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Abstract

Fatigue is typically a governing limit state for maritime structures that encounter stochastic sea loading con-
ditions. Predicting accurate fatigue strength and lifetime is important for structures like offshore wind tur-
bines that are supposed to be out at sea for decades and can be used to optimise the design so that fatigue
failure is predicted for, or material is saved in preventing for conservative estimates. This research contributes
to the investigation of multiaxial fatigue concepts by getting insight in the mode-III loading & response con-
ditions as input for an effective notch stress concept fatigue assessment. The considered structural detail is
a tubular welded joint exposed to torsion; a typical fatigue sensitive one in offshore wind turbine monopile
flange connection.

A semi-analytical formulation has been developed to describe the weld notch shear stress distribution
analytically. This formulation can be used as input for the effective notch stress concept. The formulation is
based on three components, the notch stress, weld load carrying stress and far field stress component. Fur-
thermore, the static force and moment equilibrium is satisfied. The weld load carrying stress component is
based on a weld load carrying stress estimate. This coefficient is used because the weld geometry causes a lo-
cal change in stiffness, a shift in neutral axis, meaning the weld becomes load carrying up to some extent. The
stress distribution must include this component since this one is unique for each welded joint configuration.

Applying torsion to the tubular joint cause mode-III shear in the through thickness direction at the weld
notch level. The weld load carrying stress estimate is based on non-dimensional geometry parameters of
the assessed welded joints. It is individually fitted for 6,300 geometries by comparing the results to stress
distributions obtained with 2D finite element analysis. The results of the individual fitted load carrying stress
estimates are used as input of a multi variable polynomial regression analysis. The regression analysis led
to a polynomial function that describes the load carrying stress estimate as function of the non-dimensional
geometry parameters.

The far field information and geometry dimensions are the input for the semi-analytical formulation to
obtain the weld notch shear stress distributions analytically. Accurate results are obtained and therefore the
formulation can be used as input for the effective notch stress concept.

The effective notch stress concept requires a material characteristic length, ρ∗, over which the stress dis-
tribution can be integrated to obtain the effective notch stress. This parameter is obtained using a maximum
likelihood regression analysis and provided a most likely value of 1 [mm]. Although this is a good result,
the confidence regarding the value is low due to low variety in the experimental fatigue test data set and the
limited amount of data in general.

The findings of this study will be used in further research regarding the 4D fatigue project and the effective
notch stress concept in general at the Delft University of Technology.
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1
Introduction

1.1. General Background
In the offshore industry, transferring people from on- to offshore locations is a daily necessity. Helicopters
were typically regarded as the best option, since conventional ship methods like rope swinging and basket
transfers do not comply with current safety standards for most modern companies [27]. The former is quite
expensive and safety regulations have become stricter over the years. New ways of transferring people had to
be invented, which led to offshore gangway systems as the most feasible way of getting people safely offshore.

The last two decades, gangway systems have been introduced by several companies. These are placed on
the deck of ships or integrated into the design. The advantages of transfers via ships are safer crossings, more
capacity as well as safer access to offshore wind turbines [20]. While transporting people by boat is more cost-
effective compared to helicopters, Ampelmann is investigating whether it is more environmental friendly
as well. Gangway systems and other mission equipment are welded to the deck of a ship. Therefore, the
equipment encounters forces that can be related to the response of the ship resulting from highly stochastic
sea loads generated by wind and swell. The response is cyclic by nature, which can lead to fatigue damage.
This occurs when cyclic loading above a certain threshold induces damage to the material with fracture as the
end state. When the ship is in transit, this loading can exceed a certain threshold, making fatigue a governing
limit state for ships and therefore, possibly for mission equipment [8].

This research investigates the Ampelmann system, a gangway that can compensate motions induced by
sea loads in six degrees of freedom. The system enables a safe transfer from ship to offshore locations by
reducing the movements such that the gangway is horizontally stable. In the end, it turned out to be more
towards investigating a new innovative method to assess the fatigue lifetime which could be used for all type
of marine structures.

1.2. Problem Statement
As described in Section 1.1, the Ampelmann system, and marine structures in general, are subjected to var-
ious loads that may generate a local multiaxial (mixed Mode I and Mode III) stress state, especially in the
intersection region between two or more parts of the structural assembly, i.e. at welded joints. The cyclic
nature of the load source due to wind, wave, swell and eventually operational loads may induce multiax-
ial fatigue damage in the welds. Accurate stress calculations are necessary to ensure the structure is strong
enough to prevent failure during its lifetime. Methods to assess multiaxial fatigue lifetime are not sufficiently
accurate, leading to over-prediction due to conservative estimations.

This research aims to establish a more accurate way of predicting the lifetime of structures. The research
topic is: Effective notch stress concept investigations for mode-III loading & response conditions.” The main
research question regarding this topic reads: "How can the effective notch stress concept be used to investi-
gate welded joints subjected to mode-III loading & response conditions and contribute to multiaxial fatigue
assessment of welded joints in marine structures?" This assessment can be obtained by establishing a way to
use the effective notch stress concept for mode III, using the through-thickness weld notch shear stress dis-
tribution. In future research, the methods for both modes can be combined to a multiaxial fatigue criterion
in future research, which can be used to determine a more accurate fatigue lifetime.

1





2
Literature Review

In this literature review, the state-of-the-art fatigue research will be presented. First, a brief introduction will
be given about fatigue in ship and offshore structures in general and about the different fatigue assessment
concepts in particular. Next, the effective notch stress concept is discussed more extensively, and the related
stress distributions will be set out. Finally, the current multiaxial fatigue assessments are reviewed.

2.1. Fatigue in Maritime Structures
In 1994, Schütz [41] presented a overview of what type of research has been done between 1837 and 1994
with respect to fatigue in steel structures. In 1860, Wöhler [60] already presented a study which suggested
design for finite fatigue life time and linear damage accumulation, while a four parameter equation for the
SN-curve was introduced by Palmgren in 1924 [29]. Many investigations have been carried out in the course
of the 20th century, however, many parameters have not yet been proved nor accepted. This holds even more
for predictions related to fatigue under variable amplitude and multiaxial loading.

Stress ranges or stress intensity factors lie at the basis of fatigue assessment. The cumulative effect of all
stress range occurrences determines the fatigue life time. These ranges are calculated by taking the superpo-
sition of all non permanent fluctuating loads [19]. In Equation (2.1) and (2.2), the ranges are stated that are
used to determine the stress or stress intensity range used for fatigue assessment.

∆σ=σmax −σmi n (2.1)

∆K = Kmax −Kmi n (2.2)

Where:

∆σ = Stress range [N/mm2]
σ = Stress [N/mm2]
∆K = Stress intensity range [-]
K = Stress intensity factor [-]

Three modes are defined for the type of loading that can cause fatigue. In Figure 2.1, they are shown
where the arrows define the direction of the loading that is initiating the potential crack. Mode I is mostly
governing for marine structures due to thin walled approximation. Mode I is caused by normal and bending
stress and is also referred to as the mode that opens the structure. Furthermore, mode I is the governing mode
for fatigue in thin-walled structures. Mode II is induced by in-plane shear and does not occur often in thin
walled structures. The contribution of Mode III loading, caused by out-of-plane shear, to the fatigue life time
is less known in an individually, but also in a multiaxial way. It is interesting to investigate which influence is
related to this type of loading. [12]

Due to the cyclic and random nature of wind, waves and swell, the structural response of a marine struc-
ture will be consequently dominated by a cyclic and variable amplitude type of loading. When this type of
loading is encountered by marine structures it can cause serious damage since fatigue is a damage accumu-
lating process. Therefore, it is necessary to sum up the damage in a way the lifetime can be predicted. The
Palmgren-Miners rule is a linear damage accumulation model, stated in Equation (2.3). This is one of the
most common and mostly used damage accumulation model for constant and variable amplitude loading.

3
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Figure 2.1: The crack surface displacement of the modes [22]

D =
k∑

i=1

ni

Ni
(2.3)

Where:

D = Palmgren-Miner damage sum [-]
ni = Cycles of certain stress level (stress block) [-]
Ni = Allowable cycles per stress level [-]

The different stress levels and in which frequency they occur need to be determined so that stress blocks
can be established for the damage accumulation. All types of loading that can affect the fatigue lifetime of a
structure should be considered e.g. construction, transportation, installation and in-service [19]. The design
load spectrum should be on the upper bound estimate of what is expected during the design lifetime of the
structure. Accurate fatigue assessment concepts may prevent the estimate from being too conservative, and
help the process in that respect.

2.2. Fatigue Assessment Concepts Overview
Several fatigue assessment concepts have been developed in the past. In general, the more accurate they are,
the higher the complexity of the applied concept. They determine the fatigue damage criterion and with that
the corresponding resistance curve [12]. In this section, the nominal stress and structural hot spot stress are
discussed. In the next section, the effective notch stress will be discussed, since this will be the method this
research will focus on. First, several distinctions will be made based on Figure 2.2.

2.2.1. Fatigue Damage Criteria
The criteria related to fatigue assessment concepts are stated in Figure 2.2. Den Besten [8] set it out as follows:

• Global or local information criteria

• Intact or cracked geometry criteria

• Stress, strain or energy parameter criteria.

• Point, line, or area/volume- and defect size or crack increasing process zone criteria

The structural detail level can be global or local. The global fatigue damage criterion is relatively large
compared to the hot spot, while the local one takes weld notch information into account up to some extent.
Furthermore, distinction is made between intact and cracked geometries. The intact geometry criteria de-
pend on stress, strain or energy related to work hardening, elastoplasticity and multiaxiality considerations
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Figure 2.2: Fatigue damage criterion overview [8]

influence the stress or strain concentration factor which is the governing crack initiation parameter. The
cracked geometry criteria depend on stress intensity, strain intensity or energy density. The crack growth is
controlled by the stress or strain intensity factor which involves the earlier mentioned criteria. The last point
will be discussed in section 2.3.1.

2.2.2. Nominal Stress Concept
The nominal stress concept is the most direct method to assess the fatigue strength of welded joints and uses
the parameter Sn as the stress range as stated in Equation 2.4 [21]. The global structural response is linear
elastic and the concept is based on an intact geometry. Local information near the weld is not taken into
account but it includes effects of the macro-geometric shape of the component in the vicinity of the joint
[18].

Sn =∆σn = 2σn (2.4)

Where:

Sn = Nominal stress range [N/mm2]
∆σn = Nominal stress range [N/mm2]
σn = Nominal stress [N/mm2]

Figure 2.3: Nominal stress in a beam with a welded attachment [18]

The stress can vary over the width of the component as shown in Figure 2.3. The nominal stress can
be calculated using structural mechanics theories based on elastic behaviour for simple components. If the
nominal stress at the weld needs to be determined, the stress level corresponding to the red line has to be
used for this concept. When components get more complex, finite element methods (FEM) can be used with
a relatively simple and coarse mesh to obtain the nominal stress [18].
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2.2.3. Structural Hot Spot Stress Concept
The structural hot spot stress concept uses the hot spot stress which is an intact geometry local stress point
criterion [12]. Local information is taken into account when compared to the nominal stress concept and
can be used for more complex structures where the nominal stress cannot be clearly defined. The hot spot
stress can be found by extrapolation using reference points as shown in Figure 2.4. It excludes the non-linear
peak stress caused by the local notch. The location of reference points and extrapolation equations differ for
different hot spots [18].

The major advantage of the structural hot spot stress concept is its possible application at most locations
using FEM. Besides, this method is more accurate compared to the nominal stress concept and therefore,
the fatigue assessment criterion that is obtained gives a better estimate of the fatigue lifetime. Its disadvan-
tage lies in the limitation to weld toe failure. Furthermore, more accurate results could be obtained with the
effective notch or total stress concept.

Figure 2.4: Structural hot spot stress [18]

2.3. Effective Notch Stress Concept
The effective notch stress concept uses a local information intact geometry parameter. As concluded by Qin
et al. [35], this method is the most promising for the application this research is aiming for. It is supposed to
be the most accurate method to obtain the input for the fatigue lifetime calculations. Therefore, the literature
review will focus on this method. First of all, the method itself will be explained. Subsequently, the weld notch
stress distribution for mode I and mode III will be discussed.

2.3.1. Critical Distance Theory
The theory of critical distances is a name given to a group of theories by Taylor [53]. These theories are used
for the prediction of the effect of notches and other stress concentration factors. They make use of material-
characteristic microstructural length, area or volume that is defined from the notch tip or notch root [36]. A
commonly used length conform Taylor is stated in Equation (2.5). A visualisations of the critical length, in
this indicated as ρ∗, is shown in Figure 2.6.

L = 1

π

(
Kc

σu

)2

(2.5)

Where:

L = Critical length [mm]
Kc = Fracture toughness of the material [N/mm1.5]
σu = Tensile strength [N/mm2]

The critical distance theory distinguishes three main criteria, the point, line and area/volume criteria.
The point method uses an elastic stress analysis. Failure is assumed to occur when stress is equal to the
fatigue strength measured at a certain distance from the notch, a [32]. Several studies have shown that the
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critical distance for the point method is L/2 [52, 54, 57]. Sometimes the point method is referred to as the
critical distance method [5]. The line method can be compared to the point method but instead of one point,
a line from the notch is defined. Over the length of this line the stress is averaged to obtain the stress value.
The length of the line is related to L as well and has a value of 2L [53]. The line method is also the method
that Neuber came up with [28]. In a similar way, an area or volume can be used to define the stress intensity
around the notch. In this case, the critical distance is a radius around the notch [8]. In Figure 2.2, several
fatigue damage criterion and there related critical distance are mentioned.

2.3.2. Fictitious Notch Radius Based Effective Notch Stress
The International Institute of Welding (IIW) advises to use a fictitious notch radius of 1 mm to avoid the
singularity effects, this method is called the fictitious notch radius based effective notch stress and has pre-
dominantly developed for mode-I [18]. The radius has to be modelled into FEA which leads to a maximum
stress value smaller than infinity and usable as effective notch stress. This assumption requires a plate thick-
ness of tp > 5 [mm] because of artificial cross-sectional weakening or strengthening at the weld toe and root
notches which would lead to necessary structural stress corrections [8]. More recent research proposes also
values of 0.3 and 0.05 [38] for various plate thicknesses to obtain more realistic results for the effective notch
stress. If the fictitious notch radius is used, the effective notch stress can be calculated with Equation (2.6).
One of the main problems of the theories/concepts discussed in the literature on this subject is that most of
them use a fictitious notch radii in one way or another. Since this research will focus on notches with ρ = 0
these studies are not applicable.

σe =σmax (ρ = ρ f ) (2.6)

Where:

σe = Effective notch stress [N/mm2]
ρ = Notch radius [mm]
ρ f = Fictitious notch radius [mm]

2.3.3. Averaged Effective Notch Stress
The averaged effective notch stress can be obtained by averaging the stress over the critical distance. This in-
cludes the contribution of the notch stress gradient [8]. In Equation (2.7), the stress distribution is integrated
over the microstructural length ρ∗ which can also be seen as the line method. In Equation (2.8), it is shown
that the effective stress can be obtained by using the location of the point. Both methods use the weld notch
stress distribution to obtain the effective notch stress.

σe = 1

ρ∗

∫ ρ∗

0
σn

(
r

tb

)
d

(
r

tb

)
(2.7)

σe =σn

(
r

tb
= a

)
(2.8)

Where:

ρ∗ = Micro-structural support length [mm]

σn

(
r
tb

)
= Weld notch stress distribution [N/mm2]

a = Critical distance [mm]
r = radial coordinate [mm]
tb = Thickness base plate [mm]

In contrast to the nominal and hot spot stress concept, this concept incorporates local notch information.
The theoretical stress concentration at the weld notch is not fully effective and, therefore, using this value
would give too conservative results. The effective notch stress concept has two methods to obtain the effective
stress concentration, the fatigue damage criterion, affecting the fatigue lifetime. The first option is using the
weld notch stress distribution, σn . σn is integrated over the micro-structural support length or taken at the
critical distance which gives σe . The second is enlarge the actual weld contour by replacing it by an effective
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one and implement a fictitious notch radius. This lowers the maximum stress at the notch to the effective
stress value. Both methods are given in Figure 2.6.

The advantage of this method is that it gives more accurate results compared to the hot spot structural
stress concept. More notch information is taken into account which makes it more complex as well. The dis-
advantages are that the method is not applicable when significant stress is present in the component parallel
to the weld and even more complex to apply than the structural hot spot method [18].

2.3.4. Weld Notch Stress Distribution
The weld notch stress distribution describes the variation of the stress over the through thickness direction
of a plate in the vicinity of a weld or notch. This can be seen in Figure 2.5. It is a linear superposition of the
equilibrium equivalent stress part and the self-equilibrating part. The former is related to the linear stress
field. The latter is a combination of the weld load carrying stress and the V-shaped notch stress component.
The weld load carrying part can be determined with FEM which makes it possible to calculate the V-shaped
notch part as the difference between the self-equilibrating part and the weld load carrying stress. The idea of
formulations of the weld notch stress distribution are that they only requireσs and rs as far field information,
obtained using a relative coarse meshed plate/shell FE model which does not include any weld geometry
information [12].

Williams’ Asymptotic The singularity at the notch follows from the V-shaped weld toe. The linear elastic
stress distribution near the notch has been introduced by Williams who developed the Airy Stress function
in polar coordinates [58]. This function describes the behaviour of the stress near the sharp notch. Williams
showed that the degree of the stress singularity depends on the notch angle, α. In this case the notch angle is
taken as shown in figure 2.5, which leads to Equation (2.9) for the eigen value.

λ= π

2α
(2.9)

The Airy stress function is stated in Equation (2.10). This formulation makes it possible to describe a stress
distribution of a sharp notch for which the shear formulation is given in Equation (2.11) [58]. The formulation
of the eigen value together with the distance from the notch, rλ−1, shows the incorporation of a singularity in
the formulation. This presence can be used to define whether or not a formulation is capable of representing
a singularity, i.e. sharp notches.

ϕ= rλ+1F (θ;λ) (2.10)

τrθ = rλ−1 [−λF ′ (θ)
]

(2.11)

F (θ;λ) = [C1 cos{(λ+1)θ}+C2 cos{(λ−1)θ}+
C3 sin{(λ+1)θ}+C4 sin{(λ−1)θ}]

(2.12)

ϕ = Airy stress function
τrθ = Shear stress [N/mm2]
θ = Angular coordinate [rad]
F = Constant
C = Constant

Mode I Filippi et al. [15] proposed some explicit formulations to describe the stress distribution in a more
accurate way than Neuber did in 1958 [28]. In this case the notches have a fictitious radius and are not sharp,
which make them less suitable for welded joints since they have a singularity at the notch. Therefore, Den
Besten [9] established an analytical formulation for the weld notch stress distribution which is stated in Equa-
tion (2.13). This formulation is especially valid for a T-joint, anti-symmetric geometry, and is related to mode
I fatigue. It takes into account the singularity at the weld notch and uses force equilibrium to obtain the con-
stants µs and µa . The eigen values are based on Williams’ solution. The weld load carrying stress coefficient,
Cbw , can be estimated with a function. This function is obtained by using a parametric function, fitted with
input from FE notch stress distributions for a range of geometry dimensions and loading parameter values
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Figure 2.5: Weld Notch Stress Distribution [9]

[34]. Qin et al. [35] concluded that this formulation of the weld notch stress distribution seems to give the best
results and could therefore be used as the multiaxial fatigue criterion as state-of-the-art Mode I component.

σn

(
r

tp

)
=σs

{(
r

tp

)λs−1

µsλs (λs +1)
[
cos

{
(λs +1)β

} −χs cos
{
(λs −1)β

}]
+

(
r

tp

)λa−1

µaλa (λa +1)
[
sin

{
(λa +1)β

} −χa sin
{
(λa −1)β

}]
+Cbw ·

{
2

(
r

tp

)
−1

}
−2 · rs ·

(
r

tp

)} (2.13)

Where:

β = Stress angle [rad]
λa ,λs = Eigen value
µa ,µs = Force and bending moment equilibruim coefficient [-]
χa ,χs = First eigenvalue coefficient of anti-symmetry part [-]
Cbw = Weld load carrying stress coefficient
rs = Structural bending stress ratio (mode-I) [-]
tp = Thickness base plate (Mode I) [mm]

Mode III Literature related to the weld notch shear stress distribution, mode III induced stress, is scarce. A
formulation, which could be coupled with the formulation of Den Besten [9] might provide a way to establish
a multiaxial fatigue criterion. In order to obtain a distribution that approaches this method studies about the
notch shear stress distribution for tubular joints and notches in plates will be investigated. These theories
might be useful for establishing a weld notch shear stress distribution for thin-walled structures, which can
then be coupled to the study carried out by Qin et al. [35].

{
τzr

τzϕ

}
=−λ3rλ3−1 A2

{
sinλ3ϕ

cosλ3ϕ

}
(2.14)

A2 =− K3ρp
2πλ3

(2.15)

K3ρ =
p

2π lim
r→r+o

[
r 1−λ3τzϕ(r,ϕ= 0)

]
(2.16)

A2 = −τmax

λ3rλ3−1
0

(2.17)
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(a) Normal stress mode I

(b) Shear stress mode III

Figure 2.6: The effective notch stress concept with micro-structural support length (a. left) and fictitious notch radius (b. right). [7]

Where:

τmax ,τzr ,τz,ϕ = Shear stress [N/mm2]
A2 = Constant
K3 = Notch stress intensity factor [-]

The stress distribution established by Qin et al. [33] uses the notch stress intensity factor for sharp notches
or the maximum shear stress in case of a blunt notch to obtain the stress distribution. The stress intensity
factor is a function of τzφ. The aim of this research is to obtain the stress distribution directly from the struc-
tural shear stress and the bending ratio as can be seen for Mode-I. The τmax method cannot be applied as it
assumes a blunt notch or a fictitious notch radii.

The formulation by Qin et al. contains the rλ−1 which can be related to the same construction as the
Mode-I formulation of Equation (2.13) and can therefore be used as the basis for a shear stress formulation
with a sharp notch (ρ = 0).

Hu et al. [21] proposed the singularity length method. This theory uses ′as′ as the geometry dependent
parameter, which is determined by using FEA. The parameter can be obtained by means of approximation
formulas. The way in which Hu et al. [21] determine the values might be of use to this study, even though
they apply a minimum of two values, depending on the macro-geometric information, it would be better to
present a unique solution for every geometry possibility.

τzθ =
τsp

2

( as

r

)1−λ3
(2.18)

Where:

as = Singularity length [mm]
τs = Structural shear stress [N/mm2]

2.3.5. Material Characteristic Length ρ∗
The micro-structural support length was introduced by Neuber in 1958. Neuber assumed that using the peak
stress at a notch as fatigue strength parameter would be too conservative as fatigue damage criterion and
introduced ρ∗. It is a material characteristic parameter which is used for averaging the stress over a certain
length. In this way, several values for ρ∗ are obtained. Baumgartner et al. [5] found ρ∗ = 0.4, using a reference
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radius of 0.05 [mm] in his research while using the principal stress. When applying Von Mises they found ρ∗ =
0.2 which gives where both values give a sufficient result for the assessment. Furthermore, they investigated
the influence of ρ∗. The assessment quality is almost the same for any value in the range of 0.3 ≤ ρ∗ ≤ 0.7
[mm] for the principal stress method. A critical distance of respectively a = 0.1 [mm] and a = 0.05 [mm] are
recommended, which is in line with ρ∗ = 4a [53].

Neuber [28] used Equation (2.19) with a reference radius of 1 [mm], as used by the IIW. For steel under
tension or bending loads a factor s = 2.5 would be used with a ρ∗ = 0.4 [mm]. For shear, s = 1 is proposed.
This leads to a lower value for the fictitious or reference radius implying a higher effective notch stress [5].

ρf = ρreal + s ·ρ∗ (2.19)

Where:

ρr eal = Real notch radius [mm]

All the information in this section is related to mode-I except for the s = 1 for shear from Baumgartner.
It could be used to determine ρ∗ with reversed engineering when a fictitious notch radius is already defined
for mode-I. The available literature does not provide information about the material characteristic length for
mode III loading with regard to sharp notches.

2.4. Multiaxial fatigue
The criteria for the assessment of multiaxial fatigue of welded joints, provided in literature, are typically based
on interaction equations or critical plane approach. There is no consensus in literature about which method
is the most accurate. Pedersen [31] published a review paper that evaluates the commonly applied multiaxial
fatigue criteria with regard to the effective notch stress approach. The criteria for multiaxial fatigue loading
can be divided into three concepts: equivalent stresses, interaction equations and critical plane approaches.
All three concepts will be discussed in this section.

In order to assess fatigue life time, stress ranges need to be defined as discussed in Section 2.1. IIW has
specific guidelines regarding the use of principal- and Von Mises stresses [17]. IIW uses the methods only
for proportional loading, whereas Petersen also applies them for non-proportional loading, which is a better
representation of engineering load cases.

2.4.1. Interaction Equations
Equivalent stress ranges were used from the beginning of multiaxial fatigue life time assessments in design
codes and were evaluated against uniaxial SN-curves. [26]. Later on, design codes like IIW and EC3 started
to apply interaction equations that made use of the individually design curves to evaluate the corresponding
normal and shear stress component. Most criteria are not allocated to one particular stress system but can
be used for all three fatigue assessment concepts, nominal-, structural hot spot- and effective notch stress
concept.

Principal Stress The principal stress range is recommended for proportional loading when the minimum
and maximum principal stress are both positive or negative [17]. Furthermore, a less significant influence
of shear stress is assumed. The stress range is calculated from the maximum and minimum value of the
principal stress during the load cycle.

σ1 =
(
σx +σy +

√(
σx −σy

)2 +4τ2
x y

)
/2 (2.20)

A study by Bäckström [4] showed that for the hot spot stress method the principal stress range is a quite
poor damage parameter. Furthermore, Figure 2.7 makes clear that the principal stress range does not always
lead to the maximum damage when the loading is non-proportional. This leads to a non-conservative life
time prediction for non-proportional loading. However, as observed by Siljander et al. [44], the opposite is
generally the case.

Von Mises In cases were the multiaxial fatigue loading includes significant shear IIW recommends using
Von Mises [17]. The notch stress components are used to calculate the Von Mises equivalent stress range,
which is shown in Equation (2.21). The Von Mises stress could also be used as function over time and in that
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Figure 2.7: The range of principal stress is smaller for non-proportional loading than for proportional loading. [31]

way obtaining the stress range. The Von Mises method neglects compressive stress. It is not integrated in the
method due to the positive nature of the Von Mises stress [31].

∆σv M =
√
∆σ2

x +∆σ2
y −∆σx∆σ

2
y +3∆τ2

x y (2.21)

Both equivalent stress methods do not incorporate a change of direction for the critical stress. Therefore,
the most unfavourable direction has to be chosen for the whole calculation.

Interaction Equation, Eurocode 3 The interaction equations proposed by Eurocode 3 use uniaxial fatigue
strength of normal and shear. The damage parameter DEC 3 should stay below 1 for all cases. For this inter-
action, the possibility of non-proportional loading is not taken into account, the fatigue strength criterion
is compared with their respective fatigue strengths. The effective stress range as stated in Equation (2.23) is
evaluated against the uniaxial SN curve given by ∆σR .(

∆σx

∆σR

)3

+
(
∆τx y

∆τR

)5

É DEC 3 (2.22)

∆σEC 3 = 3
√
∆σ3

x +k ·∆τ5
x (2.23)

k = ∆σ3
R

∆τ5
R

(2.24)

Interaction Equation, IIW The interaction equations proposed by IIW apply the uniaxial fatigue strength
of normal and shear as well, but uses the Gough-Pollard equation as shown in Equation (2.25).(

∆σx

∆σR

)2

+
(
∆τx y

∆τR

)2

ÉCV (2.25)

The stress range can then be obtained with Equation (2.26).

∆σI IW = 1p
CV

√
∆σ2

x +k ·∆τ2
x y (2.26)

k = ∆σ2
R

∆τ2
R

(2.27)

If the load is proportional a critical value (CV) of 1 is recommended, for non-proportional loading CV =
0.5, and for a fluctuating mean stress a CV of 0.2 [1].
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2.4.2. Critical Plane Criteria
The options described above only take one stress direction into account. Findley presented the first type
of critical plane method [16]. This method is initially developed for non-welded components, but there are
several publications that extended the method to welded joints. The critical plane includes the maximum
damage parameter in all possible directions for every time step, which gives a more complete overview.

σ(t ) =
σx (t ) τx y (t ) τxz (t )
τx y (t ) σy (t ) τy z (t )
τxz (t ) τy z (t ) σz (t )

 (2.28)

Figure 2.8: Visualition of the critical plane in a weld notch.[31]

Susmel [51] came up with the Modified Wöhler Curve method, which is based on a shear stress approach.
This method assumes that the critical plane reaches the largest shear stress range during the load cycle. It
tries to find a load curve that is based on both the normal and the shear stress. Susmel combines this method
with the effective notch stress method and obtained good, though conservative, results [50].

Carpinteri et al. [11] proposed a method in which the critical plane orientation is determined a priori,
based on the direction of the first maximum principal stress. The damage parameter is equal to Equation
(2.26) with σx = σeq and CV = 1. It could be seen as the Gough-Pollard equation applied in a critical man-
ner. Carpinteri et al. tested the criterion and got moderately good and mainly conservative results when
comparing the used experimental data with the predictions.

Other available methods are the structural stress critical plane and stress-strain. These seem to be less
suitable since more research has to be carried out to test their application to welded joints or (non-proportional)
variable amplitude loading [56].

2.4.3. Invariant Plane Criteria
Based on a different physical ground with respect to the critical plane method, the invariant plane method
has been developed. Computational efforts and model complexity are significantly reduced by using stress
invariants. Different formulations exist, but invariant based multiaxial fatigue models typically use one term
that accounts for the dilation (i.e. volume change) and another one for the distortion (i.e. yielding). The
hydrostatic stressσH or the first stress invariant I1 are related to dilation while the second invariant of the de-
viatoric stress J2 is related to the distortion, see Equations (2.29)–(2.30). An earlier invariant based approach
for multiaxial fatigue assessment was the one proposed by Crossland and Sines [10, 45]. The fatigue criterion
they suggested can be described by the generic equation provided in Equation (2.31). Material parameter k
represents a function of the uniaxial fatigue strength and is used to obtain the equivalent fatigue strength [97].
Mode I and Mode III fatigue resistance data are needed for multiaxial cases. The infinite fatigue life is consid-
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ered in the equation, which is represented by a fatigue limit criterion. The left-hand-side can be represented
by a Basquinlike equation (2.31) for a finite fatigue lifetime [56].

I1 =σx +σy +σz (2.29)

J2 = 1

6

((
σx −σy

)2 + (
σy −σz

)2 + (σz −σx )2
)
+τ2

x y +τ2
y z +τ2

zx (2.30)

τa, f =
√

J2 +kσH (2.31)

The most promising invariant plane criteria method in literature seems to be the projection-by-projection
method (PbP) by Benasciutti et al. [6]. Accurate results were found with reduced computational efforts.
However, in time domain, the method has not yet been validated for non-proportional variable amplitude
(VA) loadings. The results that have been generated so far are promising and, therefore, the PbP method is
included in this study. However, further research is required to validate the method for non-proportional VA
loads and its application to welded joints [56].

2.4.4. Integral Plane Criteria
In order to compensate the shortcomings of the critical plane based methods in dealing with non-proportionality
induced lifetime reduction in ductile materials, integral plane criteria have been developed. Interaction ef-
fects induced by non-proportionality are taken into account by integrating a particular fatigue parameter, for
a specified (elementary) material volume. Significant computational effort is needed to optimise such calcu-
lations. The integration has to be executed over all material planes within an acceptable level of accuracy [30].
Integral methods are generally considered to be more computational intensive, and therefore, less beneficial
than the critical plane or invariant based methods [56].

The literature on the different integral plane criteria mentions two methods, the effective equivalent stress
hypothesis (EESH) and the Energy method (EM). The EESH is based on the Von Mises equivalent stress
method. However, it has been modified, based on local stress, to overcome its deficiency in case of non-
proportional loadings. The results, as compared to the experimental data of welded joints under multiaxial
constant amplitude loading, are promising [47, 48]. Several studies [48, 49, 46] have been carried out to in-
vestigate whether EESH can also be applied for more complex VA loadings. However, these studies encounter
problems in time varying phase differences and, moreover, the hypothesis requires a realistic damage sum.
Representative multiaxial fatigue data are needed in order to carry out further investigations and validations
[56].

Saintier et al. proposed an integral based approach, which is formulated using an energy based fatigue pa-
rameter, hence called EM. It is assumed that material behaves elastically in the high cycle fatigue range, which
makes it possible to consider the elastic strain density as fatigue parameter for EM. The stresses and strains
are evaluated with FEA and used as input for describing a incremental damage parameter. The advantage of
this method is that it circumvents the cycle counting [56]. The method is validated with experimental data
sets of plane geometries and also cover multiaxial fatigue load cases [39]. Good results have been obtained so
far, however, more research needs to be done to apply the method to notched geometries and welded joints
encountering complex loads [56].

2.4.5. Damage Plane Criteria
Multiaxial fatigue behaviour can also be described by means of damage mechanics. The thermomechanical
behaviour of solids describes the fundamentals of damage mechanics. Crack initiation occurs as result of
local plasticity, so damage models can relate damage to local stress/strain. The constitutive equations fol-
low from the laws of thermodynamics for irreversible processes. Observable and (not directly measurable)
internal state variables at a certain time instant are used to describe the thermodynamic state of a material at
the same instant. This so-called state potential is described by state laws and associated variables. The dis-
sipation potential F (σ, X ,R,Y ) for dissipative processes is considered and described by evolution laws. The
evolution of the damage is governed by a so-called yield function. It describes the relationship between local
plasticity and damage [25, 24]. The use of damage mechanics also circumvents cycle counting by applying a
continuous damage variable. Furthermore, the model can be specified for different material characteristics
and load conditions (e.g. brittle/ductile materials, isotropic/anisotropic behaviour, crack closure/opening)
[56].
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Several studies have investigated damage mechanics specifically in relation to marine structures[14, 23,
55]. Erny et al. [14] showed promising results for a method which was developed and validated to assess fa-
tigue in a butt-welded plates for S355 steel. It makes use of very extensive FE models that incorporate weld toe
geometry, residual stresses, material zone dependent yield stresses and elastic-plastic material behaviour. By
post processing the results in a damage model, the crack initiation could be studied. However, the research
was only conducted for uniaxial fatigue problems. Erny et al. [14] and Thevenet et al. [55] used the same ap-
proach with different geometries, a structural detail of a stiffened panel and a cruciform joint. Experimental
data were collected. Although the numerical and experimental results showed agreement, conclusions could
not yet be drawn [14] [56].

2.4.6. Strength and Mechanism Contributions
Fatigue damage is often indicated by a single damage parameter, which accumulates cycles related to strength
from 0 to failure, like the Miner rule. However, all changes in the material, occurring as a result of the cyclic
load should be defined and taken into account. For example: local decohesion (cracking), fatigue damage
including crack tip plasticity, local strain hardening in the crack tip zone, residual stresses around the crack
tip, and, for notched elements, also macroplasticity at the root of the notch. These phenomena all change
the conditions of the assessed structural element, or material and influence the fatigue lifetime. It can also
be expected to not fully interact with the magnitude of the cyclic load [40]. Existing fatigue cycle counting
methods do not incorporate the fatigue strength, for example the path dependent maximum range method
(PDMR) by Dong et al. [13]. In Equation (2.32), the term β is introduced, which is typically based on the Von
Mises concept, and is, therefore, taken as 3. The proposition would be to vary β, which give varying fatigue
resistance curves as well.

∆Se =
∫ √

(dσ)2 +β (dτ)2 (2.32)

2.5. Conclusion and Research Method
In this section, the conclusion regarding the literature review is given. The hypotheses and research questions
are presented, and subsequently, a road map and corresponding deliverables of this thesis are presented.

2.5.1. Conclusion
The state-of-the-art literature provides a starting point for a through thickness weld notch shear stress distri-
bution formulation. However, it cannot yet be used for the effective notch stress concept since necessary
information is still missing. To obtain the averaged effective notch stresses a material-characteristic mi-
crostructural length for mode-III is needed. This length has not yet been found for mode-III and should
be established. Furthermore, multiaxial fatigue criteria incorporating strength and damage mechanisms that
could be used for fatigue assessment are present, but are not yet considered for multiaxial effective notch
stress purposes.

Hypotheses The hypothesis of this research is that a mode-III specific strength and damage mechanism
contributes to better fatigue damage criteria for the effective notch stress multiaxial application. In general,
this should provide better fatigue strength and life time estimates. The effective notch stress could be deter-
mined with a weld notch shear stress distribution. The effective notch stress concept for mode I and mode III
could then be combined to a multiaxial criterion.

Main Research Question: How can the effective notch stress concept be used to investigate welded joints
subjected to mode-III loading & response conditions and contribute to multiaxial fatigue assessment of welded
joints in marine structures?

Sub-question 1 In which way is it possible to find a semi-analytical formulation for the through thickness
weld notch shear stress distribution that can be used for the effective notch stress concept?

Sub-question 2: Can the obtained semi-analytical formulation be used for practical engineering applica-
tions? In other words, is it possible to obtain information about the through thickens weld notch shear stress
distribution from a coarse FE shell model without including local details (i.e. welds)?
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Sub-question 3: What is the effective notch stress related material-characteristic microstructural length
parameter for mode-III loading?

2.5.2. Road map
In order to obtain the required knowledge and parameters to find a solution for the research problem de-
scribed in the problem analysis, the next steps have to be taken:

• Establish the weld notch shear stress distribution formulation

– Make a 3D solid FE model to obtain through thickness shear stress distributions at the weld notch

– Obtain the structural- and bending stress distributions from nodal forces

– Generate an analytical formulation for the through thickness shear stress distribution and com-
pare the obtained stress distributions with numerical FE results

– Establish a parametric function for the weld load carrying stress coefficient by fitting the analytical
formulation through the FE stress distribution.

– Validate the model for several cases by varying local weld geometry dimensions.

• Test the obtained formulation for practical engineering applications

– Create a simplified FE shell model for a particular structural assembly (tube to plate joint) and
obtain far field stress information.

– Use the obtained information as input for the semi-analytical formulation and validate if it matches
the results obtained with FE solid model.

• Establish a material-characteristic microstructural length for mode-III

– Collect experimental fatigue resistance data under mode III loading

– Check the type of failure.

– Use the semi-analytical stress distribution and experimental data to establish material-characteristic
microstructural length.

2.5.3. Deliverables
The deliverables for this research are as follows:

• A semi-analytical weld notch shear stress distribution formulation.

• How to use the weld notch shear stress distribution formulation in engineering (with FE shell model).

• Material-characteristic microstructural length for mode-III.



3
Mode-III Weld Notch Shear Stress

Distributions

In this chapter, the process is described how to obtain a semi-analytical formulation to describe mode-III
shear stress distributions. The considered structural detail is a tubular welded joint exposed to torsion. The
torsion moment causes mode-III shear in the through thickness direction at the notch. This stress distri-
bution can be grasped by using FEA. The found stress distributions are used to develop the semi-analytical
formulation for mode-III. The formulation will exist of several components which describe the behaviour of
the stress near the notch. Furthermore, an empirical function for the weld load carrying stress estimate will be
outlined. A fitting function is made to obtain the estimate. After all, an evaluation is made, and conclusions
are drawn regarding the semi-analytical formulation.

3.1. Welded Joint Geometry
The assessed structural detail is a tubular welded joint as related studies [21, 48, 61, 59, 3, 42, 37] uses this
type. Also, it is the most used geometry to obtain mode-III shear stress in a structure and these types face
mode-III fatigue in engineering practices. A typical example is the flange connection in offshore wind turbine
monopiles. The schematic overview of the tubular welded joint in 2D is given in Figure 3.1. The dotted red
line represents the through thickness direction at the weld notch level for which the shear stress distributions
will be calculated in this research, hereafter called the through thickness direction. Geometry parameters
have been varied which has lead to 6,300 different geometries which are used for the analysis of the stress
distributions. These parameters are the outer radius of the tube (Rt ), the thickness of the base (tb)- and cross
(tc ) plate, and the weld length (lw ) and height (hw ). The complete overview of the dimensions can be found
in Table 3.1.

The chosen parameters for the thickness and the weld dimensions are based on what is used in industry.

Figure 3.1: The 2D geometry of the tubular joint with dimensions.

17
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Dimension Size in mm
Rt [50, 100, 200, 500, 1000, 2000, 4000]
tb [4, 8, 16, 20, 24]
tc [4, 8, 16, 20, 24]
lw [4, 6, 8, 10, 12]
hw [4, 6, 8, 10, 12]
R f Rt +21× lw

Table 3.1: The dimensions of the Ansys models.

It is also chosen so that the formulation of the weld load carrying stress estimate is comprehensive so that
a good fit can be obtained. The outer tube radius dimensions are chosen so that planar loading & response
conditions are approached, Rt = 4000 >> tb = 4. This is done so that the formulation will also hold for planar
geometries.

The material of the specimens is specified in Table 3.2. The used material is steel with nominal values for
the Young’s modulus, Poisson’s ratio and density of the material.

Property Magnitude Unit
E 210 [GPa]
ν 0.3 [-]

ρ 7850
[

kg
m3

]
Table 3.2: Properties of the material of the specimen.

3.2. Finite Element Solutions
In this section, the work performed regarding finite element models is discussed. FEA is used to obtain stress
distribution in the through thickness direction. These stress distributions are used to fit the weld load carrying
stress estimate for all particular non-dimensional geometry parameters.

3.2.1. The Modelling
Linear elastic finite element analysis is used to construct a 2D and 3D model of the geometry mentioned in
the previous section. In this research, the used software is Ansys. These models are used to obtain FE through
thickness weld notch shear stress distribution. This distribution is used to validate the semi-analytical for-
mulation and to establish the weld load carrying stress coefficient.

3D model
The 3D solid model is constructed to obtain the stress distribution over the through thickness at the weld
notch level. The element type that is used is solid185. This model is used to obtain the first results for a stress
distribution under mode-III loading & response conditions, in this case torsion. Thereafter, the model is used
to verify if the 2D model provides accurate results. If the results of the 2D and 3D model correspond, the 2D
model can be used to save modelling time. The 3D solid model is shown in Figure 3.2.

2D model
Hu et al. [21] constructed a 2D model in Ansys with the Ansys plane25 elements. These elements are suitable
for the modelling of axisymmetric structures with non-axisymmetric loading such as torsion. The element is
defined by four nodes. The model is axisymmetric around the y-axis, which is the reason the axis system is
defined as in Figure 3.3. The nodes on the x-axis are all fully constrained which models how the specimen
would be constrained in a fatigue test.

3.2.2. Solutions
The 2D model is used to obtain the stress distributions at the weld notch level. The 2D model has the advan-
tage that it saves computation time compared to the 3D model while it also has a higher mesh density near
the notch, 100 elements vs 60 elements (20 elements for the student version of Ansys) over the thickness. Fur-
thermore, the meshing of the 2D model near the notch can be kept constant instead. This was not possible
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Figure 3.2: 3D Ansys model used for verification of the 2D model with a radius of 50 mm.

Figure 3.3: 2D Ansys model used for verification and obtaining of Cbw with a radius of 50 mm.
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Figure 3.4: Stress distribution obtained with the 2D and 3D model.

for the 3D model due to changing weld dimensions. Matlab is used for post-processing the results. In Figure
3.4, the difference between the distributions obtained with a 2D and 3D model can be noted. It can be seen
that there are minor differences in the notch zone but this is negligible. Therefore, it can be concluded that
working with the 2D model gives accurate results.

3.3. Semi-Analytical Solutions
In this section the process of developing the semi-analytical formula that will be used in the effective notch
stress concept is described. The subsections are divided into the different parts which are included in the
formula, respectively, the notch stress component, the weld load carrying stress component and the far field
stress component. Combined they form the weld notch stress formulation. The weld load carrying stress
estimate is elaborated on in since it this one is unique for each welded joint configuration. Last but not least,
the application of the formulation with a shell model is assessed.

3.3.1. Notch Stress Component
In this section, the notch stress component, also called the V-shaped notch term, used to obtain the semi-
analytical formulation is discussed. The related parts are highlighted with a box in Equation (3.1).

τn

(
r

tb

)
= τs

Cm

(
r

tb

)λ−1

− (Cb +Cbw )

{
2 ·

(
r

tb

)
−1

}
−2 · rτs ·

(
r

tb

) (3.1)

Where:

τn

(
r
tb

)
= Weld notch shear stress distribution [N/mm2]

τs = Structural shear stress [N/mm2]
Cm ,Cb = Force and moment equilibruim coefficient [-]
rτs = Structural linear stress ratio (mode-III) [-]

As described in Section 2.3.4, a formulation is found which describes the shear stress distribution for
sharp notches and mainly the notch stress component, Equation (3.2). In Section 2.3.4, the basics of the
description of stresses at singularities is explained with the Williams’ asymptotic solution [58] and Neuber’s
work [28]. The V-shaped notch term is used to describe the stress distribution in the notch affected zone tak-
ing into account the singularity and the theoretical infinite stress level at the notch. The equation is rewritten
to a function that depends on the notch through thickness ratio, r

tb
.
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τn (r ) =−λrλ−1 A2cos
(
λβ

)
(3.2)

τn

(
r

tb

)
= −λtλ−1

b A2cos
(
λβ

) (
r

tb

)λ−1

(3.3)

λ= π

2α
(3.4)

In Equation (3.3), the box indicates the part that needs to be established in this study. Hu et al. [21] also
came up with a formulation which they verified with FEA, Equation (3.5). Their equation gave inside in how
others did a similar research and gave insides how to start building the formulation. They also used the V-
shaped notch term, boxed in Equation (3.5), but did not use extra terms to describe the far field stress and the
weld load carrying stress coefficient.

τzθ =
τsp
2π

(
tb

r

1−λ)
cos

(
λβ

)
A2 (3.5)

3.3.2. Weld Load Carrying Stress Component
In this section the weld load carrying stress component is discussed. The related parts are highlighted with a
box in Equation (3.6).

τn

(
r

tb

)
= τs

[
Cm

(
r

tb

)λ−1

−
(
Cb + Cbw

) {
2 ·

(
r

tb

)
−1

}
−2 · rτs ·

(
r

tb

)]
(3.6)

The semi-analytical formulation will make use of the weld load carrying stress coefficient, Cbw , as will
be discussed in Section 3.3.5. This coefficient is used because the weld geometry causes a local change in
stiffness, a shift in neutral axis, meaning the weld becomes load carrying up to some extent. The weld gives a
discontinuity in the structure which distorts the stress flow and lets stress flow through the weld. This causes
a higher stress concentration at the weld toe. Furthermore, Cbw makes the semi-analytical τn formulation
dependent on the geometry of the assessed piece of structure. The other terms only rely on the tube radius,
Rt and the notch angle, α. The Cbw value is used to correct the distribution with a linear term around the

equilibrium point
(

r
tb

= 0.5
)

which can also be distinguish from the part of the equation that is related to Cbw :(
2

(
r

tb

)
−1

)
(3.7)

3.3.3. Far Field Stress Component
In this section the far field stress component is discussed. The related parts are highlighted with a box in
Equation (3.8).

τn

(
r

tb

)
= τs

[
Cm

(
r

tb

)λ−1

− (Cb +Cbw )

{
2 ·

(
r

tb

)
−1

}
− 2 · rτs ·

(
r

tb

) ]
(3.8)

In the semi-analytical formula, the structural shear stress τs and the linear shear stress ratio rτs have a
large impact on the shape of the stress distribution and are known as the far field information. The far field

projection is τs

{
1−2rτs

(
r
tb

)}
which is also used for the mode-I formulation. This formulation is rotating

around the equilibrium point
(

r
tb

= 0.5
)
.

In Figure 3.5, the different stress components are plotted for a large and small value of the linear stress
coefficient, rτs . The shape of the far field stress is used to determine how to incorporate the linear terms.
Figure 3.5a is related to a tubular welded joint with a radius of 50 [mm]. This means a relative large linear
term is presented as can be noted in the far field stress distribution. Figure 3.5b is related to a geometry
with a radius of 4000 [mm]. This approaches a planar geometry which can be noted by the almost identical
constant stress term, τm , and far field stress term, τ f .

The far field information can be obtained in two ways for the 2D model, analytically and numerically. The
analytical way uses the initial loading parameters to calculate the parameters without local notch information
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(a) rτs = 0.24
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(b) rτs = 0.003

Figure 3.5: Stress distribution for a large and small value of rτs with corresponding distributions for τ f and τm .

incorporated. The numerical method uses the values calculated through obtaining the nodal forces from FEA,
in this case Ansys. These numerical obtained values from the solid model already include the local notch
information.

Analytical Method The analytical method, in this case excluding local notch information in the far field
information, uses the initial loading to calculate τs and rτs . In the case of this research, it is the torsion mo-
ment, Mt , which is applied at the end of the tube. The structural shear stress can be obtained with Equation
(3.9). The constant and linear stress can be obtained from τs with respectively Equation (3.12) and (3.13), and
are dependent on the geometry of the structure. The linear stress ratio is used as far field input for the semi-
analytical formula and can be obtained using Equation (3.14). For a planar geometry or tubular geometry
where Rt >> tb , τb goes to zero and therefore rτs as well.

Mt = Jtτs

Rt
(3.9)

Jt = π

2

(
R4

t − (Rt − tb)4) (3.10)

τs = Mt Rt

Jt
(3.11)

τm = τs
Rt − tb

2

Rt
(3.12)

τb = τs −τm (3.13)

rτs =
τb

τs
(3.14)

Numerical Method The numerical method, in this case including local notch information in the far field
information, uses the τs and rτs calculated from the node information in through thickness direction. Every
node has a force in both the x and y direction. These forces can be rewritten to a force related to the mode-I
and mode-III component, see Equation (3.18) where F ′

x and F ′
y are the mode components. In the tubular joint

case, only the mode-III component has a value since a pure torsion load is applied. The nodal forces related to
mode-III are transformed into line forces, Equation (3.19). The line forces are the input for the formulations
to obtain τm (Equation (3.15)) and τb (Equation (3.16)) by nodal forces obtained from FEA. These can be used
to calculated rτs which are then input for the semi-analytical formula.
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3.3.4. Weld Notch Stress Formulation
Several combinations for the weld notch stress formulation are established and have been tried as semi-
analytical formulation for the application in the effective notch stress concept. The semi-analytical formu-
lation that is most comparable to the mode-I version and gives good results is stated in Equation (3.20). It
gives the best shape and besides that the equation has the most logical structure. The notch stress compo-
nent is considered as the part covering the constant part and with that the sharp notch. The far field stress
component is correcting the distributions for the linear term that is related to the torsion loading. The far
field part will be zero for a planar geometry since rτs = 0. The weld load carrying stress component is the
geometry dependent part where Cbw is obtained by a parametric fit which will be discussed in Section 3.3.5.
The constants regarding the static force, Cm , and moment equilibrium, Cb , are defined later in this section.
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Cm =λ (3.21)

Cb = 3(λ−1)

λ+1
(3.22)

λ= π

2α
(3.23)

Force and Moment Equilibrium
In this paragraph, the force and moment equilibrium will be discussed. The constants that will satisfy this are
highlighted with a box in Equation (3.24).
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Static force and moment equilibrium should be satisfied at the through thickness level, see respectively
Equation (3.25) and (3.26). This equilibrium is used to obtain two constants, Cm and Cb . These assure that
the equilibrium is always settled since the Cbw term "rotates" the distribution around the equilibrium point(

r
tb

= 0.5
)
. These two constants are an important part to conserve all the energy in the system. The force and

moment equilibrium are also used by Den Besten to obtain formulations for Mode-I [9].
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3.3.5. Weld Notch Load Carrying Stress Estimate
The weld load carrying stress estimate, Cbw , is fitted for 6,300 individual stress distributions by varying all the
dimension which are stated in Table 3.1. This is done by the curve fitting toolbox of Matlab, where the custom

fitting function
{

Cbw, f i t

(
2
(

r
tb

)
−1

)}
is used to obtain the Cbw, f i t values. It uses the difference between the

FEA results and the semi-analytical formula without a Cbw to obtain a fitting value for Cbw , Cbw, f i t . These
values are used as input to determine an empirical function which is obtained using a multi polynomial
regression analysis function in Matlab.

Four non-dimensional geometry parameters are chosen as the independent variables which are stated
in Equation (3.29) to (3.31) distinguishing the difference in load carrying level. All geometry ratios are indi-
vidually incorporated as well as in the correlations terms in the formula that is obtained with the parametric
fitting function. Furthermore, the order to which the parameters are fitted can be manually set which can
make the function more precise, though more complex.

The geometry parameters are chosen based on the Mode I equations [34] and the nature of the mode-III
shear stress in the geometry. Qin et al. used T , thickness related, and W , weld related, in the same way as is
done in this research. The log parameter in T is chosen since the parameter is following a more linear trend
on log-scale which realises a better fit. R, radius ratio related, and S, weld size plate thickness related, are
added to gain precision to the fit. If Rt = 0, which implies a full planar geometry, R is zero and this follows the
trend for Cbw . S is based on the relation between the thickness of the plate and the weld length. A relatively
large weld length simulates a thicker end of the plate. A small weld length creates a sharper angle which
influences the stress flows. Therefore, this factor has an important influence as well. Other non-dimensional
geometry parameter combinations were also tested but did not add valuable changes to the fit.

Functions for the weld load carrying coefficient are determined. The function in Equation (3.28) is simpli-
fied by not using all parameters to the 4th order

(
T 1, W 2, S2 and R4

)
and is related to the analytical approach

of obtaining τs and rτs . Furthermore, small terms which do not influence the distributions significantly are
removed. The function is simplified to make it more amenable which improves the easiness of using it in
engineering practices. In Appendix A, the higher order formulations can be found.

Cbw = 0.04918T −0.06191W +0.3476S +0.3817R −0.01052W 2S2 −0.05106T 2R2 +0.1372S2R2

−0.1022T S +0.1981T R −0.1503W S −0.101W R −0.5244SR −0.004839T W 2 +0.05057T S2

−0.07678T R2 +0.07238W S2 +0.01302T 2S −0.2183T R3 +0.2089W R2 +0.01449W R3 −0.966SR2

+0.1021S2R +0.8919SR3 +0.017T 2 −0.1256S2 +0.257R2 −1204R3 +0.5704R4 −0.01868T W S2

+0.0135T W 2S +0.04942T W R2 +0.04197T SR2 −0.01334T S2R +0.1069W SR2

−0.01327T W R +0.02516T SR +0.1468W SR −0.03644T W SR +0.1172

(3.28)

with:

T = l og

(
tc /2+ lw

tb

)
(3.29)

W = lw

hw
(3.30)

R = tb

Rt
(3.31)

S = lw

tb
(3.32)
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3.4. Evaluation and Conclusion
In this section, the findings regarding the mode-III weld notch shear stress distribution are evaluated. The
stress distributions for different geometries are discussed. The engineering application is evaluated based on
the far field information obtained from a shell and a solid model. The goodness of the fit for the weld load
carrying stress estimate is presented. Ultimately, a road map for how to create the semi analytical formulation
is given.

3.4.1. Stress Distributions
The obtained semi-analytical formulation for the weld notch stress distribution is used to plot the distribution
in Figure 3.6. The distributions follow the same trends as the FE distributions. The values in the notch affected
region are important since this part of distributions is needed to calculate the effective notch stress. That part
is also in line with the FE solution. In the error bar plots in Figure 3.8, η2 is related to the distributions and
shows that the distribution is meeting the requirements.
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Figure 3.6: Stress distributions for specimens with realistic dimensions.

The weld notch shear stress distributions that are obtained with the semi-analytical formulation follow
the trends of the FE solution. The errors are small and the largest errors are close to the notch or related to
geometries that are not realistic or even not allowed due to regulations. Therefore, it can be concluded that
the formulation can be used for the effective notch stress concept.

For the analytical distribution, the stress at the notch goes to the theoretical value of infinity where the
value obtained with FEA varies between 1 and 3 MPa. The discrepancy is due to the modelling and both
values are probably unrealistic. The expectation is that the stress distribution in reality will be somewhere in
the middle between the FEA and the semi-analytical formulation. This will not lead to problems since the
analytical formulation is more conservative in that respect.

The formulations can be used to calculate the effective notch stress although the micro-structural support
length, ρ∗, needs to be determined for Mode-III. An effort to do this is presented in Chapter 4 of this thesis.
If this can be realised it will be a more accurate assessment of the fatigue lifetime of structures.

The geometries used in this research are all tubular welded joints with varying dimensions. Ideal ge-
ometries like the specimens in this research behave differently compared to as-built structures where more
deviation can be found. This should be taken into account when assessing structures and might be some-
thing to assess in future studies. Although the geometries for which the radius is large (Rt = 4000 [mm]) are
approaching planar geometry behaviour, in a parallel study next to this thesis, a pure planar geometry will be
assessed.

The relative errors for all the 6,300 geometries are visualised in the bar plots in Figure 3.8. The way the
errors are calculated is stated in Equation (3.33) to (3.35). η1 is related to the function without taking into
account the stress that is carried by the weld (Cbw = 0). η2 is showing the errors for which Cbw is taken into
account with the complete function and obtained by using Equation (3.20). η3 is showing the errors for which
Cbw is taken into account with the simplified function. 98.75 % of the stress distribution has an relative error
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Figure 3.7: Stress distributions for extreme dimensions
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Figure 3.8: Global error estimates for the stress distribution using no Cbw , the complete and the simplified function.

which is lower than 10 % and are therefore acceptable.

η1 = τF E A −τn (Cbw = 0)

τF E A
(3.33)

η2 =
τF E A −τn

(
Cbw,compl ete

)
τF E A

(3.34)

η3 =
τF E A −τn

(
Cbw,si mpl i f i ed

)
τF E A

(3.35)

In Figure 3.9a, the mean error and corresponding standard deviation for all geometries are plotted. In
Figure 3.9b, this is done for all geometries with a weld angle between 40° and 50°, i.e. weld dimensions which
are as supposed to be in as-built structures. In this case Equation 3.28 is used to obtain the Cbw values.
Both figures show that the relative error in the far field zone is small. The error in the notch affected zone is
significant, but can be explained. The theoretical weld notch shear stress distribution obtained with the semi-
analytical formulation approaches a maximum notch stress of infinity. The stress distributions obtained with
FEA have a finite maximum notch stress value, which makes that a flatter trend in the notch affected zone is
observed.
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(a) For all weld dimensions incorporated in this study.
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(b) Realistic weld dimensions with a weld angle between 40°and 50°.

Figure 3.9: Mean error plotted over the through thickness direction with the standard deviation.

Unusual dimensions
The obtained stress distributions for common weld dimensions are shown in Figure 3.6. The distributions are
as one would expect and they follow the same trend as the FE solution. Unusual dimension combinations are
also taken into account to get a complete function for Cbw and the fit in general. Some of them are more off
compared to the ones in Figure 3.6 and are shown in Figure 3.7. Although these dimensions are not common
in practice, a weld angle of 45 degrees is standard, the distributions still follow the trends of the FE solution.
This means that even for the extreme cases, good results can be obtained using the developed formulation
for Cbw and τn .

The Structural Shear Stress, τs and the Linear Stress Ratio, rτs

In Section 3.3.3, it is shown that an analytical and numerical method can be used to obtain the values for τs

and rτs . The analytical values give a slightly better estimation for the through thickness stress distribution re-
garding the solid models. Furthermore, the values are easier to obtain since no FEA including weld modelling
is necessary. The loading and geometry parameters are sufficient to calculate the analytical values and with
that for establishing a stress distribution. The advantage of the numerical values is that more local informa-
tion near the notch is included by τs and rτs instead that this information is included in Cbw which makes it
less dependent of that parameter. The shape with a Cbw = 0 for the numerical case is naturally already quite
good due to the incorporated local information in τs and rτs , compared to the one with the analytical values.
This phenomenon can be seen in Figure 3.10b.There the two are almost identical where the two distributions
obtained with the analytical method are more off as can be seen in Figure 3.10a. Though the error using the
relatively large Cbw is smaller.

In Figure 3.10a, the trend of the weld notch shear stress distribution obtained with the analytical method
is more in line with the FE solution than the numerical method. The latter starts above the FE solution then
goes down a bit where after it reaches infinity. The analytical one follows the distributions of the FE solution
over the complete through thickness distribution. But an even more important aspect are the results from
the shell model analysis in Section 3.4.2. The numerical obtained values for τs and rτs are comparable to
the analytical values obtained for the solid model. Since no local information regarding the weld and notch
is present in the shell model it is logical that these values are in line with the analytical calculated far field
information. If one wants to use the numerical far field information obtained with shell models, the Cbw

value obtained with the analytical values is the one to use. This is one of the goals of this research since these
methods should in the end be implemented in engineering practices where shell models are the standard.
Therefore, it can be said that this method is the one to use.

The different errors for both methods are stated in Figure 3.11. It is clear that the distribution obtained
with the analytical method is more accurate. Since it is also easier to obtain and less FEA is necessary the
analytical method is the best to use in practice. However, once the structure becomes more complex, it is
no longer possible to obtain τs and rτs by simply considering its geometric dimensions as in Equations (3.9)-
(3.14). Therefore, for complex structures it is suggested to numerically obtain τs and rτs from a FE shell model
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Figure 3.10: Stress distributions with different method of calculating τs and rτs .
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Figure 3.11: Global error estimate, η2 for the analytical method and η3 for the numerical method including all 6300 geometries.

and then proceed with the so called "analytical method". The "numerical method" could be used when using
a FE solid model since the local information is then obtained from FE and should not already be included in
the weld load carrying stress estimate, Cbw . A method to obtain this could be introduced in future research.

Another way to evaluate the analytical and numerical results is the outcome of the effective notch stress
calculated with the two separate methods. This could be done when the procedures in Chapter 4 are success-
fully executed. It is recommended to do future research on the topic of the relation between the numerical
and analytical obtained effective notch stress.

Comparison with Mode-I Distribution
In the literature review, the formulation for mode-I is mentioned. Since the mode-III formulation has fol-
lowed from the development of the formulation for mode-I an evaluation has been made regarding the dif-
ferences. The mode-III formulation contains an extra bending term, Cb , which depends on the notch angle.
This term has followed from the moment equilibrium that is satisfied. Also the first term is different, the sine
and cosine terms are dissipated in the force equilibrium term, Cm , since static force equilibrium is satisfied
as well.



3.4. Evaluation and Conclusion 29

Rt = 50
tb = 24

Rt = 100
tb = 24

Rt = 500
tb = 24

Rt = 4000
tb = 24

τs rτs τs rτs τs rτs τs rτs

FEA 0.93 0.12 0.98 0.04 0.99 0.02 1 0.003
Analytical 1 0.24 1 0.12 1 0.02 1 0.003

Table 3.3: Difference between τs and rτs obtained analytically and via a shell model.

σn

(
r

tp

)
=σs

{(
r

tp

)λs−1

µsλs (λs +1)
[
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{
(λs +1)β

} −χs cos
{
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τn

(
r

tb

)
=τs

[
Cm

(
r
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)λ−1

− (Cb +Cbw )

{
2 ·

(
r

tb

)
−1

}
−2 · rτs ·

(
r

tb

)]
(3.37)

3.4.2. Solid and Shell FE Model Based Far Field Stress
In engineering practices, reduced computation time can be important for the application of fatigue assess-
ment concepts. In structural analysis problems, FE shell models are preferred over solid models for their ease
of creation and reduced computation time. However, shell models are inherently missing structural details
which, as described Section 3.3, have a fundamental importance for the through thickness stress distribution
near weld notches. Therefore, in order to combine engineering practices and accuracy, it is of importance
that the information necessary to obtain the stress distribution with the semi-analytical formulation can be
grasped from a shell model. In this section, this is done and documented.

In Ansys, a shell model is constructed of a tubular welded joint as can be seen in Figure 3.12. The nodal
forces at the nodes along the weld seam, visualised in Figure 3.13, can be grasped and used to obtain the
parameters as input for the semi-analytical formulation. This is done with the method as described in Section
3.3.3 under the "numerical method". The results that are obtained using these calculations are stated in
Table 3.3. It is found that for geometries with a relatively high rτs , the analytically obtained values differ
the most from the FE values. Important to note is that these values do not contain local notch information
since the weld is not modelled in a shell model. Therefore, although the values are numerically obtained, the
Cbw parametric function obtained with the analytical method (no local information included in the far field
information) should be used. Since the weld is not modelled in a shell model, the linear ratio seems to be
less. This could be attributed to the linear stress effect due to the torsional loading is not fully effective which
leads to a lower value. This will also be discussed in the next paragraph.

The distribution that can be made with this result are shown in Figure 3.14. The Cbw is obtained with
Equation (3.28). This is the parametric function where the local notch information is incorporated in the
Cbw value. It can be clearly seen that even the results for Rt = 50 and tb = 24 are following the trend which
is obtained with the FE solid model. It could even be argued that the results with the shell model are better
than the ones obtained with the analytical input parameters for geometries with a relatively high structural
linear stress ratio. Furthermore, the trends are more accurate, though less conservative, in the notch affected
region. This could be due to the fact that the analytically obtained linear term is not fully effective. Since the
values for rτs are smaller compared to the analytical values as can be seen in Table 3.3 this could lead to a
more realistic value or representation of the linear stress term but it is hard to conclude since in the basis it
are all approximations.

3.4.3. Weld Load Carrying Stress Coefficient
The weld load carrying stress coefficient depends on the geometry and since a fit is found a correlation is
expected. These trends of the weld load carrying stress coefficient are discussed in this section.

In Figure 3.18a and 3.18b, the trend of Cbw is plotted over the cross plate thickness for two different base
plate thicknesses and several weld dimensions (W = 1). The dimensions of the weld are highly correlated
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Figure 3.12: The shell model of the tubular welded joint

Figure 3.13: The virtual weld seam in the shell model used to obtain nodal forces.
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Figure 3.14: Stress distributions of the compared parameters shown in Table 3.3
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Figure 3.15: Global error estimate for complete and simplified Cbw function compared to the linear fitted one, Equation (3.38).

with the height of Cbw which can be seen for a large and small rτs in respectively Figure 3.18a to 3.18d. The
larger the weld, the more load carrying the weld becomes.

This trend becomes more clear if the weld height and weld length are varied. The weld length does not
affect the change in Cbw significantly as can be seen in Figure 3.18e compared to Figure 3.18f. Varying the
weld height shows a significant change, an increase in hw causes an increase of Cbw since this follows from
an increase in the relative weld and cross plate load path stiffness. It could also be explained as a small weld
height leads to a more blunt notch which leads to a lower stress concentration at the notch due to a softer
disturbance.

In Figure 3.18a and 3.18b, it can be noted that increasing the thickness of the base plate decreases Cbw

since the relative stiffness contribution of the weld and the cross plate load path decreases which means that
the weld is less load carrying. It can also be explained that due to the smaller thickness the weld is more load
carrying which leads to a higher stress concentration at the notch. This causes a higher Cbw for a thinner base
plate. Furthermore, can be seen that the weld is less load carrying for a smaller cross plate thickness. This
effect is not seen for the cases with a small linear stress ratio as in Figure 3.18c and 3.18d. So it seems that the
cross plate is more load carrying compared to the weld if the linear stress is relatively large.

The trends of Cbw for Mode-I are analysed by Qin et al. [34]. The trends correspond with the trends seen
for Mode-III which is a pleasant finding. This could make it easier to combine the two in a multiaxial concept
when the behaviour at the notch is comparable.

The variation of the base plate thickness is hard to visualise. The Cbw value has four parameters which
leads to a 4D problem. Since tb is involved in 3 of the 4 ratios it is hardly impossible to show the trend with
tb on the x-axis with a constant rτs value. This can be attributed to the choice of the radii of the specimens
which could be incorporated in a future study.

η4 =
Cbw, f i t −Cbw, f uncti on

Cbw, f uncti on
(3.38)

In Figure 3.16 and 3.17, the linear fitted Cbw values and the ones obtained with the empirical fitted func-
tion are plotted for the complete and simplified function. It is clear that the blue dots (parametric function)
follow the trend of the red dots (linearly fitted). In the bar plots in Figure 3.15, η4 shows the error for the
Cbw values. For the complete function more than 99% of the values have an error less than 10% where for
the simplified function the error is larger. Although the error for Cbw it self is larger, the total error for the
stress distribution is slightly smaller compared to the complete function which can be noted in Figure 3.15.
Therefore it has been decided to use the simplified function for the analysis.

3.4.4. Weld Load Carrying Stress Fitting Functions
The empirical function as stated in Equation (3.28) is the simplified version. The original function where all
the four different ratios are incorporated to the 4th order is stated in Appendix A. That one is significantly more
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Figure 3.16: All fitted, Cbw, f i t , and complete function Cbw, f uncti on values for all geometry configurations regarding W and T.

Figure 3.17: All fitted, Cbw, f i t , and simplified function Cbw, f uncti on values for all geometry configurations regarding W and T.
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(a) Varying cross plate thickness.
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(b) Varying cross plate thickness.
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(c) Varying cross plate thickness for rτs = 0.003 with tb = 12.
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(d) Varying cross plate thickness for rτs = 0.003 with tb = 24.
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(e) Constant weld length with varying weld height.
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(f) Constant weld height with varying weld length.

Figure 3.18: Trends of Cbw for varying dimensions.
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Figure 3.19: Goodness of fit plot and fitting parameters of Equation (A.1)

complex and therefore the estimation of Cbw is better but it has not a significant influence on the accuracy
of the stress distributions and gives even a slightly worse result as can be seen in Figure 3.8. The complete
function can be used for research purposes or when the accuracy of Cbw is more important than the accu-
racy of the stress distribution. For engineering purposes the simplified function is easier to use since it is
more simple to implement and as already said, slightly more accurate on the stress distribution for the tested
geometries.

The fitting parameters and the goodness of fit plot of the simplified function are stated in Figure 3.19.
The coefficient of estimation, R2, for the simplified function is 0.9881. This value should be as close to 1 and
therefore this function gives a good approximation of Cbw . The original function as stated in Equation (A.1)
has a R2 value of 0.9984 which shows the higher accuracy of using all the terms.

For Equation (A.1), (A.2) and (A.3) a leave one out cross validation is performed. The results of this val-
idation are stated in Appendix A and show that the performance of the fits are good in that sense since the
results are almost identical to the original fitting parameters. For Equation (3.28) this is not the case since this
function is manually adjusted, this is done since it was requested to have a formulation as simple as possible.

The formulation for Cbw regarding the numerically obtained far field information is also stated in Ap-
pendix A, Equation (A.3). This formulation can be used when a solid model is present and it is hard to deter-
mine the far field loading that is applied on the structure to obtain the analytical far field values. It should not
be used in combination with shell models since then local notch information is not taken into account in the
numerical far field information nor in the weld load carrying stress estimate. It is furthermore a less accurate
fit then the ones for which the local notch information is incorporated. This could be attributed to the fact
that the values are quite small, which makes the fit error sensitive. Since the effect of the numerically ob-
tained Cbw is small in general this is not per se a problem since it does not really effect the stress distribution
outcomes.

3.4.5. Road map Semi-Analytical Formulation
In this section, a road map is presented on how to use the semi-analytical formulation. There are three sce-
narios namely "No FE model", "Shell model" and "Solid model". For every scenario it is briefly described
which Equations to use for obtaining the correct far field information and which functions should be used to
grasp the correct Cbw .
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(3.39)

Cm =λ (3.40)

Cb = 3(λ−1)

λ+1
(3.41)

λ= π

2α
(3.42)

Scenario No FE Model Shell Model Solid Model
Type of
structures

Only simple structural
assembly, axisymmetric
structures

Every simple or complex
structural assembly

Every simple or complex
structural assembly

τs and rτs Analytically obtained using
Equations (3.9) - (3.14)

Numerically obtained
using nodal forces along
the seam where the weld
would be with Equations
(3.15) - (3.19)

Numerically obtained
using nodal forces along
the weld toe seam where
mode-III loading & re-
sponse is noted with
Equations (3.15) - (3.19)

Cbw For-
mulation

Local notch information
incorporated in formula-
tion Equation (3.28).

Local notch information is
not incorporated in the far
field information and is
therefore incorporated in
the Cbw value, therefore
use Equations (3.28).

Local notch information
is incorporated in the far
field information since the
weld is modelled, therefore
use Equation (A.3).

Table 3.4: Road map: How to use the semi analytical formulation, Equation (3.39) in different situations.

3.4.6. Conclusion
The goal of this part was to establish a semi-analytical formulation for weld notch shear stress distribution
which can be used for the effective notch stress concept. This is achieved and stated in Equation 3.20. The
formulation for the weld load carrying stress coefficient is accurate enough to obtain distributions that follow
the FE solution trend. The weld notch stress distributions are more conservative at the notch than the FE
solutions but this is not seen as a problem. It is found that the far field information can be obtained using
FE shell models which makes the formulation useful for engineering practices. It can even be concluded that
the far field information obtained with shell models gives a better representation of the stress distribution in
the notch affected zone compared to the analytically obtained far field information.



4
Material Characteristic Length ρ∗

In Section 2.3.5 it is shown that the material characteristic length ρ∗ is the length over which the stress distri-
bution is integrated in the effective notch stress concept to obtain the effective notch stress. In literature, no
specific value is found for this length in relation to mode III loading & response conditions. Therefore, this
value needs to be obtained. The procedure of doing this will be discussed in this Chapter. The developed
weld notch shear distribution from the previous chapter is used in this chapter to obtain the effective notch
stress. Experimental fatigue test data necessary for the analysis will be discussed. The regression analysis that
is used to find a value for the material characteristic length is elaborate on and an evaluation regarding the
results is given.

4.1. Experimental Fatigue Test Data
Experimental fatigue test data is used to estimate the material characteristic length, the estimation process
is discussed in Section 4.2. Therefore, the found data will be discussed. For test specimens, the shear stress
distribution is calculated by using the formulation which is described in Chapter 3. The geometry dimensions
needed as input for the semi-analytical formulation are found in papers. The different data sets which are
found will be discussed below. The dimensions of the several specimens are stated in Table 4.1. If detailed
Figures are presented they are added to Appendix C

Source tb tc lw hw Rt [mm] rl

Sonsino [48] 10 25 9 9 44.45 -1
Seeger [42] 8 20 6.3 6.3 54 -1
Yousefi [59] 8 25 10 10 42.45 0/-1
Siljander [43] 9.525 9.525 8 8 25.4 0/-1
Amstutz [3] 7.7 25 9 9 42.15 0/-1
Razmjoo [37] 3.2 12 11 11 24.3 0
Yung [61] 7.95 8 7.7 7.7 23.8 -1

Table 4.1: Dimensions of the used experimental fatigue test data.

4.1.1. The Experimental Data Sets
Sonsino
Sonsino et al. [48] performed fatigue tests for a tube-flange connection. The geometry is stated in Figure 4.1.
The weld notch has a radius of 0.45 [mm] which means there is no fully effective singularity. This could have
an effect on the effective notch stress calculation for sharp notches. Still the data is used since there is already
few data and the expectation is that the effect is small.

Seeger
Seeger et al. [42] performed fatigue tests for a flange-tube-flange connection. The geometry is stated in Figure
4.1 The data is used by Sonsino [46] and Hu [21] but together with the original paper [42] the dimensions for
the welds are not clear. The data is used as presented by Hu but with adjusted radius of the tube since this can
be clearly extracted from the original paper. The recommendation is to pay extra attention to this in future
research since Seeger performed even more tests for which the dimensions are not fully clear but it could be
useful data.
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Figure 4.1: The geometries of the experimental data [31].

Yousefi
Yousefi et al. [59] performed fatigue tests for a tube-flange connection. It is not exactly clear how they calcu-
lated the torsion moment. They say they use Equation (4.1). But the length in this equation conform Figure
C.5 does not really make sense for the torsion moment. Therefore, in this research, it is assumed that the
torsion moment is applied as it is applied in the FE models used in this research. The geometry can be seen
in Figure 4.1.

Mt = Ft · l (4.1)

Siljander
Siljander et al. [43] performed fatigue tests for a tube-flange connection where the geometry can be seen
in Figure 4.1. The nominal torsion stress is taken as the maximum applied torsional stress, T max

xz . In the
nomenclature, ∆τmax can be find as the maximum local shear stress. It is not fully clear which can be taken
as the structural stress at the outer radius of the tube. Furthermore, the geometry is double sided as can be
seen in Figure 4.1. This is not an issue for now, but could be taken into account in future research when
double sided flange structures are used to validate the stress distribution.

Amstutz
Amstutz et al. [3] performed fatigue tests for a tube-flange connection. The geometry is stated in Figure 4.1.
There tests are straight forward and therefore useful for this research. No specialities are noted.

Razmjoo
Razmjoo [37] performed fatigue tests for a flange-tube-flange connection. The geometry can be seen in Figure
4.1. The base plate thickness of Razmjoo is only 3.2 mm. This could be seen as an outlier. The weld size is
11 mm. This can be seen as really large compared to the thickness of the base plate which makes the data
exceptional.

Yung
Yung et al. [61] performed fatigue tests for a tube-flange connection. The geometry is double sided as can
be seen in Figure 4.1. This is not an issue for now, but could be taken into account in future research when
double sided flange structures are used to validate the stress distribution.
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Conclusion Regarding Data Sets
It is clear that limited data is available. The data which is available is mostly comparable. The data sets lack
variability, mainly in the base plate thickness which is important for this research. Therefore, it will be a hard
task to gain confidence for the material characteristic length. For future research, more experimental data
is needed, but it is not only about the quantity. The variety in geometry and response ratios should also be
taken into account.

4.1.2. Walker Mean Stress Correction
Two loading ratios, rl , can be observed in Table 4.1. These load ratios effect the fatigue life time. In order
to improve the life time estimates, exponential mean stress models have been developed to incorporate the
difference in loading ratio. This is mainly important for relatively low stress range and high mean stress.
Walker’s mean stress model [9] can be used to take the effects into account by using the stress range, Equation
(4.2) and loading ratio, Equation (4.3), as the characteristics of the loading & response cycle in space. The
formulation is stated in Equation (4.4).

This correction makes it possible to compare and use the experiments with different loading ratios. Fur-
thermore, the loading ratio can be studied since the effect can be of importance for fatigue analysis of partic-
ular structures. Thereby, the load ratio coefficient γ is one of the maximum log likelihood estimates (MLE).
This means the value will be varied to find an optimum, together with the other MLEs. This will be explained
in the next section. Last but not least, the results will be evaluated and a conclusion will be drawn.

∆τ= (τmax −τmin) (4.2)

rl r =
τsmi n

τsmax

(4.3)

Se,e f f =∆τe,e f f =
∆τe

(1− rl r )1−γ (4.4)

Where:

rl r = Load ratio [-]
γ = Load ratio coefficient [-]

4.2. Regression Analysis
Regression analysis can be used to determine the several parameters needed for a SN-curve which is used to
determine the fatigue resistance. In case of the effective notch stress concept, the SN-curve is also depending
on ρ∗ since this influences the value of the effective notch stress. First, the theory behind the maximum
likelihood regression analysis will be discussed. Thereafter, the profile log likelihood plots which show the
uncertainty of the values and shows if the values are stable enough to use in practice will be shown. Lastly, a
Monte Carlo type of approach is discussed where after the method using the AIC criterion is set out.

4.2.1. Maximum Likelihood Regression
The regression analysis, the maximum likelihood regression, tries to find the optimum values that are most
likely to give a stable solution for the problem. The values are called the maximum log likelihood estimates.
In the case of this study there are 5 estimated values: {log(C ),m,σ,ρ∗,γ}. The optimisation is executed by
the Matlab function fmincon. This function is trying to find the optimum of the 5 parameters. For every pa-
rameter ranges are defined where the value should be in to constrain the problem and to secure a reasonable
outcome. The log likelihood function is defined in Equation (4.5).

L (θ; N | S) =
n∑

j=1
δ j log

{
f
(
N j | S j ;θ

)}+ (
1−δ j

)
log

{
1−F

(
N j | S j ;θ

)}
(4.5)

θ = {
log(C ),m,σ,ρ∗,γ

}
(4.6)

Where:
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Figure 4.2: Results of a Monte Carlo simulation to obtain ρ∗.

δ = Data type {complete = 1, censored = 0} [-]
σ = Standard deviation [-]
C = Fatigue resistance constant [N/mm2]
f = Probability density function [-]
F = Cumulative distribution function [-]
m = Fatigue resistance slope [-]
N = Total number of cycles until failure [-]
S = Stress range [N/mm2]

4.2.2. Maximum Likelihood Regression Using Profile Likelihood Plots
Figure 4.5 shows the results of the profile log likelihood regression and it can be seen that the value found
for ρ∗ gives low confidence. Although the analysis gives an optimal value of 1.01 the results do not get sig-
nificantly worse when a value between 0.01 and 9 is used. These are the values corresponding with the 75%
confidence level which is visualised in Figure 4.5d. The value for log(C ) is also not clear. This can be related
to the fact that ρ∗ could go up to close to zero which leads to close to an infinite effective notch stress which
gives a highly unstable log(C). In cases of a high log(C) this leads to a rather conservative fatigue resistance
curve in relation to the experimental data.

4.2.3. Maximum Likelihood Regression Using Monte Carlo
The maximum likelihood regression is also used with Monte Carlo simulation based initial parameter esti-
mates. Like the single peak value in a parameter profile likelihood plot, the same MLEs for a range of Monte
Carlo simulation based initial parameter estimates, provides a qualitative type of confidence that the set of
MLEs reflect the global optimum in the design space.

{
log(C ),m,σ,ρ∗,γ

}
, are the randomly chosen input

parameters out of uniform distributions to obtain results for the MLEs. The boundaries for the parameters
are chosen such that reasonable output is guaranteed. The results for ρ∗ are shown in Figure 4.2. 65% of the
10,000 taken samples give a value between 1.01 and 1.02, where 95% give a value between 1.01 and 1.03.

The result is reasonable and corresponds to the result that is obtained with the profile log likelihood plots.
It gives extra confidence that the ρ∗ value of 1.01 [mm] is in the right direction. Still the amount of experi-
mental data and the lack of variation in base plate thickness makes it hard to proof that this result is the right
result.

4.2.4. Akaike Information Criterion
The Akaike information criterion (AIC) [2] is a method to obtain the most likely parameter considering the
number of parameters. The lowest AIC for a certain data set is taken as the most likely value by using the max-
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Figure 4.3: Akaike information criterion for varying ρ∗.

imum likelihood value, max{L (θ; N | S)}, subtracting the amount of parameters, k. This result is multiplied
by a factor 2 coming from the χ2 distribution. The formulation is stated in Equation 4.7. Executing this for ρ∗
leads to a value of 1.00 [mm] as can be seen in Figure 4.3.

AIC =−2[max{L (θ; N | S)}−k] (4.7)

4.3. Evaluation and Conclusion
The final ρ∗ that is obtained from the analysis is 1.01 [mm]. The effective notch stress is obtained by integrat-
ing over this value. This leads to a SN-curve of which the MLEs are on top of Figure 4.5. Although it visually
all looks pretty good, the confidence regarding the results is low as is most clearly described by the relative
parameter profile likelihood plots mainly of log (C ) and ρ∗ in Figure 4.5a and 4.5d.

The ρ∗ of approximately 1 [mm] is the same as the material characteristic length that is obtained by using
a support factor of 1 and a reference radius, ρ f , of 1 [mm] as described in Section 2.3.5. The typical obtained
value for mode-I found in literature is 0.4 [mm] but Qin et al. [35] found a value for mode-I which is also
approximately 1 [mm]. The term "approximate" is an important one, since for both mode-I and mode-III it
seems clear that a range of ρ∗ values around the approximated ones give results that make give reasonable
answers as well.

The values for the load ratio coefficient, γ, are 0.87 for mode-I [34] and 0.97 for mode-III obtained in
this research. The difference could be declared to the fact that compressive stress has less influence on the
fatigue lifetime then tensile strength. Negative stress in case of mode-I is compressive, while negative stress
for mode-III is not. Therefore, it could be said that the influence of the mean stress correction is larger for
mode-I. It should me noted that also for the load ratio coefficient the confidence levels are rather high.

The differences regarding the tested specimens can also be evaluated. Although it is very subjective due
to the low amount of variation. In Figure 4.4 a difference between a load ratio of -1 and 0 can still be noted
besides the fact the mean walker correction is already applied. Though it is hard to define the reason since
large differences for the same loading condition are also present.

In Figure 4.6, five SN-curves are plotted where distinguishes are made clear between the specimens. Fig-
ure 4.6b shows the differences for the type of weld treatment. Only four specimens are as welded which also
all have a relatively high stress range. This makes it hard to draw conclusions from this.

Figure 4.6c shows the difference in base plate thickness. It can be noted that the specimens of Seeger and
Yousefi are both 8 [mm] and somehow are in line with each other. Amstutz has base plate thickness 7.7 [mm].
One should expect this also around Seeger and Yousefi, on the contrary this is not the case. Therefore, also
the base plate thickness is a hard parameter to distinguish the different effects.

Figure 4.6d shows the differences in weld size. A spread is seen for various weld sizes. Actually the same
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Figure 4.4: SN-curve showing the research project and load ratio in one.

conclusion can be drawn as for the base plate thickness, it is hard to find a pattern. A note can be made by
the specimen of Razmjoo, these have a weld size of 11 [mm] but a thickness of 3.2 [mm]. This is ratio is an
outlier. When more data is available, the data of Razmjoo should be evaluated if the set makes sense. Figure
4.6a and 4.6e can be also distinguished from Figure 4.4 and are already discussed before.

The final conclusion that can be drawn is that to obtain a profound solution for ρ∗, more experimental
data is needed that represent a wider variety of specimen geometries. Now all almost all data sets have ap-
proximately the same plate thickness, radius and loading conditions. These data sets could help to gain more
confidence over the obtained ρ∗. This could be done by using notch specimen data for which a material char-
acteristic parameter should be present as well. The difference in type of notch can be covered by the stress
angle β. Potential differences in material could be obviated by using a strain model.
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Figure 4.5: Profile log likelihood plots of the parameters to obtain a fatigue resistance curve for the effective notch stress concept
SN-curve.
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Figure 4.6: SN-curves showing the trends of differences between the specimens.



5
Conclusion and Discussion

In this chapter, the research question will be answered and with that the conclusion of this research is stated.
Thereafter, several results will be briefly discussed and a recap of the mentioned recommendations is given.

5.1. Research Questions
In this section, first the sub-questions will be answered where after a conclusion can be drawn regarding the
main research question.

5.1.1. Sub-Questions
In which way is it possible to find a semi-analytical formulation for the through thickness weld notch shear

stress distribution that can be used for the effective notch stress concept?

A semi-analytical formulation is obtained by using a notch stress, far field stress and weld load carrying stress
component. These three are combined to a semi-analytical function that can describe the weld notch shear
stress distribution. Accurate results are obtained and therefore the formulation can be used as input for the
effective notch stress concept. The weld load carrying stress component uses a weld load carrying stress
estimate to obtain good results for the distribution near the notch. This estimate is based on a polynomial
function that uses the geometry dimensions of the structure.

Can the obtained semi-analytical formulation be used for practical engineering applications? In other words,
is it possible to obtain information about the through thickens weld notch shear stress distribution from a

coarse FE shell model without including local details (i.e. welds)?

The semi-analytical formulation that is obtained can be used with far field information extracted from a
shell model. The obtained results for the stress distributions are in line with the FE trends. This means that if
a shell model of a structure is present, engineers can use nodal forces to obtain the far field information and
use the formulation to obtain the weld notch shear stress distribution of specific notches in a structure.

What is the effective notch stress related material-characteristic microstructural length parameter for mode-III
loading?

The material characteristic microstructural length parameter for mode-III loading that is found in this
research is 1 [mm]. This meets the expectation but the basis on which this is calculated is weak. The ex-
perimental data set is small which leads to uncertainties and large confidence bounds. More research, and
mainly more experimental fatigue test data, in quantity and in variety, is necessary to obtain confidence over
the results.

5.1.2. Main Research Question
How can the effective notch stress concept be used to investigate welded joints subjected to mode-III loading &

response conditions and contribute to multiaxial fatigue assessment of welded joints in marine structures?

The effective notch stress concept can be used to investigate mode-III loading & response conditions.
However, more confidence need to be gained on the material characteristic microstructural length to make
it fully suitable for application. After this, a study can start on the application for multiaxial applications. In
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this research, while searching for only torsion data, quite some multiaxial fatigue test data is found. This can
be used to obtain a SN-curve where the effective notch stress is calculated both for mode-I with the method
of Qin et al. [35] and the method for mode-III obtained in this research.

5.2. Recommendations
First of all, more experimental fatigue test data is needed in quatinty and variety. This is an outcome of
many fatigue research project but not less important. Hopefully, the offshore wind turbine industry will keep
investing in doing tests to make fatigue life time estimates more accurate.

Secondly, all FEA is done for a one sided tubular joint. Qin et al. [35] made up two formulations. One for
a T-joint and one for a cruciform joint. The potential effects of the weld on the other side of the cross plate
could be investigated in future research since it could be that the semi-analytical formulation developed in
this research is applicable for that type of geometries.

When more certainty about the material characteristic length is obtained, the comparison could be made
between the structural hot spot stress and the effective notch stress concept. This could gain insides on which
method is most conservative after all. Furthermore, this is a good proof of concept on marine structures
modelled in FE shell models.

In a validation study of the semi-analytical formula, the ratio between the radius and the base plate thick-
ness could be chosen so that analysis on the trend of the weld load carrying stress coefficient is more practical.
This can be done by varying the base plate thickness for constant ratios instead of fixed radii.

A method to obtain the "far" far field information as input for the "analytical method" could be studied.
For example, what are the results if one take the stress from a distance from the notch where the load is linear
but as close as possible to the notch.
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0.1 0.15 0.2 0.25 0.3

0.1

0.15

0.2

0.25

0.3

R2 0.9984
MAE 0.0090
MAESTD 0.0100
CVRSquare 0.9983
CVMAE 0.0091
CVMAESTD 0.0102

Figure A.1: Goodness of fit plot and fitting parameters of Equation (A.1)

Function for Cbw with all the terms and correlations incorporated to the 4th order where rs and τs are
obtained analytically for the volume model:

Cbw =−0.006203T 4 +0.004146T 3W +0.0372T 3S −0.05115T 3R −0.01099T 3 −0.001147T 2W 2

−0.0192T 2W S +0.0007596T 2W R +0.009642T 2W −0.04274T 2S2 +0.07698T 2SR −0.001759T 2S

−0.1907T 2R2 −0.07464T 2R +0.01148T 2 −0.001243T W 3 −0.0007054T W 2S −0.0007774T W 2R

+0.005868T W 2 +0.009705T W S2 −0.01973T W SR +0.02265T W S +0.09198T W R2 −0.02886T W R

−0.02558T W +0.005575T S3 −0.04881T S2R +0.07756T S2 +0.3065T SR2 +0.02561T SR

−0.1268T S −0.2422T R3 −0.5451T R2 +0.2999T R +0.05296T +0.0008737W 4 +0.001324W 3S

+0.003067W 3R −0.01241W 3 −0.003314W 2S2 −0.005437W 2SR +0.01018W 2S

−0.03186W 2R2 −0.009344W 2R +0.05654W 2 −0.005961W S3 +0.005739W S2R +0.0331W S2

+0.0268W SR2 +0.05858W SR −0.1058W S +0.04575W R3 +0.1487W R2 −0.03219W R −0.1217W

−0.008007S4 −0.05913S3R +0.06573S3 +0.1198S2R2 +0.4048S2R −0.2779S2

+0.9186SR3 −0.3514SR2 −0.9149SR +0.4721S +0.3047R4 −1.026R3 −0.05018R2 +0.5067R +0.1038

(A.1)
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Figure A.2: Goodness of fit plot and fitting parameters of Equation (A.2)

Function of Cbw with T to the 1st, W and S to the 2nd and R to the 4th order where rs and τs are obtained
analytically for the volume model:

Cbw = 0.04918T −0.06191W +0.3476S +0.3817R −0.01052W 2S2 −0.05106W 2R2

+0.1372S2R2 +0.001179T W −0.1022T S +0.1981T R −0.1503W S −0.101W R −0.5244SR

−0.004839T W 2 +0.05057T S2 −0.07678T R2 +0.07238W S2 +0.01302W 2S −0.2183T R3 +0.2089W R2

+0.008514W 2R +0.01449W R3 −0.966SR2 +0.1021S2R +0.8919SR3 +0.017W 2 −0.1256S2

+0.257R2 −1.204R3 +0.5704R4 −0.01868T W S2 +0.0135T W 2S +0.04942T W R2 −0.002805T W 2R

+0.04197T SR2 −0.01334T S2R +0.1069W SR2 −0.00158W S2R −0.01625W 2SR −0.001091T W S

−0.01327T W R +0.02516T SR +0.1468W SR −0.03644T W SR +0.1172

(A.2)
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Figure A.3: Goodness of fit plot and fitting parameters of Equation (A.3)

Function of Cbw with all the terms and correlations incorporated to 4th order where rs and τs are obtained
numerically from the volume model:

Cbw = 0.1723R4 +0.05414R3S +0.1042R3T +0.045R3W −0.2693R3 −0.02734R2S2 +0.04444R2ST

+0.04868R2SW −0.06108R2S −0.002548R2T 2 +0.006188R2T W −0.1093R2T −0.009589R2W 2

−0.01432R2W +0.1004R2 −0.001341RS3 −0.01107RS2T +0.003866RS2W +0.01557RS2

+0.007883RST 2 −0.002697RST W +0.01398RST −0.0009021RSW 2 −0.01009RSW

−0.008668RS −0.002748RT 3 +0.001869RT 2W −0.01296RT 2 −0.001003RT W 2 +0.00225RT W

+0.009376RT +0.00129RW 3 −0.004492RW 2 +0.01229RW −0.01292R −0.0001756S4

+0.001894S3T −0.000334S3W −0.0002405S3 −0.008462S2T 2 +0.001904S2T W +0.006134S2T

−0.0006556S2W 2 −0.0005258S2W −0.001282S2 +0.008079ST 3 −0.004406ST 2W +0.01098ST 2

−0.0002464ST W 2 +0.0114ST W −0.03535ST +0.0002512SW 3 +0.002775SW 2 −0.01179SW

+0.01836S −0.002457T 4 +0.0004025T 3W −0.0058T 3 −0.0003663T 2W 2 −0.0002073T 2W

+0.005545T 2 −0.0004382T W 3 +0.001269T W 2 −0.006309T W +0.01554T +0.001329W 4

−0.01229W 3 +0.04047W 2 −0.05955W +0.03364

(A.3)





B
Trends Cbw for the Simplified Function.

In this Appendix, Figures are stated that show the accuracy of the polynominal function for Cbw for all differ-
ent combinations for the x and y-axis.

Figure B.1: All fitted and simplified function Cbw values for all geometry configurations regarding W and S.
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52 B. Trends Cbw for the Simplified Function.

Figure B.2: All fitted and simplified function Cbw values for all geometry configurations regarding W and R.

Figure B.3: All fitted and simplified function Cbw values for all geometry configurations regarding R and T.
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Figure B.4: All fitted and simplified function Cbw values for all geometry configurations regarding R and S.

Figure B.5: All fitted and simplified function Cbw values for all geometry configurations regarding S and T.





C
Detailed Figures of Specimens

(a) Dimensions of the specimen. (b) The weld-seam in detail.

Figure C.1: Tube–flange connection investigated by Sonsino et al. [48].

Figure C.2: Tube–flange connection investigated and seam geometry by Amstutz et al. [3].
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56 C. Detailed Figures of Specimens

Figure C.3: Geometry of specimen investigated by Siljander et al. [43]

Figure C.4: Geometry of the specimen of Yousefi et al. [59]. (a) Detail of the seam preparation. (b) Detail of the seam.
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Figure C.5: Geometric data for calculating the nominal stress [59]

Figure C.6: Geometry of the specimen of Seeger et al. [42]. This research is using option B.



58 C. Detailed Figures of Specimens

Figure C.7: Geometry of the specimen of Yung et al. [61]
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