], and a
hexapole magnitude of c3,B = 9.27× 105 mrad mA−1 m−2 was found.

The obtained quadrupole coefficients now enable an estimate of wedge angle β2
inside the various layers of the structure. For the main electric deflection field (top
and bottom layer), in accordance with [Eq. 5.10] we find a wedge angle βtop+bottom =
19 mrad. The wedge angle in the middle layer is determined through the magnetic
dipole and quadrupole coefficients and results in βmiddle = 7 mrad.

5.5. Results and discussion
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Figure 5.14: (a) The obtained electric quadrupole magnitude c2 as a function of the off-axis position
in the bottom layer, for both axis and obtained for a 2 keV beam energy. From the slope, the
hexapole field strength is approximated, c3,E = 3.3 × 105 mrad V−1 m−2. (b) The obtained
magnetic quadrupole magnitude, as a function of the estimated average off-axis position in the
middle layer magnetic field. From the slope, c3,B = 9.27× 105 mrad mA−1 m−2 is obtained.
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Table 5.1: Overview of the obtained electric and magnetic field multipole strengths, depending
on the level of field excitation and at 2 keV beam energy. Q represents the excitation method
(Q ≡ mA for magnetic excitation, and Q ≡ V for electric excitation). Entries are blank when no
sufficient data points for sampling are obtained.

Electrostatic (Q ≡ V) Magnetic (Q ≡ mA)
Top & Bottom Middle layer Top & Bottom Middle layer

c1/Q
[mrad/Q] 1.98 1.22 1.68× 10−1 2.75× 10−1

c2/Q
[mrad/(Q · m)] 7.5× 101 − − 6.35
c3/Q
[mrad/(Q · m2)] 3.50× 106 − − 9.27× 105

5.5.3. Overview of obtained fields
An overview of the measured and numerically approximated deflection coefficients is
given in Table 5.1. The data for deflection in the direction perpendicular to the two
axes (B-E-B configuration) are obtained in line with the above outlined methods as
well. The integration of the EBE separator in a setup in which the crossover plane
of the beam coincides with the device, such as in [Fig. 5.1(a)] results in feasible
excitation values for low-keV beam energies. In contrast, for applications where the
beam is spread out, the application is currently limited by the astigmatism caused
by c2, which at a working distance of 25 mm and for a beam waist of 10 µm results
in conservative numbers dspot

2 ∼ 500 nm, and dspot
3 ∼ 150 nm in accordance to

[Eq. 5.8]. We expect that improved machining accuracy for the wedge angles may
improve the off-axis performance of the device for the latter application.

Finally, we observe that the electric dipole contribution from the top and bottom
excitation is larger than that of the middle layer, while the opposite behavior is
observed for the magnetic dipole contributions. This observation is ascribed to the
difference in gap width, which is 500 µm for the outer layers, and 300 µm for the
middle layer in the device that we tested. Hence, the magnetic resistance in the
middle layer is smaller than that of the outside layers and this leads to an increase
in magnetic deflection per mA excitation, since an equal number of coil windings
and thus magnetic flux is used in the central layer as well as for the outer layers
combined. Contrarily, the electric dipole coefficient for the outer layers is larger
than the central layer despite the higher field strength in the central layer at equal
excitation. This is explained by the double passage of a deflection field in the outer
layers [ref. Fig. 5.4], and thus an effective increase in deflector area.

5.6. Conclusions
We have built a versatile miniature electron optical device [Fig. 5.9] that is demon-
strated for use as an electron beam separator, and that can principally also be
deployed as an energy analyzer and monochromator. The incorporation of two par-
allel axes in the device allow for integration with multi-axes MEMS based electron
optical setups. The device departs from conventional beam separator designs by

5.6. Conclusions
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spatially separating the electric and magnetic fields in different layers. In this way,
three deflection dipole layers are realized that can accommodate either an electric
or magnetic field.

The obtained magnitudes for deflection of the beam in the direction of the other
axis are obtained as an electric dipole, c1,E = 1.98 mrad/V, and a magnetic dipole
with a strength given by c1,B = 0.275 mrad/mA. The method that we used was not
sensitive enough for direct measurement of the hexapole distortion coefficient, but
these coefficients were obtained from the slope in the quadrupole data points.
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6
Flat electron mirror

Abstract.
Electron beams can be reflected by an electrode that is at a more negative potential
than the cathode from which the beam is emitted. We want to design a mirror with a
flat mirror electrode where the electrons are reflected at a plane very close to the elec-
trode. The wave front of an electron can then be shaped when the mirror contains
a surface topography or modulated potential. However, electron beams reflected
by flat electron mirrors are usually characterized by high coefficients of chromatic
and spherical aberration. When the mirror is combined with an electrostatic lens to
form a tetrode mirror system, the situation deteriorates even further. This places a
restrictive limit on the maximum aperture angle of the beam, and consequently also
limits the attainable resolution at the image plane. We have numerically studied the
dependence of these aberrations as a function of design parameters of the tetrode
mirror consisting of a ground, lens, cap, and mirror electrode, and limited ourselves
to only using flat electrodes with round apertures, at fixed electrode spacing. It
turns out that the third order spherical aberration can be made negative. The neg-
ative third order aberration is then used to partially compensate the positive fifth
order aberration. This way, a system configuration is obtained that, at 2 keV beam
energy, provides a diffraction limited resolution of 7.6 nm at an image plane 25 mm
from the mirror at beam semi-angles of 2.3 mrad, enabling an illumination radius of
40 mum at the mirror. The presented tetrode mirror design could spark innovative
use of patterned electron mirrors as phase plates for electron microscopy in general,
and for use as coherent beam splitters in Quantum Electron Microscopy in partic-
ular. An appendix presents a method to calculate the spot size of a focused beam
in the presence of both third and fifth order spherical aberration coefficients, which
is also applicable to Scanning (Transmission) Electron Microscopes with aberration
correctors.

This chapter has been published as M. A. R. Krielaart, and P. Kruit, Flat electron mirror, Ultra-
microscopy 220 (2021), 10.1016/j.ultramic.2020.113157.
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6.1. Introduction
An electron beam is reflected at an equipotential surface, under the condition that
the electric potential matches that of the electron beam acceleration voltage. Mirror
electron microscopy (MEM) [1, 2] schemes revolve around this principle, and derived
techniques are mainly applied in the field of surface physics [3–5]. In one mode of
operation, the specimen is kept at a bias potential that is slightly more negative
than the beam acceleration voltage, so that the equipotential surface of reflection
closely resembles the surface topography or structure of the specimen. It is the
modulation of the reflection field that imprints a spatial phase distribution in the
reflected beam. By imaging the reflected beam onto a detector, the imprinted phase
distribution offers information about the specimen.

The former principle can also be reversed. By carefully sculpting a topographic
pattern into a mirror substrate, the modulation of the electric field can be controlled
[6]. Current research focuses on using topographically patterned grating mirrors [7]
that can act as beam splitters and recombiners in quantum electron microscopy
(QEM) [8]. QEM constitutes an interaction-free measurement scheme that is based
on multiple passes through a Mach-Zehnder type interferometer [9]. The grating
mirror is then part of an electron resonator [Fig. 6.1] in which repetitive reflection
of the beam at the mirror allows for the gradual transition of amplitude between
the sample and reference beam of the interferometer [10].

Electron mirrors are more typically used for the correction of axial chromatic
and spherical aberrations [12]. This can be achieved with a concave shaped electric
field, which can be created for instance by using an aperture with a radius much
larger than the beam envelop as a mirror electrode. Another approach, for which an
analytical solution to the shape of the electric field can be provided, is realized by
making a cone-shaped indentation in the mirror electrode [13]. The latter is however
more mechanically challenging, when compared to machining a round aperture.

Unfortunately, (nearly) flat mirror surfaces as found in the linear QEM resonator
are usually characterized by large coefficients of spherical and chromatic aberration.
When the mirror is positioned in the diffraction plane of an imaging system, as is the
case for grating mirrors for QEM, the high aberration coefficients will result in loss
of resolution at the image plane. In an electron resonator system, a second electron
mirror that provides a concave reflection field can correct for these aberrations [13–
16] when positioned in the conjugate plane of the flat mirror. A schematic design
of such system [8, 17] is shown in [Fig. 6.1].

In principle, the required field shape of the aberration correcting mirror can be
provided by the patterned (first) mirror as well. This would eliminate the need
for the second mirror or the second mirror could be used for a different purpose.
For this, one has to obtain the shape of the concave equipotential surface of the
aberration correcting mirror at the potential of the patterned mirror. The shape
of this equipotential surface can then be added to any topography that is already
present on the first mirror. Alternatively, when using a mirror with a modulated
potential, the aberration correction can be added as a radial potential distribution.
However, especially when the desired pattern on the electrons phase front contains
small features, such as the line pattern for the grating, it seems better to start with
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Figure 6.1: Principle and schematic design of a linear QEM resonator. (a) The electron beam
enters the cavity through a temporally gated electron mirror. The central beam is diffracted at the
lower mirror element, and the diffracted beam is repeatedly imaged onto the image plane. Based
on the system in [8]. (b) Practical design of a linear QEM cavity that requires no temporal gating
of the mirror potential. Instead, a low-voltage electrostatic deflector to the right side of the image
plane enables the in-coupling, cycling, and out-coupling of the beam. Based on a system in [11].

an atomically flat surface at a single potential.
The difficulty of combining spatial frequencies that range over multiple decades

stems from the drop in field modulation in the longitudinal direction, perpendicular
to the mirror substrate [6]. In the above example, the grating pattern for creating
diffraction would require a line profile amplitude in the order of 100 nm, while the
profile amplitude for the aberration correction would be in the order of single-digit
nanometers, making it very difficult to fabricate.

Thus, it would be much preferable to have a mirror design with a flat mirror
electrode that has no axial aberrations. Earlier, van Aken et al. suggested that
aberrations can be corrected for when a slow electron beam is transmitted elastically
through a flat thin foil [18, 19], at energies well below 1 eV. This requires that the
foil is maintained at a potential that is close to the acceleration voltage of the beam.
The corrective properties are then obtained by a careful choice of the foil and lens
geometry. The geometry of such low-voltage foil corrector must satisfy the critical
condition s ≪ RC , with s the longitudinal spacing between the foil and the field
limiting cap aperture, and RC the radius of this aperture.

The low-voltage foil corrector provides for axial aberration correction and the
basic geometry shows close resemblance to a tetrode electron mirror [Fig. 6.2(a)]

6.1. Introduction
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Figure 6.2: (a) Ray trajectories at 1x magnification and for coinciding object and image (sample)
plane. The front focal plane of the lens coincides with these planes. The inset contains details
of the ray trajectories near the Gaussian image plane. (b) Schematic overview of the mechanical
configuration of a tetrode electron mirror (rotational symmetric around the propagation axis), with
labels for aperture electrode radii R and spacing between the mirror and cap electrode s. Elements
are identified as (green) ground, (red) lens, (blue) cap, and (purple) mirror electrode. The radial
coordinate of the trajectories is magnified by factor 3. Horizontal and vertical axes are not to equal
scale.

that is found in a QEM resonator. For this reason, we believe that it is possible to
correct for the combined axial aberrations of tetrode mirror systems by means of
the mechanical configuration.

In the past, exotic shapes for the lens element apertures were considered in
order to tune the axial aberrations of the tetrode mirror [20, 21]. Here, we consider
only plane through-hole apertures [Fig. 6.2(b)], and at fixed electrode spacing for
the lens elements. Modern day lithographic processes have found their way into
the manufacturing of very round miniature apertures [22], which allows for an easy
means of tuning the aperture radius in a production process. Meanwhile, the axial
separation of the distinct miniature apertures is limited by the available dimensions
of flat spacer elements. For this reason, we only study the axial aberration properties
of tetrode mirror systems for a range of aperture radii and potentials, at fixed
aperture spacing.

We performed a numerical study with the model system that is shown in [Fig.
6.2(b)]. It consists of the flat mirror electrode and three thin plates with apertures.
We have a lot of experience with making electron lens electrodes from silicon wafers
using lithography and etch processes. We are able to etch apertures of typically 0.1
to 1 mm diameter with a roundness better than 1 µm which we can also align to
within 1 µm.

6.2. Basic concepts
For the electron resonator design, and for repetitive imaging in QEM, we require
that the image plane coincides with the front focal plane of the focusing lens of the
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mirror system. This enables symmetric ray trajectories that provide the re-imaging
of the reflected beam back onto the sample plane, with 1x magnification [Fig. 6.2(a)].
As we assume that the specimen is positioned in a field free region, we need at least
three lens electrodes for the lens design.

The first electrode (that is positioned closest to the sample plane) provides the
boundary to the field free region on the left. Without at least this one electrode, a
symmetric ray trajectory can never be obtained. The second element performs the
lens action. In principle, the third lens element may be omitted. However, the inclu-
sion of the third element (positioned closest to the mirror) provides a second degree
of freedom in the electric excitation of the lens that will allow to simultaneously
alter the strength of the mirror electric field to the right, while also maintaining the
1x magnification re-imaging onto the sample plane. We call this third element the
“cap electrode”.

The ability to tune the linear electric field strength in between the cap and mirror
electrode allows for adjusting the longitudinal spacing between equipotential planes
in front of the mirror [20]. Consequently, this influences the turning points and ray
trajectories for a polychromatic beam and offers a degree of freedom for tuning the
chromatic aberrations of the electron mirror. The object and image planes coincide
with the front focal plane of the lens, thus placing the mirror electrode in the Fourier
plane of the lens. For a 1x magnification, this necessarily results in a collimated
beam at the mirror plane, hence we refer to the lens as a collimator.

The spot size at the image plane is determined by the semi-angle of the beam. A
spot size contribution due to diffraction is unavoidable, but is reduced by increasing
the beam semi-angle. While a larger beam semi-angle reduces the diffraction limited
spot size, at the same time the chromatic and spherical spot size contributions will
increase. In the design method that we use in this work, the mechanical configura-
tion of the tetrode mirror is optimized to allow for a maximum beam semi-angle,
that is still mainly diffraction limited.

6.3. Numerical methods
Traditionally, aberration coefficients are calculated using aberration integrals, in the
case of mirrors using time dependent perturbation algorithms instead of position
dependent algorithms [23, 24]. We shall rely here on the precision of modern ray
trace simulations, as is also done for instance for the design of modern low-energy
and photo-emission (LEEM/PEEM) microscopes [25], and additionally motivated
by the given, that only axial aberrations and small beam semi-angles are considered.
We performed electron ray trace simulations using the EOD software package [26–29]
and extract aberration coefficients from the obtained radial coordinates of the ray
trajectories at the image plane after reflection. The analyzed systems contain spatial
degrees of freedom in terms of the radius of the electrode apertures [Fig. 6.2(b)],
as well as electrical degrees of freedom in terms of the mirror, cap, and collimator
lens potential. In a miniature QEM resonator setup that we are currently building,
the distance between the mirror electrode and cross-over at the image plane of the
system is 25 mm and the simulation results shown in the following are based on this
value.

6.3. Numerical methods
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For the calculation of spherical (Cs3 and Cs5 ) and chromatic (Cc1) aberration
coefficients, the range of cap and lens aperture radius is varied from R = 100 −
500 µm. For a fixed beam energy of 2 keV, the potential of the cap electrode is
varied between −800 V and −1200 V. We expect that the spacing between the cap
and mirror electrode must be small compared to the radius of the cap electrode,
similar to the condition for low-energy foil corrector geometries [18, 19], and thus
fixed the electrode spacing to s = 100 µm between the mirror and cap electrode.
This implies that a maximum field strength of up to 12 kV/mm is considered, which
is slightly above a field strength of 10 kV/mm that is normally considered feasible
in an experimental electron optical setup [30, 31]. The spacing between the cap,
lens, and ground electrode is fixed as well at d = 500 µm and we only vary the
radius of the various apertures as the latter offers a feasible parameter to control in
(micro)fabrication and lithographic processes.

The calculation of the effect of each geometrical combination (in terms of aper-
ture radius and cap electrode potential) is performed by first finding the lens elec-
trode potential that allows to image the reflected beam back onto the origin. This
is achieved through the following two steps:

1. A series of ray traces is performed with a marginal ray that departs from the
object plane under a 4 mrad angle. At fixed mirror and cap potential, the colli-
mator lens potential is monotonically increased until the reflected marginal ray
is imaged back onto the image plane. This condition is numerically detected
when two conditions are met:

• The sign of the slope of the reflected marginal ray, at the image plane, is
equal to the sign of the slope of the initial marginal ray.

• The sign of the radial coordinate at the image plane is opposite to the
former ray trace of lower collimator lens potential, indicating that the
optical axis was crossed for a collimator lens potential that is higher than
that of the former and smaller than that of the current calculation.

2. A full ray trace simulation is performed with the results of step 1. For deter-
mination of the third and fifth order coefficients of spherical aberration, 9 rays
are traced at angles α in the range of 0 through 8 mrad. For the calculation
of the chromatic aberration coefficient, the energy of the 4 mrad ray is varied
in a range of ±2 V.

6.3.1. Computationally updating the EOD input file
The EOD software package requires an input file that contains the geometry of
the system. Each considered geometrical combination requires adjustments to this
input file, and in order to perform a numerical study over a large parameter range,
this process needs some form of automation. To this end, we use the command line
options from EOD and built a MATLAB script that manages the execution of the
EOD calculations.

Any input file (*.EODinp) for EOD is human readable and contains the coor-
dinates and properties of optical elements. The coarse mesh lines that define the
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contours of the electrode elements are conveniently numbered in horizontal and ver-
tical direction and find their origin in the top-left of the grid. In any calculation
routine, we first update the radius of the electrodes computationally. Each electrode
is associated with a field setting that is controlled in the EOD trace file (*.EODtrc).
The trace file settings are controlled through the MATLAB script by read/write op-
erations on the specific lines of the file. After setting all parameters for the model,
the command line options for EOD can start the computation through a MATLAB
system-command call;

1 % Call EOD for computation and wait for finish .
2 system ([ '"path/to/EOD.exe" -p' EOD_project_name ' -tr -qt

']);

The call takes care of updating the EOD field data (in case of a change in the
input file) and performs the preset ray trace operations. When the computation
is finished, EOD quits automatically and returns control to MATLAB for further
data processing. The obtained ray trace results are contained in EOD plot files
(*.EODplt). These files are human readable, and consist of a list of prior selected
properties of each traced particle. When multiple particles are traced, the results
are vertically concatenated in the file.

6.3.2. Aberration coefficients and spot size calculation
The spot size of the beam at the Gaussian image plane after reflection from the
mirror depends on the (aperture) semi-angle (α) of the beam. For small semi-
angles, the spot size is diffraction limited, whereas at larger semi-angles the spot
size is usually dictated by the chromatic and spherical aberration coefficients of the
imaging system. It is common to describe spot size contributions with the Full
Width (FW) of the beam that contains only a Fraction of Current (FC) of usually
50%. With this definition, the FW50 of the diffraction limited probe size is given
(for an electron wave length λ) by [32],

dA50(α) = 0.54λ/α. (6.1)

The aberration coefficients are obtained from the intersect of the ray traces with
the image plane. For the determination of the chromatic aberration coefficient (Cc1),
we fit a first order linear polynomial,

y(α) =

(
C1 + Cc1

∆E

E

)
α. (6.2)

Here, the coefficient C1 allows for a defocus of the beam with nominal energy
(E) at the image plane. The deviation of beam energy is labeled by ∆E. From the
chromatic aberration coefficient, the FW50 contribution dC50 is obtained through
[32],

6.3. Numerical methods
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Figure 6.3: Aberration coefficients are obtained by fitting a necessarily odd valued polynomial (a)
for spherical aberration coefficients (Cs3 and Cs5), through the intersect of the ray trajectories at
the image plane as a function of ray angle [ref. Eq. 6.4], and (b) for the chromatic aberration
coefficient through the product of α∆E/E [ref. Eq. 6.2]. The absolute error in (a) is approximately
10%, and larger than that for small (α ≤ 1 mrad) ray angles.

dC50 = 0.6CC1
∆EFW50

E
α. (6.3)

From the numerically obtained ray trajectories, the third (Cs3) and fifth (Cs5)
order coefficients of spherical aberration are obtained by fitting the necessarily odd
polynomial,

y(α) = C1α+ Cs3α
3 + Cs5α

5, (6.4)

to the resulting data set of beam angle (α) versus image plane intersect coordi-
nate (y). Unless elsewise specified, we refer to both Cs3 and Cs5 in any mention of
spherical aberration (coefficients). The coefficient C1 corresponds to the defocus of
the reflected beam at the image plane. In [Fig. 6.3] we show an example of fitting
the polynomials to the obtained ray coordinates at the image plane.

We have assessed the accuracy of the numerical ray trace calculations by ana-
lyzing the third and fifth order spherical aberration coefficients of a diode mirror,
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at a comparable grid size and interpolation method that we use for the flat mirror
calculations. An exact analytical result for the diode mirror configuration is given
by [14]. We found a relative error of 0.5% for the third order, and -3.8% for the fifth
order coefficient of spherical aberration.

As we stated before, it is common to obtain the effect of spherical aberration
coefficients on the spot size in terms of a FW50 contribution. When the fifth order
coefficient is set to zero, the minimum FW50 is obtained at small defocus C1 in
between the Gaussian image plane and the image plane of the marginal ray, and
given by [32]

dS50 = 0.18Cs3α
3 when (Cs5 = 0). (6.5)

When the third order coefficient is set to zero, the minimum FW50 is also ob-
tained at a (different) defocus, and is given by [19]

dS50 = 0.0463Cs5α
5 when (Cs3 = 0). (6.6)

As these results are valid at a different defocus, they cannot be added into a single
FW50 contribution from spherical aberration. Instead, one has to integrate the
normalized weighted current w(α) that is contained within an infinitesimal angle dα,
in order to find the FW50. This calculation requires the inverse function α = α(y)
of [Eq. 6.4] for which no analytical solution is available, and instead must be solved
numerically (see Appendix D for details about this procedure).

An interesting case arises when the signs of Cs3 and Cs5 are opposite. Then,
as a function of increasing semi-angle α, the rays are first found on one side of the
optical axis, and at increasing ray angle at the other side of the optical axis as well.
This effect reduces the growth of the spherical spot size, and the spot size can be
further reduced by setting the proper defocus of the beam through C1.

The total spot size is determined by a root-power-sum of its components, in
which the powers are not trivially 2 [33]. However, the coefficients for the root-
power-sum from literature assume only the presence of a Cs3, and not the Cs5 term
when weighting the contribution of spherical aberration to the total spot size. Since
the addition of Cs5 shifts the optimum defocus plane as well, we can no longer rely
on the conventional summing method. Instead, we fall back here to squared addition
of terms, in the absence of a better alternative. The total probe size of the system
is then given by

dFW50 =
√
d2S50 + d2C50 + d2A50. (6.7)

In the case of a spherical aberration limited spot size, the squared addition of
the spherical and diffraction limited contribution (instead of the conventional power
4), will then result in an overestimation of the spot size contribution for these two
terms.

6.3. Numerical methods
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Table 6.1: Overview of system configurations that were analyzed in the numerical study. Asterisk
(*) denote independent variables, the range of other properties denote practical limitations in order
to provide reasonable field strengths. The actual used lens potential is interpolated from the data.

Label Property Range Step unit
RC Cap radius (*) 100 · · · 500 50 µm
RL Lens radius (*) 100 · · · 500 50 µm
RG Ground radius 500 – µm
UM Mirror potential −2000 – V
UC Cap potential (*) −800 · · · − 1200 100 V
UL Lens potential 1000 · · · 8000 200 V
E Electron beam energy −1990 – V
s Mirror cap spacing 100 – µm
f Focal length 25 – mm
t Electrode thickness 300 – µm

6.4. Design of the tetrode mirror
We have numerically obtained electron ray trajectories for a range of cap and col-
limator radii, while using the cap and lens potentials to obtain 1x magnification.
The beam energy is always 1990 V and the mirror electrode is at −2000 V. We only
make use of accelerating lens potentials as this results in a larger spread of the beam
in front of the mirror electrode, in comparison to when a decelerating lens potential
is used. In principle, an optimization routine could be used to find the best values
for these parameters [29, 34], but this approach is not pursued at this point. The
axial aberration coefficients that were obtained through these calculations are used
to determine the FW50 spot size (containing 50% of the current) for each system
configuration for a range of semi-angles, after reflection, and for 1x magnification
imaging to the image plane. From the resulting data set the system configurations
that result in the minimum spot size as a function of semi-angle after reflection are
obtained.

6.4.1. Coarse parameter sweep
The first design step consists of a coarse parameter sweep across lens and cap elec-
trode radii, and cap potential. A total of 405 systems [for configurations, see Table
6.1] are analyzed during this step. This results in a large data set that relates the
system configuration parameters and the resulting aberration coefficients.

From the obtained data, it is observed that for the third order spherical aber-
ration coefficient both positive and negative values are obtained [Fig. 6.4(a)]. In
the figure, the white line indicates the contour at which the coefficient equals zero,
and negative values are found in between the two contour lines. We observe that
the coefficients mainly vary as a function of the cap radius, and are less sensitive to
changes in the lens electrode radius. Note that for some configurations, we could
not obtain a 1x magnified reflected beam at the image plane, and these data points
are indicated by the white tiles in the plot.

The data for the fifth order spherical aberration coefficient [Fig. 6.4(b)] is mainly

6
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Figure 6.4: Aberration coefficients as a function of the lens and cap electrode radius, at a cap
potential of −1000 V. (a) Third order and (b) fifth order spherical aberration coefficient, and (c)
first order chromatic aberration coefficient, obtained from the coarse parameter sweep. White lines
indicate (interpolated) zero-contours in the respective data set.

positive valued in the studied parameter range, and shows a decrease as a function
of increasing cap radius, with a local maximum at a cap radius of approximately
300 µm.

For the first order chromatic aberration coefficient we obtained both positive
and negative contributions as well [Fig. 6.4(c)]. Similar to what is observed for
the spherical aberration coefficients, we notice that also the chromatic coefficient is
more sensitive to the value of the cap electrode radius rather than the lens electrode
radius.

We are looking for the system configuration that allows us to minimize the spot
size at the image plane, after reflection at the flat mirror. The spherical spot size
(due to Cs3 and Cs5) is minimized by selecting a region in which the two coefficients
have opposite signs. This way, the one coefficient suppresses the influence of the
other coefficient on the increase of spot size for a range of semi-angles (also see [Fig.
6.3(a)]), similarly as to how a negative defocus allows one to partially correct for
the spot size degradation due to a positive Cs3 in electron microscopes. From the
shown data, it is observed that a large region satisfies the criterion of opposite signs.

6.4.2. Fine parameter sweep
In the second design step, the ray trace calculations are repeated in a reduced region
of the parameter space and at a finer grid step size [for details, see Table 2]. The
new parameter space for the cap electrode radius is based on the observation that

6.4. Design of the tetrode mirror
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Figure 6.5: Aberration coefficients as a function of the lens and cap electrode radius at −1050 V cap
potential. (a) Third order and (b) fifth order spherical aberration coefficient, and (c) first order
chromatic aberration coefficient, obtained from the fine parameter sweep. White lines indicate
(interpolated) zero-contours in the respective data set.

Table 6.2: Fine parametric sweep limits and grid step sizes.

Label Property Range Step unit
RC Cap radius (*) 300 · · · 400 6.25 µm
RL Lens radius (*) 200 · · · 300 6.25 µm
UC Cap potential (*) −900 · · · − 1100 50 V

both spherical and chromatic aberrations are near zero in the region, for which
Rcap ∼ 300 − 400 µm. For the lens electrode radius, no such distinct selection
criterion is apparent. We selected the region, for which Rlens ∼ 200−300 µm, based
on the observation that the chromatic aberration coefficient increases at higher lens
radii. The aberration coefficients that are obtained at this stage are shown in [Fig.
6.5]. A zero-aberration coefficient value contour line is provided for the third order
spherical and the first order chromatic aberration coefficient (white lines). Only
positive values for the fifth order spherical coefficient are obtained in this reduced
parameter space.

The new data set provides more smooth data since the grid resolution is enhanced
in comparison to the coarse parameter sweep. It is now clearly observed that a local
minimum for which Cs3 < 0 is formed for cap electrode radii of approximately
330 µm. Larger cap electrode radii lead to an increase in Cs3, and simultaneously
a decrease in Cs5. Within the new data set, it is visible that the conditions for
Cs3 = 0 and Cc1 = 0 coincide within a narrow band. It is thus to be expected that
a minimum spot size will be obtained for Rcap ∼ 375 µm, and relatively independent
of the lens electrode radius.
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Figure 6.6: (a) (Contributions to) the best resolution out of all systems, as a function of semi-angle.
Indicated are the spherical (blue), chromatic (orange), diffraction (yellow), and total (purple) FW50
spot size. (b) Global minimum spot size per mechanical configuration.

6.4.3. Dependence of aberration coefficients on design pa-
rameters

The minimum spot size of the tetrode mirror system depends on the beam semi-angle.
For small semi-angles, the spot size is usually diffraction limited and at larger semi-
angles spherical and chromatic effects will dominate the spot size. We obtained the
spot size for all system configurations that are part of the fine parameter sweep, by
means outlined in section 6.3.2.

The calculation is performed for various semi-angles in the range 0.4 < α < 6
mrad, at 35 equally logarithmically spaced values. For each system configuration,
the spherical FW50 spot size contribution is obtained by varying the defocus C1 [ref.
Eq. (6.4) and App. D for details]. The chromatic FW50 spot size contribution (dC50)
is obtained for a nominal beam energy of 2 keV, and a FW50 energy spread of 0.3
eV that we can achieve in experiments with a monochromatized beam emitted from
a Schottky source. This results in a new data set, that contains the (contributions
to the) FW50 spot size of each system, at each semi-angle.

For each semi-angle, the system configuration that provides the smallest total
FW50 spot size (dFW50) is obtained from this new data set. The resulting subset
of data is shown in [Fig. 6.6(a)], and provides the minimum spot size that can be
obtained as a function of beam semi-angle. From this data, we note that the spot
size can be kept diffraction limited for semi-angles up to 1.5 − 2 mrad. A global
minimum FW50 spot size of dFW50 = 7.6 nm is found at a semi-angle of 2.3 mrad,
and requires a defocus of C1 = 3.3 µm. At increasing semi-angles, the minimum
spot size becomes limited by the spherical aberration of the systems.

The obtained minimum spot size for each mechanical configuration in terms
of lens and cap electrode radius is plotted in [Fig. 6.6(b)]. From this data, it is
noted that the global minimum spot size is obtained for a cap electrode radius of

6.4. Design of the tetrode mirror
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Rcap = 375 µm, and a lens electrode radius of Rlens = 250 µm. For the electrical
configuration a cap electrode potential of Ucap = −1050 V is found. In order to
focus the beam with 1x magnification onto the sample plane after reflection, a lens
potential of Ulens = 3.5 kV was obtained from the EOD calculations. Consequently,
a maximum field strength of E = 9.5 kV/mm is present in the tetrode mirror, which
is considered feasible in electron optical setups.

The global minimum spot size that we show in [Fig. 6.6(b)] seems to closely
follow the zero contour line of the chromatic aberration coefficient that is plotted in
[Fig. 6.5(c)]. This suggests that the chromatic aberration has a strong influence on
the spot size of the reflected beam at the image plane, and should be chosen close
to zero. After that, the effect of spherical aberration on the spot size at the image
plane can be balanced by a proper amount of defocus. It should be noted that the
slope of the spherical spot size contribution in [Fig. 6.6(a)] scales proportional with
α5. From this we can conclude that the smallest spot size at the image plane after
reflecting on the flat electron mirror is limited either by diffraction, or by the fifth
order aberration coefficient.

6.5. Discussion and conclusion
We obtained geometries for tetrode electron mirror systems with a flat surface of
reflection, that exhibits only small axial aberrations. As a result, the FW50 spot size
at the image after reflection from the flat mirror surface remains mainly diffraction
limited for semi-angles up to 1.5−2 mrad, at a beam energy of 2 keV. The ability to
correct for axial aberrations by means of the tetrode mirror mechanical configuration,
rather than additional optical components, or superimposed mirror topographies,
opens new possibilities for the use of electron mirrors in general, and for repetitive
imaging systems and phase plates in particular.

The low beam energy (2 keV) in our study allows for the sub-millimeter dimen-
sions of the aperture radius. The sub-millimeter dimensions that are involved allow
for lithographic fabrication processes. The use of lithographic processes allows for
the fabrication of very round apertures, that show virtually no astigmatism when
properly aligned to one another [22]. The alignment of individual lens electrodes
can be routinely performed with our in-house built hexapod aligner [35] to within
500 nm resolution.

In conclusion, a feasible design for a topographically patternable tetrode elec-
tron mirror is described. The axial aberrations of the tetrode mirror system are
minimized through careful analysis of the role of aperture dimensions of the elec-
trodes. The successful demonstration of the proposed configuration would enable
the integration of a mirror based electron beam splitter in miniature QEM setups,
or reduce the number of optical components that are needed in existing electron
microscopes thus offering means for increased resolving power.
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7
Conclusion

Commercial electron microscopes are vastly expansive tools, and that is for good
reason. A lot of development work and effort must be spent to improve the per-
formance and to obtain interpretable micrographs. When introducing new imaging
schemes, it is then wise to start out small, and built up towards a prototype ma-
chine, that may eventually turn into a commercial device. The necessary optical
developments for designing a (prototype) quantum electron microscope include at
least a design for an electron resonator, a coherent beam splitter and combiner, and
a method for inserting and extracting electrons from the resonator. In this thesis, a
prototype design for a quantum electron microscope has been described.

Initially, the work was focused onto experimentally demonstrating that electron
mirrors that are patterned with a grating structure can be used to diffract the
reflected electron beam. For this, a grating mirror was placed below the sample plane
in the specimen chamber of the scanning electron microscope. In the experiment,
the beam was used to scan a specimen that contained holes that allowed the beam
to reach the grating mirror. We collected micrographs of the reflected beam while
scanning a specimen with that beam, and expected the effect of beam diffraction to
show up in the micrograph as a convolution of the specimen with the point spread
function of a diffracted beam. It turned out that this demonstration experiment
is not as trivial as reflecting electron beams may sound, for a variety of reasons.
Foremost, optical aberrations in front of the electron mirror quickly built up and we
reasoned that this prevents us from observing diffraction effects. In addition to that,
it proved difficult to image the pivot point of the scanning beam onto the mirror
surface, leading to a non-stationary beam position at the mirror plane. Furthermore,
the experimental procedure would not allow for the direct detection of the diffraction
effect. Instead, the effect of scanning a diffracted beam across a specimen would be
visible in the micrographs, requiring additional post processing steps to deconvolve
the diffraction spots from the obtained micrograph.

As a response to not finding diffraction in an experiment that was mainly based
on back of the envelop calculations, a more in depth analysis of the problem at hand
was performed. For this, a numerical method was constructed, that solves the time
independent Schrödinger equation for an electron that is reflected in a modulated
mirror potential. A new insight that we gained from these calculations and their
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results is that the use of the WKB approximation to predict the phase modulation
of an electron that is reflected in a modulated potential is valid and accurate, given
that the phase modulation is described as a function of the amplitude of the classical
turning point of the electron, rather than as a function of the mirror bias potential.

Based on the initial experimental and numerical findings, we deemed a number
of changes necessary for the follow up experiments. In order to reduce the effect
of aberrations, we required a stationary beam at the mirror plane. The absence of
beam scanning requires to image the reflected beam onto a scintillator screen such
that the diffraction pattern of the reflected beam could be directly observed with a
light microscope. However, the position of the scintillator screen could not coincide
with the original sample plane of the microscope, as this would leave insufficient
room for the light optical detection path.

The double electron mirror setup that is presented in chapter 4 is designed in
response to these requirements. The use of two electron mirrors that both terminate
one of the ends of an optical axis parallel to that of the microscope, and the use of
a number of deflectors to coordinate the beam trajectory in between the mirrors is
suggested here. With this setup, a static current beam without need of scanning
could in principle be used to study the effect that a mirror pattern has on the
reflected beam. Moreover, the addition of a second mirror to the setup offers a new
degree of freedom in arbitrarily shaping the wave front of the electron beam, as is
discussed in chapter 3. Next to this, it is recognized that the addition of the second
mirror in principle provides a viable method for realizing the electron resonator that
is necessary in a prototype quantum electron microscope.

As part of the design of the double mirror experimental setup, the necessity
for a miniature beam separator that explicitly coincides with both parallel axes
in the setup has led to the design of a novel EBE beam separator. The acronym
EBE refers to the sequence of electric, magnetic, and again electric deflection fields,
that are laterally combined each in a separate layer in a Wien configuration in
this device. The full characterization was presented in chapter 5. This novel type
of beam separator does not only find application in the prototype design of the
quantum electron microscope in this thesis, it is also already being integrated in
a prototype machine for aberration correction in a (critical dimensional) scanning
electron microscope.

The last optical development that followed from the design process is a geomet-
rical optimization of the electron mirror and lens stack. By means of electron ray
trace calculations and optical aberration calculations that are presented in chapter
6 we were able to minimize the paraxial spherical and chromatic aberrations of a
tetrode electron mirror. The optimization is constraint by assuming flat aperture
electrode elements for the lens, such that lithographic processes for the electrode
manufacturing are not further complicated by the optimized design. The resulting
design promises an increase in semi-angle of the beam, such that larger mirror pat-
terns can be illuminated while at the same time remaining single digit nanometer
resolution at the image plane.

In conclusion, an experimental design for a prototype quantum electron micro-
scope that could also be used for arbitrary electron wave front shaping is introduced

7
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in this thesis. The design is supported by numerical electron optical calculations.
A first version of the setup has already been built, and now the stage of improving
the setup has commenced. At the moment, the main concern in progress is related
to avoiding electric charge from building up in the miniature liner tubes that are
present in the design. After this issue is resolved, it is expected that a double re-
flection can take place in the setup, and this may finally demonstrate the diffractive
nature of the electron grating mirror. More future paths to follow are also discussed
at the end of chapter 4 and include temporal switching of the deflector that regulates
the access of the electron towards the resonator.
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A
Numerical solutions of the

Schrödinger equation

A.1. Introduction
We seek for a full solution of the (time independent) Schrödinger equation as a
means of obtaining an accurate description of the wave function upon reflection of a
(modulated) potential surface. The analysis is based on coupling (known) analytical
solutions to Schrödinger’s equation for linearly sloped potential fields (region II) to a
modulated potential field with unknown solution (region I) as defined in [Fig. 2.1] of
chapter 2. First, the analytical solution in region II is described. Then, the coupling
of this solution to region I is demonstrated and finally the numerical implementation
is discussed.

A.2. Solutions for a linear sloped potential
The analytical solution to the Schrödinger equation for a linear sloped potential is
obtained by solving the time independent Schrödinger equation,

[
− h̄2

2m
∇2 + V (x)

]
ψ(x, y) = Eψ(x, y). (A.1)

The potential energy function V (x) is dependent on the aperture-mirror separa-
tion d and potential difference ∆U . In the absence of a pattern, i.e. a flat mirror, and
assuming a grounded aperture, the potential is described as U(x) = Ēx + Up with
Ē the linear field strength (V/m) and V (x) = eU(x). Here, e = −1.6 × 10−19 C
represents the electron charge. The general solution to the resulting differential
equation is given by Airy functions of first and second kind [1]. As the solution has
to vanish for x > 0, the Airy function of first kind (from now on referred to as ‘the
Airy function’) is the only valid solution of the Schrödinger equation here.

This appendix has been published as supplementary material of M. A. R. Krielaart, and P.
Kruit, Grating mirror for diffraction of electrons, Physical Review A 98 (2018), 10.1103/phys-
reva.98.063806.
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Figure A.1: (a) The Airy function of first kind squared is plotted. The classical turning point
coordinate is indicated. Notice that the reflected electron has finite probability of reaching behind
this point. (b) 1-Dimensional potential ramp starting in free-space. The grey line indicates the
energy that corresponds to the classical turning point of the electron. (c) Comparison between
analytical and numerically obtained phase angles for the potential bump at x0, obtained at xs.

For two spatial dimensions, the solution is given by the product of the Airy func-
tion in the direction of the linear sloped potential and plane waves in the direction
perpendicular to the ramp, thus

ψ(x, y) = X(x)Y (y) = Ai(un(x)) exp(iky,ny). (A.2)

The Airy function Ai(un(x)) is a standing wave-type, which is described by

Ai (un) ≡
1

π

∫ ∞

0

cos
(
s3

3
+ sun

)
ds. (A.3)

The term un(x) is a scaling factor that depends on the parameters of the pattern.
The derivation of this term is provided inside [App. A.7], and given here by

un(x) = α

[
x− E − Vp

E
+
h̄2k2y,n
2mE

]
. (A.4)
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This expression is obtained by solving the Schrödinger equation analytically in
two spatial dimensions by the method of separation of variables. In this equation,
α ≡ (2mE/h̄2)1/3 is a constant that depends only on the linear field strength E
in region II. The second term in brackets is recognized as the ‘classical turning
point’. This is the coordinate plane where classically the electron would be reflected.
However, quantum mechanically there is a finite probability for the electron to
penetrate this barrier. Moreover, the electron spends most time just in front of the
classical turning point [2]. This is also visible in [Fig. A.1(a)], where the square of
the Airy function is plotted as a function of position in front of the mirror plane.
The last term in brackets is considered a correction due to the transverse component
ky,n of the wave and m = 9.1× 10−31 kg is the electron rest mass.

A.3. Coupling the linear and modulated poten-
tial region

The numerical solution of the Schrödinger equation in region I is obtained by a
finite element method and described as boundary value problem. By virtue of the
periodicity of the pattern in transverse direction, we only require a single pitch and
may apply periodic boundary conditions to both sides. A zero-boundary condition
is applied sufficiently far below the classical turning point resulting in full reflection.

The boundary values at each point of the interface of regions I and II are de-
scribed by the incident and reflected part of the wave function at this boundary,

ψb = ψincident + ψreflected. (A.5)

For this, the standing wave-type Airy function must be split in counter traveling
components. The asymptotic approximation of the Airy function, valid for un > π
allows for this [3], since

Ai(−un) ≈
sin(γ)
√
πu

1/4
n

=
exp(iγ)
2i
√
πu

1/4
n︸ ︷︷ ︸

Ai+(un)

− exp(−iγ)
2i
√
πu

1/4
n︸ ︷︷ ︸

Ai−(un)

. (A.6)

The result after the equality sign follows from applying Euler’s identity, using
γ ≡ 2

3u
3/2
n +π/4 as short hand notation. This allows us to describe the wave function

at the interface in general by

ψb(xb, y) =
∑
n

AnAi− (un(xb)) exp(iky,ny)

+
∑
n

BnAi+ (un(xb)) exp(iky,ny). (A.7)

The complex coefficients An and Bn provide the probability amplitudes for var-
ious wave numbers kn.

A.3. Coupling the linear and modulated potential region
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Figure A.2: Schematic representation of the grid, showing the single pitch, boundary conditions
and the labeling of index points.

A.4. Numerical implementation
The solution at the interface [Eqn. A.5] is a linear combination of the wave(s) in-
cident towards and reflected by the patterned mirror. The allowed values for the
transverse wave component ky,n are determined by the pitch of the mirror pattern
and must yield wave numbers that exactly fit an integer number of times within
the pitch. As a result, the interface between regions I and II must consist of Ny

(necessarily odd) number of points, resulting in allowed values of ky,n = ±2πn, with
n = 0, 1, · · · , (Ny − 1)/2, in order to prevent numerical aliasing.

The solution to the Schrödinger equation within the proximity of the pattern
can now be obtained by a finite difference scheme. Grid points are labelled ψi,j ,
with i = 1 · · ·Nx (rows), j = 1 · · ·Ny (columns) and the grid size is given by hx and
hy. The full domain consists of Nx × Ny grid points. Elements ψ1,j represent the
first row of grid points of region I, directly below the interface. The grid is shown
in [Fig. A.2].

The Laplacian operator in the kinetic part of the Hamiltonian H is described by

∇2
i,jψi,j =

ψi+1,j + ψi−1,j − 2ψi,j

h2x

+
ψi,j+1 + ψi,j−1 − 2ψi,j

h2y
. (A.8)

This introduces a nearest-neighbor dependence. When the grid points ψi,j are
represented by a column vector ψ̄ =

(
ψ1,1, · · · , ψ1,Ny

, ψ2,1, · · · , · · · , ψNx,Ny

)T the
Hamiltonian can be described as a sparse square matrix.

The above definition for the Laplace operator introduces the interface grid points
ψb into the system of equations, since the interface coincides with ψ0,j . In turn, this
introduces the unknown coefficients An and Bn into the set of equations and the
resulting system becomes underdetermined, since we now have Nx ×Ny equations
and (when we choose the incident wave form coefficients An) Nx×(Ny+1) unknowns,
due to the unknown coefficients B1, · · · , BNy

.

A
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To overcome this problem, one more step is required. By describing the first row
of grid points inside the numerical domain (grid elements ψ1,j) in terms of a Taylor
expansion of the interface grid points, the first row entries inside the solution column
vector ψ̄ can be replaced by coefficientsBn, such that ψ̄ → (B1, B2, · · · , BNy , ψ2,1, · · · ,
· · · , ψNx,Ny )

T . The Taylor expansion of the interface elements is given by

ψ1,j ≈ ψ0,j +
dψ0,j

dx

∣∣∣∣
x0

hx, (A.9)

where the derivative is taken at the half-way point in between i = 0 and i = 1.
The Schrödinger equation can now be written as a matrix equation by (H− IE)ψ̄ =

X⃗ and X⃗ is determined by the choice of the incident wave condition. If we define
M ≡ (H − IE), we will first explicitly state the form of Mψ̄ = X⃗ in the set of
expressions in [Eq. A.10]. Here, the terms aq relate to the step size in the respective
direction (x, y). The analytical expression (also see [Eq. A.7]) at the interface is
given by

ψb ≡ ψ0,j =
∑
n

[
Anψin[j, n] +Bnψout[j, n]

]
, (A.11)

that is, for every point on the interface, the contributions of all modes n are
summed for the specific position j. For an incident plane wave parallel to the
optical axis, only Am = 1 for n = m, the mode corresponding to ky,m = 0, i.e. the
mode that has no transverse wave number component. Further, the derivative of
ψin/out[j, n] is defined as given by the Taylor expansion evaluated at the x-coordinate
related to column j and mode n. Also, definition of ψi±1,j ≡ ψi−1,j + ψi+1,j and
ψ[j ± 1, n] ≡ ψ[j + 1, n] + ψ[j − 1, n] allow for short hand notations.

The right hand side for i = 1 and i = 2 in [Eq. A.10] provide the source terms
for X⃗. From this scheme it is also clear that only the first 2J positions of X⃗ are
filled with non-zero entries.

A.5. Obtaining a solution
Next, the system M ψ⃗ = X⃗ must be solved for ψ⃗. This is done by left-multiplication
of both sides of the equation by the inverse of matrix M ,

M−1M ψ⃗ = M−1X⃗ ⇒ ψ⃗ = M−1X⃗. (A.12)

By definition of ψ⃗ the first J elements contain the coefficients of the reflected
waves, B1, B2, · · · , BJ . Moreover, for transverse waves of the form Yn(y) = Bn

exp(iky,ny) the coefficients Bn are equivalent to the spectrum of outgoing wave
vectors with (field free) small angle approximation angle θn = ky,n/kx,n with respect
to the optical axis. The corresponding values for kx,n are readily obtained via the
field-free solution of the Schrödinger equation, kx,n = 2mE/h̄2 − k2yn

and allow, for

A.5. Obtaining a solution
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instance, to directly obtain the intensity of the various diffraction orders induced by
placing a grating mirror.

We use MATLAB to solve the inversion problem, ψ̄ = (H − IE)−1X⃗, where the
first Ny entries of ψ̄ directly yield the probability coefficients Bn of various reflected
wave components.

A.6. Stability and convergence
In region I, the time-independent Schrödinger equation is solved on a uniform grid
with step size hx and hy for the longitudinal and transverse direction. The maximum
step value of hx is limited by the shortest wave length that occurs in the numerical
domain. This wave length occurs at the interface (with potential V0,j), since the
electron is decelerated towards the mirror plane. In order to sample q steps within
one wave length λ the value of hx is upper bound by

hx ≤ λe
q

⇒ hx ≤ 1

q

√
2m[E − V0,j ]

h̄
. (A.13)

The step size hy on the other hand is unconditionally stable as long as the aliasing
requirement (n = 0, 1, · · · , Ny−1

2 ) is met. Then, the second spatial derivative is
obtained by two central difference operations,

∇2
i,jψi,j =

ψi+1,j + ψi−1,j − 2ψi,j

h2x

+
ψi,j+1 + ψi,j−1 − 2ψi,j

h2y
. (A.14)

Here, the wave function on coordinate (x, y) is represented by ψi,j , where i =
1 · · · I (and I ≡ Nx) labels the row coordinate and j = 1 · · · J (and J ≡ Ny) the
column coordinate. Periodic conditions imply that ψi,J+1 = ψi,1 and ψi,0 = ψi,J .
The zero boundary condition opposite to the interface imply that ψi,J+1 ≡ 0.

A.7. Linear sloped potential solution for two di-
mensional wave ψ(x, y)

The solution for a linear sloped potential in the x-direction, that extends infinitely
in the (transverse) y-direction is derived here. The potential with slope E (unit
eV/m) and mirror pattern potential Vp (unit eV) is given by

V (x, y) =

{
0 for x ≤ b with b < 0

Ex+ Vp for b < x < 0
. (A.15)

By using separation of variables ψIII(x, y) = X(x)Y (y), the solution in the field-
free region (III) follows from the solution of

A.6. Stability and convergence
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1

X

d2X

dx2 +
1

Y

d2Y

dy2 = −2mE
h̄2

. (A.16)

The right hand side is the separation constant and the corresponding solutions
are

X(x) = Ain exp(ikxx) +Aout exp(−ikxx), (A.17)
Y (y) = Bin exp(ikyy) +Bout exp(−ikyy), (A.18)

with k2x + k2y = 2mE/h̄2. Next, the solution for the sloped region (II) follows
from solving

− h̄2

2m

1

X

d2X

dx2 + V (x)︸ ︷︷ ︸
C

− h̄2

2m

1

Y

d2Y

dy2︸ ︷︷ ︸
D

= E

⇒ C +D = E . (A.19)

Since the potential V = V (x) is only varying in the x-direction, it is absorbed
in the separation constant C, and the solution for Y (y) is equated to a related
separation constant D such that C + D = E . The solution for Y (y) is readily
obtained,

d2Y

dy2 = −2mD

h̄2
Y

⇒ Y (y) = D1 exp(ikyy) +D2 exp(−ikyy) (A.20)

for given ky. Note that ky remains initially a free variable, unless periodic
boundary conditions are applied. Then, the values of ky are limited (numerically, for
Ny is odd) to values ky,n = ±2πn/p (with p the pattern pitch) for n = 0, 1, · · · , Ny−1

2 ,
and either D1 = 0 or D2 = 0 to avoid double solutions.

The differential equation describing the x-direction is given by

d2X

dx2 = −2m

h̄2
[C − V (x)]X(x)

= −2m

h̄2
[C − Ex− Vp]X(x)

=
2mE

h̄2

[
x− C − Vp

E

]
X(x). (A.21)

This differential equation can be solved by change of variable. First, define
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u = α [x− C1] with

{
C1 ≡ C−Vp

E

α ≡
(
2mE
h̄2

)1/3 . (A.22)

Then1, du/dx = α ⇒ d2X/dx2 = α2d2X/du2 and thus the differential equa-
tion for X(x) may also be written as

d2X

du2 = uX, with X = X(u(x)). (A.23)

This is a well-known type of differential equation and the solution is given by
the Airy functions of first and second kind, respectively Ai(u) and Bi(u). Note that
the latter grows to infinity for x > 0 and is no valid solution here. On the other
hand, the Airy function of first kind Ai(u(x)) is a valid solution since it vanishes for
x > 0. The function Ai(u) is real and defined as

Ai(u(x)) = 1

π

∫ ∞

0

cos
(
s3

3
+ su

)
ds. (A.24)

The scaling factor u = u(x) is explicitly given by

un(x) = α [x− C1]

= α

[
x− C

E
+
Vp
E

]
= α

[
x−

2mE − h̄2k2y,n
2mE

+
Vp
E

]

= α

[
x− E − Vp

E
+
h̄2k2y,n
2mE

]
. (A.25)

In this equation, the term (E −Vp)/E may be recognized as the ‘classical turning
point’ for 1D, that is the position of zero momentum (kinetic energy) of a classical
particle. The second term (involving k2y,n) can be regarded then as a 2-dimensional
energy conservation correction term. Effectively, this term shifts the point where
the Airy function is evaluated in a way that can be regarded as if reflection took
place a little earlier (since some of the kinetic energy is in the transverse component
now).

When desired, the solutions in region II and III can be connected by equating
the normal and first derivative of the wave function at x = b for a selected incident
coefficient Ain and Bin for comparison of numerical and analytical results.
1It should not be confused that d2/du2 = (d/du)2 in general! This is only coincidental the case
here, since u is only linearly dependent on x. This result follows from applying the chain rule for
derivation twice.

A.7. Linear sloped potential solution for two dimensional wave
ψ(x, y)
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A.8. Phase angle of an electron reflected from
a sloped potential with a bump

The presented method is verified against known analytical solutions of the 1- and
2-dimensional Schrödinger equation. The verification is performed using (i) field
free, (ii) constant potential, (iii) linear sloped potential and (iv) sloped potential
with a step-edge at the back [2] (and also see [Fig. A.1(b, c)]).

The following example involves two parts, both in which an incident electron
wave is reflected against a linear sloped potential with maximum Vmax > E . First,
it is shown that the phase angle of the returning wave is obtained, again when this
returning wave propagates in a field-free region (V = 0) in front of the slope. Next,
it is shown that the effect of a perturbation at the top of the slope (near the turning
point) can be obtained both analytically and numerical, the latter using the method
presented here. A good agreement is obtained for this method.

For a plane incident wave (in field-free region) that is reflected by a linear sloped
potential, it can be shown that the analytical solution (for the potential landscape
as shown in [Fig. A.1(b)] to the time-independent Schrödinger equation reads

ψ(x) =

{
A exp(ikx) +B exp(−ikx) for V (x) = 0

CAi(u(x)) for V (x) = Ex+ E .
(A.26)

The numerical solution is obtained and compared to the analytical solution (for
which the value of B and C are uniquely determined for given coefficient A) and
this is shown in [Fig. A.1(c)]. Note that the analytical expressions for B and C
are obtained by equating the expression for the wave function (and the spatial
derivative) just to the left and right of the onset for the sloped potential.

In the second part of this example, the validity of the Airy-splitting method is
demonstrated (as suggested in [Eq. A.6]). The goal is to obtain the additional phase
shift that is due to a potential step (or perturbation) on the top of the linear slope
(the orange line in [Fig. A.1(b)]. An analytical solution for this type of potential
(field free, sloped, sloped with additional offset) exists and is given by

ψ(x) =


A exp(ikx) +B exp(−ikx) for V (x) = 0

CAi(uI(x)) for V (x) = Ex+ E
DAi(uII(x)) for V (x) = Ex+ E(1 + δ)

. (A.27)

Notice that the argument to the Airy function differs for the two parts of the
sloped potential. The scaling is given by

u(x) =

{(
2mE
h̄2

)1/3
(x) for u(x) = uI(x)(

2mE
h̄2

)1/3 (
x+ δE

E

)
for u(x) = uII(x)

. (A.28)

When the value of Cin is known (or selected) it is possible to calculate the
effect of the offset potential on Cout by starting the calculation just in front of
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the boundary between the two sloped potentials. The boundary condition ψ0 must
then discriminate between the incident and reflected component of the Airy function
Ai(uI(x0)), since the Airy function in itself is a real function. This discrimination is
made by selecting

ψ0 = Cinψin + Coutψout

= CinAi+(u0) + CoutAi−(u0), (A.29)

which are left and right traveling waves. Note that the analytical result for Cout
is obtained by solving the following system of linear equations

 Ai−(uI(xs)) −Ai(uII(xs))

d
dx
(
Ai−(uI(xs))

)
− d

dx (Ai(uII(xs)))


Cout

D

 =

−CinAi+ (uI(xs))

−CinAi+ (uI(xs))

.(A.30)

The property of interest now is the phase angle ϕCout = im(Cout)/re(Cout) and
this is shown in [Fig. A.1(c)]. Note that the (wrapped) phase angle will not linearly
increase with δE when the step size creates a barrier that extends above V = E .
This is the case here for δE = 10% of E .
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B
Turning point coordinates through

the Lambert-W function

The classical turning point z±R for the most and least nearest approach of the beam
towards the mirror with a modulated potential are found by equating the scalar
electric field to the cathode potential E at the source,

U(x±, y±, z
±
R) = u0

[
1−

z±R
z1

]
± Fn,m exp(−2πk0|z±R |). (B.1)

Solutions to these equations are provided by the Lambert-W function, in the
form of [1],

z±R =
1

2πk0
×

−AW0

(
−A−1 exp

[
−B

A

])
−B

A
. (B.2)

In this equation,

A = ± u0
2πFn,mk0z1

, B = ±E − u0
Fn,m

, k0 ≡ kz = 2π
√
k2n,x + k2m,y. (B.3)

In MATLAB, use of the function lambertw(k, x) enables the calculation of k-th
branch of the Lambert function, evaluated at x [2]. Solutions for z±R are obtained
from the zero-th (principal) branch.
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C
Quantitative effects of miniature

liner tubes on field distortions

The effectiveness of including one or multiple dummy miniature liner tubes [also
see chapter 4.3.2] is assessed numerically. Traditionally, one would obtain distortion
coefficients by releasing electrons at different heights in the optical system, and
relating the intersection coordinate of the electrons at the common crossover plane to
the various distortion coefficients. In the following analysis, we think this extensive
procedure can be simplified to working with the projected potentials of the electrodes
only, as we are interested in the relative increase of distortion coefficients when
compared to a situation at which no liner tubes would be present at all.

Thus, the analysis is performed here by analyzing the multipole coefficients of
the electric potential of a lens electrode, when projected along the optical axis of
the electrode. A 3-dimensional (3D) COMSOL model is created for calculating the
projected potential, and further processing is done in MATLAB. In COMSOL, we
apply a fixed excitation of 1 kV at either the lens, cap, or (flat) mirror electrode,
and set the remaining electrodes at ground potential. The projected potential then
offers a measure of effective action per kV electrode excitation.

The distortion coefficients of the projected potential are obtained through Fourier
analysis. For this, concentric circles of increasing radius R are positioned in the
dataset, around the optical axis. A Fourier analysis of the potential at these circles
yields complex valued Fourier coefficients Fn (n = 1 for dipole, n = 2 for quadrupole,
n = 3 for hexapole, n = 4 for octupole, etc.), from which the distortion coefficients
cn (in units of V/(kV n mn−1)) are determined, via [1]

cn =
|Fn|
nRn

. (C.1)

We obtained the distortion coefficients up to n = 4 (octupole) in this manner,
and the resulting coefficients are included in [Table C.1]. Results are shown for
zero (reference case), one (minimally required), two, and four miniature liner tubes
present in the setup, corresponding to the layouts as shown in [Fig. 4.5(a-c)].

From the c0 (DC, monopole) data, a small (0-3%) decrease is observed as a
function of adding more liner tubes. Thus, the addition of liner tubes requires only
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Table C.1: Distortion coefficients in the presence of zero (numerical reference), one (minimally
required tube count), two, and four liner tubes. Orange cells signify severe distortions with respect
to the reference case.

Tubes c0 c1 c2 c3 c4

Lens electrode at 1 kV
0 0.95 2.75× 10−2 5.53× 10+1 6.51× 10+4 7.21× 10+8

1 0.94 2.64× 10+1 2.03× 10+4 1.61× 10+7 9.88× 10+9

2 0.93 3.45× 10−1 4.16× 10+4 3.00× 10+6 2.85× 10+10

4 0.92 3.70× 10−2 6.89× 10+1 5.00× 10+5 6.80× 10+10

Cap electrode at 1 kV
0 0.42 1.90× 10−2 3.59× 10+1 1.95× 10+5 6.18× 10+8

1 0.42 1.16× 10+1 9.45× 10+3 7.74× 10+6 4.94× 10+9

2 0.41 1.50× 10−1 1.92× 10+4 1.26× 10+6 1.39× 10+10

4 0.41 1.89× 10−2 8.51× 10+1 4.34× 10+5 3.30× 10+10

Mirror electrode at 1 kV
0 0.49 1.30× 10−2 4.21× 10+1 2.07× 10+5 7.35× 10+8

1 0.49 2.02× 10−2 4.00× 10+1 2.05× 10+5 7.37× 10+8

2 0.49 1.33× 10−2 3.72× 10+1 2.07× 10+5 7.22× 10+8

4 0.49 1.33× 10−2 4.73× 10+1 2.07× 10+5 7.17× 10+8

a small increase in lens excitation in order to maintain an equal focal strength for
the system.

From the c1 (dipole) data, it is observed that indeed a strong dipole field is
formed when only the first (required) liner tube is positioned at the microscope axis.
Placement of this liner tube results an increase of 3 decades in dipole distortion
and will thus result in a significant deflection field inside the lens. We also notice
from the c1 data that the field that is generated by the flat mirror electrode is
hardly influenced by the placement of a liner tube. This is explained by the limited
spacing (100 µm) between the mirror and the neighboring cap electrode, which is
small compared to the distance towards the nearest liner tube (∼ 500 µm).

Addition of the second tube does away with the dipole field distortions, while
creating a strong quadrupole distortion for the lens and cap electrodes. Based on
the data shown in [Table C.1] it appears that at least four liner tube symmetry is
required in order to suppress the primary distortions. At this stage, the dipole and
quadrupole distortion coefficients are no longer easily discerned from the noise of
the calculation, that is obtained from the reference calculation of 0 tubes.

The approximate effect that these coefficients have on the blurring of the spot size
at the common crossover plane is estimated for a 2 keV beam energy. The blurring
may be, in a coarse approximation, be obtained by finding the erroneous focusing
that is the result of a multipole distortion. This is given by the additional deflection
that is imparted onto the outside of the spread-out beam, and is approximately
given by
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dn, blur ≈ UelcnnR
n−1u1

Φ
. (C.2)

In the equation, R is the beam width inside the tetrode mirror, u1 the distance
between the mirror and the common crossover plane, and Φ the beam energy. Since
the coefficients are obtained at a 1 kV excitation of the electrode, a scaling term Uel

is used to provide correspondence to the actual electrode potential.

Figure C.1: Multipole distortion coefficient development, as a function of number of symmetry
tubes. ‘Ref.’ labels for the reference case with no tubes present, and serves as indicator for
the numerical detection threshold of the method. The approximate displacement indicates the
estimated Full Width (FW) 100 beam blur at the common crossover plane, and is obtained for a
beam width of 40 µm inside the tetrode mirror.

The above coarse model is applied onto the tetrode mirror, and the obtained
beam blurring values are shown in [Fig. C.1]. The blue bars indicate blurring
values that are based on the numerical data obtained in the absence of any tubes,
and serve as a measure for the numerical accuracy. The data shown in based on the
coefficients in [Table C.1] and thus follow similar behavior as to what is described
before. It is evident from the data that spot size blurring in the order of 10 − 100
nm is to be expected at the common crossover plane.
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D
Spot size as a function of defocus,
in the presence of both third and

fifth order spherical aberration
coefficients.

D.1. Introduction
In this appendix we describe how to obtain the contribution to the FW50 spot size
from spherical aberration in the general case, for which Cs3, and Cs5 are both non-
zero, and may have opposite sign. The method can be directly extended to include
higher orders as well. This method is not only applicable to our case in which the
beam is reflected by a mirror, but also for the calculation of the probe size in an
aberration corrected SEM or STEM.

We assume a uniform current distribution in the imaging system. When the
image plane coincides with the focal plane of a lens, the beam (aperture) semi-angle
(α) with the optical axis at the image plane, the distance between the principle
optical plane of the lens and the image plane (f), and the radial distance from the
optical axis at the principle optical plane of the lens system (h), are related under
the small angle approximation by

h = αf. (D.1)

The full current (I) at the principal plane of the lens, as a function of the beam
semi-angle and under the assumption of a uniform (angular) current distribution Ω
is given by

I100(α) = π(αf)2Ω. (D.2)

We can transform this into a normalized current (Î), which provides the current
within the reduced semi-angle [0, α̃], which lies in the range 0 ≤ α ≤ α̃, given by
This appendix has published as supplementary material of M. A. R. Krielaart, and P. Kruit, Flat
electron mirror, Ultramicroscopy 220 (2021), 10.1016/j.ultramic.2020.113157.
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Î(α̃) =

(
α̃

α

)2

. (D.3)

Within an infinitesimal emission ring dα corresponding to ray angle α̃, the con-
tained normalized current is then given by

w(α̃) ≡ dÎ

dα̃
=

2α̃

α2
. (D.4)

Here, w(α̃) may be regarded as a normalized weight factor, or as the fraction of
current that is emitted from an infinitesimal ring.

The intersection coordinate yS of a ray at angle α̃ (with 0 ≤ α̃ ≤ α) at the image
plane, due to defocus, and third and fifth order coefficients of spherical aberration
is given by

yS(α̃) =
∣∣C1α̃+ Cs3α̃

3 + Cs5α̃
5
∣∣ . (D.5)

When the product Cs3Cs5 > 0, i.e., the aberration coefficients are of equal sign,
and with C1 equal to zero or having the same sign, then the spherical spot size
diameter FW50, containing 50% of the current, is found by solving for α1 in

∫ α1

0

w(α̃)dα̃ = 0.5 ⇒ FW50 = 2yS(α1). (D.6)

The upper limit of integration α1 is related to yS by inverting the latter for
α̃ = yS(α̃)

−1, and increasing α̃ until the equality in [Eq. (D.6)] is satisfied. Inserting
the obtained α1 back into [Eq. (D.5)] then directly yields the FW50, also see [Fig.
D.1(a)].

When either C1, Cs3, or Cs5 is of opposite sign of the other coefficients, and
for sufficiently large coefficients, or at sufficiently large semi-angle α, the situation
arises at which for increasing ray angle α̃ the ray first crosses the optical axis at
one side of the image plane, and for increasing ray angle at the other side of the
image plane. Thus, for a given Cs3 and Cs5 of opposite sign, and Cs5 usually but
not necessarily positive, a sufficiently large semi-angle will result in a region of α̃
for which the spot size will not increase radially outward. This situation is depicted
in [Fig. D.1(b)]. A proper calculation of the spherical spot size would then require
to take into account that the current that is incident from the higher ray angles α̃
contribute a large amount of the total current, at a limited increase of spot size. To
take this effect into account in the calculation of the FW50 spot size, an extension
of [Eq. (D.6)] is required that allows for the additional zero-crossings of yS(α̃) [Eq.
(D.5)] at the image plane. As we consider spherical aberration up to fifth order, in
principle we expect up to five solutions [Fig. D.1(c)]to the inverse problem α = α(y),
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(a)

(b)

(c)

Figure D.1: Ray trajectory intersect at the image plane as a function of ray angle. The integration
domain(s) (left panels) related to the Full Width (FW) containing a Fraction of Current (FC)
(right panels) is shown for three distinct cases. (a) Third order spherical aberration. (b) Third
and fifth order coefficient of spherical aberration with opposite sign. (c) Negative defocus and fifth
order spherical aberration coefficient, positive third order coefficient of spherical aberration.

meaning that the FW50 (FC = 0.5) is found by solving the following equality for
αn, with n = 1 · · · 5, and for which yS(α1) = · · · = yS(α5),∫ α1

0

w(α̃)dα̃+

∫ α3

α2

w(α̃)dα̃+

∫ α5

α4

w(α̃)dα̃ = FC. (D.7)

In order to satisfy this equality for all αn, the inverse to [Eq. (D.5)] must be
obtained, which contains 5 roots and for which to our knowledge no (practical)
analytical solution exists. In the following we outline a numerical solution method
that allows one to find the FW (FC).

D.2. Numerical methods
The problem at hand is two-fold. On the one hand, we require up to five values for
ray angles α̃ that yield equal intersect coordinates when inserted into [Eq. (D.5)].

D.2. Numerical methods
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On the other hand, we must solve the integral in [Eq. (D.7)] using these same ray
angles as integration boundaries, while satisfying the equality for the given Fraction
of Current (FC). As the result of the latter calculation depends on the former, it
is difficult to directly obtain the integral boundaries that exactly correspond to the
FW50 case. Therefore, we suggest the following solution strategy:

1. Obtain the FW100 of the beam, for chosen beam semi-angle α.

2. Obtain the FW for a number of FW values 0 < FW ≤ FW100.

• For a given FW , obtain the integration boundaries through the inverse
of [Eq. (D.5)].

• Perform the integral in [Eq. (D.7)], to obtain the FC related to the FW
value.

3. Interpolate the obtained data set of FW and FC, in order to obtain the FW50.

D.2.1. Obtaining the FW100
The FW100 must be obtained first. This is readily performed when all coefficients
are of equal sign. In that case, the FW100 is always determined by the value of the
beam semi-angle, such that FW100 = 2×yS(α). In the more general case, in which
the signs of the coefficients may be oppositely valued, the FW100 may be found at
a smaller ray angle, as can be understood from [Fig. D.1(b)]. From the expression
of local disc radius, yS(α̃) = C1α̃ + Cs3α̃

3 + Cs5α̃
5, one can find the local maxima

through differentiation,

dyS
dα̃

= C1 + 3Cs3α̃
2 + 5Cs5α̃

4 = 0. (D.8)

Substitution of β ≡ α̃2 enables an analytical solution through the abc-formula:

β =
−3Cs3 ±

√
9C2

s3 − 20C1Cs5

10Cs5
. (D.9)

From this, we obtain α̃ =
√
β, and only keep the real valued solutions, that

satisfy 0 < α̃ ≤ α. The FW100 is then determined by whichever term is bigger,
from the set {yS(α̃)} (case in [Fig. D.1(b)])or from the marginal ray yS(α) (case in
[Fig. D.1(c)]).

Note for the special case where Cs5 = 0, the solution provided by [Eq. (D.9)]
becomes invalid, and instead β = −C1⁄(3Cs3) must be used.

D.2.2. Obtaining the Fraction of Current (FC)
After having obtained the FW100, an array of FW values in the range 0 < FW ≤
FW100 is created. We next step through these values, and obtain the (set of) ray
angles αn that correspond to the FW . This is performed in MATLAB through the
use of the symbolic equation solver, as outlined in listing D.1.
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Listing D.1: Numerical inversion solution

1 % One -time solution for inverse a = a(y) problem
2 syms y c1 c3 c5 a;
3 a_inv_y = solve(y == abs(c1*a + c3*a^3 + c5*a^5) , a);
4
5 % Update parameters based on s, to the inverse problem a

= a(y).
6 copy_a_inv_y = subs(a_inv_y , [c1 c3 c5 y], [s.Cs1 s.Cs3 s

.Cs5 yFC ]);
7
8 % copy_a_inv_y now contains the solutions to a, in

symbolic roots .

In terms of execution speed, the bottleneck in this process is in finding the
solution to the inverse problem numerically, and by creating the necessary symbolic
variables in MATLAB for each execution of the subroutine. We noticed that the
process can be speed-up significantly through two distinctive methods:

1. Explicit passing along of symbolic variables and the symbolic solution of the
inverse problem as an input argument to the subroutine.

2. Parallel execution (using MATLABs parfor method) in a high-core count
system, of the for-loop in which the system configurations are looped over.

With the obtained solution (α1, · · · , α5) of the inversion problem, the Fraction
of Current (FC) is obtained from the integral of [Eq. (D.7)], repeated here:

FC =

∫ α1

0

w(α̃)dα̃+

∫ α3

α2

w(α̃)dα̃+

∫ α5

α4

w(α̃)dα̃. (D.10)

This returns the fraction of current (FC) as a function of increasing FW. The
FW50 (FC = 0.5) is then found through interpolation of the obtained data set of
FW and FC values.

D.2.3. Defocus leading to minimum FW50
In a practical calculation, we assume the values for Cs3 and Cs5 to be given and
fixed. However, the defocus value C1 could be easily changed in an experimental
setup, by adjusting the lens potential. In order to obtain the minimum spherical
contribution to the spot size at the image plane, the above outlined routines for
finding the FW50 must be repeated at many different defocus values C1.

To this end, we use a number of values as initial guess for the optimum defocus.
For each of these defocus values, we obtain the FW50. If it happens that the smallest
FW50 is obtained at the first or last defocus element in the array of guesses, the
domain of initial guess values is extended into the direction of this element. This
process is repeated until a local minimum FW50 is obtained, after which a refinement
of the domain around the local minimum is used to further improve the calculation
result.

D.2. Numerical methods

D

| 153



Figure D.2: FW50 as a function of C1 defocus, at a semi-angle of 1 mrad and Cs3 of 1 m. At zero
defocus, the obtained FW50 equals 0.5 nm. The global minimum is found at 370 nm defocus, and
provides a FW50 of 0.18 nm. Both values are in agreement with the theory.

D.3. Applications
We will now demonstrate the application of the numerical method by means of two
examples.

D.3.1. Minimize Cs3 effects through defocus of C1.
Example 1. In this example, we assume for now Cs5 = 0, and a positive value for
Cs3, say Cs3 = 1 m, and a beam semi-angle of α = 1 mrad. Initially, the system
is not defocused, i.e., C1 = 0. Then, the FW100 at the image plane is given by
definition by FW100 = 2 × yS(α) = 2 nm. This could however be reduced to
0.5Cs3α

3 = 0.5 nm by defocusing the beam. This is demonstrated by the blue curve
in [Fig. D.2].

The minimum FW50 is much smaller, and is given by theory [1] as 0.18Cs3α
3,

and also requires a defocus of C1. We obtained the FW50 as a function of defocus
as well (orange curve in [Fig. D.2]). The global minimum is in agreement with the
theoretical expectation. From this, it is confirmed that the spot size blurring due
to Cs3 can be compensated for in part by chosen a negative C1.

D.3.2. Minimize Cs5 and Cs3 effects through defocus of C1

Example 2. The results from Example 1 might also be obtained analytically, and
serve as a validation of the method. Analytical difficulties arise as soon as the
third- and fifth order coefficient have opposite sign. Then, the integral boundaries
in [Eq. (D.7)] can no longer be obtained analytically, and one may be led to the false
conclusion that there exists a semi-angle for which the spherical spot size vanishes
completely. In the following example we obtain the FW100 and FW50 at zero
defocus, and compare these results to the FW50 that may be obtained by obtaining
the optimum defocus value, as a function of the beam semi-angle α.

D

154 | D. Spot size as a function of defocus, in the presence of both
third and fifth order spherical aberration coefficients.



Figure D.3: FW100 and FW50 (with and without optimizing the defocus C1). Function 2×y100(α)
indicates the full width of a single ray at the given semi-angle value, and is plotted for reference.

For this, we (arbitrarily) choose Cs3 = −1× 102 m, and Cs5 = 1× 108 m. These
parameters yield the special case for which yS(α) = 0 at α = 1 mrad (at zero
defocus), while the Full Width containing (a Fraction of) the total Current should
not vanish at this point, as for ray angles α̃ < α, the ray crosses the image plane
of-axis.

With the above parameters, the FW100, and FW50 (at zero and best defocus)
are obtained numerically. The results of the calculation are shown in [Fig. D.3]. The
blue dotted line indicates the value of 2 × yS(α), i.e., full width of the transverse
coordinate of the marginal (outermost) ray at the image plane, at zero defocus.
The orange dashed curve represents the FW100, and should satisfy that it equals
the global maximum max  (2 × yS(α)) in the range [0, α]. This behavior is indeed
observed in the plot.

More of interest is the behavior of the FW50 spot size diameter (purple double
dashed line), that indicates the diameter of the beam containing 50% of the current
at zero defocus. At increasing semi-angle, it is observed that the FW50 first increases
monotonically. However, around α = 0.9 mrad a local maximum is observed. This
is explained by the decrease of yS around this semi-angle, which means that a large
amount of the total current is hardly contributing to the probe size at this point

D.3. Applications
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(also see [Fig. D.1(b)]). This effect extends for semi-angles of up to approximately
1.35 mrad, after which the fifth order aberration becomes dominant and the spot
size increases rapidly again.

Finally, the yellow curve indicates the FW50 that could be achieved when prop-
erly defocusing the system through C1. The result indicates a large reduction in
spot size diameter compared to the non-defocused case.
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