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Summary

Changes in
Pilot Control Behaviour
across Stewart Platform

Motion Systems

Frank M. Nieuwenhuizen

Flight simulators provide an effective, efficient, and safe environment for
practising flight-critical manoeuvres without requiring a real aircraft. Most
simulators are equipped with a Stewart-type motion system, which consists

of six linear actuators in a hexapod configuration. The argument for use of motion
systems in simulators is derived from the presence of motion cues during flight.
It is hypothesised that if pilots would train in a fixed-base simulator, they would
adapt their behaviour and that this would result in incorrect control behaviour
when transferred to the aircraft. Similarly, if pilots would train without simulator
motion, the presence of motion in flight could disorient the pilot which could
have a detrimental effect on performance. Finally, pilots themselves have a strong
preference for vestibular motion cues to be present in flight simulators. Therefore,
flight simulator motion systems are used to reproduce aircraft motion experienced
in flight as faithfully as possible, and to provide the pilot with the most realistic
training environment.
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Flight simulator regulators also allow the use of low-cost motion systems with
reduced magnitude motion cues compared to full flight simulators for certain non-
type specific training tasks. The limited characteristics of these motion systems, such
as shorter actuators, lower bandwidth, and lower smoothness, are hypothesised
to have an effect on pilot control behaviour in the simulator. Instead of relying on
standard-practise subjective pilot ratings to determine these effects, it would be
best to consider human perception and control processes at a skill-based level as
a measure for the degree to which a simulator affects pilot perceptual-motor and
cognitive behaviour for a given task and environment.

Skill-based behaviour represents the lowest level of human cognitive behaviour
and involves elementary human information processing and basic control tasks.
Investigating this level of human behaviour provides an objective means to assess
perception and control behaviour in a simulator environment. Skill-based behaviour
can be assessed in simulator trials by taking a cybernetic approach, in which a
mathematical model is fit to the measured response of a pilot and changes in the
identified parameters serve as a measure for changes in human behaviour. The
contribution of visual and vestibular information to control can be measured by
performing closed-loop control tasks in which a pilot tracks a target, while at the
same time rejecting a disturbance. Observed changes in performance can now be
correlated with changes in identified control behaviour, and related to changes in
experimental conditions.

The goal of this thesis was to apply a cybernetic approach to investigate the
influence of limited motion system characteristics of low-cost simulators on percep-
tion and control behaviour of pilots. Simulators with high-fidelity motion systems
were used as a comparison.

An initial motivation was the inconclusive evidence provided by previous
studies on the influence of simulator motion, even though many experimental
evaluations have been performed. A key reason for the lack of consensus is
the limited understanding of human perception and control processes. A multi-
modal cybernetic approach can provide a more detailed view by separating the
contribution of individual perception channels. A second motivation was that it
is unclear how human behaviour in the simulator is affected by limited motion
system characteristics of low-cost motion systems.

Two objectives were formulated towards the goal of this thesis: 1) assess the
motion system characteristics that play a role in pilot perception and control
behaviour, and 2) determine the influence of these characteristics on pilot control
behaviour in experimental evaluations. By contrasting the limited characteristics
of a low-cost motion simulator to those of a high-end simulator, it is possible
to specify the properties of motion systems that are most important to human
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control behaviour. After modelling the properties of a low-cost motion platform
and simulating that model on the high-end platform, the limiting motion system
characteristics can be varied systematically to represent either simulator, or any
‘virtual’ simulator in between. The cybernetic approach can then be used to identify
pilot control behaviour, and adaptation of pilot control strategies can be related
to changes in the motion cues that are available during active control tasks in the
simulator.

To achieve the first objective, two research simulators were used to investigate
the basic properties of simulator motion systems: 1) the MPI Stewart platform,
a mid-size electric simulator with restrictive characteristics, and 2) the SIMONA
Research Simulator (SRS), a larger hydraulic motion simulator with well-known
properties. The characteristics of the MPI Stewart platform were determined using
a standardised approach, in which the measured output signal from an Inertial
Measurement Unit (IMU) was partitioned into several components in the frequency
domain such that the various characteristics of the motion platform could be
determined. These included the describing function, low and high frequency
non-linearities, acceleration noise, and roughness.

The primary finding from these measurements concerned the platform describ-
ing function, which was dominated by the standard platform filters implemented
by the manufacturer. Outside the 1 Hz bandwidth of the platform filters, the
signal-to-noise ratios were very low. Furthermore, the first-order lag constant
from dynamic threshold measurements was relatively high, which meant that the
platform response to an acceleration step input of 0.1 m/s2 was slow and only
reached 63% after approximately 300 ms. Initially, a relatively high fixed time
delay of 100 ms was found between sending a motion command to the platform
and measuring its response. The measurements revealed that this was related to
the software framework used for driving the simulator, which was subsequently
updated. This resulted in a much lower time delay of 35 ms.

Based on these performance measurements, a model was developed for the
main characteristics of the MPI Stewart platform: its dynamic range based on the
platform filters, the measured time delay, and characteristics of the motion noise
(or smoothness). After baseline response measurements were performed on the
SRS, the model of the MPI Stewart platform was implemented and validated with
describing function measurements.

The baseline measurements on the SRS showed a dynamic response with a
bandwidth higher than 10 Hz and a time delay of 25 ms. Measurements during
simulation of the MPI Stewart platform model showed that the SRS could replicate
the model response and time delay characteristics, and that the motion noise could
be reproduced as well. Thus, the implementation of the total model of the MPI
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Stewart platform on the SRS was validated and systematic changes could be made
to motion system dynamics, time delays, and motion noise characteristics to study
their effect on human control behaviour. These findings achieved the first objective
of this thesis.

The second objective was addressed using a two-step approach. The first
step consisted of developing a novel parametric technique for identification of
human control behaviour and comparing it to an established spectral method
using Fourier Coefficients. It was shown that the parametric method was able to
reduce the variances in the estimates by assuming a pilot model structure and by
incorporating the pilot remnant. Furthermore, the analytical calculations for bias
and variance in both methods were validated with the use of 10,000 closed-loop
simulations, and the methods were successfully applied to experimental data of
closed-loop multi-channel control tasks.

In the second step, it was investigated how the simulator motion system char-
acteristics affected pilot control behaviour, by simulating the model of the MPI
Stewart platform on the SRS. The model characteristics were varied systematically
in a closed-loop control experiment with simultaneous target and disturbance in-
puts, such that pilot control behaviour could be estimated for visual and vestibular
perceptual channels. Participants performed a pitch tracking task, using a sim-
plified model of the pitch attitude dynamics of a Cessna Citation I. At the same
time they rejected a disturbance on their control input. Simulator motion cues
were presented in pitch and heave. However, only vertical motion due to rotations
around the centre of gravity were considered in this experiment, and the influence
of centre of gravity heave was not taken into account.

It was shown that the 1 Hz platform filter of the MPI Stewart platform had
the largest experimental effect. The bandwidth of the motion system response
was limited drastically compared to the baseline SRS response. Participants could
not reduce tracking errors effectively, and barely used the motion cues at all in
conditions with a limited motion system bandwidth. Instead, participants relied
on visual cues to generate lead in their control behaviour necessary for the control
task.

The experimental evaluation did not show an influence of the difference in
simulator time delays (35 ms versus 25 ms) on pilot control behaviour. Similarly,
the simulator motion noise characteristics did not have an effect. The disturbances
in motion cues due to these characteristics were not large enough to obscure motion
information that was relevant to the control task, as the difference in time delay
between the MPI Stewart platform and the SRS was only 10 ms and the motion cues
due to the motion noise characteristics were small. Therefore, these motion system
characteristics did not impair the ability of pilots to generate lead information from
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the motion cues for the task used in this experiment. However, these motion system
characteristics could have a different effect in other experimental tasks, such as
measurements on pilot motion thresholds.

The second objective of this thesis was fulfilled by determining the influence
of motion system characteristics of two research simulators on pilot performance
and control behaviour. Future research should focus on applying the cybernetic
approach to other types of motion systems. Full flight simulators with electric
actuators are a prime candidate for this approach as they are replacing hydraulically
driven simulators, and specifications about their motion systems are rarely pub-
lished. Furthermore, flight simulators are mainly used for pilot training. Simulator
motion rarely shows an effect in studies on transfer of training from simulator to
aircraft, whereas it can have a pronounced effect on pilot control behaviour as has
been shown in this thesis. Efforts to bridge the gap between these research fields
should investigate requirements for simulator motion in pilot training, for motion
system tuning, and for experimental control tasks.

A related research question exists in understanding the influence of simulator
motion in more ecologically valid piloting tasks. Higher-level piloting tasks could
be investigated by extending the cybernetic approach to more cognitive aspects
of human behaviour. Additionally, more basic research is required for looking
into the different components that contribute to forming a percept of motion. For
instance, the influence of proprioception and somatosensory feedback is not well
understood.

The approach used in this thesis provided valuable insight into changes in pilot
response dynamics that form the basis of observed changes in performance. The
results demonstrated that simulator motion cues must be considered carefully in
piloted control tasks in simulators and that measured results depend on simulator
characteristics as pilots adapt their control behaviour to the available cues.



xii



Contents

Summary vii

1 Introduction 1

1.1 Flight simulator fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Effectiveness of simulator motion . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Transfer of training studies . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Simulator motion requirements . . . . . . . . . . . . . . . . . . 5

1.2.3 Identification of pilot control behaviour . . . . . . . . . . . . . 7

1.3 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Approach and thesis contents . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Identification of multi-modal human control behaviour 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



xiv

2.2 Multi-channel perception and control . . . . . . . . . . . . . . . . . . . 22

2.2.1 The multi-loop identification problem . . . . . . . . . . . . . . 23

2.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Conventional method: identification using Fourier Coefficients . . . 25

2.3.1 Identification procedure . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Bias and variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Forcing function design . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Preprocessing data from human-in-the-loop experiments . . 29

2.4 Identification using LTI models . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Identification procedure . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Bias and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Forcing function design . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Preprocessing data from human-in-the-loop experiments . . 33

2.5 Off-line simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Flight simulator experiment . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Performance measurements on the MPI Stewart platform 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 MPI Stewart platform . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Measurement hardware and software . . . . . . . . . . . . . . 63



Contents xv

3.2.3 Input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Half-Hertz noise level measurement . . . . . . . . . . . . . . . 68

3.3.2 Signal-to-noise measurement . . . . . . . . . . . . . . . . . . . . 69

3.3.3 Describing function measurement . . . . . . . . . . . . . . . . . 70

3.3.4 Dynamic threshold measurement . . . . . . . . . . . . . . . . . 71

3.3.5 Measurement points . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.1 Half-Hertz noise level measurement . . . . . . . . . . . . . . . 73

3.4.2 Signal-to-noise measurement . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Describing function measurement . . . . . . . . . . . . . . . . . 75

3.4.4 Dynamic threshold measurement . . . . . . . . . . . . . . . . . 75

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Performance measurements with enhanced platform dynamics 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Describing function measurement . . . . . . . . . . . . . . . . . 85

4.3.2 Dynamic threshold measurement . . . . . . . . . . . . . . . . . 86

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Model of the MPI Stewart platform 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Research simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 MPI Stewart platform . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 SIMONA Research Simulator . . . . . . . . . . . . . . . . . . . . 95

5.2.3 Comparison of simulator characteristics . . . . . . . . . . . . . 95



xvi

5.3 Stewart platform modelling and validation approach . . . . . . . . . 95

5.3.1 Describing function measurements . . . . . . . . . . . . . . . . 95

5.3.2 Objective Motion Cueing Test . . . . . . . . . . . . . . . . . . . 97

5.3.3 Overview of the modelling and validation approach . . . . . 97

5.4 MPI Stewart platform model . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Summary of model assumptions . . . . . . . . . . . . . . . . . . 99

5.4.2 Kinematics and dynamics . . . . . . . . . . . . . . . . . . . . . . 99

5.4.3 Identification of model parameters . . . . . . . . . . . . . . . . 102

5.4.4 Noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Reduction of the MPI Stewart platform model . . . . . . . . . . . . . . 106

5.5.1 Analysis of the full rigid body dynamics model . . . . . . . . 106

5.5.2 Baseline measurements on the MPI Stewart platform . . . . . 107

5.5.3 Reduction of the model . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Validation of the MPI Stewart platform model on the SIMONA
Research Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6.1 Baseline measurements on the SIMONA Research Simulator 109

5.6.2 Validation of the reduced model . . . . . . . . . . . . . . . . . . 111

5.6.3 OMCT criterion measurements . . . . . . . . . . . . . . . . . . 115

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Influence of motion system characteristics on behaviour 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Research simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Comparison of simulator characteristics . . . . . . . . . . . . . 125

6.2.2 Model of the MPI Stewart platform . . . . . . . . . . . . . . . . 126

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 Aircraft pitch control task . . . . . . . . . . . . . . . . . . . . . . 127

6.3.2 Independent variables . . . . . . . . . . . . . . . . . . . . . . . . 129



Contents xvii

6.3.3 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.4 Participants and experimental procedures . . . . . . . . . . . . 130

6.3.5 Pilot model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.6 Dependent measures . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.7 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.1 Pilot performance and control activity . . . . . . . . . . . . . . 133

6.4.2 Pilot control behaviour . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Conclusions and recommendations 147

7.1 Properties of simulator motion systems . . . . . . . . . . . . . . . . . . 149

7.2 Influence of motion system characteristics on control behaviour . . 150

7.3 Generalisation of the results . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4 Experimental recommendations . . . . . . . . . . . . . . . . . . . . . . . 153

7.5 General recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 157

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A The Stewart platform 161

A.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.1.1 Simulator cabin reference frame . . . . . . . . . . . . . . . . . . 162

A.1.2 Simulator cabin inertial reference frame . . . . . . . . . . . . . 162

A.1.3 Simulator base inertial reference frame . . . . . . . . . . . . . . 163

A.2 General definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.3 Stewart platform inverse kinematics . . . . . . . . . . . . . . . . . . . . 164

A.4 Stewart platform forward kinematics . . . . . . . . . . . . . . . . . . . 166



xviii

A.5 Stewart platform dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 166

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B Research simulators 171

B.1 MPI Stewart Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.2 SIMONA Research Simulator . . . . . . . . . . . . . . . . . . . . . . . . 173

B.3 Simulator workspace comparison . . . . . . . . . . . . . . . . . . . . . . 176

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C Measurement setup 183

C.1 Measurement hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.1.1 Measurement device . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.1.2 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . 185

C.2 Measurement software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.2.1 Real-time program . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.2.2 Measurements with the IMU . . . . . . . . . . . . . . . . . . . . 186

C.2.3 Post-processing of the measurement data . . . . . . . . . . . . 186

D Experiment Briefing 189

Samenvatting 193

Acknowledgements 199

Curriculum Vitae 201



1
Introduction

Modern full flight simulators provide an effective, efficient, and safe envi-
ronment for practising flight-critical manoeuvres outside the real aircraft.
The main subsystems of a simulator include a replication of cockpit

instruments, display systems with a large projected field of view, and a motion
system. An overview of a flight simulator compared to the real aircraft is given
in Figure 1.1. Although motion systems are invariably used in full flight simula-
tors, they are never able to completely reflect the motion cues experienced during
flight [Allerton, 2009; Lee, 2005]. Motion cueing filters considerably scale down
motion cues in a simulator with respect to those in flight and introduce phase shifts
throughout the operating frequency range of the motion system. Furthermore, false
cues are introduced to the pilots as the simulator needs to be returned to its neutral
position throughout a simulator run.

Due to the restrictions of simulator motion systems, it has been suggested
that refraining from using motion systems on simulators could be better than
introducing bad motion that is not correlated with motion cues experienced during
flight [Allerton, 2009]. However, the case for the use of motion systems is generally
derived from the presence of motion cues in flight. It is hypothesised that if pilots
would train in a fixed-base simulator, pilots would adapt their behaviour and
that this would result in incorrect control behaviour in the aircraft [Advani, 1997].
Similarly, if pilots would train without simulator motion, the presence of motion
in flight could disorient the pilot and have a detrimental effect on performance
[Allerton, 2009]. Furthermore, pilots have a strong preference for vestibular motion
cues to be present in flight simulators [Bürki-Cohen et al., 1998]. Therefore, motion
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Figure 1.1 – Discrepancies at different levels between a pilot flying an aircraft and
a simulator.

systems try to reproduce the motion experienced in flight as faithfully as possible,
and to provide the pilot with the most realistic training environment.

Generally, simulator motion cues are divided into two categories: motion
cues due to manoeuvring and motion cues due to disturbances [Gundry, 1976].
Manoeuvring motion results from pilot control inputs on the primary and secondary
controls of the aircraft and can be subdivided into motion from low-gain, largely
open-loop control, and motion from high-gain, closed-loop control [Hall, 1989].
Disturbance motion cues are the result of inputs to the aircraft other than pilot
control manipulations, such as disturbances due to aircraft failures or weather
conditions. It has been argued that manoeuvring simulator motion in low-gain
control tasks is of little importance for flight training and that it is mainly perceived
through visual feedback, but that simulator motion is particularly important in
disturbance conditions as the motion cues serve as a primary cues to unexpected
changes in aircraft or environmental states [Hall, 1989; Lee, 2005]. Simulator
motion cues are considered increasingly important as the piloting task becomes
more demanding, and the pilot gain increases [Hall, 1989]. As such, a considerable
portion of the flight training for pilots is currently performed in a full flight
simulator that is equipped with a motion system with six degrees of freedom.
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1.1 Flight simulator fidelity

A flight simulator has to reproduce the environment found in real flight. The
fidelity of the simulator can be evaluated on different levels by describing the
discrepancy between the simulator and real flight, as shown by ∆ in Figure 1.1.

Generally, physical fidelity is used to assess this discrepancy. It describes the
degree to which a simulator reproduces the exact state of the real aircraft and
technology-centred metrics are used as classification criteria. For example, motion
system hardware is characterised by mechanical properties such as bandwidth and
time delay in simulator regulations [FAA, 1991; JAA, 2003]. These characteristics
can in principle be measured and reported with a uniform approach [Lean and
Gerlach, 1979], but unfortunately simulator manufacturers and operators are rather
restrained in publishing exact data on performance of their simulators.

One of the problems with physical characteristics of a simulator as an approach
to fidelity is that the inherent discrepancy between simulators and the real aircraft is
not taken into account. It is obvious that simulators can never completely reproduce
the in-flight environment, but it is unclear how simulator hardware specifications
relate to simulator effectiveness. As a result, the reliance on physical simulator
fidelity leads to a trend of acquiring more expensive and advanced hardware to
achieve “increased fidelity”. Therefore, physical fidelity is considered inadequate
as a sole measure of simulator fidelity [Durlach et al., 2000; Hettinger and Haas,
2003].

Alternatively, it has been proposed to evaluate perceptual fidelity of a simulator
by measuring or estimating the degree to which a pilot subjectively perceives the
simulator to reproduce the real aircraft [Oosterveld and Key, 1980]. The perceptual
discrepancies can be evaluated at different perceptual levels for all simulator
subsystems. By using models of human perception processes and given the task
to be performed on the simulator, hardware characteristics could be inferred that
would provide a simulation that is perceived to be similar to the real aircraft. For
example, this approach is currently used for tilt coordination of simulators to
provide sustained accelerations by tilting the simulator cabin with respect to gravity
below the perceptional threshold [Reid and Nahon, 1985]. However, integration
processes in human perception are not sufficiently understood to prioritise which
deficiencies in fidelity, e.g., a trade-off between motion cues in different degrees of
freedom, require changes in simulator hardware to reach a high level of fidelity.

Therefore, it would be best to assess simulators with behavioural fidelity that
describes the degree to which a simulator induces adequate pilot psycho-motor and
cognitive behaviour for a given task and environment [Hess and Malsbury, 1991].
Human cognitive behaviour can be subdivided into three levels: 1) knowledge-
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based behaviour that describes high-level problem solving; 2) rule-based behaviour
that is determined by rules and behaviour learned in the past; and 3) skill-based
behaviour that involves elementary human information processing and basic control
tasks [Rasmussen, 1983]. Current simulators adequately support knowledge- and
rule-based behaviour, but lack fidelity to sufficiently support skill-based behaviour
in particular tasks [Durlach et al., 2000; Hettinger and Haas, 2003].

Considering skill-based behaviour in a simulator environment can provide an
objective means to assess fidelity. By taking a cybernetic approach, skill-based
behaviour can be assessed in simulator trials [Mulder et al., 2004]. In this approach,
a mathematical model is fit to the measured response of a pilot and changes in the
identified parameters serve as a measure for adaptation of human behaviour. By
performing tasks in which a pilot tracks a target, while at the same time rejecting a
disturbance, a distinction can be identified between the contribution of visual and
vestibular senses. Observed changes in the performance measures derived from the
measured response of the pilot can be now correlated with changes in identified
control behaviour, and related to simulator fidelity. This can form the basis for
eliminating the discrepancies between the simulator and the real aircraft.

1.2 Effectiveness of simulator motion

Regulations specify that full flight simulators must be equipped with a motion
system to provide pilots with motion cues relevant to the training task [ICAO 9625].
The influence of simulator motion has been the subject of many studies on, e.g.,
assessment of training, simulator motion fidelity, and pilot control behaviour. The
results from these studies present inconclusive evidence on the effectiveness of
simulator motion, as will be briefly summarised in this section.

1.2.1 Transfer of training studies

In general, the advantages of simulator motion can not be confirmed in transfer-
of-training studies [Bürki-Cohen et al., 1998; Hays et al., 1992]. In this type of
experiment, performance of two groups of pilots is assessed in real flight after one
group trained with simulator motion, whereas the other group trained without
simulator motion. Such experiments are rarely performed due to cost and safety
considerations, but they do provide an important test case for the value of simulator
motion systems for training of pilots.

Several possible reasons have been given for the lack of experimental validation
of flight simulator motion systems for pilot training: older experiments used dated
simulator hardware and suffered from experimental design issues [Bürki-Cohen
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et al., 1998]; and measures may have been used that were insensitive to differences
in motion cueing during training [Lee, 2005].

These shortcomings were taken into consideration in a set of experiments on
quasi-transfer of training. In such experiments, the flight simulator is used as
a replacement for the real aircraft [Bürki-Cohen et al., 1998]. Again, the results
indicated that there were no operationally relevant differences between pilots tested
on a full flight simulator after training on the same simulator with motion turned
on or off [Bürki-Cohen and Go, 2005; Bürki-Cohen et al., 2001; Bürki-Cohen and
Sparko, 2007; Go et al., 2003]. Similar results were found when comparing training
on a full flight simulator and a simulator with a dynamic seat that provided heave
onset, proprioceptive, and tactile motion cues. These results seem to indicate that
pilots could readily incorporate motion cues once they were available, but that
these were not necessary to successfully train tasks in the simulator [Sparko and
Bürki-Cohen, 2010].

A recent meta-analysis focused on combining inconsistent results from various
transfer-of-training studies into a single analysis [de Winter et al., 2012]. It was
shown that, on average, simulator motion had a positive effect in the considered
transfer-of-training experiments. It was concluded that whole body motion is
important when flight-naive participants need to learn highly dynamic flight tasks,
but that motion may not be important for experts refreshing their manoeuvring
skills. However, also in this study no evidence was found that simulator motion
improves flight performance in the real aircraft.

1.2.2 Simulator motion requirements

The requirements for simulator motion have been researched extensively. Many
different vehicle dynamics, tasks, and simulator visual and motion systems have
been investigated. For rotational motion there is apparent agreement that the gain
can be reduced to 0.5 without fidelity loss, and that the phase distortion from the
high-pass filters should be minimised at 0.5 rad/s and above [Schroeder, 1999].
The results for translational motion are less conclusive, and there is disagreement
as to whether the translational cues are more important than the rotational cues, or
vice versa [Schroeder, 1999].

Surprisingly few criteria have been developed to summarise the findings on
simulator motion fidelity. The most widely used is the Sinacori criterion, shown
in Figure 1.2, which aims to provide fidelity boundaries for motion cueing filters.
The gain and phase shift of the motion cueing filters are evaluated at 1 rad/s.
Apparently, this frequency is used because that is where the semicircular canals of
the vestibular system have the highest gain [Schroeder, 1999]. If the decrease in
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Figure 1.2 – Sinacori diagram, adapted from Schroeder [1999].

gain from 1 is limited and only slight phase shifts are introduced, the fidelity of the
motion filters are still regarded as high. When the influence of the filters on the
input is higher, the fidelity of the resulting motion cues becomes smaller.

The boundaries of the criterion were slightly altered by Schroeder, who per-
formed piloted validations of the criterion to develop a comprehensive view on
the requirements for simulator motion in helicopter simulations [Schroeder, 1999].
It was shown that motion improved pilot-vehicle performance and reduced pilot
physical and mental workload [Schroeder, 1999]. Contrary to general ideas, a
positive effect of motion was also found when pilots created the simulator motion,
i.e., in manoeuvring tasks. It was argued that this was due to the demanding
vehicle dynamics in the performed helicopter control tasks. Improved fidelity of
external cues, such as motion cues, could aid in improved control of the vehicle
[Schroeder, 1999]. Therefore, it was concluded that the control task and vehicle
dynamics must be considered in unison.

Another extension to the Sinacori criterion has been proposed by including
combinations of gain and break frequency of the motion filter, see the dots in
Figure 1.2 [Gouverneur et al., 2003]. If time histories of a specific manoeuvre are
known, a boundary can be calculated for the filter settings for which the simulator
would reach its limits. The most optimal settings for the motion cueing filters can
then be chosen just inside the calculated boundary.
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Figure 1.3 – Examples of closed-loop pitch control tasks with a compensatory
display and simulator motion.

1.2.3 Identification of pilot control behaviour

The influence of simulator motion has also been studied by identifying pilot control
behaviour in closed-loop control tasks. By employing the crossover theorem and
quasi-linear models, human control behaviour can be described and predicted
[McRuer et al., 1965]. Initially, single-loop identification methods were employed to
describe behaviour with a single linear describing function and remnant noise, see
Figure 1.3a [Krendel and McRuer, 1960]. In this case, the piloting tasks involved
tracking a deterministic target on a display. With these methods, it was shown
that, e.g., low-level acceleration cues can be effectively used by pilots to improve
tracking performance [Ringland and Stapleford, 1972].

By combining a target-following task with a disturbance-rejection task, a multi-
loop control task is established, see Figure 1.3b [Stapleford et al., 1967]. Describing
functions can be determined for two feedback channels, e.g., visual and motion
feedback [Stapleford et al., 1969]. By deriving a multi-modal pilot model, changes
in its parameters can be attributed to separate feedback channels used in the active
control task. Therefore, the influence of different cues can be assessed separately.

In several experiments using such a control task it has been shown that pilot
performance in following a target and rejecting a disturbance increased significantly
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when simulator motion was provided to the participants [Pool et al., 2010; Zaal
et al., 2006, 2009]. The increase in performance was linked to changes in parameters
of a pilot model by using a multi-loop identification approach. It was found that
control gains of the pilots increased as well as the use of rate information. Rate
information concerning the control task, or lead, is provided by the simulator
motion through the vestibular system, which provides faster cues than equivalent
cues obtained from visual information that is available from displays of the outside
environment or aircraft instruments [Hosman, 1996].

Similar observations have been made for the influence of motion cueing algo-
rithms. Several experiments have shown that filtering of motion cues can signifi-
cantly alter the pilot’s perception and control behaviour [Ringland and Stapleford,
1971; Telban et al., 2005]. By identification of pilot control behaviour it was shown,
for example, that increased heave fidelity decreased the amount of visual lead
information used by the pilots. To substitute this information, pilots increased the
magnitude of their response to visual and physical motion cues [Pool et al., 2010].

1.3 Research motivation

It is clear from the previous section that there is no consensus on the influence
of simulator motion systems, even though numerous investigations have been
undertaken. Transfer of training studies generally find no advantage of simulator
motion, whereas experiments on closed-loop control have shown that pilots can
increase performance through changes in their control behaviour when simulator
motion is present.

The first motivation for this thesis is formed by a key reason for this lack of
consensus: the limited understanding of human perception and control processes.
Previous research has mainly considered subjective responses, objective perfor-
mance measures, and the identification of lumped pilot responses. However, these
measures do not provide insight into the separate influence of visual and motion
stimuli on human perception and control behaviour. Instead, they mask adaptation
due to changes in stimuli by not providing a detailed enough overview.

However, the contribution of the visual and vestibular senses can be sepa-
rated by taking a multi-channel cybernetic approach. Pilots perform a combined
target-following disturbance-rejection control task, and the measured behaviour
is described with control-theoretical models. This provides an objective measure
for the influence of simulator motion on pilot control behaviour. Therefore, the
cybernetic approach is an ideal tool to investigate simulator fidelity from a human-
centred standpoint.
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Another motivation comes from differences in characteristics of simulator mo-
tion systems. Most notably, lower cost motion systems with reduced capabilities
have been introduced for training purposes. These simulators have shorter actua-
tors, lower bandwidth or dynamic range, and lower smoothness or higher noise.
Apart from the pure availability of motion, these motion system characteristics
are likely to have an effect on pilot control behaviour. Regulations allow these
motion systems to be used for simplified non-type specific training with reduced
magnitude of motion cues [ICAO 9625], but it is unclear how human behaviour in
the simulator is affected by the limited system characteristics.

1.4 Objectives

To investigate the influence of motion system characteristics on pilot perception
and control behaviour two objectives were formulated for the research described in
this thesis.

Thesis objectives

1. The motion system characteristics that could play a role in
pilot perception and control behaviour need to be assessed.
By contrasting the limited characteristics of the MPI Stewart
platform, a mid-size commercial-off-the-shelf motion platform
with electric actuators, to the characteristics of a high-end
research simulator with hydraulic actuators, the SIMONA
Research Simulator (SRS), it will be possible to specify the
properties of motion systems that are most important to human
control behaviour.

2. The influence of the motion system characteristics that were
identified under the first objective need to be determined in
experimental evaluations in which pilot control behaviour is
identified in closed-loop control tasks. By simulating the char-
acteristics of the MPI Stewart platform on the SRS it is possible
to systematically vary the motion system characteristics to
represent either simulator. This will provide insight into the
simulator motion cues used by pilots, and how they adapt
their control strategy to the cues that are available during
active control tasks.
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Figure 1.4 – Overview of the approach and contents of this thesis.

1.5 Approach and thesis contents

The approach to achieve the objectives described in the previous section is visualised
in Figure 1.4. First of all it is necessary to investigate methods for identification of
multi-modal human perception and control behaviour in Chapter 2. An objective
measure for human behaviour is obtained by identifying two separate frequency
response functions in target-following disturbance-rejection active control tasks. A
well-established method in the frequency domain evaluates the pilot’s dynamic
response from the computed Fourier Coefficients of the measured signals at the
frequencies of the target and disturbance input signals. In a second step, the
parameters of a multi-channel pilot model are determined by fitting the model to
the identified pilot frequency response.

In a different approach, a model structure could be assumed and fit to the
measured signals in the time domain. Linear time-invariant (LTI) models provide
an elegant solution, as a model for the pilot remnant is incorporated and as its
parameters can be calculated analytically in some instances. With this novel identi-
fication method the variability in the estimates might be decreased. A second step
is still required to find a parametric fit of the pilot model, but this parametrisation
could also benefit from lower variability in the estimates of the pilot response
function on which it is based.

To tackle the first objective of specifying the motion system characteristics that
are most important to human control behaviour, insight needs to be gained in the
characteristics of simulators. This is presented in Chapter 3 and Chapter 4. In this
research, the MPI Stewart platform plays an important role. This simulator is used
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at the Max Planck Institute for Biological Cybernetics for open-loop experiments on
perception of motion cues in combination with visual cues as well as for closed-loop
control tasks. Examples are experiments that have been performed to investigate
discrimination of heading by humans [Butler et al., 2010], or to determine the
benefit of simulator motion in a helicopter hover task with several visual displays
[Berger et al., 2007].

The characteristics of the MPI Stewart platform need to be determined in a
systematic manner to evaluate its performance. Measurements have been defined
in AGARD report 144 that provide insight into various performance metrics of
flight simulator motion systems [Lean and Gerlach, 1979]. These include the
basic characteristics of simulator motion systems such as maximum travel and
operational bandwidth, and extended measurements on smoothness of operation
and levels of interaction between various degrees of freedom.

After determining the characteristics of the MPI Stewart platform, a model
is created in Chapter 5 that incorporates the characteristics of the simulator that
are most important for human perception and control behaviour. By modelling
the response of the MPI Stewart platform it becomes possible to simulate the
behaviour of the platform in real time, with the ability to vary the settings of the
model independently to reflect changes in the characteristics of the simulator. The
model of the MPI Stewart platform is then simulated on the SRS, whose baseline
characteristics are also described in Chapter 5. By making systematic adjustments
to the parameters of the model, the motion system of the SRS can reflect the baseline
response of either simulator, or a ‘virtual’ simulator of which the performance
lies in between the relatively limited MPI Stewart platform and the high-fidelity
SRS. Thus, it becomes possible to manipulate the dynamic properties of the motion
system independently. After this is implemented, the first objective is accomplished.

With an implementation of a model of the MPI Stewart platform on the SRS,
all requirements would be fulfilled that are necessary for performing experimental
evaluations on the influence of motion system characteristics. The motion system
characteristics can be manipulated independently, while the other experimental
settings are kept constant. By only using the SRS for all human-in-the-loop experi-
mental evaluations, it is ensured that other influences such as possible differences
in input devices or display systems are constant throughout the experiments.

Multi-channel pilot control behaviour is identified in target-following distur-
bance-rejection experiments in Chapter 6 to gain insight into the way human control
behaviour is affected by discrepancies in motion system characteristics. Multi-loop
identification techniques provide estimates of the frequency response functions
for visual and motion perception responses, and the parameters of a pilot model.
Changes in the estimated parameters of the multi-channel pilot model can be
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related to experimental conditions, and an objective measure is obtained for the
human behaviour with varying motion system characteristics.

In this thesis, an experimental paradigm is used that has been adopted in several
previous studies on pilot perception and control behaviour in the context of flight
simulator fidelity [Pool et al., 2010; Zaal et al., 2009]. In these experiments, the
control task was performed in flight and on the SRS such that control behaviour
could be compared. Pilots performed a pitch control task, and were provided
with pitch rotational motion, heave cues due to accelerations caused by pitch
rotation, since the pilot sat in front of the centre of gravity, and heave cues due to
changes in position of the centre of gravity. The influence of these different motion
cues on the control strategy of pilots was studied, as well as the effect of motion
filters. Therefore, this experimental paradigm provides a good starting point for the
evaluations in this thesis, as previous knowledge, reference data, and experimental
experience are all available.

With the experimental evaluations of the influence of the various motion system
characteristics on pilot control behaviour, the second objective of this thesis is
satisfied.

1.6 Thesis scope

The work presented in this thesis is subject to several assumptions, and as such the
validity of the results is bound by the limitations of the measurement methods and
experimental paradigms used throughout this research.

The models used in this thesis for identification of pilot perception and control
behaviour are based on quasi-linear time-invariant descriptions coupled with a
remnant signal that accounts for non-linear behaviour. Even though the human op-
erator is a highly non-linear biological system, it is assumed that control behaviour
can be described with quasi-linear models when proper training is provided, con-
stant conditions are kept throughout the experiments, and well-defined control
tasks require limited control actions.

The modelling of control behaviour is restricted to two perception channels due
to limitations of the identification methods, even though humans may integrate
other senses to obtain an estimate of motion as well. The visual and vestibular
senses are considered to be dominant over other senses such as, e.g., propriocep-
tion and somatosensory senses [Hosman, 1996; van der Vaart, 1992]. These are
considered to contribute to the vestibular cues in providing a sense of motion.

Furthermore, this research concentrates on analysing the characteristics of a
mid-size electrical Stewart platform. The SIMONA Research Simulator with its
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larger hydraulic actuators is considered to provide state-of-the-art motion system
characteristics. Other types of motion systems are not taken into account.

Finally, the degrees of freedom used in this research are limited to pitch and
heave. These degrees of freedom were specified by the experimental task and
are used in the validation of the model of the MPI Stewart platform and the
experimental evaluations. Additional experiments are needed to investigate the
influence of motion system characteristics on pilot perception and control behaviour
in other directions of motion.

1.7 Publications

Most of the chapters in this thesis have been submitted or published as papers.
Exceptions are Chapter 1 (Introduction), Chapter 7 (Conclusions and recommen-
dations), and Chapter 4 in which additional measurements on the MPI Stewart
platform are described as an extension to Chapter 3. The notation and style have
been adapted to be consistent throughout this thesis. An overview of publications
that are used in this thesis is given below.

• Chapter 2 is based on a published paper:

Nieuwenhuizen, F. M., Zaal, P. M. T., Mulder, M., van Paassen, M. M., and
Mulder, J. A., “Modeling Human Multichannel Perception and Control Using
Linear Time-Invariant Models,” Journal of Guidance, Control, and Dynamics,
vol. 31, no. 4, pp. 999–1013, Jul.–Aug. 2008, doi:10.2514/1.32307.

• Chapter 3 is based on a published paper:

Nieuwenhuizen, F. M., Beykirch, K. A., Mulder, M., van Paassen, M. M.,
Bonten, J. L. G., and Bülthoff, H. H.,“Performance Measurements on the MPI
Stewart Platform,” Proceedings of the AIAA Modeling and Simulation Technologies
Conference and Exhibit, Honolulu (HI), AIAA-2008-6531, 18–21 Aug. 2008.

• Chapter 5 is based on a submitted paper:

Nieuwenhuizen, F. M., van Paassen, M. M., Stroosma, O., Mulder, M., and
Bülthoff, H. H., “Cross-platform Validation of a Model of the MPI Stewart
Platform,” Journal of Guidance, Control, and Dynamics, submitted.

• Chapter 6 is based on a submitted paper:

Nieuwenhuizen, F. M., Mulder, M., van Paassen, M. M., and Bülthoff, H. H.,
“The Influence of Simulator Motion System Characteristics on Pilot Control
Behaviour,” Journal of Guidance, Control, and Dynamics, submitted.

http://dx.doi.org/10.2514/1.32307
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The following papers have also been published during the course of the thesis
work, but are not included in this thesis.

• Nieuwenhuizen, F. M., van Paassen, M. M., Mulder, M., Beykirch, K. A.,
and Bülthoff, H. H., “Towards Simulating a Mid-size Stewart Platform on a
Large Hexapod Simulator,” Proceedings of the AIAA Modeling and Simulation
Technologies Conference and Exhibit, Chicago (IL), AIAA-2009-5917, 10–13 Aug.
2009.

• Nieuwenhuizen, F. M., van Paassen, M. M., Mulder, M., and Bülthoff, H. H.,
“Implementation and validation of a model of the MPI Stewart platform,”
Proceedings of the AIAA Modeling and Simulation Technologies Conference and
Exhibit, Toronto (ON), AIAA-2010-8217, 2–5 Aug. 2010.

• Nieuwenhuizen, F. M., Mulder, M., van Paassen, M. M., and Bülthoff, H. H.,
“The Influence of Motion System Characteristics on Pilot Control Behaviour,”
Proceedings of the AIAA Modeling and Simulation Technologies Conference and
Exhibit, Portland (OR), AIAA-2011-6321, 8–11 Aug. 2011.
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2
Identification of multi-modal

human control behaviour

A well-established method for identification of multi-modal human control
behaviour involves computing the Fourier Coefficients of measured signals
in a closed-loop control task, and evaluating the pilot’s dynamic response
in the frequency domain at frequencies of the target and disturbance
input signals. The parameters of a pilot model are then determined in
a second step by fitting the model to the identified frequency response.
In this chapter, a novel methed is introduced for determining the pilot’s
dynamic response with linear time-invariant models, which assume a pilot
model structure and incorporate the pilot remnant. Both identification
methods are compared using Monte-Carlo simulations, and applied to
experimental data from closed-loop control tasks.
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This paper introduces a two-step identification method of human multi-
channel perception and control. In the first step, frequency response func-
tions are identified using Linear Time-Invariant (LTI) models. The analytical

predictions of bias and variance in the estimated frequency response functions are
validated using Monte-Carlo simulations of a closed-loop control task and con-
trasted to a conventional method using Fourier Coefficients. For both methods, the
analytical predictions are reliable, but the LTI method has lower bias and variance
than Fourier Coefficients. It is further shown that the LTI method is more robust to
higher levels of pilot remnant. Finally, both methods were successfully applied to
experimental data from closed-loop control tasks with pilots.

2.1 Introduction

Combining quasi-linear models and the cross-over model theorem has become a
well-established paradigm for describing and predicting human control behaviour
in single-axis compensatory tracking tasks [McRuer et al., 1965]. Methods for the
identification of human control behaviour in these tasks have been known since
the early applications in 1960 [Krendel and McRuer, 1960]. Single-loop methods
describe the human controller as a single linear describing function and remnant
noise, and have been essential tools in many different applications [van Lunteren
and Stassen, 1970; McRuer and Jex, 1967; Vinje and Pitkin, 1971]. In the early
literature, several identification methods have been described in the time and in
the frequency domain [Agarwal et al., 1982, 1980; Altschul et al., 1984; Bekey and
Hadaegh, 1984; Biezad and Schmidt, 1984; Holden and Shinners, 1973; Jewell, 1980;
Kugel, 1974; van Lunteren, 1979; van Lunteren and Stassen, 1973; Merhav and
Gabay, 1974; Ninz, 1980; Schmidt, 1982; Shirley, 1970; Tanaka et al., 1976; Taylor,
1967, 1970; Whitbeck and Newell, 1968]. These single-loop model identification
methods and their validation techniques were mathematically formalised for closed-
loop estimation [van Lunteren, 1979]. In multi-loop situations, model identification
becomes more involved. Stapleford introduced a suitable technique for multi-loop
identification in closed-loop control tasks [Stapleford et al., 1969a, 1967, 1969b], and
Van Paassen mathematically formalised model validation techniques in 1994 [van
Paassen, 1994]. In other cases where the use of multi-channel models was reported,
the model identification and validation efforts were not detailed [Junker et al., 1975;
Ringland and Stapleford, 1971; Teper, 1972; Weir et al., 1972; Weir and McRuer,
1972].

A generalised approach of identification in multi-loop compensatory tracking
tasks uses Fourier Coefficients [van Paassen and Mulder, 1998]. This method
has been applied to several problems, such as the identification of pilot control
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behaviour with perspective flight path displays [Mulder, 1999], the identification
of multi-modal control (e.g., in the context of haptic interfaces [van Paassen, 1994;
van Paassen et al., 2004]) and the identification of perception and action cycles in
the paradigm of active psychophysics [Dehouck et al., 2006; Kaljouw et al., 2004;
Löhner et al., 2005; Mulder et al., 2005; Zaal et al., 2006]. However, the use of
Fourier Coefficients introduces several constraints in terms of the resolution in
the frequency domain, the variance of the identified frequency response functions,
and the design of the forcing functions. A new multi-loop identification technique,
using Linear Time Invariant (LTI) models, may reduce or eliminate these limitations.

The goal of this paper is to compare the new identification method using LTI
models with the conventional method using Fourier Coefficients. First, the process
of multi-channel pilot perception and control and the corresponding multi-loop
identification problem are discussed, and the previous method using Fourier Coeffi-
cients is described. Second, the new application of LTI models to the identification
problem is elaborated. Third, both identification methods are used in off-line simu-
lations with a multi-modal, visual/vestibular pilot model. The analytical bias and
variance calculations of both methods are validated and the estimated parameters
of a multi-channel pilot model, the calculated cross-over frequencies, and phase
margins of multiple simulations are analysed. Furthermore, the influence of the
pilot remnant is investigated. Fourth, the ability of both identification methods to
analyse data from a flight simulator experiment is discussed. Finally, conclusions
are drawn.

2.2 Multi-channel perception and control

The human operator is a non-linear biological system. However, when trained
properly and given constant conditions, the operator can be described by a quasi-
linear time-invariant model with a remnant signal that accounts for non-linear
behaviour [McRuer et al., 1965]. Many control tasks are inherently multi-loop with
feedback from visual, somato-sensory, and vestibular cues. Attempts were made to
fit multi-channel operator models on a single lumped response function [Hosman,
1996; van der Vaart, 1992], but this approach lead to over-parametrisation of the
model and thus considerable uncertainties in the parameter estimates. To gain
better insight into multi-channel perception and control more frequency response
functions are needed attributing different inputs to the control action of the operator.
Thus, a multi-channel operator model can be fit more reliably when the problem of
over-parametrisation is reduced.

A multi-loop control task is presented in Figure 2.1. Here, a human operator
is actively controlling the system dynamics, Hc, while following a target, ft, and
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Figure 2.1 – Multi-loop closed-loop manual control task.

compensating for a disturbance, fd. This allows for the identification of two fre-
quency response functions, Hpe and Hpx, and constitutes a multi-loop identification
problem. The frequency response functions operate in parallel and represent a
response to different perceived inputs. A remnant signal, n, is added to the output
of the operator to account for non-linear behaviour.

2.2.1 The multi-loop identification problem

For the modelling of multi-channel perception and control behaviour, a two-step
method can be applied. In the first step, the frequency response functions, Hpe and
Hpx in Figure 2.1, are estimated from measured input-output signals. In the second
step, the parameters of a multi-channel operator model are determined by fitting
the model to these estimated frequency response functions.

When considering the first step, the main concern is acquiring appropriate data.
As human control behaviour is time-varying due to factors like fatigue, it can only
be considered constant over a relatively short period of time. As a consequence,
the measurement time interval can not be made arbitrarily long. For estimation,
however, long measurement times are required in order to observe sufficiently low
frequencies [van Paassen and Mulder, 1998].

Identification of the multiple response functions requires inserting as many
deterministic test signals at different locations in the control loop, as the number of
response functions to be identified. The number of response functions depends on
the particular feedback loops that the human operator will close. These feedback
loops are determined by the information the operator uses to generate a control
signal (e.g., state and velocity information).

Commonly used deterministic test signals for the identification of human control
behaviour consist of a summation of multiple sine waves with different frequencies
[McRuer and Jex, 1967; van Paassen and Mulder, 1998]. When designing these
test signals, also known as forcing functions, the requirements for an accurate
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estimate and the limitations of the human operator and the controlled system have
to be taken into account. The requirements for an accurate estimate depend on
the method used to identify the frequency response functions, as will be discussed
in the next sections. The limitations of the operator mainly pose constraints on
the bandwidth of the forcing functions and the amount of power inserted into the
closed-loop system. To prevent cross-over regression, neither should be too high
[McRuer et al., 1965; McRuer and Jex, 1967]. As the requirements and limitations
involved in each can be contradictory, often a trade-off has to be made.

In the second step of the identification procedure, the multi-channel model
structure has to be determined [Stapleford et al., 1969a]. The number and type of
perception paths in the multi-channel model depend on the performed task and
the cues presented to the human operator. As multiple perception paths may be
present for one frequency response function, care should be taken such that the
model is not over-parametrised.

2.2.2 Examples

The identification of frequency response functions in multi-loop control tasks pro-
vides an objective measure for human control behaviour in different experimental
setups, such as the investigation of the role of multi-channel feedback and the inves-
tigation and evaluation of augmented flight control systems. Also, the increased use
of simulation for training purposes warrants a renewed focus on manual control
behaviour [Hess and Malsbury, 1991; Hess et al., 1993; Hess and Siwakosit, 2001;
Zeyada and Hess, 2000, 2003]. Multi-loop identification methods can be used to
assess the effects of, for example, simulator motion on the operator’s multi-channel
perception and control behaviour.

An example of a research problem that was analysed with multi-loop identifica-
tion techniques was an investigation on the use of different modalities to control
the roll angle of an airplane [Kaljouw et al., 2004; Löhner et al., 2005; Mulder
et al., 2005]. This example is illustrated in Figure 2.2a. Two forcing functions, a
disturbance forcing function fd and target forcing function ft, are inserted into
the loop to allow for the identification of two frequency response functions. The
task of the pilot was to minimise the error e perceived via a display with feedback
of motion cues. This example, which corresponds to Figure 2.1, is used in the
remainder of this paper to validate the two identification techniques.

Another example is the identification of human operator haptic control [van
Paassen, 1994; van Paassen et al., 2004], which is illustrated in Figure 2.2b. In this
research, a model was developed to represent the neuromuscular system of a pilot’s
arm that can be used to design the side-stick in an aircraft more systematically.
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Figure 2.2 – Examples of multi-loop control tasks.

Also in this research two forcing functions, i1 and i2, were used and the task was
again to minimise the error e perceived via a display.

2.3 Conventional method: identification using Fourier
Coefficients

The identification method using Fourier Coefficients (FC) is currently used to
estimate frequency response functions in multi-loop control tasks and serves as a
baseline for benchmarking the identification method using LTI models presented
next. The calculations are all performed in the frequency domain, and have been
described thoroughly before [Mulder, 1999; van Paassen, 1994; van Paassen and
Mulder, 1998].

2.3.1 Identification procedure

The operator control signal u can be related to the operator inputs in the frequency
domain. At an arbitrary input frequency ν1j of forcing function fd, the following
equation holds:

U1 = Hpe(ν1j)E1 − Hpx(ν1j)X1 + N1 . (2.1)
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Here, U1, E1, and X1 denote the Fourier Coefficients of the corresponding measured
signals at the frequencies of forcing function fd. To solve Eq. (2.1) for both operator
describing functions, a second equation is obtained by taking the Fourier coefficients
of u, e, and x at the frequencies of the target forcing function ft and interpolating
these to the frequencies considered by forcing function fd. These are denoted by
Ũ2, Ẽ2, and X̃2, respectively. The contribution of the remnant noise, N, to the
control signal is neglected as, generally, the signal-to-noise ratio is high at the input
frequencies [van Paassen and Mulder, 1998]. This yields a set of two equations at
frequencies ν1j of fd: [

U1

Ũ2

]
=

[
E1 −X1

Ẽ2 −X̃2

] [
Hpe(ν1j)

Hpx(ν1j)

]
. (2.2)

From this set of equations, the two operator describing functions can be solved at
input frequencies ν1j:

Ĥpe(ν1j) =
Ũ2X1 −U1X̃2

Ẽ2X1 − E1X̃2
,

Ĥpx(ν1j) =
E1Ũ2 − Ẽ2U1

Ẽ2X1 − E1X̃2
.

(2.3)

The same procedure can be applied for the input frequencies ν2j of forcing function
ft and results in estimates for the two operator describing functions at input
frequencies ν2j.

2.3.2 Bias and variance

The contributions of the remnant noise are still present in the estimates of Hpe and
Hpx and will influence bias and variance. Analytical expressions for the bias and
the variance of the estimates Ĥpe and Ĥpx can be obtained by first determining
expressions for all Fourier-transformed signals in the loop (U, E, and X) in terms
of signals inserted into the loop (N, Fd, and Ft). These expressions can then be used
to evaluate Eq. (2.3). Definitions for the bias and variance of an estimator are [van
Paassen, 1994]:
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Bias
(

Ĥpe(ν1j)
)
= −

(
Ĥpe

)
E1 , (2.4)

Var
(∣∣Ĥpe(ν1j)

∣∣) = ∣∣Ĥpe
∣∣2 (E2− E12

)
+

1
r̃2

(1− 2E1 + E2) , (2.5)

Bias
(

Ĥpx(ν1j)
)
= −

(
Ĥpx +

1
Hc

)
E1 , (2.6)

Var
(∣∣Ĥpx(ν1j)

∣∣) = ∣∣∣∣Ĥpx +
1

Hc

∣∣∣∣2 (E2− E12
)
+

1
r̃2

(1− 2E1 + E2) , (2.7)

where E1 and E2, which represent the noise-dependent terms, are given by [van
Lunteren, 1979]:

E1(ν1j; ζ) = E

{
N1(ν1j; ζ)

Fd(ν1j) + N1(ν1j; ζ)

}
= e−r1(ν1j ;ζ) , (2.8)

and:

E2(ν1j; ζ) = E


(

N1(ν1j; ζ)

Fd(ν1j) + N1(ν1j; ζ)

)2


= e−r1+δ + e−r1−δ − 1

+ r1

∫ r1

δ

ep−r1

p
dp + r1e−r1

∫ ∞

δ

e−p

p
dp .

(2.9)

These terms can only be calculated when accounting for a small probability ε

that the variance is underestimated. The value for ε (= 2e−r1 sinh(δ)) is usually set
at 1% [Mulder, 1999]. The signal-to-noise ratio of the disturbance forcing function,
r1, is defined as the quotient of the power of the deterministic test signal Fd and
the power of the stochastic noise signal N1 at the frequencies ν1j of the test signal
fd. The latter is determined from the averaged power of the control signal at
neighbouring frequencies of ν1j and ν2j:

S2
N1(ν1j; ζ) = S2

UN1
(ν1j; ζ)

∣∣1 + Hc(ν1j)
(

Ĥpe(ν1j; ζ) + Ĥpx(ν1j; ζ)
)∣∣2 . (2.10)

The signal-to-noise ratio of the target forcing function, r2, is defined in a similar
way. Similar to the Fourier coefficients, r2 can be interpolated to the frequencies
of the disturbance forcing function, resulting in r̃2. If the signal-to-noise ratio r1

at a particular frequency becomes high enough, i.e. > 5, the expectations E1 and
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E2 become very small (see Figure 2.3). In that case, the bias and variance in the
estimated frequency responses at that frequency also become small [Mulder, 1999].

The variance of 6 Ĥpe in degrees can be approximated with:

Var
(
6 Ĥpe(ν1j)

)
≈
(

180
π

)2 Var
(∣∣Ĥpe(ν1j)

∣∣)∣∣Ĥpe(ν1j)
∣∣2 . (2.11)

A similar expression holds for the variance of 6 Ĥpx.

2.3.3 Forcing function design

Using the FC method, the operator frequency response functions can only be
identified at the input frequencies of the forcing functions, which must meet
several constraints. Generally, the input frequencies are multiple integers of a
base frequency determined by the sampling time. The input frequencies should
cover the frequency range of interest and not be multiple integers of each other.
When using more than one forcing function, the frequencies of the different forcing
functions should be chosen to be close to each other to avoid interpolation errors.
Finally, enough frequency components should be free of energy content to allow
for the estimation of variance of the remnant signal needed for the determination
of the signal-to-noise ratios.

The number of input frequencies is limited and also the overall power and the
bandwidth of the forcing functions should be chosen carefully. An increase in the
number of input frequencies, overall power, or bandwidth must result in a decrease
in the others, requiring a trade-off. A randomly selected phase can be introduced at
each input frequency to reduce the predictability of the signals and to not provide
the human operator with recognisable elements in the experiment runs [McRuer
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and Jex, 1967]. The forcing functions should be checked for excessive peaks after
they are generated.

2.3.4 Preprocessing data from human-in-the-loop experiments

The total experiment time consists of a run-in part and a measurement part. The
run-in time is discarded as subjects get accustomed to the control task in this
period. To reduce the effect of the remnant and to improve the estimated frequency
response functions, time domain data from different runs can be averaged. When
the forcing functions for the different experiment runs are the same, averaging the
data will result in increased signal-to-noise ratios, a more accurate estimate, and
a reduction in the variance of the estimate. There are no stringent demands on
the sampling frequency for measuring the data. However, the Nyquist frequency
should remain above the highest input frequency of the forcing functions.

2.4 Identification using LTI models

Linear Time-Invariant (LTI) models, such as the parametric Auto-Regressive eXoge-
neous (ARX) model, are commonly used for system identification of a large variety
of dynamical systems [Ljung, 1999]. The control behaviour of a human operating
in a closed-loop control task under constant conditions can also be considered
(quasi-)linear and time-invariant (see Section 2.2) and has been identified in single-
loop control tasks using LTI models. Therefore, building upon previous research
in single-loop, it is a logical step to use an LTI model to estimate the operator
describing functions, Hpe and Hpx, in a multi-loop environment (see Figure 2.1).
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2.4.1 Identification procedure

The structure of the LTI model used for identification is dependent on the task
and the properties of the injected noise [Ljung, 1999]. In this paper, the describing
functions of an operator in the closed-loop task described in Section 2.2 are identi-
fied with the Multi-Input Single-Output (MISO) ARX model structure. Other LTI
model structures, such as ARMAX, Output-Error, or Box-Jenkins, are analogous.
The ARX model structure allows for a direct calculation without optimisation of
the model parameters using a least-squares estimate [Ljung, 1999]. The inputs of
the LTI model are the measured error signal, e, and state signal, x (see Figure 2.4).
The remnant of the operator, n, is described by filtered Gaussian white noise, nw.
The parameters of polynomials A, Be and Bx of the ARX model are fit to the control
signal of the operator, u, using the relationship:

u(t) =
Be(q)
A(q)

e(t) +
Bx(q)
A(q)

x(t) +
1

A(q)
nw(t) , (2.12)

with:

A(q) = 1 + a1q−1 + · · ·+ ana q−na ,

and:

Be,x(q) = b1e,x + b2e,x q−1 + · · ·+ bnbe,x q−nbe,x+1 .

Here na and nbe,x are the orders of the A and B polynomials, respectively. The
estimates of the operator describing functions, Ĥpe and Ĥpx, are now given by:

Ĥpe (jω) =
Be (jω)

A (jω)
, (2.13)

Ĥpx (jω) =
Bx (jω)

A (jω)
, (2.14)

where A (jω) is the frequency response of the polynomial A (q). The polynomial
A gives an estimate of the spectrum of the remnant of the operator (see Figure 2.4).
These estimates are unbiased (i.e., Ĥp → Hp for N → ∞, where N is the number
of data points) if the remnant is filtered white noise and if the input and output
signals are deterministic and bounded sequences [Ljung, 1999], as is the case in
the closed-loop control task discussed here. Depending on the noise characteristics,
other model structures, such as ARMAX, Output-Error, or Box-Jenkins, could result
in a more accurate estimate of the describing functions.
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The order of the A and B polynomials can be determined by physical insight
into the system to be identified. Also, the order of the operator model fit to the
describing functions indicates the order of the polynomials of the ARX model.
For calculating the orders, a range of techniques are available [Ljung, 1999]. An
example is to take a range of orders for each polynomial and choose the set of
orders that produces the smallest Akaike final prediction error [Ljung, 1999].

2.4.2 Bias and Variance

The error of the identified operator describing functions with respect to the true
operator describing functions is characterised by the bias of the model in closed-
loop. The bias of the ARX model in closed-loop for Ĥpe is given by [Ljung, 1999]:

Bias
(

Ĥpe
)
=

Sen(ω)
(

1
A(ω)

− 1
Â(ω)

)
See(ω)

, (2.15)

where 1/A is the true remnant model and 1/Â is the remnant model estimated by
the ARX model. See denotes the auto power spectral density of the error signal and
Sen the cross power spectral density of the error signal and the remnant. A similar
expression holds for Ĥpx. From Eq. (2.15) it can be seen that an erroneous noise
model may cause the ARX model to approximate a biased transfer function. Also,
any filtering of the signals is equivalent to changing the noise model. Likewise,
inappropriate filtering of the measured signals from the experiment may also cause
a bias.

The expression for the bias of the estimate contains the true remnant model and
the cross power spectral density of the noise signal with the error signal. The bias
can not be calculated for experiments with pilots in the loop as the true remnant of
the pilot is not known in these cases. The bias expressions show that bias is smaller
if the noise model is accurate, the feedback contribution to the input spectrum is
small, or the signal-to-noise ratio of the error signal is high. A more accurate noise
model can be achieved by carefully choosing the order of the model polynomials,
or by applying an appropriate filter to the measured signals, thus minimising the
high-frequency noise contributions. The signal-to-noise ratio of the signal can be
increased by inserting more power into the system by increasing the amplitude of
the forcing functions.

The variance of the magnitude and phase of the frequency response of Ĥpe and
Ĥpx are given by [Ljung, 1999]:
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Var
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(
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)

Im
(

Ĥp
)
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Im
(

Ĥp
)2 C2∣∣Ĥp
∣∣2 , (2.16)
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∣∣4 − 2Re

(
Ĥp
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with:

C1 = Re

(
∂Ĥp

∂θ

)
P(θ) Re

(
∂Ĥp

∂θ

)∗
,

C2 = Im

(
∂Ĥp

∂θ

)
P(θ) Im

(
∂Ĥp

∂θ

)∗
,

C3 = Re

(
∂Ĥp

∂θ

)
P(θ) Im

(
∂Ĥp

∂θ

)∗
.

(2.18)

Here, C1, C2 and C3 are the entries of the covariance matrix for the real and
imaginary parts of the Fourier Coefficients of Ĥpe or Ĥpx. In Eq. (2.18) ∗ denotes
the complex conjugate transpose, θ is the parameter vector of the ARX model
consisting of the coefficients in Eq. (2.12), P(θ) is the parameter covariance matrix
of the model, and ∂Ĥp/∂θ is the sensitivity of Ĥp with respect to the parameter set.

2.4.3 Forcing function design

An advantage of the identification method using LTI models is that no stringent
requirements are imposed on the input frequencies, as was the case with the FC
method discussed in Section 2.3. The forcing functions are not required to be
multi-sine signals, but only need to be measurable. However, some other important
requirements for the forcing functions still remain. To properly identify the operator
describing functions in a closed-loop control task, the inputs to the operator, e and
x, should be “informative” [Ljung, 1999]. This means that the inputs and thus the
forcing functions should only give rise to one possible estimate of the operator
describing functions. Furthermore, the input power of the forcing functions should
be as high as possible, maximising signal-to-noise ratios to minimise the variance
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in the estimate, and the bandwidth of the forcing functions should be such that the
describing functions can be identified in the frequency range of interest.

2.4.4 Preprocessing data from human-in-the-loop experiments

The signals used for identification often consist of a useful part, up until a certain
frequency, and a disturbance part, the high-frequency noise contributions. For
identification of the operator describing functions the sampling frequency should
not be too high, as the high-frequency noise contributions are not of interest and
should not be captured by the LTI model. On the other hand, it is important that
the sampling frequency, and thus the Nyquist frequency, is high enough to capture
all the useful information. The choice of sampling frequency for measuring the
data is thus very important for the noise reduction in the estimate.

When considering experiments, the sampling frequency of the measured data is
often fixed by the experimental software or equipment and can be much higher than
needed. In this case, the data should be resampled in order to eliminate the noise
contributions. Then, however, an anti-aliasing filter must be applied before the data
is resampled in order to not let the folding effect distort the interesting part of the
spectrum below the Nyquist frequency [Ljung, 1999]. The cut-off frequency of the
filter should be higher than or equal to the Nyquist frequency of the resampled
signal.

Bursts and outliers in the measured data that are the result of the non-linear
behaviour of the operator are also unwanted effects. As we are estimating an LTI
model to describe the operator control behaviour, the non-linear effects should be
eliminated before the identification procedure. This can be done by averaging the
measured data from different experimental runs of the same condition, similar to
the FC method discussed in Section 2.3.

2.5 Off-line simulations

In this section, the identification methods are validated with the use of Monte-Carlo
simulations of the multi-loop structure presented in Figure 2.1.

2.5.1 Method

The conventional FC method and the new LTI method are applied to the output
of 10,000 simulations of a pilot model controlling the roll angle of an airplane (see
Figure 2.2a). The system dynamics are a double integrator, Hc = 4/s2 as used
in similar studies [Kaljouw et al., 2004; Löhner et al., 2005]. Figure 2.1 shows the
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Figure 2.5 – Multi-channel pilot model used for simulations.

multi-channel structure where the pilot perceives visual and physical motion cues
originating from the controlled system dynamics Hc. A target signal, ft, and a
disturbance signal, fd, are inserted into the loop to allow for the identification
of the error frequency response function, Hpe, and the state frequency response
function, Hpx, of the pilot. Using these two forcing functions, the task of the pilot
is a target-following task in which the aircraft is in turbulent conditions. The pilot
perceives the error e and the error rate ė via a visual display, and the aircraft roll
accelerations, which result from a change in the roll state x, are felt through the
vestibular system.

The multi-channel pilot model used for simulations is given in Figure 2.5. It is
based on the models proposed by Van der Vaart [1992] and Hosman [1996], and
consists of a pilot visual perception path, a vestibular motion perception path and
the neuromuscular dynamics, Hnm. The error response function, Hpe, in Figure 2.1
is a combination of the visual perception path, processing error and error rate,
and the neuromuscular dynamics. Similarly, the state response function, Hpx, is
a combination of the vestibular motion perception path and the neuromuscular
dynamics. The model is built up from the sensor dynamics in the motion perception
path (i.e., the vestibular dynamics Hv), the equalisation, which is a combination
of gains and time constants, and the pilot limitations, which consist of the time
delays of the perception paths and the neuromuscular dynamics. The pilot adapts
his equalisation for the controlled dynamics in such a way that the total open-loop
response is an integrator near the cross-over frequency [McRuer and Jex, 1967].

The vestibular dynamics are modelled using a model of the semi-circular canals
sensing rotational accelerations [Fernandez and Goldberg, 1971; Hosman, 1996]:

Hv =
1 + jωτv1

1 + jωτv2
. (2.19)

The neuromuscular dynamics of the pilot are modelled by [Mulder, 1999]:

Hnm =
ω2

nm
ω2

nm + 2ζnmωnm jω + (jω)2 . (2.20)
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Table 2.1 – Pilot model parameters.

Parameter Value

τv1 Vestibular lead time constant [s] 0.10
τv2 Vestibular lag time constant [s] 6.00

Kv Visual perception gain [-] 0.17
τvl Visual lead time constant [s] 2.93
Km Motion perception gain [-] 1.59

τv Visual perception time delay [s] 0.32
τm Motion perception time delay [s] 0.29

ωnm Neuromuscular frequency [rad/s] 12.0
ζnm Neuromuscular damping [-] 0.30

The remnant n consists of Gaussian white noise, filtered with a second-order
low-pass filter [Gordon-Smith, 1969; Levison and Kleinman, 1968]:

n =
0.2 (3.0s + 1)

(1.5s + 1) (0.4s + 1)
nw . (2.21)

With this filter, the total power of the remnant signal is scaled to 10% of the
power of the pilot control signal u. This filter intentionally does not resemble the
remnant filter shape assumed by the ARX model.

The values for the parameters of the multi-channel pilot model are taken from
previous experiments [van der Vaart, 1992] and are given in Table 2.1.

In previous sections, the requirements for the two forcing functions were dis-
cussed for each identification method. Each forcing function is based on a sum of 12
sinusoids, with the frequencies ωi and amplitudes Ai given in Table 2.2. Subscripts
1 and 2 refer to the disturbance and target forcing function, respectively. The
frequencies of the forcing functions are all multiple integers, given by k1 and k2, of
a base frequency that is the inverse of the measurement time of 81.92 s. No random
phase is introduced at the input frequencies. The distribution of amplitudes Ai is
determined with the following filter:

H f =
(s + 10)2

(s + 1.25)2 . (2.22)

When considering disturbance tasks, the shaping filter is affected by an atten-
uation of the system dynamics, Hc. Therefore the amplitude of the disturbance
forcing function was prefiltered with the inverse system dynamics.

Each simulation used the same parameters for the pilot model and the forcing
functions, but a randomly generated pilot remnant. This simulates a well-trained
pilot in different experimental runs under the same conditions. Typical time domain
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Table 2.2 – Forcing functions definition, with ki the number of periods that fit
within the measurement time, ωi the frequency, and Ai the amplitude of the
sinusoid.

Disturbance Target

k1 [-] ω1 [rad/s] A1 [rad] k2 [-] ω2 [rad/s] A2 [rad]

5 0.3835 0.0020 6 0.4602 0.0568
8 0.6136 0.0046 9 0.6903 0.0495
11 0.8437 0.0074 13 0.9971 0.0397
17 1.3039 0.0125 19 1.4573 0.0278
28 2.1476 0.0184 29 2.2243 0.0162
46 3.5282 0.0235 47 3.6049 0.0078
59 4.5252 0.0264 61 4.6786 0.0052
82 6.2893 0.0316 83 6.3660 0.0034

106 8.1301 0.0382 107 8.2068 0.0024
137 10.507 0.0489 139 10.661 0.0019
178 13.652 0.0669 179 13.729 0.0015
211 16.183 0.0848 213 16.336 0.0014
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Figure 2.6 – Time domain representations of state signal x, error signal e, control
signal u, and forcing functions fd and ft.
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Figure 2.7 – Power spectral densities of state signal x, error signal e, control signal
u, and forcing functions fd and ft.

histories of the signals in the loop (e, u, x, and n) for one simulation are given
in Figure 2.6. In particular, one can see the amount of the remnant with respect
to the control signal u. Finally, the figure shows the forcing functions, fd and ft,
where the disturbance forcing function has been prefiltered with the inverse system
dynamics, resulting in much higher frequency content.

The power spectral densities of all signals are given in Figure 2.7. The con-
tributions of the forcing functions to each signal in the loop are distinguishable.
From the power spectral density of the forcing functions one can see the shape
of the second order filter used to create the amplitudes of the forcing functions
and the recovering of the amplitudes from the second order filter shape at higher
frequencies.

2.5.2 Results

This section gives the results from the off-line simulations. Note that the Fourier
Coefficient method is a spectral non-parametric method, while the method using
LTI models is parametric. Therefore, the latter method should perform better
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Figure 2.8 – Bode plot of the identified frequency responses, estimated variances,
and the analytical pilot model.

considering that more knowledge is incorporated into the estimators (e.g., about
the remnant).

2.5.2.1 Identification

A bode plot of the identified pilot frequency response functions, Ĥpe and Ĥpx, of
one simulation using both methods is given in Figure 2.8. From this figure it can
be seen that the Fourier Coefficient method only gives an estimate at the 24 input
frequencies of the forcing functions, whereas the method using ARX models gives
a continuous estimate. It can be seen that for this condition the Fourier Coefficient
method produces less accurate results. On the contrary, the estimates from the ARX
model follow the analytical frequency response functions of the pilot model better.
The standard deviations of the estimates from the Fourier Coefficient method in
Figure 2.8 are calculated using Eqs. (2.5), (2.7), and (2.11) and are represented
by the vertical bars. For lower frequencies, the standard deviations are higher
as the signal-to-noise ratios are lower (see Figure 2.7). The standard deviations
of the estimates from the ARX model are calculated using Eqs. (2.16) and (2.17)
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Figure 2.9 – Standard deviation of the identifications (calculated using the an-
alytical equations for the variance and the variance estimated from 10,000
simulations).

and are given by the dashed continuous lines. The standard deviation of the ARX
estimate is larger for frequencies below or above the input frequencies of the forcing
functions.

2.5.2.2 Variance

In Figure 2.9 the standard deviations of both identification methods are compared.
Also, the analytically calculated standard deviations from Eqs. (2.5), (2.7), (2.16)
and (2.17) are averaged and compared to the sample standard deviations estimated
from 10,000 simulations in order to validate the correctness of the equations. It
can be seen that the standard deviations from the ARX model estimates are much
lower than the ones from the Fourier Coefficient estimates. It can also be seen that
the mean analytically calculated standard deviations and the standard deviations
of 10,000 simulations coincide very well for the ARX model method. For the
Fourier Coefficient method, the assumption of leaving out the remnant term of
the equations of the standard deviations results in a slightly worse approximation
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of the real standard deviations of 10,000 simulations. Also, an error results by
allowing a probability of underestimating the variance, ε in Eq. (2.9).

2.5.2.3 Bias

The bias is calculated for the estimates of both identification methods using the
equations from Section 2.3 and Section 2.4. Due to the high signal-to-noise ratios at
the input frequencies of the forcing functions, it is close to zero. However, the mean
bias of 10,000 simulations is much higher than the analytically calculated bias. To
investigate if this bias is significant, it is compared with the 99% confidence interval
of the estimates for the Fourier Coefficient and the ARX model identification
method in Figure 2.10a and Figure 2.10b, respectively. From these figures, it can be
seen that the bias of the simulations lies mostly within the 99% confidence interval
of the estimates, meaning that it is not significant. For the ARX model identification
method, the bias of the simulations is larger than the confidence interval for

∣∣Ĥpe
∣∣

and 6 Ĥpx at very high frequencies. This can be expected as these frequencies lie
above the highest input frequency of the forcing functions. Apparently, the ARX
model cannot provide a reliable estimate beyond this frequency.

2.5.2.4 Parameter estimation

The identified frequency response functions serve as the input for the parameter
estimation procedure in which the parameters of the multi-channel pilot model,
given in Section 2.5.1, are estimated. The vestibular dynamics of the multi-channel
pilot model, Eq. (2.19), are assumed constant. The frequency responses of the
parameter model resulting from both identification methods, H̃pe and H̃px, are
given in Figure 2.11. The parameter estimations from both identification methods
give good results. The means and the 95% confidence intervals of the estimated
parameters (Figure 2.12) show that using the identification with ARX models results
in less variability in the estimated parameters. This can be attributed to the lower
variance of the ARX model estimate and the fact that it is continuous. Also, the
bias in the parameters is generally lower than with the method using Fourier
Coefficients. The mean values of the absolute error of the parameters of 10,000
simulations are given in Table 2.3. This measure shows how well the parameters
are estimated. One can see that the error of the parameters estimated using the
ARX model identification as input is always lower.
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Figure 2.10 – Mean bias of the identified frequency responses (10,000 simulations).
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Table 2.3 – Absolute error of the estimated parameters.

FC ARX

Kv [-] 8.98 10−2 5.84 10−2

τvl [s] 2.44 1.05
τv [s] 1.38 10−2 8.44 10−3

Km [-] 2.71 10−1 9.64 10−2

τm [s] 1.38 10−2 8.31 10−3

ζnm [-] 5.87 10−2 2.76 10−2

ωnm [rad/s] 6.56 10−1 4.62 10−1

2.5.2.5 Statistics, cross-over frequency and phase margin

The statistics, elaborated in the Appendix, the cross-over frequencies, fc, and phase
margins, pm, are summarised in Figure 2.13 for the identifications and parameter
estimations. The figure shows the means and the 95% confidence intervals of
the Root Mean Squared Error (RMSE), Weighted Mean Squared Error (WMSE)
and the Summed Mean Variance (SMV) for 10,000 simulations. The statistics
for the identification and parameter estimate of the method using ARX models
always have the lowest value compared to the method using Fourier Coefficients,
meaning that they are more accurate and have a lower variance. Also, the cross-over
frequency and phase margin are estimated more accurately with the identification
and parameter estimate using ARX models. An explanation for this is that the ARX
model estimate is continuous, and thus there are less interpolation errors. For the
phase margins of the frequency responses estimated with the Fourier Coefficient
method, large errors are present due to interpolation errors.

The results from 10,000 simulations presented in Figure 2.12 and Figure 2.13
were analysed using an Analysis of Variance (ANOVA). This analysis showed
that the better performance of the ARX model identification and the resulting
parameter estimation was indeed highly significant for all estimated parameters
and calculated statistical measures (p < 0.05).

2.5.2.6 Remnant

For the previous results, one specific remnant level was used and the ARX model
identification method performed better. Coherence functions, defined in the Ap-
pendix, can be used to investigate the influence of the remnant level. A coherence
function is a measure of the linearity in response to the external inputs. When
the coherence function is close to 1, the power of any noise is relatively small
and the output is almost linearly related to the input. Figures 2.14a and 2.14b
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Figure 2.13 – Means and 95% confidence intervals of the statistics for identifica-
tions and parameter estimates (10,000 simulations).

give the ordinary coherences of the disturbance forcing function and the target
forcing function to the control signal, γ f d and γ f t, respectively. In these figures, the
coherence is shown as a function of the ratio of the remnant power and the control
signal power. A value of 0.1 means that 10% of the power of the control signal is
contributed by the remnant. The figures show that the coherence is close to one
for all frequencies at the lowest remnant power ratio. As the ratio increases, the
coherence decreases and more non-linearities are captured in the estimates. This
trend is also present in Figure 2.15, which shows the statistics from Figure 2.13 as
a function of the remnant power ratio. It can be seen that for both Ĥpe and Ĥpx

the ARX estimate gives the best results (i.e., the highest accuracy and the lowest
variance). The accuracy of the Fourier Coefficient method decreases more rapidly
and the variance increases more rapidly as the remnant power ratio increases. This
shows that the ARX model estimate is more reliable with increasing pilot remnant.

2.6 Flight simulator experiment

In this section, both identification methods are used for the evaluation of experi-
mental data derived from a flight simulator evaluation.
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Figure 2.14 – Coherence with respect to control signal as a function of remnant
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Figure 2.15 – Statistics as a function of remnant power ratio.

2.6.1 Method

In a previous experiment, the use of central visual and vestibular motion cues in a
target and a disturbance control task was investigated by looking at pilot control
behaviour [Löhner et al., 2005]. The experiment was conducted in the SIMONA
Research Simulator (SRS), a six degree of freedom full-motion flight simulator. Four
subjects performed a closed-loop roll control task compensating for two forcing
functions using a electro-hydraulic control column. A double integrator with a gain
of four was used for the system dynamics. The error between the target forcing
function and the roll angle was shown on a compensatory central visual display (see
Figure 2.2a). No outside visual was used. In the experiment exclusive stimulation
of the semi-circular canals was attempted by adjusting the simulator motion in
such a way that the centre of rotation was at the position of the pilot’s head. No
motion filter was used. Distinct target following and disturbance rejection tasks
were created by scaling the disturbance and target forcing function amplitudes by
a factor of half, respectively. Also the effect of vestibular cues was investigated by
using either full motion of the simulator or motion reduced by a factor of half. This
resulted in four experimental conditions.

Both identification methods are used to identify pilot control behaviour for the
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Figure 2.16 – Bode plot of the identified frequency responses and estimated
variances.

two motion conditions of the disturbance task. The target task is not considered
here. During the experiment, each pilot performed 10 trials per condition and
the recorded signals were averaged before identification. In a second step, the
parameters of a multi-channel pilot model were estimated by fitting the model to
the identified frequency response functions.

2.6.2 Results

The identified frequency responses for the disturbance task with reduced motion for
one subject are given in Figure 2.16. The identified points of the frequency response
functions of both methods show very good resemblance, partly due to the averaging
of experiment runs. However, the variance of the method using Fourier Coefficients
still are high at several frequencies, as in the off-line simulations. The frequency
response functions of the method using ARX models clearly provide better insight
into the parameters of the underlying pilot model as they are continuous in the
frequency domain and have low variance.
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Figure 2.17 – Bode plot of the parameter estimations.

The Variance Accounted For (VAF) (see the Appendix) of the ARX model
estimated on the averaged data from 10 experimental runs is very high, at around
95%, for every condition. This was expected as the remnant is eliminated by
averaging and, as a result, the ARX models give a good identification despite the
simple noise model. If an ARX model is estimated with the data of one run, the
VAFs are approximately between 85% and 90%. Box Jenkins models, which have
the most freedom in modelling the remnant, result in VAFs that are only one to
two percent higher.

In Figure 2.17, the frequency response functions of the estimated pilot model
are given for the two motion conditions with a disturbance task. The reduction
of motion affects the visual perception frequency response, Hpe , and the motion
perception frequency response, Hpx . The parameters for the full motion case and
the reduced motion case are given in Table 2.4. With reduced motion, the visual
perception gain is higher. The neuromuscular damping and the neuromuscular
frequency are smaller for the reduced motion condition. The parameters of the
multi-channel pilot model fit on the Fourier Coefficient estimates and on the ARX
estimates show similar behaviour.
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Table 2.4 – Comparison of the estimated parameters for the two motion conditions.

Reduced motion

FC ARX FC ARX
CRLB CRLB

Kv [-] 0.27 0.24 5.37 10−2 1.23 10−3

τvl [s] 0.85 1.32 6.14 10−1 5.49 10−2

τv [s] 0.20 0.20 3.86 10−4 9.10 10−5

Km [-] 2.22 1.96 2.15 7.26 10−2

τm [s] 0.25 0.26 3.05 10−1 4.33 10−2

ζnm [-] 0.12 0.19 4.28 10−3 1.62 10−3

ωnm [rad/s] 8.14 7.93 2.33 10−1 7.20 10−2

Full motion

FC ARX FC ARX
CRLB CRLB

Kv [-] 0.15 0.18 1.89 10−2 1.16 10−3

τvl [s] 1.12 1.18 1.49 7.89 10−2

τv [s] 0.22 0.20 1.46 10−3 1.88 10−4

Km [-] 2.13 1.98 7.71 10−1 1.84 10−2

τm [s] 0.24 0.23 1.43 10−1 1.18 10−2

ζnm [-] 0.33 0.28 8.66 10−2 4.98 10−3

ωnm [rad/s] 10.2 9.42 3.63 2.81 10−1

As only one parameter estimate is available for every condition due to averaging,
the variance of the parameters cannot be calculated. The Cramer-Rao Lower Bound
(CRLB) is a lower bound for the variance of the estimated parameters and can
be calculated analytically for every parameter estimate (see the Appendix). The
CRLB for the estimated parameters is also given in Table 2.4. The CRLB for the
parameters estimated using the ARX estimate is much lower than the CRLB for the
parameters estimated using the Fourier Coefficients. This is consistent with the
results found in the previous section.
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2.7 Discussion of the results

The methods examined in this paper allow for the identification of multi-channel
human perception and control behaviour in active closed-loop control tasks. The
methods are inherently different, the conventional one is a spectral method using
Fourier Coefficients and the novel one a parametric method using LTI models, in
this paper ARX models.

• Statistical measures show that the LTI model frequency response estimate is
more accurate and has a lower variance. Also, the standard deviation is much
lower than the standard deviation of the Fourier Coefficient method. This is
the case as the identification method using LTI models specifically accounts
for the remnant in the estimations of the pilot describing functions.

• The mean analytically calculated variance of both methods shows good
resemblance with the variance found in multiple simulations. Therefore, the
analytical calculations can be trusted to provide accurate results.

• For both methods, the bias of the estimates found in multiple simulations
is always within the 99% confidence interval of the estimates for the range
of input frequencies of the forcing functions. This is due to high enough
signal-to-noise ratios. Therefore, the bias is not significant in this range.

• The LTI model identification method gives the best results when estimating
the parameters of a multi-channel pilot model. Also, the variance of the
parameters is much lower for the LTI model identification. This is because
the LTI model estimate, which is the input for the parameter estimation
procedure, already has a lower variance and is continuous in the frequency
domain.

• Key variables such as the cross-over frequency and phase margin can be
estimated more accurately with the LTI model method. The Fourier Coeffi-
cient method can introduce large interpolation errors when estimating these
quantities.

• With increasing the pilot remnant, the method using LTI models continues to
perform better than the method using Fourier Coefficients and is therefore
more robust.

• The identification methods were successfully applied to experimental data of
closed-loop control tasks with human operators in the loop. The identified
frequency response functions show similar characteristics to the results of the
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Monte-Carlo simulations and the parametric estimations show clear changes
with different experimental conditions.

• The method using LTI models is easier to use when doing research on pilot
multi-modal perception and control, as the forcing functions are easier to
construct, require less tuning, and the method is more intuitive.

Future research focuses on the use of different LTI models, such as ARMAX,
Output-Error, or Box-Jenkins, for use with identification. These model structures
have the potential to deliver better estimates due to the use of different polyno-
mials for the description of the remnant. Also, the effect of different remnant
characteristics on the various LTI models needs to be investigated further.

2.8 Conclusion

A method for the identification of human control behaviour using LTI models was
compared with a spectral method using Fourier Coefficients. For both methods, the
analytical calculations of bias and variance were validated successfully with the use
of 10,000 closed-loop simulations. The novel method using LTI models performed
significantly better than the spectral method in terms of estimating the pilot model
parameters and the calculated statistical measures. The main reasons for this are
that the method using LTI models assumes a model structure and incorporates the
pilot remnant. Consequently, the identified frequency response functions are better
and the variance of the estimates is smaller. Further, the parameter estimates of the
pilot model are more veridical and have lower variance. The proposed method is
also more robust to higher levels of pilot remnant than the method using Fourier
Coefficients. Although both methods were successfully applied to experimental
data of closed-loop, multi-channel control tasks, the method using LTI models more
clearly revealed the effects of the experimental conditions due to the lower variance
found in the parameter estimates.

Appendix

Statistics

The statistics used for comparison of the two identification methods include the
Root Mean Squared Error (RMSE), the Weighted Mean Squared Error (WMSE)
and the Summed Mean Variance (SMV) (see Eq. (2.23)). The RMSE quantifies the
error between the estimate and the true pilot response function. The WMSE is
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comparable to the RMSE, but weighted with the variance of the estimates. This
gives a measure of the quality of fit in combination with the variance. Finally the
SMV is a measure of the amount of variance in the estimates. For both identification
methods the statistics are determined using only the data on the input frequencies.
The cross-over frequencies and phase margins are also used as a measure of the
quality of fit. These are determined from the separate open-loop dynamics of the
error response function and the state response function of the identifications and
parameter estimations.

RMSE =

√√√√ 1
N

N

∑
i=1

e2
i , WMSE =

1
N

N

∑
i=1

e2
i

σ2
i

, SMV =
1
N

N

∑
i=1

σ2
i . (2.23)

Coherence functions

Coherence functions are used as a measure of the statistical validity of the estimated
transfer functions and reveal the presence of non-linearities, extraneous noise or
the existence of uncorrelated inputs. The coherence functions (given in Eq. (2.24))
show the degree to which the output of a system is linearly related to the external
inputs and have a value between zero and unity. The power spectral densities S fdu,
S fd fd

, and Suu are estimated by calculating the mean of the power spectral densities
of different runs.

γ2
fdu =

∣∣∣S fdu

∣∣∣2
S fd fd

Suu
, γ2

ftu =

∣∣∣S ftu

∣∣∣2
S ft ft Suu

. (2.24)

Variance Accounted For

The Variance Accounted For (VAF) is a metric for validating an estimated model
and shows how well the model can predict the measured output signal. The metric
has a value between 0% and 100%, with 100% indicating that the signal can be
perfectly simulated by the LTI model. The metric can be calculated for signal u in
the following manner:

VAF =

(
1− ∑ |u− usim|2

∑ u2

)
· 100% . (2.25)
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Cramer-Rao Lower Bound

The Cramer-Rao Lower Bound (CRLB) gives a lower bound for the covariance
matrix of an estimate θ̂ of the parameter vector and is defined as the inverse of the
Fisher information matrix, given as:

Mθθ = E
{

∂2 J (θ)
∂θ∂θ

}

=
2

N f
Re


N f

∑
k=1

(
∂H̃pe (νk; θ)

∂θ

)
1

σ2
|Ĥpe| (νk)

(
∂H̃pe (νk; θ)

∂θ

)∗
+

2
N f

Re


N f

∑
k=1

(
∂H̃px (νk; θ)

∂θ

)
1

σ2
|Ĥpx| (νk)

(
∂H̃px (νk; θ)

∂θ

)∗ .

(2.26)

For a more in-depth derivation, the reader is referred to Mulder [1999]. The
CRLB does not always accurately reflect the true parameter variance [Klein, 1989].
This can be due to incorrect assumptions about noise in the measurement loop or
due to modelling errors. Also the non-linearity of an estimation problem appears to
contribute significantly. This is why it only serves as an indication of the variance
in the parameter vector and it is not compared with the variance found in the
Monte-Carlo simulations of Section 2.5.
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Nomenclature

A amplitude [rad]
A, B ARX model polynomials
e, E error signal, Fourier transform [rad]
fd, Fd disturbance forcing function, Fourier transform [rad], [-]
ft, Ft target forcing function, Fourier transform [rad], [-]
Hc system dynamics
Hnm neuromuscular dynamics
Hpe error frequency response function
Hpx state frequency response function
Hv vestibular dynamics
Km motion perception gain [-]
Kv visual perception gain [-]
k input frequency index [-]
n, N remnant signal, Fourier transform [rad], [-]
r signal-to-noise ratio [-]
S power spectral density [rad2]
u, U control signal, Fourier transform [rad]
x, X state signal, Fourier transform [rad]

Symbols
ν, ω frequency [rad/s]
τm motion perception time delay [s]
τv visual perception time delay [s]
τvl visual lead time constant [s]
τv1 vestibular lead time constant [s]
τv2 vestibular lag time constant [s]
ωnm neuromuscular frequency [rad/s]
ζ realisation of a stochastic process
ζnm neuromuscular damping [-]

Subscripts
1 related to disturbance forcing function
2 related to target forcing function

Superscripts
ˆ identified
˜ estimated, interpolated
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Performance measurements on

the MPI Stewart platform

Gaining insight into simulator characteristics is an important prerequi-
site for specifying motion system characteristics that are most influential
for human control behaviour. Therefore, the characteristics of the MPI
Stewart platform need to be determined to evaluate its performance. In
this chapter, a systematic approach is described to assess the simulator’s
performance using various standardised measurements. The measure-
ments are performed in pitch and heave, as these degrees of freedom are
used in experimental evaluations.
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The report AGARD-AR-144 provides a framework for systematically assessing
the dynamic characteristics of flight simulator motion systems. Several
measurements defined in the report were performed on the Stewart platform

located at the Max Planck Institute for Biological Cybernetics. The measurements
were performed with a setup consisting of real-time hardware and an off-the-
shelf IMU. Results indicated that the motion platform describing functions were
very similar to the standard platform filters implemented by the motion system
manufacturer, but included a time delay of 100 ms. The total noise of the system
mainly consisted of stochastic and high-frequency non-linear components, that
were attributed to the IMU. The measurements defined by AGARD-144 proved to
provide useful insight into the platform characteristics.

3.1 Introduction

The Max Planck Institute for Biological Cybernetics (MPI) operates a mid-size
motion platform that is used for basic psychophysical research on ego-motion
simulation and multi-sensory integration. Both open-loop and closed-loop experi-
ments are being performed to study visio-vestibular cue integration, for example
during active control or in heading discrimination. The MPI Stewart platform has
a custom-built cabin with a visualisation system and was designed to allow for
modular adjustments of, for example, the projection screen or input devices.

A current project aims to model the motion platform kinematically and dy-
namically to study the effects of motion system characteristics on perception and
behaviour in simulators. Before the model can be constructed, the characteristics
of the motion system need to be determined systematically. Then, the motion
platform model will be validated through active psychophysical experiments with
humans in the loop. The final goal of the project is to run the model of the MPI
Stewart platform on the large hydraulic SIMONA Research Simulator located at
Delft University of Technology and vary the motion system characteristics system-
atically during experiments with humans in the loop. The influence of the motion
characteristics can be determined by modelling the multi-modal human perception
and control behaviour in closed-loop control tasks [Nieuwenhuizen et al., 2008;
Zaal et al., 2008, 2006].

The basis for the systematic determination of the platform characteristics is the
AGARD-AR-144 report published in 1979, wherein a working group of the Advisory
Group for Aerospace Research and Development (AGARD) described investigations
into the dynamic characteristics of flight simulator motion systems [Lean and
Gerlach, 1979]. The aim of this report was to develop a uniform and systematic
method for measuring the dynamic qualities of motion systems. This should allow
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for direct comparison of the characteristics of different motion platforms in terms
of the dynamical properties and not just in terms of maximum excursion, velocity,
or acceleration in a specific degree of freedom.

In AGARD-144 several measurements were defined that evaluate the motion
platform in the time and frequency domain, characterise the acceleration noise
levels, and identify hard non-linearities. Even though the tests were developed in
the 1970’s, they are still valid for current platforms. A small number of simulators
has been evaluated with the measurements defined in AGARD-144, including
the SIMONA Research Simulator at Delft University of Technology [Berkouwer
et al., 2005; Koekebakker, 2001; Koekebakker et al., 1998] and the Vertical Motion
Simulator at NASA [Chung and Wang, 1988].

Other application of AGARD-144 included the implementation and testing of
the performance measurements on stand-alone devices either suited for six degree-
of-freedom synergistic motion systems or systems with independent axes [Staples
et al., 1985]. Prototypes of these systems were operational at the time of writing,
but have not been mentioned in publications afterwards.

Also, extensions of the original report were published in order to try to de-
scribe the relationship between motion system parameters and the fidelity of the
pilot’s perception in flight [Tomlinson, 1985] or to be able to use the performance
measurements on modern high-performance motion systems [Koekebakker, 2001;
Koekebakker et al., 1998]. The main point made in the latter research is that
AGARD-144 did not define measurements that were performed throughout the
workspace of the simulator and only focused on the neutral point in the motion
envelope. In order to analyse if the properties measured at the operating point can
be extended to a relevant part of the workspace, a set of benchmark manoeuvres
was introduced that were considered critical in the utilisation of a flight simulator.
However, these tests have not been standardised and can not be used when directly
comparing motion systems of different sizes, as the tests can most probably not be
performed on platforms of all sizes.

This paper focuses on implementing the measurements from the original
AGARD-144 report to assess the performance of the MPI Stewart platform. In the
next section, the motion platform is discussed, together with the measurement
hardware and software, and the input signals used in the measurements. Section
3.3 elaborates on the measurements and discusses all measurements. After that, the
results from all measurements are presented and discussed in Section 3.4. Finally,
conclusions are drawn in Section 3.5.
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Feature Specification

Payload [kg] 1,000
Actuator stroke [mm] 450
Actuator resolution [µm] 0.6
Surge range [mm] 930
Sway range [mm] 860
Heave range [mm] 500
Pitch range [deg] +34/−32
Roll range [deg] ±28
Yaw range [deg] ±44

Figure 3.1 – The MPI Stewart platform.

3.2 Measurement setup

In this section the MPI Stewart platform is introduced, as well as the measurement
hardware and software. Furthermore, the input signals that are used in the AGARD-
144 measurements are described.

3.2.1 MPI Stewart platform

The MPI Stewart platform is a mid-size motion system with electrical actuators
(Maxcue 610-450, Motionbase, United Kingdom), see Figure 3.1 for an impression
and specifications [von der Heyde, 2001]. The platform is equipped with a custom-
built cabin that allows for modular adjustments. The most prominent features
of the cabin include a circular and flat projection screen with a field of view of
approximately 72◦ horizontally and 52◦ vertically and interchangeable control input
devices.

The MPI Stewart platform is controlled through an in-house open-source soft-
ware library. This library is a light-weight yet complete cross-platform software
framework for distributed real-time virtual reality simulations. It is used for dis-
playing the virtual environment on the screen and communication between the
various computers that are part of the simulation.

3.2.2 Measurement hardware and software

The performance measurements program is implemented in LabVIEW and runs
on a device with real-time operation capabilities. This hardware is responsible for
generating the input signals and controlling the motion platform at 100 Hz. It also
takes measurements from an Inertial Measurement Unit (IMU) (ADIS16355, Analog
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Devices, USA) that is mounted on the top frame of the motion platform and that
gathers data at 819.2 Hz.

The translational accelerations from the IMU are filtered with an FIR-filter with
201 taps, a cut-off frequency of 15 Hz and a Chebyshev window with sidelobe
attenuation of 70 dB. The rotational rates from the IMU’s gyroscopes are filtered
with a differentiating Savitzky-Golay filter with an order of 9 and using 69 points
to obtain the rotational accelerations. This filter behaves as a true differentiator up
to 25 Hz. During resampling of the rotational acceleration data, the same filter is
used as for the translational accelerations.

3.2.3 Input signals

The input signals for the performance measurements have up to 4 distinct phases:
fade-in, pre-measurement, measurement and fade-out. Dependent on the measure-
ment, different signal types are used and certain measurements do not require the
fade-in and fade-out phase.

3.2.3.1 Fade-in and fade-out

Most of the performance measurements use sinusoidal inputs for the acceleration
signals. The position signals, which are obtained by integrating the acceleration
signals twice, are also sinusoids and have an initial condition of zero. However, the
velocity signals are shaped like a cosine and thus have a non-zero initial condition.
This would result in movements that are not smooth and thus a fade-in and fade-
out period are required to ensure that the initial and final conditions of each
measurement run are zero.

The fade-in signal is described as follows:

u f ( f f , t) =

 1/2− 1/2 cos
(

2π f f t
)

, 0 ≤ t ≤ 1
2 f f

s

1 , t ≥ 1
2 f f

s
(3.1)

with

f f = f /2 , (3.2)

where the f is the frequency of the driving signal. The fade-out signal is constructed
in a similar fashion, but the time scale is taken between − 1

2 f f
and 0 s. The effect of

the fade-in is shown in Figure 3.2a.
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Figure 3.2 – Input signals used in the measurements.
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3.2.3.2 Pre-measurement

The fade-in phase is followed by a pre-measurement phase, where the platform
is driven an integer number of periods without taking measurements. This is to
ensure that any transients have died out before the actual measurement starts. The
number of periods Np is dependent on the frequency of the sinusoidal input signal:

Np =


2, f < 0.5 Hz
5, 0.5 ≤ f < 2 Hz

10, f ≥ 2 Hz
. (3.3)

3.2.3.3 Single-sine signal

The primary signals used in the performance measurements are sinusoidal. This
simplifies the identification of system dynamics, as the input signals are deter-
ministic, especially if the primary interest is in the error of the system. Moreover,
the time-invariant linearity errors are easily separated from the stochastic errors.
Another advantage of using sinusoidal input signals is that they resemble the
continuous signals normally used during simulation better than other elementary
deterministic signals such as impulses, steps or ramps [Lean and Gerlach, 1979].

The sinusoidal input signal is calculated with the following basic equation:

u(t) = A sin (2π f t) , (3.4)

where A is the amplitude of the sinusoid and t the time vector. The frequency f of
the sinusoid should be selected with care. It must always be a multiple of the base
frequency: fb = 1

tm
. This means that there is an integer number of periods within

the measurement time tm.

3.2.3.4 Multi-sine signal

In AGARD-144 the system describing function is determined using single-sine
signals [Lean and Gerlach, 1979]. The approach used here is to combine multiple
sinusoidal input signals with different frequencies into one measurement. The
multi-sine signal is calculated as follows:

u(t) =
m

∑
i=1

A(i) sin (2π f (i)t) , (3.5)

with m the number of sinusoids in the measurement. By using this approach, the
number of measurement runs per degree of freedom for determining the describing
function could be reduced to two. Using single-sine signals, 11 measurement
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runs would have been needed per degree of freedom. It should be noted that
the frequencies within a single measurement run may not be multiple integers as
harmonics of a lower frequency might influence measurements at higher harmonic
frequencies. When applying the fading signal, the lowest frequency present in the
multi-sine signal should be used to determine the fade frequency f f . An example
of a multi-sine signal is shown in Figure 3.2a.

3.2.3.5 Square wave signal

For determining the dynamic threshold of the motion system, AGARD-144 defined
an acceleration step input signal [Lean and Gerlach, 1979]. This measurement was
originally intended to determine the lowest possible input into the motion system.
However, modern platforms have very low friction and will respond to virtually all
inputs. Therefore, a different approach was developed to assess the motion system
acceleration response with a square wave signal and a first-order linear model
with a time delay [Koekebakker, 2001]. The square wave signal is a combination
of 8 different acceleration step responses. For the MPI Stewart platform, that is
a position-driven platform, the square wave signal is integrated twice to obtain a
position input signal. The resulting signal is depicted in Figure 3.2b.

3.3 Measurements

AGARD-144 defines several standardised measurements that will be treated sepa-
rately in this section. For all measurements, acceleration is chosen as the metric for
the results. AGARD-144 lists several reasons for this choice, the main one being
that specific force and angular acceleration are actually the characteristics sensed
by the pilot of a simulator [Lean and Gerlach, 1979].

When using sinusoidal input signals, the platform output signals measured
with an IMU contain a periodic signal related to the input into the motion system
and a stochastic component. After performing a Fast Fourier Transform (FFT), the
measured output signals can be partitioned into the following components, also
see Figure 3.3:

1. Fundamental or first harmonic (A),

2. Second and third harmonics (B),

3. Fourth and higher harmonics (C),

4. Stochastic residue (D).
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Figure 3.3 – Components of the output signal in relation to the measurements.

The output signal components can be used to identify various characteristics of the
motion platform with a limited amount of measurements, such as the describing
function, the low and high frequency non-linearities, the acceleration noise, and
the roughness.

The best position for measuring the motion system characteristics would be the
pilot’s head reference position [Koekebakker, 2001; Lean and Gerlach, 1979]. This
position does not generally coincide with the motion reference point that is usually
located at the centroid location of the moving upper frame of the motion platform
(Upper Gimbal Position (UGP)). However, for motion systems with a relatively
small workspace it is not possible to control the platform’s motion around the
pilot’s head reference position. Thus, the UGP is chosen as the location where all
measurements are taken or transformed to by computation.

3.3.1 Half-Hertz noise level measurement

The noise level measurement measures the acceleration noise that is defined as the
deviation of the output acceleration from its nominal value. As sinusoidal input
signals are used, the nominal value of the output signal is expected to have the
same frequency and phase as the input signal. There is a clear distinction between
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the acceleration noise in the driven degree of freedom, and the acceleration noise in
the non-driven degree of freedom that is called parasitic noise. The latter measure
expresses the amount of interaction between the various degrees of freedom.

Two main acceleration noise components are defined:

• Harmonic distortion with spectral power concentrated at frequencies harmon-
ically related to the input frequency,

• Stochastic component, which is the residue of the acceleration noise minus
the harmonic distortion component.

The harmonic distortion component reflects the distortion due to time invariant
non-linearities and is further subdivided into a low-frequency non-linearity, which
represents the sum of the second and third harmonic, and a high-frequency non-
linearity, which is the sum of the fourth and higher harmonics. Combining the
high-frequency non-linearities with the stochastic acceleration component results
in a measure for the roughness of the motions produced by the motion system.

The acceleration noise components are depicted graphically in Figure 3.3. All
components are represented by power spectral densities. If the acceleration noise
components are represented by standard deviations, i.e., by taking the square
root of the power spectral densities, non-dimensional ratios can be introduced
by normalising with the standard deviation of the fundamental output of the
acceleration output signal [Lean and Gerlach, 1979].

The input signals used for this measurement are single-sine signals with dif-
ferent amplitudes at a frequency of 0.5 Hz. The motion system response in the
driven axis contains the harmonic and stochastic acceleration noise components,
such that the complete analysis as depicted in Figure 3.3 can be performed. For the
undriven axes only standard deviation and peak value of the parasitic acceleration
can be determined. During the measurements there should not be transient effects
as these would distort the periodicity of the deterministic response. These effects
are minimised by introducing a pre-measurement phase in all measurement runs.

3.3.2 Signal-to-noise measurement

For a motion system two types of excursion limits can be distinguished: system
limits and operational limits [Lean and Gerlach, 1979]. System limits are defined
as the extremes of displacement, velocity, and acceleration that can be reached
during single degree of freedom operation. Operational limits are defined as
the amplitude of the acceleration output signal, in response to a single degree
of freedom sinusoidal input signal, at which the acceleration noise ratio reaches
prescribed values.
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System limits are inherent in the design of the motion system. For a Stewart
platform, the geometry of the base and moving frame and the characteristics of
the six actuators define where the platform can travel and with which velocity
and acceleration these positions can be reached. The system limits can be deter-
mined from the inverse kinematics that relate the platform position, velocity and
acceleration to actuator length, extension velocity and acceleration. However, it is
not possible to standardise the derivation of system limits for different kinds of
platforms.

Therefore, operational limits are introduced that form the boundary of a motion
range with acceleration noise ratio lower than a specific value and give insight into
the usable motion range of the motion system. The operational limits are measured
by applying sinusoidal input signals of different amplitudes at several frequencies
throughout the entire system limit range. The measurements form noise contours
that can be plotted in relation to the system limits.

3.3.3 Describing function measurement

The motion system describing function at a given frequency is defined as the com-
plex ratio of the FFT coefficients of the measured output and the input accelerations
for the fundamental frequency:

H( f ) =
X( f )
U( f )

. (3.6)

The describing function is only valid at the measurement frequency and amplitude.
However, for only slightly non-linear systems, the describing function values
generally approximate the transfer function of a linear system. In these cases, the
transfer function that is found in this measurement can be considered a linearised
description of the motion system dynamics [Lean and Gerlach, 1979].

The inputs used for this measurement are multi-sine signals where the ampli-
tude of each single sine signal was at 10% of the system limits at the corresponding
input frequency. This allowed the measurement to be performed in two runs for
each degree of freedom. The results consist of the primary describing functions,
which give the relation between the input and output in a driven degree of freedom,
and the cross describing functions that give the relation between the input in a
driven degree of freedom and the output in a non-driven degree of freedom. The
results are plotted in Bode diagrams.
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3.3.4 Dynamic threshold measurement

Originally, motion platforms suffered from a problem that if the input signal stayed
below a certain threshold, the platform would not move at all. The dynamic
threshold measurement was designed to represent the threshold of the system and
the lag due to dynamics. Current platforms have very low friction, however, and
will respond to virtually any input signal. Still, the dynamic threshold measurement
can be used to determine the time delay and the first-order lag in the motion system
by estimating the parameters of the following model from the time response to a
square wave input signal [Koekebakker, 2001]:

G(s) =
1

τs + 1
e−τds , (3.7)

where time delay τd is the time it takes the motion system to respond to an input,
and time constant τ is given by the time it takes from this point to reach 63% of the
final step input value.

Due to the limitations of the platform filters that were implemented by the
manufacturer of the motion system, the acceleration step length of the dynamic
threshold measurement had to be set to 1 second. As a consequence, only one
amplitude could be selected per degree of freedom that would not drive the
platform into its bounds, and that would not have problems with the amount of
signal to noise. For the translational degrees of freedom a value of 0.1 m/s2 was
used. The acceleration step inputs in the rotational degrees of freedom were 0.075
rad/s2.

3.3.5 Measurement points

The measurements presented in the previous sections mainly use sinusoids as input
signals and depend on the system limits of the motion platform. A distinction is
made between the translational and rotational degrees of freedom, but not between
the different individual degrees of freedom. The frequency/amplitude pairs for
the translational degrees of freedom are found in Figure 3.4a and the measurement
points for the rotational degrees of freedom are depicted in Figure 3.4b.

3.4 Results

In this section, the results from the performance measurements presented in the
previous section are discussed. Note that the results do not represent just the MPI
Stewart platform, but also include noise from the IMU that was used.
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Performance measurements on the MPI Stewart platform 73

3.4.1 Half-Hertz noise level measurement

The Half-Hertz noise level measurement was performed with six acceleration
input amplitudes for each degree of freedom at a fixed input frequency of 0.5
Hz, as given in Figure 3.4. At each amplitude the various noise components were
determined that were described in the previous section. All noise components were
converted from power spectral densities to non-dimensional values by dividing by
the fundamental output noise and taking the square root.

The noise components in the driven axes pitch and heave are given in Figure 3.5a
and Figure 3.5b as representative data for the Half-Hertz noise level measurement.
From both figures it is clear that the highest levels of noise are measured for the
lowest levels of acceleration inputs. For translational degrees of freedom, the total
noise level has high values below an input acceleration of 0.1 m/s. For rotational
degrees of freedom this boundary can be found at an input acceleration of 0.2
rad/s.

Furthermore, the results for the noise level measurement in all degrees of
freedom show that the low frequency harmonic noise is low compared to the total
noise. As can be seen, the total noise mainly consists of the roughness, which is a
combination of the high frequency non-linear noise and the stochastic noise. The
latter is found to represent most of the total noise, and might find its origin in the
IMU.

3.4.2 Signal-to-noise measurement

The signal-to-noise measurement was the most time-intensive measurement that
was performed. For the rotational degrees of freedom 29 acceleration input ampli-
tudes were used at 6 different frequencies. The number of input amplitudes for
the translational degrees of freedom were limited to 27. All amplitude/frequency
combinations can be found in Figure 3.4.

In Figs. 3.6a and 3.6b the signal-to-noise contour plots are given for the pitch and
heave degree of freedom, respectively. It is clear that with the highest frequencies
and lowest amplitudes of the input signal the signal-to-noise ratios become low. This
indicates that the platform motion can not be distinguished from the measurement
noise in this measurement setup any more.

The most promising area for performing measurements with the current setup
is approximately between input frequencies 0.03 Hz and and 2 Hz. The lower
bound is related to the measurement noise in the IMU as the motions below this
bound do not produce high enough accelerations for the IMU to pick up. The
upper bound is related to the capabilities of the motion platform that limit the
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amplitude of high-frequency input signals and thus restrict the amount of motion
that is generated.

3.4.3 Describing function measurement

The platform describing function was measured for each degree of freedom with
two multi-sine signals containing five and six frequency/amplitudes pairs, respec-
tively. Thus, the describing function can be determined on 11 points in the frequency
domain. Figure 3.4 provides information on the frequencies and amplitudes that
were used to determine the platform describing functions.

The describing functions that were measured for the pitch and heave degree
of freedom are given in Figs. 3.7a and 3.7b, respectively. When comparing the
describing functions, it is clear that they are very similar and that both describing
functions show the behaviour of a low-pass filter with a fixed time delay.

For this motion system, the manufacturer has implemented a default low-pass
platform filter with a break frequency of 1 Hz for each degree of freedom. These
platform filters are described by the following equation:

Hplatform =
1(

1 + 1
2π·1 s

)2 =
1

0.0253s2 + 0.3183s + 1
. (3.8)

A fixed time delay was combined with the platform filter to give a system transfer
function for each degree of freedom. The system transfer functions were fit to
the measured describing functions and are displayed in Figs. 3.7a and 3.7b. The
time delay was found to be approximately 100 ms. The figures show that the
measured describing functions closely match the form of the theoretical system
transfer function.

3.4.4 Dynamic threshold measurement

The step length and amplitude of the input signal for the dynamic threshold
measurement are highly dependent on each other. If the step length must be
increased, the step amplitude must be decreased, and vice versa. Due to the
standard platform filters, the acceleration step length of the dynamic threshold
measurement had to be set to 1 second. As a consequence, only one amplitude
could be selected that would not drive the platform into its bounds.

The results of the dynamic threshold measurement for surge are given in
Figure 3.8. The figure shows the measured response to the step input, the theoretical
response of the platform filter, and the fitted first-order lag model discussed in
Section 3.3. The time delay in both models was fixed to 100 ms. as was found in
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the describing function measurement. The first-order lag τ, see Eq. (3.7), was found
to be approximately 300 ms. for this acceleration amplitude.

3.5 Conclusion

The performance measurements defined in AGARD-144 were performed on the
MPI Stewart platform. The results indicated that the motion platform describing
functions are very similar to the standard platform filters implemented by the
manufacturer. Additionally, a fixed time delay of 100 ms was found between the
motion platform input and output.

In the Half-Hertz noise level measurement it was found that the low-frequency
non-linearities are low. The total noise of the motion platform consists mainly of
stochastic and high-frequency non-linear components. As measurements with a
non-moving platform show similar noise characteristics, the main part of this noise
can be attributed to the IMU and will always be present during the measurements
with this setup.

In the signal-to-noise ratio measurement a rather restricted operating range
of frequencies was found. However, the built-in platform filters filter out any
frequency input above 1 Hz, and thus have a large impact on the performance
of the overall system. In the future, this restriction will be investigated, and new
measurements will be performed.

The built-in platform filter also had a large impact on the dynamic threshold
measurement. Only one acceleration step input amplitude could be measured,
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which limits the general application of the outcome of this measurement. Never-
theless, results indicate that the first-order lag constant of the motion system is
approximately 300 ms.

The measurements in the AGARD-144 report proved to provide useful insight
into the characteristics of the MPI Stewart platform. The results from the measure-
ments described in this paper will be used to model this motion platform and will
contribute to the investigations into the influence of motion system characteristics
on human perception and behaviour in simulators that are planned to follow this
work.
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4
Performance measurements with

enhanced platform dynamics

The limited performance of the MPI Stewart platform presented in the
previous chapter resulted from constraints in the software framework used
for driving the simulator. To get a clear assessment of the characteristics
of the simulator, the performance measurements need to be repeated with
an improved control framework that eliminates these constraints. In this
chapter, results from these measurements are presented.
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Performance measurements, as defined in the AGARD-144 report, provided
useful insight into the characteristics of the MPI Stewart platform, as was
shown in the previous chapter. However, the platform driving software

limited the performance of the platform. Therefore, the describing function mea-
surements and dynamic threshold measurements were repeated with an improved
software framework. The measured time delay was significantly decreased, and
dynamic response of the MPI Stewart platform could be improved significantly by
specifying increased break frequencies of the platform filters.

4.1 Introduction

As was shown in Chapter 3, it was found that the platform noise mainly consists
of stochastic noise that can be attributed to the IMU used for the measurements.
Furthermore, the measurements revealed that the dynamic response of the platform
was dominated by the default platform filters implemented by the manufacturer.
The filter break frequency of 1 Hz was clearly shown in the describing function
measurements, and also had a large impact on the dynamic threshold measure-
ments. A fixed time delay of 100 ms was found between the motion platform input
and the measured output.

The results of the performance measurements showed that the response of
the MPI Stewart platform is mainly dominated by the default platform filters.
Previous attempts to implement extended platform filters had been unsuccessful.
The problems were traced back to the in-house software framework that handles
the network communication between various computers. It was decided to enhance
this platform driving software to attempt to reduce the time delay in the system and
to extend the dynamic range of the platform response through increased platform
filter break frequencies. With the new platform driving software it was indeed
possible to improve the response of the MPI Stewart platform.

With the enhanced driving software in place, the need arose to validate the sys-
tem and re-evaluate the performance of the MPI Stewart platform. The describing
function measurement and the dynamic threshold measurement were selected as
most representative for the enhanced performance of the MPI Stewart platform and
were performed with improved driving software.

The extensions to the original measurements presented in the previous chapter
are highlighted briefly in the next section. After that, the results of the measure-
ments are given. Finally, conclusions are drawn.
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4.2 Measurements

The measurements for re-evaluation of the MPI Stewart platform and validation
of the enhanced platform driving software consisted of the describing function
measurement and the dynamic threshold measurement described in Section 3.3.
The measurements were performed in the heave degree of freedom as it was
previously found that the results are very similar for all degrees of freedom of the
MPI Stewart platform. Three platform filter break frequencies were used: 1 Hz,
5 Hz, and 10 Hz. These break frequencies ensure that insight into the dynamic
response of the MPI Stewart platform is gained over a sufficiently large bandwidth.

The describing function measurement was performed using two multi-sine
signals with the amplitude of each sine signal at 10% of the system limit at the
corresponding input frequency. The input frequencies of the sine signals were
between 0.1 and 7.1 Hz, see Figure 3.4. The measurement results give the transfer
function between the output of the MPI Stewart platform and the corresponding
input into motion system in terms of magnitude and phase. Also, the time delay of
the complete system can be determined from the measured phase of the platform
response.

For the previous dynamic threshold measurements, the acceleration step length
had to be set to 1 s as the response of the default 1 Hz platform filters was
not fast enough for the platform to reach the amplitude of the acceleration step.
Additionally, only a limited amplitude of 0.1 m/s2 for the acceleration step could
be used without driving the platform into its bounds. With the implementation of
filters with higher break frequencies and thus an enhanced dynamic response of
the MPI Stewart platform, the acceleration step length was lowered to 0.5 s and the
amplitude of the acceleration step was increased to 0.1875 m/s2. This increased the
signal-to-noise ratio in the measurements considerably.

The measurements were performed with the same setup used in the previous
performance measurements on the MPI Stewart platform, see Section 3.2. The
motion platform was controlled at 100 Hz with a real-time device. The platform
response was measured with a MEMS-based IMU (ADIS16355, Analog Devices,
Inc., USA) that gathered data at 819.2 Hz. This allowed for filtering of measurement
noise introduced by the sensors.

4.3 Results

In this section, the results of the performance measurements with enhanced plat-
form filters are discussed. The describing function measurement and dynamic
threshold measurement were performed in the heave degree of freedom with plat-
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Figure 4.1 – Describing function measurements of the MPI Stewart platform in
heave with enhanced platform dynamics.

form filters with break frequencies of 1 Hz, 5 Hz, and 10 Hz, and enhanced platform
driving software. The results of previous measurements with the default platform
filter with a break frequency of 1 Hz and without the software enhancements were
presented in Section 3.4.

4.3.1 Describing function measurement

The measured describing functions of the MPI Stewart platform in heave are shown
in Figure 4.1. From the measurements it is clear that the platform response is
very similar to the analytical platform filters for all break frequencies. With the
enhanced platform driving software the dynamic response of the MPI Stewart
platform could be augmented considerably. However, for the measurement with
the platform filter with a 1 Hz break frequency the measured response for the
highest input frequencies deviates from the analytical response. This is attributed
to measurement noise as the magnitude of the input signals is low in this frequency
region.

In addition to the possibility of using the MPI Stewart platform with platform
filters with higher break frequencies, the fixed time delay of the platform response
with the enhanced platform driving software is considerably lower. From the
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phase of the measured describing function in Figure 4.1 a time delay of 35 ms was
determined. Compared to the 100 ms that was found previously, the enhanced
platform driving software performed much better.

4.3.2 Dynamic threshold measurement

The results of the dynamic threshold measurements in heave with enhanced plat-
form dynamics are given in Figure 4.2. It is clear from Figure 4.2a that the response
of the MPI Stewart platform with a platform filter with a break frequency of 1 Hz
can not follow the input signal as the acceleration step length of 0.5 s was not long
enough. After approximately 350 ms the platform response reaches 63% of the
magnitude of the input, while 100% of the input magnitude is not reached within
0.5 s.

With an increase of the platform filter break frequency to 5 Hz and 10 Hz, the
platform response reaches 63% of the magnitude of the input in approximately
100 and 50 ms, respectively. The total magnitude of the acceleration step of 0.1875
m/s2 could be attained within the acceleration step length of 0.5 s for both break
frequencies. From Figure 4.2 it is also clear that measured platform response can
be predicted well with the analytical platform filter response to an acceleration step
input.

4.4 Conclusion

The AGARD-144 describing function and dynamic threshold measurements were
performed on the MPI Stewart platform with different platform filters. Break
frequencies of 1 Hz, 5 Hz, and 10 Hz were used to assess the influence of enhanced
platform driving software on the dynamic response of the MPI Stewart platform.
It was found that it was possible to increase the dynamic range of the platform
response by extending the break frequencies of the platform filters implemented by
the manufacturer and that the platform describing function was very similar to the
analytical platform filter response.

A decreased fixed time delay of 35 ms was found in the response of the MPI
Stewart platform with the enhanced platform driving software compared to a
time delay of 100 ms found in previous measurements. The platform response to
acceleration step inputs showed an significant improvement in the time needed to
reach 63% of the input amplitude with increasing platform filter break frequencies.

The results of the measurements showed that the dynamic response of the MPI
Stewart platform could be improved by specifying increased break frequencies of
the platform filters in combination with enhanced platform driving software. By
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default, however, the dynamic range of the MPI Stewart platform is rather restricted
with a break frequency of 1 Hz for the platform filters.
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Figure 4.2 – Dynamic threshold measurements on the MPI Stewart platform in
heave with enhanced platform dynamics.
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5
Model of the MPI Stewart

platform

Modelling the characteristics of the MPI Stewart platform enables simu-
lating its behaviour in real time, with the ability to vary the settings of the
model independently. By simulating the model on the SIMONA Research
Simulator (SRS), the motion system can represent the characteristics of
either simulator, or any ‘virtual’ simulator in between. In this chapter,
the baseline response measurements of both simulators are described, and
a model of the MPI Stewart platform is developed. The model is imple-
mented and validated with describing function measurements on the SRS,
such that it becomes possible to systematically manipulate the dynamic
properties of its motion system.

Paper title Cross-platform Validation of a Model of the MPI Stewart Platform

Authors F. M. Nieuwenhuizen, M. M. van Paassen, O. Stroosma, M. Mulder,
and H. H. Bülthoff
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Low-cost motion systems have been proposed for certain training tasks that
would otherwise be performed on high-performance full flight simulators.
These systems have shorter stroke actuators, lower bandwidth, and higher

motion noise. The influence of these characteristics on pilot perception and control
behaviour is unknown, and needs to be investigated. A possible approach to
this would be to simulate a platform with limited capabilities with a high-end
platform, and then remove the platform limitations one by one. The effects of
these platform limitations on pilot behaviour can then be investigated in isolation.
In this paper, a model of a low-cost simulator was validated for simulation on a
high-performance simulator. A dynamic model of the MPI Stewart platform was
analysed and compared with measurements of the baseline simulator response.
Measurements for validation of the implementation of the model on the SIMONA
Research Simulator showed that the dynamics of the MPI Stewart platform could
be represented well in terms of dynamic range, time delay, and noise characteristics.
The implementation of the model of the MPI Stewart platform will be used in
future experiments on the effects of these characteristics on pilot control behaviour.

5.1 Introduction

Full flight simulators are used for pilot training throughout the world and provide
an effective, efficient, and safe environment for practising flight-critical manoeu-
vres outside the real aircraft. However, there is an on-going debate about the
effectiveness of using simulator motion systems and the need of simulator motion
cueing for pilot training [Bürki-Cohen et al., 1998; Sparko and Bürki-Cohen, 2010].
Some argue that training without motion may induce pilots to overcorrect, while
training without motion may help pilots to adopt a more steady control strategy
[Go et al., 2003]. In a recent meta-analysis on transfer-of-training experiments it
was concluded that simulator motion seems important for flight-naive subjects
performing dynamic tasks, but not for expert pilots undergoing recurrent training
for flight manoeuvres [de Winter et al., 2012]. The variation in characteristics of the
simulator motion platforms used in these studies, however, is considerable, which
makes it difficult to draw general conclusions.

A simulator can only be accepted as a valid tool for training if its fidelity is
high enough. This means that, for a given training task and environment, the
simulator should induce ‘adequate’ human behaviour, that is, behaviour similar to
that found in the real world. This can be measured objectively by identification of
skill-based behaviour [Rasmussen, 1983], and evaluating changes in the identified
parameters of a pilot model [Mulder et al., 2004]. Studies on the influence of
simulator motion have shown significant changes in pilot behaviour in the closed-
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loop control tasks that were performed [Ringland and Stapleford, 1972; Stapleford
et al., 1969]. Similarly, an increase in pilot performance was found when using
simulator motion compared to conditions in which simulator motion was switched
off [Pool et al., 2008; Zaal et al., 2009a].

Apart from the pure availability of motion, certain characteristics of the motion
system can also play a role in its effectiveness. The motion cueing (or washout)
filters transforming the aircraft’s motion into simulator motion can significantly
alter the pilot’s perception and control behaviour [Pool et al., 2010; Ringland and
Stapleford, 1971; Telban et al., 2005]. This influence is currently being acknowledged
by the proposed inclusion of these cueing filters in a new approach of classifying
motion systems for training simulators [Advani et al., 2007]. Another aspect is the
influence of using lower cost motion bases (e.g., shorter stroke actuators, lower
bandwidth or dynamic range, and lower smoothness or higher noise). According
to ICAO 9625, these motion systems can be used for simplified non-type specific
training with reduced magnitude of motion cues [ICAO 9625].

Usually, simulator fidelity is assessed with technology-centred metrics, such as
the simulator hardware measurements defined in AGARD-144 [Lean and Gerlach,
1979]. However, simulator operators in industry, research labs, and academia
tend to be rather restrained in publishing measured objective performance of their
simulator motion systems. Furthermore, cross-platform evaluations are rare, even
though a suitable criterion has been proposed [Advani et al., 2007]. This hampers
the development of a unified approach to assess the exact quality of simulator
motion systems. It also means that the results of many experiments on the effects
of motion are difficult to compare.

The current study aims to investigate the role of motion systems in a simulator
environment. Our ultimate goal is to examine the influence of motion system
characteristics such as bandwidth, time delay and smoothness on pilot control
behaviour. The present study does not consider the use of motion cueing but rather
focuses on the basic properties of the motion system itself. For this purpose, two
research simulators are used: 1) the SIMONA Research Simulator (SRS), located
at Delft University of Technology, a relatively large hydraulic motion simulator,
and 2) the MPI Stewart platform, located at the Max Planck Institute for Biological
Cybernetics, a mid-size electric simulator with more restrictive characteristics.

By creating a model of the MPI Stewart platform and simulating that model
on the SRS, the various simulator motion system limitations can be varied inde-
pendently and even eliminated. Through a systematic variation of the simulated
characteristics, it can then be determined which motion system characteristics, e.g.,
dynamic range or noise levels, have the most influence on pilot control behaviour by
identifying multi-channel perception and control in closed-loop control experiments
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[Nieuwenhuizen et al., 2008; Zaal et al., 2009b]. For this purpose, a pitch-heave
control task is performed, similar to previous research that focused on the influence
of pitch motion cues, heave motion cues, and motion filter settings [Pool et al., 2010;
Zaal et al., 2009a]. Therefore, the motion system modelling and simulation in this
paper will focus on the pitch and heave degrees of freedom of the MPI Stewart
platform and the SRS.

Previous measurements on the SRS showed that the simulator has a considerable
dynamic range [Koekebakker, 2001]. Its hydraulic actuators feature a large stroke
and hydrostatic bearings for low noise and minimal vibration. The MPI Stewart
platform is a mid-size hexapod motion platform with electric actuators. Its dy-
namic operating range was measured and was found to be rather restricted,mainly
due to input smoothing filters implemented in the motion drive software by the
manufacturer [Lean and Gerlach, 1979; Nieuwenhuizen et al., 2008]. From a com-
parison between the two simulators, the SRS was deemed suitable to simulate the
characteristics of the MPI Stewart platform for the purpose of this study.

In this paper, the implementation and validation of a model of the MPI Stewart
platform on the SRS is discussed. First, in Section 5.2 the research simulators
are introduced and briefly compared. The approach for creating a model of the
MPI Stewart platform for simulation on the SRS is introduced in Section 5.3. A
full rigid body dynamics model of the MPI Stewart platform is developed and
its parameters determined in Section 5.4. As supported by an analysis of the full
model and additional measurements on the MPI platform, a reduced model of the
MPI platform is constructed in Section 5.5 for use in the remainder of the study.
The validation measurements of the MPI platform as simulated on the SRS are
described in Section 5.6, together with the baseline characteristics of the SRS. This
is followed by some conclusions on this part of the study.

5.2 Research simulators

The MPI Stewart platform and the SRS can be used to investigate perception and
control behaviour of humans in closed-loop manual control tasks as well as in
open-loop human perception experiments. The simulators are shown in Figure 5.1.
The motion systems of both simulators are configured as a hexapod, which are
capable of carrying relatively large payloads and maintaining high rigidity [Advani,
1998]. The motion system for most simulators, e.g., training simulators for airline
pilots, are based on this configuration, first applied to flight simulation by Stewart
[Stewart, 1966].
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(a) MPI Stewart platform (b) SIMONA Research Simulator

Figure 5.1 – The research simulators at the MPI for Biological Cybernetics and at
TU Delft.

5.2.1 MPI Stewart platform

The MPI Stewart platform, shown in Figure 5.1a, is based on a mid-size electric
motion platform (Maxcue 610-450, MotionBase, United Kingdom). The platform
is equipped with a custom-built cabin that allows for modular adjustments of the
input devices. A flat or curved screen with a field of view of approximately 72◦

horizontally and 53◦ vertically can be used as visual display for projections. The
platform is controlled through an in-house software framework that handles the
network communication between various computers.

The motion system of the MPI Stewart platform features platform filters for all
degrees of freedom, implemented by the manufacturer. The platform filters are
implemented as low pass filters to smooth the simulator position setpoints. These
filters are not to be confused with motion cueing filters, which would filter the
output of, e.g., the aircraft dynamical model such that the simulator remains within
its limits. Motion cueing filters are neither used nor investigated in this phase of
the project.

The transfer function of the platform filters is given by the following equation:

Hplatform =
1(

1 + 1
2π fb

s
)2 , (5.1)

where fb represents the filter break frequency. Its default value is 1 Hz. Thus,
the platform filters can be fairly restrictive for the default setting and reduce the
magnitudes of the motion input signals above 1 Hz significantly. In addition, the
platform filters introduce a phase lag that is noticeable during operation of the
platform. However, the break frequency can be increased, and values up to 10 Hz
will be used in performance measurements on the MPI Stewart platform.
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5.2.2 SIMONA Research Simulator

The motion system of the SRS, depicted in Figure 5.1b, has a similar design to the
MPI Stewart platform, but features hydraulic actuators with hydrostatic bearings
[Berkouwer et al., 2005]. The SRS is equipped with a collimated visual display
system with a field of view of 180◦ horizontally and 40◦ vertically. The cabin
features a generic two-person flight deck with control loading devices such as a
yoke, sidestick, and pedals. The SRS is controlled through the real-time software
framework DUECA developed at Delft University of Technology [van Paassen et al.,
2000].

The motion system of the SRS is highly configurable. The SRS does not use
any platform filters like the MPI Stewart platform, and can be operated without
filtering the motion cues from simulated vehicle dynamics.

5.2.3 Comparison of simulator characteristics

In Table 5.1, the characteristics of the MPI Stewart platform and the SRS are
summarised. The SRS has a larger workspace in the translational degrees of
freedom, obviously due to the larger stroke of its actuators. The workspace in
the rotational degrees of freedom is comparable for both simulators, as this does
not depend on the actuator stroke, but rather on the layout of the simulator
gimbals. The actuators of the SRS are capable of generating higher velocities and
accelerations than the actuators of the MPI Stewart platform. Thus, the SRS was
deemed suitable for simulating a model of the basic motion platform characteristics
of the MPI Stewart platform, including the platform filters.

5.3 Stewart platform modelling and validation approach

In this section, the modelling approach is elaborated for developing and validating
a model of the MPI Stewart platform for simulation on the SRS. First, the describ-
ing function measurements will be defined that are used in most measurements
presented in this paper. Second, the ICAO Objective Motion Cueing Test (OMCT)
for describing simulator characteristics is introduced [Advani et al., 2007; ICAO
9625]. Third, an overview of the modelling approach is given.

5.3.1 Describing function measurements

Describing functions provide insight into the dynamic properties of a system by
giving the relation between the provided input and the measured output of that
system in terms of a magnitude and phase distortion at the input frequencies. In
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Table 5.1 – Research simulator characteristics.

MPI Stewart SRS
platform

Actuators
Type electric hydraulic
Stroke [m] 0.45 1.15
Max. vel. [m/s] 0.3 1
Max. acc. [m/s2] 2 13

Range
Surge [mm] 922 2,240
Sway [mm] 848 2,062
Heave [mm] 500 1,314
Roll [deg] ±26.6 ±25.9
Pitch [deg] +24.1/−25.1 +24.3/−23.7
Yaw [deg] ±43.5 ±41.6

Platform filters
Break freq. fb [Hz] 1 (tuneable) -

this case the measurements were performed in the pitch and heave degrees of
freedom and the response of the system was measured with Inertial Measurement
Units (IMUs). The measured describing functions are strictly speaking only valid at
the measurement frequency and amplitude of the measurement, and at the position
within the workspace where the measurement is conducted, as all motion systems
are non-linear to a certain degree [Lean and Gerlach, 1979]. However, for systems
that are only slightly non-linear, the describing functions approximately match
the transfer functions of a linear system. Thus, the describing function can be
considered a linear description of the system dynamics.

The measurements were performed in two measurement runs. In these two
runs, the motion commands were multi-sine signals that consisted of five and
six frequency/amplitude pairs, respectively. These have been used in previous
research for determining the describing functions of the MPI Stewart platform
[Nieuwenhuizen et al., 2008]. The amplitudes Ad f of the individual sine waves
with frequency f are specified in accelerations, but can be transformed analytically
to velocity or position signals. The multi-sine input signals u are calculated as
follows:

u(t) =
m

∑
k=1

Ad f (k) sin (2π f (k)t) , (5.2)

for which the properties are given in Table 5.2 for the translational and rotational
degrees of freedom.

The measured describing functions will be presented in Bode diagrams which
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Table 5.2 – Properties of the multi-sine signals for translational and rotational
degrees of freedom.

amplitude Ad f
frequency f translation rotation

[Hz] [m/s2] [deg/s2]

si
gn

al
1

0.10 0.009 0.974
0.25 0.047 5.329
0.65 0.123 13.866
0.85 0.160 18.163
3.35 0.200 57.296

si
gn

al
2

0.20 0.035 3.953
0.45 0.085 9.626
1.35 0.200 27.789
2.30 0.200 46.983
5.50 0.200 57.296
7.10 0.200 57.296

depict magnitude and phase of the system response as a function of frequency.
In this way, important system characteristics such as possible resonance and time
delays can be determined easily.

5.3.2 Objective Motion Cueing Test

A different way to quantify the dynamic response of the MPI Stewart platform and
the SRS is to convert the measured describing functions to the OMCT criterion. This
criterion aims to objectively qualify and regulate the motion cueing performance
of flight simulators [Advani et al., 2007; ICAO 9625]. It encompasses the entire
simulator cueing system, which consists of the motion cueing algorithms, motion
platform hardware and controllers, and time delays. In this study, no motion
cueing algorithms were used, so the criterion describes the low-level controllers
and hardware only. The criterion plots the magnitude and phase of the cueing
system response with respect to performance bounds, similar to a Bode diagram for
the describing functions. The performance bounds are currently an initial version
and will be refined in the future [Advani et al., 2007].

5.3.3 Overview of the modelling and validation approach

For simulating the MPI Stewart platform on the SRS, a model was developed and
validated. An overview of the six-step modelling and validation approach used in
this project is given in Figure 5.2.

The steps taken in this modelling approach are as follows:
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Figure 5.2 – An overview of the modelling approach presented in this paper.

1. Develop a full rigid body dynamics model of the MPI Stewart platform;

2. Analyse the full model;

3. Compare the analysis results with measurements of the baseline response of
the MPI Stewart platform;

4. Determine a reduced model that can reliably represent the dynamic charac-
teristics of the MPI Stewart platform;

5. Perform measurements on the SRS to determine its baseline performance;

6. Implement and validate the reduced model of the MPI Stewart platform on
the SRS; and

7. Express the validation results in terms of the OMCT criterion.

On the MPI Stewart platform, simulator motion is measured with an ADIS16355
IMU from Analog Devices, Inc. (referred to as the MPI IMU).a On the SRS, the MPI
IMU will be used alongside an ISIS IMU (rev. C) from Inertial Science Inc. (referred
to as the SRS IMU).b It is believed that the MPI IMU can provide additional insight
into the performance of the SRS, as the SRS IMU is a relatively old MEMS-based
device.

5.4 MPI Stewart platform model

As a first step in the modelling approach, a mathematical model of the MPI Stewart
platform was developed based on previous research [Nieuwenhuizen et al., 2009].
In this section, the model and the estimation of its parameters will be summarised.

aADIS16355: High-Precision Tri-Axis Inertial Sensor, http://www.analog.com/en/mems-sensors/
inertial-sensors/adis16355/products/product.html

bISIS-IMU, http://www.inertialscience.com/isis_imu.htm

http://www.analog.com/en/mems-sensors/inertial-sensors/adis16355/products/product.html
http://www.analog.com/en/mems-sensors/inertial-sensors/adis16355/products/product.html
http://www.inertialscience.com/isis_imu.htm
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5.4.1 Summary of model assumptions

The dynamic model for the MPI Stewart platform is based on several assumptions.
Relatively safe assumptions are that the platform cabin is taken as a rigid body.
Second, the platform cabin is symmetric, and therefore the cross products of inertia
are assumed zero. Third, the gimbal locations are based on specifications by the
manufacturer. Small deviations on the MPI Stewart platform are possible, however,
and may have a small impact on the calculated pose and Jacobian matrix. Fourth,
the platform actuator measurements are assumed to be properly calibrated by the
manufacturer. Fifth, hysteresis in the actuators is not modelled.

A stronger assumption is taken by not accounting for the mass and inertia
properties of the actuators. The mass of the actuators forms a reasonable part of the
simulator weight, but modelling of the inertia properties was considered infeasible
due to a lack of accurate actuator measurements. Furthermore, the noise of the MPI
Stewart platform introduced by the actuators is only considered around the neutral
position of the simulator. It is assumed to be a filtered stationary Gaussian white
noise signal with a mean of zero. A dependency on simulator pose and velocity is
not taken into account.

Finally, a frequency range of interest up to 10 Hz is considered for the model.
In this range the SRS is considered to provide reliable motion cues for simulation
of the model. This will be verified with measurements of the baseline response in
Section 5.6.

5.4.2 Kinematics and dynamics

The reference frames for the MPI Stewart platform are depicted in Figure 5.3. The
simulator cabin reference frame, F c, has its origin in the Upper Gimbal Point (UGP),
which is the centre of the upper frame of the motion system. The Xc-axis points
forward in the plane of symmetry, and the Yc-axis points to the right, perpendicular
to the plane of symmetry. The Zc-axis points down in the plane of symmetry. The
inertial cabin reference frame is indicated with F ci. When the simulator is in its
neutral position, the inertial cabin reference frame is aligned with the simulator
cabin reference frame, but it does not move with the simulator cabin. The simulator
base reference frame, F b, is located on a plane that intersects the lower gimbals of
the actuators, with its origin 1.209 m below the inertial cabin reference frame and
very close to the floor.

The kinematics of a Stewart platform describe the relation between the platform
pose, velocity and acceleration, and the actuator lengths and its derivatives [Advani,
1998; Harib and Srinivasan, 2003; Koekebakker, 2001]. The platform pose is defined
as follows [Advani, 1998; Koekebakker, 2001]:
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Figure 5.3 – Reference frames of the MPI Stewart platform, including actuator
numbers.

xb =
[

xb yb zb φ θ ψ
]T

. (5.3)

Here, the translational degree of freedom in surge is given as xb, in sway as yb,
and in heave as zb. The translational degrees of freedom are grouped in vector
cb, which is the location of the UGP relative to the simulator base reference frame.
Euler angles φ, θ, and ψ denote the platform roll, pitch, and yaw angles of the
cabin, respectively. The Euler angles have associated angular velocities of the cabin
given as pb, qb, and rb, which are grouped in vector ωb.

With the inverse kinematics, the actuator lengths, velocities, and accelerations
can be calculated from the platform pose and its derivatives. As the Stewart
platform is a parallel motion system, the inverse kinematics can be calculated
analytically [Harib and Srinivasan, 2003]. For the inverse position kinematics, the
following equation holds in F b for actuator j [Advani, 1998; Koekebakker, 2001]:

lb
j = cb + Tb

c ac
j − bb

j , (5.4)

where l contains the vector between the actuator attachment points on the base
and cabin frame, Tb

c is the rotation matrix between the base and cabin frame, and
where ab and bb are the location vectors of the gimbals of the cabin and base in
their respective frames. The values for the latter two variables are specified by the
platform manufacturer and are given in Table 5.3.

By differentiating Eq. (5.4), the inverse rate kinematics can be found. These can
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Table 5.3 – Actuator gimbal locations of the MPI Stewart platform.

Base Cabin

Act. x [m] y [m] x [m] y [m]

1 -0.327 -0.730 0.226 -0.556
2 0.796 -0.082 0.369 -0.473
3 0.796 0.082 0.369 0.473
4 -0.327 0.730 0.226 0.556
5 -0.469 0.648 -0.594 0.082
6 -0.469 -0.648 -0.594 -0.082

be written as follows:

l̇b
= Jlx ẋb , (5.5)

where Jlx is the platform Jacobian matrix. The Jacobian matrix can be calculated
analytically [Advani, 1998], and is a measure for the kinematic efficiency of the
platform motion for a specific system configuration and pose. Additionally, the
inverse acceleration kinematics can be solved. For this, the reader is referred to
Harib and Srinivasan [2003].

The reverse process to the inverse kinematics is to determine the platform pose
from actuator length measurements and is called the forward kinematics. For a
general Stewart platform, an analytical solution is not known, but a solution can be
found with a numerical, iterative technique [Harib and Srinivasan, 2003]. In general,
a Newton-Raphson method is used to solve the forward kinematic problem. It is
formulated as:

xb
i+1 = xb

i + J−1
lx (xb

i )
[
lb

meas − lb(xb
i )
]

. (5.6)

The initial guess x0 should be sufficiently close to the actual platform pose and
could, for example, be the desired platform pose. The iterative process should
be repeated until a solution is found with an acceptable tolerance between the
measured and calculated actuator lengths. In practical applications, a tolerance
level of 10−6 m is reached in 2-3 iterations.

The dynamics of the Stewart platform describe the relation between the force/
torque vector and the position, velocity and acceleration. The inverse dynamics are
used to calculate actuator forces from position and attitude, and their derivatives.
For this, an analytic solution exists, similar to that of the inverse kinematics. The
reader is referred to Harib and Srinivasan [2003] for more details.

The forward dynamics are used to calculate the motion of the Stewart platform
given the actuator forces. When assuming the platform cabin as a rigid body, and
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disregarding the inertial forces of the actuators, the Stewart platform dynamics can
be modelled in F b as follows [Koekebakker, 2001]:

[
Nb

Tb
c Ac × Nb

]
f b

a =

[
mc I 0

0 Tb
c Ic

c(Tb
c )

T

] [
c̈b

ω̇b

]

+

[
0 0
0 ΩbTb

c Ic
c(Tb

c )
T

] [
ċb

ωb

]
−
[

mcgb

0

]
.

(5.7)

Here, N is a matrix that contains the normalised actuator vectors, Ac is a matrix
that holds the platform gimbal locations in the platform reference frame, f a are
the actuator forces, mc is the cabin mass, I is the identity matrix, Ic

c is the platform
inertia tensor in the cabin reference frame, Ω is a skew-symmetric matrix that
contains the platform angular rates, and g is the gravity vector.

A reduced form of the model is given as [Koekebakker, 2001]:

JT
lx f b

a = Mc

[
c̈b

ω̇b

]
+ Cc

(
ẋb, xb

) [ ċb

ωb

]
+ Gc , (5.8)

where the influence of the mass matrix Mc, the coriolis and centripetal effects Cc,
and the gravity Gc are clearly separated [Koekebakker, 2001]. The Jacobian Jlx is
used to transform the actuator forces into the platform coordinate frame.

5.4.3 Identification of model parameters

The dynamic model of a Stewart platform given in Eq. (5.8) has 10 parameters: the
platform mass mc, the position of the centre of gravity in F c (xcg, ycg, zcg), and the
values of the inertia tensor Ic

c . As the cabin is symmetric in the forward-backward
vertical plane, we can assume that the cross products of inertia Ixy = Iyx and
Iyz = Izy equal zero. Furthermore, Ixz (= Izx) is assumed to be small with respect
to the principal moments Ixx, Iyy, and Izz and therefore neglected here. This means
that the axes of the cabin reference frame are considered as the principal axes of
the cabin.

The motion system documentation of the MPI Stewart platform states that
the platform controller is a PD-controller controlling actuator length error e and
actuator velocity errors ė with respect to a reference trajectory. The proportional
gain is given as Kp and the differential gain as Kd, as shown in a block diagram
of the complete platform model in Figure 5.4. The relative contribution of the
controller gains is known, but not their exact values. Therefore, Kp and Kd are
expressed in terms of a general controller gain Kc with the following expressions:
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Figure 5.4 – The platform model block diagram.

Kp = 2 · Kc and Kd = 7 · Kc . (5.9)

The controller gain Kc is unknown and therefore needs to be estimated as well.
The PD-controller of the platform is only responsible for the dynamic platform

motion. As can be seen in Figure 5.4, a feedback of static forces is implemented
based on the current platform position. The gain Ks on the feedback of static forces
is to account for the bias in actuator length found in measurements.

In total, nine model parameters needed to be determined for the dynamic model:
mc, xcg, ycg, zcg, Ixx, Iyy, Izz, Kc, and Ks. The parameters were determined by per-
forming frequency sweeps and circular motion measurements on the MPI Stewart
platform and fitting the dynamic model to the measured data [Nieuwenhuizen
et al., 2009]. As the platform model is non-linear, an optimisation procedure might
find a local minimum instead of a global minimum. Therefore, a grid search was
performed to find the optimum parameter vector.

The estimated values of the model parameters are given in Table 5.4. Simulation
results of a frequency sweep in yaw with the dynamic model are given in Figure 5.5.
It is clear that the model captures the response in both the driven axis and the
undriven axes very well. By using a static feedback gain Ks, the model is capable
of tracking the static bias in the measurements in heave. However, from Figure 5.5e
it is also clear that the controller in the model needs some time to settle. The
circular motion measurements were presented in detail in Nieuwenhuizen et al.
[2009], where it was shown that the platform model could capture the behaviour
throughout the entire workspace well; the simulated platform position was accurate
on a sub-millimetre level.

Validations of the dynamic model of the MPI Stewart platform were performed
by simulations with independent measurement data that were not used in the
model determination process. These simulations showed favourable results with
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Table 5.4 – The estimated platform model parameters.

Parameter mc xcg ycg zcg Ixx Iyy Izz Kp Kd Ks
[kg] [m] [m] [m] [kg·m2] [kg·m2] [kg·m2] [N/m] [N·s/m] [-]

Value 250 0.025 -0.015 0.05 825 825 425 21,000 73,500 0.9973

sinusoidal measurements in heave and again indicated that the estimated parame-
ters for the dynamic model describe the response of the MPI Stewart platform well
[Nieuwenhuizen et al., 2009].

5.4.4 Noise model

The actuators of the MPI Stewart platform are driven by electrical motors combined
with a ball screw to extend linearly. In comparison to hydraulic actuators, electric
actuators are generally regarded to introduce more noise into the simulator system.
Therefore, a noise model of the MPI Stewart platform was created. It was assumed
that the noise of the MPI Stewart platform could be described by a filtered Gaussian
white noise signal.

The measurements for the noise model were based on the signal-to-noise mea-
surements previously performed on the MPI Stewart platform [Nieuwenhuizen
et al., 2008]. Separate measurements were performed in heave and pitch with
sinusoidal platform motion at different frequencies and amplitudes. Measure-
ments were also performed without platform motion to determine the static noise
properties of the sensors in the MPI IMU, and to verify that the dynamic noise in
measurements with platform motion could be distinguished from the static sensor
noise. The power spectra of the measured signals were analysed at frequencies that
were not used for driving the simulator, and the mean of the measured spectra was
determined.

Comparing the dynamic noise spectrum in pitch with the static sensor noise in
pitch revealed that there was no difference in the signal power. The noise due to
platform motion is masked by measurement noise in rotational degrees of freedom
and cannot be measured accurately.

However, for the heave degree of freedom a difference was found between the
power of the dynamic noise and the noise in static accelerometer measurements.
The measured noise can be described with the following shaping filter:

Hn,z = 0.084
1 + 0.022s

(1 + 0.009s) (1 + 0.008s)
. (5.10)

By applying the shaping filter to a zero-mean Gaussian white noise sequence with
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Figure 5.5 – Commanded, measured and simulated platform motion for a frequency
sweep in yaw. Note that in heave the deviation from the platform neutral position
is plotted.
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Figure 5.6 – Describing function of the MPI Stewart platform model.

variance of 1, a signal is obtained that describes the measured noise of the MPI
Stewart platform in heave. The standard deviation of the generated noise signal is
4.230 · 10−2 m/s2. For simulation on the SRS, the white noise sequence is defined
as an acceleration signal, and to prevent extreme excursions of the motion system
only frequencies above 1 Hz were considered. For frequencies below 1 Hz, the
amplitudes of the noise shaping filter were reduced to 0 when the noise signal was
generated in the frequency domain.

5.5 Reduction of the MPI Stewart platform model

In this section, the dynamic model of the MPI Stewart platform will be analysed.
Simulations of the model will be compared to measurements of the baseline
response of the simulator. Based on this comparison, a reduced model will be
proposed that can reliably represent the dynamic characteristics of the MPI Stewart
platform.

5.5.1 Analysis of the full rigid body dynamics model

The dynamic properties of the MPI Stewart platform model were analysed by
simulating the response of the model given in Figure 5.4 to the input signals of the
describing function measurement at 1000 Hz, for all degrees of freedom. Thus, the
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Table 5.5 – Parameters for the model describing functions.

tm [s] fm [Hz]

x 0.00560 28.42
y 0.00561 28.37
z 0.00081 196.49
φ 0.01243 12.80
θ 0.01242 12.81
ψ 0.01398 11.38

describing functions encompass the entire platform model block diagram, including
the platform controller and the modelled platform dynamics, but do not include
the platform filters of the MPI Stewart platform.

The results of this analysis are given in Figure 5.6 for heave and pitch. The
responses for the translational degrees of freedom are very similar, as are the
responses for the rotational degrees of freedom. As is clearly visible, the dynamics
of the model are mainly governed by a flat one-to-one response with a time
delay. The parasitic motion in the non-driven degrees of freedom was found to
be negligible, and is therefore not presented. To characterise the model response,
a first order model with a time delay was fit to the simulated response for each
degree of freedom. The time delay of 35 ms used in the simulations could reliably
be estimated. The time constants for the first order models, tm, and the associated
break frequencies, fm, are given in Table 5.5. The values for tm and fm were very
comparable for the translational degrees of freedom and for the rotational degrees
of freedom. However, in heave the break frequency was higher than in any other
degree of freedom. The break frequencies lie above the frequency range of interest
for the MPI Stewart platform model, which extends to approximately 10 Hz.

5.5.2 Baseline measurements on the MPI Stewart platform

The hardware of the MPI Stewart platform features platform filters with a default
break frequency of 1 Hz, implemented by the manufacturer, see Eq. (5.1). It is
possible to enhance the response of the platform by increasing the break frequency
of the platform filters. The describing function measurements were performed on
the MPI Stewart platform with break frequencies of 1 Hz, 5 Hz, and 10 Hz. The
results are given in Figure 5.7.

From the measurements it is clear that the amplitude response of the MPI
Stewart platform is very similar to the analytic response of the platform filters.
Only at the lowest measurement frequency the measurements deviate from the
nominal platform filter, which is attributed to low signal-to-noise ratios. Thus, the
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Figure 5.7 – Describing functions of the MPI Stewart platform in heave, measured
with different platform filter break frequencies.

platform filters determine the dynamic response almost completely.
The phase response of the measurement reveals a constant time delay of 35 ms

for the MPI Stewart platform. This time delay represents the difference between
measuring a response of the platform to a motion command.

5.5.3 Reduction of the model

Given that the response of the MPI Stewart platform model almost exclusively
equals a gain of one for the frequency range of interest, it was decided to not
include the entire model in the final simulations of the MPI Stewart platform on the
SRS. The response of the actual MPI Stewart platform is predominantly governed by
the platform filters implemented by the platform manufacturer. Thus, it is sufficient
to only integrate the platform filters to represent the MPI Stewart platform reliably
on the SRS. Additionally, a time delay was implemented to account for the time
delay in the motion system of the MPI Stewart platform.

Summarising, a reduced model of the dynamic response of the MPI Stewart
platform is given by:
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HMPI(s) =
1(

1 + 1
2π fb

s
)2 · e

−τs , (5.11)

where fb is the break frequency of the platform filter of the MPI Stewart platform,
and τ the time delay. Additionally, platform noise was added as described by
Eq. (5.10).

5.6 Validation of the MPI Stewart platform model on the
SIMONA Research Simulator

In this section, the implementation of the reduced model of the MPI Stewart
platform is validated on the SRS. First the baseline response of the SRS is presented.
The reduced model is validated in terms of its components: the platform filter, the
time delay, and noise characteristics. Finally, the results are discussed with respect
to the OMCT criterion.

5.6.1 Baseline measurements on the SIMONA Research Simulator

On the SRS, the describing function measurements were performed in heave and
pitch. Two IMUs were used concurrently: the SRS IMU mounted permanently on
the SRS for inertial measurements, and the MPI IMU for additional insight into the
performance of the SRS. The simulator was used without motion cueing filters.

The results of the measurements are given in Figure 5.8. For the lowest frequency,
the MPI IMU shows a deviation in magnitude which was also found in previous
measurements. This was attributed to measurement noise and low signal-to-noise
ratios. For the higher frequencies, the slight resonance peak for the measurement
in heave is picked up by both IMUs. The amplitude response of the resonance can
be modelled with a first order model, as shown in Figure 5.8a:

Hr,z = 1 + 0.023s . (5.12)

In the pitch degree of freedom the magnitude response from the SRS IMU is
attenuated above 1 Hz, probably due to internal filtering. The MPI IMU shows
a similar pattern as was found in heave, with a slight resonance for the higher
frequencies. Similar to the heave degree of freedom, the amplitude response of the
resonance can be modelled with a first order model, as shown in Figure 5.8b:

Hr,θ = 1 + 0.027s . (5.13)
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Figure 5.8 – Describing functions of the SRS measured with different IMUs.
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The phase responses in Figure 5.8 can be used to determine the time delay
between sending a motion command and measuring the simulator response. The
time delays found with the SRS IMU for heave and pitch were 46 ms and 59 ms,
respectively. The additional delay found in pitch is attributed to internal filtering
which also caused attenuation in the magnitude response. With the MPI IMU,
significantly lower time delays were found for heave and pitch, which were 24
and 23 ms, respectively. Based on these results, the MPI IMU was used in further
measurements due to its lower time delay and better measurements in the rotational
degrees of freedom.

5.6.2 Validation of the reduced model

The reduced MPI Stewart platform model was implemented on the SRS for val-
idation. First, measurements with different platform filter break frequencies are
discussed. Second, the results of measurements with different time delays are given.
Finally, measurements with the noise model are presented.

5.6.2.1 Platform filter measurements

The reduced model of the MPI Stewart platform, given in Eq. (5.11), was simulated
on the SRS. The break frequency of the platform filter, fb, was varied between 1 Hz,
5 Hz, and 10 Hz, while time delay τ equalled 0 s. The results of the measurements
are compared with the baseline simulator measurements that were presented in
the previous section.

The results for the measurements in heave and pitch are given in Figure 5.9.
The magnitude of the SRS responses for different break frequencies follows the
analytical model well, although the resonance at the highest frequencies introduces
some discrepancies in both degrees of freedom for the higher break frequencies.
The resonance has less influence for the measurement with the platform filter with
a break frequency of 1 Hz, probably due to the low amplitudes of the response at
higher frequencies.

The phase of the SRS responses also follows the analytical model well, but it is
clear that a time delay is present in the system, which is treated next.

5.6.2.2 Platform time delay measurements

The implementation of time delay τ of the reduced platform model, see Eq. (5.11),
was assessed by using two values during measurements: τ = 0 ms and τ = 35 ms.
These were tested with the baseline configuration of the SRS, without simulation of
the platform filter. Additionally, different values of the model break frequency fb
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Figure 5.9 – Measured describing functions of the SRS for different platform
models.
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Table 5.6 – Time delays in ms measured with two IMUs for different platform
filters.

heave pitch
MPI IMU τ = 0.0 τ = 35.0 4τ τ = 0.0 τ = 35.0 4τ

Baseline 24.0 60.0 36.0 22.9 58.5 35.6
1 Hz 12.0 48.4 36.4 14.2 51.6 37.4
5 Hz 19.0 53.4 34.4 18.0 52.1 34.1
10 Hz 19.3 53.7 34.4 17.5 53.3 35.8

SRS IMU

Baseline 45.7 80.7 35.0 58.9 93.9 35.0
1 Hz 41.8 77.0 35.2 53.6 88.7 35.1
5 Hz 40.6 75.6 35.0 53.6 88.7 35.1
10 Hz 40.6 75.6 35.0 53.8 88.8 35.0

were used in simulations of the platform filter on the SRS (1 Hz, 5 Hz, and 10 Hz).
The phase response of the measured describing functions was used to fit a time
delay. The results are presented in Table 5.6. The difference between the fits 4τ is
presented to confirm the implementation of τ in the reduced platform model.

For the baseline SRS, time delays of approximately 24 ms were found for heave
and pitch. When the reduced platform model is simulated, a lower time delay of
19 ms is found for break frequencies of 5 and 10 Hz. With the SRS IMU, similar
results were found, although this IMU had an additional delay of approximately
22 ms.

For the model with a break frequency of 1 Hz, a time delay of approximately 13
ms was found. This value is much lower than the time delays found with the models
with higher break frequencies. On the contrary, the time delay found with the SRS
IMU is similar to time delays of the models with higher break frequencies, as is
shown in Table 5.6. These discrepancies are not related to the implementation of the
MPI Stewart platform, as the difference in time delay 4τ equals approximately 35
ms. A possible reason for these findings is that the most important data for the time
delay estimation are the measured responses at higher frequencies. However, for
the 1 Hz platform filter, these measurements become unreliable because the filter
reduces the signal at frequencies beyond 1 Hz. For the MPI IMU, the measurements
are probably affected by a low signal-to-noise ratio.

Based on the time delay measurements and results from the measurements on
the platform filter break frequencies, it can be concluded that the reduced platform
model given in Eq. (5.11) has been implemented correctly on the SRS. The response
of the SRS to simulations of the reduced model is very similar to the measured
baseline response of the MPI Stewart platform.
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Figure 5.10 – Commanded and measured noise signals on the SRS in heave.

5.6.2.3 Noise model measurements

The noise model presented in Eq. (5.10) represents a shaping filter for a white
noise sequence resulting in an acceleration signal, which was used as a driving
signal on the SRS. As the noise signal was created off-line, the amplitudes of the
shaping filter could be compensated for the resonance found in the baseline SRS
measurements by prefiltering the noise signal with the inverse of the resonance
model for heave given in Eq. (5.12).

Since there was too much measurement noise present in the IMU, the response
of the SRS was measured through the actuator lengths that were converted to cabin
position. An example of a commanded and measured noise sequence is given in
Figure 5.10, which shows that the noise causes the SRS to move at a sub-millimetre
level in heave. It is clear that the SRS is capable of following the commanded noise
signal very well. A small time delay is present that is similar to the measurements
in the previous section. This does not pose a problem during simulation of the
platform noise on the SRS, as it is a stationary process and its statistical properties
do not change over time.

In Figure 5.11 the describing function is given between the measured and the
commanded noise signal for one measurement run. No power is inserted for
frequencies below 1 Hz to prevent too large excursions of the simulator. For
frequencies above 1 Hz the relation between the measured and commanded noise
signal was dominated by a gain of 0 dB, meaning that the SRS could simulate the
noise signal 1-to-1 and that the resonance in the SRS was effectively compensated
for. The peaks in the amplitude measurement result from the randomness of the
noise signal. Therefore, the describing function cannot be estimated reliably at all
frequencies in a single short measurement run. From the phase of the describing
function the time delay of the SRS observed in Figure 5.10 is clearly visible.

The measurements show that the SRS can simulate the noise model of the
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Figure 5.11 – Measured describing function for the heave noise on the SRS.

MPI Stewart platform well. This allows for use of the noise model in conjunction
with the reduced model of the MPI Stewart platform in future closed-loop control
experiments on the SRS.

5.6.3 OMCT criterion measurements

The measured describing functions of the reduced model of the MPI Stewart
platform on the SRS are discussed in terms of the OMCT criterion. The results from
Figure 5.9 are given in a magnitude-phase plot with the boundaries of the criterion
in Figure 5.12. In this case, the describing functions do not include the influence of
motion cueing filters, which were not used in these measurements. These would
move the measured describing functions away from the criterion.

It is clear from the figure that it is difficult to determine the response for heave at
the lowest frequencies due to low signal-to-noise ratios with the MPI IMU. However,
the SRS shows good correspondence with the criterion up to 3.35 Hz (21 rad/s) in
heave and pitch. This is well above the frequency range of 2-5 rad/s where the
pilot-vehicle system cross-over frequency is expected to be for closed-loop control
tasks [McRuer and Jex, 1967].

On the other hand, when the break frequency of the MPI Stewart platform
model decreases, the system response moves away from the favourable region of
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the criterion. For the break frequency of 1 Hz, the system response falls outside the
criterion for frequencies larger than 0.5 Hz (≈3 rad/s). Thus, the default platform
filters of the MPI Stewart platform are expected to have a large effect on pilot
control in closed-loop tasks.
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Figure 5.12 – Measured describing functions in relation to the OMCT criterion.
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5.7 Conclusion

A model of a low-cost simulator, the MPI Stewart platform, was developed for
implementation, simulation, and validation on the high-performance SIMONA
Research Simulator. We conclude that: 1) the rigid-body dynamics model can
be reduced to a form similar to the platform filters present on the MPI Stewart
platform. This reduced model can reliably represent the dynamic characteristics;
2) the time delay of the MPI Stewart platform is 35 ms; 3) the SIMONA Research
Simulator has a slight resonance peak at high frequencies, and the time delay of
the simulator is 24 ms; and 4) the reduced model of the MPI Stewart platform was
validated on the SRS with describing measurements and the SRS could replicate the
model response and time delay characteristics. Furthermore, the noise model of the
MPI Stewart platform could be reproduced well. Based on these results the model
of the MPI Stewart platform was validated for use on the SRS. Future experiments
will investigate the influence of motion system characteristics in closed-loop control
tasks. Systematic changes will be made to the motion system dynamics, time delays,
and noise characteristics to study their effect on human control behaviour.
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φ, θ, ψ platform orientation [deg]
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6
Influence of motion system

characteristics on behaviour

Simulating a model of the MPI Stewart platform on the SIMONA Re-
search Simulator makes it possible to systematically change simulator
motion system characteristics in an experimental environment. The
influence of the motion system characteristics on perception and con-
trol behaviour can be identified by using this approach in a closed-loop
control task in which participants perform a target-following disturbance-
rejection task. In this chapter, the results of an experiment are presented
in which changes in pilot control behaviour are investigated across both
simulators.
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Low-cost motion systems have been proposed for certain training tasks that
would otherwise be performed on high-performance full flight simulators.
These systems have shorter stroke actuators, lower bandwidth, and higher

noise. The influence of these characteristics on pilot perception and control be-
haviour is unknown, and needs to be investigated. In this paper, this is done by
simulating a model of a simulator with limited capabilities on a high-end simu-
lator. The platform limitations, which consist of a platform filter, time delay, and
noise characteristics, can then be removed one by one and their effect on control
behaviour studied in isolation. An experiment was conducted to identify pilot
perception and control behaviour in a closed-loop control task. The time delay and
noise characteristics of the simulators did not have an effect. However, it was found
that the bandwidth of the motion system had a significant effect on performance
and control behaviour. Results indicate that the motion cues were barely used at
all in conditions with a low bandwidth, and that participants relied on the visual
cues to generate lead to perform the control task.

6.1 Introduction

Full flight simulators are used throughout the airline industry, as they provide a
cost-effective and safe alternative for pilot training compared to the real aircraft.
Regulatory bodies have defined manoeuvres and scenario-oriented requirements
for training programs that can be performed in a simulator [FAA, 1992], giving
full flight simulators approval for pilot training. Regulations specify that full flight
simulators must be equipped with a motion system to provide pilots with motion
cues relevant to the training task [ICAO 9625]. The influence of simulator motion
has been the subject of many studies, but the results present inconclusive evidence
on its effectiveness.

For example, the advantages of simulator motion can not be confirmed in
transfer-of-training studies [Bürki-Cohen et al., 1998; Hays et al., 1992]. Recently,
several experiments have investigated the effect of hexapod-platform motion cues
on initial and recurrent training and evaluation of pilots on full flight simulators
[Bürki-Cohen and Go, 2005; Bürki-Cohen et al., 2001; Go et al., 2003; Sparko and
Bürki-Cohen, 2010]. Quasi-transfer of training experiments were performed in
which training without simulator motion and with simulator motion was compared
to training in a full flight simulator. In these experiments, no operationally relevant
differences were found in pilot performance or behaviour in terms of control
activity during training of standard aircraft operations such as engine failures with
continued take-offs and engine-out landing manoeuvres. It was concluded that this
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seems to indicate that there is no benefit of simulator motion cues [Sparko and
Bürki-Cohen, 2010].

A recent meta-analysis on transfer of training also concludes that experts learn-
ing manoeuvring tasks do not seem to benefit from simulator motion. However,
simulator motion seems important for flight-naive subjects learning difficult tasks
[de Winter et al., 2012]. Furthermore, experiments on the influence of the availabil-
ity of simulator motion present evidence for a positive effect of simulator motion
on performance in target following and disturbance rejection during closed-loop
control tasks [Nieuwenhuizen et al., 2009; Pool et al., 2008; Stapleford et al., 1969;
Zaal et al., 2009a]. These experiments focused on the role of simulator motion
as a complementary cue to visual cues and have shown that providing partici-
pants in the simulator with motion cues causes significant changes in pilot control
behaviour.

Apart from the pure availability of motion, certain characteristics of the motion
system can also play a role in its effectiveness. The motion cueing (or washout)
filters transforming the aircraft’s motion into simulator motion can significantly
alter the pilot’s perception and control behaviour [Pool et al., 2010; Ringland
and Stapleford, 1971; Telban et al., 2005]. A different aspect is the influence of
using lower cost motion bases with limited characteristics (e.g., shorter stroke
actuators, lower bandwidth or dynamic range, and lower smoothness or higher
noise). The current study aims to investigate the influence of such basic motion
system characteristics on human control behaviour.

To this end, two different simulators were used, and the differences between
them analysed. A model was made of the MPI Stewart platform, a typical low-cost
electric motion platform, and this model was then simulated on the SIMONA
Research Simulator (SRS) at Delft University of Technology, a large hydraulic simu-
lator with precise properties [Nieuwenhuizen et al., 2010]. By simulating the MPI
Stewart platform on the SRS, its individual characteristics could be manipulated
independently, and even eliminated. The most important characteristics of the MPI
Stewart platform were included in the model: the default 1 Hz platform filter, the
platform time delay, and the platform motion noise properties.

In this paper, the effects of these motion system characteristics on pilot control
behaviour are investigated by independently varying the settings of the MPI Stewart
platform model in a closed-loop pitch tracking control task on the SRS. A similar
approach was used as in previous research [Pool et al., 2010; Zaal et al., 2009a].
In the next section, the characteristics of the MPI Stewart platform are compared
with those of the SRS, and the model of the MPI Stewart platform is summarised.
After that, the setup of the experiment on the SRS will be described. The objective
measurements on pilot performance, control activity, and control behaviour are
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(a) MPI Stewart platform (b) SIMONA Research Simulator

Figure 6.1 – The research simulators at the MPI for Biological Cybernetics and at
TU Delft.

presented next. Finally, the experimental results are discussed and conclusions are
drawn.

6.2 Research simulators

Current flight simulator motion systems almost invariably have a hexapod con-
figuration, in which the motion system consists of six linear actuators that can
be extended independently. This allows the platform to move in six degrees of
freedom. Many platform configurations are used throughout the simulator com-
munity and the variation in characteristics of motion systems between simulators
is considerable.

6.2.1 Comparison of simulator characteristics

In this research, the influence of motion system characteristics of two research
simulators on pilot control behaviour is evaluated. The MPI Stewart platform,
shown in Figure 6.1a, is located at the Max Planck Institute for Biological Cyber-
netics in Tübingen, Germany. In Figure 6.1b, the SIMONA Research Simulator
(SRS) is shown, which is located at Delft University of Technology in Delft, The
Netherlands.

The main characteristics of both simulators are summarised in Table 6.1. The
MPI Stewart platform has electric actuators with a shorter stroke than the hydraulic
actuators of the SRS. Therefore, the linear workspace of the MPI Stewart platform is
significantly smaller than the workspace of the SRS. The workspace in the rotational
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Table 6.1 – Research simulator comparison.

MPI Stewart SRS
platform

Actuators
Type electric hydraulic
Stroke [m] 0.45 1.15
Max. vel. [m/s] 0.3 1
Max. acc. [m/s2] 2 13

Range

Surge [mm] 922 2,240
Sway [mm] 848 2,062
Heave [mm] 500 1,314
Roll [deg] ±26.6 ±25.9
Pitch [deg] +24.1/−25.1 +24.3/−23.7
Yaw [deg] ±43.5 ±41.6

Platform filters
Break freq. fb [Hz] 1 (tuneable) −

degrees of freedom is comparable for both simulators, as this does not depend
much on the actuator stroke, but rather on the layout of the simulator gimbals.

Furthermore, the maximum extension velocity and acceleration capabilities of
the actuators of the MPI Stewart platform are more restricted compared to those of
the SRS, which decreases its dynamic range. Also, the manufacturer of the MPI
Stewart platform has implemented low-pass platform filters with a default break
frequency of 1 Hz, which further reduces the dynamic range of the MPI Stewart
platform.

6.2.2 Model of the MPI Stewart platform

A model of the MPI Stewart platform was created for simulation on the SRS. Various
motion system characteristics can be manipulated independently to reflect either
simulator, and their influence can be assessed through identification of control
behaviour.

In previous research [Nieuwenhuizen et al., 2010], it was found that the dynam-
ics of the MPI Stewart platform could be described with:

HMPI(s) =
1(

1 + 1
2π fb

s
)2 e−τs , (6.1)

where fb indicates the platform filter break frequency, which has a default value of
1 Hz set by the manufacturer of the platform. The time delay τ represents the delay
between sending a motion command and measuring a response of the platform,
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and was found to be equal to 35 ms in describing function measurements in the
pitch and heave degrees of freedom on the MPI Stewart platform.

It was assumed that noise characteristics of the MPI Stewart platform could
be simulated with a filtered white noise signal. It was found that the noise
characteristics in translational heave acceleration could be described with the
following shaping filter:

Hn,z̈ = 0.084
1 + 0.022s

(1 + 0.009s) (1 + 0.008s)
, (6.2)

which is applied to a zero-mean Gaussian white noise sequence with a variance of
1. The standard deviation of the generated noise signal is 4.230 · 10−2 m/s2, and the
maximum amplitude is approximately 0.15 m/s2. In displacement, the generated
noise signal has an amplitude at a sub-millimetre level.

In describing function measurements in pitch and heave on the SRS it was found
that the SRS had a time delay of 25 ms. The dynamic capabilities of the simulator
were sufficient to simulate the model of the MPI Stewart platform. The model
of the MPI Stewart platform was validated on the SRS with describing function
measurements in heave and pitch [Nieuwenhuizen et al., 2010].

6.3 Experiment

The effects of motion system characteristics on pilot control behaviour were investi-
gated in an experiment on the SRS in a closed-loop pitch tracking task. This task has
been performed in previous experiments and the current control task, experimental
procedures, and apparatus are similar to the previous work [Pool et al., 2010; Zaal
et al., 2009a]. In this section, the experimental design and hypotheses are discussed.

6.3.1 Aircraft pitch control task

An aircraft pitch control task was performed as depicted in Figure 6.2. During
a pitch manoeuvre with pitch attitude θ, also vertical motion is present at the
pilot station due to rotations around the centre of gravity and changes in altitude.
The accelerations associated with these types of vertical motion are denoted with
azθ = lθ̈ and az,cg, respectively. However, in this experiment only vertical motion
due to rotations around the centre of gravity, or pitch-heave, were considered, as the
influence on pilot control behaviour of the centre of gravity heave was previously
found to be negligible [Zaal et al., 2009a].

The dynamics of the control task were based on a simplified model of the pitch
attitude dynamics of a Cessna Citation I Ce500, linearised at an altitude of 10,000 ft
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c.g.
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θ, θ̇, θ̈

l

az,cg
az,cg + azθ

Figure 6.2 – Aircraft motion cues at the pilot station during a pitch manoeuvre.
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Figure 6.3 – Schematic representation of the closed-loop pitch control task.

and an airspeed of 160 kt. For this aircraft, the distance l of the pilot station to the
centre of gravity is 3.2 m. The transfer function of the pitch attitude dynamics is
given as:

Hθδe = −10.6189
s + 0.9906

s (s2 + 2.756s + 7.612)
. (6.3)

A schematic representation of the control task is presented in Figure 6.3. In the
task, a pilot controls the pitch angle θ of the controlled element by minimising the
tracking error e, which represents the deviation from a desired path. The control
input gain Kδe ,u, which defines the scaling of stick deflections to model elevator
inputs, was set to -0.2865 for optimal control authority. In addition to visual
information about e, continuous feedback on physical pitch rotation and pitch-
heave vertical motion is available. This results in a pilot response that consisted of
a visual response Hpe, a pitch motion response Hpθ , a pitch-heave response Hpaz ,
and a remnant n to account for non-linear behaviour.

The control task consisted of following a target forcing function ft while at the
same time compensating for a disturbance forcing function fd that acted on the
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Table 6.2 – Experiment forcing function properties.

Disturbance fd Target, ft
ωd [rad/s] Ad [deg] φd [rad] ωt [rad/s] At [deg] φt [rad]

0.383 0.344 -1.731 0.460 0.698 1.288
0.844 0.452 4.016 0.997 0.488 6.089
1.764 0.275 -1.194 2.071 0.220 5.507
2.838 0.180 4.938 3.145 0.119 1.734
3.912 0.190 5.442 4.065 0.080 2.019
5.446 0.235 2.274 5.599 0.049 0.441
7.747 0.315 1.636 7.900 0.031 5.175

10.508 0.432 2.973 10.661 0.023 3.415
13.116 0.568 3.429 14.880 0.018 1.066
17.334 0.848 3.486 17.564 0.016 3.479

control signal u. The forcing function signals were quasi-random signals consisting
of a sum of ten sine waves. The same target and disturbance signals were used as
in previous research [Pool et al., 2010; Zaal et al., 2009a]. The disturbance forcing
function had a variance of 1.6 deg2, and the variance of the target forcing function
was scaled to 0.4 deg2. Thus, the control task primarily involves disturbance
rejection. The forcing function signals were constructed according to the following
equation:

fd,t =
Nd,t

∑
k=1

Ad,t(k) sin (ωd,t(k) · t + φd,t(k)) , (6.4)

in which the subscripts d and t denote the disturbance and target forcing function,
respectively. The amplitude, frequency, and phase of the kth sine wave are indicated
by A(k), ω(k), and φ(k). N is equal to the total number of sine waves in the signals.
The properties of the individual sine waves in the forcing functions is given in
Table 6.2.

6.3.2 Independent variables

To investigate the influence of motion system characteristics on pilot control be-
haviour, the model of the MPI Stewart platform summarised in Eqs. 6.1 and 6.2
was simulated on the SRS. Thus, the characteristics of the motion system could be
manipulated independently. The independent variables in this experiment were
the parameters of the model: the dynamics of the platform filter, the time delay of
the motion system, and the platform noise characteristics.

The experiment had a full factorial design in which all dependent variables
either had a value associated with the MPI Stewart platform or the SRS. This
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Table 6.3 – Experimental conditions.

Condition Platform Time Noise
filter delay

1 (SRS) − 25 ms −
2 − 25 ms +
3 − 35 ms −
4 − 35 ms +
5 1 Hz 25 ms −
6 1 Hz 25 ms +
7 1 Hz 35 ms −
8 (MPI) 1 Hz 35 ms +

resulted in eight experimental conditions that are listed in Table 6.3. The conditions
ranged from motion system characteristics representing the SRS (condition 1) to
representing the MPI Stewart platform (condition 8).

6.3.3 Apparatus

The experiment was conducted on the SIMONA Research Simulator at Delft Uni-
versity of Technology, see Figure 6.1b. During the experiment, participants were
seated in the right pilot seat. The compensatory display given in Figure 6.4 was
presented on the primary flight display located in front of the participant to de-
pict the tracking error e. The latency of the display was determined in previous
experiments and was approximately 25 ms [Stroosma et al., 2007].

Participants used an electrical control-loaded sidestick to give inputs into the
controlled aircraft dynamics. The sidestick did not have a break-out force, and
had a maximum pitch axis deflection of ±14 deg. The roll axis of the stick was
kept at zero position. The stiffness of the sidestick was set to 1.1 N/deg for stick
deflections under 9 deg and to 2.6 N/deg for larger deflections.

Physical motion was provided to the participants in pitch and heave. No motion
filters were used as the control task could be performed one-to-one within the
motion space of the SRS. Participants wore noise-cancelling headphones throughout
the experiment to mask the noise from the actuators of the SRS.

6.3.4 Participants and experimental procedures

In total, nine participants performed the experiment. All were males between 24
and 49 years of age. All had experience with similar closed-loop control tasks in
previous experiments. Two participants had additional experience as aircraft pilots;
one of them was an experienced single- and multi-engine aircraft pilot.
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e

Figure 6.4 – Compensatory display.

Before the experiment, participants were briefed on the research objective. They
were instructed to minimise the tracking error e that was presented on the visual
display within their capabilities. After each experiment run, participants were
informed about their score to motivate them to perform at a maximum level.

The order of the experimental runs was based on a Latin square design. Typi-
cally, two or three repetitions of all conditions were performed in-between breaks.
The participants were trained on the control task until a stable performance level
was reached. The experiment was ended after 5 repetitions were recorded at this
level. Each experimental run lasted 90 s, of which the last 81.92 s were used as
measurement data. The initial 8.08 s were discarded to allow participants to get
used to the system dynamics and experimental task. Data were logged at 100 Hz.

6.3.5 Pilot model

For the identification of pilot control behaviour in this experiment, a similar ap-
proach was taken as in previous research [Pool et al., 2010]. As given in Figure 6.3,
the pilot response consists of a visual response to tracking error Hpe, a response to
simulator pitch motion Hpθ , and a response to simulator heave motion Hpaz .

The model of the visual response Hpe is based on the work by McRuer et al.
[1965]. It was previously shown to be suitable for the identification of the pilot’s
visual response for the controlled element dynamics in this experiment [Pool et al.,
2009, 2010]. The equation for Hpe is given as:

Hpe(jω) = Kv
(1 + tlead jω)2

1 + tlag jω
e−jωτv Hnm(jω) , (6.5)

in which Kv and τv are defined as the pilot visual gain and pilot visual perception
time delay, respectively. The equalisation characteristics of the pilot are represented
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by the lead constant tlead and lag constant tlag. The model for the neuromuscular
dynamics is based on a second order mass-spring-damper system:

Hnm(jω) =
ω2

nm

(jω)2 + 2ζnmωnm jω + ω2
nm

, (6.6)

in which ζnm is the neuromuscular damping and ωnm the neuromuscular frequency.
In the experiment, simulator motion is presented to the pilot in two degrees of

freedom. Therefore, the pilot response to simulator motion is treated separately
in Figure 6.3 for heave and pitch. It is assumed that the vestibular motion is used
by the participants to generate lead as it is considered to be superior to a visual
lead due to a lower perceptual latency [Hosman, 1996]. For the control task in this
experiment it was previously found that the contribution of the pitch and heave
motion responses could be combined into a single response as the lead information
is present in both channels [Pool et al., 2010]. Thus, the motion response of the
pilot was modelled as a pure differentiator and a time delay:

Hpθ(jω) = Km jω e−jωτm Hnm(jω) , (6.7)

in which Km represents the pilot motion gain, and τm is the motion perception time
delay.

6.3.6 Dependent measures

During the experiment, the pitch attitude θ, tracking error e, and the control signal
u were measured. The variances of e and u were considered as measures for
pilot performance and control activity, respectively. Furthermore, the measured
time domain signals were used to determine the parameters of the multi-modal
pilot discussed in the previous section [Nieuwenhuizen et al., 2008; Zaal et al.,
2009b]. The parameters of the pilot model were used to quantify changes in control
behaviour due to the motion system characteristics. The crossover frequencies
and phase margins of the pilot-aircraft system open-loop responses were used as
frequency domain measures for pilot performance and stability.

6.3.7 Hypotheses

Based on previous experiments with the same control task [Pool et al., 2010; Zaal
et al., 2009a], it was hypothesised that the MPI Stewart platform filter would yield
lower performance compared to the SRS motion system dynamics because the
motion cues contain less information to generate lead concerning the aircraft state.
Similarly, the crossover frequencies of the pilot-aircraft open-loop responses were
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expected to be lower as these are indicative of lower performance, and the phase
margins were expected to be higher, which is indicative of higher stability of the
control loop.

The platform time delay could have a similar effect on the ability of participants
to generate lead from the motion cues. If the time delay in the motion system
is higher, the motion cues are less coherent with the control task. However, the
difference in time delay between the SRS and the MPI Stewart platform was small,
and therefore the effect on pilot control behaviour could be negligible.

Finally, the platform noise characteristics could mask the motion cues such that
participants have more difficulty in generating lead, but it was hypothesised that
this effect is small because the amplitude of the platform noise of the MPI Stewart
platform is small in relation to the motion cues associated with the control task.

6.4 Results

The experimental results were analysed with a repeated measures analysis of
variance (ANOVA) to assess possible significant trends in the data. First, results
of the pilot tracking performance and control activity are presented. After that,
results of the multi-modal pilot model identification are given. The error bars in the
results represent the 95% confidence intervals of the means over nine participants,
and have been corrected by adjusting the participant means for between-participant
effects.

6.4.1 Pilot performance and control activity

In Figure 6.5, the variance of the measured experimental signals is given, averaged
over all participants. The error signal e is a measure for the tracking performance,
the control signal u for the control activity, and pitch signal θ provides insight into
the control task. The signal variances have been decomposed into components due
to the target forcing function ft (light grey bars, denoted with t), the disturbance
forcing function fd (dark grey bars, denoted with d), and the remnant n (white bars,
denoted with r) [Jex and Magdaleno, 1978]. The ANOVA results for the variance
decomposition of the experimental signals are given in Table 6.4.

As can be seen is Figure 6.5a, pilot tracking performance was better when
the MPI Stewart platform filter was not present, i.e., when using the SRS motion
system dynamics. When the 1 Hz platform filter of the MPI Stewart platform was
present, performance decreased, which was a highly significant effect as is clear
from Table 6.4. The variance decomposition revealed that the effect was mainly
due to a reduction in the contribution of the disturbance forcing function when
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Figure 6.5 – Variance decomposition of the experimental signals, averaged over
all participants.

Table 6.4 – ANOVA results of the performance and control activity.

Independent Dependent measures

Variables σ2(e) σ2(u) σ2(θ)

Factor df F Sig. F Sig. F Sig.

F 1,8 357.79 ∗∗ 15.00 ∗∗ 1.31 −
T 1,8 0.39 − 2.74 − 0.03 −
N 1,8 3.23 − 0.18 − 0.02 −
F×T 1,8 0.46 − 0.52 − 0.11 −
F×N 1,8 2.31 − 6.87 ∗ 0.15 −
T×N 1,8 2.76 − 0.00 − 2.84 −
F×T×N 1,8 0.80 − 0.41 − 1.19 −

F = platform filter ∗∗ = highly significant (p < 0.01)
T = time delay ∗ = significant (0.01 ≤ p < 0.05)
N = platform noise − = not significant (p ≥ 0.05)
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the platform filter was not present, i.e., with higher bandwidth dynamics of the
motion system. This means that participants were more capable of rejecting the
disturbance in these experimental conditions. There was no effect of the different
time delays in the motion system or the presence of platform noise.

The variance of the control activity is depicted in Figure 6.5b. The control
activity was slightly higher in conditions with the SRS motion system dynamics
compared to conditions with the MPI Stewart platform filter. This effect was
highly significant, see Table 6.4. It was mainly caused by a higher fraction of the
remnant variance. This indicates that the pilot control behaviour contained more
non-linear components. The variance components of the target and disturbance
forcing functions were hardly affected by the experimental conditions and clearly
show that the disturbance rejection was dominant over target following in the
closed loop control task. This is due to the higher power of the disturbance forcing
function (1.6 deg2) with respect to the target forcing function (0.4 deg2).

Furthermore, a significant interaction was found between the platform dynamics
and the platform noise. This is because the control activity was marginally lower
when platform noise was present compared to the absence of platform noise in
conditions without the MPI Stewart platform filter, whereas in conditions with the
platform filter the control activity was marginally higher when platform noise was
present. This effect was not considered important, as the differences in control
activity were generally very small.

For the variance of the pitch signal, given in Figure 6.5c, no significant effects
were found. However, the variance component of the disturbance forcing function
was slightly smaller, and the component of the target forcing function slightly
larger, for the experimental conditions without the MPI Stewart platform filter, i.e.,
with the SRS motion system dynamics. This was due to the better performance in
tracking the target and rejecting the disturbance.

6.4.2 Pilot control behaviour

To quantify changes in control behaviour between the experimental conditions, the
multi-modal pilot model presented in Section 6.3 was fit to the measurement data
with a time-domain MLE identification technique [Zaal et al., 2009b]. The accuracy
of the fit of the pilot model was evaluated by calculating the Variance-Accounted-
For (VAF), which indicates the percentage of the variance in the measured control
signal u that can be explained by the pilot model [Nieuwenhuizen et al., 2008]. The
results are given in Figure 6.6, where is it shown that the pilot model can account
for approximately 89% of the variance in the measurements in all experimental
conditions. Therefore, the pilot model provides an accurate fit. The VAF is slightly
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Figure 6.6 – Pilot model VAF. The experimental conditions are denoted by platform
noise characteristics (− or +), time delay (25 or 35 ms), and platform filter (−
or 1 Hz).

lower in conditions with SRS motion system dynamics compared to conditions
with the MPI Stewart platform filter as the pilot model fit is affected by the higher
non-linear components in these conditions, indicated by the remnant variance
depicted in Figure 6.5b.

6.4.2.1 Pilot-aircraft system open-loop response

The closed-loop control task performed in this experiment was a combination
of following a target and rejecting a disturbance. This configuration yields a
closed-loop system in which the performance depends on attenuating the errors
introduced by both these forcing functions. Therefore, two open-loop responses
need to be considered for this task [Jex and Magdaleno, 1978; Pool et al., 2010;
Zaal et al., 2009a]. The crossover frequencies and phase margins of the disturbance
and target open-loop responses are given in Figure 6.7. The statistical analysis
associated with these results is presented in Table 6.5.

From the statistical analysis it is clear that the MPI Stewart platform filter had
a significant effect on the crossover frequencies and phase margins of both the
disturbance open-loop response and the target open-loop response. When the
platform filter was used the crossover frequencies were significantly lower and the
phase margins were significantly higher compared to the experimental conditions
in which the platform filter was not used. This indicates that the performance in
experimental conditions with the platform filter was lower, whereas stability was
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Figure 6.7 – Crossover frequencies and phase margins. The experimental condi-
tions are denoted by platform noise characteristics (− or +), time delay (25 or
35 ms), and platform filter (− or 1 Hz).

Table 6.5 – ANOVA results of the crossover frequencies and phase margins.

Independent Dependent measures

Variables ωc,d ωc,t ϕm,d ϕm,t

Factor df F Sig. F Sig. F Sig. F Sig.

F 1,8 159.68 ∗∗ 5.98 ∗ 68.95 ∗∗ 27.05 ∗∗
T 1,8 1.34 − 1.24 − 1.17 − 0.17 −
N 1,8 0.00 − 0.45 − 0.54 − 0.21 −
F×T 1,8 13.09 ∗∗ 1.29 − 6.32 ∗ 0.20 −
F×N 1,8 0.24 − 0.14 − 0.17 − 0.17 −
T×N 1,8 1.63 − 2.27 − 0.96 − 4.09 −
F×T×N 1,8 0.02 − 0.88 − 0.24 − 2.80 −

F = platform filter ∗∗ = highly significant (p < 0.01)
T = time delay ∗ = significant (0.01 ≤ p < 0.05)
N = platform noise − = not significant (p ≥ 0.05)
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much higher.
Generally, the disturbance crossover frequency was higher than the target

crossover frequency, and the disturbance phase margin was lower than the target
phase margin. This is due to the emphasis on disturbance rejection over target
following in the control task [Hosman, 1996; Pool et al., 2010; van der Vaart, 1992;
Zaal et al., 2009a].

The time delay and the platform noise did not have a significant effect on
the open-loop responses. Only significant interactions were found between the
platform filter and the time delay for the disturbance open-loop properties. The
influence of the interactions was very small and therefore deemed not important.

6.4.2.2 Pilot model parameters

The results for the estimated pilot model parameters are given in Figure 6.8 and
Figure 6.9. The ANOVA results are summarised in Table 6.6 and Table 6.7. It is
clear from the statistical analysis that the platform filter had a highly significant
effect on all parameters except the neuromuscular damping, where the effect was
significant.

In conditions with the MPI Stewart platform filter, the visual gain Kv was
significantly lower than in conditions without the filter, see Figure 6.8a. This
indicates that the participants responded less strongly to the visual cues. A lower
visual gain increases the errors due to the target and disturbance forcing function
which resembles the effects found in the pilot performance.

The visual lead constant tlead and visual lag constant tlag were both significantly
higher in experimental conditions with the MPI Stewart platform filter as is clear
from Figure 6.8b and Figure 6.8c. This indicates that participants used the visual
cues to generate lead information concerning the aircraft state, i.e., information
on pitch rate. Typically, motion cues would be used as lead, as they provide a
faster way of retrieving this information [Zaal et al., 2006, 2009a]. The need to
generate lead from visual cues in experimental conditions with the MPI Stewart
platform filter indicates that the motion cues were not informative enough in these
conditions.

The results for the visual time delay τv are shown in Figure 6.9a. The visual
time delay was significantly higher for experimental conditions without the MPI
Stewart platform filter. In these conditions, the presence of informative motion
cues diminished the need for fast processing of visual cues. On the contrary, in
experimental conditions where the MPI Stewart platform filter was present the
visual cues were needed to generate lead information. This is supported by the
increased visual lead and lag time constants.
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Figure 6.8 – Multi-modal pilot model equalisation parameters. The experimental
conditions are denoted by platform noise characteristics (− or +), time delay
(25 or 35 ms), and platform filter (− or 1 Hz).

Table 6.6 – ANOVA results of the multi-modal pilot model equalisation parameters.

Independent Dependent measures

Variables Kv tlead tlag Km

Factor df F Sig. F Sig. F Sig. F Sig.

F 1,8 43.36 ∗∗ 60.96 ∗∗ 132.26 ∗∗ 66.20 ∗∗
T 1,8 3.82 − 1.42 − 2.22 − 4.67 −
N 1,8 0.44 − 0.13 − 0.55 − 0.36 −
F×T 1,8 0.02 − 0.92 − 2.08 − 0.23 −
F×N 1,8 0.06 − 0.19 − 1.10 − 0.93 −
T×N 1,8 0.15 − 0.10 − 0.20 − 0.12 −
F×T×N 1,8 1.64 − 0.10 − 0.39 − 0.06 −

F = platform filter ∗∗ = highly significant (p < 0.01)
T = time delay ∗ = significant (0.01 ≤ p < 0.05)
N = platform noise − = not significant (p ≥ 0.05)
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Figure 6.9 – Multi-modal pilot model limitation parameters. The experimental
conditions are denoted by platform noise characteristics (− or +), time delay
(25 or 35 ms), and platform filter (− or 1 Hz).

Table 6.7 – ANOVA results of the multi-modal pilot model limitation parameters.

Independent Dependent measures

Variables τv τm ζnm ωnm

Factor df F Sig. F Sig. F Sig. F Sig.

F 1,8 35.80 ∗∗ 140.10 ∗∗ 6.86 ∗ 53.11 ∗∗
T 1,8 1.50 − 0.08 − 0.34 − 0.00 −
N 1,8 0.75 − 1.55 − 0.05 − 0.14 −
F×T 1,8 7.72 ∗ 0.57 − 0.22 − 1.83 −
F×N 1,8 0.69 − 1.93 − 1.92 − 0.00 −
T×N 1,8 0.39 − 0.61 − 0.60 − 0.84 −
F×T×N 1,8 0.44 − 0.00 − 1.04 − 0.55 −

F = platform filter ∗∗ = highly significant (p < 0.01)
T = time delay ∗ = significant (0.01 ≤ p < 0.05)
N = platform noise − = not significant (p ≥ 0.05)
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The motion gain and motion time delay were both affected by the MPI Stewart
platform filter. In experimental conditions where the filter was present, the motion
gain and the motion time delay were significantly reduced and attained values close
to zero. This indicates that the motion cues were barely used at all and were not
informative enough to be used to generate lead information concerning the aircraft
state. On the contrary, values for the motion gain and time delay in experimental
conditions without the MPI Stewart platform filter indicate that the motion cues
provided the lead information needed to increase tracking performance.

The parameters for the neuromuscular system were both significantly affected by
the MPI Stewart platform filter. The neuromuscular damping ζnm was slightly lower
in experimental conditions with the filter. This indicates that the pilot response was
less damped. Also the neuromuscular frequency was lower in conditions with the
filter, which is indicative of a lower bandwidth of the neuromuscular actuation of
the participants.

Contrary to the extent of the effects of the MPI Stewart platform filter, neither
the time delay nor the platform noise have any significant effect on the identified
pilot model parameters. Only a significant interaction between the filter and the
time delay was found for the visual time delay τv, which was not deemed important
due to the low effect size.

6.5 Discussion

Experiments were performed to investigate the influence of motion system charac-
teristics on pilot control behaviour in a pitch attitude control task with simultaneous
target and disturbance inputs. The most important motion system characteristics
of the MPI Stewart platform were simulated on the SIMONA Research Simulator:
the default 1 Hz platform filter, the platform time delay, and the platform noise
characteristics. The influence of these on pilot control behaviour was determined
by independently varying the settings of the model to represent the SRS or the MPI
Stewart platform.

The main effect found in the experiment concerned the 1 Hz platform filter of
the MPI Stewart platform. The platform filter limited the bandwidth of the motion
system response drastically as compared to the baseline response of the SRS. In
experimental conditions with the platform filter, pilot performance significantly
decreased. Also the control activity was slightly lower in these conditions. The
main cause for the decrease in performance was the greater difficulty of participants
to attenuate the disturbance forcing function.

The decrease in performance in conditions with the platform filter was also
reflected in the open-loop crossover frequencies for the target and disturbance
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open-loop responses of the pilot-aircraft system. These were significantly lower.
The significant increase in phase margins for both open-loop responses indicated
an increased stability of the control loop.

Significant changes in the identified pilot model parameters indicated changes
in pilot control strategy. In experimental conditions with the platform filter, the
pilot visual gain and pilot motion gain were significantly decreased, indicating
a smaller reduction of target and disturbance errors, which is supported by the
reduction in performance. The pilot motion gain attained values close to zero,
such that participants barely used the motion cues at all. Therefore, they had to
rely on the visual cues for generating lead in their control behaviour in conditions
with the platform filter. Visual lead and lag constants were significantly higher.
A decrease in the visual time delay showed that the visual cues were processed
faster compared to experimental conditions without the platform filter. In those
conditions the pilot used the motion cues to generate lead information.

The platform time delay did not have a significant effect on the measured
performance and control activity, or on pilot control behaviour. The difference in
time delay between the SRS and the MPI Stewart platform was 10 ms and, given
that the time delays in the pilot response functions were at least a factor ten larger,
the influence of this delay on pilot control behaviour was minimal.

Also the platform noise characteristics did not have an influence in this exper-
iment. For this control task, the platform noise characteristics were not strong
enough to mask the motion cues, but also did not provide additional information
for generation of lead concerning the aircraft state. In experiments concerning, e.g.,
measurements on pilot motion thresholds, the platform noise characteristics could
play an important role in detecting simulator motion.

The results from this experiment show that the bandwidth of the simulator
motion system plays an important role in the way participants integrate motion
cues in their response to a target-following disturbance-rejection control task. In this
research the bandwidths of two simulators, the SIMONA Research Simulator and
the MPI Stewart platform, were used. In case of the SRS bandwidth, participants
were able to generate lead information from the simulator motion cues, whereas
for the MPI Stewart platform this was not the case. However, with these results
it is not possible to disentangle if this effect is purely caused by a reduction in
bandwidth of the motion cues, or that the associated increase in lag also plays a
role. Therefore, future experiments should cover additional bandwidth settings
and time delays for the motion system to investigate minimal requirements for the
usefulness of motion cues.
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6.6 Conclusion

An experiment was performed in which the influence of the motion system char-
acteristics of two research simulators on pilot control behaviour was evaluated.
A model of the MPI Stewart platform was simulated on the SIMONA Research
Simulator and a pitch attitude control task with target-following and disturbance-
rejection was performed. Through identification of the parameters of a multi-modal
pilot model it was found that the motion system bandwidth had a significant effect
on pilot performance and control strategy to such a degree that simulator motion
was almost not used at all in the low-bandwidth conditions. Instead, participants
relied on the visual cues to perform the control task and generate lead in their
control behaviour. For the conditions evaluated in this research, the time delay and
noise characteristics of the motion simulators only had a marginal effect on the
identified pilot control behaviour. The results in this paper show that simulator
motion cues must be considered carefully in piloted control tasks in simulators
and that measured results depend on simulator characteristics as pilots adapt their
behaviour to the available cues.
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Hpaz pilot pitch-heave motion response
Hpe pilot visual response
Hpθ pilot pitch motion response
Hθδe controlled system dynamics
j imaginary unit [-]
Km motion gain [-]
Kv visual gain [-]
l pitch-heave arm length [m]
N number of points
n remnant [deg]
nd,t forcing function frequency index factor [-]
s Laplace variable
tlag visual lag constant [s]
tlead visual lead constant [s]
u pilot control signal [deg]

Symbols
δe elevator deflection [deg]
φ sinusoid phase [rad]
ϕm phase margin [deg]
σ2 variance
θ pitch attitude [deg]
τ time delay [s]
τm motion time delay [s]
τv visual time delay [s]
ω frequency [rad/s]
ωc crossover frequency [rad/s]
ωnm neuromuscular frequency [rad/s]
ζnm neuromuscular damping [-]

Subscripts
d disturbance
t target



7
Conclusions and

recommendations

Flight simulator regulators allow the use of lower cost motion systems for
non-type specific training tasks with reduced magnitude motion cues com-
pared to full flight simulators. The limited characteristics of these motion

systems, such as shorter actuators, lower bandwidth, and lower smoothness, are hy-
pothesised to have an effect on pilot control behaviour in the simulator. Therefore,
the goal of this thesis was to investigate the influence of differences in simulator
motion system characteristics on perception and control behaviour of pilots in
closed-loop manual control tasks.

Instead of relying on standard-practise subjective pilot ratings, an objective
method was used in this thesis by identifying pilot control behaviour through
estimating the parameters of a pilot model in closed-loop control tasks. In these
tasks, pilots followed a target signal while at the same time suppressing the effects
of a disturbance added to their control input, such that the contribution of different
senses could be separated. By taking this cybernetic approach, insight could be
gained into the influence of visual and vestibular stimuli on multi-modal human
perception and control behaviour.

A novel method for identification of multi-modal human perception and control
behaviour was presented in Chapter 2. In this approach, a linear time-invariant (LTI)
model structure was assumed that was fit to measured signals of an experimental
closed-loop control task. The parameters of the model could be calculated directly
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using a least-squares estimate, and the pilot remnant was incorporated in the model.
This resulted in identified frequency response functions that were more reliable
and that had a smaller variance compared to a spectral method using Fourier
Coefficients. Furthermore, the parameter estimates of the pilot model had a lower
variance.

The final goal of this research was to investigate the influence of differences
in characteristics of simulator motion systems on human perception and control
behaviour. It is difficult to identify which characteristics have the largest influ-
ence on perception and control behaviour and are therefore prime candidates for
improvement. Isolating the differences between simulators and examining their
influences independently is one way of gaining valuable insight. Therefore, two
research simulators were used to investigate the basic properties of simulator
motion systems: 1) the MPI Stewart platform, a mid-size electric simulator with
restrictive characteristics, and 2) the SIMONA Research Simulator (SRS), a larger
hydraulic motion simulator with well-known properties. By creating a model of the
MPI Stewart platform, differences between the simulators could be quantified. By
simulating that model on the SRS, the various simulator motion system limitations
could be varied independently or even eliminated.

The MPI Stewart platform is equipped with electric actuators and represents the
class of flight simulators with low cost motion systems. Its dynamic characteristics
were assessed with a systematic approach based on measurements defined in
the report AGARD-AR-144 in Chapter 3 [Lean and Gerlach, 1979]. After the
implementation of a new software framework, selected dynamic characteristics
were determined with an enhanced platform dynamic response in Chapter 4. The
performance measurements formed the basis for the development of a model of
the MPI Stewart platform. The development of the model and its validation on the
SRS were described in Chapter 5.

The model of the MPI Stewart platform was simulated on the SRS and used
in a closed-loop control experiment. The experimental results were presented in
Chapter 6. Pilots performed a target-following disturbance-rejection task such that
multi-modal control behaviour could be identified. The various motion system
characteristics were systematically adapted such that the simulator represented
either the MPI Stewart platform or the SRS, and thus changes in pilot control
behaviour during the experiment could be related to motion system characteristics
without actually using a different simulator.

The next sections give a concise overview of the findings of this research. First,
the motion system characteristics that could play a primary role in pilot perception
and control behaviour are described. Second, the results from experimental evalua-
tions are presented in which the influence of these motion system characteristics
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are identified in closed-loop control tasks. Third, the generalisation of the results is
discussed. Finally, recommendations for future work are given.

7.1 Properties of simulator motion systems

The first objective of this thesis was to identify the characteristics of simulator
motion systems that could play a role in pilot perception and control behaviour.
The characteristics of the MPI Stewart platform were determined using a stan-
dardised approach in Chapter 3 [Lean and Gerlach, 1979]. In this approach, the
measured output signal from an IMU was partitioned into several components in
the frequency domain such that various characteristics of the motion platform could
be determined, i.e., the describing function, low and high frequency non-linearities,
acceleration noise, and roughness.

The primary finding concerned the platform describing function, which was
dominated by the standard platform filters implemented by the manufacturer.
The filters had a large impact on the other measurements, such as signal-to-noise
measurements and dynamic threshold measurements. The signal-to-noise ratios
are very restricted outside the 1 Hz bandwidth of the platform filters, and the
first-order lag constant that was measured in the dynamic threshold measurements
was relatively high.

A relatively high fixed time delay of 100 ms was also found between the motion
platform input and measured output. This was shown to be related to the software
framework used for driving the platform, which was subsequently updated. This
resulted in a much lower time delay of 35 ms, and the capability to increase the
bandwidth of the platform filters. Thus, the dynamic response of the MPI Stewart
platform could be enhanced, as described in Chapter 4, which was reflected in the
increased bandwidth of the measured describing functions and lower first-order
lag constants found in the dynamic threshold measurements.

Based on these performance measurements, a model was developed for the
main characteristics of the MPI Stewart platform: its dynamic range based on the
platform filters, the measured time delay, and characteristics of the motion noise.
After baseline response measurements were performed on the SRS, the model of
the MPI Stewart platform was implemented and validated with describing function
measurements, as described in Chapter 5.

The baseline response measurements on the SRS response showed a dynamic
response with high bandwidth and a time delay of 25 ms. Measurements during
simulation of the MPI Stewart platform model showed that the SRS could replicate
the model response and time delay characteristics, and that the motion noise model
could be reproduced as well. Thus, the implementation of the total model of the
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MPI Stewart platform on the SRS was validated and systematic changes could be
made to motion system dynamics, time delays, and motion noise characteristics to
study their effect on human control behaviour.

7.2 Influence of motion system characteristics on
control behaviour

The second objective of this thesis was to determine the influence of the motion
system characteristics that were identified under the first objective on pilot control
behaviour in closed-loop control tasks. Two techniques for identification of control
behaviour were compared in Chapter 2: a spectral method based on Fourier
Coefficients and a novel parametric method using LTI models. By assuming a pilot
model structure and by incorporating the pilot remnant, the LTI method is able to
reduce the variances in the estimates and thereby describe the pilot’s behaviour
better than the spectral method.

The effect of simulator motion system characteristics was investigated by simu-
lating a model of the MPI Stewart platform on the SRS and identifying pilot control
behaviour. The model characteristics were varied systematically to represent either
simulator. Participants performed a target-following disturbance-rejection task
such that control behaviour for visual and vestibular perception channels could be
identified simultaneously.

The 1 Hz platform filter of the MPI Stewart platform showed the largest experi-
mental effect. The bandwidth of the motion system response was limited drastically
compared to the baseline SRS response. This resulted in a significant decrease in
pilot performance and significantly lower open-loop crossover frequencies. This
effect was caused by substantial changes in pilot control strategy. Participants
could not reduce target and disturbance errors effectively, and barely used the
motion cues at all in conditions with a limited motion system bandwidth. Instead,
participants relied on visual cues to generate lead in their control behaviour. In
order to compensate for the lack of reliable simulator motion cues, the visual cues
were processed with a lower time delay compared to experimental conditions with
the baseline SRS response.

The experimental evaluation did not show an influence of the different time
delays on pilot control behaviour. However, the time delays of the MPI Stewart
platform and the SRS were both quite small, i.e., 35 and 25 ms, respectively. Thus,
the difference of 10 ms did not have a significant effect as the time delays of the pilot
response functions were significantly larger. Furthermore, the simulator motion
time delays were very similar to the time delay for the visual system of the SRS,
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which is approximately equal to 25 ms [Stroosma et al., 2007]. Therefore, the motion
cues and visual cues were very well synchronised. This is not necessarily the case
for all simulators, as current flight simulator specifications allow a maximum
transport delay of 100 ms for motion cues [ICAO 9625]. This could decrease the
correlation between motion cues and visual cues and have a detrimental effect on
pilot control behaviour [Allen and DiMarco, 1984].

Furthermore, the simulator motion noise characteristics had no influence on
pilot control behaviour. The motion cues due to the noise characteristics were small
compared to the motion cues that resulted from the experimental control task.
Therefore, they did not impair the ability of pilots to generate lead information
from the motion cues for this experimental task. However, simulator motion noise
could potentially play an important role in other types of experimental tasks, e.g.,
measurements on motion thresholds. In that case, motion noise could provide an
informative cue on the presence of simulator motion to the pilot, but this was not
investigated in this thesis.

7.3 Generalisation of the results

The results of this thesis show that pilot perception and control behaviour can
be affected by changes in characteristics of simulator motion systems. These can
even negatively influence performance of pilots to such an extent that motion cues
in an experimental closed-loop control task are barely used at all. However, the
results of this thesis cannot necessarily be generalised to other motion platforms or
experimental tasks.

The simulators used in this research, the MPI Stewart platform and the SIMONA
Research Simulator, are considered representative of a mid-size electric motion
system and a larger hydraulic platform, respectively. Both are equipped with
a Stewart-type motion system that is typical for many flight simulators. The
results presented in this thesis are valid for this type of motion system, but the
cybernetic approach can also be used on other types of motion systems, such
as the CyberMotion Simulator, an anthropomorphic robot located at the Max
Planck Institute for Biological Cybernetics, the Desdemona, a simulator with a
diverse motion envelope located in Soesterberg, The Netherlands, or NASA’s
Vertical Motion Simulator. Furthermore, the current trend of equipping full flight
simulators with electric actuators provides an excellent opportunity to assess
differences in characteristics compared to conventional hydraulic platforms. In
general, the characteristics of large electric actuators do not yet fully meet the
performance of hydraulic actuation systems in terms of motion characteristics
[Allerton, 2009], although the major discrepancies have been eliminated.
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All flight simulators use motion cueing algorithms to attenuate motion from
the flight dynamics model to fit into workspace of the simulator. These algorithms
seek to restore the simulator to its neutral position, such that it is positioned for
new motion cues [Allerton, 2009]. To optimise the repositioning, motion cueing
algorithms need to be tuned, which leads to motion that is washed out, or contains
false cues. This approach can lead to changes in pilot control behaviour for the
experimental task used in this thesis, as other research has shown [Pool et al., 2010],
but which was not specifically evaluated in this research.

The experimental task used in this research is an active and continuous control
task of following a target and rejecting a disturbance. The employed method of
identifying multi-modal human control behaviour necessitated such a task, at the
expense of a more general approach. In other tasks, relevant motion information is
different, e.g., actuator motion noise could interfere in experiments on perception
thresholds for motion or for determining the direction of movement.

The experimental task, combined with a compensatory display that only shows
a tracking error, might not be considered very representative of real piloting. One
participant, an experienced single- and multi-engine pilot, commented on the task
being somewhat “artificial”. Because it focuses on low-level skill-based behaviour,
other tasks related to high-level problem solving or learned behaviour are not taken
into account. These types of tasks are at least equally as important to simulator
fidelity, and simulator motion could have other effects in tasks that are more
representative of piloting an airplane than the task described in this thesis.

Furthermore, pilots performed the control task in a single degree of freedom, i.e.,
the pitch axis. In general, control actions in an airplane occur in multiple axes, e.g.,
when pilots control roll and pitch concurrently, and pilots have to integrate motion
from multiple degrees of freedom. In threshold experiments it has been shown that
thresholds for motion detection in one degree of freedom can be affected by motion
in a different degree of freedom [Zaichik et al., 1999]. Therefore, motion system
characteristics could have a different effect on control behaviour when simulator
motion is provided in multiple axes.

By combining a target-following task and a disturbance-rejection task, pilot
control behaviour could be estimated in two modalities. Although this approach
is a significant improvement over classical lumped models, in which pilot control
behaviour is described by a single frequency response function, it is not possible to
make a distinction between all feedback channels that contribute to human percep-
tion. In this research, visual and vestibular perception channels were considered
dominant over other senses. The influence of other senses, such as proprioception
and somatosensory, could not be determined separately and was assumed to be
included in the model of pilot reaction to vestibular cues.



Conclusions and recommendations 153

7.4 Experimental recommendations

The research presented in this thesis provides valuable insight into the influence of
motion system characteristics on pilot perception and control behaviour. The results
from a target-following disturbance-rejection control task show that participants
are able to generate lead information from simulator motion cues in experimental
conditions with a high bandwidth, whereas for conditions with a reduced band-
width this is not the case. However, the bandwidth characteristics of the simulators
used in this research span a wide range. The SRS provides motion cues with a
bandwidth higher than 10 Hz and the MPI Stewart platform limits the response
of the motion system to 1 Hz. Current full flight simulators commonly provide
motion cues over a bandwidth in-between these two limits.

A hypothesis for the influence of motion system bandwidth in the range from
1 to 10 Hz can be generated based on the dynamics of the vestibular sensors. In
this research, participants performed an aircraft pitch control task. Motion cues in
pitch are sensed by the semi-circular canals that respond to rotational accelerations.
By combining a model of the semi-circular canals [Fernandez and Goldberg, 1971;
Hosman, 1996] with the platform filter presented in Section 5.2.1 and by varying
the platform filter break frequency fb, the dynamic response of lead information
available to participants can be determined:

Hlead, fb
= HSCC Hplatform =

(1 + 0.11s)
(1 + 5.9s) (1 + 0.005s)

1(
1 + 1

2π fb
s
)2 . (7.1)

A Bode diagram of the dynamic response is given in Figure 7.1 for a range of
platform filter break frequencies from 1 to 10 Hz. The frequency range of interest
depends on the frequency content of the experimental forcing functions and ranges
from 0.06 Hz to 2.80 Hz. In this range, the semicircular canals act as an integrator
to rotational accelerations and thus provide a sense of rotational rates that can be
used by participants as a source of lead information. A platform filter with a break
frequency of 1 Hz clearly diminishes these capabilities. When the break frequency
is increased, more lead information becomes available. Around a break frequency
of 4 Hz, lead information is available throughout the entire frequency range of
interest.

However, it is not possible to disentangle if the effect of participants not being
able to generate lead from motion cues is purely caused by a reduction in bandwidth
of the motion cues, or that the associated increase in lag also plays a role. By
varying the time delay of the simulator motion system in an experiment, the lag
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Figure 7.1 – Describing function of semi-circular canal dynamics in combination
with various platform filter break frequencies fb.

and attenuation can be manipulated independently. The dynamic response of lead
information available to participants can now be written as:

Hlead,τ = HSCC Hdelay =
(1 + 0.11s)

(1 + 5.9s) (1 + 0.005s)
e−τs , (7.2)

in which τ represents the motion system time delay. The dynamic response is given
in Figure 7.2 for a range of time delays from 25 to 150 ms.

When time delay is increased, the phase lag in the dynamic response of lead
information available to participants is increased. When the time delay is larger
than 75 ms, the phase response of Hlead,τ decreases past −90 deg. Therefore, the
dynamic response of lead information available to participants does not resemble
an integrator and it is hypothesised that participants would not be able to generate
lead information from the motion cues.

In the experimental pitch control task used in this research, motion cues in
pitch were combined with vertical motion at the pilot station due to rotations
around the centre of gravity. These heave motion cues are sensed by otoliths in the
vestibular organ that respond to linear acceleration. It is assumed that participants
can generate lead in their control behaviour by integrating the otolith output to
provide a sense of velocity [Hosman et al., 2005; van der Steen, 1998]. The dynamic
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Figure 7.2 – Describing function of semi-circular canal dynamics in combination
with various time delays τ.

response of lead information available to participants from the otoliths based on
platform filter break frequency fb and motion system time delay τ can be written
as:

Hlead, fb
=

1
s

HOTO Hplatform =
1
s

(1 + s)
(1 + 0.5s) (1 + 0.016s)

1(
1 + 1

2π fb
s
)2 , (7.3)

Hlead,τ =
1
s

HOTO Hdelay =
1
s

(1 + s)
(1 + 0.5s) (1 + 0.016s)

e−τs . (7.4)

The dynamic response is given in Figure 7.3 and Figure 7.4. It is clear that
the integrated output from the otoliths provide a sense of velocity throughout the
frequency range of interest. In the presence of the platform filter with a limited
bandwidth or a time delay, the dynamic response of Hlead, fb

and Hlead,τ diverges
from its integrator-like behaviour. It is hypothesised that this diminishes the
possibilities of participants generating lead from motion cues.

Based on these observations, future target-following disturbance-rejection con-
trol tasks should cover additional bandwidth settings and time delays for the
motion system to investigate minimal requirements for the usefulness of motion
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Figure 7.3 – Describing function of otolith dynamics in combination with various
platform filter break frequencies fb.
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cues. Furthermore, it is recommended that the influence of motion system band-
width and time delay is investigated separately for pitch and heave motion cues.
For the experimental task performed in this research, it is hypothesised that motion
filter break frequencies below approximately 4 Hz would impede participants in
using motion cues as a source of lead information. Similarly, it is hypothesised
that participants would not be able to generate sufficient lead in their control
behaviour if the motion system time delay is larger than 75 ms. Current flight
simulator requirements allow a time delay of 100 ms [ICAO 9625]. It is expected
that these hypotheses also hold for experiments in which only pitch motion cues
are presented to participants. However, when only heave motion cues are provided,
it is hypothesised that restrictions in bandwidth and an increase in time delay result
in reduced reliance on simulator motion cues as the possibilities of participants
generating lead from motion cues are diminished.

7.5 General recommendations

In this thesis, the influence of the system characteristics of a relatively small
electric platform were compared with a hydraulic motion platform. Currently,
full flight simulators are generally equipped with electric actuators. Even though
the characteristics of large electric actuators do not fully meet the performance
of hydraulic actuation systems, they are preferred because of lower maintenance
and operational costs, and increased safety due to the lack of a hydraulic system
[Allerton, 2009]. Simulator manufacturers are reluctant to publish specifications on
their motion system characteristics, but additional objective insight could be gained
by using the approach described in this thesis. By systematically determining the
characteristics of this new type of motion system, and by using the cybernetic
approach, the influence on control behaviour of discrepancies in comparison to the
previous generation of full flight simulators can be assessed.

As has been shown in this thesis, and in several other resources such as Zaal
et al. [2009] and Pool et al. [2010], simulator motion can have a profound effect
on pilot control behaviour. However, flight simulators are mainly used for pilot
training, and results from transfer-of-training studies generally do not show a
favourable effect of simulator motion. As experimental results from these different
research fields are not readily compared, future research should try to bridge the
gap between these two fields by investigating requirements for simulator motion in
pilot training, for motion system tuning, and for experimental control tasks.

Furthermore, efforts must be undertaken to understand the influence of sim-
ulator motion in more ecologically valid piloting tasks. The cybernetic approach
and the associated type of control task used in this thesis are useful to investigate



158

integration of visual and vestibular information in low-level tasks. However, it
must be extended with more cognitive aspects of behaviour before it can be applied
to investigate the influence of simulator motion in higher-level piloting tasks.

Additionally, more basic research is required for looking into the different
components that contribute to forming a percept of motion. The influence of
proprioception and somatosensory feedback is not well understood, but is difficult
to assess separately. Novel identification techniques could shed some light on this
challenge. A different approach could be to use patients with vestibular deficiencies
as participants in experiments. Similarly, the influence of vestibular information
is currently expressed as a lumped response from both otoliths and semicircular
canals, which measure translational accelerations and respond to rotational acceler-
ations, respectively. New insights could be gained if the contribution to perception
of these sensors could be separated.
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A
The Stewart platform

The basis for the Stewart platform was lain by Gough, who developed a test
machine for tires based on six linear actuators in a hexapod configuration
[Gough and Whitehall, 1962]. The guiding principle for the design was

symmetry of the actuators such that each actuator had the same relationship to all
others. Similar synergetic design principles were employed by Stewart to develop
a flight simulator with motion [Stewart, 1966]. Ironically, current flight simulator
motion systems resemble the original design by Gough, but are commonly referred
to as Stewart platforms. Since its introduction, considerable research interest has
existed for its application in manufacturing and robotics, and the challenges that
surround its dynamics and control. The kinematics and statics of the Stewart
platform are considered to be well understood [Dasgupta and Mruthyunjaya, 2000].

The approach taken in this thesis revolves around modelling the MPI Stewart
platform such that its characteristics can be simulated on the SIMONA Research
Simulator. Therefore, it is required to investigate the kinematic and dynamic
properties of the platform. The approach used in this thesis is based on equations
for a rigid body. This is described in the following sections, which are based on
previous research [Advani, 1998; Harib and Srinivasan, 2003; Koekebakker, 2001].

First, the coordinate systems of the Stewart platform will be assigned. Second,
the platform pose and actuator length vector will be defined, including the asso-
ciated derivatives. Third, the kinematics of the Stewart platform will be treated.
These describe the relation between a given platform pose and the associated
displacement of the actuators, and the reverse relation between a given actuator
state and the associated platform pose. Finally, the rigid-body dynamics of the



162

z
[m

]

y [m]
x [m]

Zc

Yc

Xc

Zci

Yci Xci

Yb

Xb

−0.5
0

0.5
1

−0.5
0

0.5
1

−1.5

−1

−0.5

0

Figure A.1 – Simulator reference frames.

Stewart platform are discussed. These are used to relate a given platform pose,
velocity and acceleration to a corresponding force/torque vector in Cartesian space
that results in such motion.

A.1 Reference frames

Three reference frames are used to describe the motion of a Stewart platform. These
are given in Figure A.1.

A.1.1 Simulator cabin reference frame

The simulator cabin reference frame is denoted with F c and has its origin in the
Upper Gimbal Point (UGP). The UGP is the centre of the upper frame of the motion
system and is generally used as a point for defining simulator motion. If other
points are used to define simulator motion, e.g., the pilot eye reference point, these
are defined with respect to the UGP. The X-axis of the simulator cabin reference
frame point forward in the plane of reference of the simulator. The Y-axis points
to the right, perpendicular to the plane of symmetry. The Z-axis points down, at
perpendicular angles with the other axes.

A.1.2 Simulator cabin inertial reference frame

The simulator cabin inertial reference frame is given by F ci. When the motion
system is in its neutral position, i.e., with all its actuators extended halfway, the
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origin of this reference frame coincides with the simulator cabin reference frame
and is located at the UGP. However, it remains at the same position in space
and does not move with the simulator cabin as it moves through the simulator
workspace. The axes of the simulator cabin inertial reference frame are oriented
similar to the axes of the simulator cabin reference frame.

A.1.3 Simulator base inertial reference frame

The simulator base inertial reference frame is described with F b. The origin of
this reference frame is located directly below the simulator cabin inertial reference
frame, on a plane that intersects the lower gimbals of the actuators. Generally this
is very close to the floor on which the simulator is positioned. The axes of the
simulator base reference frame are oriented similar to the axes of the simulator
cabin inertial reference frame.

A.2 General definitions

The translational degrees of freedom define the position of the Stewart platform.
In surge this is given as xb, in sway as yb, and in heave as zb. The translational
degrees of freedom are grouped in vector c, which is the location of the UGP. The
platform roll, pitch, and yaw angles are denoted as φ, θ, and ψ, respectively.

The platform pose x is a vector that consists of the platform position and
orientation [Advani, 1998; Koekebakker, 2001]:

xb =
[

xb yb zb φ θ ψ
]T

. (A.1)

The transformation of simulator position between the simulator cabin refer-
ence frame F c and the inertial frames of the simulator F ci and F b is defined by
the following matrix which is based on rotations through roll, pitch, and yaw,
subsequently:

Tb
c =

 cos θ cos ψ sin φ sin θ cos ψ− cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ− sin φ cos ψ

− sin θ sin φ cos θ cos φ cos θ

 .

(A.2)
The platform Euler angles φ, θ, and ψ have associated angular velocities of the

cabin given as pb, qb, and rb, which are grouped in vector ωb:

ωb =
[

pb qb rb
]T

. (A.3)



164

The relationship between the angular velocities of the cabin and the derivatives
of the Euler angles is given as follows:

ωb =

 pb

qb

rb

 =

 cos θ cos ψ − sin ψ 0
cos θ sin ψ cos ψ 0
− sin θ 0 1


 φ̇

θ̇

ψ̇

 = R

 φ̇

θ̇

ψ̇

 . (A.4)

A.3 Stewart platform inverse kinematics

The inverse kinematics of a Stewart platform provide a closed-form solution for
determining the length of the actuators (and their time derivatives) from the
platform pose (and its time derivatives).

The inverse position kinematics are formalised by describing the position of the
cabin gimbals with respect to the position of the gimbals on the base of the Stewart
platform. The difference between the gimbal positions specifies the vector between
the actuator attachment points on the base and cabin frame, given by lb, and can
be described as follows for actuator j:

lb
j = cb + Tb

c ac
j − bb

j . (A.5)

The position of the cabin gimbals is determined in F b by adding the gimbal
positions of the cabin, ab, which are transformed from F c with transformation
matrix Tb

c , to the position of the UGP, given by cb. By subtracting the location
vectors of the gimbals of the base, bb, the actuator vectors are found, which are
denoted with lb. The values for the attachment points of the simulator gimbals, ab

and bb, are specified by the platform manufacturer and are given in Appendix B
for the simulators used in this research.

The absolute length of actuator j is calculated by taking the norm of lb
j :

lj = ‖lb
j ‖ , (A.6)

and the associated unit length vector along the actuator axis can be calculated by
scaling the actuator length vector with its absolute length:

nb
j =

lb
j

lj
. (A.7)

The inverse rate kinematics relate the rate of change in platform position to the
rates of actuators. The inverse Jacobian matrix defines this relation, and therefore
defines the relative kinematic efficiency from actuator motion to platform motion
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[Advani, 1998]. The inverse rate kinematics are formalised by differentiating
Eq. (A.5) with respect to time for actuator j:

l̇b
j = ċb + ωb × Tb

c ac
j . (A.8)

By multiplying with the unit length vector, the extension rate of the actuator is
found:

l̇j =
(

nb
j

)T
· lb

j =
(

nb
j

)T
· ċb +

(
nb

j

)T
·
(

ωb × Tb
c ac

j

)
, (A.9)

which can be rewritten as follows by reordering the terms:

l̇j =
(

nb
j

)T
· ċb +

(
Tb

c ac
j × nb

j

)T
·ωb . (A.10)

When written as a matrix equation for all actuators, and by using the relation
between the angular velocities of the cabin and the derivatives of the Euler angles
the inverse rate kinematics can be written as:

l̇ =


(

nb
1

)T (
Tb

c ac
1 × nb

1

)T
R

...
...(

nb
6

)T (
Tb

c ac
6 × nb

6

)T
R





ẋb

ẏb

żb

φ̇

θ̇

ψ̇


= Jlx ẋb , (A.11)

which includes the Jacobian matrix Jlx. The Jacobian has two interpretations
[Koekebakker, 2001]. In a force interpretation, the rows of Jlx give the generalised
forces in platform coordinates given a unit force in an actuator. In a velocity
interpretation, the columns of Jlx specify the velocity of the actuators required to
have a unit velocity of the platform. The inverse of the Jacobian is also useful as it
can, e.g., be used to calculate platform velocities from measurable actuator velocities,
which is useful for model-based control [Koekebakker, 2001]. Furthermore, the
Jacobian can be used to evaluate platform singularities or calculate the condition of
the platform, which represents the joint effort required to achieve a certain velocity
of the platform [Advani, 1998].

The inverse acceleration kinematics can be obtained by differentiating Eq. (A.8).
These equations are not treated here, for a derivation please refer to Harib and
Srinivasan [2003].
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A.4 Stewart platform forward kinematics

The forward kinematics problem of a Stewart platform involves finding the platform
pose xb from measurements of actuator length. As different assemblies can be
made with a given set of actuators lengths, multiple solutions exist to this problem.
It has been proven that there are maximally 40 solutions to the forward kinematics
problem for Stewart platforms [Husty, 1996; Wampler, 1996]. Thus, a numerical
approach is needed to find the platform pose for a given set of actuator lengths.
The problem to be solved is specified as follows:

f (xb) = lb
meas − lb(xb) , (A.12)

in which f (xb) needs to be minimised such that its value is within a given tolerance.
The function specified in Eq. (A.12) can be solved with a Newton-Raphson

approach. This has been shown to provide accurate results depending on the
tolerance that is specified beforehand. The numerical solution of the forward
kinematics problem is then given as:

xb
i+1 = xb

i + J−1
lx (xb

i )
[
lb

meas − lb(xb
i )
]

, (A.13)

in which the initial guess for the platform pose is given as xb
0.

The initial guess of the platform pose is updated in subsequent iterations of
Eq. (A.13) until the result of Eq. (A.12) is smaller than the specified tolerance.
Usually a tolerance in the order of 1× 10−7 is used. In practical applications, a
solution to the forward kinematics problem is usually found in 2 to 3 iterations,
provided that the initial guess for the platform pose is close to the actual pose. This
can be achieved by, e.g., using the desired platform pose.

A.5 Stewart platform dynamics

The dynamics of a Stewart platform are concerned with the relation between the
force/torque vector on the platform and the corresponding accelerations, velocity,
and pose. The inverse dynamics problem defines the relation between the platform
pose, velocity, and acceleration, and the corresponding force/torque vector that
results in this motion. For this problem, a closed form solution exists, which is
detailed in Harib and Srinivasan [2003].

As was the case with the forward kinematics, no closed-form solution exists
for the forward dynamics of a Stewart platform and numerical techniques must
be employed to solve the equations. To derive the forward dynamics, the Stewart
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platform is considered to be a rigid body. The resulting equations are given as
follows in F b [Koekebakker, 2001]:

[
Nb

Tb
c Ac × Nb

]
f b

a =

[
mc I 0

0 Tb
c Ic

c(Tb
c )

T

] [
c̈b

ω̇b

]

+

[
0 0
0 ΩbTb

c Ic
c(Tb

c )
T

] [
ċb

ωb

]
−
[

mcgb

0

]
.

(A.14)

Here, Nb is a matrix that contains the normalised actuator length vectors, Ac is
a matrix that holds the platform gimbal positions in the cabin reference frame,
f b

a are the actuator forces, mc is the cabin mass, I is the identity matrix, Ic
c is the

platform inertia tensor in the cabin reference frame, Ω is a skew-symmetric matrix
that contains the platform angular rates, and gb is the gravity vector.

The dynamics model can be written in reduced form as:

JT
lx f b

a = Mc

[
c̈b

ω̇b

]
+ Cc

(
ẋb, xb

) [ ċb

ωb

]
+ Gc , (A.15)

where the influence of the mass matrix Mc, the coriolis and centripetal effects Cc,
and the gravity Gc are clearly separated. The Jacobian Jlx is used to transform the
actuator forces into the platform coordinate frame.
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A matrix with platform gimbal locations [m]
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b base gimbal location vector [m]
c location of Upper Gimbal Point [m]
F b simulator base reference frame
F ci inertial cabin reference frame
F c simulator cabin reference frame
f actuator force vector [m]
fa actuator force [N]
g gravity vector [m/s2]
I identity matrix -
Ic Inertia tensor [kg m2]
Jlx platform Jacobian matrix
l simulator actuator vector [m]
mc cabin mass [kg]
N matrix with normalised actuator vectors -
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Subscripts
i time step

Superscripts
b simulator base reference frame
c simulator cabin reference frame
ci inertial cabin reference frame
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B
Research simulators

Delft University of Technology and the Max Planck Institute for Biological
Cybernetics operate the simulators used in this research for investigations
into human perception and control behaviour. For example, open-loop

experiments are performed to determine the thresholds or coherence zones of
humans to motion in specific degrees of freedom. The simulators are also used in
investigations into, e.g., aircraft handling qualities or control behaviour in specific
piloting tasks, where humans perform a closed-loop control task.

In this appendix, the characteristics of the MPI Stewart platform and the SI-
MONA Research Simulator are summarised. The geometric characteristics of the
motion systems described here can be used for evaluation of the equations for
the kinematics and dynamics presented in Appendix A. Furthermore, the Stewart
platform kinematics are used to evaluate the workspace of the simulators in the
translational and rotational degrees of freedom.

B.1 MPI Stewart Platform

The MPI Stewart platform is located at the Max Planck Institute for Biological
Cybernetics in Tübingen, Germany. It is based on the mid-size commercial-of-
the-shelf motion system Maxcue 610-450, manufactured by Motionbase, United
Kingdom. An impression of the simulator is shown in Figure B.1. The cabin is
custom built and provides a flexible environment for experimentation. Different
input devices can be used to acquire a multitude of human response, including
joysticks, haptic input devices, button boxes, and a touch screen. Furthermore, the
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Figure B.1 – The MPI Stewart platform at the MPI for Biological Cybernetics.

Table B.1 – Characteristics of the MPI Stewart platform.

Actuators
Type electric
Stroke [m] 0.45
Max. vel. [m/s] 0.3
Max. acc. [m/s2] 2

Range
Surge [mm] 922
Sway [mm] 848
Heave [mm] 500
Roll [deg] ±26.6
Pitch [deg] +24.1/−25.1
Yaw [deg] ±43.5

Platform filters
Break freq. fb [Hz] 1 (tuneable)

flat rectangular display screen can be dismounted such that a circular screen is
revealed.

The motion system of the MPI Stewart platform has a typical hexapod design
and is driven by electric actuators that have a stroke of 45 centimetres. The charac-
teristics of the simulator are given in Table B.1. Most notably, the manufacturer has
equipped the motion system of the MPI Stewart platform with platform filters of
the following form:

Hfilter(s) =
1(

1 + 1
2π fb

s
)2 . (B.1)

These platform filters have a default break frequency fb of 1 Hz.
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Figure B.2 – Gimbal locations of the MPI Stewart platform in the respective
reference frames.

Table B.2 – Gimbal locations of the MPI Stewart platform.

base cabin

leg x [m] y [m] x [m] y [m]

1 -0.327 -0.730 0.226 -0.556
2 0.796 -0.082 0.369 -0.473
3 0.796 0.082 0.369 0.473
4 -0.327 0.730 0.226 0.556
5 -0.469 0.648 -0.594 0.082
6 -0.469 -0.648 -0.594 -0.082

The actuators of MPI Stewart platform are arranged in a standard configuration
for a Stewart platform. The upper frame, to which the cabin is attached, and the
lower frame, or base frame, are two rigid bodies. The gimbals of the six actuators
are positioned at intervals of 120 degrees on the frame. The gimbal locations in the
base frame and the cabin frame are shown in Figure B.2, and the numerical values
of the gimbal positions are given in Table B.2.

B.2 SIMONA Research Simulator

The SIMONA Research Simulator (SRS), see Figure B.3, is located at Delft University
of Technology in Delft, The Netherlands. The simulator was completely developed
and built at TU Delft through a collaboration between several faculties of the
university. The design was optimised to minimise the system weight. The cabin is a
load-bearing structure and is mostly made of composites. Contrary to conventional
Stewart platforms, such as the MPI Stewart platform, the actuators of the motion
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Figure B.3 – The SIMONA Research Simulator at TU Delft.

Table B.3 – Characteristics of the SIMONA Research Simulator.

Actuators
Type hydraulic
Stroke [m] 1.15
Max. vel. [m/s] 1
Max. acc. [m/s2] 13

Range
Surge [mm] 2,240
Sway [mm] 2,062
Heave [mm] 1,314
Roll [deg] ±25.9
Pitch [deg] +24.3/−23.7
Yaw [deg] ±41.6

system are directly attached to the cabin to avoid the need for a separate upper
frame on which the cabin rests.

The characteristics of the simulator are given in Table B.3. The motion system
of the SRS is equipped with hydraulic actuators, which allow for very smooth
operations. Compared to the MPI Stewart platform, the actuators have a larger
stroke, and higher maximum velocity and acceleration capabilities.

The actuator layout of the SRS is shown in Figure B.4, and the numerical values
of the gimbal positions are given in Table B.4. The layout of the SRS motion system
is similar to the MPI Stewart platform, except that the X-axis points in the opposite
direction with respect to the triangular simulator base and cabin frames. This
means that there is a slight difference in the form of the simulator workspace.
However, this is not very pronounced near the neutral point of the simulators,
which is the point in the simulator workspace the actuators are extended halfway.
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Figure B.4 – Gimbal locations of the SIMONA Research Simulator in the respective
reference frames.

Table B.4 – Gimbal locations of the SIMONA Research Simulator.

base cabin

leg x [m] y [m] x [m] y [m]

1 1.071 1.255 1.597 0.100
2 0.551 1.555 -0.712 1.433
3 -1.623 0.300 -0.885 1.333
4 -1.623 -0.300 -0.885 -1.333
5 0.551 -1.555 -0.712 -1.433
6 1.071 -1.255 1.597 -0.100
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Figure B.5 – Geometric definition of the SIMONA Research Simulator (left) and
the MPI Stewart platform (right).

B.3 Simulator workspace comparison

The workspace of a Stewart platform is determined by assessing the extent to which
the simulator can move in all degrees of freedom. This is done by evaluating the
inverse kinematics given in Section A.3. In this analysis, the workspace for the
translational and rotational degrees of freedom are treated separately, even though
the degrees of freedom of a Stewart platform are highly coupled.

First of all, Figure B.5 shows a comparison between the layout of the motion
systems of the MPI Stewart platform and the SRS. The difference in size between
the simulators is obvious, but it is clear that the layout of the gimbals is very similar.

The translational workspaces for the MPI Stewart platform and the SRS are
given in Figure B.6. The workspace is determined while keeping the rotational
degrees of freedom fixed at 0 degrees. The influence of the actuator length is very
obvious. As the actuators have a smaller stroke, the workspace of the MPI Stewart
platform is much smaller than the workspace of the SRS. The difference in gimbal
layout between the simulators results in a slightly different form of the workspace
volume. The differences in workspace volume are clearly visible in the contour
plots of the translational simulator workspaces given in Figure B.7. A separate and
more detailed representation of the workspace of the MPI Stewart platform is given
in Figure B.8.

The rotational workspace for the MPI Stewart platform and the SRS is given in
Figure B.9. It is determined while keeping the translational degrees of freedom
fixed at 0 m. The workspace volume is comparable for both simulators, as it does
not depend on the actuator stroke but rather on the layout of the simulator gimbals.
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As the geometry of the simulators is generally the same, the rotational workspace
is very similar.

The similarity of the rotational workspace of both simulators is also apparent
from the contour plots of the workspace, given in Figure B.10. However, the
difference in the direction of the simulator X-axis with respect to the triangular
simulator base and cabin frames introduces slight differences.

z
[m

]

y [m] x [m]
−1

0
1−1

0
1

−0.5

0

0.5

(a) MPI Stewart platform

z
[m

]

y [m] x [m]
−1

0
1−1

0
1

−0.5

0

0.5

(b) SIMONA Research Simulator

Figure B.6 – The translational simulator workspaces around the neutral point.
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Figure B.7 – Contour plots of the translational simulator workspaces around the
neutral point.



Research simulators 179

z
[m

]

y [m] x [m]
−0.5

0
0.5−0.5

0
0.5

−0.2

0

0.2

z
[m

]

x [m]

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

z
[m

]

y [m]

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

y
[m

]

x [m]

−0.5 0 0.5

−0.5

0

0.5

Figure B.8 – The translational workspace of the MPI Stewart platform and contour
plots.



180

ψ
[d

eg
]

θ [deg] φ [deg]
−20 0 20−20 0 20

−40

−20

0

20

40

(a) MPI Stewart platform

ψ
[d

eg
]

θ [deg] φ [deg]
−20 0 20−20 0 20

−40

−20

0

20

40

(b) SIMONA Research Simulator

Figure B.9 – The rotational simulator workspaces around the neutral point.
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Nomenclature

fb platform filter break frequency [Hz]
H transfer function
s Laplace variable
x, y, z position [m]

Symbols
φ, θ, ψ platform orientation [deg]

Superscripts
b simulator base reference frame
c simulator cabin reference frame



C
Measurement setup

Performance measurements as described in Chapter 3 of this thesis require a
flexible measurement setup to drive the simulator and measure its response.
A custom software framework was developed based on hardware that is

commercially available. An overview of the components involved in the measure-
ment setup is given in Figure C.1. The setup consists of a real-time controller in
combination with a Field Programmable Gate Array (FPGA). This system generates
the input signal to the motion system of the MPI Stewart platform and commu-
nicates with the Inertial Measurement Unit (IMU) mounted on the simulator to
measure its response. In the next section, an overview of the hardware components
and software modules is given.

C.1 Measurement hardware

The measurement setup is used to assess the performance of the MPI Stewart
platform, of which the characteristics were described in Appendix B. The measure-
ment setup simultaneously serves as a controller and a measurement device. This
reduces its complexity as real-time network communication does not have to be
considered. Instead, commands to the simulator are generated on the same device
that measures its response with an IMU. The components of the measurement
setup are commercially available, but need to be integrated into a single system.
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Figure C.1 – Overview of the setup used for measurement.

C.1.1 Measurement device

The real-time controller used in the measurement setup is a cRIO-9012 by National
Instruments Corp., U.S.A. It features a 400 MHz processor with 128 MB non-
volatile storage and 64 MB RAM. Once a real-time program has been developed,
it can be loaded onto the controller via an Ethernet port. However, once the
program is running, the port can also be used for TCP/UDP communication with
other systems. Furthermore, the controller is equipped with a USB host port for
connecting flash and memory devices to extend storage capabilities. Finally, the
controller is equipped with a RS232 serial port for connection to peripherals, but
this port is not used in the measurement setup.

The FPGA that is attached to the real-time controller features hot-swappable
input/output modules that can be used to connect sensors and actuators. In this
setup, only a digital input/output module was used for communication with the
IMU. The FPGA can run at 40 MHz, which results in a clock cycle of 25 ns. As
code can be run in parallel, additional computations do not necessarily slow down
the FPGA program.
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C.1.2 Inertial Measurement Unit

The IMU used in the measurement setup is an ADIS16355 inertial sensor from Ana-
log Devices, Inc., U.S.A. It is based on micro-electro-mechanical systems (MEMS)
technology, which uses very small mechanical devices driven by electricity. A linear
power supply is needed to power the IMU, as any fluctuations in input voltage
influence the sensor output of the IMU. The IMU consists of three accelerometer
and three gyroscopes that are integrated with signal processing chips to provide a
sensor for calibrated inertial sensing. The measurement range for the accelerome-
ters is ±10 m/s2 and for the gyroscopes ±300 ◦/s. The dimensions of the complete
sensor package are approximately 23 mm × 23 mm × 23 mm.

Communication with the sensor is performed over a Serial Peripheral Interface
(SPI). An SPI is a synchronous serial data link between a single master device and
one or more slave devices. Data frames are communicated between the devices over
a digital link. The IMU has multiple data registers that contain measurement data
from the individual sensors, which the master device can read sequentially. The
data from the IMU is obtained at the maximum sample rate of 819.2 Hz through a
connection between the digital input/output module on the FPGA and the IMU.

C.2 Measurement software

The measurement hardware was acquired specifically for its tight integration with
the LabVIEW programming environment, developed by National Instruments
Corp., U.S.A. Programming is done in a graphical environment that resembles
a flowchart. The program can be compiled directly into a real-time application
that runs on the measurement hardware. Naturally, LabVIEW does not guarantee
real-time performance but it provides many tools to ensure that the program code
runs optimally. The code for the performance measurements is divided into two
pieces of software: the main program that runs on the real-time controller, and a
driver for the IMU that is compiled for the FPGA. An overview of the software
components is given in Figure C.1.

C.2.1 Real-time program

The main program that runs on the real-time controller is concerned with creating
the signals to drive the MPI Stewart platform, performing the measurement, and
saving measurement data. The program is controlled through a graphical user
interface. The necessary communication connections and data buffers are created
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during initialisation. Once this is done, the appropriate measurement can be started
and the measurement program is invoked.

The measurement program forms the core of the real-time program and consists
of a module that creates the measurement signals, and the measurement loop.
The generated measurement signals are stored in a data buffer that is read from
the measurement loop. In this loop, three processes run concurrently. In the first
process, the input signals are sent to the MPI Stewart platform over a UDP network
connection. The simulator sends the length of its actuators back, which are stored
in a data buffer. The second process saves data from the measurement signal buffer
and the data buffer in a binary format at a rate of 100 Hz. A third process is
involved with reading IMU data from an buffer and saving it to a binary file at a
rate of 819.2 Hz. This buffer forms a connection between the real-time controller
and the FPGA, and is filled by the IMU software driver.

C.2.2 Measurements with the IMU

The IMU that is mounted on the MPI Stewart platform is read out through a digital
communication protocol. Communication with the IMU was performed through a
digital input/output module that was connected to the FPGA. A software driver
was programmed on the FPGA to implement the communication protocol. The core
of the FPGA software was formed by a state machine that could send out bits of
data and write commands to the data registers on the IMU. Concurrently, inertial
measurement data was read out, and all IMU data were logged at the maximum
IMU rate of 819.2 Hz.

C.2.3 Post-processing of the measurement data

As data are logged at different rates, post-processing of the measurement data is
required to align the measured signals in time. Furthermore, as the IMU is a MEMS-
based device, data from the IMU contain a relatively high level of measurement
noise. Therefore, data from the IMU are recorded at the maximum rate such that a
digital filter can be applied during post-processing of the data to remove the effects
of measurement noise to a large degree. For this purpose, a digital FIR-filter with
201 taps, a cut-off frequency of 15 Hz, and a Chebyshev window with sidelobe
attenuation of 70 dB was created. The frequency response of this filter is shown in
Figure C.2a. It is clear that the filter introduces no changes in amplitude and phase
until the break frequency of 15 Hz, but that after the break frequency amplitudes
are greatly reduced. Therefore, large changes in phase introduced by the filter at
frequencies beyond the break frequency do not have a detrimental effect.
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The digital FIR filter is used to filter the translational accelerations from the IMU.
As the gyroscopes in the IMU measure rotational rates, these signals need to be
differentiated. For this purpose a differentiating Savitzky-Golay filter is used with
an order of 9 and using 69 points to obtain rotational accelerations. The frequency
response of the filter is shown in Figure C.2b. It behaves as a true differentiator up
to 25 Hz. After this frequency, the filter response does not behave appropriately,
but this effect is cancelled out by simultaneously using the digital FIR filter during
resampling of the data. This approach also reduces the effects of measurement
noise.

The digital filters are used to resample the measurement data from the IMU to
100 Hz, such that they are aligned to the data on actuator lengths from the MPI
Stewart platform and the measurement data. These data are used in an analysis
program to determine several performance metrics of the MPI Stewart platform,
such as the describing function, the low and high frequency non-linearities, the
acceleration noise, and the roughness.
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Figure C.2 – Frequency responses of the filters used for IMU data. The associated
sampling frequency is 819.2 Hz.



D
Experiment Briefing

Before the start of the experiment described in Chapter 6, participants received
a briefing that is provided in this appendix. In addition, an extensive oral
briefing was given to participants about the objectives of the experiment,

the task they had to perform, and the experimental procedures. As all participants
had previously performed similar control tasks in the SIMONA Research Simulator,
only a short safety briefing was provided. Participants were encouraged to ask
questions related to the experiment to clarify any confusion.
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SIMONA Experiment Briefing

The Influence of Motion System

Characteristics on Pilot Control Behaviour

This experiment will focus on the influence of different motion system characteristics on pilot

control behaviour in a aircraft pitch attitude control task. The experiment will be performed on

the SIMONA Research Simulator. This briefing contains a short overview of the experiment

and explanations about the experimental procedures.

Objective

Flight simulators are being used for pilot training throughout the world. However, there is no

consensus on the need for simulator motion systems. Although many experiments have shown

positive effects of simulator motion in closed-loop control experiments, there are also various

experiments that do not show a transfer of training effect of simulator motion with current

commercial simulator technology. These results show that the influence of simulator motion

systems on pilot control behaviour is still not fully understood.

This experiment aims to provide more insight into the influence of motion system characteristics

such as the dynamic properties of the platform. For this purpose, the dynamics of the mid-size

MPI Stewart platform are simulated on the SIMONA Research Simulator, see Figure 1. By

systematically changing the motion characteristics of the simulator, we will gain insight into

their influence on the pilot’s control behaviour.

Figure 1: The MPI Stewart platform and the SIMONA Research Simulator.

Aircraft Pitch Motion

During flight, pilots experience both rotational pitch and vertical heave motion when controlling

the pitch angle of the aircraft, see Figure 2. Due to changes in the lift force on the wings, the

aircraft’s centre of gravity (c.g.) moves vertically when pitching the nose up or down. Addition-

ally, the pilot station is well in front of the aircraft’s centre of gravity, and pitch rotation around

the c.g. causes vertical acceleration at the pilot’s seat. In this experiment the rotational pitch

1
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cues and the vertical heave cues due to pitch motion will be used. The heave motion cues of the

centre of gravity are not taken into account.

c.g.
pilot station

θ

l

azcg

azcg + azθ

Figure 2: Aircraft motion cues at the centre of gravity and pilot station.

Control Task

Your task in this experiment is to control the pitch attitude of a Cessna Citation I. The aircraft

model has been linearised at an altitude of 10000 feet and an airspeed of 160 knots. Your objective

is to track a randomly changing reference pitch angle ft, while the aircraft is constantly being

perturbed by a disturbance signal fd. The difference between the desired aircraft pitch angle

and the actual pitch angle θ is shown on a display. Rotational pitch accelerations and vertical

heave accelerations related to rotation around the aircraft’s centre of gravity are presented with

the simulator motion system. The structure of the closed-loop control task is given in Figure 3.

+

+

+

−

pilot

e θ

θ

u

azθazθ

aircraft

ft

fd

Figure 3: The closed-loop control task.

Apparatus

e

Figure 4: Compensatory Display.

The experiment will be performed on the SIMONA Re-

search Simulator. You will be seated in the right pilot

seat and you will use a sidestick for controlling the pitch

angle of the aircraft. The roll axis of the sidestick is not

used and will be fixed. A compensatory display is used

for showing the error e between the reference pitch an-

gle and the actual pitch angle of the aircraft, see Fig-

2
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ure 4. Note that this display does not give you informa-

tion on the actual pitch angle of the aircraft. The outside

visual system is not used during the experiment.

Experimental Conditions

In this experiment, 3 different variables are investigated. The MPI Stewart platform differs from

the SIMONA Research Simulator in terms of dynamics, time delay and noise properties. These

characteristics are manipulated systematically, as given in Table 1. In total, eight experimental

conditions will be tested.

Table 1: Experimental conditions.

condition Dynamics Time delay Noise

1 MPI MPI MPI

2 MPI MPI SIMONA

3 MPI SIMONA MPI

4 MPI SIMONA SIMONA

5 SIMONA MPI MPI

6 SIMONA MPI SIMONA

7 SIMONA SIMONA MPI

8 SIMONA SIMONA SIMONA

Experimental Procedure

Your task in this experiment is to track the reference pitch signal as accurately as possible. That

means that you should try to keep the error as close to zero as possible. At the end of each

experimental run a score is calculated based on your performance and communicated to you.

Try to constantly improve your score.

Before the measurement runs of the experiment you will be able to train on the control task.

First you will perform some experimental runs without the disturbance signal present such that

you can get used to the aircraft dynamics. After that, all the experimental conditions will be

trained. Finally, the measurement runs will be repeated five times.

We will take regular breaks, at least after two experimental blocks of all eight conditions. Please

indicate when you would like to rest for a moment in between runs, or if you experience any

discomfort. Each experimental run lasts 90 seconds. The duration of the entire experiment is

approximately 4 hours.

3



Samenvatting

Veranderingen in
Vliegerstuurgedrag

voor Verschillende Stewart
Platform Bewegingssystemen

Frank M. Nieuwenhuizen

Vluchtsimulatoren bieden een effectieve, efficiënte en veilige omgeving
voor het oefenen van vlucht-kritische manoeuvres zonder dat daarbij

een echt vliegtuig nodig is. De meeste simulatoren zijn voorzien van een
bewegingssysteem van het Stewart-type, dat bestaat uit zes lineaire actuatoren
in een hexapod configuratie. De reden om bewegingssystemen in simulatoren
te gebruiken komt voort uit de aanwezigheid van beweging gedurende de echte
vlucht. Het wordt verondersteld dat als vliegers in een vast opgestelde simulator
zouden trainen, ze hun gedrag aan zouden passen en dat dit zou resulteren in
incorrect gedrag in het vliegtuig. Tevens wordt verondersteld dat als vliegers zonder
simulatorbeweging zouden trainen, de aanwezigheid van beweging gedurende de
vlucht zou kunnen leiden tot desoriëntatie van de vlieger, wat schadelijke gevolgen
voor zijn of haar prestaties kan hebben. Tenslotte hebben vliegers zelf een sterke
voorkeur voor de aanwezigheid van vestibulaire beweging in simulatoren. Vanwege
deze redenen worden bewegingssystemen in simulatoren gebruikt om de beweging
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van het vliegtuig zoals die wordt ervaren in de vlucht zo waarheidsgetrouw
mogelijk te reproduceren en om de vlieger te voorzien van de meest realistische
omgeving voor training.

Toezichthouders op vluchtsimulatoren laten ook het gebruik van gelimiteerde
bewegingssystemen toe die beweging aanbieden met een gereduceerde amplitude
ten opzichte van volledig uitgeruste simulatoren (zogenaamde “full flight simu-
lators”) voor bepaalde trainingstaken die niet specifiek voor een bepaald type
vliegtuig gelden. Het wordt verondersteld dat de gelimiteerde karakteristieken van
deze bewegingssystemen, zoals kortere actuatoren, lagere bandbreedte en minder
vloeiende beweging, een effect hebben op het gedrag van de vlieger in de simulator.
In plaats van te vertrouwen op subjectieve classificaties van de vlieger om deze
effecten te kwantificeren, zoals die standaard worden toegepast, zou het beter zijn
om menselijke perceptie en stuurprocessen op het niveau van vaardigheden te
beschouwen. Dit kan dienen als een maat voor de invloed van een simulator op
het perceptueel-motorische en cognitieve vliegergedrag voor een bepaalde taak en
omgeving.

Vaardigheidsgebaseerd gedrag representeert het laagste niveau van mense-
lijk cognitief gedrag en heeft betrekking op elementaire informatieverwerking en
stuurtaken. Het onderzoeken van dit niveau van menselijk gedrag verschaft een
objectieve manier om perceptie en stuurgedrag in een simulatoromgeving te evalu-
eren. Met een cybernetische aanpak kan dit vaardigheidsgebaseerd gedrag worden
geëvalueerd in proeven in de simulator. In deze aanpak wordt een mathematisch
model geschat op de gemeten respons van een vlieger, en de veranderingen in
de geïdentificeerde parameters dienen vervolgens als maat voor veranderingen in
menselijk gedrag. De bijdrage van visuele en vestibulaire informatie aan gedrag
kan worden gemeten door stuurtaken uit te voeren in een gesloten lus. In deze
taken volgen vliegers een doel, terwijl ze tegelijkertijd voor een verstoring moeten
compenseren. Hierdoor kunnen geobserveerde prestatieveranderingen worden
gecorreleerd aan veranderingen in geïdentificeerd stuurgedrag en gerelateerd aan
veranderingen in experimentele condities.

Het doel van dit proefschrift was om de cybernetische aanpak toe te passen in
een onderzoek naar de invloed van de eigenschappen van bewegingssystemen van
gelimiteerde simulatoren op perceptie en stuurgedrag van vliegers. Ter vergelijking
werden simulatoren met een bewegingssysteem met hoge nauwkeurigheid gebruikt.

Een eerste motivatie werd gevormd door de tegenstrijdigheden in de resultaten
van verschillende onderzoeken naar de invloed van beweging van simulatoren. De
gelimiteerde kennis van menselijke perceptie en stuurprocessen is een belangrijke
reden voor het gebrek aan consensus in deze studies. Een multimodale cyberneti-
sche aanpak kan een gedetailleerder beeld geven door de bijdrage van individuele
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modaliteiten in perceptie te scheiden. Een tweede aanleiding was de onduidelijk-
heid over de invloed van de karakteristieken van gelimiteerde bewegingssystemen
op menselijk gedrag in de simulator.

Om het doel van dit proefschrift te bereiken werden twee doelstellingen gefor-
muleerd: 1) stel vast welke karakteristieken van een bewegingssysteem invloed
kunnen uitoefenen op perceptie en stuurgedrag van vliegers, en 2) bepaal de in-
vloed van deze karakteristieken op het stuurgedrag van vliegers in experimentele
evaluaties. Door de karakteristieken van een gelimiteerde simulator te vergelijken
met die van een simulator met hoge nauwkeurigheid is het mogelijk te specificeren
welke eigenschappen van het bewegingssysteem het belangrijkste zijn voor mense-
lijk stuurgedrag. Als de karakteristieken van een gelimiteerd bewegingssysteem
gemodelleerd zijn en het model gesimuleerd kan worden op een nauwkeurige
simulator kunnen de limitaties van het bewegingssysteem systematisch worden
gevarieërd. Zo kunnen beide simulatoren worden gerepresenteerd, of elke ‘virtuele’
simulator die hier tussen valt. De cybernetische aanpak kan dan worden gebruikt
om het stuurgedrag van vliegers te identificeren, en de adaptatie van stuurstrate-
gieën van de vlieger kunnen vervolgens worden gerelateerd aan veranderingen in
de bewegingssignalen die tijdens actieve stuurtaken in de simulator beschikbaar
zijn.

Om de eerste doelstelling te bereiken werden twee onderzoekssimulatoren
gebruikt om de fundamentele karakteristieken van bewegingssystemen van simula-
toren te onderzoeken: 1) het MPI Stewart platform, een middelgrote elektrische
simulator met beperkte karakteristieken, en 2) de SIMONA Research Simulator
(SRS), een grotere hydraulische simulator met bekende eigenschappen. De ei-
genschappen van het MPI Stewart platform werden bepaald met behulp van een
gestandaardiseerde aanpak, waarin de gemeten signalen van een traagheidssensor
in het frequentie-domein werden gepartitioneerd in verschillende componenten. Zo
konden verschillende karakteristieken van het bewegingssysteem worden bepaald.
Hieronder vallen de frequentie responsies, laag- en hoog-frequente niet-lineariteiten,
acceleratie ruis en hogere harmonische en stochastische componenten.

Het primaire resultaat van deze metingen bestaat uit de frequentie responsies
van de simulator, die werden gedomineerd door de standaard platformfilters geïm-
plementeerd door de fabrikant. Buiten de 1 Hz bandbreedte van de platform filters
was de signaal-ruis verhouding erg laag. Ook was de eerste-orde tijdsconstante van
dynamische drempelmetingen relatief hoog. Dit betekent dat de simulatorrespons
bij een stap-stimulus van 0.1 m/s2 in acceleratie traag was en pas na 300 ms 63%
bedroeg. In de eerste metingen werd een relatief hoge tijdsvertraging gevonden
tussen het sturen van een bewegingsstimulus en het meten van een respons. Uit de
metingen bleek dat dit gerelateerd was aan de software die werd gebruikt voor de
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aansturing van de simulator. De software werd voorzien van een update, wat in
een veel lagere tijdsvertraging van 35 ms resulteerde.

Op basis van deze prestatiemetingen werd een model ontwikkeld dat de belang-
rijkste karakteristieken omvatte: het dynamische bereik gebaseerd op de platform
filters, de gemeten tijdsvertraging en de eigenschappen van de bewegingsruis (of
ruwheid). Na metingen om een uitgangswaarde van de SRS te bepalen werd
het model van het MPI Stewart platform geïmplementeerd en gevalideerd met
metingen van frequentie responsies.

De metingen voor de uitgangswaarde van de SRS lieten een dynamische res-
pons zien met een bandbreedte hoger dan 10 Hz en een tijdsvertraging van 25
ms. Metingen gedurende simulaties van het MPI Stewart platform model lieten
zien dat de SRS de dynamische respons van het model, de karakteristieken van
de tijdsvertraging en de bewegingsruis goed kon reproduceren. Daarmee werd de
implementatie van het totale model van het MPI Stewart platform gevalideerd op
de SRS en konden systematische veranderingen worden aangebracht in de dyna-
mica van het bewegingssysteem, de tijdsvertragingen en karakteristieken van de
bewegingsruis, zodat het effect van deze karakteristieken op menselijk stuurgedrag
kon worden onderzocht. Met deze resultaten werd de eerste doelstelling van dit
proefschrift behaald.

De tweede doelstelling werd in twee fasen aangepakt. In de eerste fase werd
een nieuwe parametrische methode ontwikkeld voor het identificeren van men-
selijk stuurgedrag en werd die vergeleken met een gevestigde spectrale methode
gebaseerd op Fourier coëfficienten. De resultaten lieten zien dat het met de pa-
rametrische methode mogelijk was om de variantie in de schattingen omlaag te
brengen door een structuur voor het vliegermodel aan te nemen en door vliegerruis
in het model op te nemen. De analytische berekeningen van de systematische
afwijking en variantie in beide methoden werden gevalideerd door middel van het
uitvoeren van 10.000 simulaties en beide methodes werden met succes toegepast
op experimentele data van multimodale stuurtaken in een gesloten lus.

In de tweede fase werd onderzocht wat de invloed was van de karakteristieken
van het bewegingssysteem van een simulator op menselijk stuurgedrag. Hiervoor
werd het model van het MPI Stewart platform gesimuleerd op de SRS. De ka-
rakteristieken van het model werden systematisch aangepast in een experiment
met een stuurtaak in een gesloten lus, waarbij tegelijkertijd een volg- en versto-
ringssignaal werden geïntroduceerd. Hierdoor kon het stuurgedrag van de vlieger
worden geschat in de visuele en vestibulaire modaliteiten. Deelnemers aan het
experiment voerden een langshelling volgtaak uit met een gesimplificeerd model
van de dynamica van een Cessna Citation I. Tegelijkertijd moesten ze een verstoring
op hun stuursignaal wegregelen. De simulator bewoog in langshelling rotaties
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en in het verticale vlak. Alleen verticale beweging om het zwaartepunt van het
vliegtuig werden in het experiment meegenomen, de invloed van acceleraties van
het zwaartekrachtcentrum zelf bleef buiten beschouwing.

Het 1 Hz platform filter van het MPI Stewart platform had de grootste invloed
op de resultaten van het experiment. De bandbreedte van het bewegingssysteem
was drastisch gelimiteerd in vergelijking met de gemeten uitgangswaarde voor de
respons van de SRS. Proefpersonen konden hun afwijkingen van het volgsignaal
niet effectief reduceren en maakten nagenoeg geen gebruik van de beweging van
de simulator in experimentele condities met een gelimiteerd bandbreedte van het
bewegingssysteem. In plaats daarvan deden ze een beroep op de visuele signalen
om een schatting te maken van snelheid zoals nodig was voor de stuurtaak.

Uit de resultaten van het experiment kwam geen invloed op het stuurgedrag van
vliegers naar voren van het verschil in tijdsvertraging tussen de simulatoren (35 ms
versus 25 ms). Ook de karakteristieken van de bewegingsruis van de simulatoren
hadden geen effect. De verstoringen in de beweging van de simulator door deze
eigenschappen waren niet groot genoeg om de informatie te maskeren die relevant
was voor de stuurtaak, omdat het verschil in tijdsvertraging tussen het MPI Stewart
platform en de SRS maar 10 ms bedroeg en de signalen van de bewegingsruis klein
waren. Daardoor deden deze karakteristieken van het bewegingssysteem geen
afbreuk aan het vermogen van vliegers om een schatting te maken van snelheid
aan de hand van de beweging van de simulator gedurende het experiment. Deze
bewegingskarakteristieken zouden echter een ander effect kunnen hebben in andere
experimentele taken, zoals metingen voor de drempelwaardes van vliegers voor
bewegingswaarneming.

De tweede doelstelling van dit proefschrift werd bereikt door het bepalen
van de invloed van de karakteristieken van de bewegingssystemen van twee
onderzoekssimulatoren op perceptie en stuurgedrag van vliegers. Toekomstig
onderzoek moet zich richten op het toepassen van de cybernetische aanpak op
andere types van bewegingssystemen. Bij voorkeur kan onderzoek worden gedaan
naar volledig uitgeruste simulatoren met elektrische actuatoren, die simulatoren
met hydraulische actuatoren geleidelijk vervangen. De specificaties van elektrische
systemen worden echter zelden gepubliceerd. Bovendien worden simulatoren
voornamelijk gebruikt voor het trainen van vliegers. Beweging van de simulator
laat zelden een effect zien in onderzoek naar de overdracht van training in de
simulator naar het vliegtuig, terwijl beweging een duidelijk effect op stuurgedrag
van vliegers kan hebben, zoals is aangetoond in dit proefschrift. Inspanning om
het gat tussen deze onderzoeksvelden te dichten moet zich richten op onderzoek
naar voorwaarden voor simulator beweging in vliegertraining, voor het afstemmen
van bewegingssystemen en voor experimentele stuurtaken.
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Een verwante onderzoeksvraag omhelst het begrijpen van de invloed van
simulatorbeweging in meer ecologische stuurtaken. Stuurtaken op hogere niveaus
dan vaardigheid kunnen wellicht worden onderzocht door de cybernetische aanpak
uit te breiden met cognitieve aspecten van menselijk gedrag. Bovendien is er meer
fundamenteel onderzoek nodig naar de verschillende componenten die bijdragen
aan bewegingsperceptie. De invloed van bijvoorbeeld proprioceptie en somato-
sensorische terugkoppeling wordt nog niet goed begrepen.

De aanpak die is gebruikt in dit proefschrift heeft een waardevol inzicht ver-
schaft in de veranderingen in de dynamische respons van een vlieger die de basis
vormen voor veranderingen in prestaties gedurende experimenten. De resultaten
lieten zien dat de beweging van een simulator zorgvuldig moet worden meege-
wogen in stuurtaken in de simulator en dat gemeten resultaten afhangen van de
karakteristieken van de simulator, aangezien vliegers hun stuurgedrag aanpassen
aan de signalen die voorhanden zijn.
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