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Abstract. To the purpose of evaluating the effect of deformation on the microstructure, 
aluminum structures were analyzed on tensile strained samples extended to 25% elongation. In 
the substructure of these deformed samples linear slip patterns were observed, generally 
confined to the bulk of the grain. In order to study the crystallographic aspect of these slip 
patterns, two methods were applied based on orientation contrast microscopy (EBSD). The first 
method is the statistical analysis of stereological nature, which allows us to determine the 
incidence of certain crystallographic planes with the slip patterns. In other to corroborate the 
statistical method, also a 3D analysis was carried out on two perpendicular planes of 
observation (TD and ND sections). The results of both methods were in a very good agreement. 
It was found that the linear features are predominantly parallel to the {111} crystal planes, 
although the frequency of {111} planes was not exclusive; also other crystal planes such as {112} 
and {110} are involved. These observations give a stronger statistical basis for similar 
observations earlier made by TEM on much smaller fields of observation. 
 
 
 

1. Introduction 
The evolution of crystal misorientation is an indication of local strains induced in the 
microstructure by plastic deformation involving dislocation glide in the metal matrix. The 
dislocations remaining in the microstructure configure themselves in cells or subgrains and 
more aggregate slip patterns, which will give rise to small orientation gradients. The 
microstructural effect of plasticity can be gauged by monitoring the crystallographic features 
of such slip patterns. Dislocation induced structures in aluminum have been extensively 
studied in the last decades [1-4]. Crystals and grains during deformation are subdivided on a 
macroscopic scale into deformation bands and on a more microscopic scale into cell blocks 
and cells. Parallelogram-shaped Cell Blocks (CBs), which are delineated by planar dislocation 
walls, contain cells surrounded by incidental dislocation boundaries [4]. Dense Dislocation 
Walls (DDWs) are of a thin planar nature, whereas Microbands (MBs) are thicker and can be 
distinguished as double boundaries in the TEM. There is a lot of controversy on the 
crystallographic nature of these phenomena. According to Delannay [4] the DDWs are 
formed parallel to the most stressed {111} plane. However, Hansen [2,3] also observed DDWs 
not showing any obvious alignment with the {111} planes.   
Analyzing the crystallographic orientation of slip patterns will contribute to the 
understanding of mechanism by which they are generated and hence it will provide an 
improved insight in the deformation microstructure. Most of the previous investigations are 
base on TEM observations, which unfortunately lack statistical reliability. Even most EBSD 
mappings are done on a rather small scale. Therefore the aim of this work is to give a better 
statistical basis for the crystallographic aspects involved in the formation of the deformation 
substructures combining wide field data gathering with high spatial resolution. 
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2. Experimental Procedure 
The material used in the current study is a conventionally 6016 aluminum alloy for 
automotive applications. The sheet from which the samples were extracted was in cold rolled 
and annealed T4 condition. Tensile specimens were cut from the sheet with the tensile access 
parallel to the rolling direction. The specimens were elongated to 25% strain. Samples for 
EBSD observations were cut from the middle of the gauge length of the tensile specimens. 
The planes of the observation were TD and ND planes (i.e. planes normal to TD and ND, 
respectively). Sample preparation for this work was very critical because we wanted to be 
sure that no extra deformation be induced to the samples. Therefore, after conventional 
mechanical polishing up to 0.25 µm with OPS, electropolishing was applied by using the 
Electrolyte A2 Struers electrolyte with a voltage of 39 V, flow rate 9 for 15 s. It should be 
noted that we mostly prepared a non-deformed reference sample jointly with the deformed 
sample. The EBSD system of type EDAX-TSL® that was used in the current study was 
mounted on a FEI quanta 450® SEM with Field Emission Gun (FEG) filament. The 
orientation contrast scans were collected and analyzed by the commercial OIM-TSL® 
software. Wide filed EBSD scans, covering an area of ~9 mm2, in combination with good 
spatial resolution (step sizes between 0.5 and 1 µm), gave rise to huge data sets with as much 
as 10 Mpixels.  

3. Results 
Figure 1 shows the orientation contrast map of the sample extended in tension to an 
elongation of 25%. We are interested to analyze the linear slip patterns observed in a subset 
of grains as shown in figure 1 (cf. white markers). In reality, these linear slip patterns in 3D  
are of a planar nature. The question that we would like to address here is whether these slip 
patterns are parallel to specific crystallographic planes, or in other words, we want to 
quantify the frequency of the coincidence of crystal planes {hkl} with the planar slip patterns. 
This question relates to the nature and the origin of the slip patterns.  

 

Figure 1 IPF map overlaid by IQ map on a specimen loaded to 25% elongation. 
White markers indicate linear slip patterns. 
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A very large dataset, with more than 2000 grains, was analyzed covering a total scanned area 
of various square millimeters. The line segments corresponding to the linear slip patterns 
were considered as intersections of an unknown crystal plane with the plane of observation. 
These unknown planes can be represented as pole traces on unit triangle of standard 
stereographic projection. Figure 2a shows the distribution of these pole traces after 
appropriate background correction, which considers a random distribution of slip segments 
for the specific texture of the sample. The method used here to process the data was based on 
the stereological line segment analysis proposed by Rohrer et al. [5, 6]. It can be seen that the 
trace distribution exhibits the maximum on the [111] pole but it is quite a broad maximum 
extending to the [112] pole. Also in the vicinity of [110] a local maximum can be observed. 
 

  

 

 (a) (b) 

Figure 2 (a) Distribution of the normal of the planes parallel to the slip patterns obtained by the 
stereological method. (b) Distribution of the plane normals defined by the linear slip segments 
(observed on the perpendicular sections in 3D). The colorbar shows the intensity. 
 
Alternative to the statistical method, a 3D analysis was carried out on two perpendicular 
planes of observation (TD and ND sections). In this method we identified slip patterns on 20 
corresponding grains at the common edge of two sections. Figure 2b shows the distribution 
of the normals of the planes that were defined by both slip segments. It can be seen that the 
pole distribution of planes exhibits the maximum on the [111] pole, in the vicinity of the [112] 
and the [334] poles. Also in the neighborhood of the [110] pole there is a small maximum. 
The planar pole distribution obtained from 3D analysis (figure 2b) is in reasonable 
correspondence with the trace distribution produced by the statistical method (figure 2a), 
even though only 20 grains were considered in 3D analysis. 
 
4. Discussion 
If we compare the results of this work with the observations of Hansen (2001), we may 
conclude that what we have observed are cell blocks or cell block boundaries. The reason why 
we come to this conclusion is that our observed slip features, just as cell blocks, exhibit a 
linear character and in many cases they are parallel to the presumed {111} octahedral slip 
planes. It has to be mentioned, though, that the alignment of the planar slip features with the 
{111} planes is not restricted to these planes only, as also cell blocks are observed, which are 
aligned to other crystal planes such as {112} and ~{110}.  
In an alternative interpretation, the slip patterns may be related to in-grain shear bands. 
However, shear bands (SB) have rather a fixed angle (e.g. ≈35°) with the main axis of strain, 
whereas the linear slip segments observed here, exhibit scattered angles with respect to the 
TA, ranging from 10 to 60°. Additionally, SBs would give rise to saw-tooth features when 
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intersecting grain boundaries, which was not observed here. Moreover, it would be expected 
to observe shear bands in high Taylor factor grains, as they would be the most benefiting 
from geometric softening. In the present case, though, the linear slip segments are also 
observed in grains with low Taylor factor (cf. red grains in Figure 1). An additional argument 
in favor of the cell blocks hypothesis is that the slip patterns analyzed in this work have an 
appropriate width (≈5 µm), which very well correspond to the reported width in the literature 
[2, 3]. Based on these facts, it is unlikely that these patterns can be associated with shear 
bands, but their characteristics better correspond to cell blocks features [1-4]. 
 
5. Conclusions 
To the purpose of analyzing the linear slip patterns observed in tensile elongated (25%) 
aluminum samples two methods were applied based on orientation contrast microscopy 
(EBSD): (i) a statistical analysis of stereological nature, and (ii) a 3D analysis.  
The results of both methods were in reasonable agreement. It was found that the linear 
features are predominantly parallel to the {111} crystal planes, although the frequency of {111} 
planes was not exclusive; also other crystal planes such as {112} and {110} are involved.  
These observations give a stronger statistical basis for similar observations earlier made by 
TEM on much smaller fields of observation. In the discussion of the present data we argue 
that the observed slip segments may be related to the presence of cell blocks in the deformed 
structure. 
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