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Abstract

One-Shot Neural Architecture Search (NAS) is a promising method to significantly reduce
search time without any separate training. It can be treated as a Network Compression prob-
lem on the architecture parameters from an overparameterized network. However, there are
two issues associated with most one-shot NAS methods. First, dependencies between a node
and its predecessors and successors are often disregarded which result in improper treatment
over zero operations. Second, architecture parameters pruning based on their magnitude is
questionable.

In this thesis, classic Bayesian learning approach is applied to alleviate these two issues. Un-
like other NAS methods, we train the over-parameterized network for only one epoch before
update network architecture. Impressively, this enabled us to find the optimal architecture in
both proxy and proxyless tasks on CIFAR-10 within only 0.2 GPU days using a single GPU.
As a byproduct, our approach can be transferred directly to convolutional neural networks
compression by enforcing structural sparsity that is able to achieve extremely sparse networks
without accuracy deterioration.
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Chapter 1

Introduction

1-1 Background

Deep Neural Networks (DNN), especially Convolutional Neural Networks (CNN) and Recur-
rent Neural Networks (RNN), has drawn much attention since the publish of AlexNet[3]. Be-
ing different from many other machine learning approaches which usually gain their strength
mainly from extraordinary algorithms, Deep Neural Networks’ power derives from their ar-
chitecture and ample amount of available data. So far many powerful architectures have
been found by human expertise, such as ResNet[4] and DenseNet[5] for CNN and LSTM[6]
for RNN. However, designing these deep nets requires great effort from experienced experts.
This raises two questions:

• Can we automate the network architecture designing procedure?

• Can we find a neural network architecture by automation that can trade-off between
performance and hardware demands (in the sense of neural network complexity), or
even better, achieve both aspects simultaneously?

1-2 Deep Neural Networks

Deep Neural Networks is a Deep Learning technique whose embedded operations separate
it from conventional neural networks in Machine Learning. It uses a collection of multiple
layers of nonlinear processing units for feature extraction and transformation. DNN can learn
multiple levels of representation that correspond to different levels of abstraction. Hierarchy
of concepts can be formed in terms of passing information from the previous layers to the
successive layers[7].

For computer vision tasks, convolutional operations in a DNN play an essential role as it
enables DNN to integrate information from the entire image with a relatively small kernel.
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2 Introduction

Figure 1-1: DNN with multiple layers.

Figure 1-2: Convolutional operations within a DNN.

An example is shown in Figure 1-2.

Nonlinearity is achieved by nonlinear activation functions following linear operations, for
instance convolution and matrix multiplication. Common activation functions used include
softmax function, hyperbolic tangent function (Tanh) and rectified linear unit (ReLU).

1-3 Neural Architecture Search

Neural architecture search (NAS), whose name explains itself, denotes the process of designing
neural networks in an automatic manner. NAS consists of three key components: search
space, search strategy, and performance evaluation strategy. Search space defines what type
of neural network can be constructed. Search strategy defines which method is applied to find
the optimal architecture within the search space. Since the evaluation of architecture can be
very costly as it requests a complete training process in principle, a performance evaluation
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1-4 Reinforcement Learning 3

Figure 1-3: Reinforcement learning.

strategy needs to be determined to evaluate the candidates for optimal architecture within an
acceptable period of time while retaining the correlation between the metric of this strategy
and candidate’s actual performance.

1-4 Reinforcement Learning

Reinforcement learning is a category of machine learning in which an agent learns to take
actions in an environment so as to maximize expected cumulative reward. Reinforcement
learning is different from both supervised learning and unsupervised learning in the sense
that wrong or sub-optimal actions the agent takes do not need to be corrected and the agent
learns to behave by the reward returned by the environment. Typically the environment in
reinforcement learning is a Markov Decision Process (MDP) and no assumption about the
underlying mathematical model of MDP is what distinguishes reinforcement learning from
other MDPs.

1-5 Evolutionary Algorithms

Evolutionary algorithm are a family of algorithms that uses mechanisms inspired by biologi-
cal evolution, such as reproduction, mutation, recombination, and selection. Each Candidate
solutions to the optimization problem play the role of an individual in a population, and a
fitness function provided by the environment determines the quality of this candidate. Evo-
lution of the population takes place in the form of repeated application of combinations of
the above operators.

General scheme of evolutionary algorithms includes three steps:

• Generate the first generation of the population (an initial group of candidates).

• Repeat:

– Evaluate their fitness given the fitness function.
– Keep only the individuals of the best fitness and generate the next generation by

applying operators to them.

Master of Science Thesis Minghao Yang 4742702



4 Introduction

Figure 1-4: General scheme of evolutionary algorithms.

1-6 Bayesian Inference

Bayesian inference is a type of statistical inference in which Bayes’ theorem is used to update
the probability for a hypothesis as more evidence or information becomes available. It derives
the posterior probability from a prior probability, a sampling probability and a marginal
likelihood probability provided by a statistical model for the observed data. Bayesian inference
computes the posterior probability according to Bayes’ theorem:

P (H|E) = P (E|H)P (H)
P (E) (1-1)

• H: Hypothesis to be validated

• E: Evidence

• P (H): Prior probability

• P (E|H): Sampling probability

• P (E): Marginal likelihood probability
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Chapter 2

Related Works

2-1 Search Space Design

Search space design is the very first step of formulating a neural network architecture searching
problem. Not only the size of search space has a strong influence on the potential time cost
for optimization but the coverage of search space implicitly control how optimal the found
final solution can be. There are mainly two groups of methods for designing a search space.
One is searching an architecture from scratch and the other searching with a start point based
on an existing or given structure. Methods of both of these two groups then start searching
within a confined search space.

2-1-1 Searching from Scratch

[8] proposed a stage-wise search space design based in combination with heuristics. The au-
thor fixed the number of stages and the number of nodes in each stage separately. Each node
corresponds to one convolutional operation with a fixed kernel size and number of channels.
The nodes within a stage are sorted and each node can decide from which node(s) whose
sorting index is smaller than itself to receive information. And essentially these shortcut con-
nection’s formulation is all that the algorithm searched for. [9] as an earlier paper, adopted a
very raw and brutal search space. In this paper, the author also fixed the number of convolu-
tional layers for a fixed number of searching steps but it can grow as the searching steps keep
increasing. However, no concept similar to that of "stage" was introduced. In other words,
every convolutional layer can choose whatever previous layers to connect to. Furthermore, the
kernel size was not strictly defined. Instead, it was sampled from a predefined pool of convo-
lution operations which the author chose based on the knowledge of previous human-crafted
structures. A simple comparison between the descriptions of these two design strategies indi-
cates that the search space in [9] is much larger than that in [8] provided that the fixed total
numbers of convolutional layers in these two designs are the same. The time cost and result
of experiments conducted by the authors of these two papers validate the intuitive predictions
mentioned at the beginning of this chapter. In [8], the search for an optimal structure on
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6 Related Works

Figure 2-1: block structure and the building of the complete architecture in [1]. Left: Each block
is indexed and receives two input. It applies two operations to these two inputs respectively before
combining them using either element-wise addition or concatenation along channel dimension
(later the combination method is fixed to element-wise addition by the author). If the resulting
dimension of the output of these two operations is different the smaller one will be padded to the
same size as the larger one. The two inputs can be chosen from the current cell’s input, previous
cell’s input and the outputs of all previous blocks within the same cell based on the indices. Right:
The cells are stacked to form the complete neural networks architecture.

CIFAR10[10] dataset took 17 GPU hours using a Nvidia Titan X while in [9] it took more
than 4× 105 GPU hours (though GPU model information was not mentioned). What comes
with the much greater time cost measured in GPU hours is the better performance of the
optimal architecture found by the algorithm: 22.94% in [8] and 5.50% in [9]measured in the
form of error rate. It has to be stressed that the setting of the experiment conducted in [9] is
to some degree deviant from a practical perspective. Such a great demand for computational
power can rarely be satisfied. Thus its validity is questionable.

[1] introduced a novel design of search space. It adopted a cell-wise idea. In the paper’s
setting, there are two types of cells: normal cells and reduction cells. Each cell consists of a
fixed number of blocks (in this article the author found that 5 blocks for each cell are optimal
by manual trial). Each block is indexed and receives two input. It applies two operations
to these two inputs respectively before combining them using either element-wise addition or
concatenation along channel dimension. If the resulting dimension of the output of these two
operations is different the smaller one will be padded to the same size as the larger one. The
two inputs can be chosen from the current cell’s input, previous cell’s input and the outputs
of all previous blocks within the same cell based on the indices. The structure of a normal
cell and a reduction cell can be different. After the structure of these two cells are defined,
the cells are stacked following a N + M rule: N normal cells followed by M reduction cells
and the process is repeated several times. The value of N and M , as well as the repeating
times, as additional hyperparameters, are dependent on the characteristics of the dataset to
evaluate on and is determined by human experts. Visualization of this search space design is
shown in Figure 2-1.
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2-1 Search Space Design 7

The error rate obtained in [1] reached 2.40% and the computation cost is around 4.8 × 104

GPU hours (still GPU model information is not mentioned). The significant decrease of error
rate and GPU hours for searching when compared with [9], based on my analysis, is caused
by the heuristics provided by human experts. In [1], the frame of the entire neural network
architecture is fixed and designed by human experts and the searching agent only needs to
determine the two operations on the two inputs and within short connections for 5 blocks of
two cells respectively. But in [9], the agent needs to determine almost everything essential
for neural network architecture. Besides this there is no difference between the algorithms
applied in [1] and [9]. The contrast is already sharp enough to suggest that heuristics from
human expert plays an extremely important role in neural network architecture search, both
in computation consumption and the final error rate of the found structure.

Many more recent papers like [11] and [12] adopted the same search space design strat-
egy as in [1] and the similar low error rate of their found architecture further validates the
importance of search space design and human heuristics.

2-1-2 Searching Based on Existing Architectures

Some papers restrict their search space based on existing human-crafted architectures that
have been proved to be a success. In [8], for the searching on MNIST dataset [13], the search
space is strictly restricted to be very close to LeNet 5 [14]: two stages, exactly the same
first convolutional layer in each stage as in LeNet 5, only two possible convolutional kernel
size 3 and 5 with the exactly same number of channels. The baseline accuracy of LeNet 5
is 99.34% and the maximum accuracy found in [8] is 99.66%. The accuracy gap is not very
significant. One cause can be the similarity to the human-designed architecture and the slight
improvement is possibly the result of its search space’s flexibility with respect to the existing
human-design architecture.

Another type of existing architecture based search space design is the adoption of the es-
sential idea behind their success. For example, the block-wise structure is a characteristic
feature of ResNet in [4]. [15] adopted the block-wise design in order to achieve not only high
performance but also powerful generalization ability to different tasks and datasets. The error
rate of the best architecture found in [15] is 3.54% showing the effectiveness of this approach.

2-1-3 Summary

How much human heuristics involved is the root of search space design regardless of whether
it is finished by searching from scratch or based on existing architectures. Human heuristics
play an important role in influencing not only the accuracy but also the searching time. The
more heuristics are introduced in search space design, generally the higher accuracy the final
found architecture can achieve. The search space can influence the upper bound of the accu-
racy that a search agent can obtain.

But introducing heuristics blindly is not wise. The critical idea of automated machine learn-
ing is to get rid of the dependency on human experts when solving a problem using machine
learning. Introducing excessive heuristics may raise the question of whether a whole search
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8 Related Works

algorithm is actually "automated" and make it less practical in real production.

From another perspective, heuristics are necessary for the effectiveness of a search algorithm.
Without any heuristics from human experts, an agent can learn only from abundant "trial
and errors". For other conventional interaction between the environment and the agent, it
is practical since each interaction and sampling costs very little time. But for neural net-
work architecture search, the troublesome problems can appear as the cost of sampling is
extremely high: each sampling equals to training a new neural network. Moreover, training
time is usually positively related to a network architecture’s potential. Without being over-
trained, a deeper network has the stronger expressive ability but also more parameters to
learn thus causing more time to train. Proper heuristic from human experts helps reduce the
search space meanwhile maintain the existence of possible strong neural network architecture
in the search space. Based on the analysis, confining search space to one that is to some de-
gree similar to existing human-crafted architecture in the sense of maintaining its structural
characteristic that grants its good performance is a wise choice to balance practicality and
automation level.

2-2 Search Strategy

2-2-1 Search by Reinforcement Learning

[16, 12, 17, 18, 11, 19, 20, 21] all use reinforcement learning, particularly, policy-based rein-
forcement learning as the search algorithm to find an optimal architecture. The main target
of policy-based reinforcement learning is to learn a direct mapping from a state to an ac-
cordingly optimal action. This mapping should be first parameterized to be able to be fit
into a learning process-usually gradient ascent which aims at maximizing the expected overall
reward. For the general case of reinforcement learning where the optimal actions given the
current state is deterministic, the mathematical expression of this process is shown by the
following equations.

V (s0; θ) = P (a) (2-1)

a0 = argmaxaP (a) (2-2)

s0, a0 → r (2-3)

L = f(P (a0), r) (2-4)

θ′ = θ + α
dL
dθ

(2-5)

Here s0 and a0 stand for the current state the optimal action taken based on the current
state. V and P stand for the policy function (state value function) and probability distribu-
tion function of all the available actions at the current state respectively. L stands for the
loss calculated based on the probability of taking this action and the corresponding reward.
θ stands for the parameters of the parameterized mapping from state to the optimal action.
Just like gradient descent which is the foundation of the success of deep neural networks,
the gradient of the loss with respect to the parameters of mapping is used to update these
parameters, but in positive relation to the gradient.
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2-2 Search Strategy 9

Policy-based reinforcement learning has several merits. First, it learns a direct mapping
from state to the optimal action which enables faster inference during application. Second, it
is a gradient-based method that can fit seamlessly into supervised learning scenarios and is
equally suitable for both discrete and continuous state expression.

For its application in neural network architecture search, the general scheme remains al-
most unchanged among the literature that adopted this method. An agent is chosen to be
an LSTM of several layers and is trained with reinforcement learning. For single-objective
searching problems, as in most research papers, the loss of the training process is defined
as the product of cross-entropy of the probability (output of LSTM at a step) of choosing a
particular action and the corresponding reward. For multiple-objective searching problems,
as [22] in which the goal is to archive both higher accuracy and lower power consumption,
the cross-entropy part remains the same and only the form of reward is modified. Still tak-
ing [22] as an example, the author provided three different forms of reward, namely mixed
reward, energy constraint, and accuracy constraint, for different application scenarios: un-
limited accuracy or power supply, limited power supply and minimum accuracy requirement.
Here Energy stands for the normalized power consumption.

R = α ∗Accuracy − (1− α) ∗ Energy, α ∈ [0, 1] (2-6)

R =
{
Accuracy, Energy < threshold
0, Energy ≥ threshold (2-7)

R =
{

1− Energy, Accuracy > threshold
0, Accuracy ≤ threshold (2-8)

Regardless of whether it is single-objective oriented or multiple-objective oriented, to reduce
the variance of gradient estimation, the reward is commonly replaced by the difference be-
tween the actual reward and a baseline. One choice for this baseline can be an exponential
moving average of the reward of several previous steps[9].

The reason for this loss function is that the cross-entropy is negatively related to the like-
lihood of choosing the action and getting the corresponding reward, which in another word
can be interpreted as negatively related to the expectation of getting the reward. In [9], the
step for LSTM increases as the search progressing and so does the depth of neural network
architecture search space. For each convolution layer, it takes six steps to determine: anchor
point, which defines the short connections to previous layers, and the rest five for filter height,
filter width, stride height, stride width and number of filters respectively. At each step, the
agent outputs a vector representing the probability of choosing an action from the predefined
action pool. Then a neural network model is built based on these decisions and evaluated to
calculate the reward for LSTM’s training.

For cell-wise search spaces, like [1, 12, 11], most of the agent design remains the same except
for the steps which will not increase as training proceeds and the number of agents since there
are two different types of cells to be determined.

As contradictory to the prevalence of policy-based reinforcement learning, value-based re-
inforcement learning is completely ignored by the researchers. Value-based reinforcement
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10 Related Works

learning aims at finding the optimal action at a certain state based on the Q value learned
from interaction with the environment. Q value can be interpreted as a quantified measure-
ment of the expected overall reward of taking an action at this certain state.

By a detailed comparison between a policy-based and value-based approach, the value-based
approach’s several features are revealed. The first is being easily understandable. The value-
based can provide quantified and intuitive evaluation for actions at different states. Second is
being more suitable for problems with both discrete states and actions. This does not mean it
cannot be applied to problems having continuous states and/or actions. For example, a radial
basis function can be used as a tool to achieve continuity with a discrete expression. The third
is being particularly suitable for complicated problems. One drawback of the policy-based
method is the requirement for some basic knowledge about the mapping function if a good
result is desired. For neural networks that mimic the mapping, it is the hyper-parameters of
these neural networks, for instance, architecture and learning rate. For mapping functions
in the conventional sense, it is the choice of which form or what parameters a parameterized
mapping function should have.

The last two traits of value-based reinforcement learning cater to the setting of neural net-
work architecture search. If we simply focus on searching for network architecture and ignore
other continuous hyperparameters such as learning rate, the problem becomes searching in
a discrete state and action space. Furthermore, neural network architecture search is much
of a black box problem. By mentioning the black box, it means that we usually have no
prior knowledge to provide a good heuristic for searching and this can potentially jeopardize
policy-based methods whose performance partially depends on the chosen parameterized ex-
pression.
Besides the value-based method, a special variation of the policy-based method named Actor-
Critic[23] is also overlooked by the research field. The basic structure of Actor-Critic is
demonstrated in Figure 2-2. The essential innovation of Actor-Critic is to divide the whole
learning and interaction with the environment into two parts. The actor decides which action
to choose given the state and the critic evaluates the state-action pair and assigns a value
indicating the expected overall reward for taking this action at this state.

Compared to the traditional policy-based method, Actor-critic has several merits. First, it
tends to find a global maximum instead of converging to a local maximum. Second, it helps
reduce the variance of finding the optimal policy. Third, most importantly, it can improve
sample efficiency by its nature of splitting the sampling and evaluation into two parts[23]. Also
because the process is divided, one can apply different methods for actor and critic separately
or different form of parameterization. Specifically, for actor-critic designed to be off-policy,
it can break up the correlation of recent states and policies and prevents the network from
getting stuck to a certain behaviour mode and makes a technique named "experience replay",
which makes effective use of experience from past exploration and helps accelerate conver-
gence of the reinforcement learning algorithms as well as reducing required sampling times,
possible[24].

In 2016, [25] from Deepmind advanced a huge step on the improvement of actor-critic al-
gorithms as Deep Deterministic Policy Gradient (DDPG) came to view. It is an off-policy
algorithm and can be trained with samples from a replay buffer to minimize the correla-
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Figure 2-2: basic structure of Actor-Critic

tion between past experience. The most important contribution of this research work is the
proposal of adding two separate networks alongside the original actor and critic networks pro-
vided neural networks are used to approximate the mapping and evaluation functions. The
network is trained with a target critic and target actor-network to give consistent training
targets during temporal difference backups[25]. From adaptability point of view, DDPG is
applicable under continuous settings.

L(θQ) = Est∼ρβ ,at∼β,rt∼E [(Q(st, at|θQ)− yt)2] (2-9)

The loss derived based on Bellman Equation, is defined as Eq.2-9, where yt = r(st, at) +
γQ(st+1, µ(st+1)|θQ). µ represents the target policy which is deterministic and greedy and β
represents the current policy. ρ is the distribution of states given a policy. The expression of
loss suggests that the critic network, whose parameters are annotated as θQ, will be updated
by TD error as in many other Q learning algorithms. Accordingly, the derivative of loss with
respect to actor and critic network parameters is

∇θµJ ≈ Est∼ρβ [∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)]
= Est∼ρβ [∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ]

(2-10)

If the network representing the current policy is also used as the target network, the update
of Q values is likely to diverge. This the reason why two additional networks are added and
are updated using a soft update rule: the update of policy network is also applied on target
network but with a significant shrink (multiplied by a ratio far smaller than 1). The delayed
update of target network forces the whole learning to "slow down" and stabilizes target Q
value in TD error measurement in order to consistently train the critic without divergence[25].

In this paper, the author also adopted two techniques regarding the exploration of the agent
and scaling state representations. For exploration, the strategy is as simple as adding noise
the action generated by actor-network. For state representation scaling, a famous and very
practical technique in deep learning called Batch Normalization[26] is used to automatically

Master of Science Thesis Minghao Yang 4742702



12 Related Works

re-scale information automatically without explicitly and manually re-scaling. In the paper,
the author pointed out that noise added to action should be customized to be suitable for the
environment.

Though DDPG has been proved to be powerful in continuous settings, exploration on its
use under discrete settings is empty. DDPG, which roots in Q-learning just as value-based
Q-learning, is worth research when it comes to neural network architecture search problems.

2-2-2 Search by Evolutionary Algorithm

The essential idea of the evolutionary algorithm, which sometimes is also called genetic search,
is "selection by the environment". Just like nature, each sample to be evaluated is assigned a
fitness based on how much it fits the problem’s target and only samples with good fitness will
have the next generation. However, the next generation will appear in a non-deterministic
manner in the sense of the existence of mutation and crossover. On the contrary samples
with very poor fitness will be eliminated and no longer being part of the competition.

[8] used a string with a fixed length to represent network architecture. First, the algorithm
sampled several random architectures (fixed-length strings). Each bit in each individual ar-
chitecture is independently sampled from a Bernoulli distribution. These architectures were
then trained from scratch and evaluated to get their fitness which is used to determine a
non-uniform selection on which architectures shall survive and provide the next generation
by selection, mutation, and crossover. Then this evaluation-selection-generation process will
repeat itself for a predefined number of times.

[27] also applied a genetic algorithm as a search strategy but used a completely different
design of search space. Unlike in [8] where the author directly searched for a fixed length
string representing the optimal network architecture, the researcher in [27] tried to find an
optimal path in a directed graph. The directed graph consists of two parts: nodes and edges.
A node here, except a "source node" and a "sink node", represents one of summation, ac-
tivation or pooling operation which will be applied to the output of its predecessor nodes.
"Source node" is the inlet of information and "sink node" is the output of the network.

The author of [27] defined five possible mutations related to edge and node modifications such
as node creation, linking and edge creation and pruning. Later the rank of fitness (perfor-
mance of sampled network architecture) is used to determine the probability distribution[28]
of sampling on the current population and the sampled (survived) candidates will go through
random mutation to reproduce their offspring. The author adopted Boltzmann distribution
as the probability distribution model which has the form

p(k) = (1− eλ)e−λk

1− eλN (2-11)

Here k stands for the rank, N stands for the amount of population and λ stands for the shape
parameter that balances exploitation and exploration.

[29] proposed an idea of combining both reinforcement learning and evolutionary algorithm.
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2-3 Performance Evaluation Strategy 13

Different from the conventional evolutionary algorithm, the mutation for a specific candidate
is no longer randomly selected. Instead, a reinforcement-learning based mutator is trained to
generate a mutation according to possible effects of different mutations given the architecture
of a candidate.

An evolutionary algorithm can suffer from poor population initialization and error accumu-
lation. The initialization of the population determines the converging speed of the algorithm
and the best performance can be achieved. Since the initialization of the population is a
random process, it may raise problems. The evolutionary algorithm also implicitly assumes
that the offspring of an individual with good fitness is more likely to beat that of an indi-
vidual with poor fitness. However, this assumption remains doubtful because parts of neural
network architecture are highly correlated with respect to the network’s performance, which
means a low-order Markov Decision Process very close to this assumption is not appropriate.

2-2-3 Search by One-shot Algorithm

[30] proposed a novel search strategy named "one-shot". The main idea of the one-shot al-
gorithm is to squeeze all possible operations into one network. In [30] this compact network
is then trained to give these operations relative appropriate and reasonable weights. Then
the network is partly frozen and validated for several times to obtain one-shot validation
accuracy of sub-architectures. Sub-architectures are ranked by this accuracy and to make
the algorithm robust, a few top-ranked architectures are trained from scratch to get their
performance substantiated and the best one is selected.

One-shot algorithm is fast since it needs only one epoch for one-shot accuracy and a few
more epochs for several prior candidates. But it has a strong demand for dedicated GPU
memory as all possible operations are squeezed into one network. Furthermore, one-shot al-
gorithm is likely to suffer from hanging edges which will be further discussed in the following
text.

2-3 Performance Evaluation Strategy

2-3-1 Performance Prediction

The metrics used to evaluate an architecture is the accuracy achieved by it on a validation
dataset after being trained from scratch. A group of researchers developed an interest in
getting accuracy without having to go through the entire training stage.

[31] proposed an additional network to predict a network architecture’s performance based
on the data from networks that are shallower. Architecture-validation accuracy pairs are
collected during different stages of exploration and used by the prediction network which is
later utilized to predict the performance of architectures in the following stage.

This method has two weaknesses worth being pointed out. The first one is the problem
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Figure 2-3: directed acyclic graph. Each node represents an operation and an architecture is
built by a path going through nodes.

of error accumulation. As the number of stages gone through increases, the error of predic-
tion produced by the prediction network also accumulates. This may hinder the prediction
network’s functionality and jeopardize the overall ability to find an optimal architecture by
the search algorithm. The second one is the correlation between predicted performance and
actual performance of architecture. In this paper, the prediction network is trained on data
collected from previous stages but used to predict the performance of architecture in the
following stage and this makes the correlation doubtful since in the next stage the depth of
newly exploited architectures grows and it will significantly change an architecture’s potential.

In [16] researchers took a less aggressive approach. A prediction network is trained on learn-
ing curve data from both the searching process and other sources. For architecture, it is
trained from scratch for a predefined number of epochs. Then the prediction network will
output an expected converged accuracy based on the early learning curve of these epochs.
This approach avoids the risk of uncorrelation and gains enhancement from larger available
datasets on learning curves. However, it still suffers from error accumulation and this "pre-
defined number of epochs" requires careful choice to trade off between bias and improvement
on speed.

2-3-2 Weight Sharing

The training of a neural network is a process of getting appropriate weights for a specific task.
Many pieces of research have been carried out focusing on reusing of weights. [11] introduced
directed acyclic graph into network architecture search and reformulated the problem as find-
ing the optimal path passing through nodes that represent different operations. The weight
of each node(operation) is shared between different paths. In [17] the weights obtained from
evaluating architectures at the current stage are reused in evaluation at the next stage and
architectures at successive stages are strongly related. The weight reuse in [11] is problematic
because as path changes, the depth of a node also changes. Since the depth to some extent
represents how abstract feature maps are, reusing the weight can possibly lead to a similar
result after poor weight initialization. In addition, change of path can also change the shape
of weights of operation and in this paper, the author simply padded with zero or cropped the
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weight, which may still have the equivalent effect of wrong initialization.

By dividing the search process into stages, [17] avoided the problems mentioned above. How-
ever, the stage-wise search has its own drawbacks such as error accumulation and omission.
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Chapter 3

Introduction to the Bayesian Approach

Bayesian approach is one-shot based NAS which is treated as a Network Compression/pruning
problem on the architecture parameters from an over-parameterized network. Moreover,
besides it’s remarkable less searching time compared to reinforcement learning and neuro-
evolutionary approaches, it can identify a number of significant and practical disadvantages
of the current one-shot based NAS. First, dependencies between a node and its predecessors
and successors are disregarded in the process of identifying the redundant connections. This
is mainly motivated by the improper treatment of zero operations. On one hand, the logit
of zero may dominate some of the edges, though the child network still has other non-zero
edges to keep it connected [12, 32, 33, 34], for example, node 2 in Figure3-1a. Similarly,
as shown in Figure 1 of [32], the probability of invalid/disconnected graph sampled will be
511
1024 when there are three non-zero plus one zero operation. Though post-processing to safely
remove the isolated nodes is possible, e.g., for chain-like structure, it demands extensive extra
computations to reconstruct the graph for more complex search space with additional layer
types and multiple branches and skip connections. This may prevent the use of modern
network structure as the backbone such as DenseNet [5], newly designed motifs [35] and for
complex computer vision tasks such as semantic segmentation [36]. On the other hand, zero
operations should have a higher priority to rule out other possible operations, since zero
operations equal to all the non-zero operations not selected after all. Second, most one-shot
NAS methods [12, 33, 32, 34, 37] rely on the magnitude of architecture parameters to prune
the redundant parts, which this is not necessarily true. From the perspective of Network
Compression [38], a magnitude-based metric depends on the scale of the weights and in turn
require pre-training and is very sensitive to the architectural choices, and the magnitude does
not necessarily imply the optimal edge. Unfortunately, these drawbacks exist not only for
Network Compression but also for one-shot NAS.

BayesNAS is a novel, efficient and highly automated framework based on the classic Bayesian
learning approach to alleviate these two issues simultaneously. Architecture parameters are
modeled by a hierarchical automatic relevance determination (HARD) prior. The depen-
dency can be translated by multiplication and accumulation of some independent Gaussian
distributions. The classic Bayesian learning framework [39, 40, 41] prevents overfitting and
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Figure 3-1: An illustration of BayesNAS: (a) disconnected graph with isolated node 2 caused
by disregard for dependency; (b) expected connected graph with no connection from node 2 to 3
and from node 2 to 4; (c) illustration about dependency with predecessor’s (e12) superior control
over its successors (e23 and e24) (d) designed switches realizing the dependency and determining
"on or off" of the edge; (e) elementary multi-input-multi-output motif for a graph; (f) prioritized
zero operation over other non-zero operations.

promotes sparsity by specifying sparse priors. The uncertainty of the parameter distribution
can be used as a new metric to prune the redundant parts and the majority of parameters
are automatically set to zero during the learning process.

Key Features

• Bayesian approach: BayesNAS is the first Bayesian approach for NAS. Therefore,
it shares the advantages of Bayesian learning, which prevents overfitting and does not
require tuning a lot of hyperparameters. Hierarchical sparse priors are used to model the
architecture parameters. Not only promote sparsity, but the priors can also model the
dependency between a node and its predecessors and successors ensuring a connected
derived graph after pruning. Furthermore, it provides a principled way to prioritize
zero operations over other non-zero operations. In the experiment on CIFAR-10, it was
observed that the variance of the prior, as well as that of posterior, is several magnitudes
smaller than posterior mean which renders a good metric for architecture parameters
pruning.

• Simple and fast search: This algorithm is simply formulated as an iteratively re-
weighted `1 type algorithm [42] where the re-weighting coefficients used for the next
iteration are computed not only from the value of the current solution but also from its
posterior variance. The update of posterior variance is based on Laplace approximation
in Bayesian learning which requires computation of the inverse Hessian of the log like-
lihood. To make the computation for large networks feasible, a fast Hessian calculation
method is adopted. In the experiment, the model is trained for only one epoch before
calculating the Hessian to update the posterior variance. Therefore, the search time for
very deep neural networks can be kept within 0.2 GPU days.
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3-1 Search Space Design 19

3-1 Search Space Design

The search space defines which neural architectures a NAS approach might discover in
principle. Designing a good search space is a challenging problem for NAS. Some works
[43, 1, 11, 44, 34, 12, 33] have proposed that the search space could be represented by a
Directed Acyclic Graph (DAG). Here eij represents the edge from node i to node j and oij
stands for the operation that is associated with edge eij .

Similar to other one-shot based NAS approaches [30, 34, 12, 33, 37], BayesNAS includes
(different or same) scaling scalars overall operations of all edges to control the information
flow, denoted as woij which also represent architecture parameters. And the output of a mixed
operation oij , i < j is defined based on the outputs of its edge

oj(zi) =
∑
o∈O

woijoij(zi). (3-1)

Then zj can be obtained as
∑
i<j oj(zi).

To this end, the objective is to learn a simple/sparse subgraph while maintaining/improving
the accuracy of the over-parameterized DAG [30]. The search problem can be formulated
as an optimization problem. Given a dataset D = (X,Y) = {(xn,yn)}Nn=1, and the desired
sparsity level κ (i.e., the number of non-zero edges), one-shot NAS problem can be written
as an optimization problem with the following constraints:

min
w

L(W; D) = min
w

1
N

N∑
n=1

`(yn,Net(xn,W ,w))

s.t. w ∈ Rm
net+medge

, ‖w‖0 ≤ κedge

(3-2)

where w are split into two parts: network parameters W = [Wo
ij ] and architecture parameters

w = [woij ] with dimension of mnet and medge respectively, and ‖ · ‖0 is the standard `0 norm.
The formulation in (3-2) can be substantiated by incorporating zero operations into O to
allow removal of woij [12, 33] aiming to further reduce the size of cells and improve the design
flexibility.

To alleviate the negative effect induced by the dependency and magnitude-based metric whose
issues have been discussed in Introduction, for each woij , a switch soij is introduced that is
analogous to the one used in an electric circuit. There are four features associated with
these switches. First, the “on-off” status is not solely determined by its magnitude. Second,
dependency will be taken into account, i.e., the predecessor has superior control over its
successors as illustrated in Figure 3-1c. Third, soij is an auxiliary variable that will not be
updated by gradient descent but computed directly to switch on or off the edge. Lastly,
soij should work for both proxy and proxyless scenarios and can be better embedded into
existing algorithmic frameworks [12, 33, 37]. The calculation method will be introduced later
in Section 3-2.

Inspired by the hierarchical representation in a DAG [12, 35], a single motif is abstracted as
the building block of DAG, as shown in Figure 3-1e. Apparently, any derived motif, path,
or network can be constructed by such a multi-input-multi-output motif. It shows that a
successor can have multiple predecessors and each predecessor can have multiple operations
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over each of its successors. Since the representation is general, each directed edge can be
associated with some primitive operations (e.g., convolution, pooling, etc.) and a node can
represent the output of motifs, cells, or the network.

3-2 Dependency based one-shot performance estimation strategy

3-2-1 Encoding the dependency logic

Following are the formal statements about the criterion to identify the redundant connections
in Proposition 3-2-1. Before the statement, the idea can be illustrated by Figure3-1b in which
both the blue and red edges from node 2 to 3 and from node 2 to 4 might be non-zeros but
should be removed as a consequence. Naturally, it comes to the following proposition.

Proposition 1 There is information flow from node j to k under operation o′ as shown in
Figure 3-1d if and only if at least one operation of at least one predecessor of node j is
non-zero and wo′

jk is also non-zero, i.e., wo′
jk

∑
i<j w

o
ij 6= 0.

Remark 1 The same expression for Proposition 3-2-1 is: there is no information flow from
node j to k under operation o′ if and only if all the operation of all the predecessors of node
j are zeros or wo′

jk is zero, i.e., wo′
jk

∑
i<j w

o
ij = 0. This explains the incompleteness of the

problem 3-2 as well as the possible phenomenon that non-zero edges become dysfunctional in
Figure 3-1b.

Remark 2 wo
′
jk

∑
i<j w

o
ij in Proposition 3-2-1 and Remark 3-2-1 is not unique. Some other

alternatives include but not limited to, e.g., (wo′
jk)2 +

∑
i<j(woij)2, wo′

jk

∑
i<j(woij)2. Apparently,

`0 norm of these quantities are difficult to be included in a constraint in the optimization
problem formulation in 3-2.

Following describes show how the “switches” s can be used to implement Proposition 3-2-
1. If s has two states {ON,OFF}, wo′

jk is redundant when so
′
jk is OFF or all soij are OFF,

∀i < j, o ∈ O. How to use s to encode the redundancy of wo′
jk, i.e., wo

′
jk

∑
i<j w

o
ij = 0? One

possible solution is

⋃
i<j

⋃
o∈O

soij ∩ so
′
jk or

⋃
i<j

⋃
o∈O

soij ∪ so
′
jk (3-3)

If s is a continuous variable with s = ∞ for ON and 0 for OFF, set union and intersection
can be arithmetically represented by addition and multiplication respectively. s does not
directly determine the magnitude of w but plays the role as uncertainty or confidence for zero
magnitude.

A straightforward way to encode this logic is to assign a probability distribution, for example,
Gaussian distribution, over wo′

jk
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p(wo′
jk) = N (wo′

jk|0, so
′
jk),

∑
i<j

p(woij) =
∑
i<j

N (woij |0, soij)

Since woij ,∀i, j, o are independent with each other, we can get the distribution over wo′
jk

∑
i<j w

o
ij

as

p(wo′
jk

∑
i<j

woij) = N (wo′
jk|0, so

′
jk)
∑
i<j

N (woij |0, soij)

= N (wo′
jk

∑
i<j

woij |0, γo
′
jk)

(3-4)

where

γo
′
jk ,

 1∑
i<j

∑
o∈O

soij
+ 1
so

′
jk


−1

. (3-5)

(3-5) and 3-3 are equivalent. This indicates the possibility of finding an algorithm that is able
to find a spare solution in a probabilistic manner. However, Gaussian distribution, in general,
does not promote sparsity. Fortunately, some classic yet powerful techniques in Bayesian
learning are applicable, i.e., sparse Bayesian learning (SBL) [41] and automatic relevance
determination (ARD) prior [45, 40] in Bayesian neural networks.

3-2-2 Zero operation ruling all

Between node i and j one more node i′ is appended which allows only a single identity
operation (see Figure 3-1f). The associated weight wii′ is trainable and initialized as 1, as
well as its switch sii′ . The idea is that if sii′ is OFF, all the operations from i′ to j will be
disabled as a consequence. Then γo′

jk in (3-6) can be substituted by

γo
′
jk ,

 1∑
i<j

∑
o∈O

(
1
sii′

+ 1
so
i′j

)−1 + 1
so

′
jk


−1

. (3-6)
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Chapter 4

BayesNAS and Hessian for Neural
Networks

4-1 Introduction

The optimization objective of searching architecture becomes removing redundant/unimpor-
tant edges. The training algorithm is iteratively indexed by t. Each iteration may contain
several epochs. The pseudo code is summarized in Algorithm 1[46]. The cost function is sim-
ply the maximum likelihood over the data D with regularization whose intensity is controlled
by the re-weighted coefficient ω.

LD = ED(·) + λw
∑
j<k

∑
o′∈O
‖ωo′

jk(t)wo
′
jk‖1 + λ‖W‖22 (4-1)

The algorithm mainly includes five parts. The first part is to jointly train W and w. The
second part is to freeze the architecture parameters and prepare to compute their Hessian in
the third part. The fourth part is to update the variables associated with the architecture
parameters. The fifth part is to prune the architecture parameters.

As discussed previously on the drawback of the magnitude based pruning metric, i.e., the
posterior mean in our case or the point estimate in (4-1), we propose a new metric based on
maximum entropy of the distribution. Since p(wo′

jk) in (3-4) is Gaussian with zero mean γo′
jk

variance, the maximum entropy is 1
2 ln(2πeγo′

jk). We set the threshold for γo′
jk to prune related

edges when 1
2 ln(2πeγo′

jk) ≤ 0, i.e., γo′
jk ≤ 0.0585.

The algorithm can be easily transferred to other scenarios. One scenario involves proxy tasks
to find the cell. Similar to (4-1), we group the same edge/operation in the repeated stacked
cells where g is the index. The cost function for proxy tasks is then given as follows in the
form of the re-weighted group Lasso:
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24 BayesNAS and Hessian for Neural Networks

Algorithm 1 BayesNAS Algorithm.
Require: γ(0),ω(0),w(0) = 1; λ = 0.01; sparsity intensity λow ∈ R+

Ensure:
for t = 1 to Tmax do
1. Update w and W by minimizing LD in (4-1)
2. Compute Hessian for w
3. Update variables associated with w
while i < j < k, o, o′ ∈ O do

Co′

jk(t) =
(

1
γo′

jk(t− 1)
+ Ho′

jk(t)
)−1

(4-2)

ωo′

jk(t) =

√
γo′

jk(t− 1)− Co′
jk(t)

γo′
jk(t− 1)

(4-3)

so′

jk(t) =

∣∣∣∣∣wo′

jk(t)
ωo′

jk(t)

∣∣∣∣∣ (4-4)

γo′

jk(t) is given by 3− 5 or 3− 6 (4-5)

end while
4. Prune the architecture if the entropy ln(2πeγo′

jk)
2 ≤ 0

5. Fix w = 1, train the pruned net in the standard way
end for

LD = ED(·) + λw
∑
g

∑
j<k

∑
o′∈O
‖ωo′

jk,g(t)wo
′
jk,g‖2 + λ‖W‖22

4-2 Hessian Computation

To use the algorithm, we need Hessian of architecture parameters. Although the Hessian of
weight matrix has been widely used in second-order optimization techniques to speed up the
training process [47, 48], it still remains infeasible to calculate explicit Hessian directly due
to the intensive computation burden [49, 50]. Moreover, as most of the current deep neural
networks include plenty of Convolutional (Conv) layers, it further increases the difficulty
of calculation due to the indirect convolution operation. Inspired by the Hessian calculation
methods for Fully Connected (FC) layers as shown in [50], we propose a recursive and efficient
method to compute the Hessian of Conv layers by converting the Conv layers to FC layers
[51]. Therefore the Hessian of the resulting equivalent FC layer is ready to be obtained.

4-2-1 Hessian for Fully Connected Layer

The mathematical operation in a fully connected layer could be formulated as:

hoj = W o
ijai, ai = σ(hi) (4-6)
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4-2 Hessian Computation 25

where hi is the pre-activation value for node i and ai is the activation value. σ() is the
element-wise activation function. Wo

ij stands for the weight matrix associated with operation
o in edge eoij . In [50], a recursive method is proposed to compute the Hessian H for Wo

ij :

Ho
ij = ai · (ai)> ⊗Ho

j (4-7)

where ⊗ stands for Kronecker product; The pre-activation Hessian Ho
j is known and could

be used to compute the pre-activation Hessian recursively for the previous layer:

Hi = Bi(Wo
ij)>Ho

jWo
ijBi +Di, Bi = diag(σ′(hi)), Di = diag(σ′′(hi) ◦

∂L

∂ai
) (4-8)

In order to reduce computation complexity, the original pre-activation Hessian H and Hessian
H in Eq 4-7-4-8 are replaced with their diagonal values for recursive computation. Thus the
matrix multiplication could be reduced to vector multiplication. The hessian calculation
process could be reformulated as:

Ho
ij = a2

i ⊗Ho
j (4-9)

Hi = B2
i ◦ (((Wo

ij)>)2Ho
j ) +Di, Bi = σ′(Hi), Di = σ′′(Hi) ◦

∂L

∂ai
(4-10)

Where diag() means the operation to extract the diagonal values of input variable. If we
compute Hessian with the approximate method as Eq 4-9 - 4-10, the multiply accumulate
operation (MACs) for the pre-activatiion Hessian H and Hessian H could be significantly
reduced.

4-2-2 Hessian for Convolutional Layer

Conv layers can be converted to FC layers thereafter the Hessian of the resulting equivalent
FC layer is ready to be obtained. Specifically, suppose a convolution operation o is selected
between node i and j (i < j). The corresponding input vector, weight and output vector of
this edge are denoted as Bi ∈ Rb×Ci×Hi×Wi , Wo

ij ∈ RC
o
j×Ci×m

o
ij×k

o
ij and Bo

j ∈ Rb×C
o
j×H

o
j×W

o
j

respectively, where b is the batch size, Ci, Hi, Wi are the size of input channel, height and
width; Coj is the size of output channel, mo

ij × koij is the kernel dimension; Ho
j and W o

j are the
size of output height and width.

As in [51], Bi is converted to two dimensional matrix for FC layer, with dimension
(bHo

jW
o
j )× (Cimo

ijk
o
ij). Similarly, the dimension of Bo

j is changed from b×Coj ×Ho
j ×W o

j to
(bHo

jW
o
j )×Coj . The dimension of Wo

ij is changed to R(Cimoijk
o
ij)×C

o
j . The input vector, output

vector and weight for the FC layer are denoted as Mi, Mo
j and WoM

ij .

Secondly, Mi, Mo
j and HoM

j are decomposed into a total of bHo
jW

o
j row vectors with (Mi)n ∈

RCim
o
ijk

o
ij , (Mo

j )n ∈ RC
o
j and (HoM

j )n ∈ RC
o
j (n = 1, . . . , bHo

jW
o
j ) respectively. It is easy to
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26 BayesNAS and Hessian for Neural Networks

understand that (Mi)n, (Mo
j )n could be regarded as the input vector and output vector of a

FC layer with weight matrix WoM
ij . Then we can obtain the Hessian Ho

ij for Wo
ij as follows:

(HoM
ij )n = (Mi)n · (Mi)n> ⊗ (HoM

j )n (4-11)

(HoM
j )n is the pre-activation Hessian which could be computed recursively. With (HoM

j )n
known, the pre-activation Hessian for (Mi)n could be calculated as:

(HM
i )n = (Bi)nWoM

ij
>(HoM

j )nWoM
ij (Bi)n + (Di)n

(Bi)n = diag
(
σ′((hi)n)

)
(Di)n = diag

(
σ′′((hi)n) ∂L

∂(Mi)n
)

where (hi)n is the pre-activation value for FC layer and L means the loss function. The
pre-activation Hessian HM

i could be obtained after concatenating all (HM
i )n as

HM
i = [diag((HM

i )1); . . . ; diag((HM
i )bH

o
jW

o
j )] (4-12)

the Hessian HoM
ij for WoM

ij can be obtained as:

HoM
ij = 1

bHo
jW

o
j

bHo
jW

o
j∑

n=1
(HoM

ij )n (4-13)

It should be noted that as pre-activation Hessian is a recursive variable for convolutional layer
and Hessian will be used for updating hyper-parameters which will be introduced later, both
HM
i and HoM

ij should be converted back to conv type before imparting to next layer with
dimension Rb×Ci×Hi×Wi and RC

o
j×Ci×m

o
ij×k

o
ij .
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Chapter 5

Experiments

The experiments focus on two scenarios in NAS: proxy NAS and proxyless NAS. For proxy
NAS, we follow the pipeline in DARTS [12] and SNAS [32]. First BayesNAS is applied to
search for the best convolutional cells in a complete network on CIFAR-10. Then a network
constructed by stacking learned cells is retrained on CIFAR-10 to compare the performance
of BayesNAS with other state-of-the-art methods. For proxyless NAS, we follow the pipeline
in ProxylessNAS [33]. First, the tree-like cell from [44] with multiple paths is integrated into
the PyramidNet [52]. Then we search for the optimal path(s) within each cell by BayesNAS.
Finally, the network is reconstructed by retaining only the optimal path(s) and retrained on
CIFAR-10 for performance comparison.

Dataset CIFAR-10 dataset [53] is a basic dataset for image classification, which consists of
50,000 training images and 10,000 testing images. Data transformation is achieved by the
standard data pre-processing and augmentation techniques (see Appendix ??).

5-1 Proxy Search

Motivation We apply BayesNAS to find convolutional cells on CIFAR-10 for image classifi-
cation. Unlike DARTS and SNAS, which evaluate the performance of child networks during
the searching stage by training their snapshots from scratch or use search validation accuracy
as the performance evaluation criterion, we use γ in BayesNAS as performance evaluation
criterion which enables us to achieve it in a one-shot manner.

Search Space Our setup follows DARTS and SNAS, where convolutional cells of 7 nodes
are stacked for multiple times to form a network. The input nodes, i.e., the first and second
nodes, of cell k are set equal to the outputs of cell k−1 and cell k−2, respectively, with 1×1
convolutions inserted as necessary, and the output node is the depthwise concatenation of all
the intermediate nodes. Reduction cells are located at the 1/3 and 2/3 of the total depth of the
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Figure 5-1: Normal and reduction cell found by BayesNAS with λo
w = 0.01.

network to reduce the spatial resolution of feature maps. Available operations include identity,
3x3 depth-separable convolution, 5x5 depth-separable convolution, 3x3 dilated convolution,
5x5 dilated convolution, max pooling and average pooling. Unlike DARTS and SNAS, we
exclude zero operations.

Training Settings In the searching stage, we train a small network stacked by 8 cells using
BayesNAS with different λw. This network size is determined to fit into a single GPU. Since
we cache the feature maps in memory, we can only set batch size as 18. The optimizer we
use is SGD optimizer with momentum 0.9 and fixed learning rate 0.1. Other training setups
follow DARTS and SNAS. The search takes about 3 hours on a single GPU1.

Searching Process The normal and reduction cells learned on CIFAR-10 using BayesNAS
are shown in Figure 5-1a and 5-1b. Though architecture is determined after only one train-
ing epoch, to consolidate the validity of the found architecture, we examined the validation
accuracy for several extra epochs after the architecture is determined and fixed and observed
that it can reach beyond 80% accuracy.

Searching Results A large network of 20 cells where cells at 1/3 and 2/3 are reduction
cells is trained from scratch with the batch size of 128. The validation accuracy is presented
in Table 5-1. The test error rate of BayesNAS is still competitive against the state-of-the-
art reinforcement learning-based, evolution algorithm-based, and gradient-based NAS. For
model complexity, BayesNAS is able to find convolutional cells with fewer parameters when
compared to DARTS and SNAS.

5-2 Proxyless Search

Motivation Using existing tree-like cell, we apply BayesNAS to search for the optimal
path(s) within each cell. Varying from proxy search, cells do not share architecture in prox-
yless search. What is shared between these two scenarios is that the process is a one-shot
search crediting to the adoption of γ in BayesNAS as a performance evaluation criterion.

1All the experiments were performed using NVIDIA TITAN V GPUs
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5-2 Proxyless Search 29

Table 5-1: Classification errors of BayesNAS and state-of-the-art image classifiers on CIFAR-10.

Architecture Test Error
(%)

Params
(M)

Search Cost
(GPU days) Search Method

DenseNet-BC [5] 3.46 25.6 - manual

NASNet-A + cutout [1] 2.65 3.3 1800 RL
AmoebaNet-B + cutout [54] 2.55 ± 0.05 2.8 3150 evolution
Hierarchical Evo [35] 3.75 ± 0.12 15.7 300 evolution
PNAS [55] 3.41 ± 0.09 3.2 225 SMBO
ENAS + cutout [11] 2.89 4.6 0.5 RL

Random search baseline + cutout [12] 3.29 ± 0.15 3.2 1 random
DARTS (2nd order bi-level) + cutout [12] 2.76 ± 0.09 3.4 1 gradient
SNAS (single-level) + moderate con + cutout [32] 2.85 ± 0.02 2.8 1.5 gradient
DSO-NAS-share+cutout [34] 2.84 ± 0.07 3.0 1 gradient
Proxyless-G + cutout [33] 2.08 5.7 - gradient

BayesNAS + cutout + λow = 0.01 3.02±0.04 2.59±0.23 0.2 gradient
BayesNAS + cutout + λow = 0.007 2.90±0.05 3.10±0.15 0.2 gradient
BayesNAS + cutout + λow = 0.005 2.81±0.04 3.40±0.62 0.2 gradient
BayesNAS + TreeCell-A + Pyrimaid backbone + cutout 2.41 3.4 0.1 gradient
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Figure 5-2: The pruned tree-cell: (a) The chain-like where only one path exists in the cell
connecting the input of the cell to its output. (b) The inception structure where divergence and
convergence both exist in the cell. The solid directed lines denote the path found by BayesNAS
while the dashed ones denote the paths discarded.
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Search Space The backbone used is PyramidNet with three layers each consisting of 18
bottleneck blocks and α = 84. All 3× 3 convolution in bottleneck blocks are replaced by the
tree-cell that has in total 9 possible paths within. The groups for grouped convolution is set
to 2. For the detailed structure of the tree-cell, we refer to [44].

Training Settings In the searching stage, we set the batch size to 32 and learning rate to
0.1. We use the same optimizer as for proxy search. The λ of BayesNAS for each possible
path is set to 1× 10−2.

Searching Process Because in proxyless search each cell can have a different structure, we
demonstrate only two typical types of cell structure among all of them in Figure 5-2a and
Figure 5-2b. The first type is a chain-like structure where only one path exists in the cell
connecting the input of the cell to its output. The second type is the inception structure
where divergence and convergence both exist in the cell. Regardless of which type the cells
belong to, they are much simpler than the original tree-cell in [44]. In addition, our further
observation reveals that some cells are dispensable with respect to the entire network.

Searching Results After the architecture is determined, the network is trained from scratch
with the batch size of 64, learning rate as 0.1 and cosine annealing learning rate decay schedule
[56]. The validation accuracy is also presented in Table 5-1. Although test error increases
slightly compared to [33], there is a significant drop in the number of model parameters to
be learned which is beneficial for both training and inference.

5-3 Transferability to ImageNet

For the ImageNet mobile setting, the input images are of size 224×224. A network of 14 cells
is trained for 250 epochs with batch size 128, weight decay 3× 10−5 and initial SGD learning
rate 0.1 (decayed by a factor of 0.97 after each epoch).

Results in Table 5-2 show that the cell learned on CIFAR-10 can be transferred to ImageNet
and is capable of achieving competitive performance.

5-4 Conclusion

BayesNAS can directly learn a sparse neural network architecture on both proxy and proxyless
tasks and significantly reduce the search time by using only one epoch to get the candidate
architecture.

Our current implementation is inefficient by caching all the feature maps in memory to
compute the Hessian. However, theoretically, Hessian computation can be done along with
standard backpropagation which will potentially further reduce the searching time and scale
our approach to larger search space.
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Table 5-2: Comparison with state-of-the-art image classifiers on ImageNet in the mobile setting.

Architecture Test Error (%) Params Search Cost Search
top-1 top-5 (M) (GPU days) Method

Inception-v1 [57] 30.2 10.1 6.6 – manual
MobileNet [58] 29.4 10.5 4.2 – manual
ShuffleNet 2× (v1) [59] 29.1 10.2 ∼5 – manual
ShuffleNet 2× (v2) [59] 26.3 – ∼5 – manual

NASNet-A [1] 26.0 8.4 5.3 1800 RL
NASNet-B [1] 27.2 8.7 5.3 1800 RL
NASNet-C [1] 27.5 9.0 4.9 1800 RL
AmoebaNet-A [54] 25.5 8.0 5.1 3150 evolution
AmoebaNet-B [54] 26.0 8.5 5.3 3150 evolution
AmoebaNet-C [54] 24.3 7.6 6.4 3150 evolution
PNAS [55] 25.8 8.1 5.1 ∼225 SMBO
DARTS [12] 26.9 9.0 4.9 4 gradient

BayesNAS (λow = 0.01) 28.1 9.4 4.0 0.2 gradient
BayesNAS (λow = 0.007) 27.3 8.4 3.3 0.2 gradient
BayesNAS (λow = 0.005) 26.5 8.9 3.9 0.2 gradient
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Appendix A

Application in Network Compression

A-1 Introduction

In addition to applying the proposed Bayesian approach to address NAS problem, we also
explore the possibility of our method on network structural compression problem. For weight
in the l-th convolutional layer W l ∈ RNl×Cl×ml×kl , some examples of the structured sparsity
are shown in Fig.A-1.

Algorithm 2[46] for structural compression is a variation of Algorithm 1 in BayesNAS and
hessian computation here follows the same rules as in 4-2.

(e) channel-wise(a) shape-wise (b) row-wise (c) column-wise (d) row & column-wise

(j) filter-wise(f) stack shape-wise (g) stack row-wise (h) stack column-wise (i) stack row & column-wise

Figure A-1: some examples of structured sparsity for the 3D filters in the Conv layer with
extensions of [2]. Colored squares mean the weights to be pruned. It should be noted that the
FC layer can be easily enforced by (a)-(e).
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34 Application in Network Compression

Algorithm 2 Variation for network compression.
Require: Initialization: ∀l = 1, . . . , L, ωl(0), γl(0) = 1; λl ∈ R+;
Ensure:
for t = 1 to Tmax do
1. Maximum likelihood with regularization:

min
W

ED(·) +
L∑
l=1

λlR(ωl(t) ◦W l) (A-1)

2. Compute the Hessian for fully connected layer and convolutional layers.
3. Update hyper-parameters:

γl(t)← Update(ωl(t− 1),W l(t)),Γl(t) = [γl(t)] (A-2)

C l(t)←
(
(Γl(t))−1 + diag(Hl(t))

)−1
, (A-3)

αl(t)← − Cl(t)
γl(t)2 + 1

γl(t){element-wise division} (A-4)

ωl(t)← Update(αl(t)) (A-5)

4. Prune the unimportant connections.
end for
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A-2 Experiments

A-2-1 LeNet-300-100 and LeNet-5 on MNIST

We first perform LeNet-300-100 and LeNet-5 on MNIST dataset [60]. For LeNet-300-100, we
apply shape-wise, row-wise and column-wise regularization as shown in Fig. A-1(a), A-1(b)
and A-1(c), for the 2D weight matrices. The hyper-parameters γ, ω and α are updated every
ten epochs for a total of Tmax = 10 loops. The learned structure is 465− 37− 90 with 1.54%
test error and 0.04 FLOPS [61]. Comparison with other methods can be found in Table A-1.
For LeNet-5, we apply shape-wise and filter-wise regularization for the conv layer as shown
in Fig. A-1(a) and A-1(j); row-wise and column-wise regularization for fc layer as shown in
Fig. A-1(b) and A-1(c). The learned structure is 5− 10− 65− 25 with 1.00% test error and
0.57 FLOPS. Comparison with other methods can be found in Table A-2.

Table A-1: Comparison of the learned architecture with other methods using LeNet-300-100 on
MNIST dataset

Method Pruned Architecture Error Rate (%) FLOPs (M)
Baseline 784-300-100 1.39 0.53

SBP ([62]) 245-160-55 1.60 0.10
BC-GNJ ([63]) 278-98-13 1.80 0.06
BC-GHS ([63]) 311-86-14 1.80 0.06
Practical `0([64]) 219-214-100 1.40 0.14
Practical `0 ([64]) 266-88-33 1.80 0.05
Proposed method 465-37-90 1.54 0.04

A-2-2 ResNet-18 on CIFAR-10

We also evaluate our algorithm on Cifar10 dataset using ResNet-18 as initialized backbone
[4]. In addition to the input conv layer and output fc layer, the other 16 conv layers are
separated into 8 blocks with 2 layers each. We apply shape-wise and filter-wise regularization
to the conv layer as shown in Fig. A-1(a) and A-1(j); row-wise and column-wise regularization
to the fc layer as shown in Fig. A-1(b) and A-1(c). The result is given in Table A-3. It can

Table A-2: Comparison of the learned architecture with other methods using LeNet-5 on MNIST
dataset

Method Pruned Architecture Error Rate (%) FLOPs (M)
Baseline 20-50-800-500 0.83 8.85

SBP ([62]) 3-18-284-283 0.90 0.69
BC-GNJ ([63]) 8-13-88-13 1.00 1.09
BC-GHS ([63]) 5-10-76-16 1.00 0.57
Practical `0([64]) 20-25-45-462 0.90 4.49
Practical `0 ([64]) 9-18-65-25 1.00 1.55
Proposed method 5-10-65-25 1.00 0.57
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be found that two Conv layers in block 4 are pruned away which shows the potential of our
method to reduce the number of layers.

Table A-3: Sparsity for each layer in ResNet-18 on Cifar10 dataset

conv1 conv2-5 conv6-9 conv10-13 con14-17 FC layer Total Test error

22.80%

10.06%
22.87%
20.05%
12.99%

9.24%
5.45%
4.94%
10.73%

20.64%
15.04%
10.77%
4.61%

1.43%
0.19%

0
0

10.33% 2.96%

6.58%
(baseline)
6.23%

(our method)
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Appendix B

Supplementary Material

Code for this project can found in https://github.com/BayesNAS/BayesNAS.
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Glossary

List of Acronyms

DNN Deep Neural Networks

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

Tanh Hyperbolic Tangent Function

ReLU Rectified Linear Unit

NAS Neural Architecture Search

MDP Markov Decision Process
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