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Abstract—In recent years, soft robots have become a focal point
of research due to their ability to mimic natural movements and
adapt to unstructured settings. However, their inherent flexibility
poses significant challenges, particularly in the areas of modelling
and control. While data-driven methods can model soft robot
behavior without explicit physical models, they require extensive
data and lack interpretability. On the other hand, physics-based
low-dimensional models have relied heavily on expert knowledge
and intuition, sometimes leading to models that are either too
simple and inaccurate, or excessively high-dimensional.

This thesis introduces an end-to-end methodology for automat-
ically identifying low-dimensional kinematic and dynamic models
of planar continuum soft robots using image data. Based on the
Piecewise Constant Strain (PCS) parametrization, the proposed
approach determines an efficient segmentation for the soft robot
to approximate its configuration. Afterward, a model identifica-
tion strategy is employed to obtain a dynamic model that contains
only the most essential strains. This model is formulated in the
standard Euler-Lagrange framework, facilitating the integration
with conventional model-based control schemes. The methodol-
ogy is validated through simulations involving various planar
soft manipulators and in the presence of noise, demonstrating
its capability to generate accurate and computationally efficient
models. This work provides a fast and practical tool to help
the modelling and control of continuum soft robots, highlighting
the potential for future applications in more complex actuation
systems and real-world soft robots.

I. INTRODUCTION

The way humans conceptualize the role of robots has
been changing in recent years. Traditional robots were built
to execute simple and repetitive heavy-duty tasks with high
precision. Lately, this idea has evolved to a more human-
and service-centered approach, where robots can collaborate
and perform activities that were thought to be exclusive to
biological systems [1]. Handling fragile objects, interacting
safely with humans, or adapting their shape to fit in confined
environments are all features that could be achieved with the
emergence of soft robots [2]. Among soft robots, continuum
robots, which do not contain discrete joints, are particularly
appealing due to their continuous and smooth deformation.
The inherent flexibility presents, nonetheless, numerous chal-
lenges, particularly in modelling and control.

Accurate modelling is essential for optimizing both the
design and control of soft robots, but the continuum nature
introduces complex, nonlinear dynamics that are difficult to
describe with traditional rigid-robot approaches [3]. Recently,
data-driven methods have become popular as a way to over-
come this. By learning directly from data, neural network
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Fig. 1: Diagram overview of the end-to-end pipeline proposed.
The main contributions of the work are highlighted in orange.

architectures [4] [5] [6] can model the deformations of soft
robots without requiring detailed physical derivations. This
allows them to capture behaviours that are hard to express
analytically [7] [8]. However, these methods have their limita-
tions. Firstly, they often require large amounts of high-quality
training data [9]. Secondly, these black-box techniques ignore
any system’s physical properties, which not only hinders
interpretability but also does not guarantee good extrapolation
performance [10].

High-dimensional analytical models have been developed
based on simulating the continuum mechanics of soft robots.
They are solved using finite-element methods, both in 3D [11]
[12] [13] and 1D formulations (i.e., discrete Cosserat rod) [14]
[15] [16]. Although highly effective at simulating the nonlinear
deformations, their high dimensionality and computational
cost are often impractical for real-time control [17] [9].

Therefore, if the model is required for control applications,
we need to find a good trade-off between computational
efficiency and accuracy. Low-dimensional analytical models
appear as a good solution to this. They rely on geometric
simplifications that make them faster to compute and easily
derivable for control law proofs [18]. A commonly used
method is the Piecewise Constant Strain (PCS) [19], which
divides the robot’s structure into segments, each assumed to
have constant deformation. Additional simplifications can be
carried out if the soft robot’s design allows for some of the
strains to be neglected. For example, the popular Piecewise
Constant Curvature (PCC) model [20] neglects all strains but
bending. The constant strain assumption means the robot can
be described through a finite set of configuration variables,
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allowing for more efficient control. However, previous works
have relied heavily on expert knowledge and designer intuition
to derive these models, particularly in decisions involving the
number of segments or which strains to consider [21]. This
is not always an obvious choice and it could result in models
that are higher-dimensional than necessary or that important
strains are ignored based on a wrong intuition [22].

Instead, we propose in this work an end-to-end approach
to automatically finding a PCS kinematic description and
identifying the corresponding dynamic model, directly using
as data source captured images of the robot in motion.
Firstly, a kinematic regression procedure tries to minimize
the number of segments of the PCS kinematic model, while
enabling the user to balance model complexity and shape
accuracy. Secondly, based on the determined kinematic model,
a dynamic model identification is employed to estimate the
inertial and impedance parameters through closed-form linear
least-squares, while simultaneously neglecting less significant
strains. One key factor lies in how the dynamic model is
extracted in standard Euler-Lagrange form, allowing a quick
deployment in classical model-based controllers [17] [23] [24],
contrasting with purely data-driven models [17]. Our approach,
by merging data-driven insights with a physics-based structure,
can capture the system dynamics while remaining computa-
tionally efficient.

The method is validated in several simulated scenarios,
including distinct underlying kinematics (PCS and Piecewise
Affine Curvature (PAC)), varying numbers of segments, and
the presence of measurement noise.

II. PRELIMINARIES

A. PCS Kinematics

The continuous nature of soft robots, characterized by their
ability to deform over a continuous space, implies that their
motion is governed by a set of nonlinear partial differential
equations (PDEs). As a result, an infinite number of degrees
of freedom (DOF) are required to accurately characterize
their dynamics. To make the modelling task tractable, several
assumptions are commonly used. The first one takes advantage
of the typical shape of these robots, which tend to have one
physical dimension longer than the other two. The analysis
of slender, elongated structures can be approximated to its
central axis (backbone) [25]. The second assumption takes
care of the infinite-dimensional problem by approximating
the continuous deformation through space discretization along
the backbone. PCS models are built upon both of these. The
backbone is discretized into a few segments, and the six
elemental local strains (bending, shear, axial and torsion) are
considered constant in space, but variable in time, in each of
the segments. Local strains are associated with either a pure
translation or rotation along one of the axis of the reference
frame attached to the end of a segment. Therefore, an analogy
can be drawn between joint states in rigid robots and local
strains in continuum robots: just like the pose of a rigid link
is dependent on the previous joint variables, the pose at a
certain point of the soft robot is dependent on the local strains
of all the previous segments.

For the planar case, shown in Fig. 2, only three strains
are present: bending, shear and axial. The configuration
of segment i, with length L0,i, is defined by qi =
[κbe,i, σsh,i, σax,i]

⊤ ∈ R3, where

• κbe,i is the segment’s bending strain, which corresponds
to the segment’s curvature;

• σsh,i is the segment’s shear strain, measuring the relative
shear displacement δxi, σsh,i = δxi/L0,i;

• σax,i is the segment’s axial strain, which measures the
relative change in length δLi, σax,i = δLi/L0,i .

Fig. 2: Illustration of a planar PCS segment. In light gray the
segment is represented only undergoing bending deformation,
with amplitude θi. In blue, the same segment also exhibits
shear and axial displacements. Si and Si−1 denote the local
frames of the current and preceding segments, respectively.
δxi and δLi indicate the displacements caused by shear and
axial strains.

This configuration vector fully specifies the shape of the
robot. Given s ∈ [0, L0,i] the coordinate along the backbone,
the orientation of the central axis along the segment i can be
determined by integration of the curvature [20] via

θi =

∫ s

0

κbe,i dv = κbe,is . (1)

The x- and y− position of the backbone along the segment,
[px,i, py,i]

⊤, can be calculated by integrating the shear and
axial strains (properly rotated)[

px,i
py,i

]
=

∫ s

0

[
cos θi − sin θi
sin θi cos θi

] [
σsh,i

1 + σax,i

]
dv. (2)

Knowing the above relations, the forward and inverse
kinematics relating the pose along the segment χi =
[px,i, py,i, θi]

⊤ ∈ R3 and the configuration qi can be written
in closed form [26] as

χi = η(qi, s) =

σsh,i
sin(κbe,is)
κbe,i

+ (1 + σax,i)
cos(κbe,is)−1

κbe,i

σsh,i
1−cos(κbe,is)

κbe,i
+ (1 + σax,i)

sin(κbe,is)
κbe,i

κbe,is

 ,

(3)
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and

qi = ξ(χi, s) =


θi/s

θi

(
py,i − px,i sin (θi)

cos (θi)−1

)
/2s

−1 + θi

(
−px,i − py,i sin (θi)

cos (θi)−1

)
/2s

 , (4)

respectively. Notice that (3) and (4) have no singularity for
κbe,i = 0 and θi = 0. The limit in this situation where no
curvature occurs in the segment is well defined and is equal
to

[
σshs (1 + σax)s 0

]⊤
and

[
0 px,i/s −1 + py,i/s

]⊤
,

respectively. However, some numerical instabilities might arise
in practice [27].

B. Lagrangian Dynamics

The dynamics of physical systems are commonly expressed
using the Lagrangian mechanics. According to this, an nq-
DOF system can be described by a set of generalized coordi-
nates q ∈ Rnq , their velocities q̇ ∈ Rnq , and a scalar quantity
known as the Lagrangian, expressed as

L(q, q̇) = T (q, q̇)− V (q) . (5)

The kinetic energy T (q, q̇) is given by T (q, q̇) =
1
2 q̇

⊤M(q)q̇, with M(q) ∈ Rnq×nq being the positive definite
mass matrix. The potential energy V (q) includes the gravita-
tional and elastic potentials. Applying the principle of least
action to the Lagrangian yields the Euler-Lagrange equations,
describing the system’s dynamics:

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= Fext , (6)

where Fext ∈ Rnq represents all non-conservative forces.
We here consider external forces to be restricted to velocity-
dependent dissipative forces Fd ∈ Rnq and actuation forces
Fa ∈ Rnq , which generally are given by

Fext = Fd + Fa = −D(q)q̇+A(q)τ , (7)

where D(q) ∈ Rnq×nq is the damping matrix and A(q)τ
represent the actuator forces applied on the robot. τ ∈ Rp is
the control input and A(q) ∈ Rnq×p is the matrix that maps
the point of application of the actuation to the configuration
space. In this work, we will assume that D is diagonal and
constant, and that actuators are directly collocated on the
configurations, resulting in τ ∈ Rnq and A(q) being the
identity matrix.

By expanding (6) and after some manipulation, this set of
equations can be rearranged into a more convenient matrix
form,

M(q)q̈+C(q, q̇)q̇+G(q) +Kq+Dq̇ = τ . (8)

Here, C(q, q̇)q̇ ∈ Rnq represents the Coriolis and centrifugal
force contribution, while G(q) ∈ Rnq and Kq denote the
gravitational and elastic actions, where K ∈ Rnq×nq is the
diagonal stiffness matrix.

This dynamic formulation can be derived for a PCS soft
robot parametrization by combining its kinematic model with
the inertial and impedance properties of its structure. The
details for the derivations of each of these terms can be found
in [27].

III. METHODOLOGY

In this work we propose an end-to-end strategy to find
kinematic and dynamic models for planar continuum robots
from image-recorded trajectories. Figure 1 shows an overview
of the proposed methodology. We start with images of multiple
trajectories, which are processed using computer vision (CV)
to estimate the poses of N points along the soft robot.
An initial N -segment PCS model is considered to obtain
the robot’s configuration through inverse kinematics (IK).
We employ a kinematic regression procedure to reduce it
to m segments while preserving accuracy. Finally, dynamic
model identification is performed, estimating the dynamic
parameters and eliminating negligible strains, resulting in a
low-dimensional model suitable for control applications.

A. Shape Estimation from Images

The first step toward identifying a kinematic and dynamic
model consists of collecting data of the system. A camera
is placed parallel to the robot’s plane of motion and records
several trajectories of the robot. The goal is to extract the
poses of N equally distant cross-sections along the robot. The
value of N should be significantly larger than the expected
number of segments required to model the robot’s behaviour
accurately.

Fig. 3 illustrates the steps involved in this process. For
each frame, the image is binarized and, by marking the N
points with visually salient features, the contours of the cross-
sections are identified, and their center position (px, py) and
orientation θ are extracted. For T image frames, this results in
a time sequence of poses {χi(1), ...,χi(k), ...,χi(T )}, with
i ∈ [1, N ].

The videos are analyzed through an algorithm in Python that
uses functions from the OpenCV library to detect the cross-
sections (findContours) and obtain their center positions
and orientations (minAreaRect).

Fig. 3: Image analysis pipeline to obtain the Cartesian pose
of N cross-sections, applied to a sequence of video frames.
From left to write: 1) original image; 2) binarized image; 3)
original image superimposed with the fitted rectangles.

B. Kinematic Regression

To develop a PCS kinematic model for a generic soft robot,
it is necessary to determine the number of segments and the
length of each segment. In this work, we achieve this by means
of a strain-based algorithm.
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Given that we now have access to the poses of N equally
distant cross-sections along the robot, we initialize an N -
segment PCS kinematic model, with nodes positioned at the
center of the N cross-sections. Essentially, each of the N
tracked cross-sections will consist of a segment’s end section.
We apply the closed-form inverse kinematics from (4) to map
the Cartesian poses χi into configuration variables qi. To
avoid the numerical instabilities near the straight configuration
(θ = 0), a small ε is added to the bending angle. It is important
to note that [px, py, θ] in (4) must be written with respect
to the previous frame Si−1. However, the computer vision
step outputs all the poses χi with respect to the fixed frame
attached to the base of the soft robot. Therefore, a mapping
must be applied to go from 0χi into i−1χi. This is achieved
using the composition operation

i−1Hi =
i−1H0

0Hi =
(
0Hi−1

)−1 0Hi , (9)

where 0Hi ∈ SE(2) is the homogeneous transformation
matrix that represents pose 0χi. For the planar case, this is
given by

0Hi =

cos θi − sin θi pix
sin θi cos θi piy
0 0 1

 . (10)

Once i−1Hi has been computed, i−1χi can be extracted from
the matrix entries.

After computing the sequence of configurations for the N
initial segments, we employ a recursive algorithm to determine
the final number of segments m, where m < N . The idea
is that adjacent segments that have similar strain trajectories
(i.e., deform similarly) can be merged together and considered
a single segment. Note that each local strain have distinct
units (bending strain has units m−1, while shear and axial
strains are unitless). In order to compute a metric that measures
strain similarity over the entire strain-space, we apply a
normalization by scaling each strain relative to their maximum
values. In this work, the bending strain is not greater than
60m−1, while shear and axial strains achieve maximum values
of 30%.

The metric to measure strain similarity is the average
strain-space (euclidean) distance between pairs of consecutive
segments,

d̄i,i+1 =
1

T

T∑
k=1

∥q̄i(k)− q̄i+1(k)∥ , (11)

where q̄i represent the i-th segment’s scaled strains.
We compute this average strain distance for each pair of

adjacent segments. For a kinematic model with nS segments,
this yields nS − 1 pairs. If the distance d̄i,i+1 for the i-th pair
is below or equal to a pre-defined threshold h, segments i and
i + 1 will be grouped into a single segment. Otherwise, the
segments remain separate. This results in a new PCS kinematic
model with fewer segments. Figure 4 illustrates this procedure.
The configuration of each new merged segment is determined
by performing a one-segment inverse kinematics on the distal
ends of the merged segment.
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Fig. 4: Schematic of the kinematic regression algorithm.
We start with a sequence of configurations (bending, shear,
and axial strains) assuming an N -segment PCS model. The
configurations are scaled and we analyze the similarity of the
strain trajectories through the average strain distance between
pairs of adjacent segments, d̄i,i+1. The segments where the
distance falls below a threshold h are merged together. This
process is repeated until no more merging is possible, resulting
in a kinematic model with fewer segments (m < N).

This sequence is repeated until no more merging is possible,
which can occur either if d̄i,i+1 is larger than h for every pair
of segments or the model gets reduced to a single segment.
Algorithm 1 illustrates an overview of all the steps.

Algorithm 1 Kinematic Regression

Input: Configurations qi(k) {i = 1, ..., N}
Output: Configurations qi(k) {i = 1, ...,m (m < N)}

1: repeat
2: q̄i ← qi/qmax {Scale qi}
3: merge candidates ← [ ]
4: current merge ← [1]
5: for i = 1 to nS − 1 do
6: d̄i,i+1 ← 1

T

∑T
k=1 ∥q̄i(k)− q̄i+1(k)∥

7: if d̄i,i+1 ≤ h then
8: Append i+ 1 to current merge
9: else

10: Append current merge to merge candidates
11: Reinitialize current merge ← [i+ 1]
12: end if
13: end for
14:
15: for each group in merge candidates do
16: qmerged = IK(initχend)
17: {initχend is the pose of the end section of the merged

segment relative to the initial section}
18: end for
19: until nS = 1 or d̄i,i+1 > h , ∀ i ∈ [1, nS − 1]
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Fig. 5: Schematic of the dynamic model identification process. Starting with the m-segment PCS kinematic model, a library
of basis functions is constructed to parameterize the system’s Lagrangian, incorporating also dissipative forces. A regression
framework is established using the Euler-Lagrange equations, and the dynamic parameters π̂+ are estimated through linear
least-squares. Strains with stiffness magnitudes exceeding a predefined threshold are neglected, prompting adjustments to the
basis functions. The dynamic parameters are re-estimated iteratively until the stiffness threshold produces no more effects.

C. Dynamic Model Identification

After deriving the kinematic model, we proceed to identify
the dynamic model using a data-driven approach. Figure 5
illustrates this process. The method begins by constructing a
library of basis functions from the PCS dynamic model and
employs a regression framework based on the Euler-Lagrange
equations to estimate the system’s dynamic parameters. The
resulting dynamic model is then sparsified by removing non-
essential strains based on the stiffness estimates. Sparsifying
the strains is an important step because strain-based mod-
elling approaches, such as the PCS model, though lower
in dimension compared to FEM models, can still become
computationally expensive, especially when multiple segments
are considered [28]. Excluding rigid or minimally contributing
dynamics leads to a more efficient representation without a
large sacrifice on accuracy.

1) Construction of Library of Basis Functions based on the
PCS Dynamic Model: In this work, we will perform a system
identification to estimate the Lagrangian of the soft robot. Let
us consider a soft manipulator with configuration variables
q ∈ Rnq . We leverage the knowledge of the previously found
kinematic model to parametrize the Lagrangian as a linear
combination of monomial basis functions,

L(q, q̇) =

nf∑
j=1

πjfj(q, q̇) , (12)

where fj represent the basis functions within the Lagrangian of
an m-segment planar PCS model, and πj are the corresponding
coefficients. The value m denotes the number of segments
determined during the kinematic regression phase. The basis
functions are obtained from the closed-form derivation of the
kinetic and potential energies for the PCS model [27]. Note
that we start with the Lagrangian basis functions of a PCS
model that assumes all possible strains are present (three per
CS segment).

One limitation of using the Lagrangian as the descriptor of
a system’s dynamics is that it does not inherently incorporate
non-conservative forces, such as the intrinsic damping in the

soft robot’ structure. Therefore, to include this in the dynamic
model, we introduce the dissipative forces as

Fd = −Dq̇ , (13)

where D ∈ Rnq×nq is a diagonal matrix that holds the
damping coefficients to be identified.

2) Regression of Dynamic Parameters: We resort to the
Euler-Lagrange equations to set a regression framework that
allows the estimation of the parameters. We define the Euler-
Lagrange equations as

τ =
∂2L

∂q̇2
q̈+

∂2L

∂q ∂q̇
q̇− ∂L

∂q
+Dq̇ =

=

nf∑
j=1

[
πj

(
∂2fj
∂q̇2

q̈+
∂2fj
∂q ∂q̇

q̇− ∂fj
∂q

)]
+Dq̇ =

=

nψ∑
j=1

π+
j ψj(q, q̇, q̈) ∈ Rnq ,

(14)

where ψj denote the Euler-Lagrange basis functions and π+
j

the associated coefficients, which comprise the Lagrangian
basis function coefficients πj along with the damping coef-
ficients, diag(D). Therefore, nψ = nf + nq .

We can then formulate the Euler-Lagrange equations (14)
in a matrix form as a linear combination

τ = Ψ(q, q̇, q̈)π+ , (15)

where Ψ ∈ Rnq×nψ and π+ ∈ Rnψ×1. In order to estimate
the coefficients, we formulate a linear regression problem that
accommodates the dataset,

T =Xπ+ (16)

where T = [τ⊤(1), ..., τ⊤(T )]⊤ ∈ RTnq×1 and
X = [Ψ(q(1), q̇(1), q̈(1))⊤, ...,Ψ(q(T ), q̇(T ), q̈(T ))⊤]⊤ ∈
RTnq×nψ . We set the optimization problem as a linear least
squares regression,

min ∥T −Xπ+∥22 , (17)
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TABLE I: Kinematic and dynamic parameters of the manipulators used in the experiments. All segments across the manipulators
have a constant circular cross-section with radius r = 0.02m. The 1-segment PAC manipulator does not contain any dynamic
parameters since it was implemented only as a kinematic simulator.

Case
Segment lengths (L)

[m]
Mass density (ρ)

[kg/m3]
Young’s modulus (E)

[Pa]
Shear modulus (G)

[Pa]
Damping matrix (D)

1-segment
PCS [0.1] [1070] [1e4] [1e3] diag([1e-5; 1.5e-1; 1.5e-1])

2-segment
PCS [0.07; 0.1] [1070; 1049] [1e4; 9e3] [1e3; 3e3]

diag([3e-5; 5e-1; 5e-2;
3e-5; 2.5e-2; 5e-2])

3-segment
PCS [0.05; 0.1; 0.06] [1240; 1049; 1070] [1e4; 6e4; 8e4] [1e3; 3e3; 5e3]

diag([5e-5; 4e-2; 5e-2;
5e-5; 5e-3; 5e-2;
5e-5; 5e-3; 5e-2])

1-segment
PCS w/ high
shear stiff.

[0.1] [1070] [1e4] [1e6] diag([1e-5; 5e0; 1.5e-1])

1-segment
PAC [0.15] - - - -

where we want to find the coefficient vector π+ that minimizes
the mean squared error between the estimated actuation Xπ+

and the actual one T for all the samples. The closed-form
solution for this problem is given by

π̂+ = (X⊤X)−1X⊤T . (18)

3) Sparsification of strains: This dynamic identification
method offers the advantage of having interpretable results,
as each estimated coefficient has some physical meaning
within the PCS dynamic derivation. Specifically, among those
we can extract the estimated stiffness matrix K̂, allowing
us to assess the relevance of each strain by looking at its
stiffness magnitude k̂i. A strain with high stiffness exhibits
low displacement, approximating rigid behaviour. Therefore,
such strain can be considered non-essential and neglected in
the dynamics.

For this, we define a maximum stiffness, which is commonly
modelled using the cross-section geometry and the material
properties [29]. For a planar segment with constant cross-
section, this is given by

Kmax = diag
[
kmax

be kmax
sh kmax

ax
]

= diag
[
IcE

max AcG
max AcE

max
]
,

(19)

which hold the bending, shear and axial items. Emax and
Gmax are the Young’s and shear modulus, respectively. Ac and
Ic are the cross-section area and second moment of inertia,
respectively. Given this, the e-th strain is neglected if its
estimated stiffness is larger than the maximum, k̂e > kmax

e .
Having reached this result, we must perform a new regres-

sion of the parameters to find the sparser dynamic model. For
this, the configuration vector is updated by excluding the e-th
strain qe (q = q \ qe), and the Lagrangian basis functions are
adjusted such that the updated Lagrangian parameterization is
given by

L(q, q̇) =

nf∑
j=1

πj lim
(qe,q̇e)→0

fj(q, q̇) . (20)

Similarly, the Euler-Lagrange basis functions Ψ can be up-
dated by removing the e-th row and taking the following limit
to the remaining entries,

lim
(qe,q̇e,q̈e)→0

Ψ(q, q̇, q̈) . (21)

Any columns that turn into all-zeros are also removed. Notice,
therefore, that the library of basis functions is only derived
once in the beginning, considering all possible strains. Later,
in case of strain removal, only the above adjustments are
performed to the set. After this, the linear least squares is
used to find the new set of parameters. The sequence of steps
described in III-C2 and III-C3 is repeated until the stiffness
threshold produces no effects.

IV. EXPERIMENTS

To validate the proposed method, the kinematic and dy-
namic regressions are tested in several simulation scenarios.
Two simulators were used to generate the test cases: a pla-
nar PCS dynamic simulator and a planar Piecewise Affine
Curvature (PAC) kinematic simulator. These simulators render
videos of soft robot trajectories (see Fig. 3) to be used as
input of the method’s pipeline. In the end, the quality of
the kinematic and dynamic models is assessed by comparing
the estimated poses from both models with the ground-truth.
The following subsections provide additional details and the
results.

A. Simulation Setup

The planar PCS dynamic simulator used was introduced in
[26]. This is an implementation of the mathematical formula-
tions in II-A and II-B. Four different scenarios were created
with this simulator. Cases 1, 2 and 3 are one-, two- and
three-segment standard soft manipulators. Case 4 is a one-
segment manipulator where the shear strain stiffness was set
to a large value to test the strain sparsification step of the
dynamic regression.

To evaluate the robustness of the constant strain assumption
in the models, a second planar simulator with distinct kinemat-
ics was used. It implements piecewise affine curvature (PAC)
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(a) Case 1 (1-segment)
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(b) Case 2 (2-segment)
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(c) Case 3 (3-segment)

Fig. 6: Average strain distances between pairs of adjacent segments for the test cases generated using the PCS simulator. The
poses of 20 cross-sections along the manipulators are tracked, resulting in 19 pairs of segments to be evaluated for strain
similarity. The threshold is represented with a dashed line, and the background shading marks the resulting segments (separate
segments are shaded with different colors).

[30] [31], in which the curvature of each segment ci(t) is no
longer constant but rather affine in space,

ci(t) = c0,i(t) + c1,i(t)s , (22)

where c0,i and c1,i are the zero-order and first-order terms that
define the curvature. The axial and shear strains are still con-
sidered constant in each segment. This simulator was used to
generate Case 5, a one-segment PAC soft manipulator. Details
on the manipulators used for the test cases are displayed in
Table I.

Cases 1, 2 and 4 served to validate the method end-to-end,
whereas Cases 3 and 5 were used to test only the kinematic
regression part.

1) Data generation: For Cases 1 to 4, we generate eight
trajectories with randomly sampled initial conditions and ran-
dom actuation to excite the system every 10 milliseconds. Each
trajectory produces a 0.5-second video captured at 1000 frames
per second. For Case 5, since the PAC simulator only accounts
for kinematics, we generate a single video featuring the robot
in 500 randomly selected configurations [c0, c1, σsh, σax].

For the manipulators that are used to test the method end-
to-end (Cases 1, 2 and 4), an additional 7-second trajectory
is created to test the accuracy of the dynamic model. This
trajectory is generated by applying a sinusoidal actuation
sequence of the form τ = f(a1 sin (ω1t) + a2 cos (ω2t)),
where a1 and a2 are random amplitudes, and ω1 and ω2 are
random frequencies.

For all the cases, we chose to track 20 equally distant cross-
sections along the manipulators.

2) Evaluation metrics: To evaluate the models quantita-
tively, we introduce position and orientation task-space met-
rics. We use a distributed task-space mean absolute error
(MAE), given by

edistp =
1

NT

T∑
k=1

N∑
i=1

∥p̂i(k)− pi(k)∥2 (23)

and

edistθ =
1

NT

T∑
k=1

N∑
i=1

|θ̂i(k)− θi(k)| , (24)

where p̂i(k) and θ̂i(k) are the estimated position and orien-
tation of point i along the structure, respectively, while pi(k)
and θi(k) are the ground-truth counterparts. These metrics give
the average pose error across all T frames of a trajectory and
all N cross-sections tracked along the robot, enabling a good
evaluation of the kinematic model by capturing how well it
represents the overall shape of the soft robot structure.

In addition, we also consider an end-effector task-space
MAE given by

eEE
p =

1

T

T∑
k=1

∥p̂EE(k)− pEE(k)∥2 (25)

eEE
θ =

1

T

T∑
k=1

|θ̂EE(k)− θEE(k)| , (26)

where p̂EE(k) and θ̂EE(k) are the estimated end-effector po-
sition and orientation, respectively, with pEE(k) and θEE(k)
being the ground-truth counterparts. This metric is particularly
useful for assessing the obtained dynamic models, as the
accuracy of the end-effector is crucial for an effective control
performance and task execution.

B. Kinematic Regression Results

1) Cases 1, 2 and 3: The kinematic regression procedure
was first tested for three instances of the planar PCS simulator:
a one-, two- and three-segment manipulators (Cases 1, 2 and
3). Fig. 6 presents the average strain distances between the
adjacent segment pairs for the three cases, following one
iteration of the algorithm.

The plots for Cases 2 and 3 reveal one and two peaks,
respectively, suggesting the locations for the segment breaks.
In contrast, the smaller magnitude of the distance metric in
Case 1, when compared to the other cases, indicates that all the
segments could be merged into a single segment. The number
of segments and respective lengths for the resulting models
obtained with a threshold of h = 0.2 are shown in the second
column of Table II. Note that these models are final because,
for Cases 2 and 3, the updated strain trajectories for the newly
defined segments are no longer sufficiently similar for further
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merging. Also, for Case 1 no additional merging is possible
since we already reached one single segment.

The distributed task-space errors between the resulting
models and the ground truth is also evaluated. Knowing the
final number of segments and their lengths, we determine the
configurations qi(k). Then, using the forward kinematics in
(3), we obtain the estimated positions and orientations for the
20 tracked points along the robot. The results for these three
cases are summarized in the first three rows of Table II.

TABLE II: Kinematic regression results for Cases 1, 2, 3 and
5. The second column contains the segment lengths for the
obtained kinematic models. The distributed task-space errors
for each model over the generated trajectories are stated in the
third and fourth columns.

Case
Resulting model

Segment lengths (L̂) [m]
edistp [m] edistθ [rad]

1 [0.1] 8.21× 10−5 6.38× 10−3

2 [0.068; 0.102] 2.40× 10−4 1.15× 10−2

3 [0.0525; 0.0945; 0.063] 2.10× 10−4 9.67× 10−3

5 [0.0075; 0.105; 0.0375] 7.46× 10−4 8.92× 10−2

The kinematic regression was able to retrieve models that
almost exactly match the manipulators used in the simulation.
However, for Cases 2 and 3, the segments’ lengths deviate
slightly from the true ones (see second column of Table I).
This is a consequence of the number of cross-sections tracked
along the robots. Increasing this number would result in finer
discretization and a closer approximation. Nonetheless, the
position errors of the resulting models fall under 0.2% of the
robots’ lengths.

2) Case 5: We evaluate the robustness of the method with
the PAC simulator, which no longer implements the constant
bending assumption of the PCS model. The average strain
distances for the initial 19 pairs of segments are presented in
Fig. 7.
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Fig. 7: Average strain distances for Case 5 after the first
iteration of the kinematic regression algorithm.

Contrary to the results for the previous test cases, the
plot does not make clear the exact locations where to merge
segments. In this situation, we could think of the threshold as
a hyperparameter and evaluate the quality of the models re-
sultant from different values of h. Figure 8 shows the position
and orientation errors as a function of the obtained number

of segments, for several values of threshold. The choice for
the final kinematic model depends on how the user wants to
balance model complexity and shape reconstruction accuracy.
For this case, we choose as the final model the one that
maximizes the decrease in error over an increase in complexity
(i.e., number of segments), which corresponds to the model
with three segments. We can see that the 3-segment model
exhibits a distributed position error of 0.5% of the robot’s
length, which verifies that this kinematic parametrization is
suitable to approximate the robot’s behaviour.
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Fig. 8: Position (■) and orientation ( ) distributed errors
as a function of the number of segments considered for the
kinematic model in Case 5.

C. Dynamic Model Identification Results

We now present and discuss the results of the dynamic
model identification procedure. The procedure is the same
across all the tested manipulators. From the kinematic regres-
sion step, we retrieve the kinematic model (with generic m-
segments) and the respective configurations q(k) ∈ R3m for
each of the 4000 time steps captured throughout the eight gen-
erated trajectories. The velocity q̇(k) and acceleration q̈(k),
also required for the regression, are numerically approximated
using the Savitzky-Golay filter [32], with a window length
of 25 and a third-order polynomial. We gather the basis
functions of the m-segment PCS Lagrangian (considering all
three strains per segment) and initialize the diagonal damping
matrix D ∈ R3m×3m to be also identified. After running
the least-squares regression and strain sparsification iteratively,
we compute the Euler-Lagrange equations with the obtained
model and retrieve the robot’s equations of motion. We then
simulate the model for the sinusoidal validation trajectory,
using a Tsitouras 5(4) integrator [33] and a time-step of 0.1
ms.

1) Case 1: The Lagrangian of a one-segment PCS manip-
ulator contains 51 basis functions. To those, we also add the
3 damping terms, yielding 54 coefficients to be identified.

After performing the least-squares regression, we inspect
the estimated stiffness and compare it to the maximum defined
stiffness. We choose Emax = 100MPa and Gmax = 0.1MPa,
which are in line with the range of soft materials typically
used [34]. For the cross-section area Ac and second moment of
inertia Ic, we assumed a constant circular cross-section along
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TABLE III: End-effector error metrics for the obtained dynamic models of Cases 1, 2, and 4, evaluated on a 7-second sinusoidal
trajectory. For Cases 1 and 2, results are shown for models trained with and without noise. Case 4 presents end-effector errors
for models where shear strain is either neglected or included.

Case Noise Strains Considered eEE
p [m] eEE

θ [rad]
1 Without noise All 4.89× 10−3 1.13× 10−1

With noise All 1.37× 10−2 3.07× 10−1

2 Without noise All 5.22× 10−3 1.38× 10−1

With noise All 1.68× 10−2 1.35× 10−1

4 Without noise Without shear 4.57× 10−3 9.91× 10−2

Without noise All 5.14× 10−3 1.16× 10−1

the segment, with the same radius defined in the simulator.
With the above parameters, the maximum stiffness is

Kmax = diag
[
kmax

be kmax
sh kmax

ax
]

= diag
[
1.26× 101 1.68× 102 1.26× 105

]
.

(27)

The estimated stiffness obtained from the regression is

K̂ = diag
[
1.20× 10−3 1.55× 100 1.14× 101

]
. (28)

Since all values are below the maximum, no strains will be
neglected and the dynamic model is final.

To evaluate the robustness of the method, we also cor-
rupted the videos by adding zero-mean Gaussian noise to
the position and orientation of each of the 20 cross-sections
along the robot. Specifically, noise with a standard deviation
of 5 × 10−4 m was added to both the x- and y-position
measurements, while a standard deviation of 1 deg was applied
to the orientation. Figure 9 shows the comparison between the
models trained with and without noise.

The task-space error analysis, reported on Table III, show
that the model trained without noise is able to give very
accurate predictions, with the end-effector position error being
under 5% of the robot’s length. The model trained from noisy
data can still provide reasonable predictions, even though the
position error increases to 1.37 cm and the orientation error
rises to 0.3 rad.

An actual visualization of the trajectory also allows us to
see that the end-effector error tends to increase after the robot
crosses its straight configuration. Figure 10 shows a sequence
of stills from the trajectory where this behaviour is noticeable.
A possible reason for this is that, in the simulator used for
generating the data, a small ε is added to the bending strain
to avoid numerical instabilities due to divisions by zero. This
introduces a minor nonlinearity that is not accounted for in
the system’s Lagrangian, and consequently, it is not captured
by the learned model.

2) Case 2: The Lagrangian of a two-segment PCS ma-
nipulator has 438 basis functions. In total, that leads to 444
coefficients to be estimated (438 plus 6 damping terms). Using
also Emax = 100MPa and Gmax = 0.1MPa, and assuming
the same cross-section radius for both segments of 0.02m, the
maximum stiffness is

Kmax = diag
[
kmax

be,1 kmax
sh,1 kmax

ax,1 kmax
be,2 kmax

sh,2 kmax
ax,2

]
= diag

[
1.26× 101 1.68× 102 1.26× 105

1.26× 101 1.68× 102 1.26× 105
]
.

(29)
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(b) End-effector pose

Fig. 9: Verification of the model obtained for Case 1 on a
sinusoidal trajectory. The dotted line denotes the ground-truth
(GT) trajectory, while the green and orange lines correspond
to the models trained with and without noise, respectively.
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𝑡 = 4.315 𝑠 𝑡 = 4.350 𝑠 𝑡 = 4.375 𝑠 𝑡 = 4.405 𝑠 𝑡 = 4.480 𝑠

Fig. 10: Sequence of stills for the validation trajectory of Case 1, with the model trained without noisy data. The blue dots
represent the actual position of the soft robot, while the red dots mark the position of the learned dynamic model.

After the least-squares regression, the estimated stiffness co-
efficients are

K̂ = diag
[
1.07× 10−3 1.31× 100 1.09× 101

1.11× 10−3 4.28× 100 9.60× 100
]
,

(30)

which means that no strains are neglected since all the values
are smaller than the corresponding maximum.

As with the one-segment case, we also corrupted the videos
by adding measurement noise (through a zero-mean Gaussian
distribution) to the position and orientation of the cross-
sections split along the robot. However, in this case, the
method could only tolerate noise with a standard deviation
of 1×10−4 m for the position and 0.5 deg for the orientation.
Training the models with data corrupted by higher noise levels
caused the prediction results to diverge, as the estimated
coefficients produced a mass matrix that was not positive
definite, a condition necessary to ensure the stability of the
dynamics. Figure 11 reports the comparison between the
models trained both with and without noise for the sinusoidal
trajectory used as validation.

The model trained without noise reports great accuracy, with
an end-effector position error of 5.22mm (3% of the robot’s
length) and an orientation error of 0.14 rad. An expected
performance degradation is noticed for the model trained with
noisy data, particularly for the end-effector position, which
sees the error increase to 1.68 cm. This raises some consid-
erations for implementations in real-world scenarios, where
measurement noise is inevitable. Thus, while the model still
gives reasonable predictions to moderate levels of noise, apply-
ing noise filtering techniques during the kinematic regression
process (where the measured task-space poses are converted
into configurations) could help improve the robustness of the
method to higher levels of noise.

3) Case 4: To evaluate the strain sparsification step in the
dynamic regression, we used a one-segment PCS manipulator
similar to Case 1, but with the shear strain stiffness set
to a high value to simulate a scenario with minimal shear
displacement.

After running the regression, the obtained estimated stiff-
ness was

K̂ = diag
[
1.07× 10−3 1.20× 103 1.16× 101

]
. (31)

Comparing the values with the maximum stiffness in (27), the
second entry, correspondent to the shear stiffness, is above the
maximum value. Given this, the shear strain is neglected from
the configuration vector and we update the Lagrangian basis
functions through (20), which results in a reduction from 51 to
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Fig. 11: Verification of the model obtained for Case 2 on a
sinusoidal trajectory. The dotted lines denote the ground-truth
(GT) trajectory. For the configuration plot, blue lines refer
to the first segment while orange lines are associated with the
second segment. For the end-effector pose plot, the orange and
green lines mark the models trained with and without noise,
respectively.
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27 basis functions. The Euler-Lagrange basis functions are also
updated through (21). The regression is again performed to
estimate the 29 coefficients (27 plus the remaining 2 damping
terms). In this case, the estimated stiffness is

K̂ = diag
[
k̂be k̂ax

]
= diag

[
1.21× 10−3 1.17× 101

]
,

(32)

which no longer requires additional sparsification. Figure 12
shows the results for rolling out this dynamic model over the
sinusoidal trajectory. To observe the impact of neglecting the
shear strain, we additionally plot the end-effector pose for the
case where shear was still considered. The end-effector errors
for this comparison are also reported in the last two rows of
Table III.
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Fig. 12: Verification of the model obtained for Case 4 on a
sinusoidal trajectory. The dotted line denotes the ground-truth
trajectory, while the green and orange lines correspond to the
models trained with and without noise, respectively.

Figure 12a shows that, despite discarding the shear strain,
the model can still accurately predict the behaviour of the
remaining bending and axial strains. Interestingly, the model
without shear strain performs similarly, even slightly better,
in terms of end-effector accuracy, compared to the model
that includes all strains. Although it could be expected that
the higher order model would perform better, a possible
explanation is that, with fewer basis functions parametrizing
the Lagrangian, the regressed coefficients for the remaining
strains are more accurately estimated.

V. CONCLUSION

This work presents a comprehensive approach to auto-
matically identify the kinematics and dynamics of planar
continuum soft robots, based on the Piecewise Constant Strain
(PCS) model. Using only a few video-recorded trajectories,
we successfully extracted kinematic models and used them as
foundations to obtain dynamic models represented in standard
Euler-Lagrange form. The proposed methodology offers a
balance between model accuracy and computational efficiency,
enabling real-time control applications.

The results demonstrated that our approach was able to
provide accurate predictions of the robots’ behavior in various
simulated scenarios. The strain-based segmentation technique
proved effective in achieving a good trade-off between model
complexity and shape accuracy. Additionally, the dynamic
identification method reliably estimated the system parameters
while omitting negligible strains when necessary. However,
while our method performed well under some levels of mea-
surement noise, its robustness to higher noise levels leaves
room for improvement.

Overall, this work provides a fast and practical modelling
approach that integrates both physical insights and data-driven
identification. Future work should focus on enhancing noise
robustness (both process and measurement noise), adapting
the method to more realistic actuation scenarios, validating
it with real-world data, and extending the approach to three-
dimensional soft robots.
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