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1. Zij T; een contractie halfgroep op een complexe Hilbertruimte H.

Veronderstel dat T; voldoet aan de eis dat T;T; = T, T}, d.w.z. T;
is normaal. Dan geldt dat de sterke limiet van T}'T; voor ¢t — oo
een projectie is (noem deze Q). Bovendien heeft de orthogonale
decompositie van H: H = QH @ QH* de eigenschap dat T; is
unitair op QH en volledig niet-unitair op QH*.

E.B. Davies, Onc-paremeter semigroups, Academic Press, London, 1980.
Ello Weits, Terugkeer naar evenwichi, doctoraalscriptie natuurkunde, 1985.

. Zij {X.} een reéelwaardig stochastisch proces (n > 0) gegeven
door: X, ~ N(0,V) en Vppp = ¢I"~™ 4 ¢"t™ met 0 < ¢ < 1.
{X.} kan worden gerepresenteerd als een autoregressief proces
(een AR(1)-proces):

Xn = apn + $Xn—1,

waarbij {a,} een verzameling van i.i.d. stochasten is met a, ~
N(0,1). Het onderscheid met de stationaire variant, in welk geval
Vam = #™™ schuilt alleen in de reconstructie van de eerste sto-
ringsterm ag. In plaats van ag = /1 — ¢2Xp stellen we nu

h_ 2
ap = 2¢ Xo.

. Het volgende stelsel evolutievergelijkingen wordt wel gebruikt om
een verkeersstroom op een autosnelweg te beschrijven:

% _ _dpv)
ot Oz
ov 1 v ap ov
A Ry i

waarbij p(t,z) de dichtheid van de verkeersstroom op tijd ¢ en
plaats z is en v(t,z) de snelheid; 7 en v zijn positieve constanten;
V(p) is een functie, die voor elke waarde van p de bijbehorende
‘evenwichtssnelheid’ geeft.

In tegenstelling tot de bewering van Reinhart Kiihne kent dit
stelsel geen eenduidige schokgolfoplossingen. De oorzaak hiervan is
dat met de tweede vergelijking geen behoudswet correspondeert,
zodat er geen voorschrift beschikbaar is om het gedrag van de
oplossing in de discontinuiteitspunten vast te leggen.




Reinhart D. Kiihne, Macroscopic Freeway Model for Dense Traffic — Stop-start Waves
and Incident Detection, Proceedings of the Ninth International Symposium on Trans-
portation and Traffic Theory, VNU Science Press, pp, 21-42, 1984.

Reinhart D. Kiihne, Fernstraienverkehrsbeeinflussung und Physik der Phaseniiber-
ginge, Physik in unserer Zeit, 15 (1984), nr. 3, pp. 84-93.

G.B. Whitham, Linear and Nonlinear waves, Wiley, New York, 1974.

. Zij H een reéle separabele Hilbertruimte en X; een H-waardig
proces, dat wordt beschreven door

dX: = KAX:dt + dB,

waarbij K een positieve constante is, A een operator op H die
een geschikte halfgroep genereert en B; een H-waardige Brownse
beweging. De schatter voor de parameter K, die Koski en Loges
tooien met de naam ‘minimum contrast schatter’ (overigens niet
ten onrechte), is in feite niets anders dan een momentenschatter.

Koski & Loges, On Minimum-Contrast Estimation for Hilbert Space-Valued Stochas-
tic Differential Equations, Stochastics, vol. 16 (1986), pp. 217-225.

. Veronderstel dat o een vermenigvuldigingsoperator is, afgeleid van
een Lipschitz-continue functie op R. Dan heeft de oneindig dimen-
sionale stochastische differentiaalvergelijking

dthd—d:;,-Xtdt-l-O'(Xt)dBt, OStST
zowel in het geval dat X; een functie is op [~ M, M] als in het geval
dat X; een functie is op geheel R een unieke oplossing. Laten we
deze XM en X; noemen. Beide gevallen worden meestal met iets
verschillende wiskundige instrumenten behandeld. Als XM en X;
beschouwd worden als C([0,T] X [~ 5, §])-waardig processen (voor
vaste S), dan convergeert de oplossing XM in verdeling naar X;.

. Het verstrekken van OV-jaarkaarten aan grote groepen van de
(beroeps)bevolking levert geen wezenlijke bijdrage aan de oplos-
sing van de mobiliteitsproblematiek.

. Alleen al de mogelijkheid om kinderen te krijgen is voor een vrouw
op de arbeidsmarkt een handicap.

. De verhouding tussen de filosofie en de theologie vertoont over-
eenkomsten met de verhouding tussen de wiskunde en de natuur-
kunde.
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Chapter 1

Introduction

1.1 Traffic problems

Traffic has increasingly become the subject of discussion and criticism in
the Netherlands. Recently much attention has been given to the issue of
air pollution caused by traffic. Other problems are the noise produced,
the amount of space taken up and the lack of safety. Furthermore, the
increase of traffic intensity causes many daily traffic jams in the more
densely populated areas of the country.

It is widely recognized that traffic and mobility meet deeply rooted
needs of Dutch society. Hence the solutions to the problems mentioned
above are in the first place a matter of political and economical decision
making.

Nevertheless, it may be expected that technical measures will be
part of any policy. Such measures concern for example construction of
vehicles that consume less energy and produce less pollution as well as
less noise, design of efficient traffic networks around and between cities,
improvement of public transport and also a more efficient use of the
freeway capacity.

This thesis aims at a mathematical description of traffic flow on
a freeway!, thereby identifying some useful flow characteristics. Esti-
mating these characteristics and taking appropriate action may lead to
enhancement of the homogeneity of the flow. The capacity of a partic-
ular freeway is not entirely independent of the traffic stream; improving
the homogeneity of the flow enlarges what might be called the ‘effective’

1 Although the text is written in English, we always use the American word ‘free-
way’ instead of the English word ‘motorway’, because ‘freeway’ is standard terminol-
ogy in transportation science.



Figure 1.1: The traffic is observed on a stretch of a freeway of
fixed length (L).

capacity.

While much congestion is due to accidents and the existence of bot-
tlenecks (especially at junctions near the larger cities), many other occur-
rences of congestion can be ascribed to lack of freeway capacity. When
the intensity of the traffic stream increases above some ‘saturation value’,
a small disturbance may cause a collapse of the traffic flow.

Figure 1.1 schematically shows the typical situation. Entrances and
exits are not taken into account; we concentrate upon the behaviour of
the traffic flow between junctions.

1.2 High density stationary freeway traffic

The attempt to model freeway traffic flow is usually undertaken for
practical reasons. As mentioned above, the application we have in mind
is in the first place an efficient use of the freeway capacity. Therefore,
the interest is primarily directed at high density multilane freeway traffic
as low density freeway traffic is not problematic, except when questions
of safety are discussed.

The high density assumption already is part of a vocabulary that
exploits the analogy between traffic flow and fluid flow. Often high
density multilane freeway traffic is described in terms of density (number
of vehicles per kilometer), mean velocity (kilometers per hour) and ‘flow’
(number of vehicles passing some point per hour). The analogy is quite
obvious; nevertheless there are also differences. The level of aggregation
is rather low in the case of traffic flow (hundreds or maybe thousands
of vehicles compared to billions of fluid particles). Furthermore, the
freeway traffic flow cannot be classified into a few classes of identical
vehicles, whereas precisely this classification ensures the validity of many

2



calculations concerning fluid flows.

In Chapter 2it is argued that these deficiencies of the analogy are one
reason to add a stochastic term to the equation describing the behaviour
of the traffic flow. Another reason is the fact that drivers exhibit a
nonconstant, stochastic driving style.

In order to keep the model mathematically tractable, the non-linear
equations describing the flow are linearized. This simplication is valid as
long as the resulting model is confined to a stationary high density mul-
tilane freeway traffic flow. The restriction to a stationary flow is not very
serious. Every traffic flow model has a limited area of application. (Or,
alternatively, every type of traffic requires its own mathematical model.)
For example high density (multilane) traffic subject to bottlenecks such
as traffic lights might be best described by retaining the non-linearity of
the basic equations without inclusion of a stochastic term.

The linear model describes a stationary high density freeway traffic
flow in terms of some fixed mean density and stochastic fluctuations
which occur around this mean. A flow is said to be homogeneous if the
fluctuations are small. The capacity of the freeway can be defined as the
maximum ‘flow’ (or intensity, measured in number of vehicles per hour)
that can pass along the freeway. This maximum usually corresponds
to a maximum density if the flow is uncongested. Obviously, the mean
density should be below the maximum density. The margin, however,
is determined by the maximum amplitude of the fluctuations. If the
sum of the mean density and the instantaneous fluctuation exceeds the
maximum density, a breakdown of the flow is likely to occur. It should
be stressed that, due to linearization of the equations, this also implies
a breakdown of the model. Therefore, the model is intended to describe
the characteristics of the traffic flow that give rise to the breakdown (the
onset of congestion), but not what happens after the breakdown.

Figure 1.2 shows the evolution of the density at a particular site of
the freeway A13 near Delft, as measured on September 27, 1989 between
15.30 h. and 16.00 h.

In order to make the notion of characteristics somewhat clearer, it is
useful to write down here the linearized equation describing the evolution
of the density, R(t,z), where t is the time and z the space variable. The
equation is an example of a stochastic heat equation.

OR 0’R OR 0B
W—K'W'—Co'a—z-l-aﬁ. (11)

K and ¢ are positive constants. K is a parameter that determines how
strong the smoothing tendency of the process is that counteracts the

3
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Figure 1.2: The evolution of the density (vehicles per km per lane)
at detector station nr. 8 situated on the western carriageway of the
freeway A13 (see for further description of these data Chapter 7).
The time is given in seconds.
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influence of the noise term; ¢; is a velocity. The noise term, o dB/dt,
contains the stochastic disturbances of the traffic stream. This term
not only depends on o, but also (inplicitly) on another (real-valued,
positive) parameter S; o determines the amplitude of the disturbances
and S their range (so the mean density is effectively the mean of the
density over a stretch of the freeway that is long compared with $).
K, o and S may be called the characteristics, since they determine the
degree of (non-)homogeneity of the flow.

It should be emphasized that equations such as (1.1) require careful
interpretation. The first part of the thesis is therefore devoted to this
subject.

1.3 Outline of the following chapters

In Chapter 2 a survey of several freeway traffic flow models is given.
Furthermore, the choice of the ‘macroscopic continuum model’, which
already has been sketched above, is motivated. Chapters 3 and 4 contain
the mathematical (probabilistic) background of the model. In Chapter 5
we summarize the discussions of Chapters 2 to 4 presenting once more
the ideas of these chapters, without entering into the mathematical de-
tails. Chapter 6 describes the statistical analysis of the model. The
results of the comparison of the model with real data are reported in
Chapter 7. Finally, Chapter 8 contains a summary, conclusions and also
some remarks concerning the utilization of the research.



Chapter 2

Models of freeway traffic
flow: a survey

Research on the subject of freeway traffic flow (and on other problems of
traffic theory) started some thirty years ago, in particular in the Unites
States. A key paper was written by Lighthill and Whitham in 1955
[19]. During these three decades various different approaches have been
proposed, but no particular model seems to be superior to the others.
There are at least two obvious reasons for this.

(i) A model can be microscopic or macroscopic; individual vehicles are
observed in practice, but is it judicious to incorporate individual
behaviour into the model?

(ii) In microscopic as well as in macroscopic models there are a lot of
factors that cannot be modelled exactly, but have to be viewed as
random disturbances. As it is by no means clear how this should
be done and as in most cases introducing stochastic components
greatly complicates the analysis of the model, should one decide
for a stochastic or for a deterministic model?

These two questions are unresolved in general. Therefore, we can readily
distinguish between four types of model, each of which has its own ad-
vantages and disadvantages. These four types are shown and categorized
in Table 2.1. »
There is a fifth type which does not fit in with this classification,
namely the models based on a kind of a ‘Boltzmann equation’; with
regard to both aspects of the classification they occupy an intermediate
position. We will discuss each type of model separately. Our primary



deterministic stochastic
microscopic | car following theories | headway models, simulation
macroscopic | continuum models stochastic continuum models

Table 2.1: Classification of freeway traffic flow models.

goal is to show how the specific assumptions of each type relate to a
specific area of application. In the last section we give an outline of the
stochastic continuum model, that we concentrate on in the rest of this
thesis (see Chapter 5 for a complete description of the model).

2.1 Microscopic models

2.1.1 Car following theories

Car following theories are the typical representatives of the class of mi-
croscopic, deterministic models. One considers a long (possibly infinite)
sequence of vehicles which are numbered 1,2, ...; the vehicle in front has
number 1, the one following number 2 etcetera. At time ¢ the position
of vehicle 7 is given by y;(t). Usually one denotes its velocity by ().
A suggested equation of motion is [12,38]

%t +T)=Gy-1(t) — %(?))

or, equivalently, assuming G to be differentiable,
G+ T) = [5i-1(t) ~ %O G (%i-1(t) — w(V);

G is a particular function of the headway and T is the time lag of the
driver-vehicle system. Car following theories have been applied mainly
to single lane traffic, especially in tunnels (see for example [25]). This
is, of course, due to the fact that phenomena such as passing and lane-
changing cannot be described easily in this setting. Sometimes a stoch-
astic term is added to the (second) differential equation representing
the so-called ‘acceleration noise’, the discrepancy between the actual
acceleration and the ‘ideal’ acceleration [24].

2.1.2 Headway models and simulation

Headway models (see for example [11] and [4]) usually deal with the time
headway between successive vehicles measured at some fixed point of a
given lane. It is assumed that the time headways are independent and
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identically distributed according to some probability distribution. This
probability distribution is constructed as follows: a distinction is made
between ‘leaders’ and ‘followers’, followers are vehicles driving closely
behind their predecessors (i.e. within a following distance or following
time), whereas leaders are out of reach of their predecessors. A follower’s
behaviour depends strongly on the vehicle ahead, whereas a leader’s be-
haviour does not have this property. As a consequence of this distinction
the time headways of a follower and a leader are taken from different
probability distributions.

Headway models introduce probability into the class of microscopic
models. Nevertheless they retain the assumption that all vehicles are
essentially the same. Removing this assumption to some extent would
greatly complicate the model. Furthermore the models do not incorpo-
rate dynamics. And, again, they apply only to single lane traffic. Simu-
lation models offer opportunities to overcome these restrictions. (See for
example [20,32].) Letting a computer do the calculations allows us to
build complex, but realistic models, in which vehicles, driving behaviour,
road and weather conditions, etc. can be specified in detail. A price has
to be paid for this freedom: simulation yields little insight in the cru-
cial properties of a traffic stream. In general the relation between the
microscopic specifications of the model and the macroscopic properties
remains unclear.

If we want to allow for multilane traffic and for the variety of vehicle
characteristics and still have tractable models, it seems best to start with
a macroscopic model. The next section introduces continuum models as
the prime example of a macroscopic model.

Sometimes one distinguishes microscopic and macroscopic simula-
tion. What we have discussed here concerns microscopic simulation.
Macroscopic simulation is in fact nothing else but an application of a
(discretized) macroscopic model: the subject of the next section.

2.2 Continuum models

Continuum models deal with traffic streams in terms of aggregate vari-
ables. This macroscopic approach results in a limited number of equa-
tions which are relatively easy to handle. Since continuum models view
the traffic as a continuous stream, they are obviously especially suited
for high density traffic. These models are not rigorously built from mi-
croscopic ‘principles’, instead the information about the vehicles and the
dynamics is macroscopic from the beginning: it consists largely of field



measurements and some heuristic reasoning.

The three basic aggregate variables are: the flow ¢(t,z) (vehicles per
hour), the density p(t,z) (vehicles per kilometer) and the velocity v(t, z)
(kilometers per hour), where t and z denote time and place, respectively.
Here both t and z are taken to be continuous variables, though often
place or place and time are discretized in order to facilitate simulation
and comparison with experimental data. (See for example [21].) The
range of ¢ and z is usually specified afterwards, together with appropriate
initial and boundary conditions.

If we assume that the aggregate variables are differentiable functions
of t and z, then we have two exact relations:

q = pv (2.1)
dp B dq
% T o (2.2)

The equation (2.1) is obvious; (2.2) states ‘the conservation of vehicles’.
To get a complete description of the dynamics we need a third model
equation. There are at least two possibilities:
(a) assume that ¢ is a (differentiable) function of p,i.e. ¢ = Q(p);
(b) derive an equation describing the evolution of the velocity.
The first possibility yields, writing dQ /dp = ¢(p),

dp op _
nt c(p)—a—:; =0. (2.3)

This non-linear, first order partial differential equation was introduced
by Lighthill and Whitham [19]. The solutions to this equation are waves
that develop into shock waves [38, pp. 68-77]. These shock waves bear
resemblance to phenomena observed in traffic streams. Note that as-
suming ¢ to be a function of p is equivalent to assuming that v is a
function of p: v =V (p) = Q(p)/p.

The second possibility to complete the description exists in assuming
a more complicated relation between v and p. Several evolution equa-
tions for the velocity have been suggested. We mention two of them.
Payne [28] (see also [36,38]) proposed the following equation:

dv _ Ov dgv 1 v op
-t = (V-5

1 v Op

= =(V(p)-v)~ 7532’ (24)

where dv/dt is the total time derivative of v for a ‘moving observer’.
A moving observer observes the traffic stream while moving along with
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the stream at the same (variable) speed v. The total time derivative
decomposes into the true time derivative plus the so-called convection
term. This convection term arises, because the two terms on the right
hand side (which are called the relaxation term and the anticipation
term, respectively) are conceived as effects acting on a moving traffic
stream (and thus observable by a moving observer). The relaxation
term describes a tendency of the traffic stream to adjust its velocity to a
value V that matches the density. Note that in the Lighthill-Whitham
model this adjustment takes place instantaneously, i.e. 7 | 0 (for » = 0).
Finally, the anticipation term represents the idea that a traffic stream
also anticipates near-future situations, which announce themselves via
a density gradient. The parameters 7 and v are in most cases assumed
to be positive constants.

In particular the anticipation term has been subject to criticism. The
thesis of S. A. Smulders [36, Chapters 2 and 3] offers a thorough discus-
sion of this term and some alternatives. Here yet another alternative is
suggested:

dv Ov v 1 ov
Z -t * ~((V() —v) — 157)
= 1 _pdv
= 2V - - L, (25)

where p is some constant. The idea behind this choice is that drivers
in a traffic stream are more likely to anticipate velocity changes than
density changes, as the first more directly entail possible danger.

Up till now no randomness was included in the continuum model.
There are arguments for introducing randomness (by adding a random
term to one of the equations) and also arguments against it. Let us
first list some arguments in favour of introducing a stochastic term. It
appears that experimental data exhibit lack of small scale ‘regularity’
in spite of certain large scale effects. This irregularity seems to be due
to the large variation in vehicle characteristics and to the limited level
of aggregation (i.e. the number of ‘particles’ per unit of distance or
time is relatively small, compared with fluid flows). Furthermore, driver
characteristics are not wholly constant in time nor entirely predictable
(cf. the ‘acceleration noise’ in Subsection 2.1.1). Finally, a stochastic
term might compensate for modelling errors in the deterministic terms.

The prime disadvantage of adding a stochastic term is the increas-
ing complexity of the model. The only way to avoid this seems to be
linearization of the model equations. Fortunately, linearization not only

11



reduces the complexity of the model, but also eliminates the dilemma
posed by the presence of various possible anticipation terms. It turns
out that the Payne-model (2.4) as well as the equation (2.5) reduce to
the same linearized equation, viz.

2
ar =Kﬁ_co_al.
or

ot 0z?

Here r(t,z) denotes the deviation of the density around some ‘mean’
value pg; ¢p and K depend only on pp, so that they can be treated as
constants as long as the linearization is valid. We note that in general
(2.6) has stable solutions if and only if K is positive. The expressions
for K are K = v — 7[V'(po)po]® and K = —[u + 7V’ (po)po]V’(po)po for
the Payne model and (2.5), respectively. Thus K is positive if v/T >
[V'(po)po]? or if, in the alternative model, u/T + V'(po)po > 0. (It is
assumed that V(p) is strictly decreasing in p, so that V'(pg) < 0.) In
both cases this condition can be interpreted as the requirement that
the anticipation effect should be ‘strong’ enough to compensate for the
instability induced by the nonzero V’(pp); it is worth remarking that
this nonzero derivative is also responsable for the existence of shock
wave solutions for (2.3). In both models ¢ equals V'(py)po + V(po)-

Our interim conclusion is that the model equation of a ‘linearized
stochastic continuum model’ might read as follows:

OR . 0°R

ot~ 0
where we have written R instead of r to indicate that now the density(-
fluctuation) is a stochastic function (of ¢ and z). As will be shown
later (see Chapter 4), this equation permits calculations that are not
too complex, provided a suitable choice of the noise term is made. The
remaining question is whether the linearization does not limit the area of
application too much. We will return to this question in the last section
of this chapter. In the meantime we will have a look at the ‘unclassified’
models, which are based on a kind of Boltzmann equation.

(2.6)

Co%g + noise term, (2.7)

2.3 Models based on a Boltzmann equation

2.3.1 The basic idea

As always one starts by considering an ideal situation, in this case one
carriageway of a freeway of infinite length lacking entrance and exit
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ramps. The traffic on the carriageway is described by a distribution
function f(z,v,t): at time ¢ the expected number of vehicles present at
a location between z and z + dz and having a velocity between v and
v + dv equals f(z,v,t)dz dv. Note that f(z,v,t) is an expected value:
the real value fluctuates around this expectation. The use of this kind of
distribution function (not to be confused with the distribution function
in statistics) has been borrowed from statistical physics, where it is used
to describe what happens in a dilute gas. Change of f(z,v,t) is due to
the fact that drivers increase or decrease their velocity and to the so-
called ‘convection’. The word convection simply denotes the movement
of the traffic and its changing state as a consequence thereof.
Prigogine and Herman [30] assumed two reasons for velocity-change

of individual drivers:

(a) drivers react to each other (interaction);

(b) drivers wish to drive at some desired velocity (relaxation).
These basic considerations give the following ‘Prigogine-Boltzmann equa-

tion’

@ _0r, o (o) o]

dt ~ Ot 8z ~ |Otl,g  LOtlin’
where df /dt is the total time derivative for a moving observer, which
decomposes into the true time derivative plus a term due to the con-

vection. The resulting evolution equation for the distribution function

f(z,v,t) is o _ [ﬂ] . [‘_?i] L (2.8)
ot Otlg  LOtline Oz .

The terms of the right hand side of (2.8) bear the obvious names: relax-
ation term, interaction term and convection term, respectively.

Much now depends on the choice of the relaxation and interaction
terms in (2.8). We will comment briefly on this matter in the next
subsections.

2.3.2 The interaction term

In this subsection we first present the essentials of the derivation of the
interaction term (taken from an article of Munjal and Pahl [22]) and
secondly make some comments concerning the underlying assumptions
(taken from an article by Paveri-Fontana, [27]).

Prigogine ([29] and [30]) proposed the following interaction: when a
vehicle catches up with another one, there is a probability P that it is
able to pass, in which case it does not alter its velocity; with probability
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(1 — P) it cannot pass and slows down adjusting its velocity to the
velocity of the vehicle just in front of it. The expected number of vehicles
having velocity between w and w + dw that interacts during a timespan
of length dt at time ¢ and at place 2 with a particular vehicle having
velocity v (v < w) equals f(z,w,t)dw (w — v)dt (1 — P). Note that the
incoming ‘flux’ equals f(z,w,t)dw dz, where dz = (w — v)dt, i.e. dz is
the maximum distance that an approaching vehicle can cover relative to
the ‘slow’ vehicle in front,.

Integration with respect to w (w > v) and multiplication by the
expected number of vehicles present in the volume element dz dv at the
‘point’ (z,v) yields the increase of the expected number of vehicles in
the same volume element:

[%]:“ dzdvdt = (1~ P) f(z,v,t) [/:o f(z,w,t)(w — v) d'w] dz dv dt.

In an analogous way we can treat the interaction between vehicles of
velocity v and slower vehicles (w < v). We get

[%—{—] ;t dzdvdt = (1 - P) f(z,v,t) [/0" f(z,w,8)(v — w)dw| dz dv dt.

The total interaction term is obtained by summing these contributions:

[3t int - [af]mt [3t int

= A-P)fEn)[[ f@ w0 ) du)
= (1= P)f(z,v,2) (8- v)p(z,1),

where p(z,t) = [5° f(z,v,t)dv is the density and & = o f(z,v,t)vdo
the mean velocity. It is assumed that P only depends on the density.

Paveri-Fontana [27] has listed the assumptions underlying this deriva-
tion:

(i) if a “fast’ vehicle passes a ‘slow’ one, its velocity is not affected;
(ii) the slow vehicle does not change its velocity during the interaction;
(iii) vehicle lengths are neglected;
(iv) the event of slowing down is, if it occurs, instantaneous;

(v) only two vehicle interactions are taken into consideration;
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(vi) the assumption of ‘vehicular chaos’ is valid; in the derivation given
above we implicitly assumed that the expected number of pairs of
vehicles having velocity v and w respectively (at the same place
and at the same time) is simply the product of f(z,v,t)dzdv
and f(z,w,t)dzdw: fo(z,v,z,w,t) = f(2,v,t) f(z,w,t), where
fox, v,y, w,t) dz dv dy dw dt denotes the expected number of pairs
of vehicles such that one vehicle is in dz (around z) and dv (around
v) and the other in dz (around z) and dw (around w); without
this assumption the expression for [0 f/8t}int would be

[%] iy =(1-P) /ooo fa(z,v,z,w,t)(w — v) dw.

Munjal and Pahl [22] as well as Paveri-Fontana [27] rightly assert that
assumption (vi) is likely to break down in the case of high density traf-
fic. Since the velocities of vehicles that are close to each other tend to
be positively correlated, it is obvious that fo(z,v,z,v,t) > f(z,v,1)%.
Furthermore, as soon as queues have appeared, these queues interact as
a whole with other queues or with individual vehicles. Thus assumption
(v) seems to be questionable as well in the case of high density traffic.
Assumptions (i) to (iv) also lack plausibility in this situation. It is for
example quite clear that vehicle lengths become crucial when the density
is approaching the critical value at which a jam is likely to appear.

2.3.3 The relaxation term

Prigogine’s [30] proposal is

[?8_{] __f@vt) }fo(z,v,t)’
rel

where T denotes the relaxation time and fo(z,v,t) the desired velocity
distribution function. The relaxation time is the typical time needed by
a vehicle to adjust its velocity to the desired velocity. Since T is chosen
to depend on the passing probability P, it can be interpreted as the
average time a fast vehicle is stuck behind a slow one (see for example
[2]). The desired velocity distribution function has been subject of many
investigations (see for example [27]).
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2.3.4 Concluding remarks with respect to the Prigogine-
Boltzmann models

The ‘elementary’ Prigogine-Boltzmann equation now reads

0 - o
_é{_ — _f(z, 'U,t) Tfo(z,'vyt) + (1 - P)f(z,v,t)(i) _ v)p(a:,t) _ v_a_;),

where P depends only on p(z,t) = [5° f(z,v,t)dv and T depends only
on P. If fo factors as follows: fo(z,v,t) = p(z,t)po(v), where po(v)
is the probability density according to which preferred velocities are
distributed among vehicle drivers in general, a steady-state, position-
independent solution can be calculated [27]. (There is, however, an
obvious weakness in the conjecture concerning fy: it overlooks the fact
that fast vehicles tend to crowd at places and at times such that passing
is difficult, i.e. in situations where the density p(z,t) is high.)

The elementary model can be extended by considering a stretch of
a freeway of finite length, including entrance and exit ramps, and by
making more refined assumptions concerning the desired velocity distri-
bution function and the parameters P and T. But, in spite of all these
possible modifications, the applicability remains limited to low density
traffic situations. This restriction is implied by the assumptions made
in the derivation of the interaction term. In fact, the restriction is al-
ready hidden in the basic idea of using a kind of Boltzmann equation to
describe freeway traffic flow.

2.4 Conclusions concerning the choice of the
type of model

Recall from Chapter 1 the objective of modelling high density freeway
traffic low. The concentration on high density traffic situations dis-
qualifies the Prigogine-Boltzmann models for reasons mentioned above.
The next classes of models to be dismissed are the car following theories
and the headway models, because their usefulness is restricted to single
lane traffic. Extension of these models to multilane traffic enormously
complicates the analysis.

The first conclusion, therefore, is that macroscopic continuum mod-
els seem the best choice for our purposes. But, as we have seen, the
inclusion of a stochastic term in the model equations is at the same time
a desirable and complicating feature of such a model. Linearization of
the model equations offers a way to avoid too complex models, even
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when a stochastic term is added. The question is: does linearization of
the model equations restrict the applicability of the model too much or
is it an acceptable limitation?

In our view the handicap is not too serious. It seems that all mod-
els that have been designed up till now have their own limited area of
application, because each model incorporates the characteristic features
of only some specific traffic situations. The linearized stochastic contin-
uum model that will be presented in Chapter 5 applies specifically to
high density stationary freeway traffic flow. In case stationarity is a too
restrictive requirement alternative models might be preferable. If for
example large deterministic effects are dominating the flow — one may
think of accidents, which, once occurred, have deterministic impact, and
reduction of the number of lanes — a deterministic continuum model
like the one proposed by P. Ross [34] is a good candidate. If one wishes
to retain randomness and non-linearity at the same time, discretization
of the space variable into a relatively small number of road sections is
an alternative — in some cases even one single section [36].

If, however, the questions we ask concern the capacity of freeways
and the phenomenon of spontaneous congestion — a congestion for
which there is no clear cause except the high density — the assumption
of stationary high density traffic flow may very well be an appropriate
one.

Of course, the obvious objection can be made that the appearance of
congestion ruins the stationarity of the traffic flow and therefore cannot
be described by a model assuming stationarity. However, the onset of
congestion can be seen as a limit or a breakdown of the model, so that a
linearized model does have something to say on the subject of congestion.
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Chapter 3

Stochastic integration‘ in
separable Hilbert spaces

3.1 Preliminaries

Before we consider stochastic integrals in separable, real Hilbert spaces
in Section 3.2, we briefly discuss some of the ingredients needed there.
These ingredients are: general Gaussian families, standard one-dimensio-
nal Brownian motion and Itd’s definition of the (one-dimensional ) stoch-
astic integral. First we cite some facts about Gaussian families from
Hida’s book on Brownian motion [13].

Definition 3.1 A Gaussian family is a collection of real valued random
variables {X) : A € A}, such that every finite linear combination of

elements of {X,} has a Gaussian distribution. A is an arbitrary indez
set,

By analogy with finite families of random variables we call {m()) =
E(X)): A € A} the mean vector of the Gaussian family and {V(\,p) =
E(X) — m(A)) (X, — m(p)): A, u € A} its covariance matrix.

Theorem 3.1 (Theorem 1.10 in [13]) Given a set {m()): A € A}
and a real positive definite ‘matriz’ {V(\, p): A\, p € A}, there ezists a
unique Gaussian family {X): A € A}, the mean vector and covariance
matriz of which coincide with {m(A)} and {V (A, u)}, respectively.

Proposition 3.1 (Proposition 1.10 in [13]) Let {X): A € A} be a
Gaussian family. Then a necessary and sufficient condition for {X) :
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A € A} to be independent is V(A,p) = 0 for every l,p € A A #p). A
necessary and sufficient condition for a member X,, of the family to be
independent of {X): A€ A, A # p} is V(u,A) =0 for all A # p.

Next, we define a standard one-dimensional Brownian motion with
respect to a given stochastic set-up. Let (2, F, P) be a complete proba-
bility space with a right-continuous increasing family of sub-o-algebra’s,
{Ft:t > 0}, each containing all P-null sets. We say that the set-up
(Q, F,{F:}, P) satisfies the usual conditions.

Definition 3.2 A collection of random variables {b(t): t > 0} is called
a standard one-dimensional {F;}-Brownian motion, if

(i) {b(t):t > 0} is a real-valued process and b(0) = 0 almost surely;

(i) {b(t):t > 0} is {F;}-adapted, i.e. for every t it holds that b(t) is
Fi—measurable;

(iii) for all s and t such that 0 < s < t it holds that b(t) — b(s) is
independent of F, and b(t) — b(s) is a Gaussian random variable
with mean 0 and variance t — s.

The existence of the standard one-dimensional Brownian motion is guar-
anteed by Theorem 3.1. If we take A = [0,00), m(t) = 0 and V(s,1) =
s A t, Theorem 3.1 provides the corresponding Gaussian family, which
we denote by {b(t): t > 0}. Defining, for all ¢, 7; as the completion
of o(b(s): 0 < s < t) with respect to the probability measure of the
family, we can verify property (iii) of Definition 3.2. An immediate con-
sequence of property (iii) is that the increments of the Brownian motion
are independently distributed.

Definition 3.2 is phrased in terms of a more general probability space
than the one that is given by Theorem 3.1, because often the Brownian
motion is not the only ‘source of randomness’.

It can be shown that each {b(t): ¢t > 0} has a sample-continuous
version (i.e. all sample-paths are continuous). Henceforth we will assume
that we only deal with such sample-continuous versions.

The third issue of this section is the definition of the one-dimensional
stochastic integral. As usual L?([0,7] x ) denotes the Hilbert space
of all real measurable processes f: [0,T] x @ — R that satisfy || f||* =
E foT f2(t)dt < oo. T is some constant. The associated inner product
is of course given by: (f,g) = EfoT f(t)g(t)dt. In the spirit of Ikeda
and Watanabe [14], we define A%([0,T] x ) (or A?) as the subspace
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of L?([0,T] x Q) that consists of all processes f that are adapted to
{F::t 2> 0}. A? is a closed subspace of the space L?([0,T] x ). Further
we denote by A2 the subspace of A2 consisting of all ‘stepfunctions’, i.e.
each f € A} can be written as:

m-1

fiw)= E fi(“’)l(ti,t.‘+1](t)’
=0
where {t;} is a partition of [0,7] such that ¢, = 0 and t,, = T for some
integer m and for all i (0 < i < m — 1) f; is an F;;-measurable square
integrable random variable. Without proof we mention that A2 is dense
in A? with respect to the norm Il - II? [14, p. 46]). We define for f € A3

m-—1

T
/0 Ftw)db(t) = 3 fi(w)b(tier) — b(E:)]-
=1

It is obvious that this definition does not depend on the partition. Let
g be another element of A3. If we take a partition {t;} that includes the
partitions corresponding to f and g, then it is easy to see that

T T m—1 T
E [ foydet) [ o)db(e) = Y Blfigi(tir—t)] = B | 1weat
=0

Note that this calculation owes its simplicity to the fact that by definition
the increment b(ti+1) — b(¢;) is independent of f(t;), so that all cross-
terms disa,;)pea.r when taking the expectation. This independence also
yields E [y f(t)db(t) = 0. We see that the stochastic integral defines
an isometry from A3 into L%(Q), which can be extended to all elements
f € A%, This extension is called the stochastic integral of f € A? with
respect to Brownian motion.

In applications the increment db(t) is usually denoted by the name
‘white noise’. Often we will simply write b(t) instead of {b(t): ¢ > 0}, if
it is clear from the context that ¢ does not have some definite value.

3.2 Stochastic integrals in a separable Hilbert
space

The content of this and the next section has been taken from work by
Dawson [8], Funaki [9], Ité [15] and Yor [39]. As before let the set-
up (2, F,{F:}, P) satisfy the usual conditions. H will denote a real
separable Hilbert space with inner product (-,-) and norm || - ||.
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Definition 3.3 A linear random functional on H is a linear map from
H to Ly(Q,F,P), where Lo(Q,F,P) is the space of all real random
variables on (Q,F,P). We call a family of linear random functionals
{B;:t > 0} on H a cylindrical Brownian motion on H if it satisfies
the following condition: for every z € H (z # 0) t — By(z)/||z|| is a
standard Brownian motion (adapted to the filtration {F:}).

Again the existence is established by invoking Theorem 3.1: we set
m(t,z) = 0 and V(t,z,3,y) = (s At){z,y). The Gaussian family we
obtain is denoted by {B:(z):t > 0,z € H}. If we define, for all ¢ > 0,
Fi as the completion of o(B(z): 0 < s < t, z € H) with respect
to the probability measure of the family, the properties mentioned in
the definition easily follow. As before the filtration {¥;} may contain
more information than merely the information generated by the Gaus-
sian family.

We remark that Proposition 3.1 implies that for every set {(¢;,z:):
i>1,t >0,z € H, (z;,z;) = 0if i # j} the associated family of
centred Gaussian random variables {By,(z;)} is independent.

We will now use for the first time the separability of H; consider a
complete orthonormal system in H: {e;:i > 1}. Let z be an arbitrary
element of H: = = ¥; o;e;. As a consequence of the orthonormality
{B:(e;): i > 1} is a family of independent standard one-dimensional
Brownian motions, so that we can rewrite Bi(z) = 3 i2; o Bi(e;) as
Bi(z) = 2, (z, &)bi(t), where {b;(t): ¢ > 1} is a family of independent
standard one-dimensional Brownian motions. We have thus obtained a
general representation for a cylindrical Brownian motion, which we will
use below in several calculations.

Definition 3.4 Let A%([0,T] x Q,H) be the Hilbert space of all H-
valued, F;-adapted and measurable functions f(t,w) satisfying
E fZ1f(®)I? dt < 0. For every f € A*([0,T] x , H) we define

[ uanamy =3 [ (@), dBie)
o ’ t} = o » & t\ €t/

i=1
where €;,i > 1 is a complete orthonormal system in H.

The definition is straightforward, if f is concentrated, uniformly in w,
on a finite number of e;. For such f the integral defines an isometric
mapping:

B1 | (50.aB0P = 3= B( [ (10 4B0)’

21



= EE/O (f(t),e,-)2dt=E/0 IFOIF dt,

=1
whence it can be extended to all elements of A%([0,T] x Q, H).

Definition 3.5 Let L2(H) denote the Hilbert space of Hilbert-Schmidt
operators on H with norm || - ||gs and let A%2([0,T] x Q,L2(H)) be the
Hilbert space of all Lo( H)-valued, Fi-adapted and measurable functions
F(t,w) satisfying E [, ||F(t)|%4s dt < oo.

For every F € A%([0,T) x Q,L3(H)) an H-valued stochastic integral
f(;r F(t)dB; is defined by the following equality:

</0T F(t) dBt,:c> = /OT(F‘(t)z,dBt), Ve e H,

where F*(t) is the adjoint of F(t). By linearity it is enough to let z run
through the sequence {e;: i > 1}.

This definition too is straightforward, if F is, in a sense, finite: Fe; =0
for all ¢ > n. For such F we again obtain an isometry:

E| /0 " F(t)dB|f = Eil( /0 " F) dBy,e;)’

ZjE/OT(F*(t).«g.-,dB,)2 = Z":E/;T F*(t)e: | dt
=1

=1

o T
E [ I el d=E [ 1F @l dt

i=1

By extension the integral is defined for all F € A%([0,T] x Q, L2(H)).
One might ask whether it is possible to view B; as an infinite-
dimensional random variable. It is obvious that B; is not H-valued:
set in Definition 3.5 F equal to the projection onto the subspace of
H spanned by the first n elements of the orthonormal basis. Then
F apjproaches the identity operator as n tends to infinity. But, as
E| [T F(t)dBi|]? = E T ||F(t)|}sdt = nT, the integral clearly does
not converge to an element of H, which we could identify with B;. How-
ever, we can construct a Hilbert space V, into which H can be densely
embedded, such that B; is V-valued. Let us be specific [39, p. 61];
V is defined as the space of all real sequences (hy,hs,...), that satisfy
Y2, aih? < oo, where {a; : ¢ > 1} is some sequence of real numbers,
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a; > 0 for all i and 82, a; < co. Denote (hy,hs,...) by h and let g =
(91,92, -.)- Then an inner product is defined by (h,9)v = 32321 aihigi.
With this inner product V is a real separable Hilbert space. H is densely
embedded into V by means of a map u: H — V;if z = 32, aie;,
then u(z) = (m,3,...)-

Now we can identify B; as an element of V in the following form:
By = (b1(t),ba(t),-..), where bi(t) = Bi(e;). Indeed, we have that
E||Bi||% = EY;b3(t)a; = tY ;4 < oo. This construction shows that
we can replace the representation given earlier, Bi(z) = }_{2, (2, €:)bi(t),
by

oo
B; = Ee;b,-(t), (3.1)
i=1
provided we keep in mind that B; is V-valued instead of H-valued.
(Nevertheless, the space V will seldom be explicitly mentioned, as it its
construction is to some extent arbitrary.)
This representation of B; also yields an equivalent definition of the
stochastic integral [T F(t)dB; (see for example [6]). Define

T T
/0 F(t)dB, = Y /0 F(t)e; dbi(2).

f(';r F(t)e; db;(t) is in fact a one-dimensional (Hilbert space valued) stoch-
astic integral. Its interpretation is completely analogous to the real val-
ued one-dimensional stochastic integral. The Hilbert-Schmidt property
makes the sum convergent and substitution into definition 3.5 shows the
equivalence. We will often use this alternative definition. It is especially
convenient when F(t)e; takes a simple form.

Another remark concerns the definitions of this section. We have
defined the H-valued stochastic integral foT F(t)dB; in a rather indirect
way. Of course it is also possible to define the stochastic integral di-
rectly using stepfunctions as in Section 3.1. (For an example of the last
approach see [15], where It6 defines stochastic integrals in rather general
infinite-dimensional spaces.) The definitions put forward in this section
have been chosen because they require less background in functional
analysis.
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3.3 Some properties of the stochastic integral
T F(t)dB,

We list some properties of the stochastic integral defined in Definition
3.5:

(i) ST F(t)dB; is a martingale, i.e. Vi

t to
B(( [ F(s)dBo, e\ Fo) = ([ F(s)dBse) t216,
0 0
t
< / F(s) dB,,e,-) is integrable and
0
t
( / F(s)dB,, &) is {F:}-adapted
0

or, in other words, (f; F(s)dB,,e;) is a one-dimensional martin-
gale for each i;

(ii) an infinite-dimensional It6-formula holds [8,39];

(iii) if T (E||F(t)||#5)'/? dt < oo, then for p = 1,2,... there exists a
posmve constant C' = C( g) such that
Bll o' F()dBi|[ < C(fy (BIF@IFs)"” dys

(iv) a well-known martingale inequality (Doob’s inequality, see for ex-
ample [14, p. 110] and [23, p. 95]) yields for this special case

E(sup Il [ FldBP) < (52)"EI [ Feana

IA

CE [ IFE)sds
where C depends only on p = 1,2,..;

(v) the following Fubini theorem holds: if F(t,s,w) is a Ly(H)-valued
measurable function (F: [0,T] x [0,T] X @ — L,(H)) satisfying

E [T [T\F@,s,)|%s dt ds < oo and if, for every s, F(t, ) is {F:}-
adapted, then, almost surely,

T T T T
/ / F(t,s)dB; ds = / / F(t,s)dsdB,.
(1] 0 (1] 0
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3.4 White noise

In Chapter 4 we will apply the theory presented here to the so-called
stochastic heat equation and also to comparable stochastic partial differ-
ential equations. Throughout these applications we set H = L?[0, M],
where M is an arbitrary constant. In this context the derivative of
the cylindrical Brownian motion, dB;, is also called (two-dimensional)
white noise. This can be explained in the following way. Consider the
rectangle [0,7] x [0, M]. If the two-dimensional white noise is to be
a generalization of the one-dimensional white noise, we should require
that integration of the noise over small, disjoint subsets of [0,T] x [0, M]
yields independent Gaussian random variables with mean zero and vari-
ance equal to the Lebesgue measure of the subsets. (cf. the definition
of the one-dimensional Brownian motion and its derivative in Section
3.1). We can verify these properties as follows: first we identify the
noise integrated over a small rectangle (t;,t2] X (%1,%2] with the ran-
dom variable By, (1(z,,z,)) — Bts (1(z,,2,)) 2nd, equivalently, the noise inte-
grated over (81, 82] X (1, ¥2] With B, (1(y, 42]) — Bsy (1(yy,42])- Note that
these random variables are centred Gaussian random variables. Sec-
ondly we calculate the covariance of the random variables (using that

EBy(z)Bs(y) = (s At){(z,¥))-

E(Bt2 (1(-"-‘1 ,1:2]) - By, (1(21,32]))(B32(1(y1,y2]) - By, (l(yl ,312]))
= (faAs2—-t2As1 —Hh Asa+tH A 31)(1(z1,zz]a 1(1/1,312])'

This expression equals 0 if (¢;,%2] and (81, 82] or (21,23] and (31, y2] are
disjoint, which implies the independence of the two random variables.
Also it is clear from equating the two random variables that the variance

equals (33 — t1)(z2 — 21).
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Chapter 4

The stochastic heat
equation

4.1 Evolution equations and semigroup theory

The (deterministic) heat equation is an example of evolution equations,
that can be solved using semigroup theory. Therefore, in the first section
of this chapter, some generally known facts about evolution equations
and semigroup theory are presented. We follow the exposition that
Goldstein gives in his book on semigroups of linear operators (10, pp. 3-
25 and pp. 83-91].

An evolution equation in continuous time usually consists of an ordi-
nary or partial differential equation supplemented with an initial value
(and sometimes boundary values as well). The general equation in its
simplest form reads

d@f(t) _ :
5 = AU@®)  t20; (4.1)

f(t) describes the state of some (physical) system and A f(t) is the rate of
change of the system; the initial value is assumed to be given: f(0) = fo.
If this equation is to make sense, we must specify the space in which f
takes values as well as the mapping A. We will henceforth assume that
f takes values in a real or complex Banach space, S, having norm || - ||
and that A is a closed linear (generally unbounded) operator from its
domain D(A) in S to S (often this is abbreviated to: A is an operator
on §). Recall that the operator A is closed if its graph G(A4) = {(f, Af):
f € D(A)} is a closed subspace of S X S, or equivalently, if f, — f,

26



fn € D(A), and Af, — g together imply that f € D(A) and Af =g
[17, pp. 292, 293]. Usually, A is unbounded and D(A) is dense in S.

Definition 4.1 A semigroup U on S is a family of bounded linear op-
erators, {U;:t > 0}, satisfying

(i) UiUs = Uzys;

(i) Uo = I (1 is the identity operator);
(iii) the map t — U, f is continuous for each f € S.

U is called a contraction semigroup if for allt > 0 U; is a contraction,
ie ||U £ 1.

The next definition and the subsequent theorem partially describe the
relation between closed linear operators on S and semigroups on §.

Definition 4.2 Let U = {U;:t > 0} be a semigroup on S. The (in-
finitesimal) generator A of U is defined by the formula

Af =lim Uif — 1
tl0 i

d
B aUtf t=0
where the domain D(A) of A is the set of all f for which the above limit
exists in the norm || - || of the space S.

Theorem 4.1 (Hille-Yosida[10]) A linear operator A on S is the gen-
erator of a contraction semigroup if and only if A is closed, D(A) is
dense in S, (0,00) C p(A) and ||MA — A)7Y|| < 1 for all X > 0. p(A)
denotes the resolvent set of A: p(A) = {\ € C orR: (A — AI)™" ezists
and is densily defined and bounded} (see [17, p. 371] and [10, p. 13]).

Goldstein also states a theorem that gives the more general conditions
A has to satisfy if it is to generate an arbitrary semigroup that does
not consist of contractions [10, p. 20]. As one might guess by now,
the condition that A generates a (contraction) semigroup is sufficient
for obtaining a solution of the equation (4.1). In fact, if A generates a
semigroup, we can draw the conclusion, that for each fo € D(A) there
is a unique solution f: [0,00) — D(A) in C'([0,0), S) (cf. [10, p. 83]),
given by f(t) = Ui fo. Often the semigroup is such that U;§ C D(A) for
¢t > 0. If this is true, then the conclusion holds that for each fo € § (4.1)
has a unique solution f € C([0, 00), ) N C*((0,0),5), which is (again)
given by f(t) = Ui fo.
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Example 4.1 (One-dimensional heat equation) As a first applica-
tion consider the following simple equation (a one-dimensional heat
equation)

of 0*f

9t~ 922’
where f is a function of two variables, ¢t and z. Because we intend to
use semigroup theory, we restrict f(¢) (which, for fixed t, is a function
of z only) to take values in the function space L2[0, M]. Instead of (4.2)
we write

(4.2)

df(t) _ o
= =), (4.3)

which formula more clearly resembles (4.1). To solve the equation ini-
tial and boundary values have to be supplied. Let us choose f(0) =
fo € L?[0,M] and £(t,0) = f(t,M) = 0. We set A = d?/dz® with
D(A) = {f € L*[0,M]: f" € L?[0, M) and f(0) = f(M) = 0}. Now A
is a closed, densely defined, linear operator; A has a pure point spec-
trum, its eigenfunctions are {e;: e;(z) = \/2/M sin(riz/M), i > 1} with
eigenvalues {—72#2/M?:{ > 1}, so that (0,00) C p(A), and, as can be
verified using the eigenfunctions, also ||A(A — A)~!|| < 1 for all A > 0.
. All conditions of Theorem 4.1 are satisfied; let U denote the semigroup
generated by A. As A and U; commute on D(A) for all t and the eigen-
functions are in D(A), we can conclude that Use; = exp(—Ait)e;, where
Ai = 7242 /M? for i > 1. Thus we obtain the following representation of
Uti

(> (>}
Uso = U (Y- (fore)es) = 3 (fo, &) exp(~Ait) ei.
=1 =1
Also U;S C D(A) for t > 0 and so we have that f(t) = U,fo is the
unique solution of the equation (4.3).

Next, consider the following type of evolution equations:

df(t

O _ gy +n), (4.4
where h € C([0,0),S5), fo € S and A generates, as before, a semi-
group for which U;§ C D(A) for t > 0. Now the unique solution,
f € C([0,00),8) N C*((0,00), D(A)), is, as can easily be verified (cf.
linebreak (10, pp. 84, 85]), given by

t
(&)= U +/0 Ui—,h(s)ds.
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Finally, one might consider the rather general evolution equation

%(;_) = AS(}) + h(t, £(1)). (4.5)

Solving this equation requires that we impose rather severe conditions
on A, fo and h. In order to avoid this it is convenient to slightly change
our perspective. We will weaken the notion of solution. Instead of the
differential equation (4.5) we will consider the integral equation

f@)=Ufo+ /01‘ Ui—sh(s, f(3))ds. (4.6)

Indeed, any solution of the equation (4.5) also solves the integral equa-
tion, whereas the converse need not be true. Often both equations are
combined in writing

df(t) = Af(t)dt + h(t, £(t)) dt. (4.7)

We say that a solution of the equation (4.5) is a strong solution of (4.7).
A solution of the equation (4.6) is called a mild solution of (4.7). We
now cite a theorem [10, pp. 89, 90].

Theorem 4.2 Suppose that A generates a semigroup on the Banach
space S, fo € S and h € C([0,00) X § — §) satisfies a Lipschitz-
condition: for each T > 0 there is a constant K = K(7) such that

lIR(2, ) = h(t, 9l < K(TIIf —9lI,

whenever f,g € S and 0 <t < 7. Then the equation (4.7) has a unique
continuous (i.e. f € C([0,00), 5)) mild solution.

Let us conclude this section with some remarks.

(i) Because in Theorem 4.2 we only required a mild solution, the
condition that U;S C D(A) for t > 0 could be omitted. Without
this condition (4.7) has no strong solution.

(ii) In thelast theorem the function h need not be (jointly) continuous;
measurability is enough.

(iii) The evolution equations considered here are by no means the most
general ones. For example, we have assumed that A is time inde-
pendent, whereas under certain conditions time dependent oper-
ators can generate generalized ‘semigroups’, the so-called families
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of evolution operators. Furthermore, perturbations P might be
added to the operator A in such a way that A + P also gener-
ates a semigroup (or a family of evolution operators, in case P is
time dependent). See for these and other extensions for example
references (6], (7] and [10].

4.2 Stochastic evolution equations

In this section we will discuss a rather general class of stochastic evo-
lution equations, of which the stochastic heat equation (see (4.11) and
(4.12)) is, for us, the most interesting example. The general equation is
of the form

dX(t) = AX(t)dt + h(t, X(t)) dt + o(t, X(t)) dB,. (4.8)

Here X(t) is an H-valued stochastic process (H is a separable real
Hilbert space), A is a closed linear operator on H generating some semi-
group U, h: [0,T) x H — H as well as 0: [0,7] x H — L(H) satisfy
certain Lipschitz conditions (L(H) is the set of all bounded operators
on H), and B; is a cylindrical Brownian motion.

Let us note right away that the introduction of the stochastic term
has limited the generality of the evolution equation. The Banach space S
has been replaced by the separable real Hilbert space H. This restriction
is, of course, due to the fact that we define (4.8) to be equivalent to the
integral equation (4.9), where the stochastic integral is interpreted along
the lines indicated in Chapter 3. As before a solution of the integral
equation is called a mild solution. (However, contrary to the definition
of a strong solution given in Section 4.1, in this context a strong solution
is not the solution of some corresponding differential equation, but a
mild solution satisfying the extra condition that X(t) € D(A) for all t.)
There is a second restriction caused biy the use of the stochastic integral.
Recall that the stochastic integral f; F(t)dB; was defined for Hilbert-
Schmidt-operator valued functions F. This implies that either o or, as
becomes clear from (4.9), U, should be Hilbert-Schmidt-operator valued.

Before we state a few theorems we recall some notation. An operator
A on a Hilbert space is said to be Hilbert-Schmidt if 3°; || Ae;||2 < oo for
every orthonormal basis of H. As this sum does not depend on the choice
of the basis, a corresponding Hilbert-Schmidt norm of A is defined as
lA)lz = (; || Aei]|?)!/2. Ais said to be a trace class or nuclear operator
if |All} = X [{ei, A€;)| < 0o. The Hilbert space of all Hilbert-Schmidt
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operators on H is denoted by L2(H) (or by Lys(H)) and £, (H) denotes
the Banach space of all trace-class or nuclear operators on H. The first
theorem is a (somewhat adapted) version of Theorem 5.1 in [8].

Theorem 4.3 Consider the (nonlinear) stochastic evolution equation
on a separable, real Hilbert space H:

X(t) = U:Xo + JE Ui—sh(s, X(8)) ds + [; Us—s0(s,X(s))dBs , (4.9)
X(0)=Xo € H, 0<t<T.
Assume the following:
(i) U is a semigroup, generated by a closed linear operator A;

(i) h:[0,T] x H — H is continuous and satisfies, uniformly in t,
|h(t,z) = h(t, Wl < Cillz — yl| for all z,y € H;

(iii) o:[0,T) x H — L(H) is continuous and satisfies, uniformly in
t, ||o(t, ) — o(t,y)|| < Ca||lz — y|| for all z,y € H; ||-|| denotes the
norm of the Hilbert space as well as the operator norm of L(H);

(iv) condition (i) or condition (iii) is strengthened: suppose that —A is
a positive, self-adjoint operator such that (—A)™! ezists and is a
nuclear operator; furthermore, assume that 0 < liminf; A; Jitts <
lim sup; A;/il*® < oo for some & > 0, where {N} is the set of
eigenvectors of —A; {e;} is the corresponding orthonormal family
of eigenvectors;
or, alternatively, suppose that condition (iii) holds with the opera-
tor norm || - || replaced by the Hilbert-Schmidt norm || - |2.

C, and Cy are arbitrary positive constants.

Then the equation (4.9) has a unique (mild) solution whose sample
paths are almost surely continuous from [0,T] into H. The solution also
satisfies supg<;<1 E|| X ()P < 00 for all integer p > 1.

Assumption (iv) ensures that the stochastic integral exists as an H-
valued random variable. The next theorem elaborates on the nonlin-
earity. For simplicity we only consider the case where the operator A
satisfies the necessary conditions.

Theorem 4.4 Assume that

(i) U is the semigroup generated by a closed linear operator A; —A is a
positive, self-adjoint operator such that (—A)™! ezists and is a nu-
clear operator; furthermore, for some § > 0, 0 < liminf; A;/ <
lim sup; X; /i1 < 0o, where {)\;} is the set of eigenvectors of ~A;
{e;} is the corresponding orthonormal family of eigenvectors;
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(i) P is a linear operator with D(P*) D D(A) such that |P*e]| <
YA{, where v is some constant and o < 1 — 1/(2(1 + §)) or, if
P and A commute on D(A), we require that D(P) D D(A) and
|| Peil] < 7%

(tii) h:[0,T) x H — H is continuous and satisfies, uniformly in t,
I|h(t,z) — h(t,y)|| < Cillz — y|| for all z,y € H;

(iv) 0:[0,T] x H — L(H) is continuous and satisfies, uniformly in
t, llo(t,2) — o(t,9)]| < Calle — ol for all 2,y € H.

C1 and C; are arbitrary positive constants.
Then the stochastic evolution equation

dX(t) = AX(t)dt + Ph(t, X (t)) dt + o(t, X(1))dB,,  (4.10)
X(0)=XocH, 0<t<T

has a unique mild solution whose sample paths are almost surely con-
tinuous from [0,T) into H. Furthermore, the sample paths are Hélder-
continuous from [¢,T] into H for all € > 0. The solution also satisfies
supo<i<T E|| X (2)||*? < 00 for all integer p > 1.

Proor. The proof is included in Appendix A. a

Example 4.2 (Stochastic heat equation) We take up the example
discussed in Section 4.1. If we add a noise term consisting in a cylindrical
Brownian motion to the equation, we obtain

dX(t) = %X(t) dt + o(t, X(t))dB;, (4.11)
X(0)=Xo € L*[0,M], O0<t<T.

This equation is called a (one-dimensional) stochastic heat equation. As
before set H = L*[0, M] and A = d?/dz? with D(A) = {f € L*[0, M]:
f" € L*[0,M] and f(0) = f(M) = 0}. Again U denotes the semigroup
A generates. (—A)™! exists and is a nuclear operator; the eigenfunctions
of —A are {e; : ei(z) = /2/Msin(miz/M), i > 1} with eigenvalues
{A = 722 /M?: i > 1}. It is obvious that lim; \;/i® = 72 < c0. We
conclude that, if o satisfies condition (iii) of Theorem 4.3, (4.11) has a
unique mild solution satisfying suppc,<7 E||X(2)||*? < oo for all integer
p > 1, whose sample paths are almost surely continuous from [0,T] into
H.
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Example 4.3 (Stochastic heat equation with convection) Con-
sider the following extension of (4.11):

dX(t) = %X(t)dt - %h(t,X(t))dt +o(t,X(£)dB;, (4.12)

X(0)= Xo € L?[0,M], 0<Zt<T,

where h and o satisfy condition (iii) and (iv) of Theorem 4.4, respec-
tively. The term d/dz h(t, X (t)) dt is sometimes called ‘convection’ term.
To apply Theorem 4.4, choose A as in the previous example. Verifica-
tion of condition (i) is easy: the operators d/dz and d?/dz? commute
and ||d/dz & = ||Afei]| for @ = 0.5; further & <1 — 1/2((1 + 6)) for
o = 0.5 and § = 1. Again we draw the conclusion that the equation has
a unique mild solution, whose sample paths are almost surely continu-
ous from [0, 7] into H and that satisfies supgc<r E|| X (2)||** < oo for
all integer p > 1. T

4.3 The stochastic heat equation and station-
ary traffic flow

The last section of this chapter has two objectives. The first aim to
motivate why a (particular) stochastic heat equation might be a good
model of stationary traffic flow. The second one is to present some
additional properties of this stochastic heat equation.

4.3.1 On boundary values and noise term

Instead of discussing the (one-dimensional) stochastic heat equation as
presented in the last example of the previous section we consider a mod-
ification that is suitable for the application we have in mind. After
presenting the modification we motivate the choice.

In the first place we set h(t, X (t)) = coX(t), where cp is a constant,
and o(t, X (t)) = o, where o is a fixed bounded linear operator on H=
L%[0, M]. Secondly, we redefine the operator A: A = K d?/dz? with
D(A) = {f € I*[0, M]: f" € I2[0, M), f(0) = f(M), £'(0) = f'(M)},

where K is some positive constant. These changes lead to the equation

& d
dX (1) = K75 X(D)dt — o= X (1) dt + 0 dBy, (4.13)
X(0) = Xo € L*[0,M], O0<Lt<T.
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The redefined operator 4 does not quite satisfy the conditions of Theo-
rems 4.3 or 4.4. The set of eigenvectors of A constitutes an orthonormal
basis, which we denote by {e; : ¢ > 0}. It consists of three subsets,
{eo}, {#i: i > 1} and {¢; : 1 > 1}, where ¢ = 1/vV/M, ¢;(z) =
V2/M sin(2riz /M) and 9;(z) = \/2/M cos(2riz/M). But ey has eigen-
value 0. This implies that A~! cannot be defined on the whole space
L%[0,M]). It can be seen, however, that this is not a serious restriction.
It is enough if A~ exists, and is nuclear, on R(A4).

There is an obvious reason for partitioning the sequence {e;: 4 > 1}
into two parallel sequences: for each 7 > 1 there corresponds to ¢; and
to ¥; the same eigenvalue, viz. \; = 47%i2 /M?. Working with ¢; and
makes calculations easier.

Recall from Chapter 2, page 12 that a linear stochastic continuum
model of traffic low might look like

OR 0’R R .

Bt = B2 C()E + noise term,
where R(t, ) denotes the fluctuation of the density of the traffic around
some mean value. We claim that (4.13) is a suitable first attempt to give
a precise reformulation of this intuitive model equation, provided that
o is properly chosen. Three arguments will give support to this claim.

First of all the choice of A makes the heat equation linear. Secondly,
as will be shown in the next subsection, the choice of the domain of
A ensures stationarity with respect to the space variable. Intuitively,
this property can be understood by noting that each choice of D(A)
corresponds to a particular set of boundary conditions. In this case

ox ax
X(t,O) = X(t,M) a.nd E(t,O) = E‘(t,M) Vt.

(Note, however, that the second boundary condition needs careful in-
terpretation as, in general, X (t,z) is not differentiable with respect to
z.) We have identified the endpoints of the interval [0, M]. Speaking in
traffic flow terms we might say that the vehicles are supposed to drive
on a (large) circular road of circumference M. This ‘picture’ of traffic
flow may at first seem unrealistic, yet as M grows larger the picture
becomes more realistic.

The third argument concerns the noise term. If there is no spe-
cific knowledge about the noise structure, white noise seems to be the
appropriate ‘default’ choice; o then would equal a constant (times the
identity operator). Such a choice leads to relatively easy equations.
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There is, however, one major objection against truly white noise: it
entails a violation of the principle of ‘conservation of vehicles’. The sim-
plest way to meet this objection is the following: write B; = 3 bi(t)es,
where {e;} is the orthonormal basis of eigenvectors of A and remove
the term corresponding to ep. Recall that e is the constant eigen-
function (ep = 1/v/M). We then have By = 3 ;5 bi(t)¢ + b5 ()Y,
where {b}(t),b§(t)} is a collection of independent standard Brownian
motions; ¢;(z) = /2/M sin(2riz/M) and ¥i(z) = V2/M cos(2miz [M).
Of course, the ‘s’ and the ‘c’ refer to ‘sine’ and ‘cosine’, respectively.
We could also say that o equals a constant times a projection operator
(that projects onto the subspace of H spanned by all ¢; and %, i.e.
of = 0o i>1{f,®i)¢i + (f,¥i)¢s for f € H). This choice of the noise
term ensures that at every instant the noise integrated over the interval
[0, M] is zero. Thus the noise constantly redistributes the traffic without
creating new vehicles or destroying existing ones.

Probably the best way of capturing the modification of the noise
term is to consider, instead of L2[0, M], the Hilbert space L3[0,M] =
{f € L*0,M]: (f,e0) = 0}. Obviously, the set {e; : ¢ > 1} con-
sisting of the subsets {¢; : ¢ > 1} and {¢; : 1 > 1} constitutes the
orthonormal family of eigenvectors of A, if D(4) = {f € Li[0,M] :
£ € L?*[0,M], f(0) = f(M), f'(0) = f/(M)}. The noise introduced
above is exactly the cylindrical Brownian motion on L%[0, M]. In this
setting o is simply a constant. Furthermore, A now satisfies entirely the
conditions of Theorem 4.4, as A~ is defined on all of L3[0, M].

4.3.2 Continuity and stationarity

We now have a closer look at (4.13). We write hereafter R instead of
X because of the specific application we have in mind. Again we set
A= Kd[ds? and D(A) = {f € L2[0, M]: " € L*[0, M], £(0) = f(M),
f(0) = f/(M)}. But now o f equals 00 3 ;4o(f,e:)ei for all f € H and
Ry satifies (Ro,e0) = 0, i.e. Ro € L3[0,M] (L3[0,M] = {f € L%[0,M]:
(f,eo) = 0}). If no confusion is to be expected we will often simply write
o instead of gg. All this yields the equation

dR(t) = K%R(t)dt - codixR(t) dt + o dB;, (4.14)
R(0) = Ro, 0<t<T.

According to Theorem 4.4 the equation (4.14) has a unique mild solution
whose sample paths are almost surely continuous from [0,T] into H =
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L2[0,M]. Furthermore, the sample paths are Hélder-continuous from
[6,T) into H for all € > 0. The solution also satisfies supyc;<7 E|| X (t)))%?
< oo for all integer p > 1. o

It can be shown quite easily that the operator Kd?/dz? — cod/dx
also generates a semigroup. We expect that the solution of (4.14) can
also be written as

t
R(t) = ViRo + / Vie,0dB,, (4.15)
0

where V' is the semigroup generated by A, = Kd?/dz? — cod/dz (with
D(A:) = D(A)). The proof of the next proposition shows that this is
true; it uses the equivalence in order to provide a more direct proof of
the joint Holder-continuity of R(t,z). V has a rather simple characteri-
zation.

Viei(z) = e MKte(z — cot),

where {e;} is the same orthonormal basis as above; note, however, that
the {e;} are not eigenvectors of A.. For general f € L2[0, M] we have

M
Vi@ = [ ate0f@dy  with

qt,z,9) = % + i[@(z — cot)i(y) + Yi(x — cot)i(y))e MK,

=1

Proposition 4.1 Write R(t,z) instead of R(t) to indicate that we view
each realization of R as a real valued function of two parameters, t and z.
Then R(t,z) is almost surely jointly Holder-continuous on [¢, T} x [0, M]
for every € > 0.

Proor. See Appendix A. . a

Definition 4.3 Let X(t) be an H-valued stochastic process with n-di-
mensional time parameter. H is a separable Hilbert space endowed with
its Borel o-algebra. X is called stationary if the finite joint distri-
butions of X are invariant under time shift. X is called weakly sta-
tionary if its covariance functional r(t,s; f,g) defined by r(t,s; f,g9) =
E(X(t), f){X(3),9) for f,g € H, is invariant under time shift. By
linearity it is enough if the property holds for all members of an or-
thonormal basis. If X is a centred Gaussian process these two properties
coincide.

.

36



Proposition 4.2 Suppose Ry is not a fized element of Li[0, M), but
an L3[0, M]-valued random variable that is Fo-measurable. Then there
is a unique measure pu for Ry such that R(t) is a stationary L3[0, M]-
valued process. Moreover, if Ry is distributed according to p, R(t,z) is
a stationary (under shifts in R?) real-valued process.

ProoF. See Appendix A. m]

The last proposition says that, whether or not Ry is stochastic, asymp-
totically R(t,z) is a stationary process. As we want to apply the theory
brought forward in this chapter to stationary traffic flow, we will hence-
forth only consider this stationary process.

In the next proposition we give an explicit expression of the station-
ary process R(t,z) in terms of its parameters K, o, co and M.

Proposition 4.3 The stationary solution of (4.14) can be represented
as -
R(t,2) = 3 ¢l (1)i(z — cot) + a§(t)¥i(s — cot),

=1
where ¢i(z) = /2/M sin(2riz /M) and i(z) = /2 /M cos(2miz[M);
{¢; : i > 1} and {¢; : 1 > 1} together form the set {e; : 1 > 1}
of eigenvectors of A. Note that the eigenfunction eo = 1/V M is ez-
cluded. Further, {a3(t),a(t): i > 1} is a family of mutually independent
Ornstein-Uhlenbeck processes, i.e. each ai(t) af(t) is a centred stationary
Gaussian process having covariance function

Ea}(t)a}(s) = Eag(t)ai(s) = exp(—A:K|A]),

2A 2] K
where \; = 472 /M? and A = (t — s). This implies that R(t,z) is also
a centred stationary Gaussian process. Its covariance function, 7(4A,2),
reads

oM & — A
r(A,z) = WKE 2exp( ~\K|A]) cos(2miZ ) (4.16)

where A = (t — 8) and z = z — y; (t,z) and (s,y) are two points in the
plane.

PROOF. Again the proof is included in Appendix A. O
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4.3.3 The noise term revisited

Close inspection of the covariance function, r(4A, z), reveals the crucial
role of the length M. M (co)determines the amplitude of the function
and the appearance of M in the argument of the cosine makes it also
the typical length associated with the process. A consequence of the last
fact is for example that at any fixed time the values of the process are
strongly correlated at points that are at a maximal distance from each
other (in formula: r(0, M/2) = —7(0,0)/2). This is not exactly what we
want. M should be some large parameter, that is of little importance.
The cause of the undesirable role of M stems from a confusion of three
distinct lengths. To be able to solve the equation describing the evolu-
tion of the density-fluctuations we had to specify boundary conditions.
We identified the endpoints of the interval [0, M]. In traffic flow terms
the boundary conditions say that vehicles are supposed to drive on a
(large) circular road. We reserve the symbol M for the length of the cir-
cumference. It seems natural to assume that this circumference is much
longer than the stretch that we are observing. Therefore, we introduce
the observation length, the length of the stretch of the freeway along
which we observe the traffic stream. Call thislength L. The third length
is the most important one. Let us write down again the decomposition
of the noise term introduced above: By = .5, b7(t)¢ + bf(t)%, where
{b(),b5()} is a collection of independent standard Brownian motions;
#i(z) = /2[M sin(2riz /M) and i(z) = \/2]/M cos(2niz /M). The ‘s’
and the ‘¢’ refer to ‘sine’ and ‘cosine’, respectively. It is clear from this
representation that the noise-components with low ‘i-value’ have a large
range. For ¢ = 1 the range is M, for : = 2 M /2 and so on. Let us call
the maximum range of the noise the disturbance length. We see that
for the noise term we used up till now the disturbance length equals the
length of the circumference, M. Hereafter we will assume that these
two lengths are distinct. The disturbance length will be denoted by S.
Furthermore, we will assume that S € L €« M and also that mS = M
for some large integer m. The last assumption is included, because it
makes calculations easier, while not being very restrictive. Figure 5.1
illustrates the differences between the three lengths.

In order to get a maximum disturbance length S, we decide to delete
all noise components, for which the range is larger than § (i.e. for
which ¢ < m). Thus, the appropriate choice of the noise term becomes
By = 35, b2(t)9+b5(t)4. Calculations analogous to those of the previ-
ous subsection show that again R(t,z) is a centred stationary Gaussian
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process, but now its decomposition into Ornstein-Uhlenbeck processes
is given by
o0
R(t,2) = Y ai(t)hi(z — cot) + a§(tW(z - eot), (4.17)
i=m
and its covariance function, r(A, z), reads
ot M f: 1 z— A

TR 2T exp(— A K|A|) cos(2mi—r—), (4.18)

r(A,2) = 2 i

where A = (t — 3), z = z — y and (t,z) and (s,y) are two points in
the plane. In this covariance function M not really plays a prominent
role. In fact its influence is largely compensated by the appearance of
m, at least if we assume that S is constant, so that M and m are always
proportional. It will be shown below that, when m tends to infinity
for constant S, the covariance function as well as the process E(t,z)
converge in a well defined way to a limit process.

First, we investigate what has happened to the ‘whiteness’ of the
white noise as a consequence of the deletion of all ‘low frequency’ com-
ponents. Obviously, whiteness in time direction is preserved. Therefore,
it is sufficient to calculate the covariance of B(1(z, ,]) and Bi(1(y, ,))-

EBt(l(xlﬂ:z])Bt(l(yhyz])
= t((l(z1 EAE 1(y1,y2]> - (1(21,:62]760)(1(1/1,3/2]’60)
- }: ((1(x1,z2}»¢i)<1(y1,y2]’¢i) + (l(xl.wzl’ 'pi)(l(yl,yz]"/")))

1<i<m~1

To— 2 -
~ t((l(znzz]’l(yhyz]} - 2( - 1‘);3/2 yl)),

where the last approximate equality is valid if (z2—21), (Y2—%1), [y2 — 22|
and |y, — 21| are all much smaller than §. This means that on a scale
much smaller than the disturbance length the noise is approximately
white in space direction too. This is, of course, hardly surprising; the
deletion of the noise components having large ‘wave lengths’ should not
strongly influence the small scale noise structure. Let us remark, in
conclusion, that the approximate equality is exact if S = M, if we only
delete the noise component corresponding to ep.

4.3.4 Convergence of R for m tending to infinity

As m will be variable from now on, let us denote henceforth the sta-
tionary stochastic process by Ry (t,z) or R,, and reserve the symbol
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R(t,z) or R for the limit process to which R,, converges as m tends to
infinity. The same remark holds for the covariance functions r,, and r.
We rewrite ry, as follows (with j = i/m):

coA 1
)_.__

47r
™m(A,2) = 47r2K Z '7 K|A|)cos(21r]

where j takes on the values 1, 1 + 1/m, 1 + 2/m etcetera.

Lemma 4.1 The covariance function r,, concerges pointwise to the co-
variance function v, which is defined as

00 212
r(A,z) = WK / lexp( 4” Z—K|A|) cos(2r1Z=

A)dl. (4.19)

PROOF. 7,(A,z) clearly is a Riemann-sum converging to the integral
as m — oo. O

Theorem 4.5 Let R be the stationary, centred, Gaussian process char-
acterized by the covariance function r. Then R,, converges in distri-
bution to R as m tends to infinity, if R,, as well as R are viewed as
C([0,T] x [0, L})-valued random variables, where C([0,T] x [0, L)) is en-
dowed with the Borel o-algebra.

ProoF. See Appendix A. ]

Note that the convergence in distribution is related to the function space
C([0,T] x [0, L]). This means that for large m R,, and R are almost in-
discernible, if we can only partially observe the processes. If for example
the observation length would grow proportionally to m, the convergence
would be destroyed.
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Chapter 5

Presentation of the model

Let us now summarize the results of the Chapters 2, 3 and 4 presenting
once again the ideas put forward in these chapters, without entering into
the mathematical details.

In Chapter 2 we motivated our choice of a linear stochastic contin-
wum model to describe freeway traffic flow. The Chapters 3 and 4 dwelt
on stochastic integrals and on a specific example of the stochastic heat
equation. These mathematical expositions were meant to give a precise
and adequate meaning to the noise term appearing in the proposed sto-
chastic continuum model (see (1.1) in Chapter 1, page 3 and (2.7) in
Chapter 2, page 12).

The proposed linear stochastic continuum model is, formally, written
as

R 0*R

%:Kw—co%g-}-aaa—l:-, (5.1)
although we must keep in mind that the solution is not differentiable,
neither with respect to time nor with respect to space. R(t,z) denotes
the deviation of the density (or the density-fluctuation) at time ¢ and
location z around some fixed reference-value. The evolution equation de-
scribes how the density evolves in time in response to three causes (the
three terms of the right hand side): a smoothing term corresponding to
the fact that in dense traffic vehicles normally tend to drive at approx-
imately equidistant spacings and at comparable speeds, the convection
term caused by the displacement of the traffic stream (with velocity
¢o) and a noise term. The noise term is derived from two-dimensional
white noise, but is constrained, at each instant, to sum to zero over a
‘disturbance-length’ S. This constraint might be written, again using
a formal notation, as f:o°+s OB/dtdz ~ 0 for every zo. K and o are
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Figure 5.1: The vehicles are driving on a circular road with circum-
ference M. We observe the traffic on a small portion of the circle
of length L, L « M. The maximum length of the disturbances §
is in turn much smaller than L.

positive parameters, that determine the strength of the smoothing term
and the noise term, respectively.

In order to be able to solve the evolution equation initial and bound-
ary conditions had to be imposed. They were chosen in such a way that
a stationary solution could be obtained. We have supposed, mainly for
technical reasons, that the space variable should be confined to a finite
interval [0, M]. To ensure stationarity in space we have identified the
endpoints of the interval. The boundary conditions are such that the
boundaries are actually nonexistent. Translated into traffic flow terms
the boundary conditions say that vehicles are supposed to drive on a
(large) circular road of circumference M (see Figure 5.1). We assumed
that M = mS$ for some large integer m. The initial value is chosen to be
a stochastic variable, distributed according to some probability measure
M, so that the process R(t,z) is stationary in time as well.

As a consequence of the linearity of the equation, the properties of
the noise term and the initial and boundary values the process R(t,x)
is a real-valued centred Gaussian process with a two dimensional ‘time-
parameter’ (t,z). It can be represented as

oo

R(t,2) = 3 a}(t)gi(z ~ cot) + af(t)9i(z — cot),

i=m

where {a{(t),af(t): i > m} is a family of mutually independent Ornstein-
Uhlenbeck processes, i.e. each a;(t) or b;(t) is a centred stationary Gaus-
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sian process having covariance function (A =1 — )

sras s cren o o’M 472 K42
Eal(t)al(s) = Ba(Das(s) = gomprsr xP(~ 73180,

and ¢i(z) = /2/M sin(2riz (M) and $i(z) = V2/M cos(2riz/M). The

covariance function of the process itself is given by

oM z—20Cp

= 1 . A
T(A,2) = K E -ﬁexp(—}\.-KlAl)cos(%rz i ), (5.2)

where A =t — s, z = z — y and (¢,z) and (s,y) are two points in the
plane.

The role played by M and m is in fact rather unimportant, given that
they are large. It turns out that the process R..(t,z) (the suffix indi-
cates the dependence of the process on m) converges to a limit process,
denoted by R(t,z), which is completely determined by its covariance
function

02§ [>*1 4ril? z — coA
= = = l
K ), P exp( 5 K|A|) cos(2m 5

r(A,z) = ydl. (5.3)

7)

This limit process will be the starting point for the chapters to follow.
Tts unknown parameters are K, o, § and, possibly, co. Estimation of
these parameters can be performed on the basis of measurements during
a time interval [0,T], over a space interval [0, L]. We assume that L is
chosen such that § < L. There is one complication. We do not observe
the process R directly, but we observe the sum of some ‘mean’ value Ro
(not to be confused with an initial value) and the process R, which is to
be interpreted as the fluctuation of the density of the traffic around the
mean value Rp.

Although not entirely in agreement with the linearization, it seems
sensible with a view to the application we have in mind to assume that
Ro may be (slowly) varying in time. This dependence on time may
compensate for a small drift in the mean traffic stream density. If we
denote the observed density by R(t,z), then

R(t,z) = Ro(t) + R(t,2).
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Chapter 6

Statistical analysis

In this chapter we consider the stationary, centred, Gaussian process,
R(t,z), which is completely determined by the covariance function

o?§ > 1 4722 A
r(A,2) = K J, l—2exp(— K|A|)cos(27rl ydi. (6.1)

The unknown parameters are K, o, § and, possibly ¢;. They are ex-
plained in for example Chapter 5.

As indicated at the end of Chapter 5 we observe in practice the
sum, R(t,z), of some slowly varying ‘mean’ value Ro(t) and the process
R(t, :c) which is to be interpreted as the fluctuation of the density of the
traffic around this mean value. We assume, however, that we can extract
with great precision the process R(t,z) from R(t,z). Analogously we
assume that the parameter ¢y is known. It can be determined in advance
with the same precision as Ry(t).

6.1 Observing the process on a time-space
rectangle

We introduce two new constants: A = 625/(47?K) and a = 472K /5°.
In fact, these constants replace K and o as parameters that are to be
estimated.

Estimation of these alternative parameters is performed on the basis
of one measurement during a time interval [0, T], over a space interval
[0, L]). We assume that the fixed observation length L is chosen such that
§ < L. T will be ‘asymptotically’ large. The idea is to estimate first the
covariances of the process R(t,z) for a finite number of (A, z)-values;
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in a second step we will apply a (non-linear) regression procedure to
these estimates. It is sufficient if we only consider nonnegative values
of A. Furthermore, we will restrict ourselves to values of z that are
nonnegative also. This is reasonable as the relatively large values of
the covariances occur when A and z have the same sign (at least, if we
assume that ¢g is positive).

The mean value Ro(t) is estimated by R(t) = 1/L f¥ R(t,2) de.
Thus R(t,z) is extracted from R(t,z) writing

~ _ L
R(t,z) - R(t) = R(t,z) - % /0 R(t,z)dz

and noting that 1/L fF R(t,z)dz is negligible if § < L.
An obvious estimator of r(4A, 2) is

T-A pL-z
H(B,2) = et g /0 /0 R(t,o)R(t+ A,z + 2)dedt. (6.2)

T-AL-
This estimator possesses some ‘standard’ properties. It is unbiased,
and furthermore it is asymptotically normally distributed. The last
statement needs justification.

Proposition 6.1 The estimator # is asymptotically normally distribu-
ted:

1 A A, 2)dt -5 N T
Fﬁfo (Q(t, A, 2) = 7(A, 2)) dt -5 N(0,1) as T — oo,

where Q(t,A,z) = 1/(L — 2) & " R(t,z)R(t + A,z + z) dz and
r? =2 /0 ® E(Q(0,A,2) — 1(A, 2))(Q(L, A, 2) — r(A, 2)) dt.

ProoF. According to Billingsley ({3, p. 376]) we only have to show
that the process Q(t) is e-mixing. A process X(t) is said to be a-mixing
if for all ¢ and all A; € o(X,:s < t)and A; € 0(X,: s > t+ u) we have
the following

|P(A1 N Az) — P(A1)P(A2)| < a(u),

where a(u) = O(u~%) . It is enough to verify that the underlying process
R(t) is a-mixing, because every set in for example o(Q, : s < t) also
belongs to the o-algebra o(R,: s < t).

Let us define the process Z(t): Z(t,z) = T-:R(t,z) = R(t,= + cot).
(See for the definition of T; also the proof of Lemma A.4.) It is fairly
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easy to prove that Z(t) is a-mixing. Because for example {T,: s < t}
corresponds to a (bi)measurable mapping of (Z,: s < t) onto o(R, :
s <t), R(t) has the same property.

The o-mixing-property will be shown in three of steps. First we
note that Z can be approximated by a process Z,, that takes values in
L?[0, M]. Secondly, the process Z,, is written as a countable sum of real
valued and independent processes. Finally, we prove that each of these
processes is a-mixing; if we call the corresponding functions a;, we find
that a(t) = 3°; ai(t) satisfies the required condition.

As was shown before, the process R was obtained as the limit of a
sequence of processes denoted by R,,. In the same way Z can be viewed
as the limit process of the sequence Z,, , where Z,,(t) = T_;Rmm (). Zn(2)
can be represented as };,, ai(t)e;. Here {a;(t): ¢+ > m} is a family
of independent Ornstein-Uhlenbeck processes with covariance function
() = o2 M? /(872 K?) exp(—4n? K%t/M?); the meaning of the various
parameters is the same as before. For each ¢ the sum contains in fact
two independent terms, but for simplicity of notation this feature is not
made explicit.

We associate probability measures P on B(C([0,7] x [0, L] — R))
and P, on B(C([0,T] — L%*[0, M])) with the processes Z and Z,, re-
spectively. (For ease of notation we identify the probability space and
the sample path space.) Note that the second Borel o-algebra contains
the first one. Let A = A(C([0,T] x [0,L] — R)) denote the algebra
that is generated by the e-balls By, = {g € C([0,T] x [0,L] — R):
sup, . |9(t,z) — f(t,2)| < €}. Further 4; = A(C([0,%] x [0,L] — R)),
A; = A(C([t + «,T] x [0, L] — R)), B, = B(C([0,¢] x [0, L] — R)) and
By = B(C([t + u,T] x [0,L}] — R)). For A; € A; and A; € A; we have
that

|P(A1 N Ay) — P(4)P(A;)|
< |P(A1 N Az) = Pn(A1 N A)| + |Pn(A1 N Ag) — Pr(A1)Pm(A2)]
+ |Pn(A1)Pn(Az) — P(A1)P(4;)];

t is arbitrary, but fixed; u as well as T will eventually grow to infinity;
the fact that T will be variable along with u implies that m will depend
on u, i.e. m = m(u).

As Z,, 2, Z the first and third term tend to zero. This is true,
because for all sets A in the algebra A it can be shown that P(3A) = 0.
We will prove below that for all A, € B; and A; € B, it holds that
| Pn(A1 N A2) — Pn(A1)Pn(A2)] < a(u) for some function a, ie. Z,
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is a-mixing, so that for A; € A, and Az € A; we obtain the desired
inequality.

The observation that {4; € B: |P(A; N A2) — P(A1)P(Az2)| < €} for
fixed A, € B and {A; € B: |P(A; N A;) — P(A;1)P(A;)| < €} for fixed
A; € B are monotone classes, implies that the a-mixing property can be
extended to all Borel sets. Thus, the problem is reduced to proving the
o-mixing property for Z,. Of course, the function « that will bound
the second term on the right hand side of the inequality must be chosen
independently of m.

Let m; denote the projection of C([0,T] — L?[0, M]) onto C([0,T] —
R), that picks out the i* Fourier coefficient of f € C([0,T] — L*[0, M])
(i.e. 7(f) = (f,&)). We decompose A € B(C([0,T] — L*[0, M])) as

A=A°nA'n...n4'n...,

where A' = 771 (mi(A)) = {f € C([0,T] x [0,L] — R): mi(f) € mi(A)}.
The independence of the processes {a;(t)} implies that P,(A) = P,(A%)
P (AY)Pr(AY)....
Using this factorization we obtain the following bound:
| P (A1 N Ag) — P (A1) P (A2)|

< |Pm(AT" NAT) = Po(A7) P (47)]

+ |Pn(A7 N ATHY) = P (A7) P (AT

+

We see that we only have to obtain an appropriate bound for each sep-
arate term, which means in fact proving the o-mixing property for all
Ornstein-Uhlenbeck processes {a;: i > m} separately. Following Rosen-
blatt ([33, p. 74]) we argue that a; is o-mixing if
sup |Eén| < ai(u),
¢€o(ai(s):s<t)m€o(ai(s):82t+u)

where E€ = En =0, 0} = 02 =1 and ¢; is such that ai(u) = O(u™5).
(Of course, here the expectation E is taken with respect to the proba-
bility measure Py.) Indeed, if & = 14; — Pn(A4}) and A = 14 - P, (A4Y),
the inequality implies that
[P (4] N A3) = Prn(A1)Pr(43)]

= |Er]|

< () Pu(A}) = Pr(4)?\/ Pn(4}) — Pr(4})?

< ai(u).
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Because of the fact that the process @; is normally distributed, it is
enough to check the property for all finite linear combinations of a;(sy)
(see Rosenblatt [33, p. 74-76]). Put é = Y_ 7kai(sk) and 7 = 32, §1a:(t:).
We obtain that

|E€n| = |E ) vebrai(sk)ai(tr)|
k1

o? M? 4 Ki?(4 — sx)
B |§m, R
4r?Ki%u o’ M? A K2(t — s — u)
= ee(=—73p) I%;""&’ gmxE P M? )
4riKiu 472 Ki’u

= exp(——5—)|E{n| < exp(——77 )
where 7 is defined as 7= Yo biai(t — u).
We define o;(u) = exp(—4n2Ki2u/M?); this choice of a; is sufficient
as
4rlKiy

Saiw) = Y ep(- 2

i>m 2m

42 Ku 42 K (12 — m®)u
< eXP(——'ST)ZeXP(— (M2 ) )

>m
4r?Ku
S2 )

Obviously, a(u) = 3,5, @i(u) satisfies the condition a(u) = O(v=%). O

< Cexp(-

Suppose we want to estimate the covariances at a number of points

{(Ai, %)}, where 0 < i < n. Assume that the points are numbered

such that A; < A; if ¢ < j and denote max{z;} by z. In order to

be able to compare the estimates we redefine Q(t,A,z): Q(¢,A,z) =

1/(L - 2) fL™* R(t,z)R(t + A,z + z)dz. Thus the estimator reads

. 1 1 T-An L—2¢

#(Ai,z) = -T-—_Anm/(; L R(t,z)R(t + Ai,z + 2)dz dt.
(6.3)

The estimates are (asymptotically) normally distributed with mean

7(Ai, z). But the error terms are not independent nor identically dis-
tributed. Let us write 7;; for the covariance of the error terms.
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If we apply the central limit theorem of the proposition to #(A;, %),
#(A;,2;) and #(Ai, 2) + 7(Aj, 2;), respectively, we obtain three asymp-
totic variances, viz. 7;;, 7;; and, say, ¢*, where

(o o]
@ = 2 [T EQE, A m)+ QW0,85,5) = r(8i,5)r(As, 5)
[Q(, A, 2i) + Q(2,44,2) — r(Ai, z)r(Aj, zj)} dt.
At the same time we have that <? = 7;; + 7j; + 27;, so that
o0
o= [ EIQ08km) - (80 5))(Q Ajy ) ~ (A, 7)) de
O
+ [T E1Q(0,85,5) - (85, 5)(@( Aty ) = (A, 7).
We will now give an approximate evaluation of this general (asymptotic)
covariance 7;; with ¢ < j. An approximation will be given, because exact
evaluation is far too complicated. Fortunately, an approximation seems

to be enough for our purposes.
First we can rewrite the formula for 7;; as follows:

(o o]
/0 [EQ(0, As, z:)Q(t, A, 2;) — T(Di, z)r(Aj, 25)] dt
+ [, [EQ(0, A, %)Q(2, A, %) — (B, 23)r(Di, 7)) dt.
For EQ(0,A;,%)Q(t,Aj, z;) we obtain the following expression

EQ(0, Ai, z)Q(t,Aj, 25)

1 1 L—z0 pL—20
B L—zoL—zo/o /o

ER(0,z)R(Ai,z + z)R(t, y)R(t + B,y + 2;) dz dy,

and an equivalent one for EQ(0,A;, z;)Q(t, A;, ), so that

00 1 L-zy pL-2
wos | sk

[ER(0,2)R(%,9) ER(A.-,:c + z)R(t+ Aj,y + 7))
+  ER(0,z)R(t + Aj,y + ) ER(t,y)R(Ai, 2 + %)
+ ER(0,z)R(t,y) ER(Aj,z + 2 )R(t + Ai,y + )
+  ER(0,2)R(t + Ai,y+ %) ER(t,9)R(B, + ;)| do dy dt,
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using the fact that for jointly normally distributed random variables X;,
Xz, Xs and X4 it holds that E(X1X2X3X4) = E(Xng)E(X3X4) +
E(X1X3)E(X3X4) + E(X1X4)E(X2X3).

The integrand contains four terms. Let us consider the first one and
approximate the integral of this term only, using the expression of the
covariance function given above. We obtain the following

oo 1 L—20 prL—2z
A= A
o (L—2)*Jo 0

/; /1 B exp(—atl® — a(t + A; — A;)m?) (6.4)
(cos(27rl%co—t)
cos(2wmy R Rk —;ot —co(4 = Ai))) dl dm dz dy dt.

We exchange the order of integration: for fixed ¢, [ and m we first
integrate with respect to z and y. Writing

COS(H&’%E{) cos(2rm tz-2-% ";Ot — co(8j — Ai))

=1 y—2 -t 2 — 7 ~ co(Aj — i)

=3 (cos(27r(l + m) 5 + 21tm < )+
cos(2m(l — m)LS"’Ot P el ?(Aj - A.-)))

makes it clear that the integral will practically vanish except for those
values of I and m such that the second cosine on the right hand side
has an argument close to zero for all z and y. Indeed, integration of the
right hand side of the above expression with respect to  and y yields

52

z; — zi — co(Aj — D)
872(l + m)?

5 )

cos(2mw(l + m)%t- —27m

[1 - cos(2r(l + m)L—;z'l)]

? zj — zi — co(Aj — Ay)

+ S )

S0 —mp cos(2m(l — m)-‘ig,1 + 2mm
[1 - cos(2x(l - m)-L_-Tzo)]

If we multiply the absolute value of the first term by the factor 1/m?
exp(—a(t + Aj — A;)m?) and integrate it with respect to m, we get
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a contribution that, after multiplication by 1/(L — 2)?, is of order
52/(L — #)?. The second term is also multiplied by the factor 1 Jm?
exp(—a(t + Aj — A;)m?), and integrated with respect to m, but now m
is restricted to (1,00)\ (- S/(2r(L—20),14+ S/(27(L — 20)). This results
in a contribution, that, after multiplication by 1/(L — 20)?, is roughly
equal to

5 1 o
SRy B Rt + A = AP cos(2mt

zi — co(Bj — Ai)
S .

We assumed that cgt € L — z, so that 2x(l — m)eot/S is virtually
zero for all relevant m-values. The assumption is reasonable, as large
values of ¢ do not substantially contribute to the integral (6.4). The
third contribution is due to the second term, when

S
- € _

and approximately equals (using the same assumption on cgt)

25

1 —co(Aj — A )
2n(L — 2p) 7] exp(~

a(t + A — Ai)P) cos(2ml L% 3 );

25/(27(L — z)) is the ‘width’ of the peak of the integrand integrated
with respect to z and y. We conclude that integration with respect to
z, y and m and subsequent multiplication by 1/(L — 20)? give that the
integral (6.4) roughly equals

oo poo o e ..
C / / l%exp(—a(% + A,-j)ﬂ)cos(znzi_z'g-i"ﬁ)dz dt
o N1
with C; = A%28/(n(L — %)) and Aj; = A; + A;. Performing the same

approximation for the remaining three terms of the original integrand,
we obtain

nj & G _/ _/ [é exp(—a[2t + 6;;]1%) cos(21rl_————-z’ %% 1)
0 1 l S
+ ylzexp(—a[2(t V &) + 65]1%) cos(2miE T ”*‘; C0lij
+ %“P(—G[Q(t V 6;;) - 6:;51%) cos(ZwIZj_—fig_—L&i)
+ 'llzeXP(—a[2(t Vv A;j) - 6;51P%) cos(27rlfii";_c°—A"j-)] dl dt,
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where §;; = A; — A; and A;j = Aj + A;. Integration with respect to ¢
is straightforward, so that

1 1 7 — % — cobi;
- Cz/; [Fexp(_aéijl2)[a5'.j+-l-2-]cos(27rlf—scu)+

liiz"__coA‘j)] dl.

5 (6.5)

1 1
A exp(—al;1?)[al;; + 1—2] cos(2m

6.2 Observing the process in time at some
fixed values of the space variable

In this section we assume that we are able to observe the process, R(t,z),
during some time interval [0, T] at some fixed values of the space variable.
Denote these values by {z,: 1 < p < k}. The covariance function along
the direction z = z, reduces to

r(A,0) = A/loo llzexp(—aAlz) cos(27rlc°TA)dl.

We will estimate the covariance at a number of (possibly equidistant)
points along the line z = 0. Set A; < Ajforl1 < i< j < n We
now proceed along the same lines as in the previous section. Thus the
estimators of {r(A;,0)} will be

. 1 1 [T-a. k P
A:,0)= 77 % /0 ;R(t,xP)R(t+A5,zp) t.  (6.6)

These estimators are unbiased and asymptotically normally distributed.
The analog of the proposition of the previous section reads

Proposition 6.2 The estimators {#(A;,0)} are asymptotically normal-
ly distributed:

1 T-4n d
ﬂ_-—T_n/c) (Q(t,4) = r(Ai,0))dt — N(0,7) as T — oo,
where Q(t,A) = 1/k Y%, R(t,2,)R(t + Ai, z,) — 7(A;,0)) and
no= [ BQEO,A) - r(A,0)Q A - r(8;,0) dt

+ [T E@Q,85) - r(8;,0)@( 8) - (8, 0) .
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Again we want to find more explicit expressions for ;. In the same
manner as before we calculate that

rg = /0 " pz:jl qz:jl [ER(0, 2,)R(t,20) ER(Ai, zp)R(t + Aj, 7o)
+ ER(0,2,)R(t + Aj, ) ER(t,2)R(A:, zp)
+ ER(0,z,)R(t,5,) ER(Aj,z)R(t + Di )
+ ER(0,2,)R(t + Ai,7g) ER(t,2)R(Dj, 7)) dt.

At this point we will use in fact the same approximation as in the
previous section. Let us consider the first term of the last integral.

, [ 1 k koo o1 1 ) .

A/o FZIX;/l /1 & exp(~at — a(t + & - Am?)
p=lg¢=

cos(27rlzq — xg —~ cot)cos(27r77rr,:':q b A co(St + 8 - A’.))dl dmdt.

Now summing over p and ¢ will have about the same effect as the in-
tegration over z and y before, provided that the range of the z-values
is large compared to § and also that (zp41 — 2, < § for all p. This
statement can be made more precise if we assume that the z-values are
equidistant: z, = pd. Then

k k o A
) cos(27rlI—z$,p———c—°1)cos(21rmzq i Cog 4 A’))

co(Aj — Ai) ot
— 5 + 2n(l + m) 5 )

{[l sin((k + 1)2x (I + m)d/S)
2 tan(w(l + m)d/S)

+[é sin(2kw(l + m)d/S) +

=1gq=1
1

= 3 cos(2mm
— cos®((k + V)7 (I + m)d)/ S
sin?(kn(l + m)d/S)]z}

tan(r(l + m)d/S)
co(Aj - A;) cot
-5 +2n(l - m)?)
{[l sin((k + 1)2r(l — m)d/S)

2 tan(n(l — m)d/S)

sin?(kx(l — m
+[-;- sin(2kn(l — m)d/S) + tan((’:r (5’_ m)Z/S 6; )p),

+ -;— cos(2mm

— cos?((k + 1)x(l — m)d/S))?
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All the terms are small compared to 1/k?, unless we have that |l £ m| =~
nS/d, for integer n > 0. Because of the assumption on the ratio of d
and S and because of the fact that only relatively small values of ! and
m contribute significantly to the integral, we conclude that the relevant
contribution arises, when |l — m| < S/(27rkd). Thus we get the same
result as in the previous section, the only difference being that we must
substitute in (6.5) z; = 0 as well as z; = 0.

6.3 Details of the analysis

In the previous two sections we have discussed how to obtain estimates
for (A, z;) at a number of points {(As,z):1 <1 < n}. We assumed
that A; > 0, z; > 0 and also that the points are numbered such that
A; < Ajif i < j. Further we have obtained approximate expressions
for the covariance structure of these asymptotically normally distributed
estimates. Let us summarize the results in the following proposition.

Proposition 6.3 The estimators (6.3) and (6.6) lead to two regression
problems. The first is
o0 1  o—_ o
Y; = A/ - exp(—aA,-Iz)cos(2n'li'—co—A'
1 B2 S
where €; is normally distributed with mean zero and covariance matriz
7ij given by (6.5). The second regression problem is obtained from the
first one by substituting z; = 0.

Ydl + ¢,

For practical purposes, however, some additional calculations and re-
marks are appropiate:
— an explicit description of the procedure of validation will be given;
— the regression functions as well as the covariance functions of the
error terms have to be rewritten in a form suitable for input into
computer programs that perform the regression;
~ some remarks on non-linear regression will be made as well as
— remarks on the discretization of the process.

6.3.1 The procedure of estimation and validation

“The procedure for testing the validity of the model and for the estimation
of the parameters will be as follows:

1. Simulate artificial data sets using the covariance structure given
by (6.5).
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10.

. Using a least squares regression procedure, estimate the parame-

ters A, a and S.

Calculate the covariance structure from the estimates of the pa-
rameters of the error terms.

Repeat step 2, now using the estimated covariance matrix instead
of the identity matrix.

. Repeat steps 3 and 4, until convergence is reached.

. Repeat steps 2 to 5 using artificial data sets obtained from simu-

lating the original process R(t,z).

. If the steps 2 to 5 are found to be appropiate, apply them to the
-real data.

. Repeat step 6, with the parameters A, a and S set to the values

found in step 7, in order to get an idea of the precision of the
estimates.

. Examine the (transformed) residuals coming from the regression

on the real data. Test them for independence, normality, trends
etcetera.

Test the (original) process, R(t,z), for normality.

In the next subsections we will comment on these steps.

6.3.2 Series expansions of the regression functions and

the covariance functions of the error terms

First we will give some series expansions of the regression functions. In
order to simplify the notation we define

I(p,b) = / ” exp(—pi?) cos(pbl) di
1
L(p,b) = /1 ” —:-exp(—pﬂ) sin(pbl) dI

%1
L(p,b) = /; l—z-exp(—pﬂ)cos(pbl) dl

© 1
Ln(p,b) = /1 -p—nexp(—plz)cos(pbl)dl and
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o0 1 .
Bt (p,b) = /1 e exp(—pi)sin(phl) dl,

where b is some fixed real constant and p is positive . According to
Proposition B.1 in Appendix B these integrals can be expanded in series
as follows

Z (= I)J(Pb)z’

L@

1) (pb)2i+1
Il(pvb) = J;o( (2);(_1;_3)' Kj

IO(p) b)

1Y (pb)%
L(p,b) = Z ((2]):(_?1))' i-1
In(p,b) = 7 [exp(=p) cos(pb) — 2plon—2 = pblzn—1]

2n
Iny1(p,b) = EE[GXP(—P) sin(pb) — 2pIan—1 + pblan].

The numbers {K;: j > 0} are given by

Kop) = [ exp(-pl)al

Kj(p) = 2—;{exp(—p) (2 — )K;a].

With p = aA; and b = 27(z;/Ai — c0)/(aS) we find that the first
regression function can be rewritten as

Zi[A; — co
aS )-

The second regression function equals (with p = aA; and b = 27¢p/(aS5))

(A, z) = AL(alA;, 27

r(Ai,0) = AIz(aA,-,27raig,-).
Figure 6.1 plots the second regression function.

H A; = 0 and 2z # 0, these series expansions cannot be used. We
can, however, use the following alternative:
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" 2 cos(pl) dI
/1 7 cos(pl)
-1 o0 % 1
= - cos(pl)| - p/ = sin(pl) di
l 1 1 |

T (—1yptt
= cos(p) +P[‘é‘ - JZ% (27 + 1)(25 + 1)!] .

Substituting p = 27z/§ and multiplying by A yields r(0,z). Propo-
sition B.2 of Appendix B gives some details as well as references with
regard to this result.

1.0
0.3
0.6
0.4
0.2

0.0

-0.2

00 02 04 06 03 10 12 14 16 18 20
b4

Figure 6.1: Plot of the integral [{° /=2 exp(—pl?)cos(pbl)dl, with
b=3.

By making again use of the series expansions given above (see also
Proposition B.1 of Appendix B), we can easily obtain numerical ap-
proximations of the covariances of the error terms. For the case that
z; = z; = 0 we have

cov(er, &) = C (To(ij, b)+ pi La(pis, ) + Io(Pos, b) + PisLa( Pij, b)) , (6.7)
where p;; = ab;; = a(Aj — A;), Pij = alij = a(Aj+ Ai), b= 2xco/(aS$)
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and C'is a constant. For the general case we obtain the same expression,
but now b = 27((2; — 2;)/(Aj — A;) — co)/(aS) in the first two terms and
b = 2x[(z; + z)/(A; + A;) — co)/(aS) in the last two terms. Below plots
are shown of the integral [ I=* exp(—p!?)[p + I=2] cos(pbl) dl for b = 0
and b = 3, respectively.

0.20
0.18
0.16
0.14
0.12-
0.10
0.08
0.06
0.04
0.02

0.00

00 02 04 06 08 10 12 14 16 1.8 20
P

Figure 6.2: Plot of the integral [ I=* exp(—pi?)[p+1~2]dl.

We note, finally, that the series o, I, and I converge (too) slowly,
when the parameter a is very small, i.e. when b is large, even though the
product pb does not depend on a. For small a, however, Riemann-sum
like approximations of the regression function and its derivatives can be
used.

6.3.3 Some remarks on non-linear regression

We only consider the type of observation discussed in Section 6.2, i.e.

the process R(t,z) is observed at a number of fixed values of the space \

variable. We are, therefore, dealing with the second regression problem
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Figure 6.3: Plot of the integral
[° =% exp(—pl®)[p + 1=?] cos(pbl) dI, with b = 3.

of Proposition 6.3.
o0 .
Y; = A/ llzexp(——aA;lz) cos(21rl£.?Al) dl + ¢,
1

where ¢; is normally distributed with mean zero and covariance ma-
trix (6.7). Let us now introduce some standard notation. First, 8 de-
notes the vector of parameters (i.e. 4, a and S). Further, we write
Y = F(B,A)+¢, where F is shorthand for the regression function. Y is
the vector of observations, A the vector of A;-values and ¢ the vector of
errors. Note that with this notation F is also a vector. F is shorthand
for the regression function. Let 7 denote the covariance matrix of the
errors. Step 4 of the procedure sketched in the previous subsection is
performed as indicated below. We transform the non-linear regression
model as follows:

Z =112y = +~Y2F(8,A) + 7, (6.8)
where 7=1/2 is the (Cholesky-)root of 7= (7= = (r~1/2)!r~1/2) and n =

1~1/2¢ the vector of transformed and, thus, independent and identically

59



distributed errors. Then the so-called normal equation reads
Xtr-\2F(B) = X*Z,

where

_9rY2F(B,A)

= 35 .
Applying least squares regression to the equation (6.8) is the same as
solving the normal equation (cf. [35, Section 2.1]). Suppose we have a

starting value By for the parameter vector. Linerarization around Gp
yields that

XV (F(Bo) + G (8 - o) = X'Z,
so that

aﬂ oF -
e - (ﬂ ﬂo)— YY - F(Bo)),

where the derivative of F is evaluated in ﬂo. Solving for df3 = B — (o we
find that

F

(317" -1 OF)_I 3F‘
op €
writinge = Y —F(Bp). Next, we update 3 a.nd repeat the steps again and
again until convergence is reached. This procedure, which essentially

consists of a number of least squares regressions applied to a linear
equation, bears the name Gauss-Newton method.

OF/0f consists of three columns, containing 8F/3A, 0F/da and
OF/0S, repectively. We have the following expressions

F
20 - 5.b)
oF PO - _an K
oF A

agﬂ) = A 27rs—q2) I](p, b),

where I; refers to the integrals discussed in Subsection 6.3.2; p = aA
and b = 2rcoA/S. Although the second and third integral diverge for
A — 0, the derivatives converge to zero as the divergence is of the order

1//p. .
The asymptotic distribution of 3 is given by
B ~ N(ﬂ’ v)’
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where v can be estimated by (e!V-le)(X*V1X)~!/(n —r) (n is the
number of observations and r the rank of X, which is, in this case, 3).
This result is extracted from the theory on linear regression (cf. [31,
p. 230] and [16, p. 213]). Because of the non-linearity the number of
observations has to be quite large if the result is to be useful.

6.3.4 Discretization of the process

The next issue to be discussed is the computer simulation of the pro-
cess R(t,x). Of course, the process has to be discretized with respect
to the space as well as with respect to the time coordinate. The dis-
cretization is performed in three steps. First, we return to the process
R..(t,z) (see Subsection 4.3.4). Secondly, the process Rn(t,z) is dis-
cretized with respect to the space coordinate, approximating it by the
N-dimensional process R,IX (?), that is determined by the N-dimensional
stochastic differential equation

RN(t) = KARN(t)dt — VRN (t)dt + \/_-f; o dw(t),
R;.(0) ~ N(0,V),

where A and V are the difference operators defined (here) as
N2
Af(k) = (37) FCk+1) = 26(k) + f(k = 1)

Vi) = aprlf(k+1) - f(k= 1)

for any vector-valued function f. Recall that M is the total length of the
space interval on which the process R (t,z) is defined. The covariance
matrix V is given by

v _N/Xz':”‘ o2 orif = Ty
M= OnE) R Gk

i=m

and w(t) is an N-dimensional Brownian motion, having a suitable co-
variance function.

And, thirdly, this N-dimensional stochastic differential equation is
discretized with respect to the time coordinate, using the standard
Euler-scheme. Thus we obtain the following:

Rd(i + l,j) = KARd(i,j) 6 — cOVRd(i,j)5 + 0\/_']1;\/3“7(7:,.7.),
Ra(0) ~ N(O,V) (69)
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where § = T'//N;, N; being the number of time steps; w(%,7) is a small
Gaussian error term with zero mean and covariance

1 m~1

Ew(h, kyw(i,1) = 6h; (81 - > E cOs(zm( l)))

Of course, here 8}, ; is the Kronecker symbol. In (6.9) d stands for ‘dis-
cretized’. In fact Ry depends on three discretization parameters, viz. m,
N and N;. In order to obtain a good approximation of the process R
all these parameters have to be large. Following the three discretization
steps in reversed order, we claim that

lim lim lim Rd—R

m—co0 N—oo Ny—oo

having embedded Ry into the space C([0,T] x [0, M]) by identifying
R4(3,7) and Ry(t,x) for t = iT/N; and z = jL/N and by subsequent
linear interpolation. The proof of the claim consists in proving conver-
gence in distribution for each step separately. Convergence of R, to R
was already proven in Subsection 4.3.4. Convergence of RN to R, isa
consequence of Theorem B.1in Appendix B and, finally, convergence of
R4 to RN follows from for example Theorem 1.10 in (26, p. 32].
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Chapter 7

Results of the analysis of
the data

The results of the analysis of three types of data are discussed below.
First, we apply the non-linear regression procedure, sketched in the pre-
vious chapter, to artificial data sets, obtained directly from adding cor-
related errors to the regression function. This step is primarily directed
at testing (the implementation of) the regression procedure. Next, we
apply the same regression to simulated data sets. These data sets were
obtained using the discretization described in Subsection 6.3.4. Finally,
we consider the real traffic data observed at a freeway near the city of
Delft.

The regression procedure has been implemented in SAS-IML. It
consists of two steps. First, the Gauss-Newton algorithm is applied un-
der the assumption that the errors are uncorrelated. Using the resulting
estimates of the parameters we determine (a first estimate of)) the covari-
ance matrix of the errors. The second step iterates the Gauss-Newton
algorithm, minimizing each time the sum of squares of the residuals
weighted by the inverse of the covariance matrix, that was obtained in
the previous iteration.

We need two convergence criteria. The iteration of the Gauss-Newton
step (within a single instance of the Gauss-Newton algorithm) is stopped
when the vector of the remaining errors is nearly perpendicular to the
vector consisting of the last changes in the estimated values of the de-
pendent variable. Specifically, the iteration halts as soon as

e'V-1Xdg

etV-1e
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drops below some specified value. The notation was already explained
in Subsection 6.3.3. The second convergence criterium determines when
the iteration of the Gauss-Newton algorithm stops. We have chosen
the relative change of the estimated values of the parameters, i.e. this
iteration halts when

. _1dB(3)
O EY:

is small enough; ¢ is some small stabilizing constant (we have chosen
c=1. 10—6).

7.1 Artificial data sets

The artificial data sets were generated and analyzed using the following
values for the constants and the parameters.

A 1(km=?)|co  0.030 (km/s) | nobs 21
a 01(s7!) |A0 1(s) ampl 0.1 (km™?)
8§ 0.5 (km) |seed 200 critl, crit2 1-e7¢

Ay is the time interval between successive points. We assume that the
covariances of the process R are determined at equidistant points A;
on the time axis. ‘Seed’ denotes the seed-value with which the random
number generator ‘Rannor’ of SAS has started and ‘nobs’, of course,
stands for the number of observations. ‘Ampl’ is the amplitude of the
covariance matrix (i.e. it equals the constant C; in (6.5)) and, finally,
critl and crit2 are the ‘critical’ values that define what convergence
means here.

Table 7.1 lists the results for 10 data sets. The first three columns
show the estimates under the assumption of uncorrelated errors.

From the result on the asymptotic distribution of the parameters (see
Subsection 6.3.3) we deduce roughly the following standard deviations:
for A 0.03 and 0.05, for a 0.01 and 0.02 and for S 0.02 and 0.03; the
first number corresponds to the regression under the assumption of un-
correlated errors, the second one to the regression assuming correlated
€rrors.

Both regression procedures perform rather well. Convergence is al-
most invariably reached within 10 iterations. As one would expect the
weighted regression yields a little better results.
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uncorrelated errors correlated errors

A a S A a S
0.997 0.078 0.520 [ 0.985 0.107 0.498
1.039 0.097 0.545 ] 1.035 0.095 0.524
0.997 0.043 0.571 | 1.015 0.082 0.490
0.889 0.105 0.481 | 0.912 0.114 0475
0.996 0.093 0.440 | 0.984 0.111 0.510
1.039 0.067 0.537 { 1.089 0.070 0.500
0.883 0.165 0.619 | 0.930 0.124 0.539
0.902 0.104 0.547 | 0.968 0.100 0.487
0.934 0.173 0.417 | 0.935 0.123 0.465
0.991 0.076 0.539 | 0.970 0.110 0.514

O © W0~ TR W

[y

Table 7.1: Regression results from 10 artificial data sets.

7.2 Simulated data sets

A simulation based on the discretized equations was implemented in
Think Pascal. The following parameters and constants were used.

K 0.005 (km2s—1) | ¢ 0.030 (km/s) | Ny 40000

o 0.2 (km Y2%s7/2) | Ay 3 (s) m 10
M 20 (km) dt  0.025 (s) nobs 21
L 6 (km) N 400

The meaning of most symbols should be clear. Nobs denotes the number
of points (in time) for which the covariance of the process R is sampled.
Ay is the time interval between successive points. L is the observation
length. The values of the process R are recorded at 30 equidistant sites
within L. These sites correspond to the detector stations where the
passing traffic is detected. Furthermore, they are recorded only once
in every 120 time steps. The deletion of the intermediate values made
programming easier (note that 3 = 120 - 0.025); it does not constitute a
serious loss of information, as the process R is continous.

The random number generator has been taken from a book on sim-
ulation by Bratley, Fox and Schrage [5, pp. 319]. The uniformly dis-
tributed random numbers have been converted into normally distributed
random numbers by means of a procedure found in the same reference

(Ip- 327)).
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The results of the analysis of 40 simulated data sets are shown in
the six histograms of Figure 7.1.

The subscript ‘0’ indicates the assumption of uncorrelated errors.
From the histograms we see that all estimates are somewhat biased.
The values A and Ap are larger than the theoretical value 025/(472K) ~
0.405. The same is true for S and Sp (theoretical value is 2). The values
of a and ao are smaller than the expected value, 472K /5? ~ 0.0493.

The bias of A and Ag is obviously due to the fact that m is relatively
small. The sommation ¥ ;_,01/7* yields approximately 0.105 instead of
1/m = 0.100.

The source of the other biases is probably also the small value of m.
For small m the covariance of the process R, which is a summation, is
only roughly approximated by the (5.3). (Cf. Subsection 4.3.4). The
first term of the summation is to some extent the dominant term. This
leads to underestimating a.

Again we see that the regression using uncorrelated errors performs
just somewhat better than the one using correlated errors. Especially
the estimates of @ and $ have smaller standard deviation.

7.3 Real traffic data

7.3.1 Description of the data

The raw data consist of 104 936 records, each record containing the time
a vehicle passes a detector station, its speed and the number of the
detector. Four detectors make up one detector station. There is one
detector for each lane; three lanes are for regular use, the fourth is the
emergency lane.

The detector stations are situated on the western carriageway of the
freeway A13 (at the locations A13W9.0 up to A13W16.5). They are
numbered 1 up to and including 16. The observations were recorded on
September 27, 1989 in connection with on-ramp meterings experiments.
The Transportation and Traffic Engineering Division (DVK) of the in-
stitute ‘Rijkswaterstaat’ of the Dutch Ministry of Transport has granted
the use of the data in behalf of this research.

The observations used here were made between 15.30 h. and 16.40 h.
(The clocktime ran from 8559.493 to 12758.709 seconds.) During this
period of the day the traffic on the freeway can usually be described as
high density (and more or less) stationary freeway traffic. In order to
eliminate as much as possible the influence of the on- and off-ramps only
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Figure 7.1: Histograms of the estimates of the parameters of 40
simulated data sets.
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observations coming from the detector stations 8 up to and including 15
(which cover the freeway between Delft-Zuid and Zestienhoven — loca-
tions A13W12.5 up to A13W16.0) are considered. Thus about half of
the records are discarded.

7.3.2 Preparation of the data for the analysis

Once we have decided on these preliminary questions, some more delicate
decisions have to be made, viz.
— how is the density of the traffic defined in terms of the observations,
- how do we extract the mean density and the fluctuations from the
observed sum
— what must be thelength of the time interval on which the estimates
of the parameters are based and
— how do we determine the constant cg.
One might propose to define for each lane the density at the time that
a vehicle is passing a detector as two times the inverse of the distance
between the vehicle in front and the one following. Let us denote the
positions of the vehicles on alane by z;(t), such that the index ¢ increases
upstream (so that the larger the index, the later the vehicle is observed
at the detector station). When vehicle ¢ passes a particular detector at
time ¢, the density at that time and at that detector is

2
zi1(2) — zipa(t)

For fixed = (the position of the detector) this defines the density at a
large number of t-values. Linear interpolation completes the definition
for one lane. The density for the whole carriageway is obtained by taking
the mean over the lanes.

There is an obvious disadvantage of this procedure. Two vehicle
driving very close after each other (possibly within 10 metres) give rise
to a very unrealistic peak of the density. Furthermore, it takes into
account the coupling of the lanes only afterwards.

We have, therefore, chosen an alternative definition. Again we deter-
mine the density at a fixed z-value (the position of a detector station).
At each instant we count the number of vehicles within a 100 metres
distance, upstream or downstream. This number can be non-integer as
each vehicle is thought to be spread out, backwards and forwards, over
half of the following distances. Denote at fixed t the position of some
vehicle of interest by z;;(t) and its velocity by vk ;(t). The index k
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stands for the lane of the vehicle; the index i now is 1 for a vehicle that
is about to enter the interval, it is n; for the vehicle that last left the
interval (on lane k). Thus the density (vehicles per km per lane) equals

5 (& Zkz +100 100 — Tn,—1
= ng — 3+ — + - .
3 (kz::l( T2 — Tkl  Thnp — Thnp-1 ))

Of course, we do not know exactly the positions of the vehicles. They
must be estimated assuming that the vehicles do not change their ve-
locities during the time that they are in scope, so that the position of a
particular vehicle relative to the detector station equals the time interval
between time t and the passing time multiplied by its velocity. Clearly,
the constant velocity assumption limits the length of the interval. The
length of 100 metres is chosen as it corresponds to a driving time of
about 4 seconds. In the absence of incidents a period of 4 seconds seems
short enough to guarantee constant velocities. Further, a length of 200
meters seems a reasonable choice of an increment of the space variable.
The next question concerns the extraction of the mean density and
the fluctuations from the observed sum. To get an idea of how the
density process behaves, the observed process was plotted for detector
station nr. 8. (The plots are shown in Chapter 1.) Apart from the short
range fluctuations a medium range fluctuation of the mean density can
be discerned with a typical time of, say, 80 seconds. We have chosen,
therefore, to calculate the mean density at a particular detector station
as the moving avarage of the observed process using a window of 80
seconds. This choice immediately implied another decision, viz. not to
combine the data of adjacent detector stations as far as the mean density
is concerned. The mean density is changing so fast that we cannot
assume it to be constant over the length of the freeway covered by the
detector stations. But then the question arises, whether or not we also
should try to estimate the parameters, that determine the fluctuation
process, for each detector station separately. As the answer to this
question is not clear a priori, both possibilities are pursued in the next
subsections. Considering the data from the detector stations as separate
data sets has two advantages. First, the resulting analysis of the data is
more readily suitable for applications (cf. Chapter 8) and, secondly, the
choices made on the basis of the observations at detector station nr. 8
can be evaluated, when we turn to one of the other detector stations.
Further, we have to decide on the length of the time interval on which
the estimates of the parameters are based. Some experimenting with the
data coming from detector station nr. 8 shows that a time interval of 15

69



N W e

—

-1

(P XK. X-%

-3
4
-5

N W e

[

-1

L NN W-9

-2
-3
-4
-5

Figure 7.2: The simulated process R(f,z) at a fixed value of the
space parameter, z. The time is given in seconds and the den-

0 100 200 300 400 500 600 700 800
time
|
|
I
\
1]
900 1000 1100 1200 1300 1400 1500 1600 1700
time

sity-fluctuations in km~2,

70




L - K -
o

0 100 200 300 400 500 600 700 800 900
time

“ ety oA

900 1000 1100 1200 1300 1400 1500 1600 1700 1800
time

Figure 7.3: A smoothed version of the simulated process R(t,z)

at a fixed value of the space parameter, z. The time is given in
seconds and the density-fluctuations in km~2,

71



minutes is appropriate if we consider only one detector station at a time.
This choice yields 4 successive estimates for each detector station. In
on-line applications it might be advisable to use overlapping intervals,
so that estimates are updated more frequently than once every quarter
of an hour. For the case of combined data a time interval of 10 minutes
seems to contain sufficient information (see also Subsection 7.3.5).

Finally, ¢y is determined by taking every second of the ‘estimation
interval’ the mean of the velocities of all vehicles present in the 200
metres interval. Now we do not consider the vehicles as spread out,
instead they are now treated as ‘point vehicles’. The constant is set
equal to the mean of these mean velocities over the appropiate time
interval (and, possibly, the relevant set of detector stations). Note that
the slower vehicles are counted more often than the faster ones. This
feature compensates for the fact that simply taking the mean of all
passing velocities overestimates the mean velocity cy, as a fast car is
more likely to be detected than a slower one.

Before we proceed to the statistical analysis of the data, we show
some pictures of a realization of the simulated process (cf. Section 7.2,
but now K = 0.00125km?s~?, dt = 0.15=! and N; = 20000) at a fixed
value of the space parameter (Figure 7.2). When we compare these
pictures to for example the observed density at detector station nr. 8
(see Figure 1.2), we notice two major differences. One is, of course, the
variability of the mean density in the case of the observed process. The
second difference concerns the amount of smoothness. The observed
process is clearly smoother than the simulated process, at least on a
time scale of a few seconds. An obvious explanation of this discrepancy
lies in the way in which we calculate the density on the basis of passage
times and velocities. The assumption that the vehicles pass through the
200 metres interval with velocity equal to the passage velocity causes
some smoothing of the values of the density on a time scale of about
4 seconds (100 metres divided by 25 metres a second). The influence
of this small scale smoothing is illustrated by Figure 7.3. This Figure
shows two pictures that are obtained from the pictures of Figure 7.2 by
taking the 4 second moving average.

7.3.3 Modification of the model

The inverse of the covariance matrix computed on the basis of the es-
timated parameters is ill-conditioned. The covariance matrix itself is
almost singular. This is due to the fact that adjacent errors are very
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highly correlated. The matrix elements have to be calculated with high
precision to get a good approximation of the inverse. The necessary
precision cannot be obtained when a is too small, i.e. when we have to
use the Riemann-like sum in approximating the relevant integrals. If,
however, a = 0, we can use the alternative series expansion (given in
Proposition B.2). One might, therefore, suggest to replace the covari-
ance matrix corresponding to a small value of a (say a < 0.02,if § = 2)
with the one corresponding to the case a = 0. But even if we succeed in
calculating the matrix elements with sufficient precision, the weighted
regression procedures applied to the real traffic data fail to converge.
Apparently the structure of the errors of the observed covariances is
not adequately described by the theoretical covariance matrix. Also the
weighted regression procedure is computer-time consuming and there-
fore expensive. For these reasons we have chosen to use the ordinary
least squares criterion.

Thus the model has been modified, on the basis of the data observed
at detector station nr. 8, in two ways. First, we have chosen to calculate
the mean density for each detector station separately. And, secondly,
we decided to use least squares regression. The modification is an op-
erationalization as well as a simplification of the original model. We
will see how the choices work out when we turn to two of the remaining
detector stations (nrs. 11 and 14). After that we consider the combined
data from all detector stations (nrs. 8-15).

7.3.4 Estimation of the parameters for separate detector
stations

Below Figures 7.4 and 7.5 show plots of the covariances, #, together with
the fitted covariance functions (using ordinary least squares). Table 7.2
shows the estimated values of the parameters.

We see that the estimates of the parameter a are (very) small. (In
one case the parameter is even virtually zero.) As mentioned before
this has some computational consequences. We have to take recourse
to Riemann-sum like approximations of the regression function and its
derivatives for the larger values of the time variable. If the value of a
is too small (say below 0.001), we set it equal to zero and estimate the
remaining parameters using the appropiate formulae given in Proposi-
tion B.2. This was done for data set nr. 5.

We mention some remarks concerning the results.

~ Only part of the damping can be ascribed to the influence of a.
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Figure 7.4: The density of the traffic (vehicles per km per lane) at
detector station nr. 11 during the first two periods of 900 seconds.
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Figure 7.4: The estimated covariances of the density-fluctuations
(%) at detector station nr. 11 with ordinary least squares fit (solid
line) for the first two periods of 900 seconds. The time is given in
seconds.
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Figure 7.4: The density of the traffic (vehicles per km per lane) at
detector station nr. 11 during the last two periods of 900 seconds.
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Figure 7.4: The estimated covariances of the density-fluctuations
(x) at detector station nr. 11 with ordinary least squares fit (solid
line) for the last two periods of 900 seconds. The time is given in
seconds.
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Figure 7.5: The density of the traffic (vehicles per km per lane) at
detector station nr. 14 during the first two periods of 900 seconds.
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Figure 7.5: The estimated covariances of the density-fluctuations
() at detector station nr. 14 with ordinary least squares fit (solid
line) for the first two periods of 900 seconds. The tirne is given in
seconds.
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co A a S sd.of A sd.ofa s.d.of §
0.0269 21.707 0.00519 1.773 1.465 0.00262 0.050
0.0285 31.461 0.00212 2.297  2.097 0.00215 0.064
0.0286 26.811 0.00181 2.463  0.932 0.00107 0.036
0.0283 25.954 0.02090 1.575 2.853 0.00773 0.118
0.0263 34.666 0 2.091 1.627 0.041
0.0272 32.135 0.00553 2.140 1.852 0.00203 0.056
0.0276 30.722 0.00970 2.526 2.242 0.00263 0.101
0.0270 34.647 0.00838 1.960 2.014 0.00231 0.056

WG A WN =

Table 7.2: Regression results from 8 data sets from detector stations 11
and 14. Nrs. 1-4 are successive estimates at detector station nr. 11.
Nrs. 5-8 are estimates at detector station nr. 14. The abbreviation s.d.
stands for standard deviation.

— Only part of the damping can be ascribed to the influence of a.
The other part of the damping is due the cosine in the formula
of the regression function. Of course this mixing of these effects
would be absent, if we had been able to observe the traffic flow,
while moving along with the stream.

~ The value of § is closely related to the value of ¢5. If a wrong
value of ¢o is taken, this only affects the estimation of S.

— In the neighbourhood of ¢ = 0 the values of # tend to be reduced.
The effect is certainly caused by the way the density is calculated.
The assumption that the vehicles pass through the 200 metres
interval with constant velocity causes some smoothing of the values
of the density as was already illustrated by Figures 7.2 and 7.3.

— If we deduce the values of the original parameters K and o from
the estimated values of A, a and §, we find that K ~ 10-5 - 104,
which is very low; calculations on the basis of the parameters of
the non-linear equations, that are discussed in Chapter 2, page 11,
would lead us to expect that K ~ 103 — 102,

— Further, as we can write A = 02/(aS) and the parameters A and
S are roughly constant, we see that o2 is by and large proportional
to a.

= The pictures of the estimated covariances of the process at detector
station no. 8, 11 and 14 suggest that there are two dips for t = 30
seconds and two peaks for ¢ ~ 60 seconds. One might suggest that
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co A a S sd.of A sd.ofa sd.of §
0.0257 23.801 0.0072 1.812 1.524 0.0025 0.054
0.0279 34.666 0.0045 2.357 1.453 0.0014 0.044
0.0281 36.792 0 2.054 1.438 0 0.034
0.0284 30.458 0.0126 2.077 1.262 0.0019 0.049
0.0274 23.091 0.0018 2.689 1.191 0.0014 0.062
0.0278 27.860 0.0081 1.745 1.712 0.0027 0.049

U R W N

Table 7.3: Regression results from 6 data sets (combined data from all
detector stations). The abbreviation s.d. stands for standard deviation.

this is due to different behaviour of the left and the middle lane
and the right lane (which is characterized by much heavy traffic).

7.3.5 Estimation of the parameters for combined data

Table 7.3 and Figure 7.6 present the results of the estimation of the
parameters on the basis of the combined data (from detector stations
nrs. 8-15). The estimation time interval is 10 minutes. An interval
of 5 minutes contains too little information to estimate the parameters.
This implies that combining the data from several detector stations does
not lead to much shorter estimation times. The results do not differ
significantly from those presented in the previous subsection.

7.3.6 The accuracy of the estimates

A rather delicate question is the estimation of the standard deviations
of the estimates of the parameters. Table 7.2 and Table 7.3 list the
values obtained from the result on the asymptotic distribution of the
parameters (see Subsection 6.3.3) under the assumption that the errors
are uncorrelated. It seems worthwile to compare these values with val-
ues from a sample of artificial data sets, which are obtained by adding
correlated errors to the regression function. For lack of the true covari-
ance matrix we use the matrix V. Forty data sets were generated. The
(typical) values of the parameters and constants are
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Figure 7.6: The estimated covariances of the density-fluctuations
() for all detector station together with ordinary least squares fits
(solid line). The time is given in seconds.
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Figure 7.6: Continued.
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Figure 7.6: Continued.
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The meaning of the symbols is the same as in Section 7.2. Note that
the value of a is rather high for a ‘typical’ value. This is unavoidable
as for lower values of a it is impossible to calculate the matrix V with
sufficient precision. Doing the (ordinary least squares) regression yields
the following results (s.d. stands for standard deviation):

A 289 (km~2)|sd.of A 4.0
a 0.014 (s71) |sd.ofa 0.007
S 25(km) |sd.ofS 04

Clearly the estimated standard deviations from these data sets are much
larger than the values given in Table 7.2 and Table 7.3. This discrepancy
can be explained by noting that the covariance matrix V corresponds
to errors that are correlated over the entire range of the time variable,
whereas the values given in the tables assume uncorrelated errors. What
a very large range can cause, is nicely illustrated by Figure 7.7. The
figure shows how a large amount of the errors can be disappear into
the estimated regression function. As a consequence the parameters
are rather poorly estimated. Since the pictures of the observed data
suggest that for these data the range of the correlation is somewhere
between these two extremes a reasonable conclusion seems to be that
the parameters A and S can be estimated with an accuracy of about
10%. Estimation of the parameter a is more difficult; If the parameter
is very small, little more than that can be said. If it is somewhat larger,
say about 0.01 (for § = 2.5), an accuracy of 30% is likely. The larger a
is, the more accurately it can be determined.

7.3.7 Two additional analyses

Two additional analyses were carried out. The first one concerns the
estimation of a. If we could observe the fluctuations of the density while
moving along with the stream, this would yield rather direct information
about the parameter a. In a sense the influence of the length $ would
be cancelled, as the regression function reduces to

(=<}
r(A,cl) = A/1 Tliexp(—alAUz)dl.

We have not observed the traffic stream in this way. However, we do
have a few observations at (successive) detector stations, which yield
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Figure 7.7: A typical artificial data set (*) with the true regression

function (dashed line) and ordinary least squares fit (solid line).
The time is given in seconds.

estimates

(A, c0d;) =
1 1 T-An L-coAn A AN de d
i i t
T—AnL—coA,,/(; /0 R(t,z)R(t + Ai,z + coAi) dz

for a few values of A;, viz. values of A;, such that ceA; = (i — 1) -
0.5km, ¢ = 0...n. These estimates of #(A;, ¢A;), for n = 6, have been
calculated for the first ten minutes estimation interval (cf. Table 7.3, the
first data set). Figure 7.8 shows the data and the ordinary least squares
fit. The estimated values of the parameters are A = 21.41(+0.94) and
a = 0.00315(+0.00044). The standard deviation are, as before, based
on the asymptotic distribution formula. Of course, the fact that n = 6
throws some doubt on the reliability of the values. Nevertheless, it seems
quite clear that, if the value of the parameter a is very small, and if one
has observations from several successive detector stations at his disposal,
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Figure 7.8: Estimates of #(Ai,c0A;) (*) with ordinary least
squares fit (solid line) for the first ten minutes estimation interval.
The time is given in seconds.

this manner of determining a is very useful. If, on the other hand, a is
large, the usefulness is restricted. Because the covariance drops to zero
much faster, the information is to be extracted from only two or three
points. At the same time the method based on the estimates of #(A;, 0)
will perform significantly better for large a.

Another interesting feature of the density-fluctuation process is the
way in which the observations at two neighbouring detector stations are
correlated. Figure 7.9 shows the estimated covariances #(A,0.5km) at
detector stations 11 and 12 for the first 15 minutes of the observation
time. The plot exhibits the expected behaviour. An attempt to fit a
regression curve through these data was not undertaken.
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Figure 7.9: Estimate of #(A,0.5km) at detector stations 11 and
12. The time is given in seconds.

7.3.8 On the normality of the process R

The normality of the process R has been tested by sampling once every
hundred seconds from the data at detector stations nrs. 11 and 14. It is
assumed that these values are (almost) independent. Therefore normal

probability plots can be used to assess the normality of the process (see
Figure 7.10).

7.4 Discussion of the results

The determination of the mean density required an adaptation of the
model. It changes much more rapidly than was hoped for. Partly this is
caused by the irregular input of vehicles at the junctions, partly it is due
to the steadiness of the irregularity. This feature is reflected by the low
values of a. The variability of the mean density entailed the necessity
to calculate it for each detector station separately.

Furthermore, we changed the model in that we used ordinary least
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Figure 7.10: Normal probability plots of data sampled at
detector stations nr. 11 and nr. 14 once every 100 seconds.
The i*R normal score is defined here as the median of the ith
order statistic in a sample of size n drawn from a standard
normal distribution.

squares regression instead of the weighted regression. From the results
presented in the first sections it is clear that the weighted regression is to
be prefered over the ordinary least squares regression, provided the errors
are correlated according the theoretical covariance matrix. Apparently
the errors of the observed covariances are not correlated in this way.
This not only holds for the data coming from one detector station, but
also for the combined data, for which the matrix was actually derived.
The pictures suggest that the range over which the errors are correlated
is smaller than is implied by the theoretical covariance matrix.

The adapted model describes reasonably well the observed covari-
ances of the density. We note that the fact that the regression proce-
dures almost always converged indicates that the amount of damping
present in the observed covariances is covered by the model. In the two
exceptional cases putting a = 0 yields acceptable results. We conclude
that the observed covariances obey the constraint that ¢ > 0. It is
probably the most successful feature of the model that it reveals this
property of the traffic flow so clearly. We will come back to this matter
in Section 8.2.

Because the parameter a is very small, it is difficult to estimate it
accurately.

The normal probability plots suggest that the fluctuations, as ex-
tracted from the observed density, can be assumed to be normally dis-
tributed.
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In view of the difficulties we encountered when using weighted least
squares regression the question arises whether the choice, made in Chap-
ter 6, to estimate the parameters via the estimates of the covariances
should be maintained. An alternative is to return to the original model
equation (5.1) and find estimates on the basis of its discretized version
(see Subsection 6.3.4 for the notation)

Writing
e(i,j+1) = (Rd(i +1,5) = KARy(3,5)6 + coVRa(3, ) 5),

and minimizing e'W~'e, where W is the covariance matrix of the error
term would yield estimates of K, S and o. This approach does not
rely so much on the exact stationarity of the process. Furthermore, the
covariance matrix W is relatively simple (compared to the covariance
matrix V). There are, however, three objections to this proposal. The
first one is the huge size of the regression problem. Note that the route
via the covariance estimates starts with a significant compression of the
information. Secondly, the parameters § and ¢ have to be estimated
from the structure of the residuals, whereas the procedure followed here
has absorbed the parameters S and o into the regression function. As
to o, the estimation from the matrix elements of 1/n(ee), where e is
the residuals matrix (n is the number of time steps, i.e. the range of the
i-variable) should pose no problem, but the estimation of S seems to be
a very difficult task. The last objection concerns the availability of data.
One must have at one’s disposal observations of the process along the
entire interval [0, L]. These data are difficult to obtain.
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Chapter 8

Summary, conclusions and
recommendations

8.1 A short summary of the model

Let us recall the objective of this thesis. It ‘aims at a mathematical
description of traffic flow on a freeway, thereby identifying some useful
flow characteristics. Estimating these characteristics and taking appro-
priate action may lead to enhancement of the homogeneity of the flow.’
(See Chapter 1, page 1.) In Section 1.2 we restricted the scope of the
research to stationary high density multilane freeway traffic flow. The
reason for this was the impossibility to design one single model for all
kinds of traffic flow.

Faced with a problem like the task of modelling traffic flow on a
freeway one can in general choose between two approaches. The first is
to gather data and derive conclusions. The second approach is to start
with the mathematics. In this case intuition about the nature of the
traffic flow is translated into mathematical equations. Consequences of
the model are derived and are subjected to the criticism of the data only
in a later stage of the research. The advantages and disadvantages of
the latter (theoretical) approach can be illustrated by the results of the
research presented here. We will come back to these aspects in the next
section.

In Chapter 2 a kind of ‘conservation of vehicles’ equation suggested
itself as the natural starting point of the analysis. As a consequence the
density of the traffic (number of vehicles per km) became the central
dependent variable (depending on time and place). This equation and
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other, more heuristic, reasoning led to the stochastic model presented
in Chapter 5. The main model equation was obtained by linearizing a
pair of non-linear equations. This step was taken to simplify the model.
It is believed to be acceptable if we deal with stationary traffic flow.
In the case of stationary flow it seems natural to discern between some
(possibly slowly varying) mean density and fluctuations superimposed
on this mean density. These fluctuations of course must sum up to zero
in order not to loose or gain vehicles.

The model essentially consists in a description of the fluctuations
of the density of a freeway traffic stream as a two-parameter Gaussian
process, denoted by R(%,z); t and = are the time and space parame-
ter, respectively. The process is completely specified by its covariance
function r(A, 2).

- A
S

where A = 025/(472K) and a = 47212 /(§?)K. K and o are parameters
occurring in the stochastic differential equation having the Gaussian
process as its stationary solution, K is a parameter that determines
how strong the smoothing tendency of the process is that counteracts
the influence of the stochastic disturbances (i.e. the noise). The noise
is determined by the parameters ¢ and §; ¢ determines the amplitude
of the disturbances and § their range. Further, ¢; is the mean velocity
of the traffic velocity. K, ¢ and S may be called the characteristics, as
they determine the degree of (non-)homogeneity of the flow.
Alternatively, A, @ and S may be chosen as the relevant parameters.
Indeed, they are the ones that are estimated. The interpretation of these
parameters is as follows. A is the squared amplitude of the fluctuations,
S is the typical length of a fluctuation and a is a damping factor that
determines how fast or slowly a certain configuration of fluctuations
changes; a ~ 0 would mean that a configuration would travel along the
freeway (almost) unchanged. It is clear that large values of A and of
a characterize a wildly changing process. In Appendix C we state an
extreme value theorem, which makes this statement more precise.

r(A,2) = A / — exp(—alA|) cos(2nIZ—22y a1, (8.1)

8.2 Conclusions
As mentioned in the previous section the approach of developing a model

by translating intuition into mathematical statements has advantages
and disadvantages.
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The prime disadvantage is that the data contradict some of the as-
sumptions underlying the model. This necessitated us to adapt and
simplify the model. Because the adaptation is ad hoc, the model is to
some extent weakened.

The major advantage of the theoretical approach seems to be that
it reveals the importance of the parameter a and, at the same time,
provides a means to determine the value of this ‘hidden’ parameter. As
can be seen from the extreme value theorems stated in Appendix C, the
probability of the occurrence of extremes, relative to the amplitude, is
determined by the value of a/S, which stresses the importance of finding
the value of a. But, whereas the squared amplitude of the fluctuations
A as well as the length S are readily deduced from the data, a is not
easily determined.

The parameter a measures the amount of damping one sees if one
would travel along with the traffic stream. Some efforts were made to
obtain an observation of a traffic stream by means of aerial photographs.
These fotographs would have enabled us estimate the parameter a more
directly. Unfortunately, this part of the research could not be brought
to a successful conclusion.

A large value of a implies that fluctuations occur rather sponta-
neously and also, more importantly, that the extreme values tend to be
more extreme (at least if A and § are constant). The model’s usefulness
lies in the fact that it is able to derive from rather limited observations
at detector stations the approximate values of the parameter a, as well
as the values of the other parameters. Together these values can be used
for taking measures to ‘regularize’ the stream (see Section 8.3).

Perhaps the most serious criticism of the lines of research followed here
lies in the remark that the adequate formalism for describing the nature
of traffic flow is by no means obvious. In this thesis the analogy between
fluid flow and traffic fiow is exploited, but already in the introductory
chapter we pointed out that the analogy only holds to a limited extent.
This limitation is illustrated by the somewhat arbitrary choice of the
working definition of the notion density in Chapter 7.

There are two answers to this objection. The first is that the model
presented here is not meant to cover all freeway traffic situations —
the area of application is restricted (see also Chapter 1). The second
answer concerns the (first) application of the model to data, for after we
removed some apparently unrealistic elements of the model (in particular
with respect to the mean density), the (remaining part of the) model
performs reasonably well.
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8.3 Recommendations

The comparison of the model with data suggests that the model is worth
applying in everyday traffic situations, although additional validation is
required. Perhaps the most important open question is the range of
values of the parameter a. As the data used here were gathered in pre-
peak-hour period, we conjecture that in the middle of the peak-hour
much larger values of the parameter occur, such that the values found
here can all be said to be (very) close to zero. The small values of K
that are deduced from the values of a and S (see also Subsection 7.3.4)
support this view. If this guess is confirmed, one of the consequences
will be that the parameter a can be estimated with sufficient precision
whenever it is important to know its value, i.e. when it is large.

If the model passes this additional test, the following application
is proposed. We interpret the phenomenon of large R(t,:v) — which
corresponds to a local concentration of vehicles — as a situation in
which there is a large probability of congestion. Recall that R(t,z) is
defined as the sum of the mean density and the fluctuation. Clearly, this
phenomenon depends on the value of the mean density and on the value
of the parameters. Of these the parameters A (measuring the mean
squared amplitude of the fluctuations) and a (measuring the damping
present in the process) are the most important ones.

Large values of the mean density and the parameters A and a imply
a large probability of an extreme value above some crucial level. A small
value of § has the same effect, but it seems that this parameter is not
likely to change very much. If the density exceeds the crucial level the
flow is likely to break down. Of course the value of this crucial level will
depend on the mean density.

The parameters can be determined along the lines followed in Chap-
ter 7. It does not make much difference whether data from one or several
detector stations are used for the estimation of the parameters.

This sketch does not lead to quantitative statements. Therefore,
the critical values as well as the range of the parameters under various
circumstances have to be determined from studying a large amount of
data. Once the critical values of the parameters have been found, the
state of the traffic flow can be assessed (in an on-line configuration) and
appropriate measures be taken, for example with the help of a signalling
system.
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Appendix A |

This appendix contains all the proofs omitted in Chapter 4 as well as
results needed in the proofs. Before a proof is given the theorem or
proposition is stated again.

Al

The first part of Appendix A concerns Section 4.2. Recall the probabilis-
tic setting of Chapter 3. (2, F, P) is a complete probability space with
a right-continuous increasing family of sub-o-algebra’s, {Fe:t 2 0},
each containing all P-null sets, i.e. the set-up (9, F,{%:}, P) satisfies
the usual conditions. H always denotes a real separable Hilbert space.

Lemma A.1 Let f:[0,T] x @ — H be a H-valued, measurable and
{F:}-adapted function satisfying E‘fOT |F(®)||?? dt < oo and F: [0,T]xQ

— L2(H) a Lo( H)-valued, measurable and {F:}-adapted function that
satisfies E [T |F(t)||3 dt < co. Then we have the estimates

([ r®.am)” < af [ @ a)” amd
el [ Fwasi < G [ EFOFe Y,

where C; and Cy are constants depending only on p.

IA

PrOOF. See [9, p. 134 and 135]. m]

Lemma A.2 (Holder inequality) Let f and g be functions in
LP[0, M, where M is some constant and p > 1. Then

(/ |fg|da;)p 5/|f|v dz (/ |g|P/(p-1) dx)p—l.
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Analogously, if {a;} and {b;} are elements of IP (the Hilbert space of
sequences & = (1,22, ) such that 3_3° |2;|P < 00), then (for p > 2)

(Z |aibi|)p <3 laif? (E |b’.|p/(p—1))p—1_
Theorem A.1 (= Theorem 4.4) Assume that

(i) U is the semigroup generated by a closed linear operator A; —A is a
positive, self-adjoint operator such that (—A)™! erists and is a nu-
clear operator; furthermore, for some § > 0, 0 < liminf; \; /4% <
lim sup; \; /i'*+® < o0, where {Ai} is the set of eigenvectors of —A;
{ei} is the corresponding orthonormal family of eigenvectors;

(i) P is a linear operator with D(P*) D D(A) such that ||P*ei|| <
YAy, where v is some constant and a < 1 — 1/(2(1 + §)) or, if

P and A commute on D(A), we require that D(P) D D(A) and
(| Peil] < 7A¢;
(i%i) h: [0,T] x H — H is continuous and satisfies, uniformly in t,
[lh(t,z) — h(t,y)|| < Ci|lz — y|| for all z,y € H;
(i) o:[0,T) x H — L(H) is continuous and satisfies, uniformly in
L lot,z) —o(t,y)l| < Ca|lz — y|| for all 2,y € H.

Cy and C; are arbitrary positive constants.
Then the stochastic evolution equation

dX(t) = AX(t)dt + Ph(t, X(t))dt + o(t, X(t))dB,,  (A.1)
X(0)=XoeH, 0<t<T

has a unique mild solution whose sample paths are almost surely con-
tinuous from [0,T] into H. Furthermore, the sample paths are Hélder-
continuous from [, T] into H for all € > 0. The solution also satisfies
sUPo<s<T E||X(2)|[** < 00 for all integer p > 1.

PROOF. Let RP be the Banach space of all measurable and adapted
H-valued processes, defined on [0,7] x Q with norm

1/2p
X||r =4 sup E|X()|I*f < oo.
1Xlir = { sup ENX ()P}
R{ denotes the closed subspace {X € R? : X(0) = Xo}. To avoid
too many brackets we write hereafter X; instead of X(t). Define the
mapping ¢: R — R} as follows:

t t
MY ) = UeXo + / U_y0(s,Y,)dB, + / Us—sPh(s, X,) ds.
0 ]
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The stochastic integral is well defined. Ui, is a Hilbert-Schmidt op-
erator for all s < t. This property and the Lipschitz condition on o
together ensure the existence of I(t — €,) = fg-‘" Ui—s0(s,Y,)dB, for
€ > 0. And, finally, I(t — €,) converges in norm as ¢, | 0. The second
integral is in fact deterministic; its interpretation is the following one:

/Ot Ui—s Ph(s,X,)ds = /Ot Us—s (zi:(h(s,X,),P*e,-)ei) ds.

It will become clear below that this expression is well defined.

In order to be able to apply a fixed point theorem we estimate
E||(Y): — ¢(Z):||*? for Y and Z € Rj.

E||$(Y): — $(2):]*®
4

< 18| [ Uilo(6,%) - oo, Z)I B
0

t
b | [ U Plhe,Y) ~ A, 2] dSIP
0

Let us call the two terms on the right hand side term (i) and term
(ii), respectively. In the following we use that U; can de represented as
Uie; = exp(—Ait)e; for all eigenfunctions e;. {Ci: i > 1} are arbitrary
constants. If p > 2, we have for term (i)

t
E|| [ Uislo(s,Ya) = o(s, Ze) dB|”
0

< O [ EN-s(o6,72) — o, 2T ds)”

< G [ Wl (Bllo(s,Y2) - o5, Z)IP) 7 ds)’
< C{ [ 1B (BIY. - Zu|p)Vr ds)”

< G [ 10BN~ 27 ds ([ 10eslds)”
< G fot 1Vesl§ EIIYs — 2o ds

= G /0 t(Zexp(—2)\,-(t—s))) E||Y, - Z,|[** ds

< Cs /0 t(z exp(~Xi(t - 8))) E||Y: - Zi|[* ds,
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using Lemmas A.1 and A.2. If p = 1 we obtain the same result, because
in this case we do not need Lemma A.2.
For term (ii) we get, using again Lemma A.2,

E| /0 Ve o P(h(s, Ys) — h(s, Z6)) ds|®
- E| /0 ‘Ui (zi:(h(s,Y,) — (s, Z,), P*e;)e;) ds|f*”
= EIS [ exn(-h(t = ) s, ) - s, 2), P} e daff®
- E(Z [ /0 " exp(=Mi(t — )) (h(s, Ys) ~ h(s, 2,),Pe;yds|’)’

< EZ[/; exp(=Ai(t - ) (h(s,Ys) ~ h(s, Z,), P*es) ds]
P (z(%)p/(p—l))”“l

< CEY [ (exp(=nit - 2)) (h(s, Y2) - (5,2, Pes)) s
o ([ lexp(~0r(t — s)P/ 0> 4s) "

< C4EZ:/0 exp(—Ai(t — 3)) (h(s,Y,) — h(s, Z,), P*e;)*P ds
Pl (%)2})-—1

s GE Z/ot exp(=Ai(t — 8)) ||h(s,Ys) — h(s, Z,)||? ds A}
oP (i.)2p—1

< CsY /0 t exp(—Ai(t — 8)) E||Y, — Z,|[?P ds A}~2P(1-%) jap

= Cs /0 t(z exp(=Xi(t - 8))) E||Y, - Z,|? ds,

where we have chosen 7 = 1/2p and 8 = 2p — 1/2p; in the last line we
put ap = —(1 + 6)(1 — 2p(1 — a)) from which it is seen that the factor
A} 7%= jap cancels; for this choice of a Y:(1/i%?/P=1 is finite, because
of the condition a < 1 - 1/[2(1 + §)).
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The combined estimates of terms (i) and (ii) yield
t
E|$(Y ) — SZ)l < Cr [ (T exp(-Xi(t - 5))) EIYs - | ds.
For ease of notation we will write
-1
()= 1 E(Siom(-x0) ift>0, K=(Ti(1/%)
0 otherwise.

Iteration yields
E(|#*(Y)e — *(2)I
< c? /ot a(t - 3) /0 o(s = WE|Y, — Z,|[** duds
< CPax(¢+E|Y - Z|I"P)(t),

where the ‘¢’ denotes the convolution of functions. Applying ¢ n times
we obtain

E|j¢™(Y): — ¢"(2Z)|*P < CF ¢ + E||Y — Z|*?(t)
so that

sup E||g"(Y)s — ¢"*(2):l|” < CF (¢ * o) (T) sup E||Y; — Zi|[*.
0<t<T 0<t<T

From (8, pp. 27,28] we take the result that for arbitrary T
C7 (@™ * 1p,e0) J(T) < 1 if n is large enough.

We conclude that ¢ is a contraction. A suitable version of the Picard-
Banach fixed point theorem (see for example [10, p. 88]) tells us that
there exists a unique fixed point. The fixed point, often simply denoted
by X, is the unique mild solution of A.1 we were looking for.

What remains to be proven is the sample-path (Holder-)continuity.
This result will be given below as a consequence of Proposition A.1. O

Proposition A.1 (Kolmogorov) Let {X; : t € R}} be an S-valued
stochastic process, where R} denotes the unit cube inR® (n > 1, |-| is
the norm in R™) and (S,d) is a complete metric space. Suppose there
are constants k > 1, K > 0 and € > 0 such that for all s,t € RY

E(d(X:, X,)¥) < K|t — s|™*+<. (A.2)
Then
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(i) X has a continuous version;

(i) there erist constants C and vy, depending only on n, k and ¢, and
a random variable Y such that with probability one for all s,t € R}

d(Xs, X2) S VIt = o[/ log L)/

and
EY* < CK;

(13) if S is a Banach space with ||z|| corresponding to d(0,z) forz € S
and E||X;|{* < co for some t, then

E(sup || X¢||F) < oo.
temy

Proor.  The proposition is a slight extension of the Kolmogorov
theorem on sample path continuity for real valued processes with n-
dimensional time parameter that is given by Walsh [37, pp. 271-274).
In order to obtain the extension it is necessary to replace in (1.2) on
. 271 the expression $([f(z) - /(y))/p) by 4(d(f(z), f(4))/p), where
satisfies the same conditions as 1. After that the proof given there can
be copied. =]

Before we apply this proposition, we state a lemma.

Lemma A.3 Let {)\;: i > 1} be a sequence of positive numbers such
that 0 < liminf; ;/i'*® < limsup; A;/i'*® < oo for some § > 0, for
some 6 > 0. Then, for r and B such that r > 8 > 1/(1+ §) and positive
2

f: (1- e;’\'t)' < C1P-1/0+8),

=1 t
where C' is some constant. Note that on the right hand side the ezponent

of t is positive, so that the inequality yields a useful estimate for the sum,
whenever t is small.

PROOF. In the following, C and {C;: 1 < i < 5} are positive constants,
not depending on t. Split the summation into two parts:

E(l-—e Aityr Z(l—e

=1 i<a >a (]

=X t)r
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where a = t~1/(1+%)  For the first term we have

Z(l—e

i<a i<a
=Cyt" a(1+5)("—ﬁ)+1 =Cs tr—(r+ﬁ)—1/(1+6) =C; tp_l/(1+5)

—A tyr a
Ly nbe son [ o000 do
0

and for the second term

z(l_e <ZA"<C/ g—(1+8)8
i>a i>a
= Cs a—(1+6),3+1 =Cs $P-1/(1+6)

- t)r

We conclude that

i 1- e"’\"t)r < C {8-1/(1+8)

O

Proposition A.2 Suppose that (Xo,e;) < c/i¥ with v > (1+ 6)/2.
Then the sample paths of the unique mild solution X(t) of (A.1) are
Hoélder-continuous with Holder-coefficient up to §/2(1 + 6). For general
Xo the sample paths are continuous from [0,T)] into H and the Hélder-

continuity holds on [¢,T) for all € > 0.

ProoF. Let X, satisfy the condition mentioned in the proposition. X;
is an H-valued (measurable) stochastic process with real time parameter
t € [0,T]). We can convert the time interval into the unit interval by
rescaling. In order to apply Proposition A.1, all that is left to be proven

is inequality (A.2). Assume for simplicity that 0 <s <t < T.

E| X, - X,||*
< 57U, Xo — Us Xo||?

+ 5%-1E ”/ (Ut—u = Us—u)o(u, Xu) dB"nzp
0

t
+ 5% 1E| / Us—uo(, Xy) dBy [
8

+

5?-1E|| / (Uses — Us—u) Ph(u, X) dul[*®
0

t
+ 5Plp| / Uso Ph(u, Xy ) dul?.
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By Lemma A.3 term (i) satisfies

IU:Xo — U, Xo||*®

<Nl = DXol™ < (lexp(=Nit = 8)) — 12 Xo, &))"

< (0 Lo RCXC = DY ¢ (1 oplavtasa-i/ases)

- \2VI(1+0)
t

= Ca(t — s)PP-D/0+5) ¢ Ca(t — s)Po/(1+8)

For term (ii) we have

3
B [ (Uiu - Usu)o(u, X.) dB, |1
(1]

<

<

<

<

<

<

u{ [ BlUee - Vem)o(u, X)) du}”
Co{ [ S - 2G4 CoBI X PP )
07{/3 Z(e—,\,‘(t—u) _ e—z\,’(a-u))Z du}p
0 R )
07{2 ilx(l + e—L\.’(f—s) _ 26—,\5(1—3))}1’

Co{ 30 1 (1 - et}
Cg(t _ 8)”8/(1-"6).

To obtain the last estimates we used Lemma’s A.1 and A.3 the growth

condition on ¢ (which is implied by the Lipschitz condition) and the

convexity of the function e~ (so that —e?}it 4 2~ Milt+e) _ o2his < (),
The third term can be estimated in an equivalent way by

t
E| / Us—uo(u, X)) dBy|[??
F

t
< Coof [ T e du)’ < Cuy(a - a0+,
g

Term (iv) is bounded by

t ]
E|| [ (Ve — Useu)Ph(u, Xo) dul®
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= E|| [ (Ueu- U,_u)(;(h(u,y,,),P*e.-)e.-) dul*®

= E||§‘; /0 "(e M=) M=) h(u, X,,), P ese; dul[??

= E (E [ (e — ey h, Xa), Pres) a]’)"

E Z [ /0 (N0 — N9 h(u, X,,), Pei) du]”
e (Z(ila)p/(p—l))”"

C’lgE; /0 (e (h(u, X.), Per)) ” du

*P ( / s(e—"f\-‘(s—u) — e~ dilt—u)4nAi(s—v) )2p/(2p—1) d'u,) 2p-1
0 .

IA

IA

IA

CI3EZ. /os exp(—Xi(s — w))(h(u, Xu), P*e;)?? du
2p-1

9P (—oly"(l _ e—/\.‘(t—s)))

CLEY /0 " exp(=Ai(s — ) du A2

IA

i (Bi&'(l i

Cis Y _(1- e~ Nilt=2) -1 A?p(a—l) jop

IA

IA

Cie (1 — e Ailt=2)ylp=1 \2p(a—1)+ep/(1+6)
< Cur(t - s)ZP(l'a)-(ap+1)/(1+5)

< Gus(t - s)”[1+(1/2'°')q6/(1+5) for0<i<1,

where we have set ap = —(1+ €p) + 2p(1 — a)(1+€) with e = §(1 -1/2).
We also used that
(6—9,\.-(3—-1‘) _ e—)\.‘(t—u)+r)/\.'(s—u))2p/2p—l
— (6—9,\.-(3—14) _ e—OAg(t—u)—n).;(t—s))2p/2p—1
- (6—9,\.-(3—-14) _ e—ﬂ)\;(s—u)—A;(t—s))2p/‘2p—1
(e—akg(s—u)(l _ e—/\.'(t—s)))2p/2p—l
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< e—OA;(a—u)(l _ e—z\.‘(i—s)).

These choices and the condition on a yield that ap > p — 1 + p6(1 - 1),
which ensures the finiteness of 3°;(1/i®)?/P~1. Note that here the value
of a is different from the value it had in the proof of Theorem A.1.

Finally, the fifth and last term is dealt with in the same way as
term four. It leads to exactly the same estimate. Combining all these
estimates, we obtain that for 0 < s<t<T

_ 2p _ \Pf6/(1+6) . 0<f<l fa> 1/2
BIIX, - X,|P? < Gro(t-9) wad Gf<t fezin
As before {C;: ¢ > 1} is a family of positive constants, not depending
on t.

If the condition on X, does not hold, the proof remains valid with
respect to the interval [¢,T). Furthermore, as the two integrals that
appear on the right hand side of the integral equation (of which X is
the solution) are almost surely Holder-continuous, independently of the
condition on X, continuity of U;Xo for all t € [0,T] suffices for the
sample path continuity of X. 0

A.2

The second part of this appendix contains proofs that were omitted from
Section 4.3.
Consider the stochastic evolution equation

dR(t) = K%R(t) dt — co-g;R(t) dt + o dB,, (A.3)

R(0)=Ro, O0<Lt<T.

We set A = Kd?/dz? and D(A) = {f € L?[0, M]: f" € L?[0, M], f(0) =
F(M), f'(0) = f'(L)}. Rq satifies (Ro,e0) = 0,i.e. Ry € L3[0, M), where
L3[0,M] = {f € L*[0,M]: (f,e0) = O}. Bi = ;51 b2(t)es + b(2)ei,
where {b7(t),b{(t)} is a collection of independent standard Brownian
motions; ¢;(z) = /2/M sin(2riz /M) and ¥;(z) = \/2/M cos(2miz /M).
The ‘s’ and the ‘c’ refer to ‘sine’ and ‘cosine’, respectively. {¢;:i > 1}
and {4; : i > 1}, supplemented with {ep = 1/\/11_4 }, are collectively
written as {e;}, which is an orthonormal basis for L?[0, M]. Also {e;} is
the set of eigenvectors of A. Depending on the context {);} denotes the
eigenvalues corresponding to {e;} or corresponding to {¢;: ¢ > 1} and
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{%;i: ¢ > 1}, which is, of course, only a matter of numbering. Sometimes
it is convenient to assume that B, is a true cylindrical Brownian motion
(i.e. there is also a noise component corresponding €g). In that case we
choose o equal to a constant times the projection operator that projects
onto L3[0, M}: o f = 0o Ti>1(f,$i)¢i+(f, ¥i)¢i for f € H; K and o are
postive constants. We note, however, that until Proposition A.4 we only
use a Lipschitz condition on @, viz. o [0, T] x L?[0, M] — L(L*[0, M])
is continuous and satisfies, uniformly in ¢, ||o(t,z) — o(t,)|| < C ||z —y||
for all z,y € L%[0, M].

According to Theorem A.l the equation (A.3) has a unique mild
solution whose sample paths are almost surely continuous from [0,T)
into H. Furthermore, the sample paths are Holder-continuous from [€, T’]
into H for all € > 0. The solution also satisfies supgc;<7 E||R(?)||*? < 00
for all integer p > 1. T

We define A, = Kd?/dz? — cod/dz (with D(A;) = D(A4)). It is
easily seen that A, generates a semigroup, say V;. V; has a rather simple
characterization, viz.

Viei(z) = e~ MKt (z — cot),

where {e;} is the same orthonormal basis as above; note that the {e:}
are not eigenvectors of A.. For general f € L?[0, M] we have

M
Vi@ = [ etenidy  vith

a(t,2,y) % + i(‘ﬁi(w — cot)i(y) + iz - cot)¢,-(y)) e~ MKt
i=1

The correctness of this representation can be verified by direct calcula-
tion.
Of course, we must have that R(t) can be written as

t
R(t) = ViRo + /0 Vi_so dB,,
The following lemma shows that this is true.

Lemma A.4 The solution of the equation A.3 satisfies, almost surely,

t
R(t) = ViRo + [ Vi-s0 dB,, (A4)
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ProoF. We must show that R(t) as given by A.4 satisfies

t d t
R(t) = UsRo - o / Ui-sg-R(s)ds + / Us—,0 dB,,
0 z ]
R(0) = Ro € L}[0,M], O0<t<T.
Introduce the ‘shift’ operator T; on L%[0, M]:
T: f(x) = f(=,x — cot).

T, is a (semi)group; its generator is —co d/dz with domain {f € L%[0, M]:
f' € L2[0,M]), f(0) = f(M)}. We have the following relation

Vi = T Us.

Substitution of the alternative formula of R(t) into
—co Jo Ur—s d/dz R(s) ds yields

—¢o / Uiz R(.s)ds
- —co/ Uis g VR0+[ Vi-uodB,) ds
= —CO/ Ut-—a"—TaUsROds
o dz
i I
—Co/ / Ty—uUs—yodB, ds
=0 Ju=0
t d
= /Ut—J_TsUaROds
0 ds

t t—u d

u=0 Jw=0 dx
t t—u d
= T,U;Ro - URo + / U-u-ug-TuUu dsc dB,
u=0 Jw=0 w

t t
= ViRo-UiRo+ / Ty—uUs—uo dB, — / Ur—wo dB,,
0 0

where we applied a Fubini theorem. The equalities hold almost surely.
Rearranging of the terms gives the desired equivalence. O

Lemma A.5 Let e;(z) denote either ¢i(z) = \/2[M sin(2riz/M) or
Yi(z) = V2/M cos(2xiz/M). Then, if the real numbers a, p satisfy
0<a<1andap > 1, we have for real z and y,

Z C:(z) Cc(y)l < CIZ‘ ylap_

=1
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PROOF. |ej(z) — €(y)| can be bounded by /2/M(2 A 2xi|z — y|/M),
so that

gle;(z); ei(y) |p

< ¢ i(m A 2Ti|z — yI/M))p

=1 ia
[M/(2x|z-y))] o0
<ol vy Aty ¥ (Ly)
i=1 w (M/(2rlz—yl)] *

M/Grlz=y) =
< Cs(lfv _ y|p/ Lp(1-a) dz+/
0 M/(2r|z—yl)

Ca(jz — yP(1/1z = yPE=+ + (1/]2 - yl)~*?)

z7P dz)

IA

< Csle -y
[M/(2x|z — y|)] denotes the entier of M /(27|z — y))- O

Proposition A.3 (=Proposition 4.1) Write R(t,z) instead of R(t)
to indicate that we view each realization of R as a real valued function of
two parameters, t and z. Then R(t,z) is almost surely jointly Holder-
continuous on [¢,T) x [0, M] for every € > 0.

ProoF. We will use the alternative way of writing R(t) (Lemma A .4).
Since we want to apply once more Proposition A.1, we will try to find
bounds of expressions like E| [ Vi—y0 dByu(z) — fg Vo-uo dBu(y)|? for
0<Lz,y< M,0<ts<T and integer p > 1. First, we show that the
expression f§ Vi—y0 dB, (=) makes sense. By definition of the stochastic
integral we have that

t t
( / Viuo dB, i) = / (0" Vit yei, dBy)
0 0

Approximate [} V;_y0 dB,, (z) by Y 7o(fs Vi-u0 dBuy,ei)ei(z). This ex-
pression is well defined for all n. Furthermore, by Lemma A.1,

E (Xﬂj( / Vicuo dBu,e:)ei(z))
= E</ Vt_uadBu,Ee.(z)e.>

1=0
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= B([ (St an)”
i ([ BlloViea (3= etares) 1)1 )’

=0

< G (Lt (2": e;(z)2e—2AiK(t—u)) d’u)p

1=0

< G (z": e—j\(ff)z)p + Cs.

IA

The summation converges for n — oo, so that the interpretation of the
expression [f Vi-u0odB,(z) is obvious. Replacing e;(z) by ei(z) — e;(y)
immediately yields, using Lemma A.5,

t 1
E| ] ViewodB,(z) - / VieuodBy (y)[??
0 0

< Cs (i (ei(w),\j;:'(y)f)r’

i=1

< Celz - yf.

For fixed z we calculate (assuming that s < t)
t s
E| / Viewo dBu(z) / Vi_uo dB,(z)|?
0 0
s
< 27| ['(Vie = Vou) 0 dBu (&)
0

t
+ 2% / Viewo dBy(z)[??

e[ @l v - V:_u)(g es(@)es) )1 du)”

IA

+ Co( [ BloVieu( 3 es@en)P) odup

=0
< G ( /oa (i (e_x\.'K(t—u) _ e-,\.-K(,-u))z) du)p
1=0
+ Cuo (/t i e DK (t-u) du)p
* i=0
< Cult- s>
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In the last line we used results obtained earlier in the proof of Proposi-
tion A.2.
Combining these results we have

t 8
E| [ ViuodBu(z) - [ Vieuo dBu@)l”
0 (1]

t 3
< B [ VieuodBu(@) - [ Viewo dBu(@)*
0 0
+ 2-1F | /’ Ve—uO dBu(.’B) —/ Vs—uo dBu(y)|2p
0 0
< Cule —yP + Cuslt — sP/* < Cua(lz 9l + ¢ — /2.

The numbering of the constants has meaning only within this proof.
Because of the restriction to the time interval to [¢,T] we can easily
obtain the same estimates for the expressions V;Ro(z) — Vi Ro(y) and
ViRo(z) — VaRo(2)-

We provide the square [¢,T] x [0, M] with the metric d((%,2),(s,¥)) =
| — y|+ |t — s|1/2, so that the condition (A.2) is satisfied with & = 2p and
€ = p — 2. The coefficient of Holder-continuity can be chosen in the
interval (0,1/2). Note that for fixed & we have a real valued proces with
one dimensional time parameter; with the usual metric (i.e. d(t,s) =
|t — s|) the Hélder coefficient is smaller than 1/4. For fixed ¢ we find
almost the same situation: now the Holder coefficient is smaller than
1/2. o

Before we proceed we make some comments concerning this result on
the joint continuity of the sample paths. Rather analogous results can
be found in work by Funaki [9, pp. 180-183] and Walsh (37, pp. 323-
326]. The proposition and proof given here intend to be a combination
of both these results, being as general as the first and as simple as the
second.

The joint continuity has been proven for (¢,z) € [¢,T] x [0, M], for
every € > 0. This was done to avoid unnecessary conditions on Rp.

One might wonder what can be said in the case of a more general,
non-linear convection term as in example 4.3. In this situation the con-
vection effect cannot easily be incorporated into the semigroup, so that
the convection term must be dealt with separately. It appears that for
this term joint Hélder-continuity can also be proven under some extra
condition on the function h. For instance the following will do. Let
as before A = Kd?/dz? with suitably chosen domain: D(A) = {f €
1200, M]: " € L0, M), f(0) = f(M) and f(0) = f/(M)}, but other
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choices are also possible (as the one in example 4.3). Now define, for
positive &, Dy = {f € L2[0, M]: 3", A\#(f,e)® < o0}. Or, if we first
define the Hilbertian norm ||f|l = ||A*f|| for f € span{e;}, then D,
can also be defined as the closure of the span of {e;} with respect to the
norm ||+ [|o. It is obvious that D, is a subset of L?[0, M] consisting of
(rather) smooth functions. The larger « is the smoother are the func-
tions. Of course Dy = L?[0, M]. This procedure may also be carried out
for negative . The result is a family of spaces of distributions of which
L*[0, M]is a subspace. For a more elaborate treatment of these ideas we
refer to a monograph of Ité [15]. The stochastic heat equation with non-
linear convection term can be solved considering D,-valued processes
(0 £ a < 1/4) by exactly the same method as was used above. We
can conclude that the solution we already obtained is not only L2[0, M-
valued, but also D,-valued. The ‘regularity’ of A we need to prove the
joint continuity now can be captured by requiring that h: D, — D,
and ||h(t, z)|la < C1 + Cal|z]|q for all z € D,.

In the following we will explicitly use that o is a constant and that B,
is a modification of truly white noise.

Proposition A.4 (=Proposition 4.2) Suppose R, is not a fized el-
ement of L}[0, M], but an LZ[0, M]-valued random variable that is Fo-

measurable. Then there is a unique measure p for Ry such that R(t)

is a stationary L3[0, M]-valued process. Moreover, if Ry is distributed

according to u, R(t,x) is a real-valued process which is stationary under
shifts in R2.
PROOF. Again we make use of the ‘shift’ operator T; on L%[0, M]:
Tif(z) = f(z,z — cot)
(see also the proof of Lemma A.4). Define
Z(t) = URo + a/Ot U: — udB,.
It can be verified that R(t) = T;Z;. Proving the stationarity of Z;

is rather easy. Using the decomposition of the (modified) cylindrical
Brownian motion we obtain

t t
/ Ui-uodB, = o / Y exp(~ MK (t — u))e; db;,
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so that

t 1
( / Ui-uo dBy,ei) = 0 / exp(~ MK (t — u)) dbi,
0 0

where we (essentially) use the Fubini theorem for finite-dimensional
stochastic integrals. Our first conclusion is that the stochastic inte-
gral f(f Vi_yo dB, is a centred Gaussian process. This follows from the
properties of the standard one-dimensional Brownian motion. The co-
variance functional of the integral is given by

s
r(t,8;ei,e5) = bij 02/0 exp(=XAj K (t+ s — 2u)) du

1 —exp(—2);Ks)
20\ K ’

= &0 exp(—A; K(t—s))

where we assumed s < ¢.

Now it is easy to define Ry in such a way that the process Z(t)
becomes (weakly) stationary. Denoting for the moment the stochastic
integral by SI(t), we find that the covariance functional of the process
Z(t) is given by

E((Z(2),e:)(Z(3), 3))
= E((ViRo,e:)(VeRo,e5)) + E((ST(t), &:)(SI(s),€)).
The first term equals
K B((Ro, ) Ro, €3))

If we choose Ro such that (Ro,e;) = 0 and (Ro,e;) ~ N(0,0%/(2\K))
for i > 1 (such that all these real random variables are independent),
then this expression simplifies to

—2);Ks
2\ K ’

-(j(t-9)K &

b; ole

For this choice of Ry the covariance functional of R(t) is clearly invariant
under time shift, as it only depends on the time difference (¢ —s). It
is also clear from the explicit construction of Rg that the probability
measure that makes the process Z(t) stationary is unique.

When we return to the process R(t), we split the set {e;} into {¢;:
i > 1} and {v;:i > 1}. We get, for t > s,

r(t,s;6i,65) = E(R(2), %:)(R(1), 45)
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E(Z(t), T-1$i{ 2(2), T-t$5)

E ((2(t), 8:)¥i(cot) + (Z(2), i) bi(cot))
((2(2), b5 )05 (cot) + (Z(2), ;)3 cot))

= & ;0% e~ M=K cog(omico(t — 3)/M).

Equivalently, we have
(8 ¢s,¥; = & ; 0% e~ Cilt=K cos(2micy(t — 5)/M);

T(tvs; i, ¢J) = r(t,s; éi,¢;) and T(t,s;‘?l’i,(bj) = r(t,s; ¢i, ;). We see
that these covariance functionals also depend only on the time difference
(t = s).

The second assertion of the proposition is proven in much the same
way as the first one. It can be shown that

EZ(t,2)Z(s,y) = Z 2A.K exp(—Ai K (2 - 3)),
=1

so that

EZ(t, a:)Z(s,y)

_ 24° z ~y—co(t— )
= ; 2A,K exp(— A K(t — ) cos(2mi i )
for0<z,y<Mand0<s<t. 0

Corollary A.1 (=Proposition 4.3) The stationary solution of the
equation (A.3) can be written as

R(t,2) = Y a}(0)i(a - cot) + a(i(a — cot),

=1

where ¢;(z) = /2/Msin(2riz/M) and ¥;(z) = /2/M cos(2miz /M).
{a}(t),ai(t) : i > 1} is a family of mutually independent Ornstein-
Uhlenbeck processes, i.e. each a}(t) or af(t) is a centred stationary Gaus-
sian process having covariance (function)

o M? 41r’Kz

Ea}(t)al(s) = Eaf(t)af(s) = oz ez XB(~ —rr— 1),
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where A = (t — s). Thus R(1,z) is also a centred stationary Gaussian
process. Its covariance function, r(A,z), reads
— oA

(A, 2) = 47r2K Z exp(—A; K|A|)cos(27rz 7 ), (A.5)
z—l

where A = (t — s) and z = z — y; (t,z) and (8,y) are two points in the
plane.

ProorF. From the previous proposition we have that
t
Z(t) = URo+o / Us—u dBy

= 3 [(Ro,eei + 0 / exp(~NK(t - ) dbi(u)e]

21

= Y [(Royei) +0 / exp(— MK (t — u) dbi(w)]Jes

i>1

= Za;(t)e;,
i>1
using the fact that (Ro,&) + Jo oexp(—MK(t — u))dbi(u) is a one-
dimensional Ornstein-Uhlenbeck a; process having covariance function
o2

Ea;(t)ai(s) = INE

—— exp(—M K|t — s).

Therefore,
R(t,z) = Tt Z(t,z) = Y ai(t)ei(z — cot).
i>1
In terms of ¢ and 9 we obtain the result stated in the corollary.
The covariance function of R(t,z) follows either from this represen-
tation of R or from the proof of the previous proposition. |

Finally, we consider the stationary, centred Gaussian process

o0

Rn(t,2) = 3 af(0)i(z — cot) + a(0)(z — cot),
i=m
where {a?(t),a$(t): ¢ > m} is afamily of mutually independent Ornstein-
Uhlenbeck processes, i.e. each a?(t) or a¢(t) is a centred stationary Gaus-
sian process having covariance (function)

ol M? 41r Kz

Ea}(t)ai(s) = Eai(t)ai(s) = STKE exp(— ———

— 1D,
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for A = (t — s). As before ¢i(z) = /2/M sin(2riz/M) and ¥;(z) =
V2/M cos(2riz/M). K, co and M are positive constants; m is a large
integer such that M/m = S.

The covariance function, r, (4, 2), reads

- o
M ),

oM
™m(A,2) = 4“_2]‘,2 exp( z\.K|A|)cos(2m

t=m

(A.6)

where A = (t — 8), z =z — y and (¢,z) and (s,y) are two points in the
plane.

We now let M and m tend to infinity, keeping S constant. First we
note that the covariance function r,, concerges pointwise to the covari-
ance function r, which is defined as

028 (- 411'212
K ), BFP

(A, 2) = ——K|Al) co s(21rl A)dl. (A.7)
Theorem A.2 (=Theorem 4.5) Let R be the stationary, centred,
Gaussian process characterized by the covariance function r. Then R,
converges in distribution to R as m tends to infinity, if R, as well
as R are viewed as C([0,T] x [0, L])-valued random variables, where
C([0,7] x [0, L]) is endowed with the Borel o-algebra.

Proor. We already know that for every finite collection {(t;,z:)}
the covariance matrix of {R(%i,z;)} converges to the covariance ma-
trix of {R(t;,2;)}. Therefore, {Rm(%i,2:)} converges in distribution to
{R(t;,z;)} or, in other words, the finite dimensional distributions of R,,
converge to the finite dimensional distributions of R. Thus, if we can
prove tightness of {R,, }, we can apply Prohorov’s theorem and conclude
that R,, converges in distribution to R.

A sufficient condition for tightness is that there are positive constants
a, 3,7 and C such that, uniformly in m,

E|Rn(0,0)]" < oo
E|Rm(t,z) - Bu(s,9)|* < C|(t,2) - (s,9)**?

for all (t,z), (s,y) € [0,T] x [0, L] (see [9, p. 132]). Write

t
R(t) = ViRo + 0 [ Vi-udB.,
0
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where Rg has the invariant distribution (see Proposition A.4). From the
proof of Proposition 4.1 we have that

t s
E| / Vi—u0 dB,(z) — / Viuo dB,(y)[*

(E (91(3?) Cz(y)) ) +C, |t _ 3|1/2)p.

C, and C; depend only on p. Direct calculation or careful application
of Lemma A.5 (with ¢ = 1 and p = 2) shows that

(2 (e,(:c) e,(y)) ) <Cale -yl

=1

where C3 does not depend on m.
The same estimate is obtained for E |V;Ro(z)— Vs Ro(y)|*. Further-
more,

sup E|Rn(0,0))® = sup (ZWT; Z 1) < 00.

We conclude that the sequence {Rn,} is tlght. o

For later use we give the expansion of » around (0, 0).

Proposition A.5 The covariance function r is ezpanded around (0,0)
as follows:

(0,2) = AQl-lz |+ 252+ o(h)
r(A,0) = A(1—/malt| + a|t| + o(It))-

0.25 2

where A = m—K— anda—K?.

ProoF. We have from Appendix B, Proposition B.2 (cf. also Subsec-
tion 6.3.2)

- 00 —1)p2itl

where p = 2rz/S. This result immediately implies the expansion given
above. Further, r(A,0) can be written as

2meq

7(A;,0) = AL(ad;, — s )
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where w1
L(p,b) = /1 72 exp(—pi?) cos(pbl) di.

Using the results given in Appendix B (Proposition B.1 and also the
subsequent remarks) we obtain the expansion of (A, 0). 0
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Appendix B

Appendix B contains the proofs omitted in Chapter 6.

B.1
The following series expansions are needed in Subsection 6.3.2.

Proposition B.1 Adopt the following notation:

Iy

/ * exp(—pi*) cos(pbl) di

1

L = / %exp(—plz)sin(pbl)dl
1

I, = / Tliexp(-pp) cos(pbl) dl
1

IZn

/ lzin exp(—pl?) cos(pbl)dl and
1

/1 2n¥l exp(—pl*) sin(pbl) dl,

I2n+1

where b is some fized real constant, p is positive and n > 1. These
integrals can be written as series expansions, in the following way:

NG
o = ,5:; @y

NV
h E (25 +1)! T

L, = exp(—p) cos(pb) — 2plp — pbh
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1
bn = g=—7lexp(-p)cos(pb) — 2plzn—2 ~ pblzn—1]
1 .
bnyr = o-lexp(—p)sin(pb) — 2pIzn—1 + pblzn).
The numbers {K;: j > 0} are given by
o0
Ko = / exp(—pi?)dl
1
1 .
K; = g[exp(—p) +(25 - 1)K; 4]

ProoF. Using the Taylor expansion of the cosine we get

Nl P
Io—jz=% o /1 1% exp(—pi?)dI.

We abbreviate the last integral with K. Partial integration shows that,
forj > 1,

: —pl?)|™ ® exp(—pi?) ~
K, = l?]—lﬁp_(L_ / — L (27 — 122 dl
! -2p |, + 1 2p (Z7-1)

%[exp(—p) +(27 — 1) K]

This leaves us with the calculation of Ky. K equals /7 [4p erfc(,/P),
where erfc(z) = 1 — erf(z) and ‘erf’ denotes the error function. Abra-
mowitz and Stegun [1, p. 297] give the following series expansion for the
error function: L

&, (1) 2%+1

£ 125 + 1)

It seems dangerous to use an approximating series in the first term (and
all subsequent terms) of a second approximating series. Let us see how

a small error in Ko propagates itself. Applying repeatedly the recursion
formula yields that

erf(z) = 72_;

1 (25 -1
(pY (2j ~ 2i + 1)

K; = exp(—p)‘i

=1

+ (2 = 1) Ko,
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where (2j —1)!'=1-3:.5..-(2j — 1). Clearly, the influence of an error
in Ko decays as j tends to infinity.

For very small p the factor K; explodes as j increases. To avoid this
it is useful to write the expansion in a slightly different way:

R
Io:J%%(M,.),

where p K ; is determined by the recursion

PK; = Ly exp(=p) + (2] — 1p' K]

The series expansion of I; is obtained in exactly the same manner.

The rest of the proof consists in partial integration. The formula
that reduces I, (n > 1) to integrals with lower index is obtained as
follows

/ ,zln exp(—pl?) cos(pbl) dI
1
1 1 o
= — 5 T exp(—plz) cos(pbl) . +
©_1 1 2 2y o
/1 mm—_l[—2pl exp(—pl*) cos(pbl) — pbexp(—pl*) sin(pbl)] dl
pb
2n -1

L34 is dealt with in exactly the same way. O

I2n—-1;

_ 1 2p
=5—3 exp(—p) cos(pb) — m[gn_g

Let us add some remarks to this proposition. First we note that for I
an alternative expansion is available.

D) (B.1)

; 2j+11912i+1
1 3 Ty @i + DargO)

where @ is shorthand for (1 — %ib). This formula is proved by writing
the cosine as an exponential having complex argument.

o0
L = R / exp(—pl? + ipbl) di
1

%0 1., 1.,
= R / exp(—p(l — 2ib)? ~ ~pb?) dI
1 2 4
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1 (o]
= exp(—=pb? sz/ —p2?)d
exp( 4p ) 1—§-£bexP( pz°)dz

1 1 1.
= exp(-gp¥) 925\/§erfc(\/'ﬁ(1 - 5ib)),

where in the last integral the path of integration extends from z =
/P(1 = %ib) to infinity along the line 8z = 1ib. Now we can cite again
the series expansion given in Abramowitz and Stegun (this time for a
complex argument):

(-1

erfc(z) =1 -

) Jz;, i 27 +1)°

so that, with z = /p(1 — 1ib), we obtain (B.1). A second remark
concerns I;. If we need not calculate Iy and I; for their own sake, it
seems natural to evaluate I directly, using the series expansion

-1 62’
I ——E( ();](1)’,) _1—1

K_, is given by K_; = exp(—p)—2pKo and the subsequent factors p’ K;
are again obtained by the recursion formula

PK; = 21y exp(-p) + (2 — pi K )

Finally we note that the series Iy, I; and I, convere (too) slowly, when
b is large, even if we asssume that the product pb remains constant. In
this case, however, Riemann-sum like approximations of the integrals
can be used. For example

3=0

~ Sap(-pl+G+09SH [ contpbiya
exp(—p % COS{ P
i=0 Pb* " Jrtie/(sb)

25 2 Z exp(—p[l1 + (¢ + 0.5) b]2) cos(pb + €(i + 0.5)) sin(¢/2),
where € < pb.

Proposition B.2 Define
Ji(p) / %sin(pl)dl
1
o 1
Ba®) = [ g costpal
1

(o o] 1 .
Jan1(p) = /; nyr sin(pl) dl,
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where n > 1 and p is real (and not equal to zero in the case of J1). These
integrals can be expressed as series expansions in the following way

( 1)jp21'+1
he) = 3 E(21+1)(2a+1)'

J2n(p) =

2n —3 [cos(p) — pJ2n-1]

|
Joanp1(p) = %{sm(p)%-phn].

ProOF. The integral Jz, is reduced to an integral with lower index by
partial integration

/ 121 cos(pl) di
- J1

—1 -1 1 © 1 |
= (@1 cos(pl)l — 1/1 i sin(pl) dl

1
- _lcos(p)—p2n

2m 1 Jan-1-

The integral Jo,41 is reduced in the same way. Thus, all these integrals
can eventually be written in terms of J;. But this integral is nothing
else than an instance of the sine integral

A (p) =si(p) = 5 - Si(p)

and Abramowitz and Stegun [1, p. 232] give the following series expan-
sion for Si(2):
1y

Si(z) = Z NOESVCESVE

B.2

In this section we discuss some results concerning the discretization of
the stationary, centred, Gaussian process, R(t,z), which is determined
by the covariance function

oS [ 1 4722
472K 1 12

(A, 2) = S"'OA)dz.
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Figure B.1: The discretization of

HHHHHHHHHHHHHHHHHHHHHHH the interval [0, M].
012... N

.....

The discretization is performed in three steps. First, we return to the
process R (t,z). Secondly, the process Rn(t,2) is discretized with re-
spect to the space coordinate, approximating it by the N-dimensional
process RN (t), that is the solution of the N-dimensional stochastic dif-
ferential equation

dRN(t) = KARN(t)dt— coVRY(t)dt + \/—%- o dw(t),
RJ(0) ~ N(o,V), (B-2)

where A and V are the difference operators defined as
N\2
Af(k) = (37) LFG+1) = 2 (k) + f(k — 1)

VIR = glf(k+1) = f(k - 1)

for any vector-valued function f. Recall that M is the total length of
the space interval on which the process R (t,z) is defined. Figure B.1
shows the discretization of the interval [0, M]. The covariance matrix V
is given by
N/2-1 2 2
o k- 4
Vu = —_— :
w= 2 INE) i)+ (M) K)

t=m

(—l)k_la

where A; = 4N?sin?(ni/N)/M? are the eigenvalues of A, and w(t) is an
N-dimensional Brownian motion, having covariance function

o N/2-1 1
Ewy(k)w,() = (t A s) (W 3" cos(2mi(k — 1)/N) + -ﬁ(—1)’°-‘).

i=m
And, thirdly, this N-dimensional stochastic differential equation is dis-

cretized with respect to the time coordinate, using the standard Euler-
scheme. We obtain the following:

Ry(i+1,j) = KARy(i,5)6 — coVR4(i,5)6 + a\/-gﬁ w(i, 5),
Ry(0) ~ N(0,V) | (B3)
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where § = T/N;, N; being the number of time steps, and w(,j) is a
small Gaussian error term with zero mean and covariance

m—1 _
Ew(h,k)w(i,l) = én; (6k,1 - % - -1%- z_; cos(27rz'(kN l))) .

Here 65, ; is the Kronecker symbol. In (B.3) d means ‘discretized’.

In order to speak of convergence of Ry to RY (t) we embed R into the
space C([0,T] x [0, M]) by identifying R4(,5) and Ry(t,z) for t = iT/N;
and z = jM/N and by subsequent linear interpolation. Note that we
use the symbol ‘Ry’ for two different, though very related, processses.
Following the three discretization steps in reversed order, we claim that

lim lim lim Ry £ R.
m—00 N—oo Ny—+c0
The convergence in distribution of Ry to RY follows from Theorem 1.10
in [26, p. 32]. Convergence of R, to R was already proven in Ap-
pendix A.
Thus, the remaining step, needed to prove the claim, is proving con-
vergence in distribution of Rﬁ to Ry,.

Theorem B.1 Let RY denote the solution of the equation (B.2) and
R,, the stochastic process whose representation is given by (4.15). Rp
can be viewed as a C([0,T) x [0, M))-valued process, while RY can be
embedded into the same space by identifying RL (t,k) and RN(t,z) for
z = kM/N and by subsequent linear interpolation:

RE(2) = (B —k+1)RY(ER)+ (k- T RN K- 1),

(k—1)M kM
N

ZE[———,T], 1<k<N.

Then R converges in distribution to Rn,.

Proor. Throughout the proof m is fixed. We will drop this subscript.
Most of the time N is fixed too and, by assumption, it is always even.
Therefore, we will drop this superscript as long as no confusion can arise.

Going again through many calculations of Appendix A, but now for
the discrete-space equation, we obtain that

N/2-1

RK) = 3 ik - cit) + af(Oi(k - ct) + aialt) o (-1,

i=m
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where ¢;(k) = \/2/M sin(27ik/N) and ¥;(k) = /2/M cos(2mik/N).
Further, {a?(t),a$(t): ¢+ > 1} is a family of mutually independent Orn-
stein-Uhlenbeck processes, i.e. each a;(t) or b;(t) is a centred stationary
Gaussian process having covariance function
o?
2K
where ); = 4N2%sin?(7i/N)/M? and A =t — s. Finally,
N sin(2ni/N
_ N sinCrifN)

Ea;(t)ai(s) = Eaf(t)ai(s) =

exp(—AK|Al),

M 2N
Using this we see that the covariance function, 7(A, z), reads
N/2-1 2 —GA
| r(A,z) .;, WNE exp(— M K|A]) cos(21rz )
o’M 2 2 2
+ g SB(—4NK|A|/MP)(-1),

where A =t~ s, 2 = k—1 and (¢,k) and (s,!) are two points of the
space R x {1,...,N}.

We note in passing that the analogue of the semigroup V introduced
in Subsection 4.3.2 is

M N
V) = W awkDID)  with
: =1

L PNpea

T+ 2 (80— ct)p() + ik - cityp(D)) e VK

=1

9, k1) =

1 k-1
+ M(_l) .

The rest of the proof essentially consists in the same argument as
the one put forward in the proof of Theorem A.2. Let RY denote the
interpolated process derived from the discrete one. It is easy to see that
the covariance function of the interpolated process converges pointwise
to the covariance function of the continuous process. As both processes
are Gaussian, this implies convergence of all finite dimensional distribu-
tions.

Furthermore, using estimates obtained before, it can be shown in a
straightforward manner that (with C; and C; independent of N)

E|Ry{(t,z) ~ Ryl(s,9)" < C1 [t — s/ + C2 |z — PP,
which, as in the proof of Theorem A.2, implies tightness. o
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Appendix C

In this appendix we state two extreme value theorems. First we intro-
duce some notation. In the following X (t,z) will be a two parameter,
real-valued, zero-mean and stationary Gaussian process, that is com-
pletely determined by its covariance function, 7(A,2), where A =t — s
and z = z — y; (t,z) and (s,y) are two points in the parameter plane.
We assume that the covariance function has an expansion around (0,0)
of the form

r(A,2) = Co(1 = C1|A|* — Cal2l’ + o|A|") + o(|2)°)), (C.1)
where 0 < a, < 2. Further, we define

M(T,L)= sup X(t,x).
0<t<T, 0<z<L

As usual ¢ denotes the density of the standard normal distribution.

Theorem C.1 Let X(t,z) be a two parameter, real-valued and station-
ary Gaussian process with zero mean, whose covariance function satis-
fies (C.1), as (A, z) tends to (0,0). If L and T are such that, for all
€1,€2 > 0,

sup r(A,z) < 1
e1<ALT0<z<L

sup r(A,z) < 1,
0<ALT,e2<2<L

then

. 1 1/a ~1/8
JLII.}O u2/a+2/ﬁ—l¢(u)P{M(T’L) > "’CO} = TLCI Cy" Ha g,

where the constant H, g depends only on o and f3.
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Theorem C.2 Let X(t,z) be a two parameter, real-valued and station-
ary Gaussian process with zero mean, whose covariance function satisfies
(C.1), as (A, 2) tends to (0,0), and

r(A,0)log(A) - 0 as A — oo.

Furthermore, sup.¢,<;, 7(4,2) < 1 < 1, uniformly in A. It holds that,
if T — oo and u — oo, such that hmT_.oo Tu =171 >0, where p(u) =
2/a+2/ﬁ—1¢( )Cl/a l/ﬁH

P{M(T,L) £ uCp} — exp(-1L).
H, g is a constant depending only on o and (3.

The proofs are almost copies of the proofs of Theorems 12.2.9 and 12.3.4
of the book of Leadbetter, Lindgren and Rootzén [18].

It is clear that the stochastic process R(t,z) satisfies the conditions
of the theorems. From Proposition A.5 we have that Co = A, C; = /7a,
C3=7%/S,a= 1/2 and B = 1, so that Theorem C.1 yields

———P{M(T,L) > uA} = ©°TL= Hy,.

ull»oo u5¢( ) S

This means that for large values of u

P{M(T,L) > uA} ~ u5¢(u)7r3TL%H%,l

We conclude that the probability of extreme values, relative to A, is
approximately proportional to a/S.
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Samenvatting

De capaciteit van een snelweg is geen vaststaand gegeven, alleen bepaald
door bijvoorbeeld het aantal rijstroken en de geometrische vormgeving
van de weg. Zij hangt mede af van veranderlijke zaken als de weers-
gesteldheid en het tijdstip van de dag. Verder is ook de mate van ho-
mogeniteit van de verkeersstroom een belangrijke (veranderlijke) factor.
Een gelijkmatige, homogene verkeersstroom zal minder congestiegevoelig
zijn dan een wilde, inhomogene verkeersstroom. Deze dissertatie be-
schrijft een stochastisch model voor een verkeersstroom op een snelweg,
dat de mogelijkheid biedt om de homogeniteit van de verkeersstroom
met behulp van een klein aantal parameters te karakteriseren.

Het model is gebaseerd op een aantal aannames, waarvan er één
al wordt aangeduid door de gebruikte terminologie. Immers de term
verkeersstroom wordt slechts dan terecht gebezigd, als we te maken
hebben met een aaneengesloten stroom van voertuigen, die elk kunnen
worden getypeerd als ‘volger’. Elk voertuig rijdt binnen volgafstand van
zijn voorganger. De verkeersstroom heeft een hoge ‘dichtheid’ (uitge-
drukt in aantal voertuigen per km per rijstrook). Verder is om het
model hanteerbaar te houden besloten om alleen naar stationaire ver-
keersstromen te kijken. Deze beperking is niet zwaarwegend, omdat het
bij beschouwingen over de (in)homogeniteit van verkeersstromen meestal
over min of meer stationaire verkeersstromen gaat. De poging om een
verkeersstroom te kenschetsen als homogeen of inhomogeen impliceert al
dat de stroom gedurende langere tijd een gelijkblijvend karakter heeft,
d.w.z stationair is.

De eerste aanname leidt tot het beschrijven van de verkeersstroom
op ongeveer dezelfde manier als ook één-dimensionale vloeistofstromen
worden beschreven. Hierbij speelt het ‘behoud van voertuigen’ een be-
langrijke rol. Voorts kunnen we de resulterende stelsels van vergelij-
kingen op grond van de tweede aanname lineariseren. Aan de aldus
verkregen lineaire vergelijking (voor de dichtheid van de verkeersstroom)
wordt een passende ruisterm toegevoegd. Het eindresultaat is een zo-
genaamde stochastische warmtevergelijking, die de fluctuaties van de
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dichtheid rond een zeker gemiddelde beschrijft. Een tamelijk groot deel
van het proefschrift gaat over het op correcte wijze opstellen en analy-
seren van deze vergelijking. De aard van de fluctuaties, die bepalend is
voor de mate van homogeniteit van het verkeer, kan worden samengevat
in een drietal parameters:

— de amplitude van de fluctuaties,

— de afstand waarover de fluctuaties op één bepaald tijdstip ongeveer

uitmiddelen,

— de snelheid waarmee de fluctuaties uitdempen in de ogen van een

waarnemer die met de stroom meereist.

Het ligt voor de hand een nauwe samenhang tussen de congestie-
gevoeligheid en het optreden van extreme waarden van de dichtheid
te veronderstellen. Het voorkomen van extreme waarden wordt bepaald
door een viertal parameters. In de eerste plaats de gemiddelde dichtheid
en in de tweede plaats de drie parameters die de aard van de fluctuaties
vastleggen.

De validatie van het model is geschied met behulp van gegevens ver-
strekt door Rijkswaterstaat. De uitkomsten hiervan zijn bemoedigend,
al bleek één ad hoc aanpassing noodzakelijk. Voor directe toepassing van
het model is het nodig dat de parameters worden gecalibreerd, d.w.z. dat
van de parameters de kriticke waarden worden bepaald. Het vermoe-
den bestaat, op grond van de bestudeerde gegevens, dat hierbij vooral
de waarde van de derde parameter weergeeft of de verkeersstroom ho-
mogeen of inhomogeen is.
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