TUDelft

A new way of cooperative cycle detection
against financial crime

Decentralised cycle detection using cross-institutional transactions

Ziggy Beijer!
Supervisor(s): Zeki Erkin', Kubilay Atasu', Lourens Touwen
TEEMCS, Delft University of Technology, The Netherlands

1

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Ziggy Beijer
Final project course: CSE3000 Research Project
Thesis committee: Dr. Z. Erkin, Dr. K. Atasu, L. Touwen, M. Khosla

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The act of masking the origin of illegal funds, to inject them into the economy in
seemingly legal manners is called money laundering. Adversaries make use of money
laundering to stay undetected when using illegally obtained money, from stealing, fraud,
or other criminal activities. These money laundering processes often span multiple in-
stitutions or countries. To combat this, anti money laundering systems have evolved,
also known as AMLs. AMLs have gone from simple rule-based approaches to using
machine learning to analyse money transfer graphs. However, many money laundering
operations still go undetected, particularly due to the assumption that all transaction
data is centrally accessible. Yet in practice, institutions are not able to share their
data with others because of privacy regulations and concerns. This restricts AMLs
when deployed in a decentralised setting. This paper presents the first step towards
an algorithm that allows two institutions to detect cycles between them, without these
institutions exposing their own subgraphs to the other. The method uses a depth first
search algorithm to find associated border vertices, then applies data reduction tech-
niques to minimize the data shared between institutions. These border vertices are
then compared to infer the presence of a cycle. While not yet deployable in real-world
settings, the algorithm demonstrates improved communication and computational com-
plexity over existing solutions and lays the groundwork for future privacy-preserving
AML tools.

1 Introduction

Money Laundering is the act of moving illegitimate funds through multiple accounts to mask
the source of money, with the aim of legalising the money by injecting it into the economy.
The United Nations divided the process of money laundering into three stages: Placement,
Layering, and Integration. In the placement phase, criminals place their funds into the fi-
nancial system directly from the crime. In the Layering phase, criminals try to make funds
untraceable, by moving them with different transactions through multiple institutions and
countries. In the Integration phase, criminals try to make the money available by presenting
the money as if it originated from legitimate sources. When successful, criminals can now
use this money to buy assets or do investments. [10] With the increase in digitization of
transactions both in real world and cryptocurrency, the ability for cybercriminals to launder
money has also grown. These fraudulent transactions are hard to detect. The United Na-
tions claim that 2 to 5 percent of the global GPD is laundered each year [10]. The world of
finance can be represented in graphs, where vertices represent user accounts, and edges rep-
resent the transaction between different accounts. There are eight recognised patterns that
criminals use to launder money, and one of them is the Simple Cycle pattern [1]. Financial
data is very privacy sensitive, and this makes cooperation between institutions to detect ad-
versaries much more difficult [9]. Due to regulations regarding privacy, institutions are not
allowed to share any sensitive data. This results in patterns between institution being very
hard to detect. The existing solutions to detect cycles in a decentralised way [8], require a
lot of constant communication between institutions. This brings us to our research question:

How can we detect simple cycles in bank transactions in a decentralised setup, while min-
imizing communication between institutions?

The aim of this research is to find a solution to detect cycles between two institutions in
a decentralised setup, that does not require constant communication between institutions.

In Section 2, we will explain some fundamental concepts needed to understand the paper.
Section 3 will lay down related works, and earlier adjacent research done on this topic.
Section 4 will state the context of the problem, and Section 5 presents our proposed solution.
Section 6 will show the analysis of our solution. Section 7 will go into how responsible and
ethical our research is. Section 8 talks about the limitations of the algorithm and discusses
our findings, it will propose future research topics, and present a final conclusion.

2 Preliminaries

This section will explain all the fundamental concepts that are needed to understand this
paper.

2.1 Simple Cycle Pattern

There are eight different recognised Anti Money Laundering Patterns [1]. One of these
patterns is the Simple Cycle pattern. Given a directed graph, A cycle is defined as follows:
Let G = (V, E) be a graph and let ey, ..., e, be a trail with vertex sequence ay, ..., an, a;. (It
returns to its starting point.) The subgraph G’ of G induced by the set of edges ey, ..., e,
is called a cycle of G. [4]. A simple cycle is then defined as being a cycle, where there are
no repeated vertices other than the exception of the first and last vertex. In other words, a
simple cycle does not contain any sub-cycles.

2.2 Decentralised setup

Multiple institutions might not want to share their data, due to privacy concerns. Because of
this, institutions will not have a complete overview of all existing accounts and transactions.
If this is the case, we are talking about a decentralised setup. Institutions will only be able
to see their own accounts and transactions that involve at least one of their accounts.

2.3 Locality Sensitive Hashing (LSH)

Locality Sensitive Hashing (LSH) is a technique used to find approximate nearest neighbours
in an efficient manner [7]. The core idea of LSH is to map data into different hash buckets
by using random hash functions. The point of this is that these hash functions have a high
probability to map similar data into the same hash buckets. There are various ways of
achieving LSH, each with their own applications. We will focus on achieving LSH using
MinHash signatures.

2.3.1 MinHash LSH

MinHash LSH is a technique for efficiently finding similar sets by approximating their Jac-
card similarity. At first, each input set is transformed into a MinHash signature. The
MinHash signature is computed by defining k different hash functions, hy, ho,..., hr. For
each hash function, we compute the hash of every element in the set, and take the minimum
hash value. Repeating this process for all k£ hash functions, we end up with a signature
vector of length k. This vector has the property that it probabilistically preserves Jaccard
similarity. Sets with similar elements will have similar MinHash signatures. The signature
is then split into b bands, each containing r rows. Each band has its own hash table, so

each band is hashed into a bucket in this corresponding hash table. Sets that share at least
one band will be placed in the same bucket in at least one of the hash tables. This way,
similar sets are likely to collide in at least one bucket, making it efficient to find similar sets
without comparing all sets directly.

3 Related Work

This chapter highlights the research that has been done on cycle detection. It is split
into three sections, where each section has their own context. The first section focuses on
cycle detection within a centralised context. The second section highlights a parallel cycle
detection algorithm, that partitions the original graph into subgraphs, and the third section
explains an algorithm that detects cycles within a decentralised context.

3.1 Cycle detection algorithms in centralised setup

There are many ways of detecting cycles in a centralised setup [5]. The most naive solution
is to run a depth first search for each vertex on a graph with a threshold, and check if
the initial vertex is visited. Tarjan proposed an algorithm [12] that divides the graph into
strongly connected components. Vertices are given an index and pushed on a stack in the
order the vertices were visited. Simultaneously, it tracks the lowest reachable index, also
called lowlink. If the index of a vertex is equal to their lowlink, it is part of a strongly
connected component. This vertex becomes the root. If the strongly connected component
consists of more than one vertex, we can conclude it is in a cycle.

3.2 Parallel cycle detection algorithms

in 1999, Bader presented an algorithm to detect cycles in parallel [2]. By dividing the graph
into subgraphs, computation can be done for each subgraph simultaneously. His algorithm
describes three phases. In phase 1, each processor finds the cycles in their local subgraph.
In phase 2, an express graph is constructed. The express graph consists of only border
(entrance and exit) vertices. If an entrance vertex has a path to an exit vertex, an edge will
be added in between them. In phase 3, express graphs are merged together, creating a new
graph which you can test the presence of cycles on. Even though this solution distributes
graphs to different processors, it is not completely decentralised, as the third step requires
a central entity to have knowledge on the entrance and exit vertices of all subgraphs. This
means that if used for financial crime detection, an entity will need to have access to parts
of subgraphs of both institutions, which introduces privacy concerns.

3.3 Cycle detection algorithms in decentralised setup

Earlier research proposes solutions to detect cycles in a decentralised setup. Jense proposed
a privacy-preserving solution [8], that is able to anonymously detect cycles in a graph. That
is, vertices are not able to learn any information on other parts of the graph. Each vertex
independently uses the same protocol. In this protocol, a vertex can perform three actions:
initiate, propagate, echo, and trace. First of all, a vertex can initiate. When initiating, the
vertex sends an encrypted message to all neighbors. A vertex can also propagate. When a
vertex receives a message, it propagate the message to further neighbors, but reduces the
range by one. Vertices keep propagating messages, until the range equals zero, or a vertex

with no further neighbours is reached. After propagating, a vertex also sends an echo back
to the source of the message. This echo will be sent back until it reaches the vertex that
initiated. When the initial vertex receives an echo from itself, it can conclude its presence
in a cycle. Lastly, when a cycle is detected, the initial vertex sends a trace message, to
determine the path of the cycle. This solution can be deployed in a decentralised setup
to detect cycles between institutions. If deployed in a decentralised setup, communications
between institutions need to be very tight, as forwarding messages and echoes need to be
transmitted to the other institutions. These encrypted messages add up to a lot of constant
communication. Especially when an institution wants to check their entire subgraph, which
could consist tens of millions of vertices. Jense states that his algorithm with threshold
I, number of vertices V, and the sum of the length of all cycles ¢ has a worst-case upper
bound of O(V! + ¢). When considering their proposed threshold of [= 6, this results in a
communication complexity of O(V°®+-c). Note that this algorithm works for more than three
institutions, but there is no reduction in communication complexity when only considering
two institutions.

4 Problem Statement

Let G = (V, E) be a directed graph for financial transactions, where V' is the set of vertices
representing different accounts, F is the set of edges representing transactions made between
different accounts. Each edge has two attributes, namely the amount of money transferred,
and a flag that indicates if a transaction crosses between institutions. We denote this flag
for vertex 4,j as ¢i—;. If ¢i; = 1, the edge spans multiple institutions, if ¢;—,; = 0, the
edge does not span multiple institutions. In our setting, there are two institutions, P and
@, with their own subgraphs G, = (V, C V,E, C E) and G, = (V;, C V,E, C E). We
assume that G, UG, = G and G, NG, # @, that is to say there is overlap between G, and
Gg. From this point, we refer to vertices in G, N G, as border vertices. Because they create
a "border" between the two graphs. From the perspective of one institution, there are two
types of border vertices: internal and external border vertices. Internal border vertices are
vertices internal to the institution. That is, an internal border vertex is an account managed
by that institution, while external border vertices are vertices outside of the institution.
From the perspective of one institution, a vertex might be internal, which means it will
be external from the perspective of the other institution, and vice versa. Furthermore, we
refer to border vertex-pairs when one internal and external border vertex are connected
with a cross-institutional transaction. Moreover, we assume that the vertices in G, NG, are
denoted with identical identifiers. For an overview and visualisation of internal and external
vertices, as well as border vertex pairs, an example of graphs G,, G, and G are illustrated
in Figure la, Figure 1b, and Figure lc respectively. A table with all terminology in this
paper is found in table 1.

Institution P

External Institiution

Institution Q
. c
External Institiution

Border vertex pair Border vertex pair

Border vertex pair
Border vertex pair

B [

(a) Visualisation of example graph G (b) Visualisation of example graph G,

nstitution P Institution Q

(c) Visualisation of example graph G

Figure 1: Example graphs

Notation Description
G Total transaction graph
\%4 Set of all vertices in G
E Set of all edges in G
c; Flag indicating cross-institutional transaction
P Institution P
Q Institution @
Gp transaction subgraph of institution P
Vp Set of all vertices in Gp
Ep Set of all edges in Gp
Gq transaction subgraph of institution Q
Vo Set of all vertices in Gg
Eqg Set of all edges in G
K threshold depth
Opn Set of all connected outgoing external border vertices of vertex n
Op Set of all sets Opy, ..., Op,
Ip, Set of all connected incoming external border vertices of vertex n
IP Set of all sets Ipl, ...,Ipn
LSHpou Banding matrix containing all sets from Op, hashes
LSHpi, Banding matrix containing all sets from Ip, hashed
Ogn Set of all connected outgoing external border vertices of vertex n
Oq Set of all sets Og1, ..., Ogn
Ion Set of all connected incoming external border vertices of vertex n
Ig Set of all sets Ig1, ..., Ion
Cgin Set containing incoming candidates
Cgout Set containing outgoing candidates

Table 1: Overview of terminology

5 Collaborative Simple Cycle Mining

The algorithm relies on the fact that a cycle always has to return to it’s original vertex.
This means we can analyse the border vertices from both sides. Consider two border vertex-
pairs, r and s. If we can detect that a vertex from institution P has a connection to r and a
connection from s, while a vertex from institution @ has a connection to s and a connection
from r, we can conclude these vertices are in the same cycle. To illustrate this, the graph
in Figure 2a has two border vertex-pairs, namely ¢ — d and f — a. These two pairs have
a different polarity, as ¢ — d goes from institution P to institution @, while f — a goes
from institution @ to institution P. Since vertex b and vertex e are both connected to these
two border vertex-pairs, we can conclude that b and e are in the same cycle. My proposed
solution uses this key characteristic to their advantage. Note that this characteristic does
not hold when inverted. In other words, if two vertices from different institutions are in
a cycle, they don’t necessarily share two border vertex-pairs. This is illustrated in Figure
2b. As you can see, vertex b and vertex d are both in the same cycle, but they are not
connected to the same two border vertex-pairs. While both vertices are connected to ¢ — d,
b is connected to f — a, while d is connected to d — e

(a) Institution P on the left (red); Insti- (b) Institution P on the left (red); Insti-
tution Q on the right (blue) tution Q on the right (blue)

Figure 2: Example graphs

5.1 Phase One

Our solution is divided into different phases. In the first phase, institution P runs algorithm
1 on their graph Gp = (Vp, Ep). The algorithm traverses the graph for each vertex n € Vp
with a threshold depth K to discover all outgoing connected border vertex-pairs, and adds
the found external border vertices to the set Op,,. These sets are then stored in Op.

Algorithm 1: Outgoing External Border Vertex Discovery
Input: Graph G = (V, E), depth K
Result: Set O, of sets of discovered vertices

1 Denote N; = {j | (i,j) € E},Vi € V;

2 Initialize set Op + 0;

3 forn €V do

4 Initialize set Op,, <+ 0;

5 | Initialize set X < {n};

6 Initialize set Q < 0;

7 for k< 1 to K do

8 Initialize set N < (J;

9 foreach v € Q do

10 if v ¢ X then

11 L Append v to X;

12 foreach j € N, do

13 if ¢;»; = 1 then
14 L Append j to Opy;
15 else if j ¢ X then
16 L Append j to N;
17 if N =(then

18 L break;

19 else

20 L Q<+ N;
21 | Op.append(Opy);

22 return Op

After this, institution P runs algorithm 2, but on their inverted graph G = (V}, Ep).
This algorithm traverses the inverted graph for each vertex n € V}, with a threshold depth K
to discover all incoming connected border vertex-pairs, and adds the found external border
vertices to the set Ip,,. These sets are then stored in Ip.

Algorithm 2: Incoming External Border Vertex Discovery
Input: Graph G’ = (V', E’), depth K
Result: Set I, of sets of discovered vertices

1 Denote N; = {j | (4,j) € E},Vi € V/;

2 Initialize set I, < 0;

3 forne V' do

4 Initialize set Ip,, < 0;

5 Initialize set X < {n};

6 Initialize set Q < 0;

7 for k + 1 to K do

8 Initialize set N « 0;

9 foreach v € do

10 if v ¢ X then

11 L Append v to X;

12 foreach j € N, do

13 if ¢;,; =1 then
14 L Append j to Ipy;
15 else if j ¢ X then
16 L Append j to N;
17 if N =0 then

18 L break;

19 else

20 L Q<+ N;
21 | Ip.append(Ipy);

5.2 Phase Two

In the second phase, institution P computes MinHash signatures for all sets in Op and Ip
computed in phase one, Op1,0Opo,...,Op, and Ipy,Ips,...,Ip,, respectively. We create
two banding matrices, LS H poy and LS Hpi,. The MinHash signatures from Op1,Ops,...,Opy,
are hashed into LSHpoyt, and the MinHash signatures from Ip1,Ips,...,Ip, are hashed
into LS Hpi,. After the banding matrices are constructed, institution P sends both banding
matrices over to institution Q.

5.3 Phase Three

The third phase happens after institution @ receives the banding matrices from institution
P. Institution @ runs algorithm 3 on their graph Gg = (V, Eq). The algorithm traverses
the graph for each vertex n € Vp with a threshold depth K to discover all outgoing connected
border vertex-pairs, and adds the found internal border vertices to the set Og,,. These sets
are then stored in Og.

Algorithm 3: Outgoing Internal Border Vertex Discovery
Input: Graph G = (V, E), depth K
Result: Set Og of sets of discovered vertices

1 Denote N; = {j | (i,j) € E},Vi € V;

2 Initialize set Og « 0;

3 forn €V do

4 Initialize set Og, < 0;

5 | Initialize set X < {n};

6 Initialize set Q < 0;

7 for k< 1 to K do

8 Initialize set N < 0;

9 foreach v € Q do

10 if v ¢ X then

11 L Append v to X;

12 foreach j € N, do

13 if ¢;»; = 1 then
14 L Append i to Ogn;
15 else if j ¢ X then
16 L Append j to N;
17 if N =(then

18 L break;

19 else

20 L Q<+ N;
21 | Og.append(Ogn);

22 return Og

After that, institution @ runs algorithm 3 on their inverted graph G, = (V4), Ey). The
algorithm traverses the graph for each vertex n € Vé with a threshold depth K to discover
all outgoing connected border vertex-pairs, and adds the found internal border vertices to
the set Ig,. These sets are then stored in Ig.

Algorithm 4: Incoming Internal Border Vertex Discovery
Input: Graph G’ = (V', E’), depth K
Result: Set Ig of sets of discovered vertices

1 Denote N; = {j | (4,j) € E},Vi e V/;

2 Initialize set I + 0;

3 for n € V' do

4 Initialize set I, + 0;

5 Initialize set X < {n};

6 Initialize set Q < 0;

7 for k + 1 to K do

8 Initialize set N « 0;

9 foreach v € do

10 if v ¢ X then

11 L Append v to X;

12 foreach j € N, do

13 if ¢;,; =1 then
14 L Append i to Ign;
15 else if j ¢ X then
16 L Append j to N;
17 if N =0 then

18 L break;

19 else

20 L Q<+ N;
21 | Ig.append(Ign);

22 return Ig

5.4 Phase Four

In the fourth phase, institution @ computes MinHash signatures for all sets in Og and Ig
computed in phase three, Ogi,0q2,...,0Oqn and Ig1,1q2,. .., Ign, respectively. Now, for
each vertex n € Vg, we query LSHpoyt with the hash signature of Ign, which returns a
set Cgin of all vertices that have a connection to n. We also query LSHp;, and Ogn to
get a set Cgout of all vertices that have a connection from n. We compute the intersection
between Cgin and Cgous- If the intersection is not empty, we can conclude n is part of a
cycle.

6 Analysis

6.1 Complexity Analysis
6.1.1 Communication Analysis

To find the worst-case upper bound in terms of the communication between the two insti-
tutes, we only have to look at the size of our banding matrix, as this is the only thing shared
between the institutions. MinHash signatures of size s will be computed for every vertex

10

V', and these are divided into bands b, which are hashed into buckets for each band. s is a
constant, so the final worst-case upper bound size of these hash tables is O(bV').

6.1.2 Computational Analysis

To find the worst-case upper bound in terms of our computational complexity, we first
have to look at the subgraph of institution p, Gp(V,, E,). Phase one deploys an algorithm
that performs a depth first search from each vertex V,, with a threshold k. Therefore, the
worst-case upper bound in terms of time complexity of phase one is O(Vp2 + V,E,). In
phase two, we create minhash signatures for the incoming and outgoing border-vertex sets
of each vertex. In the worst case, every vertex is also a border-vertex within our threshold,
which means that the time complexity results to O(V,?). Deriving from the communication
analysis, we know that constructing and sharing the banding matrices costs O(bV},), where
b is the amount of bands. Now that the banding matrix has been shared, and received by
institution g, we have to look at the subgraph of ¢, G4(Vy, E,). In the third phase, we run
a similar algorithm to phase one, where we perform a depth first search from each vertex.
After that we query the banding matrix and compute an intersection, which are both linear
in terms of time complexity. This means the worst-case upper bound for phase three is
O(Vq2 + V,E,). This means that for the whole algorithm, when adding all phases together,
we get to O(V;,2 +V,E, + Vp2 + 0V, + Vq2 + VyE,). After simplifying, the worst-case upper
bound in terms of computational complexity will evaluate to O(V,2+V, E,+bV,+V2+V, E,).
Considering the global graph G = (V, E), we can make an assumption that V, UV, ~ V,
and E, U I/, =~ E. This allows us to simplify further by combining terms, resulting in the
final worst-case upper bound in terms of computational complexity of O(V? + VE + bV),
where b is the number of bands used for signature banding.

6.2 Performance evaluation

To evaluate our algorithm, we used the HI-Small trans dataset from AMLWorld [1][11].
However, this dataset consists of many different institutions. Because we only consider two
institutions, we filter out all but two institutions from the dataset and construct two graphs
for them. We add an additional flag to each edge, which indicates if that edge crosses between
institutions. After we construct the two graphs, we are able to run our algorithm on these.
To evaluate our runtime performance, we chose the two biggest institutions in the dataset.
These are institutions "070" and "012", with 39,735 and 12,180 vertices respectively. The
tests of running the algorithm on these two institutions are performed on a single machine
(AMD Ryzen 7 6800H, 16GB RAM) with a threshold K of 6. Over 5 runs, the algorithm
took of 3 hours and 54 minutes to complete on average.

7 Responsible Research

When doing research on financial topics, especially money laundering, it is important to
keep in mind which impact your results might have on adversaries. The research might be
very helpful for adversaries to improve their money laundering evasion tactics. We believe
our research helps in the fight against adversaries, by presenting a new way for institutions
to detect cycles in a decentralised setup. Furthermore, we believe this research minimally
aids adversaries in the money laundering process, because this research does not present any
new concepts that could be used by adversaries to evade detection algorithms. To test our

11

solution, we use the synthetic dataset AMLWorld [1][11]. Because this data is generated,
there was no risk of leaking privacy sensitive information while doing this research.

An important thing to mention is that our algorithm is not fully privacy-preserving.
This needs to be taken into account when deploying this algorithm in real life contexts,
to make sure no privacy sensitive data is leaked. Before this algorithm is implemented
in a real life context, analysis needs to be done to confirm there is no possibility for per-
sonal data to be leaked, and if there is a possibility of privacy sensitive data leakage, mea-
sures need to be taken to exclude this possibility. Ultimately, the risk of leaking data
when implementing this algorithm lies with the person responsible for implementing the
algorithm, so it is very important to be aware of this risk. That being said, an exam-
ple of how to implement the algorithm has been made publicly available on GitHub, at
https://github.com/ziggybeijer /Collaborative-Simple-Cycle-Mining-research-project [3]

8 Discussion

8.1 Practical Applicability

At this stage, this solution is not ready for deployment in real-world scenarios. There
are two primary reasons for that. First, the algorithm at this time is not fully secure.
We use MinHash signatures together with a banding matrix, to reduce data shared and
find similar sets. These signatures are hashed into hash tables, which reduces redundancy.
Unfortunately, this does not inherently provide data security. A paper by Turati et al. [13]
shows that locality sensitive hashing does not guarantee privacy. They demonstrate that
they are able to obtain sensitive data from LSH structures using Sybil attacks [6]. As a
result, our algorithm cannot currently be considered fully privacy-preserving. Second, we
were unable to properly evaluate the algorithm’s effectiveness due to the lack of a publicly
available dataset that is well-suited to our specific use case. We will elaborate on this in the
limitations section. Only after these challenges are sufficiently addressed should the solution
be considered for real-world application.

8.2 Algorithmic Limitations

The proposed algorithm has several technical limitations. It is limited to detecting cycles
between exactly two institution; cycles that involve more than two institutions are not
detected. Furthermore, within two institutions not every possible cycle can be identified.
In particular, cycles that loop multiple times between two institutions will also remain
undetected.

8.3 Evaluation Dataset Challenges

We evaluated our algorithm using the AMLWorld dataset, which was the best publicly
available option. However, this dataset presents significant limitations for our context. The
dataset consists of thousands of institutions. This results in connections between two single
institutions to be very sparse. Most institution pairs do not share a single edge, and those
that do often share very few. This extreme sparsity makes it difficult to assess the algorithm’s
performance, as the dataset does not accurately reflect realistic interaction patterns between
two collaborating institutions. Unfortunately, at this point in time, there does not exist a
dataset designed for two institutions specifically, which is also publicly available.

12

Our proposed solution | Jense’s proposed solution [§]
Communication Complexity o@bV) O(V® +¢)
Computational Complexity O(V24+VE+bV) O(VS +¢)

Table 2: Communication and Computational complexity of our proposed solution and
Jense’s solution [8].

8.4 Comparison to existing solution

When institutions aim to evaluate their entire graph, our solution offers improved communi-
cation and computational complexity compared to the method proposed by Jense [8]. This
can be shown by comparing the worst case upper bound communication and computational
complexities, presented in Table 2. However, Jense’s method is more suitable for use cases
involving queries on specific vertices, since our algorithm processes the entire graph in a
single run.

9 Conclusions and Future Work

9.1 Conclusion

This paper, presents the first step towards detecting cycles between two institutions while
minimizing communication costs. Although not yet ready for deployment in practical set-
tings, the algorithm offers a promising foundation to combat money laundering in the future.
The algorithm is useful when two institutions need to analyze their entire transaction graphs
under constrained communication bandwidth. The communication and computational com-
plexity of this algorithm are better than previous solutions. However, if institutions already
possess a shortlist of suspicious vertices, or if bandwidth and computational power are not
an issue, other solutions are more applicable, such as the algorithm proposed by Jense [8].

9.2 Future Work

Future work on this topic should first of all focus on researching how to make the proposed
algorithm fully privacy-preserving. For example, research can be done to see if combining
homomorphic encryption with locality sensitive hashing results in a fully privacy-preserving
algorithm that still has a reasonable communication and computational complexity. Re-
search could also be done to see if oblivious hashing could be used in combination with
locality sensitive hashing, to design a fully privacy-preserving algorithm. Having a fully
privacy-preserving algorithm would make our solution more practical to deploy in a real
life setting. Other future research could focus on the possibility of modifying the algorithm
to support more than two institutions, so our solution would be more practical to use in
settings with numerous different institutions.

13

A

Appendix

References

[1]

2]

13l

4]

[5]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

Erik Altman, Jovan BlanuAia, Luc von NiederhA€usern, Beni Egressy, Andreea
Anghel, and Kubilay Atasu. Realistic Synthetic Financial Transactions for Anti-Money
Laundering Models. Advances in Neural Information Processing Systems, 36:29851—
29874, December 2023.

D A Bader. A Practical Parallel Algorithm for Cycle Detection in Partitioned Digraphs.
January 1999.

Ziggy Beijer. Github repository, June 2025. https://github.com/ziggybeijer /Collaborative-
Simple-Cycle-Mining-research-project.

Edward A Bender and S Gill Williamson. Lists, Decisions and Graphs. the University
of California, San Diego, 2010. 164-165.

Thomas H. Cormen, editor. Introduction to algorithms. MIT Press, Cambridge, Mass,
3rd ed edition, 2009. OCLC: ocn311310321.

John R. Douceur. The sybil attack. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, page 2514260, Berlin, Heidelberg, 2002.
Springer-Verlag.

Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and Chi-
dambaram Crushev. A Survey on Locality Sensitive Hashing Algorithms and their
Applications, February 2021. arXiv:2102.08942 [cs].

Juno Jense. Finding Bounded-Length Cycles in Decentralised Networks under Privacy
Constraints. 2024.

Foivi Mouzakiti. Cooperation between Financial Intelligence Units in the European
Union: Stuck in the middle between the General Data Protection Regulation and the
Police Data Protection Directive. New Journal of European Criminal Law, 11(3):351—
374, September 2020. Publisher: SAGE Publications Ltd STM.

United Nations. Money Laundering, 2020. https://www.unodc.org/unodc,/en/money-
laundering/overview.html.

IBM Research. IBM Transactions for Anti Money Laundering (AML), 2023.
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-
laundering-aml.

Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1(2):146-160, June 1972.

Florian Turati, Karel Kubicek, and Carlos Cotrini. Locality-Sensitive Hashing Does
Not Guarantee Privacy!Attacks on Google’s FLoC and the MinHash Hierarchy System.
Proceedings on Privacy Enhancing Technologies.

14

