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Abstract
Understanding the shape of a human foot is a challenge approached by a wide range of disciplines
and industries. Traditional methods of obtaining foot measurements are being replaced with newer 3D
scanning technologies, obtaining more accurate and repeatable results.

However, there is still a lack of insight into the dynamic morphology of human foot during motion.
Obtaining an insight into the shape of the foot during motion is possible, but not widely accessible, due
to expensive and custom equipment used in existing 4D foot scanning prototypes.

This work focuses on developing a 4D foot scanning prototype using commodity hardware, aiming to
provide better insight into the dynamic foot morphology andmake research in this field more accessible.
The scanner is based on RGB­D cameras which offer an affordable access to 4D scanning, using active
stereoscopic vision technology. Besides a functional scanner which allows obtaining 4D foot scans at
15 fps, measurement of bandwidth limitations and bottlenecks were performed and synchronization
between cameras were assesed.
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1
Introduction

1.1. Why 4D foot scanning?
Measurements of human feet are playing an important role in various disciplines ranging from er­
gonomics and sports to medicine and anthropometry. Footwear design is an example of a discipline
which heavily relies on understanding the dimensions and shapes of human feet. Inappropriate shoes
can disturb the develpoment of children’s feet and lead to deformities [2], while therapeutic footwear
can be used for preventing certain foot related diseases [10].

Despite their importance for our well­being, the footwear design processes are based on rather
crude measurements and subjective shape understanding of our feet. Most of the footwear is designed
based on footprints, obtained using foam, wax or plaster casting and not taking into account the vertical
dimensions of the foot. Due to the complex structure of the foot and lack of instrumentation, the vertical
dimensions are classified into discrete types by visual inspection and based on plantar dimensions [32].

Some of those limitations have already been addressed with 3D reconstruction technology and
advancements in computer vision research. Three dimensional foot scanners are now being used not
only for research, but already commercially available and might soon become a part of our everyday
lives [36]. However, there is still a lack of 4D information regarding foot morphology during motion.
Size of certian dimensions can change up to 8mm between load­bearing and non­weight­bearing states
[39] and midfoot girth changes significantly during walking which is often not taken into account while
designing shoes [6]. Four­dimensional foot scanners can provide insight into these dynamic properties
of human feet.

Several attempts at 4D foot scanning have been performed, but their implementation is still very
complex and not easily reproducible. Furthermore, most of the 3D scanners reaching sub­millimeter
accuracy are not fast enough for dynamic capture of the foot in motion. While there are several existing
4D foot scanners, their cost and complexity renders them unsuitable for clinical and commercial use
[36]. The appearance of commercial RGB­D cameras offers a low­cost approach to 3D scanning and
might enable widespread usage of dynamic foot scanning applications in near future.

1.2. Problem definition
Currently, there are no 4D foot scanners available commercially and existing research prototypes are
expensive and hard to reproduce. These prototypes use expensive and custom­made equipment,
which makes them unsuitable for clinical and commercial use. Creating an affordable 4D foot scanning
device from commodity hardware would provide better insight into the morphology of the human foot
and open new possibilities in medicine, sports and ergonomics.
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2 1. Introduction

1.3. Proposed approach and thesis goals
The goal of this graduation project is to develop a functional 4D foot scanner prototype, which would
offer an insight into the shape of human foot during motion. The problem of a prototype development
can be expanded to the following objectives:

• Literature study of existing foot measurement techniques, focusing on 3D and 4D scanning tech­
nologies.

• Evaluating the accuracy and suitability of commercial RGB­D cameras 4D foot scanning applica­
tions

• Developing a functional 4D foot scanning prototype using multiple RGB­D cameras, resulting in
a sequence of three­dimensional frames (pointclouds) of the foot during walking.

The goal of this graduation project is to estabilish a starting point for dynamic foot morphology
research, by creating a 4D foot scanning prototype, which will enable future students and researchers
to work upon.

1.4. Challenges and contributions
The development of a 4D foot scanner poses many challenges due to its interdisciplinary nature, en­
compassing computer vision, embedded systems, electronics, mechanical design and ergonomics.

Despite being a heavily researched topic in computer vision, multi­camera 4D reconstruction is still
not a trivial task. Due to inacurracy of commodity RGB­D cameras (compared to industrial scanners),
the camera calibration and parameter settings play an important role in 4D reconstruction quality. In
scenarios with multiple cameras, the pointcloud alignment challenge needs to be solved. On the other
hand, the high bandwidth requirements of commercial RGB­D cameras and their timing synchronization
pose a significant embedded system design challenge, specially when using affordable, off­the­shelf
equipment. Lastly, there are many unforeseen problems of practical nature which rarely make it to
scientific literature, yet often limit the scope of research experiments and their success.

The main contribution of this graduation project is a working 4D foot scanning prototype, built from
commodity hardware. It uses four RGB­D cameras, capturing color and depth data at 15 fps with
resolution of 848 x 480 pixels. Besides a functional prototype, an alternative system architecture was
investigated in order to address the limitations which were observed during the evaluation process. The
concept of a modular scanner architecture is demonstrated using Raspberry Pi computers, focusing
on data acquisition aspects.

1.5. Thesis outline
Related work in the field of 4D and 3D foot scanning is presented in Chapter 2, followed by a brief
description of the foot scanner concept in Chapter 3. The RealSense RGB­D cameras used in our work
are presented in Chapter 4 and the accuracy and parameters of the D435i camera model are discussed
in Chapter 5. The calibration of cameras is discussed in Chapter 6, followed by the pointcloud alignment
challenge in Chapter 7.

The resulting prototype implementation is presented in Chapter 8 and scanning results are dis­
cussed in Chapter 9. In Chapter 10 we investigate bandwidth requirements and bottlenecks, focusing
on USB data transport. Camera synchronization measurements are shown in Chapter 11. An alterna­
tive system architecture addressing the limitations of our prototype is presented in Chapter 12, followed
by conclusions in Chapter 13.



2
Related work

2.1. 4D foot scanners
The need for an insight into dynamic properties of a human foot during motion is present already for
years and there have been several attempts of addressing it.

One of the earliest dynamic 3D foot reconstruction systemswas designed by Cordet et al. [14], using
3 pairs of custom stereoscopic sensors made out of industrial­grade IEEE1394 cameras. Although
this technique provided dynamic foot reconstruction at 49 FPS and resolution of 640 x 480 pixels, it
involved adding an extra factor to the foot surface (either socks or paint), something that is undesirable
in a clinical environment [38].

Schmeltzpfenning et al. [31] developed a system for scanning foot in motion using custom­made
scanner units based on a CCD camera and a projector. It allowed data acquisition at 41 FPS with a
resolution of 640 x 480 pixels.

Several years later, Kimura et al. [26] developed a system for measuring feature cross­sections of a
foot in motion, but did not reconstruct the complete 3D shape and required manually marking features
on the foot’s surface. The proposed system used 12 industrial­grade cameras operating at 1024 x 768
resolution at framerate of approximately 14 fps.

Liu et al. [1] designed a dynamic foot scanning system using three time­of­flight cameras, operating
at resolution of 176 x 144 pixels and frequency of 50 fps.

Another approach using multiple­laser­plane triangulation was presented by Novak et al. using four
camera pairs and a laser projector [30]. It captured complete foot during walking at 30 fps framerate
and resolution of 640 x 480 pixels.

Thabet et al. [38], presented an overview of existing dynamic 3D foot scanning approaches and de­
veloped a prototype using a single camera and a coded­light projector. The plantar surface of the foot
was obtained at 60 fps and HD resolution of 1920 × 1080 pixels. Unlike many other reports which fo­
cused mostly on technical aspects of their prototypes, Thabet et al. included accuracy and repeatability
assesment with real feet scans, reaching average accuracy of 2.8 mm in dynamic case.

A dynamic foot scanner was build by a company called 3dMD, which creates scanning modules
using custom­made stereoscopic cameras and a speckle pattern projector [4]. According to the man­
ufacturer, it allows up to 120 fps acquisition framerate reaching reconstruction accuracy of 0.7 mm.

More recently, Boppana et al. [8] developed a dynamic 3D scanner using RealSense D415 cameras
and used it for statistical shape modelling of human feet [9]. Six RealSense RGB­D cameras were con­
nected to a single computer, streaming at 90 fps. However, the resolution used and foot reconstruction
accuracy were not specified.

Most of the foot scanners mentioned above are custom­built devices, which require expensive
equipment and technical expertise. Multiple scanners provide only partial measurements of the foot,
such as the plantar or dorsal surface, while obtaining sufficient, sub­millimeter 4D reconstruction of
complete foot’s surface using commodity hardware is still being researched.

3



4 2. Related work

2.2. 3D foot scanners
Static three­dimensional reconstruction of human foot is more developed compared to dynamic scan­
ning. There are numerous approaches of obtaining 3D shape of a foot, but most of technologies used
are not suitable for dynamic scanning due to their slow acquisition rate.

A paper by Telfer et al. [36] provides an insight into different methods of obtaining 3D foot scans
and their usages for foot research. Already at that time (2010) there were not only research prototypes,
but commercially available solutions in the price range between €5,000 and €30,000 [36].

Wan et al. [43] created a scanning device using five custom built active steroscopic scanning mod­
ules, based on Cannon Powershot A650IS and pattern projectors. The proposed systemwas evaluated
against real feet, allowing sub­millimeter (0.8mm) reconstruction accuracy.

Ballester et al. [5] compared the validity and reliability of different data­driven 3D scanning tech­
niques, where one of themwas 3D foot reconstruction using nothingmore but a smartphone application.
Accuracy in terms of 3D reconstruction was not assessd.

More recently, several foot scanners were designed using consumer RGB­D cameras. Rogati et al.
performed validation of the Kinect cameras, reconstructing the shape of a foot with approximately 2.8
mm accuracy. Similar technology was used in a prototype by Yuan et al.[45], which was powered by
five Intel RealSense SR3000 cameras. The accuracy in terms of 3D reconstruction was not assessed.

One of the most recent and radically different approaches to measuring static shape of a human
foot was presented by Zhang et al. [47]. Unlike previous scanners which were based on optical tech­
nologies, Sensock uses wearable­electronic sensors for obtaining the 3D shape. A sock made out of
conductive materials measures feet’s dimensions based on resistance changes due to streching of the
material.

Besides above­mentioned foot scanners, there are many commercially available scanners used in
research. Witana et al. used the YETI scanner [44] and Stankovic et al. [33] used the Tiger 3D laser
scanner by RS Scan, for example.



3
Prototype design

3.1. Concept descrption
One of the main goals of this graduation project is designing and building a 4D foot scanner prototype.
In order to scan a foot during motion, there is an elevated stage with a transparent section (plexi glass)
which allows capturing a foot from all sides including its bottom. Subject walks across the stage and
a single step is captured and processed by the scanner. Sketch of the prototype concept is shown in
Figure 3.1.

Figure 3.1: Sketch of the foot scanner prototype concept. RGB­D cameras placed around the transparend section of a walking
stage allow capturing the foot from all sides. Resulting output is 4D reconstruction of the foot during walking (capturing a single
step).

The desired output is a 4D reconstruction of a foot in motion: a sequence of three dimensional
frames, called pointclouds. This kind of 4D data can be used for measuring foot’s dimensions in
footwear industry, orthotics and prostethics design and research of the dynamic foot morphology.

Commercially available RGB­D cameras are evaluated and used in our prototype, due to their com­
pact form, affordability and widespread adoption in the research community. Multiple RGB­D cameras
synchronously capture data, which is processed and visualized offline. Since our goal is to design an
easily reproducible system using commodity hardware, the data acquisition and data processing steps
can be decoupled, favouring accuracy over real­time performance.

We approach the prototype development, by first investigating the accuracy and functioning of an
RGB­D camera, the RealSense D435i. Second, the 4D reconstruction aspects of the prototype are
researched, solving the problems of camera calibration and pointcloud alignment. Finally, a physical
scanner prototype is built in order to verify the selected approach and implementation.

Upon obtaining a successful 4D foot scan, the system is evaluated in terms of scanning accuracy,
data acquisition capabilities and scalability. Observed limitations are addressed in the second iteration

5



6 3. Prototype design

of prototype design, where modular system architecture is explored and tested using single­board
computers.
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Intel RealSense RGB­D cameras

4.1. Why RealSense D435i cameras?
The appearance of commercially available RGB­D cameras on the marked gained a lot of attention
in the research community. Custom­made depth and color sensing devices were built and used in
research before, while the convenience and affordability of consumer RGB­D devices allowed re­
searchers to focus on applicational aspects, without requiring deep expertise in computer vision.

At the time of writing, Intel RealSense D415 and D435 were the newest RGB­D camera models
promising good depth sensing capabilities. Choosing between the two, the D435 is better suitable in
our scenario due to its wide angle of view, allowing for near placement and lower number of cameras
needed. Furthermore, the global shutter of D435i captures all pixels simultaneously (unlike the rolling
shutter used on D415 which scans through pixels sequentially) which allows capturing dynamic scenes
without artefacts [13].

4.2. Principle of operation
Intel RealSense D435i camera is an active stereoscopic depth camera, which contains three image
sensors and an infrared projector, shown in image 4.1.

Figure 4.1: Intel RealSense D435i camera. Depth sensor consists of a stereoscopic pair of near­inrared sensors (IR left and
IR right) and a infrared pattern projector. Color sensor (RGB sensor) provides regular color images. Original image source:
https://newsroom.intel.com/news/new­intel­realsense­d435i­stereo­depth­camera­adds­6­degrees­freedom­tracking/

A pair of image sensors is used for generating depth frames, using stereoscopic vision techniques
while the third image sensor provides regular color frames. The infrared projector is used to improve
depth accuracy in scenes with low texture, for example when facing a white wall. The lack of visible

7



8 4. Intel RealSense RGB­D cameras

features can be compensated for, by projecting a pattern of dots onto the wall (called active stereoscopic
depth sensing) providing artificial feature points which are used for trianglation in the process of depth
calculation [24].

From the user’s perspective, the RealSense cameras can be seen as a black­boxes providing mul­
tiple kinds of streams. The RGB image sensor outputs color frame stream and the IR sensors output
IR frame streams. Since the stereo­to­depth calculation is performed in camera’s internal vision pro­
cessor, there is also a depth stream provided by a virtual depth sensor. Additionally, the D435i model
contains has onboard IMU (Intertial Measurement Unit) which is not used in our application.

Combination of a depth and color image, called a RGB­D image, can be converted into a three­
dimensional pointcloud as shown in image 4.2. Conversion from depth images to 3D point clouds is
trivial, assuming that intrinsic parameters of the camera (described in chapter 6) are known.

Figure 4.2: Color image, depth image and a textured pointcloud

Every pixel of the depth image represents the z­distance between the camera and the scene (e.g.
a 16­bit integer value, representing depth in millimeters). Unlike range images whose pixel values are
designating distance between camera’s origin and observed world points, the depth image takes into
account only the depth (z) component of this distance, as shown in image 4.3.

Figure 4.3: Comparison between depth and range measurements. A single pixel of a depth image contains a single depth value.
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4.3. Camera parameters
The RealSense D435i camera is a complex device with multiple tunable parameters affecting the quality
of RGB­D data.

The resolution, framerate and exposure time can be changed for both, color and depth sensors,
described in previous chapter 4.2. Increasing resolution (number of pixels in a frame) allows more
detailed color and depth images, while the framerate (frames per second) affects the quality of RGB­
D data in dynamic scenes. All parameters mention above affect the bandwidth requirements of the
device, posing a tradeoff between the quality of RGB­D data and its bandwidth requirements.

Depth sensor outputs data in an unsigned 16­bit unitless format, quantizing measured distance into
discrete steps. This step size is determined by the depth unit parameter, with the smallest possible
value of 100 µm which allows the maximum sensing range of approximately 65 m (limited by 16­bit
unsigned integer). This can be increased for larger operating ranges with the price of larger quantization
errors.

The near­infrared pattern projection power is controlled with the laser power (in mW) parameter.
Increasing its value can enhance the SNR of the projected pattern at long distances, but might degrade
depth sensing performance in close ranges due to laser speckle.

There are more parameters related to details of stereo­to­depth calculation available, which we do
not investigate in our work.





5
Camera accuracy and parameter

exploration

5.1. Requirements
Commercial RGB­D cameras are known for their distortions and significant depth measurement errors,
compared to professional 3D scanners. Until recently, most of the antrophometric databases used by
designers and manufacturers contained only 1D and 2D data with manually obtained measurements
[37]. The use of 3D scanning and digitizing technologies improved on the accuracy and repeatability
of those measurements, while sub­millimetre accuracy is nonetheless sufficient for the purposes of
footwear design [25]. For the purposes of our project, we aim to achieve sub­millimetre 4D reconstruc­
tion accuracy of the human foot during walking.

5.2. Accuracy metrics
In order to obtain insight into the capabilities of the RealSense D435i camera we performed several
accuracy measurements, inspired by a paper [11] conducting an in depth metrological characterization
of a similar camera, RealSense D415, assesing different kinds of errors at different operating ranges
(distances from the camera).

There are two kinds of systematic errors which are characterizing the camera’s performance:

• Depth offset (or depth­accuracy, distance­accuracy, absolute error) is the difference between
the measured depth values and actual depth values.

• Depth inhomogenity (or spatial noise, non­uniformity, planarity) is the variation of depth values
across pixels, when measuring a planar target (e.g. a flat wall).

Monica Carfagni et al. evaluated the camera not only in terms of depth­offset and depth­inhomogeneity,
but performedmultiple experiments using special artefacts prescribed by theGerman standard VDI/VDE
2634 Part 2 (”Optical 3D measuring systems”) and additional experiments which are specific for char­
acterizing depth cameras, such as 3D reconstruction accuracy [11]. Due to the large scope of our
project and limited accessibility to professional measuring equipment (COVID­19 pandemic lockdown)
we only assessed the camera’s depth inhomogeneity.

5.3. Methodology
Depth inhomogeneity is evaluated by facing the camera perpendicularly torwards a white wall and
capturing depth images at distances between 200 mm and 800 mm with a pitch of 100 mm. Root­
mean squared error (RMSE), shown in formula 5.1, is calculated using signed distances between the
scanned data and best fitting plane built on top of this scanned data. Ideal depth camera measuring a
perfectly flat plane would have RMSE of 0 mm.

11



12 5. Camera accuracy and parameter exploration

𝑅𝑀𝑆𝐸 = √
∑𝑁𝑛=1 𝑠𝑖𝑔𝑛𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

𝑁 (5.1)

Since misaligning the camera would bias the results, a best­fit plane is first computed on the cap­
tured data and RMSE is measured using distances between measured points and the best­fitted plane,
rather than relying on ground truth. Plane fitting is performed using linear regression1, minimizing the
sum of squared distances between the plane and data points. Formula for calculating the distance
between the best­fit plane (𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐷) and a point (𝑥, 𝑦, 𝑧) is shown below 5.2.

𝑠𝑖𝑔𝑛𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 − 𝐷
√𝐴2 + 𝐵2 + 𝐶2

(5.2)

5.4. Depth inhomogeneity measurement
Using the methodology described in previous chapter, we positioned the RealSense camera against a
wall and measured the RMSE between obtained points and best fitting plane. Experimentation setup
is shown below.

The camera was set to default settings, with depth resolution of 848 x 480 pixels, 6500 μs exposure
time and laser power of 150 mW. The only parameter changed was the depth unit, which was set to
0.0001 m in order to achieve best depth resolution. Results of the experiment are shown in figure 5.1,
where each datapoint represents an average RMSE calculated from 50 frames.

1Ordinary least squares linear regression from SciKit Learn (python machine learning library) was used in our experiments.

https://scikit-learn.org/stable/modules/linear_model.html ##linear-model
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Depth inhomogeneity with default camera settings
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Figure 5.1: RMSE at distances between 200 mm and 800 mm, using default camera settings: resolution 848 x 480 px, exposure
6500 μs, laser power 150 mW and depth unit of 0.0001 m
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5.5. Camera parameter tuning
In order to explore how changing parameters such as resolution, exposure time and laser power affects
the depth measurement quality, the depth inhomogeneity measurements from previous chapter 5.4
were repeated with modified camera settings.

Resolution for both color and depth sensors was evaluated first (figure 5.2), from lowest (480x270
px) to highest (1280x720 px), at same distances as in the previous experiment. In general, higher
resolution should provide greater accuracy, but our measurements indicate 848x480 px resolution as
optimal which confirms statement in official RealSense D435i documentation [24].

Depth inhomogeneity using different resolutions
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Figure 5.2: Comparison of different resolutions (color and depth sensor) at different distances, measuring depth inhomogeneity
in millimeters. Other camera settings are set to defaults.

Laser power and exposure time were evaluated together, since short exposure times with high
laser powers might increase SNR, specially in circumstances where sunlight or other sources of near­
infrared light are interfering with the projection. Results at distances 200 mm, 500 mm and 800 mm can
be observed in the graph below 5.3. Exposure time and laser power need to be increased for better
results at larger distances.
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Depth inhomogeneity with different exposure time and laser power combinations
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Figure 5.3: Comparison of different exposure and laser power settings at distances 200 mm, 500 mm and 800 mm.
Measurement at distance 200 mm (240 mW, 6000µs) was removed for beter graph readability (outlier).





6
Camera calibration

6.1. What is camera calibration?
The accuracy evaluation of the RealSense D435i in previous chapter was performed using its default
settings in order to evaluate the camera in a simple and repeatable manner. However, stereoscopic
depth measurements are heavily dependent on internal camera parameters which are often poorly
estimated by manufacturers and can be improved by re­calibrating the cameras [28].

Camera calibration is the process of estimating the parameters of the pinhole camera model, most
widely usedmathematical representation of a camera. It describes the internal properties of the camera
such as focal length, sensor size and pixel size (intrinsics) and its pose in world’s coordinate system
(extrinsics). These parameters can be represented in a 3x4 camera matrix C, which describes the
projection of 3D world points to the 2D image plane, shown in formulas 6.1, 6.2.

𝑥𝑖𝑚𝑎𝑔𝑒 = 𝐶 ∗ 𝑋𝑤𝑜𝑟𝑙𝑑 (6.1)

[
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(6.2)

One of the most widely used calibration approaches is Zhang’s technique [48], which uses a known
planar target (e.g. a chessboard) for finding correspondences between 3D world points and 2D image
points. The positions of chessboard corners1 in 3D space are known and assumed to be coplanar
with Z coordinate equal to zero. Image of a chessboard is then used for detecting 2D corner positions,
estabilishing an over­determined system of equations. Solving this equational system results in an
estimation of the camera matrix, describing camera’s intrinsic and extrinsic parameters. Despite not
being included in the pinhole camera model due to non­linearity, the effects of lens distortion are also
estimated during camera calibration process and might significantly affect the quality of stereoscopic
3D reconstruction.

There have been many derivations and improvements on the original technique, using different
calibration targets, feature detection algorithms and optimization procedures. However, those are not
investigated further due to the scope of our project and widespread usage of the chessboard calibration
technique.

6.2. RGB­D camera calibration techniques
Most of the optical methods of calibration can be applied to RGB­D cameras, by using one of the
IR imagers or a color imager. However, there have been many proposals for calibration techniques
specific to RGB­D cameras improving on calibration accuracy:

Staranowicz et al. developed a RGB­D calibration technique using a spherical object (e.g. a bas­
ketball), which provides results comparable to chessboard based techniques and is easier to use [34].
1Intersections between internal chessboard squares
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A popular technique for calibrating RGB­D cameras was introduced by Herrera et al, using a chess­
board for calibrating both RGB and depth sensors simultaneously [23]. Planar calibration target is
detected on both color and depth images and accurate estimation of both sensor’s parameters are
estimated using non­linear bundle adjustment techniques.

Beck et al. calibrated multiple RGB­D cameras by attaching tracking markers to the chessboard and
capturing it within a motion capture system (often used in animation and film industry) which improved
on the accuracy of chessboard pose detection [3]

An overview of RGB­D specific calibration techniques was presented by Villena­Martínez et al. [42].

6.3. Our approach
Despite being a heavily researched topic in computer vision community, camera calibration is still a
complex and often tedious process where obtaining good results is not trivial. In the case of a stereo­
scopic RGB­D camera, calibration complexity further increases as there are three image sensors that
need to be calibrated.

While each of the sensors could be calibrated using the same principle, with a chessboard, we use
manufacturer’s software for calibrating the camera. Intel RealSense provides the Dynamic Calibrator
[12] which allows calibrating the extrinsics of all sensors, using a custom calibration pattern printed on
paper or displayed on a smartphone screen, shown in image 6.1. Unfortunately, the software does
not calibrate intrinsic parameters and lens distortion coefficients, which are required during pointcloud
alignment phase (7). In order to obtain the missing parameters, we perform additional chessboard
calibration on the RGB sensor using OpenCV calibration functions.

Figure 6.1: Intel RealSense software for camera calibration, Dynamic Calibrator. Image source: dev.intelrealsense.com



7
Pointcloud alignment

7.1. The pointcloud registration problem
Reconstructing the 3D shape of a foot usingmultiple cameras requires aligning the captured pointclouds
into one coordinate space. Pointcloud alignment or registration is one of the fundamental computer
vision topics which seeks the transformation that best aligns two pointclouds together [20].

Various registration methods can be classified into coarse and fine methods, where coarse algo­
rithms provide rough initial alignment, which can be refined using fine registration algorithms [35]. The
latter are often computationally intensive and of iterative nature, which is why coarse registration is
often used in practice.

Most of the registration algorithms operate solely on 3D data, minimizing the distance between
two pointclouds, without any knowledge about the data acquisition setup. However, information about
camera positions in space can be obtained during calibration phase and used for coarse alignment of
pointclouds. This kind of pointcloud fusion is often used in virtual reality and telepresence setups using
multiple RGB­D cameras, since the fine registration algorithms are computationally too expensive for
real­time performance.

7.2. Coarse alignment by extrinsic calibration of RGB­D cameras
Camera calibration process described in chapter 6 provides information about the intrinsics and extrin­
sics of the camera, where the latter contains rigid transformation (rotation and translation) between the
calibration target and the camera, as shown in image 7.1. Observing a calibration target with multiple
cameras simultaneously allows determining their positions in a single coordinate space.

In case of RGB­D cameras, there are multiple sensors which could designate the camera’s origin:
pointclouds are measured from the depth origin of the camera, which is located at the left IR sensor,
while the color images used in calibration process originate from the RGB sensor. This can be compen­
sated for, by registering depth to color or vice versa, using the extrinsic transformation matrix obtained
during camera calibration (Chapter 6). With depth and color frames of an RGB­D camera aligned,
chessboard and other optical calibration techniques can be directly applied.

Aligning pointclouds by means of extrinsic camera calibration with a chessboard has been used
before: Kimura et al. calibrated multiple cameras using a chessboard cube, rather than a plane, for
reconstructing the shape of a foot in motion [26]. Maimone et al. used a pairwise chessboard calibra­
tion approach with Kinect RGB­D cameras for real­time telepresence setup [29]. Beck et al. registered
multiple RGB­D cameras into a common coordinate system by attaching tracking markers to the chess­
board and capturing it within a motion capture system (often used in animation and film industry) [7].
Since their original approach was lengthy due to predefined static locations of the calibration target,
they refined the process, allowing random positioning of the calibration target [3].
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Figure 7.1: Calibration of two cameras using a chessboard. Resulting transformation matrices (extrinsics) can be used for
determining position of cameras in relation to the chessboard.

7.3. Our solution
Our approach to pointcloud alignment relies on extrinsic camera calibration, as described in previous
section 7.2. It is impossible to capture the calibration target with all cameras simultaneously, which is
why we perform pairwise calibration followed by calculation of relative transformations between camera
pairs, similar to [29].

A chain of subsequent camera pairs is determined manually and for every pair, multiple images of
the calibration target in various positions and orientations are taken 1. The first camera in the chain is
used as a world origin, on top of which other cameras are registered, as shown in image 7.2. Every view
of the calibration target observed by a camera pair results in both camera’s poses (extrinsics), which
are used for calculating the relative transformation between them. Resulting transformation matrices
are averaged, obtaining a 4x4 homogeneous matrix describing the rotation and translation from camera
A to camera B within a single camera pair.

Figure 7.2: Pairwise registration of cameras to a single coordinate system. For every camera pair, a relative transformation
is calculated based on their extrinsic calibration (T1, T2, T3). Equations on the right side represent each individual camera’s
transformation matrix, used for aligning pointclouds to a common coordinate frame (first camera’s origin)

Calibrating cameras in a pairwise manner is prone to error accumulation, but allows easier calibra­
tion procedure in practice. Furthermore, the chessboard calibration technique does not work on images
with only partial view of the chessboard. To overcome this limitation while calibrating cameras in our
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scenario, we use ChArUco board instead of chessboard, shown in image 7.3. Calibration procedure
is essentially the same, but this time partial views of calibration target are supported as every square
within the chessboard carries an unique identifier (ArUco).

Figure 7.3: Camera calibration using charuco target

1Approximately 60 frames per camera pair





8
Prototype implementation

8.1. Overview
The 4D foot scanner concept from chapter 3 was embodied using four RealSense D435i cameras
mounted around a transparent section of a walking stage, shown in Figure 8.1.

Cameras are connected to a single computer, used for both data acquisition and processing. It
consists of an Intel i7­920 processor, a StarTech USB 3.1 Gen 1 PCI expansion card1 and a Samsung
EVO 850 SSD disk. Computing platform is shown in Figure 8.2.

The stage was built using T­slotted aluminum extrusions (50 mm x 50 mm), wooden panels (18 mm
thick multiplex) and plexi glass (15 mm thick extruded acryllic). Cameras are mounted on a separate
construction with ballhead mounts and a custom­printed 3D adapter, shown in Figure 8.3.

The implementation of data acquisition and processing is presented in sections 8.2 and 8.3 respec­
tively. Limitations of presented system architecture are discussed in section 8.4

1The mentioned USB PCIe expansion card has four USB ports on two separate USB buses (Host Controllers). More details
about the USB bus are presented in chapter 10.2.
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Figure 8.1: 4D foot scanning prototype.

Figure 8.2: Computer used for data acquisition and processing.
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Figure 8.3: The model of an adapter for attaching RealSense cameras to extruded aluminum frame.
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8.2. Data acquisition
Data acquisition software is responsible for synchronous streaming of color and depth frames from
multiple RealSense cameras and writing them to an SSD drive.

The software is implemented in C++ programming language, using the RealSense SDK which pro­
vides an application programming interface (API) to the cameras, abstracting details such as device
detection, inter­sensor frame synchronization and registration, metadata handling etc.

The software used for capturing RGB­D data from cameras first initializes the device (lines 1­4), by
enabling its color and depth streams, both at resolution of 848 x 480 pixels and framerate of 15 fps2.
According to our accuracy experiment results (Chapter 5) we disable autoexposure on all sensors, set
the projection laser power to 180 mW and configure depth sensor to the smallest depth unit (100 µm).
Pseudocode of the program is shown in Algorithm 1.

Algorithm 1 Software used for RGB­D data acquisition (pseudocode)
1: Find connected device
2: Enable color stream
3: Enable depth stream
4: Set depth unit, exposure time, laserpower for both streams
5: while 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 do
6: wait for color+depth frame pair
7: write color frame to a file
8: write depth frame to a file
9: end while

The users interact with the separate, main program, which handles input parameters (framerate,
output destination directory etc.), detects connected devices and spawns a separate instance of the
program (Algorithm 1) for every connected camera. Connecting four cameras, for example, creates
four separate processes, each capturing RGB­D data from a single camera.

Synchronous data acquisition is achieved by simultaneous start of the RGB­D data streams on all
devices. This is achieved by toggling the streaming flag on line 5, which is controlled by the main
program and is implemented by means inter­process communication primitives (our implementation
uses a POSIX semaphore for synchronization between processes). Synchronization delays between
cameras are measured and discussed in Chapter 11.

One of the design choices was choosing which kind of data to store on disk: raw color and depth
frames or textured pointclouds. Since our application operates on 3D data, there is no explicit need
for storing raw frames on disk, when they could be processed into a pointcloud and saved to disk as
shown in image 8.4. However, observing the file size of both options showed that there is no benefit in
converting data to pointclouds before writing to disk (pointcloud data containsmore information resulting
in larger flie sizes). As a result, raw RGB­D frames are stored on disk and converted to 3D pointclouds
in the post processing stage (Chapter 8.3).

2The limitations of the maximum framerate are discussed in Chapter 10.
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Figure 8.4: Comparison between saving raw color and depth frames (bottom) or converting them to pointclouds first (top). The
former option is used implemented, since the size of pointcloud data is larger than size of raw frames.
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8.3. Data processing
Upon a successful data acquisition stage, frames from all cameras are processed in order to obtain
4D reconstruction of a foot in motion. This involves converting color and depth frames into textured
pointclouds, aligning them into a single coordinate space (using calibration data, described in chapter
7) and storing the final result to disk.

Figure 8.5: Inputs and outputs to the data processing software. RGB­D frames from every camera are stored in separate folders.
Output of the processing is a sequence of three­dimensional pointclouds.

Every camera stores its sequence of RGB­D frames (color and depth frame pairs) in a separate
directory, with timestamps or sequence numbers encoded in the filename. The processing software
outputs a single three­dimensional frame3 for every RGB­D frameset, as shown in image 8.5. An RGB­
D frameset is a set of RGB­D frames, taken at the same time instant with exactly one RGB­D frame
from each camera. Visualization of the output can be done using any software supporting the .ply
format, such as MeshLab or Blender.

The data processing software is implemented in Python programming language, using Numpy and
Open3D libraries for pointcloud processing operations. Open3D is a modern open­source library which
implements functions for dealing with 3D data [49] and Numpy is an open­source library enabling effi­
cient numerical computing with Python, widely used in the scientific community [15]. The selection of
programming language and libraries allows processing of data on any computer platform. The outline
of processing operations is presented in algorithm 2:

Algorithm 2 Processing pseudocode
1: for 𝑓𝑟𝑎𝑚𝑒𝑠𝑒𝑡 = 1, 2, … ,𝑁 do // N = number of RGB­D framesets
2: 𝑟𝑒𝑠𝑢𝑙𝑡 ←null;
3: for each 𝑟𝑔𝑏𝑑_𝑓𝑟𝑎𝑚𝑒 ∈ 𝑓𝑟𝑎𝑚𝑒𝑠𝑒𝑡 do
4: Parse a color and a depth frame pair (𝑟𝑔𝑏𝑑_𝑓𝑟𝑎𝑚𝑒)
5: Register depth to color
6: Project resulting RGB­D frame to a 3D pointcloud
7: Transform pointcloud
8: Append it to 𝑟𝑒𝑠𝑢𝑙𝑡
9: end for
10: Write 𝑟𝑒𝑠𝑢𝑙𝑡 to disk
11: end for

Every color and depth frame pair is first parsed and aligned (lines 4 and 5 in algorithm 2). The
color and depth sensors of a RealSense device have different, partially overlapping, fields of view
which needs to be compensated for by registering depth frame to the color frame. This is done using
depth­to­color extrinsic matrix obtained during camera calibration (chapter 6.3).

Next, a single RGB­D frame (2D) is projected into a textured point cloud (3D), using the intrinsic
camera parameters obtained in calibration phase (6). The intrinsics of the RGB sensor are used for
3A single file containing aligned pointclouds from all cameras, stored in a .ply file format
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pointcloud projection, since the depth frame was aligned to the color frame.
During the pointcloud formation, points with a depth value larger than 0.5m are being discarded in

order to prevent cluttering the resulting pointcloud with background and only focus on the foot.
Finally pointcloud is transformed to a common coordinate frame, using the camera transformation

matrix obtained in calibration phase from chapter 7.3. Pointclouds from all cameras are accumulated
in a single variable, result, which is saved to disk with its sequence number encoded in the filename
(as shown in image 8.5).

8.4. Limitations of centralized system architecture
Centralized approach of connecting multiple cameras to a single computer offers an intuitive and conve­
nient solution to the problem. Most of the modern computers already contain all the required hardware
for multi­camera acquisition, assuming a high­quality USB interface and an SSD disk.

Using a single computer for managing multiple cameras avoids most of the networking and synchro­
nization challenges of distributed solutions and efficiently utilizes the hardware for both data acquisition
and processing. However, there are limitations in terms of scalability and flexibility of the system: in­
creasing the number of cameras, linearly increases the bandwidth requirements which quickly reach
the limits of commodity hardware. Besides numerous potential bottlenecks further described in chapter
10 (e.g. USB interface, CPU processing), a limited amount of PCI expansion slots on consumer moth­
erboards prevents adding USB interfaces indefinitely. Furthermore, the usage of cables for connecting
the cameras with the computing platform limits the flexibility of camera positioning.

An alternative system architecture which addresses these limitations is discussed in chapter 12.





9
Scanning Results

9.1. 4D foot scans
The 4D foot scanner prototype described in chapter 8 outputs a sequence of three dimensional point­
clouds, shown in Figure 9.1. Each frame in the sequence (Figure 9.1) contains pointclouds of a foot,
captured with 4 cameras, observed from an arbitrary point of view in 3D space.

Figure 9.1: Three frames extracted from a scanning sequence, obtained with four cameras capturing the foot from the top side.

Besides removing points beyond a fixed threshold (0.5m), there is no additional pointcloud segmen­
tation or filtering performed in the data processing stage (Chapter 8.3). This is why the resulting scan
includes not only the foot, but parts of the background as well (parts of the walking stage and reflections
from the plexiglass).

The overlapping regions between two camera’s pointclouds are not perfectly aligned and stacked
on top of eachother, which results in different measurements representing the same part of the foot.
This issue was not resolved during our work, but can be avoided by improving on extrinsic camera
calibration accuracy and applying fine­grained registration algorithms.

In order to observe contributions from individual cameras, a single frameset was extracted from the
foot scanning sequence, displaying the pointclouds obtained from each camera separately, shown in
Figure 9.2.
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Figure 9.2: Single frame of a dynamic foot scan, where each camera’s view is shown separately.
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9.2. Static reconstruction accuracy
The reconstruction accuracy of the prototype was evaluated by scanning a plastic model of a hand and
comparing the resulting scan with the original 3D model. Results obtained with our scanner are only
coarsely aligned and do not involve pointcloud segmentation (extracting foreground points, the foot,
from the background). This was compensated for, by manually cleaning the resulting scans and ap­
plying fine­grained pointcloud registration, using Geomagic Design X software for 3D data processing.
Finally, the processed scan of the hand model was converted to a mesh and registered on top of the
3D model representing the ground truth. Figure 9.3 shows the analysis of deviation between the two
3D meshes, which spans errors ranging from ­2.8 mm to +4.9 mm, with an average deviation of 0.58
mm.

Figure 9.3: Accuracy evaluation of a static 3D scan obtained with our prototype. Colors represent the deviations between the
scanning result and the ground truth, with average deviation of 0.58 mm. Data was obtained using Geomagic X software.

However, the resulting 3D reconstruction of the hand is not accurate due to poor alignment and
noise in the pointclouds (e.g. gray surface between the fingers in Figure 9.3). This can be improved
by performing additional processing of the scanned pointclouds.

In order to fully characterize the accuracy of our 4D foot scanning prototype, more measurements
need to be performed in both static and dynamic scenarios, using real human feet.





10
Bandwidth measurements and

bottlenecks

10.1. Overview
The RealSense D435i cameras are producing large amounts of data which might exceed the pro­
cessing capabilities of typical commodity hardware. Increasing the framerate above 15 fps results in
significant number of dropped frames and occasional camera failures, when streaming RGB­D data
from 4 RealSense cameras on a single computer.

Several experiments were performed in order to investigate this limitation and quantify the hard­
ware and software limitations of a single computer in multi­camera scenarios. In sections 10.2 and
10.3 we focus on USB data transport, measuring camera’s bandwidth consumption and USB interface
bandwidth capacity. Discussion of data acquisition bandwidth limitations is presented in Chapter 10.4.

10.2. USB theoretical background
USB is a serial bus connecting multiple peripheral devices to a host computer, using a tiered star
topology [40] illustrated in Figure 10.1.

Communication on the bus is controlled (polled) by a single device, called the host controller (HC),
which has an integrated root hub with one or multiple ports. The bandwidth is shared between the
ports, reaching theoretical data rate of 5 Gbit/s per bus in case of USB 3.1 Gen 1 (used by RealSense
cameras). A single computing platform can contain multiple USB buses, with an examples shown in
Figure 10.2.
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Figure 10.1: Physical topology of the USB bus

Figure 10.2: Example of an USB 3 PCIe expansion card, with a twp buses (two USB Host controllers) and four ports.
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10.3. Measuring USB data troughput
The prototype described in Chapter 8, contains an USB 3.1 Gen 1 PCIe expansion card with four ports
driven by two host controllers (two ports per bus).

The USB bandwidth consumption of a single RealSense camera depends on the resolution, framer­
ate and pixel format of its video streams. The color sensor uses YUY2, a compressed pixel format using
YUV color encoding system and chroma subsampling for reduced bandwidth consumption (compared
to raw RGB formats). Depth sensor uses Z16 format for representing raw depth data. Both formats
use 16­bits per pixel.

Streaming RGB­D data at highest settings1 results in approx. 782 Mbit/s per camera, calculated
according to the equation 10.1 below (where 𝑁 indicates the number of enabled video streams):

𝑑𝑒𝑣𝑖𝑐𝑒_𝑑𝑎𝑡𝑎_𝑟𝑎𝑡𝑒[𝑏𝑖𝑡/𝑠] =
𝑁

∑
𝑖=1
𝑛_𝑝𝑖𝑥𝑒𝑙𝑠𝑖 ∗ 𝑏𝑖𝑡𝑠_𝑝𝑒𝑟_𝑝𝑖𝑥𝑒𝑙𝑖 ∗ 𝑓𝑟𝑎𝑚𝑒𝑟𝑎𝑡𝑒𝑖 (10.1)

Calculating the data rate using the formula above (10.1) only takes into account the video payload,
while there might be additional communication overhead involved (e.g. metadata, control). In order
to verify our calculations, the actual bandwidth consumption of a single RealSense camera was mea­
sured using Wireshark and usbmon. The usbmon kernel module allows passive monitoring of the USB
bus with minimal processing overhead [46] and can be used with Wireshark, a popular open­source
communication protocol analysis and monitoring tool.

Framerate

[fps]

Calculated bandwidth
consumption

[Mbit/s]

Measured bandwidth
consumption

[Mbit/s]
6 78 79
15 195 196
30 391 392
60 782 778

Table 10.1: Theoretical and actual bandwidth consumption of a single RealSense D435i camera, streaming color and depth data
at 848 x 480 px at different framerates.

From table 10.1 we can observe that bandwidth measurements closely match the calculated values
and a constant overhead of 1 Mbps for all framerates (less than 1% overhead in 30 fps case).

In order to estimate the maximum troughput of a single USB 3.1 Gen 1 Host Controller, we con­
nected four cameras on a single USB bus and enabled an RGB­D stream every 10 seconds, gradually
increasing the bandwidth utilization. Data in Figure 10.3 was obtained by adapting the Algorithm 1,
which now increases the counter for every received RGB­D frame and performs no additional process­
ing.

From the measurements in Figure 10.3 we can observe that the maximal troughput does not reach
the expected 3128 Mbit/s, but stops increasing at 1955 Mbit/s. Bandwidth consumption increased
linearly for the first two cameras, while addition of third and fourth cameras resulted in only slight
bandwidth increase and large number of dropped frames. Experiment was repeated using official
software (RealSense Viewer) and showed similar results.

Since the actual USB data troughput stayed well below its theoretical maximum (39 %), it is unlikely
that the USB bus saturation is the problem behind dropped frames. This hypothesis was confirmed by
reading data2 from an external SSD drive connected to the same USB host controller, which reached
a higher troughput of approximately 3500 Mbit/s.

1848 x 480 px resolution and 60 fps framerate are the highest common settings for both color and depth sensors.
2Using a benchmarking program hdparm, reading data directly from the disk (with operating system data caching disabled) and
measuring its troughput.
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Figure 10.3: Gradually increasing USB bandwidth consumption, by enabling a camera every 10 seconds. First two cameras
increase the bandwidth linearly, while enabling third and fourth cameras results in mostly dropped frames.
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10.4. Discussion
From the experiments in previous chapter (10.3), we can observe that the USB bandwidth is not the
main limitation when using multiple RealSense cameras on a single computer. However, further per­
formance analysis is required in order to pinpoint the issue between the kernel drivers and the imple­
mentation of RealSense API.

These limitations could be addressed by circumventing the RealSense API and using the cameras
with native operating system APIs or writing custom camera drivers from scratch. The RealSense
cameras comply to the UVC 1.5 (Usb Video Class device) specification [41], which defines and stan­
dardizes video streaming functionality of USB devices. On Linux operating systems, there are generic
drivers for UVC video devices available within the Video4Linux framework (V4L).





11
Camera synchronization

11.1. Overview
Synchronous data acquisition is important for accurate 3D reconstruction of dynamic scenes, when
multiple image sensors are involved. In case of an RGB­D camera, the delay between the color and
depth sensor (Chapter 11.2) results in an offset between the 3D data and its texture, while acquisition
delays between multiple devices (Chapter 11.3) prevent accurate alignment of pointclouds.

RealSense API provides access to frame metadata, which contains multiple timestamps recorded
during the acquisition process, shown in Figure 11.1 and summarized in Table 11.1. Synchroniza­
tion delays between cameras are measured using timestamps recorded at the time1 of image sensor
readout on the camera (event A on Figure 11.1 and Table 11.1).

In order to provide a common time reference, the camera’s clock is being synchronized with host
computer’s system clock, by constantly measuring message round­trip delays and estimating its time
offset (similarly to the NTP synchronization algorithm). This feature is implemented in RealSense API,
which provides all timestamps expressed in host computer’s clock.

Figure 11.1: Diagram illustrating the lifetime of a frame and events (timestamps) which are recorded in the metadata. Event A
is recorded during image sensor readout. Event B designates beginning of the USB data transfer towards the host computer.
Event C is recorded when frame is read into the kernel buffers of the USB driver. Event D marks the arrival of frame to the
userspace, waiting to be read by application.

Event Timestamp name Description
A SENSOR_TIMESTAMP image sensor readout (taken at the middle of exposure time)
B FRAME_TIMESTAMP beginning of the frame transmission
C BACKEND_TIMESTAMP time of frame arrival to the kernel buffers on the host computer
D TIME_OF_ARRIVAL time of frame arrival to the application (kernel to userspace transition)

Table 11.1: Summary of timestamps available in RealSense RGB­D metadata and their relations to events, marked in Figure
11.1

1Time at the middle of sensor exposure.
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11.2. Color and depth frame synchronization
Ideally, an RGB­D camera captures data from all image sensors simultaneously while minor snychro­
nization offsets might be introduced due to different exposure times. However, the RGB sensor of the
RealSense D435i camera is mounted on a separate PCB and does not share the clock with depth (IR)
image sensors2, which prevents accurate synchronization between sensors.

In order to quantify the synchronization delays of color and depth sensors on a single camera, we
observed timestamp differences between color and depth frame pairs. Matching of color and depth
frames according to smallest difference in their timestamps is implemented in RealSense API. Results
of a single camera streaming RGB­D data at 848 x 480 px at different framerates are shown in Table
11.2 (mean and std. deviation is calculated over 10 frames).

Framerate
(fps) Mean (ms) Standard deviation (ms)

6 0.370 0.003
15 0.044 0.001
30 0.017 0.001
60 N.A. N.A.

Table 11.2: Color vs depth acquisition delays

2https://community.intel.com/t5/Items­with­no­label/Hardware­Sync­of­Color­and­Depth­in­D435/
m­p/530425/highlight/true#M7451

https://community.intel.com/t5/Items-with-no-label/Hardware-Sync-of-Color-and-Depth-in-D435/m-p/530425/highlight/true##M7451
https://community.intel.com/t5/Items-with-no-label/Hardware-Sync-of-Color-and-Depth-in-D435/m-p/530425/highlight/true##M7451
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11.3. Inter­camera synchronization delays
Synchronization delays between individual cameras are larger and more significant in our application,
compared to inter­sensor delays of an individual device. The delay between cameras depends on
acquisition hardware and software, while the delays within the camera are imposed by their hardware
design can not be influenced by users.

The best possible synchronization between cameras can be achieved by providing a reference clock
to their dedicated hardware pins (e.g. using an external signal generator or using one of cameras’ clocks
as a reference). This method of camera synchronization, called genlocking, is commonly used in video
broadcasting industry and possible to use on RealSense cameras [22] [21], using the connector shown
in image 11.2. However, this method was not used in our work due to limited software support and
known hardware limitations on D435i model 3.

Figure 11.2: Connector used for hardware synchronization of clocks between multiple RealSense devices. (Image source: [22])

Synchronous start of RGB­D streaming on all cameras, described in chapter 8.2, provided sufficient
synchronization for low framerates (up to 15 fps). This was measured by comparing depth sensor
timestamps, using two RealSense cameras connected to a single computer, streaming RGB­D data at
15 fps.

For every pair of corresponding depth frames, the absolute difference (𝑑𝑖𝑓𝑓) between their times­
tamps (𝑡𝐴 and 𝑡𝐵) was calculated: 𝑑𝑖𝑓𝑓 = |𝑡𝐴−𝑡𝐵|. Table 11.3 shows the mean and standard deviation
of each experiment, which was repeated 10 times.

3Clock signals provided trough the connector on Figure 11.2 are not connected to the RGB sensor. This hardware limitation
allows synchronizing depth sensors only and is not present in other RealSense camera models (D415 and D455).
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Table 11.3: Measurements of synchronization accuracy between two RealSense depth sensors, streaming 10 seconds of data
at 15 fps and calculating mean of absolute timestamp differences and their standard deviation in milliseconds. Experiment was
repeated 10 times.

Measurement Mean [ms] Standard deviation [ms]
1 22.5 1.6
2 19.6 15.1
3 13.9 6.4
4 22.5 6.3
5 9.8 6.9
6 7.0 4.3
7 5.5 4.0
8 12.3 7.8
9 16.5 7.1
10 13.6 11.7



12
Modular system architecture: proof of

concept

12.1. Overview
In order to overcome the limitations imposed by the centralized architecture of our prototype (chapter
8), an alternative, modular solution was investigated. Instead of connecting all cameras to a single
computer, there is a now a dedicated single­board computer providing hardware resources for data
acquisition and storage. After data is captured by each module independently, frames from all cameras
are gathered, post­processed and visualized on a central computer. This can be an arbitrary computer
with sufficient storage capacity, using an arbitrary network connection with the acquisition modules,
since there are no timing constraints in the offline processing system. Comparison between centralized
and modular system architecture is shown in Figure 12.1.

Figure 12.1: Comparison of centralized and modular system architectures.
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This architecture eliminates the problem of scalability by separating data acquisition and data pro­
cessing not only in software, but in hardware as well. The number of devices in centralized scenario
was limited due to hardware limitations related to data acquisition, which is not the case with acquisi­
tion modules. Furthermore, flexibility limitations caused by USB cables can be solved if the acquisition
module is battery­powered and wirelessly connected to the central computer.

12.2. Acquisitionmodule: RealSense D435i + Raspberry Pi 4 + SSD
Our implementation of this system is based on acquisitionmodules, which consist of a single RealSense
D435i camera, Raspberry Pi 4 single board computer and an SSD drive, shown in Figure 12.2. Mod­
ules are running the data acquisition software described in section 8.2 on a linux operating system
(Raspberry Pi, previously called Raspbian).

Figure 12.2: Image of a single acquisition module of the modular prototype. A RealSense camera is connected to a Raspberry
Pi 4 single­board­computer, powered by an external SSD drive.

Raspberry Pi computers are normally booted from an SD card, which have smaller storage capacity
and transfer speed in comparison to SSD or HDD drives used in desktop computers. While storage
capacity is not the primary concern in our case, due to short recording sequences (less than a minute),
transfer speeds of SD cards would pose a bottleneck in acquisition framerate. A single RealSense
camera produces approx. 98 MB/s of data which would exceed the writing speeds of an SD card. A
performance comparison using Raspberry Pi 4 showed that using an SSD drive connected via USB 3
can reach approx. 222 MB/s sequential write speeds [18], while SD cards can not reach write speeds
higher than 40 MB/s [17]. In order to achieve higher framerates, an SSD drive1 was used for both frame
capturing and the operating system.

An USB enclosure is required in order to connect an SSD drive to the USB 3 ports of the Raspberry
Pi 4, however not all enclosures offer the same performance. Data troughput greatly depends on the
PCIe to USB bridge chipset used within the enclosure, specially its UASP protocol implementation
[19] which is not implemented in all chipsets and contains bugs in some (widespread) chipsets [27].
Furthermore, the bootloader firmware of the Raspberry Pi casuses a short power­drop on the USB
ports, which resets the device and disrupts the booting process occasionally. This issue is not present
in all USB enclosures and can be resolved by using a powered USB hub 2.
1Kingston A2000, an M.2 interface SSD drive with 250 GB storage capacity
2The USB enclosure used in our experiments uses the RTL9210 chipset, which caused no problems during the boot process.



12.3. Performace limitations 47

In order to boot a Raspberry Pi 4 from an USB storage device, the bootloader version needs to
supports USB boot and correct boot order needs to be configured. At the time of performing our ex­
periments, this feature was not yet officially supported and required manually flashing the on­board
EEPROM memory with the latest bootloader version and changing its configuration. However, as the
feature is now officially supported [16], the procedure is relatively straightforward and essentially ”plug­
and­play” .

12.3. Performace limitations
Single board computers are suitable for implementing acquisition modules due to their compact form
and low price, but might introduce several limitations in terms of data acquisition performance. Running
the RGB­D acquisition software, described in chapter 8.2, allowed capturing frames at 15 fps which is
only a sixth of the framerate achieved on a desktop computer. However, the main reason for this is not
hardware, but inefficient software backend used in Raspberri Pi operating systems.

RealSense API depends on certain kernel functionality3 which is present on desktop computers
(e.g. Ubuntu), but not on single board computers (e.g. Raspberry Pi OS). In order to support a wider
range of computer platforms, the RealSense developers provide an alternative software backend which
implements all necessary functionality in user space, avoiding the need for non­trivial modifications4 of
the operating system. Figure 12.3 shows comparison between the default backend using kernel drivers
(called V4L_BACKEND) and the alternative backend (called RSUSB_BACKEND).

Figure 12.3: Comparison of software components used in different RealSense backends.

While providing a simpler installation method, the user space implementation of video streaming
functionality comes with a performance cost, due to increase in processor context switches caused
by system calls. In order to compare the performance of two backends, we captured 10 seconds of
RGB­D data on a desktop computer and measured the time spent executed system calls using the
strace utility, shown in table 12.1. It can be observed that the user space backend implementation
(RSUSB_BACKEND) spent nearly double amount of time executing system calls which decreases the
performance and limits the maximum framerate.

In order to evaluate the limits of the hardware used in acquisition modules, software limitations
need to be addressed first. Experiments using the native software backend (V4L_BACKEND) of the
RealSense API or custom drivers could provide further insight, but were not included in the scope of
our work.

Experiments with the JMS583 based enclosure caused occasional operating system freezes (UASP imlpementation bugs) and
boot process failures (power delivery issues).

3The V4L (Video 4 Linux) and uvcvideo kernel modules. The uvcvideo module needs to be patched, as it does not support the
depth video formats and metadata by default.

4Enabling RealSense API on Raspberry Pi OS requires modifying and compiling the linux kernel, which is a complex process
and is not officially supported by RealSense.
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RealSense backend number of calls total time (s)
V4L (kernel) 19473 5.979502
RSUSB (user space) 64663 11.274009

Table 12.1: Comparing usage of system calls between the two RealSense backend implementations. User space implemen­
tation of the backend (RSUSB) spends almost double amount of time executing system calls compared to the kernel backend
implementation (V4L).
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12.4. Synchronization between modules
Synchronized data acquisition in the modular scenario is more challenging compared to the centralized
prototype, described in Chapter 8. There are now multiple independent computers which need to
ensure synchronous operation of RealSense cameras in order to obtain accurate 4D reconstruction of
dynamic scenes.

Simultaneous start of RGB­D streaming on all modules is achieved similarly to previous prototype.
The streaming flag (in Alogrithm 1) is now controlled, by a hardware interrupt generated by a pushbutton
which is connected to GPIO pins of all modules. This can be replaced with a wireless solution in future,
allowing greater flexibility when positioning the modules.

Further measurements are required in order to evaluate if this kind of synchronization between
modules is sufficient for data acquisition at framerates of 15 fps or higher.





13
Conclusions

13.1. Summary
In this graduation work, we developed a 4D foot scanning prototype using four RGB­D cameras con­
nected to a single computer, allowing RGB­D data acquisition at 15 fps with resolution of 848x480
pixels.

The first part involved a literature study of existing 3D and 4D foot scanners, followed by an in­depth
examination of the RealSense D435i camera accuracy and optimal parameter configuration. Existing
camera calibration techniques were researched and a simple extrinsic calibration method was used for
solving the pointcloud alignment problem.

Upon solving the challenges of camera calibration and pointcloud alignment, the 4D scanner pro­
totype was built and used for testing our implementation of the 4D reconstruction pipeline. A walking
stage with a plexiglass section was built, allowing the capture of a single step from all sides, including
its bottom. Cameras were mounted on a separate frame with custom 3D printed mounts. The resulting
prototype allows a 4D reconstruction of a foot in motion.

Second part of our work focused on embedded system design and data acquisition challenges,
addressing the limitations of centralized system architecture. Upon an investigation of data acquisi­
tion bottlenecks and camera synchronization measurements, an alternative system architecture was
proposed. Modular 4D scanning prototype concept was (partially) implemented using multiple single
board computers, allowing data acquisition at 15 fps and 848 x 480 px resolution.

13.2. Future work and potential improvements
The interdisciplinary nature of this work allows plenty of room for improvement, since an in­depth study
of all its aspects would be impossible.

While our accuracy evaluation confirmed the suitability of the Intel RealSense D435i camera for 4D
foot scanning purposes, further experiments need to be performed in order to obtain a more represen­
tative characterization of the device. Replicating the measurements performed by Carfagni et al. [11]
would allow fair comparison of the D435i with other RGB­D devices (such as D455, Kinect and others).

There are multiple weaknesess in our methods of camera calibration and pointcloud alignment,
which can be addressed and might significantly improve the scanning results. Intrinsic parameters of
RGB­D cameras were calibrated using the default manufacturer’s software tools, which often produce
sub­optimal calibration results and are not scientifically evaluated. The pairwise calibration of cameras
is prone to error accumulation since there is only one line of camera relations used, which could be
improved by taking into account all possible camera pair combinations and distributing the accumulated
error. An alternative method of extrinsic camera calibration (e.g. sphere object calibration [34]) would
allow a more convenient prototype usage in practice. Furthermore, there was no fine pointcloud regis­
tration applied in our post­processing software (such as ICP algorithm) which would improve scanning
results.

According to our investigation, the RealSense API posed the biggest limitation in terms of data
acquisition. It is a cross­platform library providing convenient access to RealSense cameras and ex­
pecting high­performance and efficiency would be unfair, specially in resource­limited, embedded com­
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puters. Since the cameras comply with the UVC 1.5 standard specification, these limitations can be
addressed by implementing custom camera drivers which can efficiently utilize all available hardware
resources on a specific computing platform.

Finally, the scanning prototype needs to be evaluated in terms of foot reconstruction accuracy in
both static and dynamic scenarios, using multiple subjects.
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