
MSc thesis in Geomatics

Creating a methodology to more
objectively measure the performance of
reconstruction algorithms for large urban

objects generated from low detailed
complete ground truth models

Sérénic Monté

June 2024

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Sérénic Monté: Creating a methodology to more objectively measure the performance of re-
construction algorithms for large urban objects generated from low detailed complete ground
truth models (2024)
cb This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Nail Ibrahimli
Hugo Ledoux

Co-reader: Shiming Wang

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

In this thesis we present a new idea to objectively assess reconstruction algorithms.
Because it is not feasible to completely scan a high-detailed ground truth mesh of
large urban objects, the performance of the reconstructed meshes can therefore not
be measured objectively. To solve this, we present a new mesh evaluation method-
ology that can more objectively assess the quality of the generated mesh based on
a low detailed ground truth mesh. We achieved this by creating a synthetic dataset
based on low-detailed models of large urban buildings and using this as a ground
truth mesh and input data for the reconstruction algorithms. Thanks to our new
methodology, we were able to compare the output mesh and ground truth mesh us-
ing a wireframe model of the meshes. This allows us to give a more objective score
to the results without having to look at entire model, which is the usual method. The
results of this thesis show that the new methodology has potential to be used for
creating a new benchmark, and it opens a new door to using more readily available
objects that could not be used before.

v

Acknowledgements

This work would not have been possible without the help, support and fruitful
discussions with my supervisors Nail Ibrahimli, Doctoral student at the 3DUU lab
and part of the 3D Geoinformation group at Delft University of Technology, and
Hugo Ledoux, associate-professor in the 3D geoinformation research group at the
Delft University of Technology. Their example has taught me what a good researcher
should be, and I probably could never give them enough credits for this. I would
like to thank all of those with whom I had the privilege to work with during this
Master thesis. I would also like to thank my family for their never ending love and
their unrelenting support.

vii

Contents

1. Introduction 1

2. Related work 5
2.1. Algorithms . 5

2.1.1. Multi-View Stereo . 5
2.1.2. Novel View Synthesis . 7
2.1.3. Neural surface Reconstruction 8

2.2. Evaluation metrics . 9
2.2.1. Mesh and Point cloud evaluation 9
2.2.2. Image evaluations . 11

2.3. Existing Benchmarks . 13

3. Methodology 17
3.1. Dataset . 17

3.1.1. Selecting suitable models in SketchUp warehouse 17
3.1.2. Convert from SketchUp model to OBJ 18
3.1.3. Model to input dataset . 18

3.2. Algorithm pipelines . 19
3.2.1. NSR pipeline . 20
3.2.2. NVS pipeline . 20
3.2.3. MVS pipeline . 21

3.3. Evaluation . 21

4. Experiments 23
4.1. Dataset . 23
4.2. Algorithms . 28

4.2.1. NVS . 28
4.2.2. MVS . 30
4.2.3. NSR . 33

5. Conclusion 35

A. Evaluation per model for NSR 37
A.1. Apartment . 37
A.2. EWI . 37
A.3. Flat . 38
A.4. House . 39

ix

Contents

A.5. Neo . 40
A.6. Speerhall . 41
A.7. Stoommachine . 42
A.8. Stieltjesweg . 42
A.9. Villa . 43
A.10.Winchester cathedral . 44

x

List of Figures

1.1. The high quality versus low quality blurred details. Taken from [Li
et al., 2023] . 4

2.1. Example image from DTU, courtesy to [Aanæs et al., 2016] small
house set 6 . 13

2.2. Example of gaps in the DTU dataset . 14
2.3. Frontal view of the cleaned courthouse ground truth scan from the

Tanks and Temples dataset . 15
2.4. The courthouse objects misses a lot of data especially for the roof . . . 15
2.5. Frame from the OMMO dataset . 16

3.1. The data pipeline . 17
3.2. The Neural Surface Reconstruction pipeline 20
3.3. The Novel View Synthesis pipeline . 21
3.4. The Multi View Stereo pipeline . 21

4.1. The examples of meshes that could not be converted 24
4.2. The examples of unusable output for the three algorithm groups . . . 24
4.4. The ten models. From left to right top to bottom: Apartment, Flat,

Speerhall, Stoommachine, EWI, Neo, House, Winchester Cathedral,
Stieltjesweg . 27

4.5. The Nerfacto and Splatfacto renderings of the Villa model 28
4.6. The Nerfacto and Splatfacto renderings of the EWI model 29
4.7. Examples of wrong conversions from rotation translation matrix to

COLMAP poses . 30
4.8. Left COLMAP, right PatchmatchNet output for Winchester cathedral . 31
4.9. COLMAP reconstruction of the Neo model. Left from the front, right

from the back . 31

A.1. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the apartment model . 37

A.2. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the Ewi model . 38

A.3. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the flat model . 39

A.4. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the house model . 40

xi

List of Figures

A.5. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the Neo model . 41

A.6. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the Speerhall model . 41

A.7. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the Stoommachine model . 42

A.8. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the Stieltjesweg model . 43

A.9. Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the villa model . 44

A.10.Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the Winchester cathedral model 45

xii

List of Tables

4.1. peak signal-to-noise ratio (PSNR) and structural similarity index mea-
sure (SSIM) for Novel View Synthesis (NVS) 29

4.2. Results Multi-View Stereo (MVS) . 32
4.3. Percentage where metric corresponds with visual analysis 33

A.1. Results apartment for Neural Surface Reconstruction (NSR) 38
A.2. Results Ewi for NSR . 39
A.3. Results flat for NSR . 39
A.4. Results house for NSR . 40
A.5. Results Neo for NSR . 41
A.6. Results Speerhall for NSR . 42
A.7. Results Stoommachine for NSR . 43
A.8. Results Stieltjesweg for NSR . 43
A.9. Results villa for NSR, results pending 44
A.10.Results Winchester cathedral for NSR . 45

xiii

Acronyms

NVS Novel View Synthesis . xiii
NSR Neural Surface Reconstruction . xiii
MVS Multi-View Stereo . xiii
SfM Structure from Motion . 5
NeRF Neural Radiance Fields . 2
TSDF truncated signed distance field . 7
SDF signed distance field . 9
MLP multilayer perceptron . 7
dC standard Chamfer distance . 9
PSNR peak signal-to-noise ratio . xiii
SSIM structural similarity index measure . xiii
MSSIM mean structural similarity index measure 11
PMP Polygon Mesh Processing . 22
CGAL Computational Geometry Algorithms Library 22

xv

1. Introduction

In our society the use of augmented reality and digital twins is playing an evermore
important role. For those applications computer vision and 3D model reconstruction
techniques are used for instance in: autonomous driving, reconstruction of histori-
cal monuments, engineering and digital archives [Farshian et al., 2023; Barron et al.,
2023; Li et al., 2023; Mildenhall et al., 2021]. All these applications rely on the use
of a digital representation of the environment. The demand for easily reconstruct-
ing the environment is increasing. Apart from manual creation of models, there are
two major ways to generate models. There is active acquisition like laser scanning
and more recently passive acquisition using images to reconstruct objects. To scan
a scene or object using active acquisition is a complex task and requires skilled per-
sonnel. Passive acquisition on the other hand is a relatively simple process. It only
requires images or video of the scene or object. The images or video can be obtained
from a camera, mobile phone or captured by drone. The output of active acquisition
has a high accuracy and can reach a high level of detail, since the model is acquired
by taking active measurements. The passive methods try to reconstruct the envi-
ronment by estimating the location of the original points, and therefore skipping
the expensive process of taking active measurements. At the moment the digital
reconstruction of 3D objects is subject of much research, especially to improve the
accuracy and details.

Creating a high detailed model from a large urban object using active measurements
is prohibitively expensive. Not only is it very expensive to generate a high defini-
tion scan but most importantly it is almost impossible to scan an entire building
from all angles. It takes a couple of days to scan large objects and keeping the light
conditions similar is often difficult, which is helpful for the scan alignment during
post-processing. It is nearly impossible to scan a large urban object over several
days without any moving interference like humans, animals, or other moving ob-
jects. Also, non-movable obstacles like vegetation and buildings create occlusions.
Manual creation of a highly detailed 3D model of a large building is near impossi-
ble, because it is a too time-consuming task.

To track the quality of the outputs of reconstruction algorithms we need to have
a benchmark that compares the reconstruction with the ground truth model for
large urban objects. However, for large urban objects there are to the best or our
knowledge no benchmarks present that have a highly detailed complete ground

1

1. Introduction

truth model. There are several benchmarks have been developed for measuring the
quality of reconstruction algorithms, for instance the DTU [Aanæs et al., 2016] and
Tanks-And-Tempels [Knapitsch et al., 2017] benchmark. These benchmarks use a
ground truth model created using active measurements and are therefore limited to
mostly relatively small objects or large parts of the ground truth mesh are missing
from the ground truth model.

For this thesis we will look into the following three major categories of reconstruc-
tion algorithms: Multi-View Stereo (MVS), Novel View Synthesis (NVS) and Neural
Surface Reconstruction (NSR). All three of these methods attempt to render an object
based on input images/video, with the output being either a video, a mesh, a point
cloud, or images. Progress in the field of reconstruction algorithms is happening at
an unprecedented rate. The quality and speed of rendering objects are getting better
and faster [Pérez et al., 2023]. This opened the possibility of developing photo realis-
tic 3D models of objects or environments. The example of the progress in speed and
quality can be seen in Novel View Synthesis, which contains the well-known Neural
Radiance Fields (NeRF) algorithm [Mildenhall et al., 2021]. When NeRF was first used
in 2020 it took several hours to render a scene, the fastest method nowadays only
takes a fraction of an hour with a significantly improved quality [Barron et al., 2023].
It struck us that we could not find any examples of large urban objects reconstructed
with these algorithms with a complete low detailed, or high detailed for that matter,
ground truth model.

We are interested if it may be possible to create a methodology to be able to objec-
tively measure the quality of the output with a low detailed complete ground truth
model. Therefore, we have to take a different approach in order to be able to mea-
sure the various algorithms for large buildings. The current metrics compare the
(low detailed) ground truth model with the generated results, but the various ren-
dering algorithms can often display the broad lines well. The quality of the model is
on the other hand determined by the extent to which the fine details are displayed.
This can be clearly seen in the evaluation of Li et al., see Figure 1.1. Our definition of
a low detailed complete ground truth model is a model were only the major shapes
of the building is modelled, but the fine details are omitted. The textures and details
are shown with images. The structure should be modelled from all above ground
angles.

The research question we want to answer in this thesis is: Can we develop a method-
ology that allows us to evaluate the quality of reconstruction algorithms, for ar-
chitectural purposes, without the use of a highly detailed complete ground truth
model?
Our research question lead to the following sub-questions:

2

1. Are the reconstruction algorithms able to reconstruct a scene from a low reso-
lution model of a large urban object.

2. What are the features that we can extract from a low resolution model, that
can be used to test the quality of the generated meshes.

3. Does the width of the region around the extracted feature influence the quality
of the evaluation metrics.

In this thesis we show that it is possible to create a methodology for a more objec-
tive evaluation of the performance of mesh reconstruction algorithms of large urban
objects generated from low detailed complete ground truth models. We have also
demonstrated that it is possible to render large urban objects from low detailed man-
ual modelled buildings with photo (realistic) textures. The code and dataset will be
available at https://github.com/meshReconstruction/MeshReconstructionEvaluation.
git

3

https://github.com/meshReconstruction/MeshReconstructionEvaluation.git
https://github.com/meshReconstruction/MeshReconstructionEvaluation.git

1. Introduction

Figure 1.1.: The high quality versus low quality blurred details. Taken from [Li et al.,
2023]

4

2. Related work

In this section we review the scientific research related to this thesis. First we will
discuss the existing algorithms, next we will dive into the different evaluation met-
rics, and lastly we will discuss the different types of existing benchmarks. Recon-
structing 3D objects is a computer vision problem that has existed since before the
use of image convolution neural networks. Currently, the 3D computer vision for
3D model acquisition research is mainly focused on algorithms using neural net-
works. The existing deterministic techniques like Multi-View Stereo have matured
[Li et al., 2023]. The algorithms we use in this thesis render an object based on input
images/video, with the output being a point cloud for MVS, a mesh and video or
images for NSR and a video or images for NVS.

2.1. Algorithms

2.1.1. Multi-View Stereo

Multi-View Stereo is used to generate a detailed point cloud from several photos or
videos of an object. Because the input consists of 2D photos and videos [Schönberger
et al., 2016], MVS techniques have to estimate the most logical 3D point locations of
the original object based on the original input images that the object probably had
[Schönberger et al., 2016]. The MVS algorithms do this by using various determin-
istic rules with the use of camera orientation and location [Gu et al., 2020]. If the
positions are not known we can use Structure from Motion (SfM) algorithms to es-
timate the probable camera positions relative to the world origin. MVS algorithms
can be subdivided into two main categories, Learning-based and traditional algo-
rithms. For deterministic algorithms we can subdivide it into four sub categories:
voxel-base, surface evolution, depth map and patch based algorithms. For learning
based algorithms there are two main subcategories, depth map based algorithms
and volumetric algorithms.

Traditional

Voxel based algorithms require that a bounding box of the scene is known before-
hand. One of the major downsides of these types of algorithms is that the resolution

5

2. Related work

of the grid limits the accuracy of the reconstruction. This can partially be alleviated
by using adaptive grids or graphs. Since a bounding box is required for these al-
gorithms, they are often limited to reconstructing objects and not scenes, since it is
relatively easy to estimate a bounding box for an object [Sinha et al., 2007].

Surface evolution based algorithms use a model as starting point, for instance a visual
hull. The algorithm refines the hull in an optimization based process. Since the cre-
ation of the initial model is often difficult for large scenes. They are therefore more
suitable for reconstruction of objects and not large scenes [Furukawa and Ponce,
2005].

Depth map based methods do not use a discretized volume with a restriction on
the possible depth values corresponding to the predefined accuracy, but calculate
a continuous depth for every pixel in the images. The depth can be calculated by
sweeping a plane through 3d space parallel to the reference camera and find a cor-
responding 2D projection for every location on the plane. With the depth maps the
scene can be reconstructed by fusing them [Strecha et al., 2006].

Patch based methods first create a set of patches that cover the estimated surfaces
of objects. These patches are obtained from pixel level correspondences between
images. These patches and their correspondences are then used to create a depth
map. Similar as with the depth map based methods these maps can be fused to
reconstruct a scene [Furukawa and Ponce, 2010].

Learning based

Depth map based algorithms work similar to the deterministic depth map and patch
based algorithms as they also use depth maps to reconstruct the scene. Most of
the deep learning based methods in this category use image convolutional neural
networks to extract features from the input images. The extracted features in com-
bination with the camera information is used to construct a cost volume which in
turn is used to estimate the depth map. This depth map is refined with the use of
an image convolutional network [Yao et al., 2018]. As for most of the learning based
algorithms it is necessary to pretrain the network on a large set of ground truth
data. The pretrained models can be used in reconstructing new scenes [Wang et al.,
2021c].

Volumetric based algorithms use the idea of voxel based and surface evolution based
algorithms and use a volumetric representation like a voxel grid. The main draw-
back of these representations is that they are restricted to small-scale problems
[Wang et al., 2021a]. The surface would be represented by marking all the voxels

6

2.1. Algorithms

that would be on the surface. To better scale the network to larger scenes, different
volumetric representations are used like the truncated signed distance field (TSDF)
[Wang et al., 2021c].

2.1.2. Novel View Synthesis

Novel View Synthesis are methods to generate new unseen images from a set of
input images or video. NVS does not generate a mesh or point cloud but generates
RGB images or a video of the object. In 2020 there has been a breakthrough in the
NVS field with the algorithm NeRF [Mildenhall et al., 2021]. NeRF made it possible
to generate photo realistic unseen images with neural networks [Mildenhall et al.,
2021]. The input data for MVS and NVS is identical. Even though the input is the
same, the output is very different. NVS is focussed on generating an image or video
of the object from unknown view points whereas the main focus of MVS lies in gen-
erating a 3d point cloud of the scene.

The main idea behind NeRF is to represent the appearance of the scene as a radiance
field. This field is a function of 3D positions and viewing directions and describes
for every point in the field how light interacts with the surfaces [Rabby and Zhang,
2024]. 5 dimensional points, consisting of location and viewing direction, are sam-
pled along the camera rays and fed into an multilayer perceptron (MLP) which out-
puts a colour and density for each position sample. The colour with their density
are then aggregated into the final pixel colour. To combine density into colour, a
colour must be sampled for each point along the ray. For the NeRF algorithms this
continuous integral is estimated by means of quadrature. Quadrature is often used
with discrete voxel grids, however using a fixed grid will only limit the MLP because
it is sampled at fixed discrete points. The authors of NeRF solved this by using strat-
ified sampling. The ray is divided into evenly spaced bins, from each bin a sample
is randomly and uniformly drawn. Not all areas of the ray are equally interesting
and sampling many points along the complete ray is inefficient. Therefore, the NeRF
algorithm samples in two networks, first a coarse network and afterwards a fine net-
work. The coarse network uses uniform stratified sampling along the ray, the fine
network uses the information learned from the coarse sampling and samples with a
bias towards the relevant parts. Finally, calculating the colour can be reduced to a
traditional alpha compositing problem [Mildenhall et al., 2021].

The original NeRF received much attention in the computer vision community and as
a result many algorithms are now based on the original NeRF architecture. The orig-
inal NeRF algorithm is slow. It takes a few hours up to two days to train the network.
Synthesizing new images in a trained network takes between less than a second up
to 30 seconds, depending on the resolution. Other methods improve the training

7

2. Related work

and rendering time by optimizing the ray tracing with more aggressive empty space
skipping and early ray termination [Tewari et al., 2021]. Other NeRF based methods
use different data structures like trees, hashes, grids and sparse-grids to speed up
the algorithm. Instant NGP managed to reduce the training time of the algorithm to
a couple of seconds by using a multi-resolution hash encoding [Müller et al., 2022].
There are also methods that focus on improving the render quality of NeRF. For in-
stance, Barron et al. [2021] proposed a method (MipNeRF) that does not determine
the colour of the pixel by casting a ray but by casting a cone defined by the camera
and area surrounding the pixel. MipNeRF takes a similar approach to sampling the
cone as NeRF, however since it is casting a cone, the value of each sampled frustum
is calculated by computing the integral of the positional encoding in the radiance
field. They approximate the frustum as a Gaussian distribution [Barron et al., 2021].
Other works improve the quality of NeRF by focussing on improving the robustness
to better handle objects with different lighting conditions [Tewari et al., 2021; Rabby
and Zhang, 2024].

In 2023 there was another breakthrough in the field of NVS with Gaussian splatting
[Kerbl et al., 2023]. This technique is faster, and the rendering quality is often of
higher quality than that of the NeRF based methods. Gaussian splatting represents
the scene using 3D Gaussians. Each Gaussian represents a colour and is defined
with a position, covariance, alpha and spherical harmonics component. The spher-
ical harmonics component is used to represent the directional component of the
radiance field. The initial set of Gaussians might not represent all the objects in
the scene well, therefore the algorithm increases the number of Gaussians every 100
iterations according to a fixed set of rules. If a Gaussian does not meet certain crite-
ria such as it is too large, too small, or the alpha value is below a threshold, it can
either remove, duplicate, split, move or change the orientation of the Gaussian. To
decrease the rendering time the Gaussian splatting algorithm uses a differentiable
rasterizer, which sorts the Gaussians for an entire image instead of for every pixel
and ignores Gaussians close to the view plane and those far outside the view [Kerbl
et al., 2023].

2.1.3. Neural surface Reconstruction

Neural Surface Reconstruction is a technique based on Novel View Synthesis and
specifically on the NeRF architecture. NSR uses the same input data as the NeRF
algorithms, but the output is focussed on meshes. Due to the nature of the algorithm
it is also possible to create synthetic images. Generally the quality of these renders
are of lower quality than those of the NVS algorithms [Li et al., 2023]. An upside of
the NSR algorithms is that they do not assume that all surfaces are Lambertian, which
is typical for the MVS algorithms. A downside of the NVS and NSR algorithms is that

8

2.2. Evaluation metrics

they often have difficulty with repetitive patterns and large areas of homogeneous
colour [Li et al., 2023]. The main difference between the NVS algorithms and the NSR
algorithms is that the latter uses implicit functions instead of the volume density
field. Neural implicit functions like occupancy grids or signed distance field (SDF)
are better suited for representing the surface of an object [Wang et al., 2021b].

2.2. Evaluation metrics

The most common metrics used to evaluate the meshes and point clouds generated
by MVS and NSR are:

• standard Chamfer distance (dC) [Farshian et al., 2023]

• Hausdorff distance (dh f) [Farshian et al., 2023]

• F-score [Farshian et al., 2023]

There are many more metrics that can be used to evaluate the generated mod-
els. These methods, EMD/Wasserstein distance, IoU/Jaccard Index, Normal con-
sistency, Jensen Shannon divergence, Coverage, Minimum matching distance, Light
field descriptor, are mainly used to evaluate the output generated by MVS [Farshian
et al., 2023].

The most commonly used evaluation metrics we use for images are:

• PSNR [Rabby and Zhang, 2024]

• SSIM [Rabby and Zhang, 2024]

Other methods that can be used to evaluate the correspondence between two im-
ages are: root mean square error, feature similarity indexing method, information
theoretic-based statistic similarity measure, spectral angle mapper, and universal
image quality index [Müller et al., 2020].

2.2.1. Mesh and Point cloud evaluation

standard Chamfer distance is widely used to measure the similarity between two point
clouds [Lin et al., 2023; Ibrahimli et al., 2023]. The standard Chamfer distance calcu-
lates the minimal distance between the points in the two different point clouds. The

9

2. Related work

smaller the average distance, the more the models resemble each other. The stan-
dard Chamfer distance as described in [Huang et al., 2023] is calculated as follows,
see Equation 2.1.

dC =
1
2
(Comp + ACC) (2.1)

Comp =
1∣∣Xgt
∣∣ ∑

xgt∈Xgt

minxpd∈ Xpd∥xgt − xpd∥

Acc =
1∣∣Xpd

∣∣ ∑
xpd∈Xpd

minxgt∈ Xgt∥xpd − xgt∥

Where Xgt the ground truth model is, xgt a sample from the ground truth model,
the Xpd the predicted model and xpd a sample from the predicted model. [Huang
et al., 2023]:

The Hausdorff distance metric is the maximum distance between two models and
defined as follows:

dh f = max
[
d(Xpd, Xgt), d(Xgt, Xpd)

]
(2.2)

d(X, Y) = maxx∈Xd(x, Y)

d(x, Y) = miny∈Y∥x − y∥

The F-score (Equation 2.3) as described in [Huang et al., 2023; Knapitsch et al., 2017]
is the harmonic mean of the precision, Equation 2.4, and recall, Equation 2.5, at a
given threshold ϵ:

F − Score =
2 × Precision × Recall

Precision + Recall
(2.3)

Precision =

∣∣∣{xpd ∈ Xpd|minxgt∈Xgt∥xgt − xpd∥ < ϵ
}∣∣∣∣∣Xpd

∣∣ (2.4)

10

2.2. Evaluation metrics

Recall =

∣∣∣{xgt ∈ Xgt|minxpd∈Xpd∥xpd − xgt∥ < ϵ
}∣∣∣∣∣Xgt

∣∣ (2.5)

A reconstruction must be complete as well as accurate for a high F-score. [Huang
et al., 2023; Knapitsch et al., 2017].

2.2.2. Image evaluations

There are two methods that are commonly used for evaluating images; peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM).

The PSNR is a method to calculate the quality of an output image compared to the
corresponding unseen ground truth image. The higher the PSNR, the better the
quality of the output image. The Equation 2.6 represents this mathematically.

PSNR = 20 log10

(
MAX f√

MSE

)
(2.6)

MSE =
1

mn

m−1

∑
0

n−1

∑
0

|| f (i, j)− g (i, j)||2

With f the original image matrix, g the rendered image matrix. Both f and g are
of size m × n. f (i, j) returns the pixel value at the ith row and jth column. MAX f
returns the maximum pixel value of the original image matrix.

The second method is structural similarity index measure, which is a method that com-
pares images by mimicking the human vision. The method was developed by Wang
et al. [2004] based on the idea that human vision is well-developed to extract struc-
tural information from scenes. Structure similarity looks at a group of pixels instead
of individual pixels such as PSNR. Structure similarity is made up of three differ-
ent components, luminance (Equation 2.7), contrast (Equation 2.8) and structural
information (Equation 2.9). The SSIM (Equation 2.10 and 2.11) can be used to score
a complete image, however Wang et al. found that it is more useful to apply the
matrix to local regions and taking the mean of all these windows. The average score
can be calculated by taking the mean of the SSIM for the different windows (mean
structural similarity index measure (MSSIM) Equation 2.12) [Wang et al., 2004].

11

2. Related work

l (x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2.7)

C1 = (K1L)2

c (x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(2.8)

C2 = (K2L)2

s (x, y) =
σxy + C3

σ2
x + σ2

y + C3
(2.9)

C3 =
C2

2

SSIM (x, y) = [l (x, y)]α ∗ [c (x, y)]β ∗ [s (x, y)]γ (2.10)

With both K1 and K2 ≪ 1, the pixel value range is L when using α = β = γ = 1

SSIM (x, y) =
(
2µxµy + C1

) (
2σxy + C2

)(
µ2

x + µ2
y + C1

) (
σ2

x + σ2
y + C2

) (2.11)

MSSIM (X, Y) =
1
M

M

∑
j=1

SSIM
(
xj, yj

)
(2.12)

Where M is the number of local windows and xi is the ith window of image X.

12

2.3. Existing Benchmarks

2.3. Existing Benchmarks

Several benchmarks are available for MVS, NVS and NSR. In this section we cover
a selection of benchmarks available for the different rendering methods. We look
at the individual strengths and weaknesses of the selected benchmarks and their
unique features. Because of the architectural focus of this thesis we highlight the
challenges with urban datasets/objects.

The research paper from Strecha et al. [2008] is often cited and considered an im-
portant dataset. In this thesis a dataset was created in the open air and contains 3
different building facades. A ground truth model was made using a LIDAR scanner.
This benchmark was very innovative for its time. It showed that it is very important
for MVS to have a detailed ground-truth model. The DTU and Tanks and Temples
benchmark based their ground-truth model on these findings of Strecha et al. [2008].

Figure 2.1.: Example image from DTU, courtesy to [Aanæs et al., 2016] small house
set 6

The DTU dataset is a commonly used benchmark dataset for MVS, NSR and NVS.
The DTU benchmark of Aanæs et al. [2016] consists of scans from 124 different ob-
jects. Each scene contains between 49 and 64 different positions and the resolution
is 1600 × 1200. The camera parameters are also included. They are of high quality
because they have been calibrated with the Matlab calibration tool. The scenes and
all the positions were taken in seven different exposures. All objects in this dataset
are small objects that fit on a table, like the toy house shown in Figure 2.1 [Aanæs

13

2. Related work

Figure 2.2.: Example of gaps in the DTU dataset

et al., 2016]. The objects have complex shapes and have challenging surface features
such as reflections. The recordings were all made indoors, therefore lighting was
standardized. The photos were taken using a robotic arm, so that all photos have a
standard distance to the object. Unfortunately the scans are not all 360◦. This results
in gaps in the ground truth mesh, see Figure 2.2. The 360◦ scans that are available
are made with 90◦ intervals. This resulted in low quality input data and have for
that reason been excluded from the benchmark. The lack of 360◦ input data makes
it hard to evaluate the different 3D algorithms because the output objects are 3D
objects. The nature of the objects, toys and model buildings, means that the finer
details, which are present in live size objects, are not present in the models.

Another important benchmark that exists is the Tanks-and-Temples benchmark made
by [Knapitsch et al., 2017]. This benchmark consists of a mix of large objects such as
buildings and smaller objects like vehicles. The objects are filmed in high resolution
and the ground truth models are made with a at that time state-of-the-art precision
laser. These ground truth models are very detailed. This makes it possible to test the
algorithms on their ability to represent small details. On the other hand, especially
on larger objects the models have major gaps. For instance the courthouse misses
almost the entire roof and only part of the dome is included in the ground truth, see
Figure 2.3 and Figure 2.4. High detailed ground truth models are important for the
MVS and NSR benchmarks because the algorithms have difficulty to render the small

14

2.3. Existing Benchmarks

Figure 2.3.: Frontal view of the cleaned courthouse ground truth scan from the Tanks
and Temples dataset

Figure 2.4.: The courthouse objects misses a lot of data especially for the roof

details. The precise scanning with a laser scanner of the object is a lengthy process.
Scanning the largest object in the Tanks-and-Temples dataset took two days. These
scans have, as always, a high chance of the scan failing for example, due to too many

15

2. Related work

people and vehicles moving through the scene [Knapitsch et al., 2017].

Figure 2.5.: Frame from the OMMO dataset

Various benchmark data sets are available for Novel View Synthesis (NVS). In con-
trast to the other forenamed benchmarks the NVS benchmarks consist only of video
and or images. This makes the creation of large outdoor data sets and benchmarks
relatively easy. OMMO is the largest and most resent dataset and benchmark, it con-
tains 33 different objects, see Figure 2.5, [Lu et al., 2023]. All datasets that have high
definition images or videos of objects can be used as benchmarks for NVS. Therefore,
all the MVS and NSR benchmarks are also used for NVS. To the best of our knowledge
there are no benchmark datasets that have highly detailed complete models for large
urban objects.

16

3. Methodology

We can divide the methodology in tree major blocks: Dataset, Algorithm pipeline
and Evaluation method.

3.1. Dataset

In Figure 3.1 the schematics of the different steps are visualized.

Figure 3.1.: The data pipeline

1. Selecting suitable models in SketchUp warehouse1.

2. Convert SketchUp model to OBJ format.

3. Load the model into Blender and adjust the image rendering script to ensure
that the camera is correctly rotated around the object, to produce the usable
images and poses for the algorithms.

3.1.1. Selecting suitable models in SketchUp warehouse

We selected SketchUp Warehouse models that met the following criteria:

1. The model must be complete, i.e. the whole building should be modelled with
as much detail as possible.

1https://3dwarehouse.sketchup.com/

17

https://3dwarehouse.sketchup.com/

3. Methodology

2. The model must have photo realistic textures.

3. The model must have a correct scale.

SketchUp Warehouse is a public database for SketchUp models, anyone with a
SketchUp account can upload their models here and there are no requirements for
the uploaded models. As a result, the quality of most models tuned out to be too low
to be usable. Therefore, we had to switch to native OBJ models, but most publicly
available OBJ models do not contain image based textures like the SketchUp models.

3.1.2. Convert from SketchUp model to OBJ

In order to use the model they have to be loaded into Blender, however Blender does
not support SketchUp objects natively. Therefore, we opted to convert the SketchUp
models to OBJ, which can be loaded into Blender. We use Rhino 7 2 to convert the
SketchUp models to OBJ since Rhino supports both formats.

3.1.3. Model to input dataset

In Blender, we had to perform the following steps to convert a model to was suitable
for input to the algorithms, these are:

1. place OBJ model on axis origin in Blender.

2. move camera target to centre of mass of the model.

3. tweak camera path so that it revolves around the entire model.

4. define the number of frames to generate.

5. for every frame render image.

6. for every frame compute normal map.

7. for every frame compute alpha mask.

8. for every frame compute depth map.

9. for every frame save camera positions (track extrinsic parameters, i.e. rotation
and translation).

10. calculate camera intrinsics: focal length, pixel translation to centre of image,
image resolution.

2https://www.rhino3d.com/7/

18

https://www.rhino3d.com/7/

3.2. Algorithm pipelines

We then placed the object with the centre of the footprint on the world axis. The
camera tracks to origin of the model, therefore we move the origin of the model to its
centre of mass. To create the render the input images around the model. We rotate
the camera around the object at a constant distance from the object and oscillate the
height using a cosine. Because of the different sizes of the models, we make sure
the camera rotates around the object by moving it further or closer to the object,
therefore we also adapt the maximum depth value for the depth maps we generate
to fully capture the model. For every frame capture not only the image, but also the
normal map, alpha mask and depth map. The last step is to calculate the camera
intrinsic parameters.

3.2. Algorithm pipelines

In this section we discuss the algorithm pipeline we test on three different types of
algorithms, these are:

1. Multi-View Stereo.

2. Neural Surface Reconstruction.

3. Novel View Synthesis.

We do not run the latest state-of-the-art algorithms for the various algorithms be-
cause these algorithms are still being developed and are therefore less stable. It is
too time-consuming to debug them. This is why we opted for algorithms that are
state-of-the-art but not cutting edge.

The MVS algorithms we run are:

• Colmap [Schönberger et al., 2016].

• PatchmatchNet [Wang et al., 2021a].

The NSR algorithms we run are:

• Neus-facto [Yu et al., 2022].

• VolSDF [Yariv et al., 2021].

The NVS algorithms we run are:

• Nerfacto [Tancik et al., 2023].

• Gaussian splatting [Kerbl et al., 2023].

19

3. Methodology

3.2.1. NSR pipeline

The implementation of NSR consists of a set of state-of-the-art algorithms in SDFS-
tudio. SDFStudio is an add-on to NeRFStudio. The different steps are visualized in
Figure 3.2.

1. Prepare SDFStudio dataset: images with poses optional alpha mask.

2. Running algorithms and tweak the hyperparameters.

3. Extract features from mesh.

4. Feature mesh scoring with standard Chamfer distance, Hausdorff distance and
F-score.

Figure 3.2.: The Neural Surface Reconstruction pipeline

3.2.2. NVS pipeline

NVS has an umbrella implementation (NeRFStudio) the different steps are visualized
in Figure 3.3

• Prepare NeRFStudio dataset: images with poses optional alpha mask.

• Running algorithms and tweak the hyperparameters.

• Generating images from the control set.

• Score generated images with corresponding evaluation set images using PSNR
and SSIM/MSSIM.

20

3.3. Evaluation

Figure 3.3.: The Novel View Synthesis pipeline

3.2.3. MVS pipeline

MVS does not have an overarching implementation like NeRFStudio and SDFStudio,
so for each algorithm the required input must be determined, visualized in Figure
3.4:

1. Prepare input for algorithm.

2. Run algorithms and tweak the hyperparameters.

3. Evaluate Point cloud with standard Chamfer distance, Hausdorff distance and
F-score.

Figure 3.4.: The Multi View Stereo pipeline

3.3. Evaluation

For the evaluation of the algorithm we require a mesh therefore we test this evalua-
tion method on the NSR algorithms. NVS outputs images which we can compare to
the generated images and the MVS output is a point cloud. If we were to convert the

21

3. Methodology

point cloud to a mesh we needed to use a meshing algorithm, like Poisson recon-
struction of Delaunay triangulation. After such a conversion it is unclear what the
value of the measurement will be because it is not only evaluating the original out-
put but also the converted output. Therefore, we will only evaluate the MVS output
in the traditional manner.

When the reconstruction of a building is evaluated visually most attention is placed
on the quality of the finer details. However, when evaluating a reconstruction with
a low detailed ground truth mesh the finer details are not evaluated in any way.
It struck us that if the algorithm can reconstruct the finer details well, it is also
able to reconstruct the edges of the building well. Therefore, we are investigating if
evaluating with the sharp features of a mesh is more inline with a visual observation.

To extract the features from the mesh we use the Polygon Mesh Processing (PMP)
package in Computational Geometry Algorithms Library (CGAL) [Loriot et al., 2024;
The CGAL Project, 2024]. The sharp edges of the input mesh are detected using
the detect sharp edges function from PMP. We build a wireframe by constructing a
mesh from the adjacent faces of the detected features. To determine which edges
are sharp the angle between the normals of the adjacent facets is calculated. If the
angle is above the specified threshold it will be marked as sharp. Besides varying
the threshold we also test with wireframes with only the adjacent facets as well as
with wireframes with the two-ring neighbourhood.

The feature meshes can be evaluated with the same metrics as normal meshes. The
meshes we will use are the standard Chamfer distance, Hausdorff distance and F-
score as described in the previous chapter (2.2.1). We will compare the score for
the different feature meshes and the traditional full mesh evaluation with visual
observations to determine which combination is most inline with our own visual
observation. We use visual observation due to the lack of an objective evaluation
method.

22

4. Experiments

In this section we discuss the various experiments we have run to investigate whether
it is possible to evaluate the quality of neural rendering algorithms, without the use
of a highly detailed complete ground truth model. Before we can start with the
evaluation of the output of the algorithms, we need to construct a dataset.

4.1. Dataset

We start the dataset creation with selecting models from the SketchUp warehouse
that suited our requirements of being complete, correctly scaled and with photo tex-
tures. Due to the requirements, many of the models are reconstructions of existing
buildings, so images of the buildings were used as textures. These types of textures
are more realistic and display fine details that can be found on real buildings. How-
ever, many of the textures were missing (Figure 4.1a) and/or misaligned (Figure
4.1b) when converted. Since the textures are created from photos it is a very time-
consuming task to repair the models if even possible. We tried to run the algorithms
with the models with missing and/or misaligned textures to verify if they were us-
able. This was however not the case. Therefore, we had to search for models that
after conversion had no or minor texture errors that could be corrected in less than a
couple of hours. For the conversion of the SketchUp models to OBJ we used Rhino 7.

The next step was generating the input data from the converted OBJ models. We
used the following steps to generate the input data: load the model into Blender and
tweak the camera path, so it revolves around the model; At fixed intervals save the
camera position and orientation, render the image, and compute the normal map,
depth map and alpha mask and save the camera intrinsic parameters. With the gen-
erated data we could run the algorithms, however with the input data generated
with the default settings delivered no usable output when used in the algorithms.
Example outputs for MVS can be seen in Figure 4.2a, for NSR can be seen in Figure
4.2b and for NVS can be seen in Figure 4.2c. The NVS output was the most striking
example of unusable output. We knew that the implementation of the different al-
gorithms was correct since we tested them with scan 65 (Figure 4.3a) from the DTU
dataset [Aanæs et al., 2016].

23

4. Experiments

(a) Model with missing tex-
tures

(b) Model with misaligned textures

Figure 4.1.: The examples of meshes that could not be converted

(a) Example of bad MVS
output

(b) Example of bad NSR out-
put

(c) Example of bad NVS out-
put

Figure 4.2.: The examples of unusable output for the three algorithm groups

We were now confronted with the question if the algorithms could not handle large
urban objects or if the input data was unusable. First we tried to verify if the algo-
rithm was trained long enough, initially we used 20000 iterations for the NVS and
NSR algorithms which took on average six hours to run. So we tried to increase the
number of training iterations even up to 200000 to check if longer training would
result in meaningful output, this was not the case. Then we tried to run it with
fewer iterations, to makes sure the model was not overtrained. This was also not the
case. The next question was, can the algorithm handle such models or there some-
thing wrong with the input data for these large urban objects. Thus, we searched
for examples of large urban objects reconstructed from a low detailed ground truth

24

4.1. Dataset

(a) Scan 65 from the DTU dataset [Aanæs
et al., 2016]

model we were unable to find any examples. Therefore, by trial and error we had to
figure out how we had to adapt the input data so that all the algorithms were able
to correctly produce output.

With the generation of the input data we could change six settings with which we
could experiment in different configurations. To determine the effect of every in-
dividual setting we could only change one value and then rerun the different algo-
rithms. This was a very time-consuming and slow process. We started with changing
the following settings:

• Alpha masks.

• Normal map.

• Depth map.

• Number of images.

• Distance of camera to object.

• Maximum vertical oscillation.

For example after we increased the number of images, we turned the alpha masks
on and off, then we tried it with normal maps turned on or off, etc. Little by little
we were able to improve the outcome but still the results were in a usable state. So
we started to experiment with settings that were outside the ones we defined in our
methodology.

By reverse engineering small object, we tried to determine if there were maybe other
settings we could change in order to improve the results. One of the things we tried
was: if we were to use the poses from SfM pipeline of COLMAP for small objects, are

25

4. Experiments

they different from the poses we would produce with the same small object. Then we
figured out that the intrinsic camera parameters we were generating, were different
from the COLMAP output. We could improve the quality of the input data consid-
erably. We also tried to change the lighting conditions in order to mimic the original
photo textures better. We added directional light sources of various intensities in
combination with changes to the original settings. Eventually we also added envi-
ronmental lighting textures. With the addition of COLMAP poses, directional light,
light intensity and environmental lighting, we had ten different settings we could
try in different configurations in order to improve output of all three algorithms at
the same time. Sometimes a setting would work in one algorithm but not in another.

This meant we made a significant change to the way we originally anticipated our
methodology. We anticipated a linear process, but we ended up with a long iterative
process to optimize the ten different settings before we could start with evaluating
the usability of our research topic. When we first managed to successfully render the
first object we were then able to increase the number of usable objects in a relatively
easy manner.

This resulted in the ten models displayed in Figure 4.4. We aimed for different types
of buildings. We strived for models with different sizes, orientations and geometric
complexity. We can divide the models into three different size categories: large,
medium and small. Large consists of EWI, Stieltjesweg and Winchester Cathedral,
medium include: Apartment, Flat, Neo, Speerhall, Stoommachine. The small mod-
els are: House and Villa.
For orientation, we have vertical, horizontal and square buildings. With Apart-
ment, EWI and Neo in the vertical category. The horizontal category consists of:
Stieltjweg, House, Speerhall, Villa and Winchester Cathedral. The square category
contains Stoommachine and Flat.
The geometric complexity we subdivided the models into two categories: simple and
complex. The simple models are models where fewer details are modelled: Stoom-
machine, EWI, and House. The more complex models are: Stieltjesweg, Apartment,
Flat, Neo, Speerhall, Villa and Winchester Cathedral.

26

4.1. Dataset

Figure 4.4.: The ten models. From left to right top to bottom: Apartment, Flat,
Speerhall, Stoommachine, EWI, Neo, House, Winchester Cathedral, Stieltjesweg

27

4. Experiments

4.2. Algorithms

With the input data now working we can investigate whether it is possible evaluate
the quality of the reconstruction algorithms with a low detailed complete ground
truth model. We will first discuss the results for NVS. The models we selected have
photo realistic textures and therefore the algorithm can be evaluated in a standard
manner. Next we will discuss MVS, we are generating a point cloud for with these
algorithms. If we would use a meshing algorithm on the point cloud it would no
longer be clear if we would measure the quality of the MVS algorithm or of the mesh-
ing algorithm. Therefore, we opted to evaluate the output of MVS without feature
extraction from an externally generated mesh. The NSR algorithms produce a mesh
and the evaluation with feature extraction is tested in this category.

4.2.1. NVS

First we discuss the results of the NVS algorithms. The algorithms we have run
for NVS are Nerfacto and Splatfacto. With Nerfacto a NeRF based algorithm and
Splatfacto an open source implementation of Gausssian splatting. In table 4.1 the
PSNR and SSIM scores are shown for the two algorithms for the ten models. Both
Nerfacto and Splatfacto have difficulty rendering EWI (Figure 4.6) and villa (Figure
4.5) as their scores are lower than the other models. EWI 4.6a is the tallest building
in our dataset, this may be the reason that the algorithms have difficulty rendering
this object since it is zoomed out to fully capture the model. Villa is a building with
many small details, such as the railings on the balcony. This fine details might be
the reason the algorithms have difficulty with this building.

(a) The Nerfacto rendering for the object
Villa (b) The Splatfacto rendering for the object Villa

Figure 4.5.: The Nerfacto and Splatfacto renderings of the Villa model

28

4.2. Algorithms

(a) The Nerfacto rendering for the object
EWI (b) The Splatfacto rendering for the object

EWI

Figure 4.6.: The Nerfacto and Splatfacto renderings of the EWI model

mesh algorithm PSNR↑ SSIM↑

Apartment
Nerfacto 27.633 0.801
Splatfacto 18.256 0.931

Ewi
Nerfacto 18.605 0.474
Splatfacto 14.832 0.912

Flat
Nerfacto 27.892 0.866
Splatfacto 15.532 0.904

House
Nerfacto 24.591 0.730
Splatfacto 21.070 0.934

Neo
Nerfacto 27.227 0.735
Splatfacto 14.102 0.878

Speerhall
Nerfacto 23.698 0.725
Splatfacto 17.503 0.904

Stoommachine
Nerfacto 24.189 0.754
Splatfacto 14.212 0.907

Stieltjesweg
Nerfacto 25.842 0.781
Splatfacto 17.803 0.889

Villa
Nerfacto 18.955 0.552
Splatfacto 15.558 0.860

Winchester Cathedral
Nerfacto 29.584 0.805
Splatfacto 17.685 0.925

Table 4.1.: PSNR and SSIM for NVS

29

4. Experiments

4.2.2. MVS

We have run two algorithms for MVS, the first algorithm is COLMAP and the sec-
ond one is PatchmatchNet. Both algorithms use the poses structure from COLMAP
which are quaternions, but he poses we generate are a rotation translation matrix.
Normally COLMAP poses are translated to rotation translation matrices for the use
in NVS and NSR algorithms. We tried to reverse engineer our rotation translation
poses to COLMAP quaternion poses under the assumption that the translation
would be symmetrical. Unfortunately we have been unable to reverse engineer it
successfully, see examples in Figure 4.7. Therefore, we are using the SfM algorithm
of COLMAP to generate poses for the two algorithms.

Figure 4.7.: Examples of wrong conversions from rotation translation matrix to
COLMAP poses

Both COLMAP and PatchmatchNet had more trouble with reconstructing the build-
ings than the algorithms in the other two categories. COLMAP performed better
than PatchmatchNet on all our models, which can be seen in Figure4.8. This is
also reflected in most of the values from table 4.2, especially the F-score shows this.
COLMAP was able to reconstruct some models better than others. This is mostly due
to the symmetry in some models which the SfM algorithm has difficulty with. An
example of a symmetric model is Neo, in Figure 4.9. The COLMAP reconstruction
from the front and back of the building is shown, but we can see that the backside
is missing.

30

4.2. Algorithms

Figure 4.8.: Left COLMAP, right PatchmatchNet output for Winchester cathedral

Figure 4.9.: COLMAP reconstruction of the Neo model. Left from the front, right
from the back

31

4. Experiments

COLMAP PatchmatchNet

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑
Apartment 7.264 0.688 0.030 6.707 0.410 0.030
Ewi 17.671 1.038 0.644 18.839 2.071 0.009
Flat 3.902 0.349 0.235 8.104 0.819 0.041
House 5.088 0.411 0.015 3.087 0.060 0.518
Neo 13.299 1.091 0.428 13.774 1.377 0.021
Speerhall 7.622 0.077 0.488 13.061 1.838 0.005
Stieltjesweg 54.983 0.711 0.420 30.048 3.236 0.001
Stoommachine 9.142 0.802 0.585 8.625 1.132 0.001
Villa 15.660 0.134 0.464 10.564 0.759 0.002
Winchester 62.509 0.211 0.426 30.321 4.483 0.000

Table 4.2.: Results MVS

32

4.2. Algorithms

4.2.3. NSR

In the NSR category we used the Neus-faco and VolSDF algorithm to reconstruct the
models. These algorithms produce meshes that enable us to extract features. For
every model we first do a visual inspection of the reconstruction to see which object
is reconstructed better. Next we evaluate the reconstructions using the full mesh for
both the reconstruction and the ground truth model. This is the traditional way of
evaluating and serves as a baseline. For the wire models we tested six configura-
tions. Three wire models where only the adjacent facets to the detected sharp edges
were selected, these are marked as small models. The three wire models where the
two ring neighbours around the adjacent facets were also selected are marked as
the large models. For both categories we tested with an angle threshold of 25◦, 40◦

and 60◦. The analysis per model can be found in Appendix A. Table 4.3 shows the
percentage where the quality prediction of the metric is inline with the visual obser-
vation aggregated over all the results.

Hausdorff chamfer F-score combined

large
25 50% 50% 40% 46.7%
40 50% 70% 30% 50%
60 50% 70% 40% 53.3%

small
25 60% 60% 40% 53.3%
40 60% 70% 40% 56.7%
60 50% 70% 50% 56.7%
full 50% 40% 50% 46.7%

Table 4.3.: Percentage where metric corresponds with visual analysis

33

5. Conclusion

Due to the complexity of creating a high detailed ground truth model, through laser
scanning or manually modelling, of large urban objects, there is no way to objec-
tively measure the performance of the passive reconstruction algorithms with the
current metrics. In this thesis we wanted to investigate if it is possible to create a
methodology to quantify the performance of passive reconstruction algorithms for
large urban objects with a low detailed but complete ground truth model.

The idea was based on the visual observation that, if an algorithm is able to re-
construct the finer details, the larger features of the building are also reconstructed
better. Unfortunately there are no datasets available consisting of large urban objects
with a complete ground truth model. Only partially scanned buildings where large
parts are missing are currently publicly available.

Therefore, the first question we had to answer is: can the algorithms reconstruct a
large urban object based on a low detailed complete ground truth model. To answer
this question we needed to create a new dataset. Out of the box the low detailed
models were not suitable to be used in the algorithms. With the right settings of
the parameters and hyperparameters it is possible to reconstruct large urban objects
with algorithms from MVS, NVS and NSR from low detailed models.

With these outcomes we were now able to measure the performance of the NSR al-
gorithms based on feature extraction from the generated meshes. We experimented
with three different metrics (Hausdorff distance, standard chamfer distance, and
F-score) and six combinations of wire meshes. We found that, based on our ten
models, the standard chamfer distance with a wire mesh with an angle between 40
and 60 degrees for both small and large gives a better prediction of the quality of
the algorithms than the traditional evaluation on the full mesh, based on our visual
analysis. In table 4.3 we can see that the traditional standard chamfer distance based
on the full mesh, only 40% of the time was inline with our visual analysis. Whereas
the standard chamfer distance based on the feature extraction was for 70% inline
with our visual analysis.

Measuring the performance of mesh reconstruction algorithms based on feature ex-
traction of the ten models has shown potential for the creation of a benchmark for

35

5. Conclusion

large urban objects generated from low detailed complete ground truth models. For
future research we are interested if a benchmark can be created where a large num-
ber of low detailed complete ground truth models are scored with feature extraction.

36

A. Evaluation per model for NSR

For every model we show the ground truth model, the reconstruction of the NeuS-
facto, the reconstruction of VolSDF, the quantitive evaluation for the different wire-
frames and full mesh. With a visual inspection we indicate which reconstruction is
better. In the table we indicate for every metric and evaluation mesh which algo-
rithm is scoring better with a green colour.

A.1. Apartment

For the visual inspection of the apartment model, the reconstructions are shown in
Figure A.1). For this object we choose the VolSDF object because the general shape
of the object is better modelled. The corners of the building are also better rendered.
Even though the details in the NeuS-facto renderings are sharper, there is too much
noise in the reconstruction. The results of the metrics are shown in Table A.1.

Figure A.1.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the apartment model

A.2. EWI

The reconstructions are shown in Figure A.2). We chose the NeuS-facto model for
the visual inspection because the sides of the object are better modelled, the stepped
design of the building is clearly visible here, while with VolSDF this has become a

37

A. Evaluation per model for NSR

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 4.750 0.454 0.562 4.764 0.606 0.402
40 4.750 0.858 1.149 4.805 0.706 0.414
60 5.980 1.580 0.623 6.759 1.485 0.386

small
25 4.672 0.512 0.533 4.864 0.631 0.397
40 4.672 0.896 0.535 4.873 0.734 0.432
60 6.003 1.650 0.625 6.818 1.519 0.387
full 6.043 0.496 0.602 5.259 0.383 0.582

Table A.1.: Results apartment for NSR

large curve. In addition, more detail is shown in the windows in the facade. The
quantified results are shown in Table A.2.

Figure A.2.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the Ewi model

A.3. Flat

The reconstructions are shown in Figure A.3).We choose the NeuS-facto result for
the visual inspection because the balconies on the side of the building are better
modelled. This shows that there are raised edges on the balcony. The various win-
dows have also been modelled in higher detail. The quantified results are shown in
Table A.3.

38

A.4. House

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 22.570 5.097 0.188 22.135 5.047 0.457
40 20.931 6.871 0.240 35.061 8.986 0.402
60 27.048 9.561 0.234 39.463 13.761 0.084

small
25 22.998 4.997 0.185 22.579 5.556 0.473
40 20.980 6.814 0.257 35.293 10.165 0.435
60 27.277 9.774 0.233 39.870 14.245 0.049
full 17.407 1.801 0.397 11.907 1.159 0.541

Table A.2.: Results Ewi for NSR

Figure A.3.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the flat model

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 6.154 0.501 0.563 6.975 0.871 0.552
40 5.919 0.703 0.557 6.975 1.476 0.585
60 5.724 1.362 0.565 10.400 3.462 0.666

small
25 6.134 0.504 0.536 6.921 0.905 0.546
40 5.908 0.743 0.545 6.887 1.520 0.593
60 5.645 1.436 0.574 10.453 2.111 0.624
full 6.239 0.613 0.602 7.019 0.625 0.528

Table A.3.: Results flat for NSR

A.4. House

The reconsturction of the House model can be seen in Figure A.4. The house that is
visually better is the VolSDF model because the NeuS-facto model has a lot of noise

39

A. Evaluation per model for NSR

around the object. The VolSDF object has slightly less detailed objects in the facades
than that of NeuS-facto. But overall, VolSDF’s result looks better. The quantified
results are shown in Table A.4.

Figure A.4.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the house model

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 3.421 0.507 0.421 4.539 0.544 0.420
40 3.421 0.662 0.429 4.565 0.923 0.460
60 3.421 1.026 0.449 4.565 1.318 0.445

small
25 3.532 0.550 0.414 4.553 0.581 0.425
40 3.532 0.550 0.414 4.590 0.999 0.461
60 4.553 0.581 0.425 4.590 1.380 0.449
full 3.421 0.459 0.383 4.740 0.507 0.285

Table A.4.: Results house for NSR

A.5. Neo

The reconstruction of the Neo model can be found in Figure A.5. The NeuS-facto
results looks better than that of VolSDF because the details are better modelled. With
VolSDF the details are more smoothly detailed, while with NeuS-facto the details are
modelled sharper. The quantified results are shown in Table A.5.

40

A.6. Speerhall

Figure A.5.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the Neo model

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 5.176 0.377 0.433 6.971 0.820 0.483
40 5.072 0.542 0.402 8.639 1.414 0.506
60 4.878 0.834 0.377 14.554 3.013 0.423

small
25 5.076 0.398 0.432 7.061 0.889 0.546
40 4.973 0.574 0.400 8.732 1.490 0.567
60 4.812 0.887 0.373 14.638 3.037 0.371
full 6.188 0.553 0.484 5.677 0.437 0.439

Table A.5.: Results Neo for NSR

A.6. Speerhall

The reconstruction is shown in Figure A.6. We chose the NeuS-facto model because
this model represents the details much better than the VolSDF model. The details
are sharper. With the full SDF model the details are very smooth. The quantified
results are shown in Table A.6.

Figure A.6.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the Speerhall model

41

A. Evaluation per model for NSR

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 6.612 0.415 0.543 5.849 0.364 0.433
40 6.612 0.519 0.556 8.060 1.174 0.372
60 6.612 0.782 0.544 13.265 2.866 0.193

small
25 6.481 0.439 0.522 5.955 0.400 0.436
40 6.481 0.561 0.512 8.195 1.216 0.366
60 6.481 0.814 0.513 13.419 2.867 0.134
full 7.188 0.751 0.580 7.443 0.434 0.511

Table A.6.: Results Speerhall for NSR

A.7. Stoommachine

The reconstructed meshes are displayed in Figure A.7. For Stoommachine it is a
difficult choice between NeuS-facto and VolSDF because the shapes of both objects
are well rendered. The difference is mainly in the modelled details, where the NeuS-
facto object is better detailed than the VolSDF object. That is why we determined
the NeuS-facto object is better modelled. The quantified results are shown in Table
A.7.

Figure A.7.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the Stoommachine model

A.8. Stieltjesweg

For Stieltjesweg the reconstructions are shown in Figure A.8. The NeuS-facto object
is better modelled because the overall shape of the object is better and more details
have been modelled. There is some extra noise on the left side of the object, but this

42

A.9. Villa

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 4.676 0.473 0.538 5.907 0.421 0.449
40 4.676 0.680 0.564 6.940 1.081 0.414
60 4.847 1.057 0.695 13.279 2.624 0.542

small
25 4.676 0.533 0.515 5.997 0.460 0.465
40 4.676 0.758 0.577 7.032 1.106 0.531
60 4.927 1.169 0.699 13.321 2.628 0.636
full 4.676 0.427 0.581 6.287 0.409 0.536

Table A.7.: Results Stoommachine for NSR

does not outweigh the details and the shape. The quantified results are shown in
Table A.8.

Figure A.8.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the Stieltjesweg model

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 28.199 2.569 0.379 19.719 2.809 0.475
40 37.181 3.789 0.391 22.797 4.304 0.475
60 37.181 6.031 0.353 34.320 7.918 0.373

small
25 28.428 2.688 0.386 19.765 2.888 0.499
40 37.181 3.970 0.387 22.955 4.334 0.491
60 37.181 6.648 0.347 34.317 8.004 0.397
full 26.902 5.622 0.232 16.533 4.498 0.265

Table A.8.: Results Stieltjesweg for NSR

A.9. Villa

The reconstruction for the villa model can be found in Figure A.9. For the visual
comparison of the villa model, we find the result of the VolSDF model is better since

43

A. Evaluation per model for NSR

the NeuS-Facto model contains more noise than the VolSDF model. The quantified
results are shown in Table A.9.

Figure A.9.: Left ground truth mesh, middle NeuS-facto output, right VolSDF output
for the villa model

neusfacto volsdf

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 9.811 0.838 0.274 5.262 1.353 0.412
40 9.667 1.076 0.284 5.362 1.507 0.416
60 9.667 1.293 0.338 7.179 2.214 0.571

small
25 9.811 0.886 0.257 5.321 1.449 0.424
40 9.759 1.176 0.270 5.456 1.609 0.425
60 9.741 1.418 0.273 7.030 2.332 0.575
full 9.811 0.928 0.177 5.063 1.170 0.218

Table A.9.: Results villa for NSR, results pending

A.10. Winchester cathedral

For the visual comparison, the reconstructions are shown in Figure A.10, we de-
termined the NeuS-facto result is better because the details of the object are better
modelled. There is more noise around the object, but the complex details such as the
pillars are modelled more sharply. The quantified results are shown in Table A.10.

44

A.10. Winchester cathedral

Figure A.10.: Left ground truth mesh, middle NeuS-facto output, right VolSDF out-
put for the Winchester cathedral model

NeuS-facto VolSDF

Hausdorff↓ chamfer↓ F-score↑ Hausdorff↓ chamfer↓ F-score↑

large
25 32.283 2.562 0.298 15.960 4.475 0.286
40 32.283 3.750 0.358 22.169 7.698 0.367
60 32.283 6.823 0.417 32.077 13.041 0.410

small
25 32.012 2.835 0.304 15.960 4.711 0.285
40 32.012 4.178 0.364 22.321 8.299 0.327
60 32.012 7.696 0.384 32.442 13.559 0.406
full 34.471 5.451 0.287 15.960 2.678 0.275

Table A.10.: Results Winchester cathedral for NSR

45

Bibliography

Aanæs, H., Jensen, R. R., Vogiatzis, G., Tola, E., and Dahl, A. B. (2016). Large-
Scale Data for Multiple-View Stereopsis. International Journal of Computer Vision,
120(2):153–168.

Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., and Srini-
vasan, P. P. (2021). Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neu-
ral Radiance Fields. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 5835–5844. ISSN: 2380-7504.

Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., and Hedman, P. (2023).
Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. pages 19697–19705.

Farshian, A., Götz, M., Cavallaro, G., Debus, C., Nießner, M., Benediktsson, J. A., and
Streit, A. (2023). Deep-Learning-Based 3-D Surface Reconstruction—A Survey.
Proceedings of the IEEE, 111(11):1464–1501. Conference Name: Proceedings of the
IEEE.

Furukawa, Y. and Ponce, J. (2005). Carved visual hulls for high-accuracy image-
based modeling. In ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05, pages 146–es,
New York, NY, USA. Association for Computing Machinery.

Furukawa, Y. and Ponce, J. (2010). Accurate, Dense, and Robust Multiview Stereop-
sis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–1376.
Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.

Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., and Tan, P. (2020). Cascade Cost Volume
for High-Resolution Multi-View Stereo and Stereo Matching. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2492–2501.
ISSN: 2575-7075.

Huang, J., Gojcic, Z., Atzmon, M., Litany, O., Fidler, S., and Williams, F. (2023).
Neural Kernel Surface Reconstruction. In 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4369–4379. ISSN: 2575-7075.

Ibrahimli, N., Ledoux, H., Kooij, J. F. P., and Nan, L. (2023). DDL-MVS: Depth Dis-
continuity Learning for Multi-View Stereo Networks. Remote Sensing, 15(12):2970.
Number: 12 Publisher: Multidisciplinary Digital Publishing Institute.

47

Bibliography

Kerbl, B., Kopanas, G., Leimkuehler, T., and Drettakis, G. (2023). 3D Gaussian
Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graph-
ics, 42(4):139:1–139:14.

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. (2017). Tanks and temples: bench-
marking large-scale scene reconstruction. ACM Transactions on Graphics, 36(4):78:1–
78:13.

Li, Z., Müller, T., Evans, A., Taylor, R. H., Unberath, M., Liu, M.-Y., and
Lin, C.-H. (2023). Neuralangelo: High-Fidelity Neural Surface Reconstruction.
arXiv:2306.03092 [cs].

Lin, F., Yue, Y., Hou, S., Yu, X., Xu, Y., Yamada, K. D., and Zhang, Z. (2023). Hyper-
bolic Chamfer Distance for Point Cloud Completion. pages 14595–14606.

Loriot, S., Rouxel-Labbé, M., Tournois, J., and Yaz, I. O. (2024). Polygon Mesh Pro-
cessing. In CGAL User and Reference Manual. CGAL Editorial Board, 5.6.1 edition.

Lu, C., Yin, F., Chen, X., Liu, W., Chen, T., Yu, G., and Fan, J. (2023). A Large-
Scale Outdoor Multi-Modal Dataset and Benchmark for Novel View Synthesis
and Implicit Scene Reconstruction. pages 7557–7567.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng,
R. (2021). NeRF: representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106.

Müller, M. U., Ekhtiari, N., Almeida, R. M., and Rieke, C. (2020). SUPER-
RESOLUTION OF MULTISPECTRAL SATELLITE IMAGES USING CONVOLU-
TIONAL NEURAL NETWORKS. ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, V-1-2020:33–40. Conference Name: XXIV ISPRS
Congress, Commission I (Volume V-1-2020) - 2020 edition Publisher: Copernicus
GmbH.

Müller, T., Evans, A., Schied, C., and Keller, A. (2022). Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics,
41(4):102:1–102:15.

Pérez, J., Rojas, S., Zarzar, J., and Ghanem, B. (2023). Enhancing Neural Rendering
Methods with Image Augmentations.

Rabby, A. S. A. and Zhang, C. (2024). BeyondPixels: A Comprehensive Review of
the Evolution of Neural Radiance Fields. arXiv:2306.03000 [cs].

Schönberger, J. L., Zheng, E., Frahm, J.-M., and Pollefeys, M. (2016). Pixelwise View
Selection for Unstructured Multi-View Stereo. In Leibe, B., Matas, J., Sebe, N., and
Welling, M., editors, Computer Vision – ECCV 2016, Lecture Notes in Computer
Science, pages 501–518, Cham. Springer International Publishing.

48

Bibliography

Sinha, S. N., Mordohai, P., and Pollefeys, M. (2007). Multi-View Stereo via Graph
Cuts on the Dual of an Adaptive Tetrahedral Mesh. pages 1–8. IEEE Computer
Society.

Strecha, C., Fransens, R., and Van Gool, L. (2006). Combined Depth and Outlier
Estimation in Multi-View Stereo. In 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06), volume 2, pages 2394–2401. ISSN:
1063-6919.

Strecha, C., von Hansen, W., Van Gool, L., Fua, P., and Thoennessen, U. (2008).
On benchmarking camera calibration and multi-view stereo for high resolution
imagery. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages
1–8. ISSN: 1063-6919.

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Wang, T., Kristoffersen, A., Austin, J.,
Salahi, K., Ahuja, A., Mcallister, D., Kerr, J., and Kanazawa, A. (2023). Nerfstudio:
A Modular Framework for Neural Radiance Field Development. In ACM SIG-
GRAPH 2023 Conference Proceedings, SIGGRAPH ’23, pages 1–12, New York, NY,
USA. Association for Computing Machinery.

Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Xu, Z., Simon, T., Nießner,
M., Tretschk, E., Liu, L., Mildenhall, B., Srinivasan, P., Pandey, R., Orts-Escolano,
S., Fanello, S., Guo, M., Wetzstein, G., Zhu, J.-Y., Theobalt, C., Agrawala, M.,
Goldman, D. B., and Zollhöfer, M. (2021). Advances in neural rendering. In
ACM SIGGRAPH 2021 Courses, SIGGRAPH ’21, pages 1–320, New York, NY, USA.
Association for Computing Machinery.

The CGAL Project (2024). CGAL User and Reference Manual. CGAL Editorial Board,
5.6.1 edition.

Wang, F., Galliani, S., Vogel, C., Speciale, P., and Pollefeys, M. (2021a). Patchmatch-
Net: Learned Multi-View Patchmatch Stereo. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 14189–14198. ISSN: 2575-
7075.

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., and Wang, W. (2021b). NeuS:
Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Recon-
struction. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S., and Vaughan,
J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages
27171–27183. Curran Associates, Inc.

Wang, X., Wang, C., Liu, B., Zhou, X., Zhang, L., Zheng, J., and Bai, X. (2021c).
Multi-view stereo in the Deep Learning Era: A comprehensive review. Displays,
70:102102.

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612. Conference Name: IEEE Transactions on Image Processing.

49

Bibliography

Yao, Y., Luo, Z., Li, S., Fang, T., and Quan, L. (2018). MVSNet: Depth Inference
for Unstructured Multi-view Stereo. In Ferrari, V., Hebert, M., Sminchisescu, C.,
and Weiss, Y., editors, Computer Vision – ECCV 2018, Lecture Notes in Computer
Science, pages 785–801, Cham. Springer International Publishing.

Yariv, L., Gu, J., Kasten, Y., and Lipman, Y. (2021). Volume rendering of neural
implicit surfaces. In Thirty-Fifth Conference on Neural Information Processing Systems.

Yu, Z., Chen, A., Antic, B., Peng, S., Bhattacharyya, A., Niemeyer, M., Tang, S.,
Sattler, T., and Geiger, A. (2022). SDFStudio: A Unified Framework for Surface
Reconstruction.

50

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The
main font is Palatino.

	Introduction
	Related work
	Algorithms
	Multi-View Stereo
	Novel View Synthesis
	Neural surface Reconstruction

	Evaluation metrics
	Mesh and Point cloud evaluation
	Image evaluations

	Existing Benchmarks

	Methodology
	Dataset
	Selecting suitable models in SketchUp warehouse
	Convert from SketchUp model to OBJ
	Model to input dataset

	Algorithm pipelines
	NSR pipeline
	NVS pipeline
	MVS pipeline

	Evaluation

	Experiments
	Dataset
	Algorithms
	NVS
	MVS
	NSR

	Conclusion
	Evaluation per model for NSR
	Apartment
	EWI
	Flat
	House
	Neo
	Speerhall
	Stoommachine
	Stieltjesweg
	Villa
	Winchester cathedral

