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1
Introduction

The whole is greater than the sum of its parts.

Aristotle

1.1. Collective behaviour in nature

O ne of the biggest challenges in physics is to describe living systems. Although
living organisms have to abide by the laws of physics, generally, their behaviour

is very different from ordinary lifeless matter. For example, organisms have the
ability to move or to grow, whereas a lifeless object will not start moving without
external influences. Organisms that can move often aggregate into colonies. We
have all seen examples in nature of flocks of birds that fly and turn collectively,
fish that swim in massive schools, and herds of mammals that migrate across the
savannah. Not only these macroscopic animals move collectively, micro-organisms
also aggregate to increase their chances of survival. Colonies of bacteria and slime
moulds can consist of an enormous number of individuals. These colonies then be-
have collectively as if they were a single organism. Other examples of cells working
together to benefit the collective are tissues. Cells in muscle tissue contract col-
lectively to produce force. All of these systems are examples in the field of active
matter, where the goal is to systematically describe the behaviour of large collections
of active particles.

At first glance, the cells in a colony may appear to be similar to the molecules
in a liquid. Both systems consist of a large number of constituents, and these con-
stituents can flow in streams or vortices, but fundamentally these systems are differ-
ent. The molecules’ motion is of thermal origin, whereas the cells move by consuming
chemical energy. This difference seems like a small detail, but the consumption of
energy has large implications. As a consequence, energy is not conserved1. It is a
1Energy is not conserved on the level of the particle/individual. If we account for all the energetic
processes happening inside the individual, energy will be conserved

1
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violation of the first law of thermodynamics, and therefore we cannot describe the
system macroscopically in the same way as thermal equilibrium systems. Thermal
systems have the remarkable property that they can be described by a relatively
small number of quantities, given that a complete description of a thermal system
would require the positions and momenta of all particles in it. These thermodynamic
properties, called the thermodynamic state variables, include for example: internal
energy, entropy, temperature, pressure, volume. When the particles generate move-
ment by consuming energy themselves, the thermodynamic relations between these
state variables no longer hold and therefore, we cannot describe active systems with
the theory of thermodynamics. At this time, a general theory of active matter does
not exist.

Nature is full of captivating displays of collective phenomena. In figure 1.1, we
show examples of collective behaviour in various environments, from micrometer-
sized amoebae to elephants. We see a great diversity in behaviour of the groups.
Even among the same species the group behaviour can be drastically different. For
example fish can swim in ordered schools that migrate, but they can also form a
vortex where the fish all swim in circles [1]. A similar transition has been observed
in the social amoeba Dictyostelium discoideum. When the amoebae are starving,
they aggregate into massive colonies on the order of 105 cells. The cells in such an
aggregate crawl around a common centre [2]. The same aggregate can also migrate
as if it is a single organism. The similarity in behaviour between otherwise unrelated
systems like fish and amoebae raises some natural questions: are there general rules
that apply to these systems? Can we divide all these living systems into a small
number of classes? Can we define quantities similar to the thermodynamic state
variables for a macroscopic description of the system? Another defining feature of
these collectives is that the behaviour of the group is completely different from the
behaviour of an individual in isolation. The whole is much more than just the sum
of its parts. Can we quantify the benefits of aggregation? The non-linearity in these
systems is the reason why we refer to them as complex systems. The emergent
patterns in colonies are hard to predict from the interactions between individuals.
So how do the individuals themselves know what to do when no individual actually
has any idea what the group as a whole is doing? In other words, how are these
groups managing themselves?

1.1.1. Modelling of active matter
In this thesis, I report my study on self-propelling particles systems using numerical
methods, that is, computer simulations. With the computer simulations I realize
particle systems. I use the data generated by the simulations to infer general prin-
ciples and features of collective dynamics in organisms from a bottom up approach.
The models in self-propelling particle studies are based simple and/or logical inter-
1Figure downloaded from https://commons.wikimedia.org/wiki/File:Elephant_herd_
(5912064891).jpg

2Figure downloaded from https://pixabay.com/nl/goudvis-vis-vijver-huisdier-17944/
3Figure from Zitterbart et al. [3]
4Figure downloaded from https://de.wikipedia.org/wiki/Dictyostelium#/media/File:
Dictyostelium_Late_Aggregation_1.JPG

https://commons.wikimedia.org/wiki/File:Elephant_herd_(5912064891).jpg
https://commons.wikimedia.org/wiki/File:Elephant_herd_(5912064891).jpg
https://pixabay.com/nl/goudvis-vis-vijver-huisdier-17944/
https://de.wikipedia.org/wiki/Dictyostelium#/media/File:Dictyostelium_Late_Aggregation_1.JPG
https://de.wikipedia.org/wiki/Dictyostelium#/media/File:Dictyostelium_Late_Aggregation_1.JPG
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Figure 1.1: Various examples of collective behaviour in biological systems. a) Migrating herd of
elephants2. b) School of fish swimming in circles3. c) Penguins huddling4. d) Two colonies of
Dictyostelium discoideum, one migrating (left) and one rotating (right)5.

actions between individuals. Generally, the group behaviour generated by each of
these models is amazingly diverse. This diversity means these models are applicable
to multiple biological systems and it is also an indication that behind different types
of collective behaviour, the interactions between individuals might have the same
origin.

Two pioneers in modelling collective dynamics are Reynolds [4], who simulated
boids and Vicsek et al. [5], after whom the famous Vicsek model is named. The Vic-
sek model considers self-propelling agents with biologically motivated interactions in
a square box with double periodic boundary conditions. The agents are point-like,
so they cannot collide. Instead, they interact by aligning locally. An individual finds
the orientation of all other agents within a cut-off distance and aligns with those.
On top of the alignment, there is a noise term that prevents perfect alignment. The
interactions in the Vicsek model produce groups that move coherently, groups in
which all individuals move randomly with little correlation, and groups in which
the individuals move in circles around a common centre, depending on the number
density and the magnitude of orientational noise. The diversity in group behaviour
is impressive for such a minimal model and therefore it became popular among
physicists. Researchers developed many extensions of the original model for specific
systems or added interactions for an even wider range of collective behaviour. No-
table articles are Grégoire and Chaté [6], who added cohesion between individuals,
Couzin et al. [7], who studied the effect of an attractive potential, Chaté et al. [8],
who discuss the effect of polarity of the individuals and the fluid the particles are
immersed in, and Henkes et al. [9], who studied finite sized particles in a confined
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area. In this thesis, we focus on finite sized particles with short-range interactions
only, and no confinement. We will find a wide variety of collective behaviour in
very crowded environments and explore the limits of how crowded it can get be-
fore colonies start running into problems. I will explain what these problems are
and what their physical origin is in more detail in the section about high-density
physics (section 1.1.2).

Before diving into the high-density physics, I want to discuss what order param-
eters are and how researchers use these parameters to quantify the systems they try
to model. We need an objective way to characterize many-particle systems. Proba-
bly the most famous and also one of the simplest example of a many-particle systems
is the Ising model. The Ising model is a mathematical model usually applied in the
context of magnetic dipoles of atoms. These atoms, and in fact every elementary
particle, have an intrinsic property called ‘spin’ and particles with a non-zero spin
have a magnetic moment associated with them. In the traditional 2D Ising model,
the atoms are arranged in a square lattice and they either point up (spin up) or
down (spin down). In figure 1.2b I show the magnetisation and the atoms’ corre-
sponding configurations in the Ising model. The inset on the left has the spins all
pointing up, and therefore, the object is strongly magnetic. However, when spins
randomly point up or down, like in the inset on the right-hand side, the spins tend
to cancel each other and the magnetisation will be low. So one way to characterise
this system is by the mean magnetisation, which is simply the fraction of spins
down, subtracted from the fraction of spins up. The resulting number expresses the
order within the system without specifying the orientation of every single spin in it.
Order parameters are used for distinguishing systems with macroscopically different
properties. In the case of the Ising model, a mean magnetisation of zero means the
object is not magnetic, and a non-zero magnetisation means the object is magnetic.
The point where order parameters change from a non-zero value to zero is typically
associated with a phase transition, i.e. a transition between a magnetic phase and
non-magnetic phase in the previous example. The density is also an example of
an order parameter. It distinguishes ice from, liquid water and water vapour even
though these consist of the same molecules. The density as an order parameter
behaves differently from the mean magnetisation and the Vicsek order parameter
which we will use. I will discuss this difference in section 1.1.2.

In the Vicsek model, instead of just pointing up or down, the particles have a self-
propulsion direction, which can point in any direction in the plane. Generalising the
order parameter for this case is fairly straightforward. We simply take the absolute
value of the sum of all the vectors and normalise by the number of particles. The
Vicsek order parameter, φ, is then given by

φ = 1
N

∣∣∣∣∣
N∑
i=1

ψ̂i

∣∣∣∣∣ , (1.1)

for a system of N particles, where the orientation of a particle i is the unit vector
ψ̂i. A highly ordered group of particles has an order parameter close to one. In the
ordered state, the group of particles has a preferred direction to move in, i.e. sym-
metry is broken. A high order parameter therefore indicates migration. A low order
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parameter means that the group of particles is stationary. Quite often, one needs to
measure multiple order parameters to fully classify a system. For example, the Vic-
sek order parameter does not distinguish between a system of random orientations
and the vortex state even though they are obviously very different. To distinguish
between these two states, we could measure the vorticity or angular momentum. In
this thesis, we mainly use the Vicsek order parameter.

1.1.2. High density physics
Besides active matter, a second field in physics that concerns itself with many-
particle systems is the field of granular materials. The difference with thermal
systems is that thermal motion of the particles in granular materials is negligible.
Familiar examples of such systems are grains of sand, rice or rocks on a steep slope
of a mountain. Depending on the situation, these systems exhibit liquid or solid
behaviour. To illustrate these properties, consider the salt in a salt shaker. If we
turn it upside-down, initially maybe a little bit of salt will flow out, but the majority
will be stuck. Although the grains are smaller than the holes of the shaker, they are
not flowing out. The absence of flow is a property of a solid, while a liquid would
flow through the holes easily. Of course, the salt is supposed to flow out. As its name
implies, we need to shake the shaker for that to happen. Now the salt is flowing,
which is a property of liquids. For the salt shaker, the shaking is quite a dramatic
external influence. However, even small distortions may cause a transition from a
stationary, solid state to a liquid state. Rock slides and avalanches are examples of
systems that can be triggered to flow by a relatively small distortion.

The solid state in granular systems is called the jammed phase and the tran-
sition between the jammed phase and the flowing phase is known as the jamming
transition. Phase transitions mark a sudden change of the properties of a system.
The phase transition we are all familiar with is the melting of ice into water, or
evaporating water into water vapour. In all three phases the water molecules are
the same, but their arrangement is different. The different ordering of the molecules
makes that ice, water and vapour have different densities. As long as the tem-
perature is between 0◦C and 100◦C (at atmospheric pressure), water will have a
density of roughly 1000 kg/m3. When the temperature drops below the freezing
point, its density changes discontinuously to about 917 kg/m3 (see figure 1.2a).
Transitions with discontinuities associated to them are first order phase transitions.
The Ising model discussed before also has a phase transition. In the Ising model
neighbouring spins align, because this is energetically favourable. The state with
the lowest energy would be when all spins point in the same direction. Thermal
energy however introduces noise such that spins sometimes spontaneously flip and
point in the wrong direction. It turns out that the order parameter in the Ising
model changes continuously from the ordered phase (non-zero mean magnetisation)
to the disordered phase (vanishing mean magnetisation) with increasing tempera-
ture (see figure 1.2b). Interestingly, completely different systems can be described
by the same equations. For example, the Ising model can represent magnetic spins,
as well as a gas on a lattice. For the latter, a ‘spin up’ translates to the presence of
a particle and a ‘spin down’ translates to the absence of a particle. When different
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physical systems can be described by the same equations and identical parameters
like critical exponents, they are said to be part of the same universality class. The
analysis of phase transitions and an order parameter are therefore extremely useful
tools for classifying systems into universality classes.
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Figure 1.2: Two different types of phase transitions. a) The density changes discontinuously with
temperature at the critical temperature T = 0◦C 5. This is a first-order phase transition. b)
The mean magnetization in the Ising model decreases continuously until it vanishes at the critical
temperature. The phase transition in the Ising model is of second order. The insets show two (parts
of) realisations of the system with blue arrows representing down and red arrows representing spin
up.

Granular soft materials gained a lot of interest over the last two decades due to
the existence of an unknown type of phase transition. When gradually increasing
the density in a granular medium, the medium changes from liquid-like to solid-like.
For frictionless spherical particles, this transition occurs at more or less the same
critical density, called point J. In three dimensions, point J corresponds to a density
of φJ ≈ 0.64, and in two dimensions we have φJ ≈ 0.84. Density is not the only
factor determining the state of the system. The state also depends on internal mo-
tion due to temperature, and external forces. In 1998, Liu and Nagel [10] were the
first to sketch a qualitative phase diagram of jammed and unjammed states and the
transitions between them (see figure 1.3a). Point J discussed above is located on the
density axis. This sketch implies that there are two additional ways to transition
between the jammed and unjammed state. Systems at high temperature are more
resilient to jamming due to the internal vibrations. Furthermore, externally apply-
ing forces to the system can cause the particles to flow at densities where it would
normally be jammed. Three years after the introduction of the sketch in figure 1.3a,
Van Trappe et al. [11] showed that the shape of the different jamming-unjamming
transitions is actually convex (figure 1.3b. Since then, many have investigated gran-
ular phase transitions by looking into the effects of density [12, 13], temperature [14],
and shear forces [15, 16] on packings of granular particles, but the exact nature of
the transitions along each of the axes in figure 1.3 is still up for debate. The jam-
ming transition was also found in confluent tissues in both experiments [17], and
5Data obtained from https://commons.wikimedia.org/wiki/File:Density_of_ice_and_water_
(en).svg

https://commons.wikimedia.org/wiki/File:Density_of_ice_and_water_(en).svg
https://commons.wikimedia.org/wiki/File:Density_of_ice_and_water_(en).svg
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simulations [18, 19], where a tissue was modelled as as a Voronoi tessellation.

Figure 1.3: Sketches of the three
dimensional phase diagram from
(a) Liu and Nagel [10] and (b) Van
Trappe et al. [11]. From a jammed
state, systems can unjam by mov-
ing along the density axis, temper-
ature axis, or load axis.

Dense active systems, like granular materials, also often consist of roughly iden-
tical individuals or particles and therefore combining models from both fields is a
logical step. As an example of self-propelling, almost identical agents, we consider
a colony of emperor penguins. The Antarctic is a hostile environment with tem-
peratures dropping to below -60◦C and strong winds. To survive, the penguins
form a tight colony to preserve their heat as much as possible. With coordinated
movements, they take turns being on the outside [3]. Without rearrangements,
penguins on the outside would still freeze to death, and ironically, penguins in the
middle would overheat. In general, organisms find benefits in aggregates. At the
same time though, they cannot form overly tight aggregates because colonies need
to be dynamic to survive. Models combining aspects from both granular physics
and active matter therefore show an interesting interplay between jamming at high
density and dynamics due to activity. There are many possible combinations to
combine active and dense matter. For example one could consider finite size self-
propelled particles without alignment [20–23], or alignment with the instantaneous
velocity [9, 24], or alignment with nearest neighbours [25], or even a combination of
Vicsek alignment and velocity alignment [26]. In this thesis I will mainly focus on
the alignment interactions from the Vicsek model and the finite size effects of soft
circular particles.

1.1.3. Over-damped environment
Our goal is to develop a general model that can describe collective behaviour from
the bottom up, where we assume simple rules between neighbours for individual
behaviour. Our main focus however, will be the collective dynamics on small scales,
like cells in tissues or unicellular organisms on a substrate. Physics on these small
scales works a little bit different than we are used to at our scales. Let us consider
a large boat navigating on the water. When the boat stops propelling itself, it will
very slowly come to a halt. The boat’s inertia will carry it, possibly even for tens
of kilometres. In terms of equations we can write

m~a = −~Fdrag. (1.2)

The left-hand side, depending on the massm and acceleration ~a, is the inertial term.
The right-hand side is the drag force. For a spherical particle of radius R in a fluid of
viscosity η, the drag force is given by ~Fdrag = 6πηR~v, where ~v is the velocity of the
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particle. Loaded ships have a very large mass, and therefore their acceleration (or
rather deceleration) is small. The situation is completely different for small particles
moving through water. Their mass is relatively small and so their acceleration is
enormous. When bacteria stop swimming they come to an instantaneous halt. The
ship and the bacteria move in the same water with the same viscosity, but for the
large object the water has little effect, and for the small object the water feels like
honey. This difference can be captured by a dimensionless number, the Reynolds
number.

The Reynolds number, Re, is the ratio between the inertial force and viscous
drag force. From the Navier-Stokes equations, one can derive that the Reynolds
number is given by Re = ρvR/η, where ρ is the density of the displaced fluid, and R
and v the characteristic size and speed of the particle. Then, for a particle subjected
to body forces, the equation of motion is

m~a = −~Fdrag + ~Fbody. (1.3)

When Re << 1, inertial forces are insignificant in the equation of motion. Where
container ships (Re ∼ 108) require many kilometres to stop, a swimming bacterium
(Re ∼ 10−5) stops immediately when it stops propelling itself. When we consider
collective behaviour at low Reynolds number, the inertial term on the left-hand side
can be neglected and we can rewrite equation 1.3 to

~Fdrag = ~Fbody

~v = 1
6πηR

~Fbody (3D). (1.4)

In this thesis we will consider objects in two dimensions, in which case the numerical
factor of the drag force changes. The equations of motion that we will use are
expressions from Landau and Lifshitz [27]:

~v = 3
32πηR

~Fbody (2D). (1.5)

For its rotational counterpart we use

T = 4πηRR2ω, (1.6)

ω = 1
4πηRR2T (1.7)

where T is the net torque on the object of size R, ηR is the rotational viscosity of
the fluid, and ω is the rotational velocity of the object.

In chapter 2 we will find very diverse behaviour by combining the main ideas
from the Vicsek model with the finite size effect of circular particles. The model
consists of self-propelled particles that align when they are close to each other. In
chapter 3 we explore our system of self-propelled particles from the side of granular
materials, i.e. we study questions like: Under which conditions colonies jam, and
which conditions are necessary to unjam? Next, we will try to make the model more



References

1

9

physical by eliminating the Vicsek alignment interaction. Originally being applied
to flocks of birds, the alignment rule is somewhat artificial. Birds have the ability to
look at each other and may decide to fly in the same direction as their neighbours.
On the small scales we are considering, this alignment rule may not be very realistic.
Hence, in chapter 4 we investigate whether alignment is possible through mechanical
interactions. We will show that elliptical particles align by bumping into each other.
Chapter 5 is my first attempt to find the jamming-unjamming transition for circular,
self-propelled, particles with the Vicsek alignment term. Analogous to studies of
passive matter, we use a computational method composed of shearing our system
of active particles to probe properties like elasticity and viscosity. Unfortunately,
unexpected properties of self-propelled particles did not allow us to construct the
jamming-unjamming phase diagram. Finally, chapter 6 is a bit unrelated to the
previous chapters. We show that the patterns and shapes of cells in insect embryos
can be explained by our model that consists of only simple mechanical interactions
between cells and their membranes.
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2
Collective dynamics of soft

active particles
Those who know, do.

Those who understand, teach.

Aristotle

We present a model of soft active particles that leads to a rich variety of collective
behaviour found also in dense biological swarms of bacteria and other unicellular or-
ganisms. Our model uses only local interactions, such as Vicsek-type nearest neigh-
bour alignment, short-range repulsion, and a local boundary term. Changing the
relative strength of these interactions leads to migrating swarms, rotating swarms
and jammed swarms, as well as swarms that exhibit run-and-tumble motion, al-
ternating between migration and either rotating or jammed states. Interestingly,
although a migrating swarm moves slower than an individual particle, the diffusion
constant can be up to three orders of magnitude larger, suggesting that collective
motion can be highly advantageous, for example, when searching for food.

This chapter has been published as R. van Drongelen, A. Pal, C. P. Goodrich, and T. Idema, Phys.
Rev. E 91, 032706 (2015).
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1. Introduction

C ollective migration is found throughout the living world. Examples range from
shoals of fish and flocks of birds on the macroscopic level [1, 2] to microswim-

mers and individual cells at the micron scale [3–6]. At even smaller scales within
the cell, myosin motors work collectively on actin filaments to achieve long-range
alignment [7]. In such crowded environments, the simple behaviour of individuals
results in complex, non-trivial dynamics of the group. No individual group member
can dictate the collective group behaviour or even have anything close to complete
information of the group’s dynamics. Nonetheless, the emergent collective patterns
have a huge impact on the individuals, and they often depend on them for their
very survival. Therefore it is an obvious question to ask how the rules governing
the behaviour of each individual relate to the resulting collective behaviour of the
group.

In their seminal 1995 paper, Vicsek et al. [8] introduced a model for studying flock
behaviour based on a few simple rules for each individual bird. In their model, the
individuals are described as oriented point particles, which exhibit self-propulsion,
nearest-neighbour interactions that result in particle alignment, and noise. Many
variants of the original model have been studied in the last twenty years [9]. Parallel
to the development of the Vicsek model, much progress has also been made in the
field of granular media, which studies the collective behaviour of collections of large
particles. In their famous 1998 Nature news and views, Liu and Nagel proposed that
the observed behaviour of these systems can be summarized in a phase diagram.
Systems will get jammed at high densities provided both their effective temperature
and the applied load are low enough, with a sharp phase transition between the
jammed and unjammed state [10].

In recent years, several groups have started combining ideas from both fields,
studying the collective behaviour of finite-sized self-propelled particles. In their
2011 paper, Henkes et al. [11] showed that for a confined system, with low self-
propulsion velocities (equivalent to low load and temperature), a sharp transition
can also be found between a liquid and a solid state as a function of packing density.
Models without confinement often use a long-range attraction to model collective
dynamics. For example Grégoire et al. [4] and Mognetti et al. [12] combined the
Vicsek model with a Lennard-Jones-like potential and found that this long-range
attraction result in cohesive flocks. d’Orsogna et al. [13] and Nguyen et al. [14]
mapped the phase space for swarms held together by a long-range Morse potential
for two and three dimensions respectively. However, Rappel et al. [6] found that
a long-range interaction is not a requirement for self-organization, neither in their
simulations, nor in experiments (see also Wang and Kuspa [15]).

In this chapter we describe the results of our study of the collective dynamics
of soft, finite sized, active particles with short-range orientational interactions, but
without confinement. With no extra rules such a system would quickly fall apart.
To prevent this from happening, we add a local boundary term to the model. This
term directs particles at the boundary towards the cluster (i.e., particles want to
move into the cluster, where the environment is usually more friendly). The density
of our cluster is therefore not set by us as an adjustable parameter, but by the
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system resulting from a balance between its effective surface tension and the bulk
modulus of the cluster. We find that our system exhibits a range of different types
of behaviour, depending on cluster size, the particles’ self-propulsion speed, and
the strength of the nearest-neighbour alignment term. The two dominant types of
behaviour we find are collective migration and the formation of a rotational cluster
with no net movement. Both are also frequently found throughout the living world.
Famous examples of migrating systems are herds of mammals and aggregates of
slime molds, while rotating clusters are well-known in schools of fish and the spiral
of death formed by army ants. In fact, most of these systems display both types
of behaviour, e.g. fish switch between migration and rotation (milling) [2, 16], and
depending on environmental conditions slime molds [6, 17, 18] and bacteria [19–21]
will migrate or rotate. For example the slime mold Dictyostelium Discoideum (or
Dicty) will collectively migrate if food is scarce, and transitions to a vortex to form
a fruiting body as a last resort [22]. Individuals in dense, biological swarms often
cannot judge the volume of the swarm, but only observe their local environment.
Therefore, we consider the local interaction rules we use in this work to be more
realistic for describing the rules that individuals in actual swarms follow than models
with long-range interactions.

2. Method
2.1. Local interaction model
We study the behaviour of a two-dimensional system of self-propelling, soft, circular
particles on an infinite sheet. In particular, we focus on the effects of the number
of particles, the self-propulsion force and the torque that aligns the particles with
each other. To prevent crystallization, the particles have different radii, drawn from
a rather narrow Gaussian distribution, G(µ = ā, σ = ā/10), such that ā is the
average particle radius. The particles interact only locally. All of them experience
repulsive forces when overlapping (Hookian repulsion) and Vicsek-type alignment
interactions that tend to rotate their orientation to the average of that of their
neighbours. Additionally, particles that are on the boundary of a particle cluster
push inward, resulting in the formation of a tightly packed disordered cluster. The
slight polydispersity of particle diameters, and fluctuations in the strength and
direction that each particle pushes in, will lead to rearrangements and eventually
large scale motion.

We apply this model to densely packed biological systems in the limit of vanishing
Reynolds number. We are therefore in the regime of over-damped motion, which
means that inertia is unimportant. The equations of motion for a disk in such a
highly viscous fluid are given by [23]:

~Fi = 32
3 ηai~vi ≡ αiζ~vi (2.1)

and

Ti = 4πηRa2
iωi ≡ α2

iχωi, (2.2)
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with ~Fi and Ti the net force and torque acting on particle i, ai the particle radius, and
αi = ai/ā the normalized radius. The effective translational and rotational viscosity
are η and ηR, respectively, and ~vi and ωi are the linear and angular velocity of the
particle. To simplify our expressions, we define the rescaled viscosities ζ = (32/3)ηā
and χ = 4πηRā2.

We denote the position of particle i by ~xi and its orientation by ψ̂i. Particles
are considered neighbours for the purpose of the orientation interaction if their
centres are less than 2.7ā apart. With this cut-off distance, two touching particles
with radius ai = 1.3ā will still be considered neighbours, but two small particles
(ai = 0.7ā) separated by a third small particle will not. Because the spread in
the radius is σ = ā/10, the probability of finding even larger or smaller particles
together is negligible.

Instead of an attraction or geometrical confinement, our model uses a local
boundary term to prevent systems from falling apart. An individual looks at the
positions of its neighbours to determine its position within the cluster. If particle i
has no neighbours over an angle θout,i ≥ π we consider it to be on the boundary of
the cluster and it exerts an additional torque and force (see figure 2.1 for relevant
quantities). Particles with only one or two neighbours automatically satisfy this cri-
terion. Let Ni denote the set of neighbours of particle i. The net force and torque
on the particle are then given by

~Fi = ~Fi,self-propulsion + ~Fi,boundary + ~Fi,repulsion

= [Fself + (θout,i − π)FinΘ(θout,i − π)] ψ̂i − k
∑
j∈Ni

~dij , (2.3)

Ti = Ti,boundary + Ti,noise + Ti,align

= Tin∆θi ·Θ(θout,i − π) + Tnoiseξi + Talign
|Ni|

∑
j∈Ni

∆ψij , (2.4)

where Θ(θ) is the Heaviside step function. In equation (2.3), the first two terms
of the force are the self-propulsion and the boundary force, which act in the di-
rection of orientation ψ̂i. The strength of these interactions is set by Fself and Fin
respectively. The last force term is the repulsion between overlapping particles i
and j, where the amount of overlap is given by |~dij | (which of course is zero for
non-overlapping particles). The strength of the repulsion force is set by the spring
constant k. The first term of the torque in equation (2.4) turns particles on the
boundary inwards. The torque is proportional to a parameter Tin times the angle
between the orientation ψ̂i and the exterior bisector of θout,i. The second term is
responsible for the orientational noise a particle experiences. We pick ξi randomly
from {−1, 1} each timestep creating a torque of magnitude Tnoise. The final term
of the torque aligns particles to the average orientation of their neighbours, where
Talign is the interaction strength, |Ni| is the number of neighbours, and ∆ψij is
the mismatch in orientation between particles i and j. The alignment is the only
interaction which acts between particles (apart from the passive repulsion) and is
therefore ultimately responsible for collectivity in Vicsek-type models. Note that,
in analogy with the Vicsek model, we only include noise on the torque and not on
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the force. With this noise term, the motion of a single particle becomes a random
walk; a single noise term is thus sufficient to introduce an element of randomness in
each particle’s motion, and additional noise terms do not qualitatively change our
results. Eliminating the noise on the torque (and hence the orientations) on the
other hand does have a strong effect, as this noise term is required to obtain the
rich behaviour we observe.

Figure 2.1: Visualisation of the
boundary rule. The particle at the
bottom finds no neighbours over
an angle θout > π. It therefore
exerts a torque in order to align
its orientation ψ̂i (short arrow) to
the exterior bisector of θout, which
is denoted θ̂in (long arrow). The
torque it exerts scales linearly with
∆θ, the angle between these two
vectors. Simultaneously, the par-
ticle exerts an additional force in
the direction of orientation, pro-
portional to θout − π.

2.2. Simulations
To characterize the behaviour of our system, we introduce dimensionless scaling pa-
rameters that represent the strengths of the various interactions. We define τ = ζ/k
as the characteristic timescale for two overlapping particles to separate due to their
repulsive interaction. For any other interaction X we define a scaling parameter
λX = τ/τX , where τX is the characteristic timescale of interaction X. The charac-
teristic timescales and scaling parameters for all interactions in our model system
are given in Table 2.1.

Interaction Timescale Dimensionless scaling
parameter

Repulsion τ = ζ/k -
Alignment τalign = χ/Talign λa = ζTalign/kχ
Noise τnoise = 2χ2/T 2

noise∆t λn = ζT 2
noise∆t/2kχ2

Inward force τFin = ζā/Fin λFin = Fin/kā
Inward torque τTin = χ/Tin λTin = ζTin/kχ
Active force / Self-propulsion - λs = Fself/kā

Table 2.1: List of characteristic timescales and scaling parameters for all interactions in our sim-
ulations. For the inward force, we used the approximation that 2 arctan

(
x
2ā

)
≈ x

ā
. Since self-

propulsion is an active process, it does not have a characteristic relaxation timescale.

In Table 2.1 we denote the duration of one simulation step by ∆t. The self-
propulsion has no characteristic timescale as it corresponds to an external rather
than a restoring force. To arrive at a dimensionless parameter describing the
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strength of the self-propulsion, we define λs ≡ Fself/(kā), in analogy with the inward
force exerted by boundary particles. We choose our unit of length by setting the
average radius of the particles to unity, i.e. ā = 1. We set the force scale by choosing
the repulsion coefficient k = 1. We fix our unit of time by letting the characteristic
timescale of repulsion be unity: τ = ζ/k = 1. Furthermore, we may set χ = 1, since
we can set the strength of all torques individually 1.

A direct consequence of the nearest neighbour alignment and the presence of
a non-negligible inwards torque, is that there will be some alignment mismatches,
or defects, inside the cluster. The Poincaré-Hopf-theorem for vector fields dictates
that a simply connected cluster must have at least one such defect. We find that
these defects act as organizing centres for the particles. Therefore, multiple defects
either quickly coalesce or cause the cluster to break up into smaller clusters, each
with its own defect. To ensure that no more than one defect will exist, we initialize
our simulations by placing the particles on a square lattice in a rectangular shape
with a width of 10 particles, with a small deviation from the exact lattice points.
Furthermore, we set the initial direction along the long edge of the rectangle, with a
deviation up to π/4 radians. We then run our model for 108 steps for a total number
of N = 1, N = 100, N = 200, N = 400, N = 800, N = 1000 or N = 1600 particles
with alignment coefficients 0.1 ≤ λa ≤ 1 and 0.04 ≤ λs ≤ 0.08. We keep the other
interactions constant for all simulations, at λn = 0.03, λFin = 0.3 and λTin = 3.
By choosing these values we ensure that the noise never exceeds the alignment, the
boundary force is small compared to the repulsion, and particles on the boundary
will turn inwards for even the largest value of the alignment parameter λa.

We find four main types of behaviour. The cluster of particles can remain simply
connected and migrate either randomly (type 1: migrating; see figure 2.2a), or in
straight lines or arcs of constant curvature without internal rearrangements (type
2: jammed; see figure 2.2b). Alternatively, the cluster can change its topology by
either breaking apart (type 3: breakup; not shown) or transforming into a doughnut
shape with a hole in the middle (type 4: rotating; figure 2.2c). We can distinguish
these types of behaviour by looking at the cluster’s orientational order parameter,
defined as

φ ≡ 1
N

∣∣∣∣∣
N∑
i=0

ψ̂i

∣∣∣∣∣ . (2.5)

A high value of the order parameter tells us that the cluster has a net migration
direction. A low value of the order parameter means that the individual particle
orientations effectively cancel and the cluster is either jammed or rotating in place.
The latter two types of motion are easily distinguishable visually.

We save the average location of the particles, the location of the defect and
the value of the order parameter every 128 steps. If the cluster breaks up, the
order parameter will show a slight drop. We can verify the break up by plotting
the location of the defect. If we find multiple defects, or we find that the average
position does not follow the defect like a trailer follows a car, we conclude that the
1We need to set χ because Stokes’ paradox does not allow us to relate the translational and
rotational viscosities η and ηR [23].
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a) b)

c)

Figure 2.2: Typical snapshots for a) migrating N = 400, b) jammed N = 200 and c) rotating N =
400 clusters. The color code blue-green-yellow indicates the degree of overlap with neighbouring
particles in increasing order. Each particle’s orientation is shown by a line originating from the
particle’s center. This line is red for particles in bulk or blue for particles on the boundary exerting
additional force and torque.
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topology of the cluster has changed. We find the diffusion coefficient D of the cluster
from the velocity autocorrelation function of the average location of the particles.
To do so reliably, we discard the first 106 simulation steps to eliminate the effects of
the transition from the initial configuration to the shape the cluster naturally takes
when migrating.

3. Results and discussion
3.1. The order parameter characterizes behaviour
We ran ten simulations each for cluster sizes N = 100, N = 200, N = 400, N = 800,
N = 1000 and N = 1600, seven values of the alignment strength λa, and five values
of the self-propulsion, λs. We found rich state behaviour. A lack of alignment
resulted in the cluster breaking up, whereas very strong alignment in combination
with little activity resulted in a jammed system. In the jammed state, all particles
are oriented towards the center of the cluster and there are very few rearrangements
(see figure 2.2b). For intermediate values of the alignment strength, the cluster
forms an elongated structure. This ‘slug’ has its orientational defect close to the
leading edge, dictating more or less the direction of motion. The exact location of
the defect is subject to random fluctuations, because of the noise on the particle
orientations. Hence, the movement of the slug is a random walk. Finally, for high
activity or weak alignment, the cluster eventually folds onto itself, creating a vortex
state. In a vortex, all the particles revolve around a common center such that the
net movement is cancelled out. The defect is removed by the creation of a hole in
the middle.

Figure 2.3: Evolution of the order
parameter φ for N = 400, λs =
0.07 and λa = 0.67 (top), and
N = 400, λs = 0.07 and λa = 0.30
(bottom) over time in units of τ .
The histogram in the top panel has
one peak at φ ∼ 0.55, which in-
dicates that the cluster is in the
migration state. The global be-
haviour of the cluster in the bot-
tom panel constantly switches be-
tween migration (with φ ∼ 0.5)
and rotation (with φ ∼ 0.1). The
right hand panel shows the associ-
ated histogram with a bimodal dis-
tribution that represents two dis-
tinct types of behaviour.

We can distinguish between the different states using the order parameter (equa-
tion 2.5). figure 2.3 displays two examples of the evolution of the order parameter
during the simulation, as well as their histograms. For the migration state (top
panel), we find only one peak in the histogram. The migration state is character-
ized by an order parameter φ > 0.25. In the rotation state, the histogram also has a
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single peak, but at lower values of the order parameter, φ < 0.15. The jammed state
can have a peak at any value of φ, depending on the configuration it got stuck in.
Since jammed states follow straight or circular paths (in contrast to the random walk
of migrating clusters and stationary position of rotating clusters), distinguishing be-
tween jammed, rotating and migrating clusters is easy. At the boundaries between
migrating and jamming, and between migrating and rotating, we find bistable or
mixed states that perform a kind of run-and-tumble motion. The associated his-
togram of the order parameter φ has two peaks, as shown in the bottom panel of
figure 2.3.

Figure 2.4: State diagrams of the global behaviour for 200, 400 and 800 particles with varying
activity per particle λs, and alignment strength λa. The cluster may break up (×), migrate (+),
form a vortex (©) or jam with all particles facing the center of the cluster (�). Clusters may
also perform run-and-tumble motion, a bistable state mixing two types of behaviour. These mixed
states are denoted with the chimeric symbols ⊕ and � for migration with rotation and jamming,
respectively. The degree of alignment is measured by the order parameter φ for migrating clusters.
Yellow corresponds to low values of φ, red to high values of φ. The green area corresponds to
purely rotating clusters. Lines are guides to the eye.

3.2. State diagram
We have captured the various types of behaviour in state diagrams (figure 2.4). For
N = 200 particles, most of the state diagram is occupied by migrating colonies (+).
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For low activity, the system jams like passive granular matter at high density (�). A
strong alignment contributes positively towards jamming by preventing rearrange-
ments (see figure 2.2b). For very weak alignment, the cluster is disordered and falls
apart (×). By increasing the number of particles these states shift towards the bot-
tom right, making room for another state between break up and migration. At high
activity and weak alignment, a migrating cluster is likely to fold onto itself. This
creates a vortex state (©) where all particles circle around the topological defect,
which can even be resolved by a gap in the middle (see figure 2.2c). Increasing the
number of particles further (N = 800) continues the trend of shifting towards the
bottom right. The break ups in the top right corner (high alignment and high self-
propulsion) are caused by particles falling off the tail of a migrating cluster due to
its strongly elongated structure. Boundary particles literally pinch off small pieces
of the 3-4 particle wide tail until the main cluster reaches a stable size.

The most interesting points in the state diagrams are the points between pure
migration and rotation, and between migration and jamming (⊕ and� respectively).
We observed bistable states where both types of global behaviour are present. The
resulting motion is a run-and-tumble. When the order parameter has a high value
the cluster migrates. During migration the defect can move towards the middle of
a cluster due to the noise on the individual orientations and enter the jammed state
or the rotation state with a low order parameter. The same noise is responsible
for undoing this process, and allow the cluster to resume migration, in a direction
independent of the direction before it went into the state of low order. The bottom
panel of figure 2.3 shows the evolution of the order parameter and the corresponding
histogram for a bistable state between migration and rotation. The time between
transitions increased dramatically when we increased the value of the alignment
parameter. For N = 800 particles at λa = 0.45, the typical time the cluster spends
in one of the two states was of the same order as our default simulation length
(107τ). The states last long because the transitions happen when the defect has
moved from the boundary to the center by random fluctuations. A high alignment
parameter limits the mobility of the defect within the cluster.

Note that figure 2.4 shows that the global behaviour changes with the number
of particles. For example, an aggregating cluster can change from migration to run-
and-tumble to pure rotation by collecting more particles on its way. No particle is
aware of the size of the cluster. Consequently, even though the local interactions
remain the same, the global behaviour can change dramatically.

We also constructed state diagrams for N = 100, N = 1000 and N = 1600
particles. The N = 100 diagram showed many signs of finite size effects. Clusters
of only 100 particles have a large number of particles on the boundary. Statistical
fluctuations on the order parameter became so large that characterizing the states
was far from trivial. Unsurprisingly, the state diagram for N = 1000 looks very
similar to N = 800. Also the state diagram of N = 1600 shows no surprises
with only break ups and vortex states. Furthermore, we did some simulations with
extreme values for the alignment and self-propulsion parameters for N = 400 in
order to see where the transition lines are and how they move when changing the
size of the cluster (figure 2.5). We retrieved the jammed state for a high value of
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Figure 2.5: Zoomed out version
of the N = 400 state diagram in
figure 2.4. The dashed rectangle
corresponds to the region shown
in figure 2.4. Boundaries between
states generally shift towards the
bottom right corner with increas-
ing particle number. Bistable
states form a bridge between rota-
tion and migration, and between
migration and jammed.

the alignment or a low self-propulsion. We also find bistable states at higher values
of λa and λs, which suggests that transitions are smooth and we can easily tune the
parameters such that the amount of time the cluster spends in either state is equal.
Finally, there is a small unlabelled region with low activity and low alignment, where
the self-propulsion is too low to tear the boundary apart. At the same time, the
alignment is too weak to overcome the noise, such that the particles rotate randomly
while hardly moving.

3.3. Migrating collectively boosts the diffusion constant
A large fraction of our state diagrams is taken up by migrating clusters (+). These
clusters perform random walks on the infinite plane. The movement of the cluster
is guided by the location of the defect since most particles are pointing towards it.
However, the clusters are very dynamic, and particles take turns being close to the
defect. In the bulk, particles move towards the defect. At the defect, the pressure
is higher than the surface tension provided by the boundary particles. This allows
particles from the bulk to escape into the boundary at the leading edge. At the
boundary, particles move towards the trailing end of the cluster since they are now
pointing in a different direction than the cluster’s net motion. Once they are close
to the trailing end, the pressure in the bulk is lower and the particles can penetrate
in to repeat the cycle.

We calculated the diffusion constant D of these migrating clusters using their
velocity auto correlation function and their mean square displacement. We found a
significant increase in the diffusion constant for clusters compared to single particles.
In figure 2.6 we plot the diffusion constant for migrating clusters with N = 1 (lines),
N = 200 (pluses), N = 400 (crosses) and N = 800 (triangles). Different colors
represent different values of the strength of the self-propulsion force. We see that
the diffusion constant is larger (up to three orders of magnitude for strong local
alignment) than for a single particle. Hence, organisms in swarms may follow similar
rules as described in our model to quickly explore large regions when looking for
resources.

For single particles we verified that the diffusion constant scales quadratically
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Figure 2.6: Diffusion constants of the center of mass in the migrating state with N particles, in
units of ā2/τ , for different values of alignment strength λa. Lines correspond to N = 1, pluses
to N = 200, crosses to N = 400 and triangles to N = 800 (plotted next to each other for
clarity). Colours correspond to different values of the self-propulsion strength λs: black (solid line)
λs = 0.04, blue (dotted line) λs = 0.05, red (short dashed line) λs = 0.06, pink (long dashed line)
λs = 0.07, light green (dot-dashed line) λs = 0.08. Collective migration can increase the diffusion
constant by up to three orders of magnitude.

with the self-propulsion strength, D ∝ λ2
s, whereas for large clusters the individual

velocities hardly affect the diffusion constant. Similarly, we find that the persistence
length `p increases with λs for small (N = 1 and N = 200) clusters, but slightly
decreases with λs for larger (N = 400 and N = 800) clusters. In small clusters an
increased activity causes the path length between turns (and thus the persistence
length) to increase. In contrast, larger clusters will turn more quickly when they
become more active. A possible explanation may be that a higher amount of activity
pushes the defect forward, closer to the boundary. Consequently, the cluster changes
its shape and becomes longer and narrower when λs increases. With fewer particles
at the tip, displacements of the defect are less damped, resulting in more and sharper
turns. Therefore, both the persistence length decreases, and the likelihood of the
cluster entering the rotation state increases.

To appreciate the relation between the diffusion constant and the alignment
strength, we work out the Green-Kubo relation in two dimensions [24]. Let ~vc be
the velocity of the centre of mass of the cluster, `p the persistence length of its path
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and θ(t) the angle between ~vc(0) and ~vc(t). The diffusion constant is then given by

D = 1
2

∫ ∞
0
〈~vc(0) · ~vc(t)〉dt = v2

c

2

∫ ∞
0
〈cos (θ(t))〉dt

= v2
c

2

∫ ∞
0

e
− vct
`p(λs,λa) dt = 1

2vc`p(λs, λa), (2.6)

where we approximated that `(t) ≈ vct, i.e., the length of the path travelled by the
average position of the cluster can be approximated by the product of the average
velocity vc and the time interval. We see that a more persistent trajectory leads to a
higher diffusion coefficient. The alignment counters the noise that is responsible for
diffusion in the first place. The increased persistence makes clusters diffuse faster,
even though the net speed of the cluster is less than the self-propulsion speed of a
single particle - that is, clusters are slower than individuals because the particles
are not all perfectly aligned. In fact, we can use the order parameter φ to derive
the velocity of the cluster.

~vc = 1
N

N∑
i

~vi = 1
N

∑ ~Fi
αiζ

= ā

Nτ

 N∑
i

λsψ̂i
αi

+
N∑

i,j 6=i

~dij
αiā

+
∑

i∈boundary

λFin ψ̂i (θout,i − π)
αi

 . (2.7)

The second term in equation 2.7 drops out since dij = −dji, if we neglect the effects
of polydispersity on the velocity by setting αi = 1. The last term will also be small
since the inward force by particles on opposing sides of the cluster tend to cancel
out. We thus arrive at

|~vc| =
āλsφ

τ
. (2.8)

Because a higher value of the alignment strength λa results in an increase of the
order parameter, both the persistence length `p and the cluster velocity ~vc increase
with λa.

To verify that the assumptions made in deriving equations 2.6 and 2.8 are jus-
tified, we plot both relations in figure 2.7, together with our simulation data. The
assumptions are that the speed of the cluster |~vc| is constant in time and that the
polydispersity of the particles has little effect on the magnitude of the forces. The
polydispersity merely serves as a way to prevent crystallization. From our simu-
lations, we find that the diffusion constant D depends linearly on `pvc with slope
1
2 for all cluster sizes, consistent with equation 2.6. Towards higher values of `pvc,
determining the persistence length and diffusion constant becomes harder as the
simulation is finite. figure 2.7b shows that equation 2.8 holds for all cluster sizes.

3.4. Migrating and rotating states in biology
We have shown that simple, and from the perspective of the individual, sensible
rules on local scales lead to various types of behaviour that are relevant for biological
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Eq. 2.6
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Figure 2.7: a) The diffusion coefficient of migrating clusters, in units of ā2/τ , as a function of
`pvc, for N = 200 (red pluses), N = 400 (blue crosses) and N = 800 (magenta triangles) particles.
The black line is the exact result from equation 2.6. b) The speed of migrating clusters with
self-propulsion strength λs times order parameter φ. The black line is the exact relation from
equation 2.8.

organisms. The fast collective migration state for example is useful when exploring
large areas for food. This mechanism is used by both amoebae [22] and bacteria [21].
The rotation state is often observed as the onset of the formation of a fruiting body
which are formed by am]ong others, the amoeba Dictyostelium Discoideum [22] and
Myxobacteria [25]. Furthermore we found a state where the system can switch
between collective migration and stationary rotation. The ratio of time spent in one
of these two types of behaviour is quite sensitive to changes in activity or alignment
strength. This sensitivity allows the system to easily switch between migration and
rotation when the environment changes.

4. Conclusion
We have shown that finite, stable clusters of self-propelled soft particles can be
formed with only local rules. The boundary rule that we introduced creates an ef-
fective surface tension for our clusters, which prevents their breakup. The rule also
dictates the presence of at least one defect in each cluster. We found that these de-
fects dominate the clusters’ global dynamics. Elongated, slug-like migrating clusters
exhibit enhanced motility with a diffusion constant that can be up to three orders
of magnitude higher than that of an individual particle. The high diffusion constant
demonstrates how clustering can be a good strategy for organisms in environments
that are hostile or scarce in food. For larger clusters, there is a spontaneous transi-
tion to a topologically and dynamically different state: a doughnut-shaped rotating
cluster with no net movement. Clusters can be brought from the moving to the sta-
tionary rotating state simply by growing in size, without the need for an additional
decision mechanism.

The vortex and migration state, and the migration and jammed state are sep-
arated by bistable states where both types of behaviour are present. The average
time the cluster spends in each state can be controlled by changing the strength of
alignment between particles or the self-propulsion of the particles. Therefore, in con-
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trast to the jamming transition, which occurs at a critical density, we find no single
critical value for the strength of alignment nor for the self-propulsion. Instead, we
find a gradual transition where both states (migration and rotation/jammed state)
coexist. With our model the density of our clusters cannot be set a priori, so we
could not verify the observation by Henkes et al. [11] who saw that the jamming
transition is sharp when adjusting the density.

We found relations (equations 2.6 and 2.8) between the diffusion constant, the
persistence length and our order parameter defined in equation 2.5. The data col-
lapse in figure 2.7 proves that the assumptions we made to derive these relations are
justified. Moreover, it shows that these relations hold independently of cluster size,
providing a method to determine the values of the alignment and self-propulsion
strength directly from experiments. Although our model is simple, it describes fea-
tures found in biological swarms. Therefore, our results suggest that similar mech-
anisms based on local rules may be found in living systems, even if there are also
more long-range (e.g. signaling-based) biological decision making processes present.
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A. Deriving the dimensionless parameters for the simula-
tion

Comparing interaction strengths is a priori ambiguous. For example, we cannot
directly compare the repulsion strength, a force, with the alignment strength, a
torque. Even comparing different forces with each other may not be trivial. The
parameters that set the strength may have different dimensions. The repulsion
strength is set by a spring constant k, which has a dimension of force over length.
The self-propulsion force is simply set by a force, so comparing the values directly is
meaningless. In this Appendix, we construct a framework that allows us to compare
the values we feed to the simulation. We determine natural time scales for each
interaction. The ratios between these time scales yield dimensionless numbers that
indicate unambiguously the strength of each interaction.

As mentioned in the main text of this chapter, we consider an environment
where the dynamics are over-damped. Therefore, the translational and rotational,
equations of motion are replaced by their non-inertial counterparts. For disks in a
two dimensional fluid, we get

~Fres,i = 32
3 πηai~̇xi ≡ ζαi~̇xi and Tres,i = 4πηRa2

i ψ̇i ≡ χα2
i ψ̇i (2.9)

instead of

~Fres,i = mi~̈xi and Tres,i = Iiψ̈i.

We have defined rescaled viscosities ζ = 6πηā and χ = πηRā
2. We have six interac-

tions in our model that contribute to the resultant force ~Fres,i, and resultant torque
Tres,i. These are the repulsion, self-propulsion, alignment, noise and a boundary
tension, which consists of an inwards torque and an inwards force. We will first
calculate the time scale of repulsion. Then, we determine the characteristic time
scale of the other interactions and scale them relative to the characteristic time scale
of repulsion. An advantage of this method is that it reduces the dimension of the
parameter space by one.

A.1. Repulsion
First, let us calculate the characteristic time scale of the repulsive interaction. We
find the time scale by solving the equations of motion in the absence of other inter-
actions. We consider two particles i and j at positions xi and xj respectively. We
take these particles to be of average size, i.e. ai = aj = ā, or αi = αj = 1. The
repulsive force between them is Frep = k(xj−xi−2ā). For simplicity we fix particle
j and choose our coordinates such that particle j has position xj = 2ā. Then, the
equation of motion reduces to

Fres,i = Frep,i

ζ
dxi
dt = −kxi (2.10)
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and can be solved for xi.

dxi
xi

= −k dt
ζ

ln(xi) = −k
ζ
t+ c

xi = Ae−kt/ζ . (2.11)

We can now define a time scale τ = ζ
k , the time it takes to reduce the overlap by a

factor e.

A.2. Alignment
Our simple interaction for the alignment allows us to calculate the characteristic
time for alignment in a way almost identical to the calculation of the characteristic
time for repulsion. Let us consider a particle i with orientation ψ̂. This particle
aligns with a local preferred orientation Ψ̂i. The direction Ψ̂i can be calculated
using

Ψ̂i = 1∣∣∣∑j∈Ni ψ̂j

∣∣∣
∑
j∈Ni

ψ̂j . (2.12)

This looks rather nasty, because we have to normalise Ψ̂i. However, with equa-
tion 2.12 we simply calculate the average orientation of the set of neighbours, Ni,
of particle i. If we denote the angle between ψ̂i and Ψ̂i with ∆ψi, we can write

T align
i = Talign∆ψi, (2.13)

where T align
i is the torque on particle i due to the alignment, and Talign is a constant

that sets the magnitude of the interaction. At this point it is convenient to choose
coordinates such that the preferred orientation Ψ̂i = x̂. If we now denote the angle
that the orientation ψ̂i makes with the x-axis with the (scalar) angle ψi, we can
express the torque in terms of this angle. We get

Tres,i = T align
i

χ
dψi
dt = −Talignψi. (2.14)

Notice that this differential equation can be solved in exactly the same way as
equation 2.10 for repulsion. Therefore, we can immediately write down the solution:

ψi = Be−Talignt/χ. (2.15)

The natural time scale corresponding to this interaction is τa = χ/Talign. Finally,
we define a dimensionless parameter as the ratio between the characteristic time
scale of repulsion and alignment.

λa = τ

τa
= ζTalign

kχ
. (2.16)
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A.3. Noise
We have implemented a noise term as a small torque of magnitude Tnoise that
is applied to each particle each time step. The torque can either be positive or
negative, turning the particle counter-clockwise or clockwise with equal probability.
The contribution to the torque can be expressed as

T noise
i (t) = wi(t)Tnoise, (2.17)

The wi(t) are drawn at random from the set {−1,+1} for each particle i and at
each time t. We have no correlations between particles, nor in time.

〈wi(t)wj(t′)〉 = δijδ(t′ − t). (2.18)

If we consider just a single particle, its orientation will change by a small amount ∆ψ
each time step due to the random torque. The orientation one simulation step later
points in almost the same direction. Notice that this description of the particle’s
orientation is analogous to the worm-like chain model. The orientation of particle i
after n steps, ψ̂i(n) corresponds to the tangent ~t(s) at position s along the polymer.

In contrast to the previous two interactions, the noise is not a restoring inter-
action. There is no natural time scale after which the torque weakens by a certain
factor. Instead, we define the characteristic time scale for the noise to be the time
it takes for a particle to ‘forget’ its orientation. To quantify the memory of its ori-
entation, we use the concept of persistence length from the worm-like chain model.
The persistence length `P of a polymer is defined using the autocorrelation function.
The autocorrelation function is given by

e−s/`P =
〈
~t(0) · ~t(s)

〉
.

Similarly, we can define a persistence time for the noise in our model:

e−n/nP =
〈
ψ̂i(0) · ψ̂i(n)

〉
, (2.19)

where nP is the number of simulation steps after which the orientation becomes
uncorrelated. Let ∆ψn be the angle between ψ̂i(0) and ψ̂i(n). The total change in
angle is of course a summation of all the changes during each simulation step. Then
we can write

e−n/nP = 〈cos(∆ψn)〉 .

Now we use a Taylor-expansion on both sides for small n/nP and small ∆ψn. We
can safely ignore terms beyond the second term of the expansion.

1− n

nP
= 〈cos(∆ψn)〉 .

1− n

nP
=
〈

1− 1
2(∆ψn)2

〉
1− n

nP
= 1− 1

2
〈
(∆ψn)2〉
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The total change in angle after n steps is ofcourse just the sum of the changes each
time step. Hence, we substitute ∆ψn =

∑n
m=1 w(m)∆ψ.

n

nP
= 1

2

〈(
∆ψ

n∑
m=1

w(m)
)2〉

n

nP
= ∆ψ2

2

 n∑
m=1

〈
w(m)2〉+

n∑
m 6=l
〈w(m)w(l)〉


Recall that w(m) is either −1 of +1, so the product with itself will always yield
w(m)2 = 1. The second term between the delimeters on the right hand side vanishes,
because the noise is uncorrelated.

n

nP
= ∆ψ2

2 n

nP = 2
(∆ψ)2 . (2.20)

We can find ∆ψ in terms of the magnitude of the random torque, Tnoise from
the equation of motion (equation 2.9).

∆ψ = ∆tTnoise
χ

, (2.21)

where ∆t denotes the duration of a single simulation step. Finally, we obtain a
natural time scale for the noise:

τnoise = nP∆t

τnoise = 2χ2

T 2
noise∆t

. (2.22)

The dimensionless parameter for the noise becomes

λn = τ

τnoise
= ζT 2

noise∆t
2kχ2 . (2.23)

A.4. Inward force
To calculate the characteristic time scale of the inward force, we consider a config-
uration of particles like in figure 2.8. Particle i experiences an restoring force that
brings it closer to the group. The force is

F inward
i = Fin(θout,i − θcrit). (2.24)

The magnitude of this interaction is set by Fin, θout,i is the largest angle between
consecutive neighbours, and θcrit = π. This choice is motivated by the observation
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θout

θin
^

Figure 2.8: An artificial ar-
rangement of particles to explain
schematically the additional inter-
actions for boundary particles, and
how to calculate the correspond-
ing characteristic time scales. The
particle in the bottom middle will
turn towards θ̂in with a torque pro-
portional to ∆θ. The orientation
of that particle corresponds to the
red arrow. The particle’s position
with respect to the boundary (dot-
ted line) is xi. The horizontal dis-
tance to the neighbouring particles
is twice the radius (2ā).

that when a particle has moved itself exactly between two other particles on the
boundary (θout,i = π), it should stop forcing itself further into the colony. Suppose
that particle i is a distance xi from that stable position on the boundary. From
figure 2.8, we find

tan
(

1
2(θout,i − θcrit)

)
= xi

2ā . (2.25)

The tangent function makes solving the equation of motion for xi very complicated.
Instead, to derive a characteristic time scale, we will solve it in the limit that the
displacement xi from the boundary is small. In this limit, we can use the small
angle approximation.

θout,i − θcrit ≈ −
xi
ā
. (2.26)

Solving the equation of motion (equation 2.9) now becomes trivial.

Fres,i = F inward
i

ζ
dxi
dt = Fin(θout,i − θcrit)

ζ
dxi
dt = −Finxi

ā
dxi
xi

= −Fin
ζā

dt

xi = Ce−Fint/ζā (2.27)

The characteristic time scale for the inward force is τFin = ζā/Fin. Thus, we get for
the dimensionless scaling parameter

λFin = τ

τFin

= Fin
kā

. (2.28)

A.5. Inward torque
The torque applied to a boundary particle i is given by

T inward
i = Tin∆θ. (2.29)
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Again, the magnitude of this interaction is Tin, and ∆θ is the angle between θ̂in and
the particle’s orientation ψ̂i (see also figure 2.8). The unit vector θ̂in is defined as
the exterior bisector of angle θout and denotes the direction towards the inside of
the colony. If we choose our axis such that θ̂in corresponds to the x-axis, we can
represent ∆θ simply with the scalar interpretation of particle i’s orientation. That
is, ∆θ = −ψi. If we now plug this into the equation of motion, we see that this
interaction also acts as a spring-like interaction with spring constant Tin.

Tres,i = T in
i

χ
dψi
dt = −Tinψi.

ψi = De−Tint/χ (2.30)

For the characteristic time scale we have τTin = χ/Tin, and therefore the dimension-
less parameter becomes

λTin = τ

τTin

= kTin
ζχ

. (2.31)

A.6. Self-propulsion force
So far, all the interactions in our model have a natural time scale. The self-propulsion
force however does not. In fact, it does exactly the opposite of a restoring force.
Self-propulsion drives the system away from equilibrium. Therefore we define the
dimensionless parameter that sets the self-propulsion force similar to λFin . We
replace the inward force Fin by the self-propulsion force Fself to obtain

λFin = Fself
kā

. (2.32)
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Active unjamming beyond

the classical jamming density
Living matter evades the decay to equilibrium.

Erwin Schrödinger

Many biological systems form colonies at high density. Passive granular systems
will be jammed at such densities, yet for the survival of biological systems it is
crucial that they are dynamic. We construct a jamming phase diagram for a system
of active, aligning particles, without long-range interactions and confinement. We
vary the density, self-propulsion speed and the degree of alignment. Our simulations
reveal that there exists an optimal degree of alignment, such that particles require a
minimal force to unjam and therefore allow for rearrangements.
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1. Introduction

I n chapter 2, we developed a model to study the behaviour displayed by a many
biological systems. Our model, a combination of a Vicsek type model of active

particles and the finite size effects of granular materials, results in a wide variety
of dynamical systems. We simulated colonies of up to 1600 particles, but typically,
aggregates on small scales contain way more constituents. Unfortunately, current
computing power does not allow us to perform simulations on that level. Further-
more, in chapter 2, we ensured that all particles stayed together as a group by
providing a boundary term that turns agents towards the colony when they are at
the boundary. However, with colonies of just 1600 particles, effects of the bound-
ary will be pronounced in the bulk. We can mimic an infinite system by applying
periodic boundary conditions and eliminate a boundary rule all together.

In this chapter we study the dynamics (or absence of dynamics) within bacterial
colonies and tissues. The density in these systems is high which means that the
bacteria or cells are in physical contact with each other. These systems often have
such a high density that they risk becoming jammed. Nonetheless, the constituents
rely heavily on rearrangements for their survival. These observations lead us to the
following questions: how do colonies prevent jamming in the first place and what
are the limits on the density in the colony and the forces that its members generate?

So far, the studies that use Vicsek alignment mostly focus on the (rich) dynamics.
In this chapter we focus on the very thing that these active systems are trying to
prevent: jamming. We classify jamming based on an internal diffusion coefficient
that represents the ability to rearrange. We investigate the effect that self-propulsion
and alignment have on the jamming transition, at densities well above the classical
jamming density. Our simulations indicate that at high density, systems require
both alignment with neighbours and orientational noise to unjam. Our results show
that there exists an optimal competition between alignment and noise such that
particles require a minimal self-propulsion force to unjam.

2. Model system
We placed N soft, self-propelled particles in a square with double periodic boundary
conditions. The radii of the particles are drawn from a Gaussian distribution with
mean µ = ā and standard deviation σ = ā/10. The variation in radii prevents
artificial crystallisation effects. As mentioned in the introduction of this thesis 1, we
model systems in the regime where viscous forces dominate over inertial forces, e.g.
bacteria or other unicellular organisms and cell tissues. Therefore, the dynamics of
the particles are over-damped and the equation of motion is given by Stokes’ law:

~Fi = ζi~vi. (3.1)

In equation 3.1, ~Fi denotes the total force exerted on particle i. This force results
in an instantaneous velocity ~vi of the particle. The proportionality constant ζi
depends the viscosity η and the particle’s radius ai and is given by ζi = 6πηai or
ζi = (32/3)ηai in three and two dimensions respectively. The total force on the
particle is the sum of steric repulsion forces with all particle j that generate overlap,
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~Frep,j , and a self-propulsion force, ~Fsp. We choose a simple harmonic repulsion,
such that the force is proportional to, and in the direction of the linear overlap ~dij .
Hence, the total force becomes

~Fi =
∑
j

~Frep + ~Fsp =
∑
j

k~dij + Fsp
ai
ā
ψ̂i, (3.2)

~Fi =
∑
j

k~dij + λskaiψ̂i, (3.3)

where k is the spring constant for the repulsive term and Fsp sets the magnitude
of the self-propulsion force. Any particle i propels itself along an intrinsic unit
vector ψ̂i, which we will refer to as the orientation of particle i. We choose the
self-propulsion force to be proportional to the particle’s size, such that the speed of
differently sized particles would be the same in the absence of pairwise interactions.
In equation 3.3 we use that we can rescale all forces by kā, which follows naturally
from the repulsion term. Next, we define the dimensionless parameter λs = Fsp/kā
to set the strength of the self-propulsion in our simulations.

We adopt the rules for the orientation of our particles from the original Vicsek
model. Two competing effects regulate the orientation of a particle. On the one
hand, particles want to align with a local director, while on the other hand, they are
subjected to an orientational noise. Note that this noise is not of a thermal origin,
rather, it should be interpreted as an uncertainty in determining the direction of
the local director. During each simulation step, the new orientation of particle i is
calculated by

ψ̂i = Rot(θ)
∑
j∈Ni ψ̂j∣∣∣∑j∈Ni ψ̂j

∣∣∣ . (3.4)

Here, Rot(θ) is the 2D rotation matrix, that rotates a vector by an angle θ. We
draw the rotation angle θ from a uniform distribution between −λnπ and λnπ,
where we set λn between zero (low noise) and one (high noise). We define Ni to
be the set of particles in the neighbourhood of particle i. A particle j is in the
neighbourhood of particle i if the distance between i and j is smaller than 2.8ā. We
choose this distance such that two neighbouring large particles will still be considered
neighbours, whereas two small particles separated by a third will not.

The Vicsek order parameter quantifies the competition between alignment and
orientational noise. The order parameter is a characteristic of the colony as a whole
and turns out to be a more intuitive measure of the competition between alignment
and noise. It is defined as

φ = 1
N

∣∣∣∣∣
N∑
i=1

ψ̂i

∣∣∣∣∣ . (3.5)

The order parameter equals unity for perfect alignment between all particles and is
close to zero when the direction of all particles are uncorrelated from those of their
neighbours.
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Note that the noise term is exclusively orientational. This noise term is an essen-
tial competing effect to the alignment for dynamics in the system. We choose not
to include a noise term in the force equation to have a minimal system that displays
the dynamics we want to study. We use the Vicsek alignment over a rotational ana-
logue (equation 2.9 from chapter 2) of the force equation (equation 3.3), because the
jamming transition naturally comes with a dramatic slow down of the dynamics and
diverging time scales. The time scales concerning the dynamics near the jamming
transition and the rotation of particles at high noise lie so far apart that we would
require infeasibly many simulation steps to study this system. Instead, we choose
to use an update mechanism for the orientation identical to the mechanism used in
the original Vicsek model.

3. Results
We simulate N = 1024 particles in a box of size L × L (see figure 3.1 for two
snapshots), where we calculate L from the imposed dimensionless packing fraction
ρ =

∑N
i=1 πa

2
i /L

2. All distances are in units of the average particle radius ā = 1
and we set the force scale by choosing k = 1 for our simulations. Our unit of time
is set by the relaxation time of the repulsive interaction τ = ζ/k = 1. We adjust
the number of simulation steps per unit time such that the displacement by the
self-propulsion force is 1/1000th of the average particle radius, ā. Simulations run
for a total of 108 steps. The parameters that we vary are the packing fraction (ρ),
the self-propulsion speed of the particles (λs), and the size of the interval from which
we draw a random angle that causes a mismatch in the alignment between particles
(λn). In hindsight, making the number of simulation steps dependent on the value
of λs is an odd choice as it affects the orientational noise. To correct this issue, we
will refer to a rescaled noise parameter λ′n = λn/

√
∆t, where ∆t is the duration of

a simulation step. We will also add follow-up results from Daniel McCusker, who
carried out the simulations with a constant number of steps per unit time.

3.1. Classifying jammed and unjammed systems
With the classical jamming transition at ρc = 0.843 [1], we ran simulations at three
different densities (ρ ∈ {0.845, 0.860, 0.900}). For the preliminary results using a
simulation step that depends on λs, we varied the self propulsion force over two
orders of magnitude (λs ∈ {0.003, 0.01, 0.03, 0.10, 0.30}) and we used six different
values for the orientational noise (λn ∈ {0.01, 0.10, 0.30, 0.40, 0.50, 0.60, 1.00}).
At λn = 0, the particles align perfectly without any noise, whereas at λn = 1,
the particles reorient themselves in a random direction every single simulation step.
Therefore, particles do not align and cannot move collectively. On top of that, the
particles’ trajectories have a vanishing persistence length compared to their radius.
The definitive simulations use ρ ∈ {0.88, 0.92, 1.00}, λs ∈ {1 × 10−4, 2 × 10−4,
5× 10−4, 1× 10−3, 2× 10−3, 5× 10−3, 1× 10−2}, and λn ∈ {0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8} with a fixed duration of the simulation step ∆t = 0.1.

We characterize solid-like or liquid-like behaviour by taking a direct measure of
the motion in our system. Note however that a system with perfect alignment can
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a) b)

Figure 3.1: Snapshots of a) an unjammed system (ρ = 0.86, λs = 0.30, and λn = 0.50) and b) a
jammed system (ρ = 0.90, λs = 0.10, and λn = 0.30). The orientation of the particles is shown
by the lines originating from the centres. The colour of the perimeter indicates the amount of
overlap with other particles (blue for no overlap, green/yellow for medium overlap, and red for
large overlap). Unlike jammed systems, unjammed systems have large density fluctuations.

move collectively, but lacks any rearrangements and the motion is just a translation
of the centre of mass. In an infinite system, or a system with periodic boundary
conditions, this global translation is meaningless and such a system should still be
characterized as jammed. We therefore look at rearrangements or the displacement
of the particles with respect to a reference point that moves with the system. We take
as this reference point the average position of all particles after thermalisation. To
identify rearrangements in the system we calculate the mean squared displacement
(MSD) of all particles with respect to this average position. Note that this diffusion
coefficient is not a coefficient in the traditional sense of passive particles undergoing
a diffusion process. In this case, the diffusion is a consequence of the activity of the
particles.

In a jammed system, particles will not be able to travel more than a distance ā
because they are obstructed by their neighbours. This effect is known as caging and
is visible in the mean squared displacement as a plateau. Particles in unjammed
systems do not have this restriction, and we can assign a diffusion coefficient, D,
to the linear behaviour of the MSD after the particle has escaped its cage (see
figure 3.2a). We always fit a constant function and a linear function. If the best
fit (using a χ-squared method) is a constant, we consider the system to be jammed
(see figure 3.2b). On the other hand, if the best fit is a linear function, we consider
the system to be unjammed. In some borderline cases however, the linear function
would be the best fit, but the MSD would never exceed ā2. Particles in such systems
did not travel a distance larger than their own radius and therefore particles will
not have rearranged. Hence, we also consider our system to be jammed if the
fitted diffusion constant does not allow for displacements larger than ā during our
measurement of the MSD.
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Figure 3.2: Typical mean squared displacement (MSD) graphs of a) an unjammed and b) jammed
system. The top panel has parameters ρ = 0.90, λs = 0.10, and λ′n = 5.00. We fit the diffusion
coefficient D with MSD(t) = 4Dt. The bottom panel b) shows an MSD graph for a jammed system
at ρ = 0.90, λs = 0.10, and λ′n = 6.00. We always fit a linear and constant function. The fits with
the smallest chi-squared residuals are shown in both cases.

3.2. Phase diagram of jamming
Conventional jamming phase diagrams have density, temperature and load on their
axes, following Liu and Nagel. [2]. At zero temperature and without external forces,
granular systems will be jammed beyond the famous point J, defined in section 1.1.2.
Although temperature and particle activity initially seem very similar, their nature
is completely different. Active particles consume energy to move, so energy is not
conserved on the particle level. Systems at a density higher than φJ can unjam due
to thermal motion or by applying external forces. Our system is driven internally
by the particles themselves. The magnitude of this self-propulsion force as well as
its direction with respect to neighbouring particles can unjam systems beyond the
jamming density.

In figure 3.3 we show the preliminary results from our simulations without noise
rescaling. Figure 3.3a is a heatmap of the diffusion coefficient at ρ = 0.90 and in
figure 3.3b we zoom in around the an expected minimum. We set the diffusion
coefficient for jammed systems to 10−8, such that they are represented by a red
colour in the heatmap. The gradient is a linear interpolation of log(D) between
the simulations (black dots) and merely serves as a guide to the eye as the noise
parameter λn does not scale with the value of λs. We find unjammed systems
even at densities far exceeding the jamming density as long as the particles exert a
sufficiently large self-propulsion force. Interestingly, a system can go from jammed,
to unjammed and back to jammed along the noise axis. Since this noise is only
on the orientation of the particles, and not on its translation, more noise does not
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automatically mean that the system is more likely to unjam. In fact, particles lose
their orientational persistence when there is too much noise. They cannot push
aside their neighbours and therefore will always be trapped between the same set
of particles. On the other hand, too little noise causes particles to move in the
same direction as their neighbours. We still consider this system jammed for the
same reason we call congested traffic a traffic jam. There is a global translation,
but locally the cars cannot overtake, i.e. their cage travels with them. The low-
noise jammed system is a different phase from the high-noise jammed phase. The
two jammed phases are separated by the order-disorder phase transition, which we
discuss in section 3.4. Because of the existence of an unjammed phase between
two jammed phases, we expect an optimal noise where particles require a minimal
self-propulsion force to unjam. The nature of our optimal noise is different than
the optima reported by Reichardt and Chepizhko [3, 4]. In both references they
find maximized motility of a cluster by optimizing the run-and-tumble frequency or
angular noise respectively. Our optimal noise maximizes the motility of particles
within clusters.

-8

-7

-6

-5

-4

-3
log(D)

s

a b

Figure 3.3: Both plots show the value of the diffusion coefficient as a function of λs and the
unscaled noise λn. The preliminary results show that even at densities far exceeding (ρ = 0.90)
the jamming density for passive particles, systems can still unjam. a) The transition from jammed
(red area), to unjammed (blue area), back to a jammed system with λn at constant λs implies an
optimal noise for unjamming. The colour indicates the value of the log of the diffusion coefficient.
b) We zoom in on the green rectangle of a) and find evidence for an optimal noise for the system to
unjam at minimal self-propulsion strength. See also 3.4 for similar plots with correct noise scaling.

To verify that the features described above are not a consequence of the unscaled
noise parameter λn, I include here the results of Daniel McCusker, who ran simula-
tions using a fixed ∆t and a larger system size to decrease the finite size effects. His
results are shown in figure 3.4. The colour of the dots corresponds to the value of a
diffusion coefficient determined from MSD analysis. Blue dots represent unjammed
systems and for red dots, the simulated systems are (marginally) jammed. The
line indicates a constant diffusion coefficient that separates the jammed from the
unjammed systems. Hence the surface can be thought of as an indication of how
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much activity the particles need to unjam the system.
Especially figure 3.4a and b share quantitatively similar features to figure 3.3a.

To find a more precise estimate of the optimal noise, Daniel ran additional sim-
ulations near the order-disorder transition. The result of these can be found in
figure 3.4d, 3.4e, and 3.4f for ρ = 0.88, ρ = 0.92, ρ = 1.00 respectively. Determining
the exact location of the minimum is difficult with the current number of simu-
lations, given the noisiness of the MSD, however they strongly suggest enhanced
motility near λn = 0.465 (or λ′n = 1.47).
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Figure 3.4: The value of the diffusion coefficient, D, from mean-squared displacement analysis for
different values of λs and λn at constant ∆t for a) ρ = 0.88, b) ρ = 0.92, and c) ρ = 1.00. The
colour of each dot corresponds to the value of log(D). Blue represents unjammed systems and
red represents jammed systems. The line drawn at constant D = 5 × 10−7 is a result of a linear
interpolation and can be interpreted as a rough indication for the self-propulsion strength needed
to unjam a system at a given noise. Figures d), e) and f) are results from simulations ran near the
order-disorder transition near λn ≈ 0.47 (or λ′n ≈ 1.49) (see figure 3.5c and d). The simulations
strongly suggest enhanced motility near λn = 0.465 (or λ′n = 1.47).

3.3. The contact number
Studies on jamming often measure the contact number, z. The contact number is
the number of particles that the average particle touches. At very low densities,
particles will not be forced to touch each other and the contact number will be
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z ≈ 0. With increasing density, the contacts will start to inhibit the motion of a
particle. We can derive the average number of contacts for each particle that will
cause the system as a whole to be jammed with a simple argument. Suppose we
have a system of N particles in d dimensions that is exactly at the jamming density.
There are Nd unknowns in our system, i.e. we would need to specify Nd variables
to fully characterize this system. In this jammed system, particles are not able to
move. That means that the number of equations constraining this system equals
the number of unknowns. If on average, each particle has z contacts, then the total
number of contacts will be Nz/2. For frictionless spherical particles, each contact
yields one independent (force) equation. Hence, equating the number of unknowns
to the number of equations gives Nd = Nz/2. Therefore, particles in such systems
will, on average, have z = ziso = 2d contacts. This condition is called isostacity.
Systems that exactly satisfy the isostatic condition are called marginally jammed.
If one were to break only a single contact, this system would unjam. In jammed
systems, the contact number will exceed two times the number of dimensions.

In all our simulations we found a contact number higher than z = 4.5. However,
we did see rearrangements for some sets of parameters. The activity of the particles
themselves allow for a larger contact number before they jam. Furthermore, the self-
propulsion force makes these particles anisotropic, changing the number of equations
and unknowns. Our simple argument to determine ziso no longer applies. However,
in the limit of no self-propulsion force, we would find that ziso = 4. Therefore, we
expect the isostatic condition to be dependent on the self-propulsion force. This
behaviour, where the isostatic contact number changes with a parameter, reminds
of the behaviour reported by Donev et al. [5], who showed that ziso increases with
ellipticity. As a consequence, there is no single value of the contact number that
can clearly distinguish between jammed and unjammed states. The systems we
classified as unjammed generally did have a lower contact number, however there
was no one-on-one correspondence. In conclusion, we found the contact number not
to be a useful metric to distinguish between jammed and unjammed systems.

3.4. Critical behaviour and giant number fluctuations
Figure 3.5 shows the relation between the unscaled noise parameter λn and the
Vicsek order parameter defined in equation 3.5. We observe that the order parameter
is not dependend on the self-propulsion strength of the particles, and therefore we
have taken the average over multiple values of λs. On a linear scale (figure 3.5a), the
order vanishes above a critical noise. This behaviour is reminiscent of a second order
phase transition in equilibrium systems. Although phase transitions are historically
equilibrium phenomena, it is widely expected that phase transitions also occur in
out-of-equilibrium systems. For example, Flenner et al. [6] recently showed that
the glass transition in systems of active, but non-aligning particles has a lot of
similarities with the glass transition in thermal systems. And for the Vicsek model,
Chaté et al. [7] showed that the transition is a first order transition. Using the
preliminary result, we fit a powerlaw of the form φ ∼ (λc − λn)ν to the data in
figure 3.5. The dashed line corresponds to a fit with λc = 0.534 ± 0.003 and ν =
0.40 ± 0.01. In figure 3.5b we plot the same data on a log− log-scale. The critical
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point and exponent we find for finite sized particles are consistent with the work by
Czirok et al. [9] on point-like particles.

We also include the results of Daniels simulations in figures 3.5c and d. He
simulated with more particles (N = 5 × 104), and as a consequence, finds slightly
different values for the critical point and critical exponent. In the next paragraph
we will explain why the number of particles affects the location of the critical point.
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Figure 3.5: Dependence of the Vicsek order parameter φ on orientational noise λn for N = 16, 384
particles at ρ = 0.90 and averaged over all simulated values of λs. The data in a) suggests a
critical point near λn = 0.5. Consequently, we fitted a powerlaw (dashed line): φ ∼ (λc − λn)ν ,
with λc = 0.534 ± 0.003 and ν = 0.40 ± 0.01. In figure b) we plot φ versus λc − λn on a log-log
scale and find that the data indeed falls on a straight line. c) and d) are similar plots to a) and
b) with the difference that these are the result of simulations with five times more particles. With
more particles, the transition occurs at λc ≈ 0.47 with a critical exponent ν = 0.286 ± 0.008.
The infinite order of the order-disorder transition likely causes the difference between the top and
bottom plots.

We have been comparing our results on the order parameter and its critical be-
haviour to Vicsek et al. [10] and Cziròk et al. [9]. There is however another model
that, at a first glance, shows very similar behaviour. The rotational analogue of
the Ising model, the xy-model, also has an order-disorder transition. In that model,
spins are arranged on a fixed lattice, and are allowed to rotate in the plane. Just as in
the Ising model, there is an energy penalty for misaligning. Temperature causes im-
perfect alignment between neighbours, and beyond a critical temperature the lattice
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changes from ordered to disordered. This transition is called the Kosterlitz-Thouless
transition. There are however fundamental differences between the point-like Vicsek
model and the xy-model. In the Vicsek model, the particles are moving, whereas in
the xy-model they are stuck to their lattice site. This difference has some impor-
tant implications. In particular, the xy-model, being a thermal equilibrium system,
has to abide the Mermin-Wagner theorem. This theorem states that continuous
symmetries cannot be broken by finite temperature fluctuations in a 2D system
with short-range interactions. Hence, the theorem implies that long-range fluctu-
ations require very little energy. Therefore, in the xy-model, there can be no true
long-range order and the phase transition that we observe is said to be of infinite
order. In contrast, the Vicsek model does have a state of true long-range order.
The Vicsek model is not an equilibrium system and therefore it is not bound by the
Mermin-Wagner theorem. Toner and Tu [11, 12] showed using a field theory of the
Vicsek model that density fluctuations allow for a fast transfer of information that
ultimately leads to long-range order. The colour gradients in figure 3.1a show that
we indeed have density fluctuations. To see whether fast information transfer could
be possible in our model, we quantify the density fluctuations. We use a method
similar to that of Chaté et al. [13], who measured the number density on various
scales over time. We calculate the density (or packing fraction) in concentric circles
of increasing size around each particle. For each particle we then get a density in a
circle of radius r. We find the average density 〈A〉, by taking the average over all N
circles of the same size. We also compare the deviation from this average for each of
the N circles to calculate ∆Arms =

√
〈∆A2〉. Obviously, since our simulated system

has a finite size, we can only identify fluctuations on the scale of up to 〈A〉 = 500ā2

or r ≈ 12.65ā for the radius of the circle. Beyond that size, the finite size effects of
our system become important.

In figure 3.6, we plot the relation between 〈A〉 and ∆Arms for three simula-
tions; unjammed (blue cross), jammed disordered (red asterisk) and jammed ordered
(black plus). We also fit a powerlaw, 〈A〉 ∼ ∆Aαrms for 〈A〉 < 500ā2. In the jammed
state, interparticle repulsion forces are dominant, resulting in a homogeneous distri-
bution of particles and we don’t expect large density fluctuations. Indeed, regardless
of the state (ordered or disordered), we find a slope of around α ≈ 1/2, caused by
the randomness of the packing. In the unjammed state for λ′n = 5.00, we measure
a significantly higher value of α.

The unjammed systems generally have a higher value of α. Unfortunately, this
value changes gradually between the jammed and unjammed state, so we cannot
use it as a distinguishing measure for jamming (see figure 3.7). Furthermore, the
spread is too large to make accurate predictions whether the system is in a jammed
state or not.

Our system is a mix of the Vicsek model and the xy-model. In the unjammed
state, the particles move, rearrange, and cause density fluctuations. In contrast,
in the jammed state, there are no rearrangements and no density fluctuations and
therefore at best, only quasi long-range order. We expect the transition between
systems that can achieve true long-range order and systems that cannot, to be the
jamming transition. Identifying true long-range order may require an enormous
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Figure 3.6: We measure the density fluctuations by plotting the the deviation from the mean area
versus the mean area at different length scales. Simulations are at ρ = 0.90 and λs = 0.1. For the
noise parameter we have λ′n = 0.10 (black plus, dashed line) for the jammed, ordered state, and
λ′n = 5.00 (blue cross, dotted line) for the unjammed state, and λ′n = 6.00 (red asterisk, dot-dashed
line) for the jammed, disordered state. Unjammed states have larger density fluctuations.
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Figure 3.7: The value of exponent α as a function of the noise parameter λ′n for self-propulsion
speeds λs = 0.01 (black plus), λs = 0.03 (red cross), and λs = 0.10 (blue square). The shaded areas
in corresponding colours indicate the standard deviation among 10 runs with the same parameters.

number of particles [7]. Therefore we consider our MSD analysis to be the most
accurate way to identify jamming.
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4. Conclusion
We simulated self-propelled particles at densities exceeding the classical jamming
density and find that systems require a combination of alignment and orientational
noise to unjam. Too little noise causes all particles to align, and particles will be
stuck between their neighbours like in a traffic jam. Too much noise causes the
particles to change direction so quickly that they lack the ability to push aside their
neighbours. Once again, the particles become trapped in a cage formed by their
neighbours. The optimal competition between alignment and noise occurs around
λ′n,opt ≈ 1.5. With a minimal self-propulsion force, the particles are able to create
local differences in density. Consequently, rearrangements can occur in the low
density regions, ultimately responsible for long-time mixing.

We measure the competition between alignment and noise with the Vicsek order
parameter. The transition between the ordered state (φ 6= 0) and the disordered
state (φ = 0) could be similar to the order-disorder transition in the Vicsek model.
The giant density fluctuations we observe point towards this conclusion. However,
we would need to do simulations with many more particles to prove it. Our system
could be too small and therefore, the slowed down dynamics due to jamming may
inhibit the motion of the particles and make the enhanced information transfer
needed for true long-range order impossible.
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4
Collective dynamics and
motility of soft elliptical

particles
A system which has spherical symmetry, and whose state is changing because of

chemical reactions and diffusion ... cannot result in an organism such as a horse,
which is not spherically symmetrical.

Alan Turing

Swarming behaviour is abundant in nature. Over many different length scales, in for
example herds, flocking birds and swimming bacteria, roughly identical individuals
interact locally to achieve group behaviour. The similarities between these exam-
ples suggests the existence of a general underlying principle. We propose here a
local interaction model for self-propelling, elliptical particles that results in collec-
tive motion. Any particle interacts with its neighbours only, experiences noise on
its orientation and pushes inwards if it is in the outer layer of the group. Initially,
alignment between particles is the result of steric repulsion. We observe two types of
group behaviour. The first type is a migrating group, where particles in the bulk are
aligned over large length scales, but do not rearrange. The second type has very little
net motion. The elliptical particles form smaller regions of aligned and anti-aligned
particles, effectively cancelling the net motion of the group. Finally, we compare
the group behaviour of elliptical particles to circular ones and investigate the im-
portance of polar alignment. We conclude that polar alignment is a requirement for
large-scale collective dynamics, like collective migration and rotation.

This chapter has been published as R. van Drongelen and T. Idema, Collective dynamics and
motility of soft elliptical particles. In: Knoop, V. L. and Daamen, W. (Eds.) Traffic and Granular
Flow ’15, 605-612, Springer, 2016.
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1. Introduction

M any organisms do not just live by themselves. They live in groups. Such groups
consist of hundreds to hundreds of thousands of roughly identical individuals.

Examples range over many length scales: herds of mammals, flocks of birds [1] and
schools of fish [2, 3], insects [4], and amoebae [5, 6] and bacteria [7]. In all cases, the
collective behaviour of the group is the result of interactions between individuals
that are close together. Especially on the smallest scale, clusters can reach packing
fractions approaching unity. As a general rule, individuals have little knowledge
about the dynamics of the group. Still, the behaviour of the group as a whole is
obviously important to every individual in it. Therefore, we want to understand
how rules between neighbouring individuals govern the group behaviour.

Swarming dynamics are a highly non-linear result of specific local interactions, as
can be seen by simulating group dynamics based on simple rules for individuals. For
example, the well-known Vicsek model describes a flock of birds as a collection of self-
propelled point particles with fixed speed, an interaction that aligns an individual’s
direction of flight to the velocity of its neighbours, and orientational noise [8, 9].
To prevent the swarm from falling apart, Vicsek et al. originally used unrealistic
periodic boundary conditions. Variations of the Vicsek model add a long-range
attraction potential or confine the particles by a fixed boundary [10, 11]. Recently,
we showed that a system can provide its own boundary by imposing a local outsiders-
want-in rule [12] (see also chapter 2 of this thesis). Particles on the boundary will
turn towards the group and push inwards, until they are part of the bulk again.
In that chapter we focussed on circular particles. Here we extend our results by
investigating the effect of anisotropy on the local alignment, and ultimately, the
group dynamics.

We model collective dynamics of elliptical particles in viscous environments. In
the model, particles repel each other if they overlap, propel themselves along their
major axis, experience noise on this direction and push themselves inwards if they
are on the outside. All of these are local interactions. We find that the resulting
clusters are either collectively aligned without internal dynamics, or dynamic with
only local alignment and no net motion. These results are in contrast with the
results in chapter 2 on circular particles with polar alignment, which do exhibit
global collective dynamics. We also carry out two types of control simulations to
investigate if polar alignment, or the geometry of the particles, is responsible for
collectively dynamic systems. Our results show that clusters perform collective
migration and rotation once we add a polar alignment rule, whereas clusters of
circular particles with a nematic alignment will always break up. Indeed, for birds
and fish, polar alignment is a clearly visible feature. Cells of the social amoebae
Dictyostelium discoideum align their velocities and the resulting cluster exhibits
collective migration, as well as rotation [13]. The Myxococcus xanthus bacteria
align through steric interactions, and use velocity reversals to achieve collective
migration [14, 15]. In contrast, large groups of whirligig beetles, that align in an
apolar way, exhibit no net motion.



2. Model

4

51

2. Model
We considerN identical, self-propelling ellipses with aspect ratio γ = 2 : 1 and minor
axis σ0. We denote the position of the centre of ellipse i by ~ri and its orientation
by ψi, such that ψi is the angle between the major axis and the positive ~̂x-axis.
Particles propel themselves along their major axis. They are subjected to a viscous
drag. We consider the overdamped limit where particles have negligible inertia.
Since they mostly move along the direction of self-propulsion, we can approximate
our equations of motion from the expressions for the linear and angular drag on
disks, reported in Landau and Lifshitz [16] and section 1.1.3. The drag force and
torque on particle i are given by

~Fi = 16
3 ησ0~vi ≡ ζ~vi and Ti = πηRγσ

2
0ωi ≡ µωi. (4.1)

In these definitions for ζ and µ, η and ηR are the translational and rotational
viscosities, and ~vi and ωi are the linear and angular velocity of particle i.

Overlapping particles experience a soft, harmonic, repulsive force, which we
model by a modified Gay-Berne potential. The potential, in accordance with the
work of Zeravcic et al. [17] on the jamming of soft ellipsoidal particles, is given by

V (rij , σij) =
{ 1

2k (σij − rij)2 for rij ≤ σij
0 for rij > σij

, (4.2)

where k is the spring constant, and rij = |~rj − ~ri| is the distance between the
centres of ellipse i and j. The range parameter σij indicates how much two particles
overlap. This parameter depends on the relative position of particle i to j, ~rij , and
their respective orientations ψi and ψj . The range parameter is defined by

σij = σ0

[
1− χ

2

(
(~̂rij · ~̂ui + ~̂rij · ~̂uj)2

1 + χ~̂ui · ~̂uj
+ (~̂rij · ~̂ui − ~̂rij · ~̂uj)2

1− χ~̂ui · ~̂uj

)]−1/2

. (4.3)

The vector ~̂ui = cos(ψi)~̂x + sin(ψi)~̂y corresponds to the major axis of ellipse i and
~̂rij is the unit vector pointing from i to j. The dimensionless parameter χ = γ2−1

γ2+1
depends on the aspect ratio γ of the particles. In general, the corresponding force
is not along ~̂rij (see figure 4.1a). Consequently, there is also a torque that leads to
local alignment. The force and torque on particle i are the total derivatives of the
potential:

~Fi = − d
drij

V (rij , σij)~̂rij and Ti = − d
dψi

V (rij , σij). (4.4)

Following Vicsek et al. [8], we model self-propelled particles with a constant
self-propulsion force and noise on the direction. These interactions are described by

~Fi = Fself~̂ui and Ti = Tnoiseξi, (4.5)

with Fself and Tnoise the strength of self-propulsion and noise, respectively, and ξi
is a random number drawn from the set {−1, 1} at each time step. Finally, we use
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Figure 4.1: a) The repulsive force between particles i and j causes torques on both particles.
b) Explanation of the outsiders-want-in-rule. The particle at the bottom identifies itself as a
boundary particle by measuring the maximum angular separation between any pair of consecutive
neighbours. If this angle exceeds the critical value θc, the particle turns inwards and exerts an
additional force to squeeze in.

a local boundary term to prevent the system of particles from falling apart. This
eliminates the necessity of a geometrical confinement or attraction between particles
on either short or long range. To find out if a particle is on the boundary, it measures
the largest angle between consecutive neighbours, θmax,i (see also figure 4.1b). If
this angle is larger than the critical value θc, this particle will exert an extra force
and torque to return to the cluster. The additional force and torque are

~Fi = (θmax,i − θc)Fin~̂ui, and Ti = Tin∆θi, (4.6)

respectively. Again, the strength of these interactions are Fin for the force and Tin
for the torque. The torque is proportional to ∆θi, the angle between the orientation
~̂ψi and the inward direction defined by the exterior bisector of angle θmax,i.

We make our variables dimensionless for the purpose of our computer simulation.
We fix the length scale by imposing σ0 = 1. The characteristic time scale for
repulsion is given by τ = ζ/k. We set the time scale and force scale with τ = k = 1
and denote the duration of one simulation step by ∆t. Every other interaction X
in our model also has a characteristic time scale τX . The strength of the other
interactions X will be denoted by λX = τ/τX . Hence we have i) for the noise,
λn = ζT 2

noise∆t/(2kµ2), ii) for the additional inwards force, λF = 2Fin/(kσ0), iii)
for the additional inwards torque, λT = ζTin/(kµ), and iv) for the self-propulsion
λs = 2Fself/(kσ0). Furthermore we fixed µ = 1, θc = 0.9π, λF = 0.16 and λT = 0.1.

The model described above consists of finite self-propelled particles with repul-
sive overlapping interactions. We apply a local boundary term, where particles on
the boundary of the cluster push inwards, to keep the cluster together. Both the
finite size and the local boundary rule are different from those of the Vicsek model.
Finally, in contrast with the Vicsek model, any alignment in the system is the result
of steric interactions between the anisotropic particles, instead of being hard-coded
into the model. Consequently, ours is the simplest possible model for generating
collective behaviour without confinement and long-range interactions.
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Figure 4.2: Typical snapshots of a) jammed and b) random configurations. In c) we overlaid the
velocity field of the random configuration shown in b).

3. Results and discussion
The ellipses are self-propelling agents, which adds properties of polar particles, be-
sides the nemetic properties due to the potential, which is periodic in the angles ψi
and ψj with a period of π instead of 2π. Therefore, we use the order parameter
φ = 1

N

∣∣∣∑i ~̂ui

∣∣∣, identical to the Vicsek order parameter, to classify the different
types of behaviour that we observe.

3.1. Steady state behaviour of elliptical particles
We investigated the effect of self-propulsion strength and orientational noise on the
behaviour of the cluster. We found two distinct types of behaviour, which we will
label ‘jammed’ and ‘random’. In the jammed state, particles do not rearrange (see
figure 4.2a). The order parameter φ is constant in time for periods longer than
5% of the total simulation length and the trajectory of the average position of all
particles consists of straight lines or arcs of constant curvature. In the random state
the particles swim in small streams contained inside a ring constituted of inward
facing boundary particles (see figure 4.2b and c). Particles enter the boundary where
the streams hit the boundary. Once they are classified as boundary particles, they
turn around and remain part of the boundary until they find a spot where they can
enter the bulk again. We observe no global alignment and the value of the order
parameter is very low. In short, this state has a mixing dynamics with alignment
on short length scales. As a result, the centre of mass of the entire cluster exhibits
no net motion.

Not surprisingly, the jammed state occurs when the orientational noise on the
particles is low (see figure 4.3a). Introducing increasingly more noise at low or
intermediate self-propulsion speeds gradually leads to the random state. For these
states to be stable, the self-propulsion speed cannot be too high. A high self-
propulsion speed always leads to break-ups into multiple small clusters.

3.2. Motility of clusters of circular versus elliptical particles
In chapter 2, we found that clusters of circular particles with a polar alignment
rule exhibit four main types of behaviour: clusters that break up (type 1), jammed
clusters with strong alignment (type 2), dynamical clusters where particles rotate
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Figure 4.3: State diagrams of a) elliptical particles that align through steric repulsion and b)
elliptical particles with the polar alignment rule introduced in Sect. 3.3. On the vertical axis
we increase the self-propulsion speed of the particles, and on the horizontal axis we increase the
effective alignment between them. We drew dashed lines between states that are topologically
different. The symbols are shown in figure 4.2 for steric alignment and figure 4.5 for polar alignment,
with their phenotypes.

collectively around a common centre (type 3), and dynamical clusters that migrate
collectively (type 4). For the last type, the local alignment results in a global
preference for the orientation of the particles. This direction corresponds to the
direction of movement of the cluster, which performs a random walk over time.

3.3. Effects of polar alignment and shape on collective dynamics
In contrast to polar circular particles, that display dynamic, collective behaviour
of rotating and migrating clusters, we find that clusters of elliptical particles do
not achieve global, collective behaviour. This drastic change can only be caused by
two factors. First, the geometry of the particles changes the way the particles can
arrange in a cluster. Second, we also disposed of the polar alignment rule. After
all, the Gay-Berne potential aligns our particles as well, eliminating the need to put
alignment in the system as a separate rule. However, this potential also anti-aligns
the particles. To determine which effect is responsible for collective behaviour,
we tested two different scenarios. In the first, we replaced the steric alignment
interaction with a polar alignment rule. Consider for example orientations of i and
j that differ by an angle ψij , such that ~̂ui · ~̂uj = cos(ψij), then the torque on particle
i is Ti = Talignψij . The amplitude of this interaction is Talign and we set the strength
of the alignment interaction with λa = ζTalign/(kµ). The second scenario we tested
has a nematic alignment, similar to the torque which resulted from the modified
Gay-Berne potential, but now for circular particles. For ellipses, the torque depends
in a very non-trivial way on the positions of both particles and their orientations.
It is impossible to generalize the steric alignment to a nematic alignment for circles.
Instead, we choose an alignment torque analogous to the polar alignment rule, but
with two stable states, aligned and anti-aligned. In figure 4.4, we plot the torque
exerted on particle j as a function of its orientation ψj . The nematic alignment
torque is a good approximation to the steric alignment torque for elliptical particles
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when particle j is located exactly to the side of particle i. In both cases we fixed
λn = 0.003, λF = 0.06, and λT = 0.3 in simulations.

- �
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Figure 4.4: The torque exerted
on particle j as a function of its
orientation for different alignment
rules. The steric alignment torque
when particle j is located directly
above i with orientation ψi = 0, is
shown in red. The torques result-
ing from the polar alignment rule
and the nematic alignment rule are
in green and blue respectively.

The results of the first scenario are shown in figure 4.3b and 4.5. We retrieve
many of the observed types of behaviour we saw for circles when we reinstate the
polar alignment. We find a collective migration state (see figure 4.5b) and a col-
lective rotation state (see figure 4.5c). For collective migration, the location of the
orientational defect dictates the movement. When the defect is near the centre of
the cluster, the movement will be very slow. In figure 4.5a, we see that the order pa-
rameter for this case is φ ≈ 0. We call this specific type of behaviour centro-centric.
This state is different from a jammed state because we still observe rearrangements
and small variations in the order parameter. For higher speeds the defect moves to
the edge. At the highest self-propulsion speed we simulated, a small rotation centre
forms in the place of the defect. The collective movement is still in the direction of
this rotation centre and is ultimately responsible for a random walk of the cluster.
In all cases, the order parameter is significantly lower (φ / 0.3) than it was for
circles (φ > 0.3). Consequently, the absolute speed of the cluster is lower as well.

In agreement with clusters of circular particles, clusters of elliptical particles will
rotate for low values of the alignment parameter (see figure 4.3b and figure 4.5c).
There is a clear difference between rotating and migrating clusters phenotypically.
The distinction between centro-centric and actual migration is not as clear. Rather
than a sharp boundary between the two types of behaviour, we observe a gradual
change, where the order parameter monotonically increases with the alignment and
the self-propulsion parameter, λa and λs, respectively. Compared to steric align-
ment, the cluster can still break up, but only for large λs (not shown in the state
diagram). Similarly, the polar alignment system will jam only for large λa.

Surprisingly, the nematic alignment rule applied to circular particles (scenario
2) made the steady state behaviour unstable. In all cases, the cluster broke up
into multiple clusters. There are two reasons why circular particles with nematic
alignment are different from elliptical particles with a steric nematic alignment.
First, steric alignment still allows for alignment mismatches. For very little overlap,
the exerted torque will also be small. The anisotropic nature of the particles will
create overlap with other particles until all torques are balanced. The result will
look like figure 4.2a and b, where we observe mismatches that are stable. Circular
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Figure 4.5: Typical snapshots of the simulation for ellipses with polar alignment. We observe a)
alignment towards the centre, b) collective migration, and c) rotation.

particles do not create overlap when they rotate, and will therefore always align.
Second, the nematic alignment also makes particles turn towards the boundary. If
there are more particles pushing out towards the boundary than boundary particles
pushing in, the boundary will be pushed out. This will cause the cluster to break
up.

4. Conclusion
Anisotropic particles do not automatically swarm with an outsiders-want-in rule.
Without polar alignment clusters will break up easily. In addition, for low self-
propulsion speeds the particles may be jammed into a configuration with a long
correlation length for alignment, or they only align locally such that the net move-
ment of the cluster effectively averages out. Clusters collectively migrate or rotate
when particles align their self-propulsion direction. The elongated shape of the par-
ticles decreases the value of the order parameter compared to migrating clusters
of circular particles. Consequently, clusters of elliptical particles don’t move quite
as fast as their circular counterparts. Our model suggests that locally interacting
organisms in viscous environments, i.e. unicellular organisms and cells, need to
communicate their orientation to collectively move.
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5
On measuring shear stress in

aligning, active particle
systems

Negative results are just what I want. They’re just as valuable to me as positive
results. I can never find the thing that does the job best until I find the ones that

don’t.

Thomas A. Edison

Science is the gathering and structuring of knowledge. We do science to understand
elusive processes in the world around us. We come up with hypotheses based on
previous knowledge or intuition and test them with experiments and simulations or
we prove them theoretically. When someone learns something new from his or her
results, that person will typically publish the methods and the results. Unfortunately,
quite often the thing we are trying to understand turns out to be more complex than
we initially expected, and the methods we used to test the hypotheses may not answer
the questions we had. In this case the result is that the thing we are studying does
not follow our current scientific way of thinking. This result is a negative result.
Negative results are hardly published, and therefore, this knowledge about what does
not work, remains the lab.
In this chapter I report my attempts to study jamming in active particle systems by
observing the stress response upon applying shear strain. In the end, I concluded
that shearing with Lees-Edwards boundary conditions is incompatible with particles
that self propel and align their orientation to either the average orientation of their
neighbours, or the direction they are pushed in.
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1. Introduction

G ranular materials have the interesting property that, depending on conditions
like density, temperature and load, the material either behaves like a solid or

like a liquid [1]. Initially, numerical studies investigating the liquid-solid transition
focussed on the density parameter at zero temperature. Olsson and Teitel deter-
mined that this new type of phase transition is a second order phase transition at a
critical density, referred to as point J [2]. The exact nature of the other transitions
(along the temperature axis and load axis) is still a subject of intense debate (see
chapter 1). Instead of a temperature or load, we introduce an active component to
the particles in our system. The extra energy that particles themselves introduce
to the high density packing should shift the jamming density to a higher value. In
this study we hope to describe the jamming transition for active particles in similar
way to [2–4].

We are interested in the properties of our system of self propelling and aligning
particles at high density. In experiments, granular materials are probed with a shear
rheometer. There are many types of shear rheometers. To explain the concept, we
will consider here a two dimensional linear shear rheometer, consisting of two parallel
plates a distance L apart. The object to be sheared is placed in the rheometer such
that it makes contact with both plates. We take the bottom plate to be stationary
and move the top plate by a distance ∆L. This type of deformation is called shear.
We can quantify the amount of deformation by the shear strain γ. For normal strain
to linear order, we have

γ = duy
dx + dux

dy , (5.1)

where u is applied displacement. Our linear rheometer only deforms the material in
one direction. Therefore we have γ = ∆L/L. We measure the force that is necessary
to deform the material. Since this a force applied on the plate, or equivalently the
surface of the material, it is conventional to talk about the stress, instead of the
force. We obtain the stress, σ, by dividing the force F by the area on which the
force is exerted:

σ = F

A
. (5.2)

The stress, depends on the direction of the force relative to the normal of the surface.
Hence, the stress is actually a tensor. For now we only consider the shear stress
of our linear rheometer. We will be applying a shear strain to our material. The
response we will measure in the stress depends on the material. For example, when
we place a block of rubber between the shear plates we will find that the further
we try to strain this block, the larger the stress response will be. That is, for solid
isotropic materials we find a linear relation between stress and strain1

σ = Gγ (for solids). (5.3)

Here G is a material property known as the shear modulus. Note that the rate
at which we deform the block of rubber is not important. The stress will be the
1Provided the deformations are small enough.
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same whether we strain very slowly or very fast, as long as the total strain γ is the
same. Another defining property of solids is that the object will return to its original
shape when we lift the shear forces on it. This response is in strong contrast with
the response of fluids. Suppose we put a viscous fluid, e.g. honey, in the rheometer.
If we apply a strain now, the fluid will flow. If we lift the shear forces, the fluid will
not flow back. Moreover, we find that it matters how fast we shear. Viscous fluids
will resist flow for large deformation rates. For small deformation rates, the fluid
will flow relatively easily. Therefore, in liquid we have

σ = ηγ̇ (for liquids), (5.4)

where η is the viscosity of the fluid, and γ̇ is the rate of deformation, or strain rate.
By straining granular packings at various strain rates γ̇, we can distinguish solid-like
behaviour from liquid-like behaviour resulting in either a constant stress or linear
stress.

2. The model
The model presented here is a modification of the model described in chapter 2. To
recall, there are N soft particles that interact through a simple harmonic potential
that prevents overlap. The radii of these particles are drawn from a Gaussian
distribution with mean µ = ā and standard deviation σ = ā/10. All particles
propel themselves along their direction of orientation. The particles align their own
orientation with the average orientation of their neighbours.

2.1. Lees-Edwards boundary conditions
We are interested in the properties of our system of self propelling and aligning
particles at high density. To probe these properties we will measure the response
of our system to a shear strain, γ. We will use Lees-Edwards boundary conditions,
to impose a strain on the system. Lees-Edwards boundary conditions are similar
to double periodic boundary conditions. Copies of the simulation box are used as
a tilling around the original. However, in Lees-Edwards boundary conditions, the
copies below and above the original shift a little bit to the left and right, respectively,
each simulation step (see figure 5.1). If we impose a strain rate γ̇ on a simulation
box of dimensions L × L, the top (and bottom) copies and the particles in them
have a horizontal velocity vx = γ̇L (and vx = −γ̇L). However, shearing also affects
the fluid the particles are emerged in. The flow pattern of the fluid between two
shear plates is called Couette flow or affine flow. The horizontal velocity increases
linearly with vertical position component. The velocity at vertical position y is

~v(y) = vaff(y)x̂ = γ̇L(y/L)x̂ = γ̇yx̂, (5.5)

where vaff(y) is the magnitude of the velocity of the affine flow. The affine flow
velocity will enter our equation of motion.

We consider the regime of low Reynolds number, i.e. viscous forces dominate
inertial forces. With a contribution from the affine flow velocity, the equations of
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v=γL

x

y

v=-γL

Figure 5.1: Schematic representation of Lees-Edwards boundary condition. Eight copies (dashed)
surround the original (solid) simulation box. We simulate shearing by moving the top and bottom
copies with a velocity set by the strain rate γ̇. The shear also causes the fluid to flow. The
magnitude of the flow is represented by the blue arrows in the original simulation box.

motion are:

~Fi = αiζ(~vi − vaff,ix̂) (5.6)

and

Ti = α2
iχωi. (5.7)

To recall, ~Fi and Ti are the force and torque on particle i respectively. We con-
veniently rescaled the translational viscosity (η) and rotational viscosity (ηR) to
ζ ≡ (32/3)ηā and χ ≡ 4πηRā2. The factor αi = ai/ā is a dimensionless number
that we introduce to make the rescaled viscosities independent of the particles’ size.
Finally, ~vi is the linear velocity and ωi the angular velocity of particle i.
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The net forces and torques, which are exerted on each particle, are similar to
those in chapter 2. The soft particles repel each other with a force proportional to
their linear overlap d, and a spring constant k. Particles propel themselves along
their direction of orientation. We can make two choices for the self propulsion
strength. Either we take the self propulsion strength to be constant, or we let the
self propulsion strength depend on the strain rate. For a constant self propulsion
strength we use the same dimensionless parameter, λs = Fself/kā, we introduced
in chapter 2. The disadvantage of this choice is that we will strain our system
with strain rates spanning multiple orders of magnitude. Displacements due to the
constant self propulsion force quickly either dominates over, or are dominated by
the displacements due to the shear strain. Alternatively we can choose our self
propulsion speed relative to the velocity of the copies above and below the original
simulation box. Therefore in the second scenario, we set the self propulsion force
with a parameter representing the relative velocity: β = Fself/ζγ̇L. For β < 1,
displacement by the shear force is dominant, for β > 1, the displacement by its
own self propulsion dominates the displacement of the particle. The downside here
is that we effectively strain different systems at different strain rates. Comparing
simulations at different strain rates may be difficult.

Besides these forces, torques rotate the particles around their centre. They align
their orientation to the average of their neighbours. The torque T that rotates
the particle is proportional to the mismatch ∆θ between this local director and
its own orientation: T = Talign∆ψ. We found in chapter 2 that we can set the
magnitude of this torque with a dimensionless parameter λa = ζTalign/kχ. Particles
also experience a bimodal noise on their orientation. We model this by applying
a random (positive or negative) torque of magnitude Tnoise on each particle. We
can set the strength of the noise with the parameter λn = ζT 2

noise∆t/2kχ2. The
difference with chapter 2 is that the periodic boundary conditions effectively remove
the boundary. We can therefore drop the special rules for boundary particles. The
Lees-Edwards boundary conditions allow us to study the jamming and unjamming
properties of the bulk of the colonies reported in chapter 2.

2.2. The shear stress in discrete systems
In analogy with the work of Tighe et al. [4], we will measure the stress response
at various strain rates to distinguish jammed from unjammed systems. Tighe et
al. have shown that passive particle systems have a shear stress response more or
less independent of the strain rate, whereas in unjammed systems, the shear stress
depends linearly on the strain rate. This change in behaviour occurs at a critical
density commonly referred to as point J. Rather than a density, people often use
the packing fraction φ. The packing fraction is simply the ratio between volume
occupied by the particles and the available area in the simulation box. The critical
packing fraction for circular particles in two dimensions is approximately φ ≈ 0.843.
The precise value depends on the distribution of particle sizes [5]. In this section
we will derive the shear stress reported in among others [4, 6, 7].

Although our equation of motion is very different from theirs, we can calculate
the off-diagonal components in the exact same way. We start by noting that in
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an over-damped environment, by definition, the resultant force on each particle
vanishes. This becomes clear when we rewrite our equation of motion as

Frepulsion,i + Fself proulsion,i − Fdrag,i = 0. (5.8)

The definition of the stress tensor, σ, using Einsteins summation convention, reads

Fα = ∂

∂xγ
σαγ .

When the forces on each particle vanish because of the over-damped environment,
the equation above reduces to

0 = ∂

∂xγ
σαγ . (5.9)

We can solve equation 5.9 for the stress tensor, σ, using a small trick. First,
we multiply both sides by the β-component of a position vector x, whose physical
meaning will become apparent later. The resulting formula holds for every volume
element dV . Therefore, we can write∫

V

xβ
∂

∂xγ
σαγ dV = 0. (5.10)

Next, we use integration by parts to obtain∫
V

∂

∂xγ
(xβσαγ)− δβγσαγ dV = 0. (5.11)

The final term defines the average stress per unit volume σ̄αβ = 1
V

∫
V
σαβ dV . After

rearranging we find

σ̄αβ = 1
V

∫
V

σαβ dV = 1
V

∫
V

∂

∂xγ
(xβσαγ) dV

σ̄αβ = 1
V

∮
∂V

xβσαγ n̂γ dS

σ̄αβ = 1
V

∮
∂V

xβFα dS. (5.12)

In the first step we applied Gauss’s theorem to rewrite the volume integral to an
integral over the surface ∂V of V . The unit vector n̂ is perpendicular to the surface
element dS. The inner product of the stress tensor and this unit vector is the force,
F , on the surface element. The interpretation of this force, and the position vector
x is that the force is exerted on the boundary ∂V , a distance x from the centre of
the system. Rather than calculating the forces across the boundary of our system,
we partition our system into disjunct areas. The total stress is simply the sum of
the stresses in all these partitions.

σxy = 1
N

N∑
i

σ̄xy,i. (5.13)
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Since we have N particles in our volume V , we create N partitions. This could be
done for example by a Voronoi tessellation, but the exact tiling does not matter as
long as the individual tiles do not overlap and leave no gaps. The only force acting
on the boundary of the cell in our system is the repulsive force. Therefore, the
repulsive force between particles is the only force contributing to the stress. Body
forces, which pull on the centre of the cell, cannot generate stress directly, however
they can generate stress indirectly via the repulsive force. For example, when two
overlapping particles feel different body forces, they change the amount of overlap,
leading to a different repulsive force. Both the self propulsion and the drag force
are examples of such a body force.

Now we have all the tools to calculate the stress in our simulations. We replace
the integral in equation 5.12 by a sum over all the neighbours j of i. We denote the
set of neighbours of particle i by Ni. The total stress then becomes

σxy = 1
V

N∑
i

∑
j∈Ni

xij,yf
el
ij,x

σxy = 1
V

∑
〈ij〉

rij,yf
el
ij,x, (5.14)

where the final summation runs over all neighbour pairs 〈ij〉 that have a non-zero
overlap. Notice that the double summation in the first line counts every contribution
double. The y-component of the distance to the edge of the cell, ry, lies exactly
half way the distance between the centres of cells i and j, so rij,y = 2xij,y, which
compensates for the factor 2 we introduced by changing the summation. Finally,
f elij,x is the x-component of the elastic force (per unit volume) the particles exert on
each other. In Appendix A we show that torques do not contribute to the stress
tensor.

3. Results
First, we consider the scenario where particles use a self propulsion speed that is
proportional to the strain rate. In chapter 2, we see dynamic colonies at very high
density. For those colonies we did not set the density as a simulation parameter,
nor is it clear how we can define a packing fraction for those clusters. However,
simulation snapshots strongly suggest that the density corresponds to a packing
fraction well above point J. Therefore, in this chapter, we do simulations at packing
fractions φ = 0.90, φ = 0.95, φ = 1.00, and φ = 1.05. We choose values for λa
and λn identical to the values we used in chapter 2, that is, λa ∈ {0.10, 0.14, 0.20,
0.30, 0.45, 0.67, 1.00}, and λn = 0.03. Simulations run for a total of 2 × 108 steps
until the total strain reaches γ = 20. We apply a strain rate over several orders of
magnitude: γ̇ ∈ {3×10−6, 1×10−5, 3×10−5, 1×10−4, 3×10−4, 1×10−3, 3×10−3,
1× 10−2}.

In figure 5.2 we plot the simulation data for several values of the relative velocity
β, the alignment parameter λa, and strain rate γ. We notice immediately that most
of our data points do not fall on a straight line. Initially, increasing the strain rate
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always leads to a higher stress response. However, we find in most cases that the
stress decreases at higher strain rates. This effect is more pronounced for particles
for which the mutual alignment is weak. We also see that when particles move faster
relative to the strain rate, the stress starts decreasing at lower strain rates. At the
same time, the errorbars for the stress increase. The errorbars indicate the standard
deviation from five independent runs.

In contrast to Tighe et al. [4], none of our data sets form a straight line on a
log-log scale in the stress versus strain rate plots. Therefore, the stress strain rate
relation does not follow a power law. For most datasets, the stress decreases beyond
some value of γ̇. However, for relatively low self propulsion speed (β = 0.5) and
strong alignment (λa = 0.67) in panel a), the stress strictly increases. For this
dataset, the curve is actually convex on a log-log scale, hence it is not a power law
either. A second difference with Tighe et al. is that even though we vary the strain
rate over almost four orders of magnitude, the measured stress differs by a factor of
just three at best.
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Figure 5.2: Relation between the stress and
the strain rate at density ρ = 0.95. In the
panels we show the data for λa = 0.14 in red
pluses, λa = 0.30 in green crosses, and λa =
0.67 in blue triangles, with relative velocity
β = 0.5 (a), β = 1.0 (b), and β = 2.0 (c).
At high strain rates, the stress-strain rate
relation (equation 5.4 breaks down.

To elucidate why the stress decreases at high strain rates, we show snapshots
of the simulation in figure 5.3. In figure 5.3a all particles are more or less aligned
with an orientation towards the right (indicated by the direction of the radius). The
velocity field of the fluid which the particles are immersed in follows a Couette flow,
dragging the particles with it. The Couette flow, superimposed with the particles
own velocity’, is indicated by the red triangular arrows (rescaled by the strain rate).
A larger velocity corresponds to a larger triangle. The particles at the bottom have
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higher velocity, because they are swimming in the same direction as the strain,
whereas for particles at the top the Couette flow and the particle’s own velocity
point in opposite directions. After some time, the imposed strain causes sudden
rearrangements, with large instantaneous velocities and streamlines (see figure 5.3b).
In figure 5.3c, we show a snapshot of a simulation with a high strain rate. As a
result of our implementation of self propulsion, the self propulsion force of the
particles is also much larger. This allows colliding particles to overlap more locally.
Consequently, we start seeing density gradients and even voids in the system. The
stress response for these systems decreases and becomes noisier with higher strain
rates (figure 5.2). The increased noise is presumably caused by particles colliding
at random times in near head-on collisions, hence creating a significant overlap. We
indeed observe that the power law stress response breaks down at lower strain rates
for particles with little alignment (λa = 0.14) than for strong alignment (λa = 0.67).
The biggest obstacle however is that a self propulsion velocity proportional to the
strain rate cannot be described by a power law.

Figure 5.3: Snapshots of the simulation.
Particle velocities are displayed by red ar-
rows. The colour of a particle indicates the
amount of overlap with other particles. Red
corresponds to large overlap (high density),
green to intermediate overlap (intermediate
density), and blue for little overlap (low den-
sity). a) ρ = 0.90, λa = 0.45, β = 0.5,
γ̇ = 3·10−3. Particles are aligned and neigh-
bours have a very similar velocity. b) Same
simulation as panel a) a few frames later. A
build up of stress suddenly causes many par-
ticles to move in streams, reminiscent of an
avalanche. c) ρ = 0.95, λa = 0.67, β = 0.5,
γ̇ = 3 · 10−6. For high self propulsion speed
the density becomes inhomogeneous.

We hypothesized that we did not find a power law for the stress versus strain
rate, because we were technically shearing different systems at different strain rates.
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Therefore we tried modelling the self propulsion force as a constant rather than a
force proportional to the strain rate. As always, we set the self propulsion force,
Fself, with a dimensionless parameter λs = Fself/kā. Note that for very small self
propulsion forces, the particle’s motion will be dominated by shear forces. In that
regime, the orientation of the particles does not matter as it only sets the direction
of self propulsion. Hence, when shear forces dominate self propulsion forces, our
system becomes equivalent to the system in Tighe et al. [4]. Therefore, we have to
choose the self propulsion force to be comparable to the shear force at the largest
strain rate we impose (γ̇ = 0.01). We choose 0.01 < λs < 0.1, because the effects of
shear and self propulsion are comparable.
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Figure 5.4: The xy-component of
the total elastic stress in the sys-
tem as a function of the applied
strain. The noise on the elas-
tic stress can be several orders of
magnitudes larger than its aver-
age value for certain parameters.
This simulation had a density of
ρ = 0.90 and ran for a total of
2×107 steps reaching a total strain
of γ = 6.67. Other parameters
were λs = 0.08, λa = 0.45, λn =
0.03 and γ̇ = 10−5.

At low strain rates, the motion of the particle is dominated by self propulsion.
Unfortunately, the stress response becomes extremely noisy. In figure 5.4 we show
the value of the xy-component of the stress tensor as a function of the strain γ. The
standard deviation in the stress is an order of magnitude larger than the mean value.
We conclude that the indirect effect of the large self propulsion force dominates the
xy-component. As we argued before, a large self propulsion force, combined with
particles that are not aligned perfectly, causes a lot of random overlap between
particles. Therefore, the stress response of self propelling particles is inherently
noisy.

4. Conclusion
In conclusion, we tried to quantify the solid-liquid transition in active materials by
calculating the stress response upon shearing. The combination of a self propulsion
force and an orientational noise makes the stress inherently noisy. The only way we
found to reduce the noise was by decreasing the self propulsion force or by eliminat-
ing the orientational noise. However, those systems are equivalent to passive particle
systems. We cannot determine the material properties like the shear modulus and
the jamming transition with this method. Instead we choose to quantify jamming
by a direct measure of the rearrangements in the system (see chapter 3).
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A. Stress generation by torques
To quantify jamming, we determine the of diagonal components of the stress tensor.
In two dimensions, the stress tensor can be represented by a 2 × 2 matrix. Its
elements can in principle be independent. For a certain choice of basis, we can
decompose the matrix to identify four contributions. These components are(

1 0
0 1

)
: representing the hydrostatic pressure on the object,(

1 0
0 −1

)
: representing a force dipole on the object2,(

0 1
1 0

)
: representing a force dipole on the object2,(

0 1
−1 0

)
: representing torques on the object.

In figure 5.5 we illustrate how such forces act on a square.

Figure 5.5: Illustration of the forces applied to the sides of an object. From left to right, the
contributions to the stress tensor due to these forces are, the hydrostatic pressure, a force dipole,
a pure shear, and a torque.

In the main text, we have only looked at what stresses are generated by shear
forces and how we can measure them. From this decomposition we see that torques
in the system can contribute to the off-diagonal components of the stress tensor as
well. However, in this appendix we prove that the torques in our system do not
have a direct contribution.

When there is no torque acting on the system, the stress tensor satisfies

σαβ = σβα. (5.15)

Therefore, in equilibrium statistical physics an isolated system always has a symmet-
rical stress tensor. After all, a system that has an asymmetric stress tensor would
spontaneously rotate. Systems out of equilibrium will however, in general have an
asymmetric stress tensor. The torque is the difference between the off-diagonal
terms of the stress tensor.

Tαβ = σαβ − σβα (5.16)
2Both matrices are special cases of a representation of a pure shear, but act on a different axis.
Hence, these two components are dependent on the choice of coordinate system.
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The torque Tαβ denotes the torque in the αβ plane. It is conventional to label the
torque by the direction of its axis rather than the plane the object rotates in. So
according to convention, we should write

Tγ = 1
2εαβγTαβ = 1

2εαβγ(σαβ − σβα), (5.17)

where εαβγ is known as the Levi-Civita tensor. The contribution to the stress tensor
by torques are antisymmetric. Therefore we can write

Tγ = εαβγσ
T
αβ . (5.18)

The superscript T for this contribution to the stress to indicates that this contribu-
tion is the result of a torque, hence antisymmetric. When we solve this for σxy, we
obtain

σTxy = 1
2Tz. (5.19)

We have three torques present in our system: (i) particles align with their surround-
ings, (ii) orientational noise that destroys the alignment and (iii) a drag torque,
which makes rotational movement over-damped as well. The alignment can be
thought of as an interaction between particles, where neighbours exert torques on
each other (even though they turn themselves). The other two torques are purely
individual. All of these torques point in the z direction, so the stress due to the
torque is given by

σTxy = 1
2
∑
i

∑
j∈Ni

Tij,align + Ti,noise − Ti,drag (5.20)

Notice that the argument of the sum over all particles i is identical to our equation
of motion

∑
j∈Ni Tij,align + Ti,noise − Ti,drag = 0. We conclude that torques do not

contribute to the total stress tensor. Their components do contribute, but they
are simply cancelled by the rotational drag. For the sake of completeness, the
contributions of the alignment and the noise to the stress tensor are given by

σalignxy = 1
2
∑
i

1
|Ni|

∑
j∈Ni

ξλalign
τ

θij

and

σnoisexy = 1
2
∑
i

wiξ

√
2λnoise

∆tτ .

where wi is randomly chosen from {1,−1}. This stress will therefore also be very
small.

Finally, we should also look carefully at what shearing does to the individual
particles. Shearing not only causes the particles to move, but also exerts a torque
on the particles. More precisely, the flow of the viscous fluid satisfies a Couette flow
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(vaff(y) = y
LLγ̇ = yγ̇ for − 1

2L ≤ y < 1
2L). Therefore, finite sized particles will feel

different flows at opposite sides of the particle. In the lab frame, the particle moves
at a speed equivalent to the flow speed at its centre of mass position, yCM . In the
frame moving with the centre of mass of the particle, one side of the particle will
feel a drag force

Fdrag = ζ(vi − vaff(yCM +R))
≈ ζ(vaff(yCM )− vaff(yCM +R))
= ζγ̇(yCM − yCM −R)
= −ζγ̇R

and at the other side

Fdrag = ζ(vi − vaff(yCM −R))
= ζγ̇R

These forces point in opposite directions at opposite sides of the particle. Hence the
particle will feel a torque τ = 2(R × F ) = 2ζγ̇R2. We can find the period of one
revolution due to this torque by equating it to our rotational equation of motion
τ = ξθ̇. The torque is constant in time, so solving this differential equation is rather
trivial. The period is given by

τdrag = 2π ξ

2ζγ̇R2 = πξ

ζγ̇
(5.21)

In our simulations, we set ξ = ζ = 1, and we have used strain rates in the range
3 × 10−6 ≤ γ̇ ≤ 10−2. The smallest time scale of this torque (τdrag ∼ 102) is 4
orders of magnitude longer that the time scale of the noise. We can conclude that
this torque does not play any relevant role in our dynamics.
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Mechanics of epithelial tissue

formation
A key process in the life of any multicellular organism is its development from a sin-
gle egg into a full grown adult. The first step in this process often consists of forming
a tissue layer out of randomly placed cells on the surface of the egg. We present a
model for generating such a tissue, and find that the resulting cellular pattern cor-
responds to the Voronoi tessellation of the nuclei of the cells. Experimentally, we
obtain the same result in both fruit flies and flour beetles, with a distribution of
cell shapes that is matched by that of the model, without any adjustable parameters.
Finally, we show that this pattern is broken when the cells do not all have the same
growth rate.

This chapter by Ruben van Drongelen, Tania Vazquez Faci, Teun A. P. M. Huijben, Maurijn
van der Zee, and Timon Idema is submitted as “Mechanics of epithelial tissue formation”, and is
available on https://arxiv.org/abs/1705.06205
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1. Introduction

M ulticellular organisms start life as a single fertilised cell. From this modest be-
ginning, they undergo a developmental process that leads to the formation of

complex tissues and organs with a wide range of different functions. Although it has
long been appreciated that these various components of an organism have very differ-
ent mechanical properties, the role of mechanical interactions in the developmental
process has only become the focus of detailed studies relatively recently. One of the
earliest milestones in this field is the seminal work by Discher et al. [1] and Engler et
al. [2], who showed that identical stem cells, when placed on substrates of different
stiffness, differentiate into cells of tissues with the corresponding stiffness. Cells in
living multicellular organisms, however, do not exist on a substrate in isolation; in-
stead, they are part of a tissue that consists of both cells and extracellular material
and together form a mechanical system [3]. Moreover, cells react strongly to both
direct mechanical interactions with their neighbours [4–7] and indirect interactions
via deformations of a shared substrate [8–10]. Finally, the interior organisation of
the cell, in particular the position of the nucleus, is also mechanically coupled to
its outside environment [11]. To understand how epithelial tissues develop, we thus
need a mechanical model coupling the inside to the outside of the cell.

As a model epithelial tissue, we study the first tissue developed in insect em-
bryos, the epithelial blastoderm. This tissue forms as a single layer on top of the
yolk. The nuclei of the fertilised egg first divide a couple of times in the egg’s inte-
rior, then migrate to the surface where they continue to divide, eventually creating
a confluent proto-tissue (see figure 6.1a). This proto-tissue is turned into a proper
tissue through invagination of the egg’s outer (plasma) membrane, which separates
the nuclei into cells (cellularisation) [12–18]. Already during the syncytial stage
(i.e., before cellularisation), each nucleus is embedded in a full cellular apparatus,
including organelles and a cytoskeleton. We present a model for the formation of
the epithelial blastoderm. We also study this tissue formation directly in two model
organisms: the fruit fly Drosophila melanogaster and the flour beetle Tribolium cas-
taneum. We find that the touching boundaries of the (proto)cells correspond closely
to a Voronoi tessellation of their nuclei, an effect that becomes more pronounced
after cellularisation (see figure 6.1b for an explanation of a Voronoi tessellation).
Although Voronoi tessellations have occasionally been used to describe cellular pat-
terns in epithelial tissues [19–24], to the best of our knowledge, the fact that the
nuclei are located at the centers of the corresponding Voronoi cells has not been
shown previously. Tessellations have also been used as a basis for mechanical mod-
eling of cellular tissues, especially in vertex models where forces act on the vertices
of a lattice [21, 25–31]. In contrast, our model faithfully reproduces the Voronoi
tessellation, and matches the experimental data quantitatively on a number of geo-
metric and topological measures, without any adjustable parameters. We conclude
that the mechanical interactions between the (proto)cells in early embryonic epithe-
lial tissues are directly responsible for the observed geometrical cellular patterns of
those tissues.
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a b

cycle 1 cycle 5 cycle 9 cycle 13 cellularized

Figure 6.1: a) Several stages in the development of insect embryos. After a couple of nuclear
division cycles, the nuclei migrate to the periphery. After a couple more divisions, cells are formed
by enclosing a membrane around each nucleus. b) Example of a Voronoi tessellation. Each seed
in red generates a cell where all points in that cell are closest to its seed.

2. Model
We model the cells in two dimensions, treating them as purely mechanical objects.
Our cells consist of a nucleus, a radial and stiff microtubule network, and a more
flexible actin cortex at the cell perimeter [32]. We model the nucleus as a single
large bead with radius Rn, and the cortex as a collection of M small beads with
radius Rc that surround the nucleus (figure 6.2a). The cortical beads initially form
a circle around the nuclei. We connect each bead to its two neighbours by a spring
with spring constant kc and rest length uc = 2Rc to mimic the forces in the actin
cortex. Cortical beads that are not connected through these springs interact via
the repulsive part of the same potential. Microtubules are modelled as springs that
connect the nuclear bead to individual beads in the membrane. To do so, we select
at random a fraction f = 1/6 of the cortex beads and connect them to the nuclear
bead with a spring of spring constant kMT and rest length uMT = 2Rn.

We initiate our system by placing N non-overlapping, circular cells at random
positions in the plane. To let the cells grow, we allow the rest length of the micro-
tubules and actin filaments to increase linearly over time. Because cells cannot inter-
penetrate, they exert forces on each other when they touch. These forces counteract
the growth of the microtubules, which halts at a given stall force. A microtubule
stops extending when the membrane bead it is connected to comes within 99% of
the minimal equilibrium distance to a bead of another protocell. In this event we
also lock the relative position of the beads. When half of the microtubules have
stopped growing, the growth of the actin filaments also stops.

To let the cells divide, we first double the number of beads in the membrane
and the number of microtubules connecting them to the nucleus. We then split the
nucleus into two daughter nuclei of half the size. Of the cortical beads connected to
a microtubule, we select the two beads forming the shortest axis across the cell. We
then use this axis to divide the microtubules over the two nuclei (figure 6.2b). To
help the nuclei separate, an extra spring is positioned between the nuclei, mimicking
the interpolar microtubules. The rest length of the interpolar spring is gradually
increased from zero to the radius of the nucleus, while the rest length of the other
microtubules is reduced with a factor

√
2, so that the total area of the cell remains

the same. Once this process is completed, the two axis beads are contracted using
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a new spring, and when brought together, duplicated and re-connected to complete
the division of the cells.

The dynamics of the cytoskeleton and the nuclei are over-damped because the
inertia of these small cell components is negligible compared to their viscous drag.
Therefore, our equation of motion follows from equating the net force to the drag
force, as given by Stokes’ law:

Fi,net = 6πηRivi, (6.1)

where Fi,net is the total (net) force on object i, which can be either a nuclear or a
cortical bead. The viscosity is denoted by η, Ri is the radius of object i, and vi is
its velocity.

In our simulations, we scale our measure of length by setting Rc = 1. For the
repulsion between two cortical beads we can define a characteristic time τ ≡ 6πη/kc.
We non-dimensionalise the units of time and force by setting τ = kc = 1.

We introduce a quality number Q to quantify the match between the Voronoi
tessellation of the nuclei and the actual cells. To do so, we compare the actual area,
Ar, of the cells to the area of their corresponding Voronoi cells, AV. We define Q
as:

Q = 1
N

N∑
i=1

(
Ar,i −AV,i

Ar,i

)2
, (6.2)

where N is the total number of cells. When the Voronoi tessellation has a perfect
match with the actual cells the value of Q is 0. For comparison, the Q number for
a random close packing of identical discs is 0.05.

3. Experimental system
This work was done in collaboration with Tania Vazquez-Faci. I want to thank her
for doing the experiments and analysis of the experimental data.

To be able to concurrently observe the nuclei and the actin cortex ofD. melanogaster
and T. castaneum, we required lines in which both parts are fluorescently labelled.
For D. melanogaster, she used His2A-RFP/sGMCA flies (Bloomington Drosophila
Stock Centre number 59023) that ubiquitously express Histone2A fused to Red Flu-
orescent Protein (RFP) and the Actin-binding domain of Moesin fused to Green
Fluorescent Protein (GFP) [33]. For T. castaneum, she created a line that ubiqui-
tously expresses LifeAct [34] fused to EGFP [35], thus labeling actin. She further
crossed this line to an available nuclear-GFP line [36]. We called the crossed line
LAN-GFP.

4. Results
First, we observe what happens when we let our model cells grow without division,
using random initial placement and double periodic boundary conditions. Because
the cortical beads experience drag, the ones that are not connected to a growing
microtubule lag behind those that are. When growing cells touch and connect, the
forces from the growing microtubules also feed back on the nuclear bead, which
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Figure 6.2: Mechanical cell model
and simulation results. (a) Cells
consist of a sphere represent-
ing the nucleus (red), connected
via microtubules modelled as stiff
springs (blue) to the actin cor-
tex, which is modelled as a num-
ber of beads connected by weaker
springs (green). (b) Cell division.
(c) Growing cells at 70% coverage.
Where cell boundaries touch, they
coincide with the Voronoi bound-
aries of their nuclei. (d) Grow-
ing cells at 100% coverage (no di-
vision). (e) Growing and dividing
cells at 98% coverage after two di-
visions. (f) Growing and dividing
cells at 98% coverage after two di-
visions, for the case in which one
initial cell (with four daughters, in-
dicated in orange) has a growth
rate that is 2.5× larger than that
of the others.
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a b

Figure 6.3: Epithelial blastoderm
after cellularisation of (a) Tri-
bolium and (b) Drosophila em-
bryos. Overlaid in both images
is the Voronoi tessellation of the
centroids of the nuclei. Scale bars
are 25 µm.

shifts position. figure 6.2c shows a snapshot of a simulation in which the cells have
reached about 70% coverage of the plane. Where neighbouring cells touch, their
boundaries coincide with the Voronoi tessellation of the nuclei. The Q number for
this case is fairly high (Q = 0.22), representing the fact that there are still big gaps
between the cells. When we let the cells grow further, they eventually reach 100%
coverage, and their geometrical pattern matches the Voronoi tessellation of their
nuclei almost perfectly (Q = 2.1 · 10−3, figure 6.2d). If we let the cells divide during
the developmental process, the final picture is much the same, with again an almost
perfect match to the Voronoi tessellation (Q = 3 · 10−3, figure 6.2e). However, if
we give one of the initial cells a larger growth rate (inherited by its daughters), we
find that this pattern is broken (figure 6.2f). The faster-growing cells cover a larger
fraction of the available area than their corresponding Voronoi cells, whereas their
slower-growing neighbours are left with a compressed shape.

In both insect systems we studied, the picture is very similar to the simula-
tion results. (Proto)cells appear on the surface at random positions, and grow to
confluency after two (Tribolium) or three (Drosophila) divisions. When the cells
cover 100% of the available area, their boundaries also closely match the Voronoi
tessellation of their nuclei, as shown in figure 6.3.

To quantify the match between the experimental and the numerical results, we
determine the value of two geometrical and one topological property of the cells
after cellularisation. First, we measure the variance of the area per Voronoi cell,
which we find to be very low in both embryos and in the simulations (Table 6.1),
indicating that all cells grow to roughly the same size. Second, we measure the
reduced area (or circularity) A∗ per Voronoi cell, defined as A∗ = 4πA/P 2, where A
is the area and P the perimeter of the cell [37]. With this definition, circles have a
reduced area of 1, and hexagons have reduced area of π/2

√
3 ≈ 0.91. We find that

the average reduced area of the Voronoi cells in both our experimental systems and
in our simulations is again a close match with a value of about 0.83 (Table 6.1).

In addition to the two geometrical measures given above, we also consider a
topological measure: the relative occurrence of cells with a given number of vertices.
For a perfectly regular pattern (a honeycomb lattice), all cells are hexagons, and
thus all cells have six vertices. Deviations from this pattern occur in the form of
cells with five and seven vertices (with the total number of vertices of all cells being
conserved), or even four or eight vertices. Not surprisingly, hexagonal cells are
most abundant in our Voronoi tessellations. However, we also find large numbers of
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Experiments
T. castaneum D. melanogaster

Variance of the area 0.02± 0.02 0.05± 0.005
Reduced area A∗ 0.85± 0.02 0.83± 0.02
Q number 0.0009 0.02

Simulations
no division with division unequal growth

Variance of the area 0.02± 0.005 0.01± 0.002 0.037± 0.004
Reduced area A∗ 0.83± 0.01 0.83± 0.01 0.83± 0.01
Q number 0.002 0.003 0.017

Table 6.1: Values of the two geometrical measures and quality number of the Voronoi tessellations
of our experimental and simulated systems. The variance of the area is very small in the first four
cases, indicating that in each case, all resulting cells have roughly the same size. In the case where
a single cell grows 2.5 times faster than the others (last column), we immediately get a significant
increase in this variance. The reduced area (area divided by the perimeter squared normalised such
that a circle has a value of 1) is very similar in all cases. Notably, the reduced area is significantly
less than that of a regular hexagon (0.91), consistent with the topological observation that only
about half of the cells in our system have six vertices.

pentagons and heptagons, which each account for about 25% of the cells (figure 6.4).
Again, the two experimental systems and the simulation all agree quantitatively.

5. Discussion
Our simulations consistently predict that the growing or growing-and-dividing cells
will create a spatial pattern that closely matches the Voronoi tessellation of their
nuclei. We observe the same pattern in the first epithelial tissue in our two ex-
perimental systems. Moreover, the distribution of cell shapes that we find in the
experiments is reproduced exactly by the simulations, without any adjustable pa-
rameters. Earlier models, which start from a Voronoi tessellation, require a large
number of adjustment steps to reach this distribution [21, 24–26, 29, 31]. Our model
instead provides a mechanism for constructing the Voronoi tessellation directly.

In both experimental systems and in the simulations, we measure a reduced area
A∗ of the cells of about 0.83, just below the order-disorder phase transition reported
by Hočevar and Ziherl at A∗ = 0.865 [37]. For higher values, epithelial tissues consist
almost exclusively of hexagons and are ordered. For values of A∗ below the critical
value, the tissues are disordered and contain considerable fractions of polygons which
are not hexagons, as we observe in our systems. Recent work by Bi et al. [38, 39]
showed that at almost the same value of the reduced area (A∗ = 0.866), tissues
exhibit a rigidity transition. These authors modelled an active tissue using self-
propelled Voronoi cells and found that below the reported critical value, the tissues
behave fluid-like, whereas for higher values they are solid-like. The tissues in our
insect embryos have a reduced area A∗ between 0.83 and 0.85, which classifies them
as (just) liquid-like. This observation is consistent with the stage of development we
observe. After cellularisation, the embryos undergo a massive shape change, known
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Figure 6.4: Relative occurrence of cells with a given number of vertices in the Voronoi tessellation
after cellularisation for our experimental observations on T. castaneum (blue) and D. melanogaster
(green) and our simulations without (yellow) and with (red) division. Note that where a perfect
honeycomb lattice would consist exclusively of hexagons, only about half of our cells have six
vertices, in both experiments and in the simulations.

as gastrulation, in which the mesoderm is formed. Another round of divisions before
cellularisation would probably push the system over the critical point into a jammed
state, which would make gastrulation much more difficult. On the other hand, the
cells must be confluent to form a fairly stable tissue. Our observation that the
system exists just on the liquid side of the jamming transition may therefore well
correspond to a necessary step in development. This ‘development up to jamming’
might also underlie the different number of nuclear divisions before cellularisation
in different insects [12, 18].

As our simulations show, despite the fact that the cells are placed on the surface
randomly, they all reach the same final size (as illustrated by the low variance in the
area). We again observe the same effect in the experiments. However, if some cells
grow faster than others, our model shows that the regular pattern is broken. The
faster-growing cells end up being larger than the others, and they moreover break
the Voronoi tessellation, as their actual boundaries lie well outside their Voronoi
cell. These results indicate that the Voronoi patterns observed in many epithelial
tissues are due to the mechanical interactions between the proliferating cells that
build the tissue, and that those cells must all grow at the same rate.

6. Conclusion
We modelled the development of a confluent epithelial tissue from identical cells
that are initially distributed randomly. We observe that the resulting configuration
of the cells in the tissue closely matches the Voronoi tessellation of their nuclei. We
experimentally find the same behaviour for the newly formed cells of the epithelial
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blastoderm in both D. melanogaster and T. castaneum. We find in both simula-
tions and experiment that in the specific tessellation the cells form, they all have
roughly the same area, and the distribution of cell shapes is identical for experiment
and simulations. Moreover, the arrangement of the cells is such that the resulting
tissue is just on the liquid side of the jamming transition. We can understand the
formation of this pattern from mechanical interactions between the cells. Growing
cells eventually come into contact with their neighbours, resulting in mechanical
feedback that causes them to stop growing towards that neighbour. These contacts
moreover translate back to a mechanical force on the nuclei of the cells, which causes
them to re-position and eventually form the observed Voronoi tessellation. Thus,
mechanical interactions largely determine cell arrangement and shape in epithelial
tissues.
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Samenvatting
De natuur is een wondere wereld. Altijd als ik bedenk dat al het leven op aarde
ontstaan is door evolutie, sta ik versteld van de complexiteit en flexibiliteit van de
organismen nu. Het lijkt alsof de natuur overal een oplossing voor verzint. Een
bekend voorbeeld is de evolutie van de peper-en-zoutvlinder. Deze vlinder had oor-
spronkelijk voornamelijk de lichte kleur, maar dankzij de industriële revolutie vinden
we nu vooral de variant van de vlinder met een donkere kleur. Het lijkt alsof de
natuur zich hier actief aanpast, maar op de achtergrond is dit een voorbeeld van
hoe evolutie de donkere vlinders betere overlevingskansen geeft. De evolutie van de
vlinder is op deze manier nog te bevatten, maar er zijn ook talloze voorbeelden van
enorme complexe systemen waarbij het niet voor te stellen is hoe via evolutie deze
oplossing tot stand gekomen kan zijn. Deze systemen vereisen vele componenten
die allemaal van elkaar afhankelijk zijn. Het weghalen van een enkele willekeurige
component binnen zo’n netwerk zorgt ervoor dat het hele systeem niet meer werkt.
Toch stuurt de natuur niet zelf op deze oplossing aan, en zijn natuurkundige prin-
cipes verantwoordelijk voor het ontstaan van al het leven. Hoe dit gebeurd is, is
een van de grote vragen binnen de discipline waar biologie en natuurkunde samen
komen. Om te kunnen begrijpen hoe complexe systemen ontstaan zijn, is het eerst

belangrijk om te begrijpen hoe de systemen werken. In dit proefschrift behandel
ik biologische systemen die bestaan uit vele eenheden. De eenheden binnen zo’n
systeem hebben vaak dezelfde rol; er is geen leider die aangeeft wat een ander moet
doen. Het bekendste voorbeeld hiervan zijn zwermen vogels die golvende patronen
in de lucht laten zien. Iedere vogel doet zijn eigen ding, maar het resultaat is wat
we noemen: collectief gedrag. Het gedrag van de groep is niet direct af te leiden uit
het gedrag van het individu, maar het gevolg van de beweging van, en wisselwerkin-
gen tussen individuen binnen de groep. Collectief gedrag vinden we ook terug op
hele kleine schaal in kolonies van bacteriën of amoebes en zelfs in weefsels zien we
collectief gedrag van cellen. Omdat het collectief gedrag in deze systemen veel op
elkaar lijkt, zelfs als de individuen duizenden keren kleiner zijn, verwachten we dat
in die systemen dezelfde principes gelden. De centrale vraag in dit proefschrift is
daarom: Welke principes liggen ten grondslag aan het collectief gedrag in biologische
systemen?

Om collectief gedrag te bestuderen, hebben we een model opgesteld. Dit model
bestaat een set regels waar ieder individu aan voldoet. Een voorbeeld van zo’n regel
is dat twee individuen niet op dezelfde plek kunnen zijn, en als ze te dicht bij elkaar
komen, dat ze elkaar dan afstoten. Met een computer rekenen we deze regels door
en vervolgens passen we de gevolgen van die regels voor ieder individu toe. Door de
computer deze regels continu in zeer kleine tijd stapjes te laten uitrekenen, kunnen
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we de beweging van ieder individu, en van de groep volgen. Wij zijn niet de eersten
die zo’n model hebben opgesteld om collectief gedrag te onderzoeken, maar wat ons
model wel uniek maakt, is dat de regels alleen van toepassing zijn op individuen die
dicht bij elkaar staan. Bovendien hebben we geen externe factoren die ons systeem
bij elkaar houden. In plaats daarvan beschrijven we in hoofdstuk 2 een regel die er
voor zorgt dat de individuen aan de rand altijd naar binnen sturen. De simulaties
tonen aan dat zelfs wanneer individuen alleen met hun directe buren communiceren,
collectief gedrag optreedt.

Naast mooie filmpjes van verschillende soorten collectief gedrag, leverden de
simulaties ook een hoop data op. Een van de eigenschappen waar we naar gekeken
hebben, is het vermogen van het collectief om de omgeving te verkennen. Door
samen te komen in een groep is het collectief, en dus het individu in het collectief
tot 1000 keer sneller in het verkennen van de omgeving ten opzichte van een enkeling.

In hoofdstuk 2 komen we tot de conclusie dat collectief gedrag met relatief sim-
pele regels tot stand kan komen, en dat een groep zijn gedrag drastisch kan verande-
ren met slechts een kleine verandering in het gedrag van iedere individu. aanzienlijke
voordelen met zich mee kan brengen. Er is echter ook een risico aan het vormen van
groepen. Een voorbeeld waar je dit tegenkomt is de snelweg. Als er teveel auto’s op
de weg komen stropt het verkeer juist. Dit fenomeen wordt in het Engels een traffic
jam’ genoemd. Het woord jamming’ is ook een begrip in de natuurkunde, waar
het ongeveer hetzelfde betekent. Jamming is van toepassing op systemen die vaak
uit vele kleine korrels bestaan. Een systeem van kleine deeltjes kan eigenschappen
van vloeistoffen hebben, bijvoorbeeld het zand dat stroomt in een zandloper, een
lawine, zout dat uit een zoutvaatje stroomt, of stromend verkeer. Onder andere
omstandigheden kan het zijn dat er juist geen stroming is. Denk bijvoorbeeld weer
aan het zoutvaatje waarin het zout blijft zitten als je het zonder te schudden op
de kop houdt. Zonder stroming laat het systeem zich beter karakteriseren als een
vaste stof. De fase waarin geen stroming meer is noemen we, net als in het verkeer,
jammed.

Er zit dus wel een risico aan het samen komen in een grote groep. Indien er
te veel individuen in een te kleine groep samen worden gedrukt, wordt de groep,
net als in de file, minder dynamisch. In natuurkundige systemen is het bekend dat
onder andere de dichtheid een erg belangrijke factor is die bepaalt of er jamming
optreedt of niet. Maar in biologische systemen is hier nog weinig over bekend. In
hoofdstuk 3 laten we zien dat zelfs met een dichtheid die hoger is dan de dichtheid
waarop natuurkundige systemen jammen, biologische systemen nog steeds kunnen
stromen. We gaan ook dieper in op de vraag welke factoren belangrijk zijn om te
voorkomen dat biologische systemen jammen. Een van de factoren die voor ons
model naar voren kwam, is dat een perfecte samenwerking niet altijd het gunstigst
is. Bijvoorbeeld: als iedereen in de groep in precies dezelfde richting loopt met
precies dezelfde snelheid, dan zal je altijd dezelfde individuen als buren hebben. In
de dynamische systemen die we in de natuur zien wisselen de buren juist vaak. De
efficiëntste manier om dit in ons model voor elkaar te krijgen is door te stellen dat
individuen wel ongeveer dezelfde richting in bewegen als hun buren, maar niet in
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precies dezelfde richting. Hierdoor duwen de individuen tegen elkaar aan en zijn ze
in staat elkaar aan de kant te duwen en van positie te veranderen.

Tot aan hoofdstuk 4 hebben we de individuen benaderd als cirkels. De voor-
naamste redenen daarvoor zijn dat een cirkel een van de meest algemene vormen
is en dat berekeningen in ons model makkelijker zijn dan voor andere vormen. In
hoofdstuk 4 gaan we een stap verder en kijken we naar individuen die ellipsvormig
zijn. Voor bacteriën bijvoorbeeld, zijn ellipsen een betere benadering van de vorm
dan een cirkel. Ellipsen botsen op een andere manier met elkaar dan cirkels. Als
twee cirkels botsen gaan ze na de botsing ieder de tegenovergestelde kant op. Denk
bijvoorbeeld aan twee biljartballen die met elkaar botsen. Ellipsen zullen in het
algemeen ook draaien door een botsing. Zulke botsingen zorgen er dus voor dat
ellipsen dezelfde richting op gaan staan. In het model voor cirkelvormige individuen
in hoofdstuk 2 hadden we een regel nodig voor collectief gedrag die stelde dat alle
individuen dezelfde richting in moesten bewegen. Dan rijst natuurlijk de vraag:
zorgen botsingen tussen ellipsvormige individuen ervoor dat individuen ze zich naar
elkaar richten, en kan dit collectief gedrag opleveren?

In hoofdstuk 5 beschrijven we een poging om systemen van bewegende indivi-
duen op een zelfde manier te karakteriseren als natuurkundige systemen die bestaan
uit kleine deeltjes. Door op verschillende manieren krachten uit te oefenen op het
systeem kunnen we een aantal eigenschappen meten. Deze eigenschappen kwanti-
ficeren onder welke omstandigheden het systeem zich gedraagt als vloeistof of als
vaste stof. Een iets lagere dichtheid of een hogere temperatuur kan ervoor zorgen
dat de deeltjes kunnen stromen, terwijl er daarvoor geen spontane stroming mo-
gelijk was. Hoewel de technieken die daarvoor ontwikkeld zijn voor natuurkundige
systemen succesvol zijn, werken deze niet voor ons model van een biologisch sys-
teem. We laten verschillende methodes zien om toch deze eigenschappen te meten.
Uiteindelijk is de conclusie dat intrinsieke verschillen tussen natuurkundige en biolo-
gische systemen het onmogelijk maken om biologische systemen op dezelfde manier
te karakteriseren.

Het laatste hoofdstuk, hoofdstuk 6, staat enigszins los van de voorgaande hoofd-
stukken. Hier doen we onderzoek naar de ontwikkeling van insecteneitjes; in het
bijzonder de eitjes van fruitvliegjes en rode kevers. De ontwikkeling van deze ei-
tjes is een interessant proces, waarbij cellen op de buitenkant van de eitjes groeien
en delen. Uit experimenten is gebleken dat deze cellen na een aantal celdelingen
volgens een wiskundig patroon over het ei verdeeld zijn. Het patroon suggereert
dat de cellen zich over het eitje verdelen door tegen elkaar aanduwen. We modelle-
ren deze duwkracht met dezelfde formule als de duwkracht tussen individuen zoals
beschreven in hoofdstuk 2. Onze theorie is dat het patroon dat de cellen maken
wordt veroorzaakt door een simpele duwkracht tussen cellen. Deze theorie hebben
we getest door simulaties te doen en deze te vergelijken met de resultaten van ex-
perimenten die door Tanya in onze groep zijn uitgevoerd. Al onze resultaten wijzen
inderdaad uit dat simpele wisselwerkingen zoals duw- en trekkrachten tussen cellen
de drijfveer zijn achter de ontwikkeling van insectenembryo’s.
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