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A B S T R A C T

For the complex multi-ship encounter scenarios, this article proposes a dynamic collision avoidance path
planning algorithm based on the A-star algorithm and ship navigation rules, namely Dynamic Anti-collision
A-star (DAA-star) algorithm. A dynamic search mechanism of the DAA-star algorithm considering time factors
is designed to enable the collision avoidance for situations with known moving obstacles. A quaternion ship
domain is generated based on Automatic Identification System (AIS) data, and the navigation risk cost is
calculated with the combination of the quaternion ship domain and potential field. The searching constraints
conforming with the Regulations for Preventing Collision at Sea (COLREGS) rules are set for the DAA-star
algorithm to guarantee the safety of collision avoidance. Meanwhile, the individual ship maneuverability
constraints and maneuverability differences from ship to ship are both considered in the proposed DAA-
star algorithm, which can solve the path planning problem with dynamic obstacles in multi-ship encounter
scenarios. The simulation results show that, compared with the traditional A-star algorithm and dynamic A-star
algorithm, the DAA-star algorithm can generate more reasonable dynamic and static obstacle avoidance paths
in complex navigation scenarios in the trade-off between the navigation risk and economical efficiency.
1. Introduction

1.1. Background

In recent years, unmanned vehicles such as Unmanned Ground
Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs), and Unmanned
Underwater Vehicles (UUVs) have received more and more atten-
tion (Bi, 2021). The rapid development of unmanned vehicle related-
technologies promotes the evolution of intelligent and unmanned ships
(Felski and Zwolak, 2020; Zheng et al., 2017). The autonomous nav-
igation control system of an unmanned ship mainly involves three
parts: perception and cognition module, decision-making and path
planning module, path following and implementation module (Yang
et al., 2007). The International Maritime Organization (IMO) had for-
mally proposed the concept of Maritime Autonomous Surface Ships
(MASS) in 2017 (IMO, 2017). It formulated relevant regulations, which
indicates that autonomous ships have become the inevitable develop-
ment direction of ships in the future. Although many advances have
been made in intelligent ship perception equipment such as Automatic
Identification System (AIS) and Radar, ship collision accidents still
occur, which could cause tremendous losses of lives and economics (Li
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et al., 2021; Chauvin et al., 2013; Martins and Maturana, 2010).
Actually, in several circumstances, the perception system has found
obstacles on the ship tracking, however dangerous accidents such as
collisions could still occur due to the lack of effective path planning
methods. Therefore, when a ship is underway, especially in a complex
multi-ship encounter scenario, the ship path planning is essential (Wang
et al., 2021; Zhou et al., 2019). Moreover, it is also necessary to
consider various factors such as the Regulations for Preventing Collision
at Sea (COLREGS), the dynamic and static obstacles, the ship maneu-
verability constraints (Liu et al., 2018), the different ship intelligence
levels (Huang et al., 2020), and the economy at the same time during
path planning, which significantly increases the difficulty of ship path
planning.

1.2. Related work

According to the type of obstacles, the ship path planning can be
divided into global path planning, and local path planning (Larson
et al., 2006). In this article, the obstacles are divided into known static,
unknown, and dynamic obstacles. The known static obstacles refer
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141-1187/© 2021 Published by Elsevier Ltd.
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to the static obstacles that have been detected, such as bridge piers,
shores, anchored ships. The unknown obstacles refer to the obstacles
that have not been detected, such as a small boat that suddenly appears.
The unknown obstacles are not considered in the global path planning.
The known dynamic obstacles refer to obstacles whose trajectories can
be predicted, such as traffic lights, trains, and typical navigation ships.
For the known dynamic obstacles, we can sample their trajectories
according to time. Thus they can be considered as static obstacles
within the sampled moment. For all the unknown obstacles, they can
be regarded as dynamic obstacles. Therefore, during the actual path
planning, obstacles can only be divided into static and dynamic ones.
In general, the global path planning algorithm is utilized to avoid the
static obstacles, and then the local path planning algorithm is utilized
to avoid the dynamic obstacles.

Global path planning methods mainly include Bug, Dijkstra, A-star,
Artificial Potential Field (APF), Particle Swarm Optimization (PSO).
Bug algorithm (Lumelsky and Stepanov, 1986) is a simple obstacle
avoidance algorithm whose idea is that the object walks along the
obstacle’s outline to bypass the obstacle after encountering the obstacle.
This algorithm can always find a feasible path, but its efficiency is
low and cannot handle complex scenarios. Dijkstra algorithm (Dijkstra
et al., 1959) combines the breadth-first search algorithm and the con-
cept of the heap. In the search process, it calculates the optimal path
from the starting node to the target node and calculates the lowest
cost path from the starting position to the target node. The A-star
algorithm (Hart et al., 1968) introduces a heuristic function based on
the Dijkstra algorithm and selects the best path by calculating the
cost to reach the target, and the cost starts from the beginning. The
APF algorithm (Khatib, 1986) sets a repulsive field for obstacles and
a gravitational field for the target point. The object reaches the target
point through the gradient descent algorithm. One of its disadvantages
is that it may fall into a local deadlock and cannot reach the optimal
solution. The PSO algorithm (Kennedy and Eberhart, 1995) assumes
that each particle in the particle swarm represents a possible solution
to a problem. The PSO algorithm is convergent and straightforward,
and its speed is fast. However, there are problems with dimensionality
disasters and local extreme values. All these algorithms have been
applied to ship global path planning. Based on the traditional A-star
algorithm, Liu et al. (2019), Singh et al. (2018) have taken into account
collision risk, path length, and navigation rules to generate a safer,
more feasible, and more economical path. In Chen et al. (2020), a
fast-tracking algorithm is used to sum the impact of collision risk and
generate the optimal global path.

The local path planning is to avoid moving or unknown obsta-
cles nearby that are not considered in the global path planning. For
the ship local path planning, the COLREGS proposed by IMO is of-
ten considered (mainly related to rules 13–17). Some scholars have
adopted the method of dynamic real-time planning, that is, updating
the map information with a certain frequency and then re-planning the
path periodically (Jiang et al., 2014; Gibson et al., 2020). The three-
dimensional reconstruction method is used to obtain the surrounding
obstacle information in real time, and then the surrounding obstacles
as static obstacles are regarded, and A-star algorithm is applied to
re-plan the optimal path (Jiang et al., 2014). Gibson et al. (2020)
propose a multi-agent time-based path planning method using A-star.
Periodic updates of the generated path are calculated, utilizing the state
feedback from the real world. One of the advantages of those methods
is that they have simpler structures and easily realized features, and do
not need to rely on other algorithms. Some scholars have also adopted
this type of method in the local path planning of ships. In Naeem et al.
(2012), obstacle information is detected and updated by continuously
updating map information and re-plan the global path for current ob-
stacles. The port side area of the ship obstacles is prohibited from being
searched to comply with Rule 14 of the COLREGS rule. Nevertheless,
2

its shortcomings are also apparent, i.e., each re-planning of the path
is accompanied by a certain amount of calculation. Re-plan method is
easy to fall to an optimal local area and ignore the global optimal path.

Some scholars prefer planning a globally optimal path first and then
avoiding dynamic obstacles by varying the speed. Khatib (1986) adopt
a two-level planning method. A robot walking path is firstly planned
according to the known static information in the environment, and then
the robot is guided to run along the path and avoid dynamic obstacles
by adjusting the speed of the robot. Fiorini and Shiller (1993) describe
dynamic obstacles with the relative speed and position of the object.
Thus, convert the dynamic path planning problem to the static path
planning problem. To ensure the optimal path while reducing the risk
of collision with dynamic obstacles. The advantage of these methods
is that the object can always follow the shortest path (or the minimal
risk path). But they have some disadvantages, for instance, a certain
time cost increasing, and maneuverability limitations. It is difficult for
some objects, especially ships, to continuously accelerate or decelerate
or even stop during the driving process. Therefore, this type of method
maybe not be suitable for complex waters.

In some scenarios, the modular concepts, i.e., dividing path plan-
ning to multiple modules, have also been considered. The global path
planning uses the module based on an optimal algorithm. The local
path planning uses a separate algorithm (Ajeil et al., 2020; Mobader-
sany et al., 2015). For instance, Mobadersany et al. (2015) proposed a
hybrid path planning method combining a Dijkstra algorithm for global
path planning and a fuzzy theory for local planning. The global path
is divided into several small segments, with local collision avoidance
within each small segment. At this stage, most ship path planning
methods adopt multiple module methods. For the local path module,
Lee et al. (2004) proposed an autonomous navigation algorithm for
ships based on fuzzy logic based on the Virtual Force Field (VFF). The
proposed navigation algorithm can comply with the COLREGS and cope
with the uncertainties of the marine environment. However, this algo-
rithm cannot deal with various complex navigation situations. In Lyu
and Yin (2019), a real-time path planning method for autonomous
ships in a complex environment is proposed. Specifically, the local
path planning uses an improved APF algorithm, including a new and
improved repulsion function and virtual force, which can solve collision
avoidance problems for multiple dynamic ships and stationary obstacles
in line with COLREGS rules. However, it is computationally intensive
and cannot avoid the deadlock problem. Lee et al. (2019) propose
a ship automatic collision avoidance and path generation algorithm
based on Velocity Potential Field (VPF) method to avoid the deadlock
problem. COLREGS rules are incorporated into the algorithm. At the
same time, multiple-ship encounter situations in crowded waters are
not taken into consideration. In conclusion, one of the advantages of the
above methods is that it adopts modularization. Each module performs
its duties, which can effectively solve the problem. The disadvantage
is that the complexity has increased significantly. There are defects
in the combined strategy of global path planning and local collision
avoidance. The segmented method, i.e., the return path is generated
after the partial collision avoidance is complete, will increase the cost
of the journey. The re-planning method, i.e., re-planning after collision
avoidance, the amount of calculation, will significantly increase. As
shown in Table 1, there are contradictions among the increase of the
calculation amount of path planning, the increase of factors considered
in path planning, the real-time calculation, and the reliability. How to
improve the path planning performance in consideration of COLREGS
rules is a point worth researching.

Dynamic variants of the A-star algorithm are capable of collision
avoidance in dynamic environments. The D-star algorithm is also called
dynamic A-star search algorithm. Compared with the traditional A-star,
the D-star algorithm and its variants change the cost function between
nodes during the planning process (re-planning online) is equivalent to
A-star re-planner (Zhu et al., 2021). Because the algorithm can plan
a feasible path in an unknown environment, this method was used

by National Aeronautics and Space Administration (NASA) to find a
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Table 1
Comparison between the proposed algorithm and other algorithms.

Article Algorithm Computational load Single-ship or Multi-ships COLREGS Risk cost

Sang-Min Lee et al. (2004) VFF Big Single ✓ ×
Wasif Naeem et al. (2012) A-star Small Single ✓ ×
Chenguang Liu et al. (2019) A-star Small Single × ✓

Man-Chun Lee et al. (2019) VPF Big Single ✓ ✓

Hongguang Lyu et al. (2019) APF Big Multi ✓ ✓

Our article DAA-star Small Multi ✓ ✓
1
1
1
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path for the Mars rovers. However, the D-star algorithm has a high
cost of the required memory. Moreover, it is more suited to flexible
targets rather than poorly maneuverable targets like ships. The velocity
obstacle (VO) method is more used in ship collision avoidance when the
trajectory of the target ship is known (Huang et al., 2018, 2019). The
trajectories of ships in a time-varying environment are computed using
the VO method, which denotes the ship’s velocities that would cause
a collision with obstacles at some near-future time. The VO method
can consider the kinematic constraints but cannot generate an optimal
(shortest) path. If we consider path planning as a multi-constrained
non-linear problem, then model predictive control (MPC) is a good
approach (Murillo et al., 2018). MPC based planning methods can
predict the trajectory of target ships and the impact of the behavior
of own ship. However, at this stage the non-linear MPC does not meet
the real-time requirements of the planning algorithm very well.

1.3. Major contribution

According to the current technical analysis on the problem of multi-
vessel dynamic path planning, although several artificial intelligent-
related path planning algorithms have successfully applied in dynamic
planning, there are still possibilities that cannot find the optimal so-
lution. By contrast, algorithms based on heuristic methods such as
A-star-related algorithms do not usually have such problem (Zeng
and Church, 2009; Chen et al., 2016). However, a traditional A-star
algorithm does not consider sailing risk and dynamic obstacles. The
improved A-star algorithms do not always consider the COLREGS rule
for multiple ship encounter scenarios. In response to these problems,
this article proposes the following contributions:

• Different from the reconstruction planning after updating the
map, the moving obstacles with known trajectories are regarded
as static obstacles and brought to an improved A-star algorithm
for planning. By taking account into obstacle handling during the
search process of A-star algorithm, the unification of global and
local path planning is realized, and significantly the number of
calculation decreases.

• By setting the risk cost based on ship domain and control cost, the
algorithm-planned ship travel path is made safer, and the collision
avoidance path avoiding other encountering ships is more in line
with Rule 13–17 of the COLREGS.

• By sorting different ships’ maneuverability, different priorities are
set for multi-vessel path planning to solve the problem improve
the safety level of multi-vessel encounter path planning.

.4. Structure

This article is organized as follows. In Section 2, our dynamic
nti-collision A-star (DAA-star) algorithm and risk cost model are intro-
uced. In Section 3, dynamic obstacle avoidance algorithms based on
ingle-ship and multi-ship are proposed. The simulation experiments
re conducted in Section 4. In Section 5, the conclusions and future
3

irections are presented. t
2. Dynamic anti-collision A-star algorithm

A novel A-star algorithm for dynamic anti-collision of ships, i.e.,
DAA-star algorithm, is proposed in this section, and the principle and
application of which will be introduced and discussed. First of all,
the traditional A-star algorithm is introduced and analyzed, and the
minimum cost path problem is analyzed. Then the dynamic coordina-
tion mechanism of DAA-star algorithm is introduced. Then the path
planning risk cost function is set. Finally, combining COLREGS with
A-star algorithm, the DAA-star algorithm is proposed.

Algorithm 1 Traditional A-star algorithm
1: Mark 𝑃 [𝑠𝑡𝑎𝑟𝑡] as 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡.
2: while 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 ≠ 𝑒𝑚𝑝𝑡𝑦 do
3: Select the node 𝑃 [𝑖] from the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 whose value of evaluation

function 𝐹 (𝑃 [𝑖]) is smallest.
4: Mark 𝑃 [𝑖] as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡.
5: if 𝑃 [𝑖] = 𝑃 [𝑒𝑛𝑑] then
6: return "path is found".
7: else
8: Select the successor node 𝑃𝑖 [𝑗] around the node 𝑃 [𝑖], and

calculate 𝐹
(

𝑃𝑖 [𝑗]
)

.
9: if 𝑃𝑖 [𝑗] belongs to 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 or 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 node then
0: continue;
1: end if
2: Mark 𝑃𝑖 [𝑗] as 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡.
3: if 𝑃𝑖 [𝑗] belongs to 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 and 𝐹

(

𝑃𝑖 [𝑗]
)

<𝐹
(

𝑃𝑚 [𝑗]
)

when
𝑃 [𝑚] was marked as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 then

4: Set parent node of 𝑃 [𝑗] as 𝑃 [𝑖], 𝐹 (𝑃 [𝑖]) = 𝐹
(

𝑃𝑖 [𝑗]
)

.
5: end if
6: end if
7: end while
8: return "the path cannot be found".

2.1. Traditional A-star algorithm

A-star algorithm was first proposed in Hart et al. (1968), which is
used to find the minimum cost path from the starting point 𝑃 [𝑠𝑡𝑎𝑟𝑡]
to the end point 𝑃 [𝑒𝑛𝑑]. The minimum cost can be distance, risk cost,
tc. It is worth emphasizing that the A-star algorithm is a grid map-
ased algorithm. Ship planners generally obtain information about the
ocation of obstacles in the surrounding environment by devices such as
lectronic charts and nautical radar, and then convert this information
nto a grid map. The start point and the end point with the obstacle
nformation in the generated grid map are selected to run the A-
tar algorithm. The pseudo-code of the traditional A-star algorithm is
hown in Algorithm 1, where 𝑃 [𝑖], 𝑃𝑖 [𝑗] represent the current node
nd the nodes around the node 𝑃 [𝑖], respectively. Nodes in the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡

and nodes in the closelist represent reachable and unreachable nodes,
respectively. In the traditional A-star algorithm the evaluation function
𝐹 (𝑃 [𝑖]) of 𝑃 [𝑖] is defined as Eq. (1):

(𝑃 [𝑖]) = 𝐺 (𝑃 [𝑖]) +𝐻 (𝑃 [𝑖]) (1)

here 𝐺 (𝑃 [𝑖]) is the cost of the path from 𝑃 [𝑠𝑡𝑎𝑟𝑡] to 𝑃 [𝑖], 𝐻 (𝑃 [𝑖]) is
he cost of the cheapest path from 𝑃 𝑖 to 𝑃 𝑒𝑛𝑑 . It is worth noting
[ ] [ ]
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that 𝐻 (𝑃 [𝑖]) has several heuristic function forms, such as Manhattan
istance, Euclidean distance, diagonal distance, etc. Different heuristic
unctions have an effect on the search accuracy and rate of the A-
tar algorithm. In this article, Euclidean distance heuristic functions are
sed in order to unify the calculations.

.2. Dynamic updating mechanism

The searching process of the A-star algorithm for static obstacles
s similar to a dynamic window method (Seder and Petrovic, 2007),
xcept that the window becomes eight points around node 𝑃 [𝑖], and
he information about these obstacles do not change over time, i.e., the
bstacles are all static. The traditional A-star algorithm can only avoid
tatic obstacles. Avoiding dynamic obstacles does not mean that the
rajectory of object and the trajectories of the dynamic obstacles cannot
e intersected, i.e., reaching the same location at different times is
llowed. If the generated path is given the attribute of time, the
ollision avoiding with dynamic obstacles can be realized in time–
pace dimension. In the previous analysis, it is difficult for a ship to
ontinuously accelerate or decelerate or even stop during navigation.
herefore it is important to generate a path that can avoid dynamic
bstacles even if the ship is assumed to travel at a uniform speed.
onsidering that A-star algorithm is searching based on the current
ode 𝑃 [𝑖], we only need to determine the time period 𝑇𝑐 it takes to
ravel from the starting point 𝑃 [𝑠𝑡𝑎𝑟𝑡] to the current node 𝑃 [𝑖]. The core
dea of the dynamic updating mechanism is to bring the current node
[𝑖] and the starting point 𝑃 [𝑠𝑡𝑎𝑟𝑡] to a subroutine called ‘‘findparent’’,

whose pseudo-code is shown in Algorithm 2.

Algorithm 2 findparent(𝑃 [𝑖] , 𝑃 [𝑠𝑡𝑎𝑟𝑡])

1: 𝑇𝑐 = 0
2: while 𝑃 [𝑖] ≠ 𝑃 [𝑠𝑡𝑎𝑟𝑡] do
3: Find the parent node 𝑃 [𝑖 − 1] of the 𝑃 [𝑖].
4: 𝑇𝑐 = 𝑇𝑐+ 𝑐𝑜𝑠𝑡 𝑡𝑖𝑚𝑒 from 𝑃 [𝑖 − 1] to 𝑃 [𝑖]
5: 𝑃 [𝑖] = 𝑃 [𝑖 − 1]
6: end while
7: return 𝑇𝑐 .

If the problem is faced with a constraint based on the number of
ovement steps, for instance the movement of a chess piece on the

oard, its time period can be determined in a way based on the number
f moving steps. In the game of chess, the king can move to any
djoining square not attacked by one or more of the opponent’s pieces,
nd this move step counting as a single move of the king. While in the
ovement of a ship, it takes different time when move to square along
straight or diagonal on which it stands because of a longer path when
ove to a diagonal square. Thus, on the basis of the step moved on the

rid map, we calculate the actual length of each movement, and divide
t by the ship’s speed. A more accurate time-consuming 𝑇𝑐 is obtained

and applied to the calculations in this article. As shown in Fig. 1,
moving from the starting point to the current node takes 4 intermediate
nodes, the time period 𝑇𝑐 is 5 with the grid counting method. Using the
total distance of the grid to calculate the time (defined as the average
speed of the object lateral or longitudinal movement of a grid divided
by the unit of time), 𝑇𝑐 is 6.2. If 𝑇𝑐 is calculated according to the actual
smooth trajectory, it can improve some precision.

The subroutine further obtains 𝑇𝑐 of the current node by accu-
mulating the time of each movement. It is worth noting that for the
same node, the corresponding 𝑇𝑐 will change when its parent node has
changed and 𝑇𝑐 may be the same for different nodes. After sampling the
trajectory of the known dynamic obstacle 𝑛 to get its 𝑇𝑐 position 𝐷𝑛

[

𝑇𝑐
]

,
these dynamic obstacles can be regarded as the known static obstacles
marked as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡. So far, the paths of obstacles are only imported to
the 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡, it is also necessary to eliminate the nodes of these dynamic
4

obstacles after each search in order to avoid their trajectories instead
of their paths. In Figs. 2(a) and 2(b), the current nodes are (3, 4) and
(4, 3) respectively. They have the same time period 𝑇𝑐 = 2.4 (

√

2 + 1),
and the target ship’s position in 𝑇𝑐 is (4, 5). Thus, in Fig. 2(a), (4, 5) is
adjoining node of (3, 4), but it is not in the search range of 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡. In
𝑇𝑐 = 2.4, (4, 5) is marked as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡. In Fig. 2(b), the target ship moves
from (4, 5) to (5, 4). Since (4, 5) is no longer occupied by the target ship,
it is eliminated from the 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡. And becomes a successor node of
(5, 4), which exists in the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡. In Fig. 2(f), (6, 3) is occupied by the
target ship, therefore it is temporarily added to the 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 instead of
the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡.

It is worth noting that when adding or removing dynamic obstacle
targets in the 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 at the end of each loop, it should be determined
whether the coordinate point 𝐷𝑛

[

𝑇𝑐
]

is already in the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡. If the
dynamic obstacle target has been in the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡, it can be ignored;
otherwise, it will cause the problem of repeated search. The pseudo-
code of the improved dynamic A-star algorithm is shown in Algorithm
3, where 𝑃 [𝑠𝑡𝑎𝑟𝑡] is the current node in 𝑖th step.

Algorithm 3 Improved dynamic search A-star algorithm
1: Mark 𝑃 [𝑠𝑡𝑎𝑟𝑡] as 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡.
2: while 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 ≠ 𝑒𝑚𝑝𝑡𝑦 do
3: Select the node 𝑃 [𝑖] from the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 whose value of evaluation

function 𝐹 (𝑃 [𝑖]) is smallest.
4: Mark 𝑃 [𝑖] as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡.
5: if 𝑃 [𝑖] = 𝑃 [𝑒𝑛𝑑] then
6: return "path is found".
7: else
8: 𝑇𝑐 = 𝑓𝑖𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 (𝑃 [𝑖] , 𝑃 [𝑠𝑡𝑎𝑟𝑡]))
9: Sampling the trajectory of the 𝑛 known dynamic obstacles to

get its 𝑇𝑐 position 𝐷𝑛
[

𝑇𝑐
]

.
0: if 𝐷𝑛

[

𝑇𝑐
]

does not belong to 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 then
1: Mark 𝐷𝑛

[

𝑇𝑐
]

as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡.
2: end if
3: Select the successor node 𝑃𝑖 [𝑗] around the node 𝑃 [𝑖], and

calculate 𝐹
(

𝑃𝑖 [𝑗]
)

.
4: if 𝑃𝑖 [𝑗] belongs to 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 or 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 node then

15: continue;
16: end if
17: Mark 𝑃𝑖 [𝑗] as 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡.
18: if 𝑃𝑖 [𝑗] belongs to 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 and 𝐹

(

𝑃𝑖 [𝑗]
)

<𝐹
(

𝑃𝑚 [𝑗]
)

when
𝑃 [𝑚] was marked as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 then

9: Set parent node of 𝑃 [𝑗] as 𝑃 [𝑖], 𝐹 (𝑃 [𝑖]) = 𝐹
(

𝑃𝑖 [𝑗]
)

.
0: end if
1: if 𝐷𝑛

[

𝑇𝑐
]

does not belong to 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 then
2: Remove 𝐷𝑛

[

𝑇𝑐
]

from 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡.
3: end if
4: end if
5: end while
6: return "the path cannot be found".

2.3. Risk cost and operating cost modeling

The heuristic function is generally distance-related for the tradi-
tional A-star algorithm, so the A-star algorithm can always search
for the shortest path, but the shortest path may not be suitable with
concerning the safety factor. In Liu et al. (2019), the risk cost of
obstacles is added to the A-star heuristic algorithm. By setting different
weights between the distance and the risk cost, the shortest path is
selected while ensuring safety. The generated path is more in line with
the requirements of ship sailing. On the basis of Liu et al. (2019), this
article will conduct the risk cost modeling from three points. The first
step is to quantify the risk cost, the second step is to combine Rule
13–15 of the COLREGS, and the third step is to meet ship operability

restrictions.
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p
t

Fig. 1. The grid graph at a certain step in the search process of the A-star algorithm, (a) shows the application of other nodes in the search process, the arrow represents the
arent–child relationship between the nodes from the parent node to the child node; (b) ignores other nodes and only keeps all parent node graphs between the current node and
he starting point; (c) shows the smoothed trajectory graph.
Fig. 2. The search process of the A-star algorithm with the dynamic updating mechanism, the arrow represents the parent–child relationship between the nodes from the parent
node to the child node.
2.3.1. Risk cost quantification
Ship domain is a generalization of a safe distance, and its intro-

duction to maritime navigation comes from the observation that the
safe distance is not the same in all direction. The ship domain is more
and more used in path planning and ship collision avoidance (Tsou,
2016; Lazarowska, 2015). For the APF method, different repulsive
force values are set for different hazard targets. However, for the grid
map-based A-star algorithm, the setting of ship domain needs to be
studied.

Considering that the main scene of this article is the Inland Wa-
terway that could include Bridge area, multi-ship encounter and other
obstacles scenarios. For the bridge area, we use the statistical method
to study the ship domain in the bridge area reference in Hansen et al.
(2013), Jinyu et al. (2021). Based on AIS data and preprocessing of AIS
data, the ship with stable motion (mainly speed and course stability,
5

i.e. average speed or near constant speed passing through the target
area without abnormal behavior) is selected as the target ship; The
position of other obstacles (including sailing ships, piers and navigation
marks) are calculated during the current trajectory time of the target
ship. The multiple data are superimposed to obtain the ship domain
of a single ship. According to the ship’s length and speed, the data is
classified and superimposed to obtain the ship domain of a specific ship
type. In this article, the AIS data of bridge area in Wuhan Yangtze River
water area are extracted, and the collection time is from September
19, 2019 to October 1, 2019. According to different ship speeds and
ship length, the domain models of ships, piers and navigation aids are
established. The flow chart is shown in Fig. 3.

Based on the AIS data analysis, the typical ship length is 100 m, the
typical upstream median speed and downstream median speed of ship
are 2.1 m/s and 3.6 m/s, which is selected as the setting of the ship



Applied Ocean Research 118 (2022) 102995Z. He et al.
Fig. 3. Flow chart of ship domain generation.

Fig. 4. Quaternion ship domain model.

domain. The generated four element ship domain model is defined as:

𝑄𝑆𝐷 = {(𝑥, 𝑦) ∥ 𝑓 (𝑥, 𝑦,𝑄) <= 1, 𝑄 = {𝑅𝑢, 𝑅𝑑 , 𝑅𝑙 , 𝑅𝑟}} (2)

𝑓 (𝑥, 𝑦) =
(

2𝑥
(1 + sgn(𝑥))𝑅𝑢 − (1 − sgn(𝑥))𝑅𝑑

)2

+
(

2𝑦
(1 + sgn(𝑦))𝑅𝑙 − (1 − sgn(𝑦))𝑅𝑟

)2
(3)

sgn(𝑥) =

{

1, 𝑥 >= 0

− 1, 𝑥 < 0
(4)

where 𝑅𝑢, 𝑅𝑑 , 𝑅𝑙, 𝑅𝑟 represent the length of the ship domain in four
directions as shown in Fig. 4.

Then, we get the ship domain model with ship speed of 2.1 m/s
and 3.6 m/s, and the domain of bridge piers and navigation marks,
𝑄𝑆𝐷𝑠𝑝1, 𝑄𝑆𝐷𝑠𝑝2, 𝑄𝑆𝐷𝑝𝑟, 𝑄𝑆𝐷𝑛𝑚 as shown in Fig. 5. To reduce the
loss of navigation marks and ship collision, we set a safer domain of
navigation marks.

𝑄𝑆𝐷𝑠𝑝1 = {(𝑥, 𝑦) ∥ 𝑓 (𝑥, 𝑦,𝑄) <= 1, 𝑄 = {170, 140, 50, 40}} (5)

𝑄𝑆𝐷𝑠𝑝2 = {(𝑥, 𝑦) ∥ 𝑓 (𝑥, 𝑦,𝑄) <= 1, 𝑄 = {250, 220, 50, 40}} (6)

𝑄𝑆𝐷𝑝𝑟 = {(𝑥, 𝑦) ∥ 𝑓 (𝑥, 𝑦,𝑄) <= 1, 𝑄 = {330, 220, 50, 50}} (7)

𝑄𝑆𝐷 = { 𝑥, 𝑦 ∥ 𝑓 𝑥, 𝑦,𝑄 <= 1, 𝑄 = {30, 20, 10, 10}} (8)
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𝑛𝑚 ( ) ( )
Fig. 5. Quaternion ship domain model in the bridge area.

After obtaining the range of ship domain, we need to rasterize it
to adapt to the A-star algorithm. Firstly, we select the appropriate grid
length to sample the ship domain. The center point of the sampling grid
in the ship domain is regarded as the grid of the ship domain, and the
grid area of the ship domain is also regarded as obstacles. The A-star
algorithm will ignore these nodes in the search process. As shown in
Fig. 6, we can find that the A-star algorithm combined with the ship
domain can generate a safer path.

Inspired by the APF method, we can choose a safer path while
avoiding entering the ship domain. Here, we set up a potential field
similar to AFP, and the risk outside the ship domain is calculated based
on the quaternion ship domain. Taking the pier as an example, the
calculation of risk in 𝑃 [𝑖] outside the domain area of obstacle 𝑗 is as
follows:

𝑟𝑜𝑏,𝑗 (𝑃 [𝑖])

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

( 𝑦𝑜2𝑏,𝑖 cos 𝜃 − 𝑥𝑜2𝑏,𝑖 sin 𝜃
𝑅𝑢

)2

+
(𝑥𝑜2𝑏,𝑖 cos 𝜃 − 𝑦𝑜2𝑏,𝑖 sin 𝜃

𝑅𝑟

)2)−1

,

0 < 𝜃 <= 𝜋∕2
(

( 𝑦𝑜2𝑏,𝑖 cos 𝜃 − 𝑥𝑜2𝑏,𝑖 sin 𝜃
𝑅𝑎

)2

+
(𝑥𝑜2𝑏,𝑖 cos 𝜃 − 𝑦𝑜2𝑏,𝑖 sin 𝜃

𝑅𝑟

)2)−1

,

𝜋∕2 < 𝜃 <= 𝜋
(

( 𝑦𝑜2𝑏,𝑖 cos 𝜃 − 𝑥𝑜2𝑏,𝑖 sin 𝜃
𝑅𝑎

)2

+
(𝑥𝑜2𝑏,𝑖 cos 𝜃 − 𝑦𝑜2𝑏,𝑖 sin 𝜃

𝑅𝑙

)2)−1

,

𝜋 < 𝜃 <= 3𝜋∕2
(

( 𝑦𝑜2𝑏,𝑖 cos 𝜃 − 𝑥𝑜2𝑏,𝑖 sin 𝜃
𝑅𝑢

)2

+
(𝑥𝑜2𝑏,𝑖 cos 𝜃 − 𝑦𝑜2𝑏,𝑖 sin 𝜃

𝑅𝑙

)2)−1

,

3𝜋∕2 < 𝜃 <= 2𝜋

(9)

where (𝑥𝑜2𝑏,𝑖, 𝑦𝑜2𝑏,𝑖) is the position of 𝑃 [𝑖] relative to the obstacle 𝑖, 𝜃 is
the true azimuth of 𝑃 [𝑖] relative to the obstacle 𝑖.

Similarly, the choice of grid length also affects the final effect of
path planning. Small grid length can increase the accuracy of rasteriza-
tion in ship domain, but it will greatly increase the planning time of the
A-star algorithm, as shown in Fig. 7. The map scale is a 1.5 km long and
1.5 km wide. When the grid length is 10 m (150*150), the average time
of planning 1.5 km path is 45 s, which is difficult to ensure the real-time
requirements. When the grid length is 20 m (75*75), the average time
of planning a 1.5 km path is less than 2 s.
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Fig. 6. The A-star algorithm combined with ship domain.
Fig. 7. Calculation difference of different grid length.

Choosing a larger grid scale will meet the real-time requirements of
the algorithm, but will increase the risk of generate paths. The most
basic grid map shall ensure that the quaternion ship domain is clearly
differentiated in each quadrant. In other words, the grid length cannot
exceed the minimum value of the ship’s domain. While, choosing a
small large grid scale can result in the algorithm taking too long to plan.
The dynamic obstacle has already changed its position significantly
before the algorithm has even generated a path. Therefore, it is worth
noting to choose the appropriate grid length to ensure the accuracy or
speed of path planning. We suggest that the calculation time of path
planning algorithm should be less than 5 s. And the time also depends
on the complexity of map. Based on the experience we have gained
in our experiments, the total number of grids should preferably not be
greater than 7500. Thus, considering the real-time requirements and
low risk path, we give a suggested equation for the setting of the grid
length as follows:
√

𝑀𝐿𝑀𝑊 ∕𝑁𝑔 <= 𝐿𝑔 <= min
{

𝑅𝑢, 𝑅𝑑 , 𝑅𝑙 , 𝑅𝑟
}

(10)

where 𝐿𝑔 is the grid length, 𝑀𝐿 is the map length, 𝑀𝑊 is the map
width, 𝑁𝑔 is the suggestion maximum number of grids, 𝑅𝑢, 𝑅𝑑 , 𝑅𝑙, 𝑅𝑟
represent the length of the ship domain in four directions.
7

2.3.2. COLREGS modeling
The encounter scenarios for any two vessels within the scope of the

COLREGS can be divided into three categories: head-on, crossing, and
overtaking. According to the Rule 13–15, for head-on situation, the two
ships shall alter their course to starboard so that they shall pass on the
port side of each other; for crossing situation, the ship which has target
ship on her starboard side shall keep out of the way and shall avoid
crossing ahead of target ship; for overtaking situation, any ship over-
taking any other shall keep out of the way of the ship being overtaken.
For each of the three encounter scenarios, the two ships have the action
rules shown in Fig. 8. However, in a multi-ship encounter scenario, own
ship will face a variety of encounter types at the same time. To make the
paths planned by own algorithm follow the COLREGS as consistent as
possible, we have introduced the recommendations in Rules 16–17 into
own algorithm. Rule 16–17 give suggestion actions for give-way and
stand-on ship. For emergency collision avoidance situations, the ship
should avoid actions contrary to the recommendations of the COLREGS.
For instance, we should avoid altering port side when target ship is
coming from our port side. This is because if target ship complies with
the COLREGS, our action will result in an increased risk of collision.
Thus, for the target ship, we set the prohibited search area of A-star
algorithm in various encounter scenarios, which can achieve the path
production in line with COLREGS rules more easily, and reduce the
search area of A-star algorithm at the same time. Considering that the
interaction between ships does not keep connected all the time, it is
not entirely sure whether other ships comply with the COLREGS rules
or not during the procedure of anti-collision. In this article, ships are
divided into two categories. One category is ships that can reliably
exchange information with other ships, which can use the algorithm
proposed in this article for path planning; the other category is ships
that cannot reliably exchange information the trajectories of which are
predicted based on their history trajectories. Because a ship cannot
conduct acceleration, deceleration or turning action in a short time (Liu
et al., 2017), it can be assumed that the ship’s trajectory will not change
abruptly, which can be predicted by Kalman filter or other means. In
this article, we assume that all the ships except the own ship will adopt
a negative attitude towards obstacle avoidance, i.e., they do not take
the initiative to avoid obstacles, all obstacle avoidance measures are
carried out only by the current ship using the DAA-star algorithm for
path planning.

2.3.3. Maneuverability restriction modeling
The path planning algorithm should consider the actual ship motion

limitations, e.g., the maneuverability restriction. If the path planned by



Applied Ocean Research 118 (2022) 102995Z. He et al.

w
m
n
t
i
i
i
t
a
t
o

w
𝑃
t
p
t
r
i
i

𝑟

w
𝑟
c
n
i
𝑃

3

t
d
D
n
t
o
b

b
m
t
a
a
t

Fig. 8. Collision avoidance actions of three types of encounter scenes in rasterized
maps, (a) shows the overtaking scene, (b) shows the oncoming scene, (c) shows the
crossing scene.

Fig. 9. The turning radius.

the A-star algorithm has a turning radius 𝑅𝑖 less than the minimum
turning radius 𝑅0 of the ship, it is difficult for the ship to follow
the planned path, so maneuverability restrictions should be made to
minimize the occurrence of such unreasonable paths. Referring to Liu
et al. (2019), we calculate the turning radius 𝑅𝑖+1 which from node 𝑃 [𝑖]
to node 𝑃 [𝑖 + 1] by calculating the geometric relationship between 𝑃 [𝑖]
and 𝑃 [𝑖 − 1], 𝑃 [𝑖 + 1], as showed in Fig. 9. If the calculated turning
radius 𝑅𝑖+1 is greater than the ship’s minimum turning radius 𝑅0, it
means that the path {𝑃 [𝑖 − 1] , 𝑃 [𝑖] , 𝑃 [𝑖 + 1]} is unreasonable. In order
to avoid this unreasonable path, and we set the turning risk cost of node
𝑃 [𝑖 + 1] as Eq. (11).

𝑟𝑡𝑢𝑟 (𝑃 [𝑖 + 1]) =

⎧

⎪

⎨

⎪

⎩

𝐿𝑔
𝑅0
𝑅𝑖+1

, 𝑅0 > 𝑅𝑖+1

0, 𝑅0 > 𝑅𝑖+1

(11)

here 𝐿𝑔 is the length of grid. At the same time, the ship cannot
ake too many maneuvers, such as the path in Fig. 10, which does
ot conform to the real driving performance of the ship. We can avoid
hese unreasonable paths by hard constraints and soft constraints, that
s, by constraining the A-star algorithm to search the region or by
ncreasing the cost. The former constraints are more rigorous, but there
s a situation that the path cannot be found because of constraints are
oo strict. The latter constraints only needs to set a larger cost value to
void these unreasonable paths. Therefore, it is necessary to increase
he steering cost 𝑟𝑠𝑡𝑟 whenever the path made a steer, so as to find the
8

ptimal path under the premise of the least number of turns.
Fig. 10. The unreasonable path.

3. Path planning

Based on the dynamic updating mechanism and risk-cost model
established in Section 2, an improved dynamic obstacle avoidance A-
star algorithm for ship dynamic path planning is proposed in this
section. It is worth emphasizing that path planning in this context refers
to the global path planning, where all the collision avoidance objects
are known obstacles, i.e. known static obstacles and known dynamic
obstacles.

3.1. Single-ship dynamic path planning based on DAA-star algorithm

In this section, dynamic obstacles (target ships), risk costs of static
obstacles, dynamic risk costs of dynamic obstacles, ship maneuverabil-
ity, COLREGS, etc. are all considered in the dynamic path planning
process for a single ship. We complemented the 𝐺 (𝑃 [𝑖]) in Eq. (1), as
shown in Eq. (12):

𝐺 (𝑃 [𝑖]) = 𝐺𝐷 (𝑃 [𝑖]) + 𝐺𝑡𝑢𝑟 (𝑃 [𝑖]) + 𝐺𝑠𝑡𝑎 (𝑃 [𝑖]) + 𝐺𝑑𝑦𝑛 (𝑃 [𝑖]) + 𝐺𝑠𝑡𝑟 (𝑃 [𝑖])

(12)

here 𝐺𝐷 (𝑃 [𝑖]) is the distance cost from the starting point to the node
[𝑖], 𝐺𝑡𝑢𝑟 (𝑃 [𝑖]) is the total turning risk cost of from the starting point

o the node 𝑃 [𝑖], 𝐺𝑠𝑡𝑎 (𝑃 [𝑖]) is the total static risk cost from the starting
oint to the node 𝑃 [𝑖], 𝐺𝑑𝑦𝑛 (𝑃 [𝑖]) is the total dynamic risk cost from
he starting point to the node 𝑃 [𝑖] and 𝐺𝑠𝑡𝑟 (𝑃 [𝑖]) is the total steering
isk cost from the starting point to the node 𝑃 [𝑖]. When the algorithm
s searching the node 𝑃 [𝑖] in 𝑇𝑐 , the risk cost of the node 𝑃𝑖 [𝑗], 𝑟 (𝑃 [𝑖])
s defined as Eq. (13):

(𝑃 [𝑖]) = 𝑟𝑡𝑢𝑟 (𝑃 [𝑖]) + 𝑟𝑠𝑡𝑎 (𝑃 [𝑖]) + 𝑟𝑑𝑦𝑛 (𝑃 [𝑖]) + 𝑟𝑠𝑡𝑟 (𝑃 [𝑖]) (13)

here 𝑟𝑡𝑢𝑟 (𝑃 [𝑖]) is the turning risk cost, 𝑟𝑠𝑡𝑎 (𝑃 [𝑖]) is the static risk cost,
𝑑𝑦𝑛 (𝑃 [𝑖]) is the dynamic risk cost and 𝑟𝑑𝑦𝑛 (𝑃 [𝑖]) is the steering risk
ost. The pseudo-code of the proposed single ship dynamic path plan-
ing algorithm is shown in Algorithm 4. In this algorithm, 𝑶𝒃𝒔𝑛

[

𝑇𝑐
]

s a matrix of the domain area of dynamic obstacle 𝑛 at moment 𝑇𝑐 .
[𝑠𝑡𝑎𝑟𝑡] is the current node in 𝑖th step.

.2. Multi-ships dynamic path planning based on DAA-star algorithm

Considering that not all ships have valid and reliable communica-
ion with each other, for instance, several ships do not turn on the AIS
evice even though it is the requirements of supervision department.
ynamic multi-vessel planning in this section does not imply path plan-
ing for all ships in the scenario. We consider some of the ships outside
he master planning system (hereinafter called the ‘system’) keep their
riginal paths, and the ships inside the system are dynamically planned
ased on the DAA-star algorithm.

For the ships inside the system, considering that the waterway could
e occupied by the first-planned ship, the latter-planned ships require
ore maneuverability. Therefore, the ships in the system are based on

heir ship following ability index 𝑇 (ship following ability refers to the
bility of the ship) to change the direction of navigation. The following
bility can be measured by the following ability index 𝑇 . The smaller
he value of 𝑇 is, the better the following ability of the ship is, and vice
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Fig. 11. Flow chart for dynamic anti-collision A-star algorithm for multi ships.
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Algorithm 4 Dynamic anti-collision A-star algorithm for single ship.
1: Mark 𝑃 [𝑠𝑡𝑎𝑟𝑡] as 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡.
2: while 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 ≠ 𝑒𝑚𝑝𝑡𝑦 do
3: Select the node 𝑃 [𝑖] from the 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 whose value of evaluation

function 𝐹 (𝑃 [𝑖]) is smallest.
4: Mark 𝑃 [𝑖] as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡.
5: if 𝑃 [𝑖] = 𝑃 [𝑒𝑛𝑑] then
6: return "path is found".
7: else
8: 𝑇𝑐 = 𝑓𝑖𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 (𝑃 [𝑖] , 𝑃 [𝑠𝑡𝑎𝑟𝑡]))
9: Sampling the trajectory of the 𝑛 known dynamic obstacles to

get its 𝑇𝑐 position 𝐷𝑛
[

𝑇𝑐
]

, then generate the ship domain area
and the COLREGS prohibited area, all this node defined as
𝑶𝒃𝒔𝑛

[

𝑇𝑐
]

.
10: if 𝑶𝒃𝒔𝑛

[

𝑇𝑐
]

does not belong to 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 then
11: Mark 𝑶𝒃𝒔𝑛

[

𝑇𝑐
]

as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡.
12: end if
13: Select the successor node 𝑃𝑖 [𝑗] around the node 𝑃 [𝑖], and

calculate 𝐹
(

𝑃𝑖 [𝑗]
)

.
14: if 𝑃𝑖 [𝑗] belongs to 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 or 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 node then
15: continue;
16: end if
17: Mark 𝑃𝑖 [𝑗] as 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡.
18: if 𝑃𝑖 [𝑗] belongs to 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 and 𝐹

(

𝑃𝑖 [𝑗]
)

<𝐹
(

𝑃𝑚 [𝑗]
)

when
𝑃 [𝑚] was marked as 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡 then

19: Set parent node of 𝑃 [𝑗] as 𝑃 [𝑖], 𝐹 (𝑃 [𝑖]) = 𝐹
(

𝑃𝑖 [𝑗]
)

.
20: end if
21: if 𝑶𝒃𝒔𝑛

[

𝑇𝑐
]

does not belong to 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 then
22: Remove 𝑶𝒃𝒔𝑛

[

𝑇𝑐
]

from 𝑐𝑙𝑜𝑠𝑒𝑙𝑖𝑠𝑡.
23: end if
24: end if
25: end while
26: return "the path cannot be found".
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versa. Therefore, the ship with a larger ship following ability index 𝑇
will be given priority for path planning. After a ship in the system has
planned a path, we regard the ship as a moving obstacle of a known
path, and the path planning of other ships in the system will be carried
out. The program pseudo-code is shown in Algorithm 5.

The structure 𝑆ℎ𝑖𝑝 [𝑆ℎ𝑖𝑝𝑁𝑢𝑚] in Algorithm 5 contains ship type
nformation, starting point information, end point information, min-
mum turning radius information, ship size information, etc., which
re used in the initial stage of path planning. 𝑀𝐴𝑃 refers to the map
nformation needed in the initial stage of algorithm planning, including
hannel information, stationary obstacle information, moving obstacle
nformation, and their respective risk cost information. The flow chart
f the entire multi-ship dynamic path planning is shown in Fig. 11.

Algorithm 5 Dynamic anti-collision A-star algorithm for multi ships
1: Read the number of ships that need route planning in the current

system as 𝑆ℎ𝑖𝑝𝑁𝑢𝑚.
2: Sort these ships according to their ship following ability index 𝑇 ,

and store their information in the structure 𝑆ℎ𝑖𝑝 [𝑆ℎ𝑖𝑝𝑁𝑢𝑚].
3: 𝑖 = 1
4: while 𝑖 ≠ 𝑆ℎ𝑖𝑝𝑁𝑢𝑚 do
5: 𝑃 [𝑠𝑡𝑎𝑟𝑡] = 𝑆ℎ𝑖𝑝 [𝑖] .𝑆𝑡𝑎𝑟𝑡
6: 𝑃 [𝑒𝑛𝑑] = 𝑆ℎ𝑖𝑝 [𝑖] .𝐸𝑛𝑑
7: 𝑃𝐴𝑇𝐻 [𝑆ℎ𝑖𝑝𝑁𝑢𝑚] = 𝐷𝐴𝐴 − 𝑠𝑡𝑎𝑟 (𝑃 [𝑠𝑡𝑎𝑟𝑡] , 𝑃 [𝑒𝑛𝑑] ,𝑀𝐴𝑃 )
8: 𝑀𝐴𝑃 = 𝑀𝐴𝑃 + 𝑃𝐴𝑇𝐻 [𝑆ℎ𝑖𝑝𝑁𝑢𝑚]
9: 𝑖 = 𝑖 + 1
0: end while
1: return 𝑃𝐴𝑇𝐻

4. Case study

In order to assess the effectiveness of the DAA-star algorithm pro-
posed in this article, simulation experiments are carried out in this
section. The simulation platform is based on Intel i5 series 2.6 GHz
processor with 16 GB memory, and the simulation software is MATLAB
R2021a on Windows 10. Firstly, a path is generated by the DAA-star
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Fig. 12. Display of ship domain and risk cost on potential field map and grid map.
Fig. 13. Comparison of single ship static path planning of the traditional A-star algorithm, the A-star algorithm combined ship domain, and the DAA-star algorithm.
algorithm, and the differences between the DAA-star algorithm and the
traditional A-star algorithm and the A-star algorithm combined ship
domain are compared in the case of static obstacles. Then, the dynamic
path planning for ship is performed and the planned path is evaluated
using the proposed DAA-star algorithm, and the difference between
the ‘Dynamic A-star algorithm’ proposed by Gibson et al. (2020) are
compared in the case of dynamic obstacles. After that, the dynamic path
planning for multi-ships is performed and the planned path is evaluated
using the proposed dynamic multi-ship planning method based on the
DAA-star algorithm. Finally, the proposed dynamic multi-ship planning
method based on the DAA-star algorithm is used to generate the paths
in a real scenario. It is worth noting that, for the convenience of display,
the path planning results shown in this section are all displayed on the
basis of the risk potential field, as shown in Fig. 12, rather than the
grid map used by the traditional A-star algorithm, although the search
process of the DAA-star algorithm is still based on grid map.
10
4.1. Case 1: Static path planning for single ship

Here, we consider the limitations of ship maneuverability, and set
some stationary obstacles. The starting point of the path planning is
𝑃 [𝑠𝑡𝑎𝑟𝑡] = (5, 5), the end point is 𝑃 [𝑒𝑛𝑑] = (72, 65), other parameters are
shown in Table 2. The traditional A-star algorithm, the A-star algorithm
combined ship domain, and the DAA-star algorithm are utilized, and
the results are compared and shown in Fig. 13. The calculation time of
each algorithm (50 cycles of testing), the length of the generated path,
and the risk cost summation are all shown in Fig. 14.

The traditional A-star algorithm generates a short path (1,808 m)
and a faster generation speed, but the generated path is too close to
static obstacles, resulting in high collision risk (120). As shown in
Fig. 13(b, c), the planned path almost fits the edge of the obstacle,
which will cause a significant risk of collision in the real scene as shown
in Fig. 15. Compared with the traditional A-star algorithm, the A-star
algorithm combined ship domain produces a low risk path (20) with
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Fig. 14. Comparison of the calculation time and overall cost of the traditional A-star algorithm, the A-star algorithm combined ship domain, and the DAA-star algorithm.
Table 2
Parameter initialization case 1.

Parameters Value

Horizontal grid number of map 77
Vertical grid number of map 70
Grid length 𝐿𝑔 20 m
Number of static obstacles 15

Fig. 15. Comparison of the collision risk of the whole process.

its length being 2,208 m, which has no essential difference with A-
star algorithm. Meanwhile, this algorithm does not consider the ship
maneuvering constraints, which could lead to generate unreasonable
paths that a real ship cannot follow the path, as shown in Fig. 13(d,
e). The DAA-star algorithm reduces the search time (15%) with the
generated path as shown in Fig. 14. The increased risk of several
collisions in Fig. 15 is due to the proximity to the edge of the piers
domain, but according to the weighting of the algorithm, these risks are
not sufficient for the ship to make a turn (a turn would add a greater
cost). In summary, the DAA-star can generate a safe path that does
not violate the ship domain, and has faster efficiency than the A-star
algorithm combined ship domain search.

4.2. Case 2: Dynamic path planning for single ships

In order to assess the effectiveness of the dynamic path planning
with DAA-star algorithm, target ships are added in this case. Mean-
while, we test the dynamic A-star algorithm in Gibson et al. (2020)
11
Fig. 16. Comparison of single ship dynamic path planning of the dynamic A-star
algorithm and the DAA-star algorithm.

(combined with the ship domain set in this article) to generate a
collision-free path. And the planning frequency is changed to 0.1 Hz.
The starting point is 𝑃2 [𝑠𝑡𝑎𝑟𝑡] = (5, 5), the end point is 𝑃2 [𝑒𝑛𝑑] = (72, 71)
and other parameters are shown in Table 3. The generated path results
are shown in Fig. 16, Fig. 17. Considering the trajectory prediction
error of target ships, we add a safety margin to the safety domain
of target ships, which makes the algorithm be able to plan a feasible
dynamic collision avoidance path within a certain error range.

We can see that the path needs to be re-planned when the ship
is about to collide at 95 s in 17(b). The re-planned path is shown in
Fig. 17(c), and the path connection before and after planning does not
meet the operational constraints. When the ship continues to travel to
the moment of 265 s when the collision may occur again, the collision
avoidance path cannot be found at this time (unless the original path
returns or berths and waits) as shown in Fig. 17(d). It can be seen
that the re-plan method is easy to fall into the local optimal and the
generated path does not meet the operational constraints and other
problems. Meanwhile, it needs to continue planning, the amount of its
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Fig. 17. Comparison of single ship dynamic path planning of the dynamic A-star algorithm and the DAA-star algorithm.
Table 3
Parameter initialization case 2.

Parameters Value Parameters Value

Horizontal grid number of map 75 Speed of target ship 1 3.6 m/s
Vertical grid number of map 75 Start point of target ship 1 (0,26)
Grid length 20 m Course of target ship 1 90 deg
Number of static obstacles 16 Speed of target ship 2 2.1 m/s
Safety margin 1.5 Start point of target ship 2 (95,62)
Speed of Own ship 4.5 m/s Course of target ship 2 270 deg

calculation is large. The DAA-star algorithm can consider the move-
ment of obstacles in the planning process, and the generated path can
effectively avoid collision with moving obstacles. Moreover, it will not
produce singularity due to re-plan, generate a global optimal path, and
will not fall into the local optimal. At the same time, considering the
maneuverability delay of the ship, the planning time of the algorithm
and the trajectory prediction error of moving obstacles, we test the
mobile collision avoidance ability of the algorithm when the maneu-
vering delay and the maneuvering advance is 25 s (arriving at a node
of the trajectory in advance or 25 s in advance). The results show that
our algorithm can plan a dynamic collision avoidance path with safety
redundancy.

4.3. Case 3: Dynamic path planning for multi-ships

In order to assess the effectiveness of the algorithm for the multi-
ship dynamic path planning, other ships are added in this case. We add
ships with different speeds and choose the planning order according to
their speeds. All parameters are shown in Table 4.

First of all, we choose ship 1 with a speed of 2.1 m/s as the priority
planning ship, because its speed is too slow and its maneuverability is
poor. After the feasible path is planned in the current dynamic scene,
we sample the path of ship 1 and add it to the dynamic obstacles as
the target ship with known trajectory. Then we plan the path of ship
12
Fig. 18. Dynamic path planning for multi-ships based on DAA-star algorithm.

2 with a speed of 5 m/s. Multi-ship path planning has been completed
by multiple cycles and the results are shown in Fig. 18. The results
show that the planned multi-ships paths do not conflict with each other
and can avoid collision with other ships in the planning system while
avoiding the static and dynamic obstacles.
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Fig. 19. Path planning by DAA-star in actual navigation.
Fig. 20. Path planning by DAA-star in actual navigation.
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Fig. 21. Satellite map of Case 4.
Table 4
Parameter initialization case 3.

Parameters Value Parameters Value

Horizontal grid number of map 75 Course of target ship 2 270 deg
Vertical grid number of map 75 Speed of own ship 1 2.1 m/s
Grid length 20 m Start point of own ship 1 (70,26)
Number of static obstacles 14 Target of own ship 1 (1,40)
Safety margin 1.2 Speed of own ship 2 3.6 m/s
Speed of target ship 1 3.6 m/s Start point of own ship 2 (1,60)
Start point of target ship 1 (0,26) Target of own ship 2 (70,20)
Course of target ship 1 90 deg Start point of own ship 3 (5,5)
Speed of target ship 2 2.1 m/s Target of own ship 3 (72,71)
Start point of target ship 2 (95,62) Speed of own ship 3 5.0 m/s

4.4. Case 4: Dynamic path planning in real scene

In order to assess the effectiveness of the proposed DAA-star algo-
rithm in this article, this case is based on the simulation of a Yangtze
River waterway in Wuhan. In this channel scenario, there are static ob-
stacles such as bridge piers and navigation marks, which are arranged
according to the satellite map and the actual scene. In addition, in order
to assess the effectiveness of the algorithm for dynamic obstacle avoid-
ance, the AIS data of several ships are collected and their trajectories
are recorded as the dynamic obstacles in this simulation. The center
longitude and latitude of the scene as selected as (30◦ 33′28" N, 114◦

17′09" E). At the same time, in order to better show the channel effect,
we rotate the actual scene clockwise by 55 degrees. The area is a 3 km
long and 2 km wide rectangle, and the location of the piers refers to
the real location of the piers of Wuhan Yangtze River Bridge. The start
point is (5,6) and the target is (94,50) and other parameters are shown
in Table 5. It is worth noting that the trajectory of the target ship set
in this case is only to produce a meeting scene, and the actual Yangtze
River waterway counterparts implement the separation system, which
will not produce a similar trajectory of the target ship 1. This case only
shows the potential of DAA-star algorithm.

Considering that a feasible path could not be generated if all the
ships comply the collision avoidance rules strictly in the inland waters,
14
Table 5
Parameter initialization case 4.

Parameters Value Parameters Value

Horizontal grid number of map 100 Start point of target ship 2 (100,27)
Vertical grid number of map 66 Course of target ship 2 270 deg
Grid length 30 m Speed of target ship 1 3.6 m/s
Number of static obstacles 14 Start point of target ship 1 (1,23)
Safety margin 1.5 Course of target ship 1 90 deg
Speed of target ship 1 2.1 m/s Speed of own ship 4.5 m/s
Start point of target ship 1 (90,35) Start point of own ship (5,6)
Course of target ship 1 270 deg Target of own ship (94,50)
Speed of target ship 2 2.1 m/s

we generate a path without considering the COLREGS rules in the
actual scenario planning. The results are shown as Figs. 19 and 20.

As shown in Fig. 20(a), the generate path starts to avoid collision
when it has a certain safe distance. As shown in Fig. 20(b), at the
moment of 350 s, the own ship and target ship 1 are facing the
encounter scenario. At this time, the DAA-star algorithm considering
COLREGs rules generates a path that conforms to the rules, as shown
in Fig. 20(d, e), while the DAA-star algorithm without considering rules
generates a path, as shown in Fig. 20(c). The results show that the DAA-
star algorithm can generate a global optimal path in the real scene,
which can realize the collision avoidance of dynamic obstacles with
known trajectory.

5. Conclusions and future research

In this article, a DAA-star algorithm is proposed to overcome the
several shortcomings of traditional A-star algorithms, such as the in-
ability to achieve dynamic planning, the high risk of generating paths,
and the inability to combine COLREGS. The dynamic search principle
of A-star algorithm is analyzed, and the mechanism of dynamic A-
star algorithm considering the time factor is designed. The risk cost of
different obstacles are calculated by the quaternion ship domain model,
and the ship steerability limit is considered. The four cases’ simulation
results show that the proposed DAA-star algorithm can avoid dynamic
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Fig. 22. Grid map based on satellite map. In which, the white grids mean the navigable grids, the red grids stand for banks. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 23. Electronic map and Google Map in Case 4.
obstacles with known trajectories, and the collision avoidance paths can
follow COLREGS. For known obstacles, the expected paths can be taken
for obstacle avoidance, which significantly reduces the risk of collision.
Because of the algorithm’s low computing time, collision avoidance can
be used for dynamic obstacles by re-plan.

However, the combination of ship planning path and actual control
is not considered in this article, and the exact time required to follow
the path is not considered in combination with a dynamic ship model.
And the pose of the own ship model is not taken into consideration
when expanding the domain. In addition, future research will also
deal with the possible inconsistency of cooperation between ships with
different intelligent levels.
15
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Appendix

In Case 4, the real map is obtained from Google Maps as shown
in Fig. 21. The bottom left corner of the map has a latitude and
longitude of (30◦ 33′28"N, 114◦ 17′09"E), which we regard as the
center of the coordinate axis, with north being the positive 𝑦-axis
direction and east being the positive 𝑥-axis direction. Dividing the map
into multiple grids, according to the set grid length, the conversion of
latitude and longitude coordinates to flat coordinates is generally done
using methods such as the Mercator projection, but for scenes that do
not span much latitude and longitude, some simpler methods can be
used.
𝑥𝑖 = 𝐶(𝐿𝑎𝑡𝑖 − 𝐿𝑎𝑡0)∕𝐿𝑔

𝑦𝑖 = 𝑅(𝐿𝑜𝑛𝑖 − 𝐿𝑜𝑛0)∕𝐿𝑔

𝐶 = 𝑅 cos(𝐿𝑜𝑛0)

𝑅 = 40076000 𝑚

(14)

where 𝑅 is the average circumference of the Earth, 𝐶 is the circumfer-
ence of current longitude, (𝐿𝑎𝑡0, 𝐿𝑜𝑛0) stands for the bottom left corner
of the map, 𝐿𝑔 is the grid length. The initial grid map is generated
by computer vision techniques (mainly based on connectivity domain
detection) that identify the attributes (channels or banks) in each grid,
as shown in Fig. 22.

The position of piers and navigation marks are obtained by the
lectronic map and Google Map as shown in Fig. 23.
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