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The tethered space elevator could provide a revolutionary means for enabling 
cheap transportation to geostationary altitude and beyond.  Assuming that such a 
system can be built, one of the dynamic design problems is determining a means of 
moving the elevator along the tether so as to minimize the residual librational 
motion of the elevator ribbon and counterweight.  In particular, this paper studies 
this problem from the point of view of dynamic optimization.  A simplified dynamic 
model of the elevator system is derived that accounts for the fundamental libration 
mode and the motion of the elevator.  The model is used to solve an optimal control 
problem that results in zero final librational motion of the ribbon. 

I. Introduction 
HE tethered space elevator is a radical concept that has existed in the literature even prior to the modern 
spaceflight era [1].  The basic concept requires a tether or ribbon extending from geostationary altitude to the 

Earth’s surface.  However, in order to make the system feasible, the ribbon is required to extend past geostationary 
altitude.  The system center of orbit is designed to remain at geostationary altitude so that the system spins in orbit at 
the same rate as the Earth rotates.  This means that the tip of the ribbon is always located at the same location on the 
Earth’s surface.  Although Tsiolkovsky [1] is often credited with its invention, it was not until Pearson [2] that the 
concept was cemented in engineering terms.  At the time of publication, no engineering material existed that could 
come close to the requirements needed for an Earth orbiting elevator.  Recent developments in carbon nanotubes [3] 
offer one potential means for enabling the development of a full scale elevator system, albeit with many technical 
challenges to overcome. 
 Several previous works have dealt with various aspects of the dynamics of the elevator system.  Cohen and Misra 
[4] derived a continuum model representation of the elevator ribbon to calculate the frequencies and mode shapes.  
Less rigorous estimation of frequencies and mode shapes has been presented elsewhere [5].  Williams [6] used a 
lumped mass model of the ribbon to calculate frequencies and mode shapes, and also simulated the effects of the 
passage of the elevator up to geostationary altitude.  However, the elevator motion was prescribed according to an 
acceleration-constant speed-deceleration schedule.  Cohen and Misra [7] used a simplified model of the elevator 
system to produce an analytic approximation for the libration response of the ribbon due to an elevator’s motion 
under the assumption of constant velocity motion.  They also showed that the use of multiple ascending elevators 
can be used to produce a zero net libration angle for the elevator ribbon.  Studies of the dynamics of other elevator 
systems have also been undertaken, using models of varying fidelity [8-11]. 
 If the elevator system is produced, it will be necessary to consider active control of the elevator during ascent, so 
that severe lateral oscillations are not induced.  Furthermore, it is likely that motion planning will be required so as 
to reduce the resulting libration amplitude of the ribbon following passage of the elevator to the desired altitude.  
Present technology allows very rapid computation of optimal trajectories, which would enable planning of 
trajectories just prior to beginning ascent, or even real-time feedback control.  This paper presents a numerical 
analysis of the optimal trajectories for the ascent of a climber to geostationary altitude.  A simplified model of the 
system is used to produce the optimal trajectories, and a more detailed model is used to compare the results. 
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II. Dynamic Elevator Model 

A. Simplified Elevator Model 
To study the dynamics of the climber on the elevator system, detailed models of the system can be derived.  

However, to study the optimal means for controlling the climber to minimize the librations of the ribbon and 
counterweight, a simplified model of the system is used.  The model treats only the in-plane motion of the ribbon.  It 
considers the ribbon to be completely rigid, and the climber and counterweight to be point masses.  The model 
derivation is a simplified version of the one presented in [7].  The reference system for the model is shown in Fig. 1.  
The origin of the rotating coordinate system is located at the Earth’s surface at the anchor point.  The counterweight, 

c
m , is located at a distance of l  from the anchor point, equal to the length of the ribbon.  The elevator, 

e
m , is at a 

distance d  along the ribbon.  The deviation of the ribbon from the vertical is measured by the libration angle θ .  
The radius of the Earth is denoted by 

E
R . 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Simplified representation of the tethered elevator system anchored to the Earth. 
 
Let the position of the elevator, counterweight, and an arbitrary point along the ribbon at a distance s  from the 
anchor be written in the rotating coordinate frame as 
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The inertial velocity of the elevator in the rotating frame is given by 
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with similar expressions for the counterweight and arbitrary point along the ribbon.  Note, however, that the radial 
velocity terms l  and s  do not appear in these equations because the ribbon length is assumed to be constant.  It may 
be possible to control the ribbon oscillations by reeling the main elevator ribbon, but this possibility is not 
considered here. 
 The total kinetic energy of the system is calculated by 
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The potential energy due to the Newtonian gravitational field of the Earth is calculated as 
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where μ  is the Earth’s gravitational parameter.  After application of Lagrange’s equations, the equation of motion 
for the libration of the ribbon is given by 
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where  
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The equations of motion for the elevator represent a damped nonlinear oscillator.  The damping (positive and 
negative) is provided by movement of the elevator along the ribbon, d .  For all practical purposes, the libration 
angle of the ribbon will be small.  Equation (7) can be linearized around the vertical position to obtain the natural 
frequency of the libration mode.  The equation shows that there is a non-zero forcing contribution of the elevator as 
it moves along the ribbon.  Hence, any movement of the elevator along the ribbon initiates libration of the ribbon.  
Such libration is undesirable as it increases the tension in the ribbon and can ultimately affect the accuracy of 
payload insertion into orbit.  The next section examines methods of eliminating the residual libration after climbing 
the ribbon. 

B. Multibody Elevator Model 
 The use of a simple model for the elevator system neglects the lateral oscillations of the ribbon.  In smaller scale 
tethered satellite systems, such oscillations can usually be safely neglected during preliminary control design since 
their effect in the real system is often hard to predict.  Furthermore, the tensions involved are usually very small.  
However, because of the extreme scale of the tethered elevator system, lateral oscillations of the ribbon are strongly 
coupled to the motion of the counterweight.  Hence, any lateral oscillations induce libration of the entire ribbon and 
counterweight.  For this reason, it is important to assess the degree of coupling between the elevator motion and the 
ensuing system librations.  This is important in assessing the applicability of simplified models for the design of 
ascent/descent trajectories for the elevator. 
 A lumped mass tether model is used in this paper.  The model was originally presented in [6], where it was used 
to simulate prescribed acceleration-constant speed-deceleration motion of the of the elevator to geostationary 
altitude.  In this work, the elevator motion is specified via the output of the trajectory optimizer. 
 The equations of motion reference to a rotating reference frame for 

max
N  tether elements are given by 
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Fig. 2.  Lumped mass tether model. 
 
where the coordinates used are defined in Fig. 2 and 
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 Fig. 3 illustrates the discretization of the tethered elevator system to enable prescribed motion of the elevator.  
The complete system is split into two separate subsystems: an upper tether and a lower tether.  For convenience, 
these have been labeled as tether [1] and [2], respectively.  The motion of the elevator is achieved by changing the 
lengths of the tether segments closest to the elevator.  The elevator mass is numbered as 

maxNm , which represents the 
maximum number of tether elements in either the upper or lower tether.  The elements in the upper and lower tether 
subsystems are numbered in such a way that the extreme elements start at 1 and increase to 1n  and 2n , respectively.  
The key forces on the system are tension, damping, and gravity.  These forces are derived explicitly in [6]. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Discretization of tethered elevator for prescribed elevator motion. 
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C. The Need for Elevator Speed Optimization 
 Fig. 4 shows the results of a simulation of a 1000 kg elevator climbing a 70,000 km long ribbon to geostationary 
altitude.  The elevator moves at a constant speed of 50 m/s, with acceleration and decelerations of 4 m/s2 at the 
beginning and end of the journey.  The major effect of the motion on the dynamics is the initialization of the first 
libration mode.  Note that the first two modes of the system are the rigid body oscillations, about the anchored tip, 
shown in Fig. 5.  The first mode is in the plane of the orbit, whereas the second mode is out of the orbital plane.  
There is almost no damping in the system and hence the libration continues well after the elevator ceases climbing.  
Rather than climbing at a constant velocity, a better strategy is to control the elevator’s ascent in such a way that the 
librational oscillations are minimized.  However, it is not an intuitive design task – we utilize optimal control to 
obtain a rapid solution to this problem. 
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Fig. 4. Response of system to elevator climbing to geostationary altitude at 50 m/s. 
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Fig. 5. Mode 1 and 2 for 100,000 km anchored tether. 

III. Optimization of Climber Motion 
 In [7], Cohen and Misra analyzed the equations of motion for the ribbon libration under elevator forcing effects 
and proposed synchronizing the ascent of three climbers to null the effects of the residual ribbon libration at the end 
of the climb to geostationary altitude.  This assumes that the climbers maintain constant speed during the climb.  
Any faults in the elevator’s motors or disruption in power supply could result in failure of the method to eliminate 
the residual oscillations.  It is of interest to be able to plan the ascent of a single climber to geostationary altitude 
such that the final ribbon libration is nullified.  This is not possible by maintaining a single climber at constant 
speed.  The advantage of optimizing the motion of a single climber is that it is possible to replan trajectories in case 
of motor failures or other unscheduled events.  Furthermore, coordinating multiple climbers could be a logistical 
issue and would not be optimal from an operational perspective. 



A. Numerical Optimization of Elevator Ascent 

1. Basic Ascent Problem 
 Consider the problem of finding the optimal climber acceleration ( ) ( )u d⋅ = ⋅  to minimize the cost function 
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If a solution to the problem defined by Eqs. (13) through (16) exists, then it is possible to nullify the libration of the 
ribbon through proper scheduling of the elevator’s speed on the ribbon.  Note that the cost function minimizes a 
weighted functional of the climber acceleration and climber speed, where 

1
c  is a weighting parameter. 

2. Time Optimal Ascent 
 An important class of maneuvers that can be used to establish lower bounds on the elevator’s ascent is the 
minimum time maneuver.  In such a maneuver, both the elevator acceleration and velocity are bounded to maximum 
permissible levels, and the cost function is selected as the final time, 
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The cost function is subject to the constraints 
 

 
min max
d d d≤ ≤  (18) 

 
min max
d d d≤ ≤  (19) 

 
as well as the equations of motion defined by Eqs. (14).  In addition, the maneuver is subject to the same initial and 
terminal constraints given in Eqs. (15) and (16). 

B. Numerical Solution Method 
 An efficient solution to the nonlinear optimal control problem described in Section III.A can be obtained by 
application of direct transcription techniques combined with nonlinear programming.  In this paper, the continuous 



optimal control problem is transcribed into a discrete parameter optimization problem by way of the Legendre 
pseudospectral method [12-13].  This process is automated in the software DIRECT [14]. 

IV. Numerical Results 

A. Time Optimal Ascent 
 As noted in the previous section, it is important to establish a lower bound to the feasible maneuver time for 
realistic constraints on the elevator’s maximum speed and acceleration.  The time optimal ascent problem is solved 
for the case where the elevator is 1000 kg, the ribbon is 100,000 km long with a maximum cross-sectional area of 10 
mm2, and the material strength is 35 GPa with density 1300 kg/m3. 
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Fig. 6. Ribbon libration angle for time optimal elevator ascent to geostationary. 

 
 The optimal control problem is solved using the Legendre pseudospectral method with the time domain 
discretized into 200 nodes.  The elevator’s maximum speed is limited to 50 m/s, with a maximum acceleration of 4 
m/s2.  The optimal solution is presented in Figs. 6 to 8.  Fig. 6 shows that the libration angle of the ribbon peaks at 
approximately 0.012 deg after approximately 8 days.  The optimal time of ascent to nullify the ribbon libration is 
9.383 days.  Figs. 7 and 8 show that the elevator is able to maintain a constant speed throughout the vast majority of 
the ascent.  Although hard to discern on the time scale, the initial acceleration and deceleration phases occur at the 
maximum limit.  Fig. 8 shows that in order to bring the final libration angle and libration rate of the ribbon to zero at 
the final time, the elevator’s speed must be reversed for just over half a day at about 8 days.  At the higher altitude, 
the forcing effect is larger and is therefore able to force the ribbon swing back earlier than would have otherwise 
occurred.  Once the swing back has commenced, the elevator is able to resume its course to geostationary, where it 
comes to a stop.  Hence, the swing back is much faster than the initial swing away from the local vertical. 
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Fig. 7. Time optimal elevator ascent to geostationary. 
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Fig. 8. Elevator speed schedule for time optimal ascent to geostationary altitude. 

B. Effect of Time of Ascent 
 In this section, the acceleration and speed constraints on the elevator are lifted, and smooth unconstrained 
optimal solutions are sought as a function of different system parameters.  In this particular subsection, the time of 
ascent is varied and the elevator’s motion is optimized to eliminate the final ribbon libration.  The time of ascent is 
varied from 4 days to 30 days in increments of 1 day.  The elevator mass is 1000 kg, the Young’s modulus is 35 
GPa, the ribbon density is 1300 kg/m3, the maximum cross-sectional area is 10 mm2, and the ribbon length is 
100,000 km. 
 The results of numerical optimizations are shown in Figs. 9 to 11.  Fig. 9 shows the librational response of the 
ribbon to the elevator’s motion for the optimized trajectories as a function of the time of travel.  For clarity, the time 
scale is normalized by time of travel.  For the fastest travel time, the libration angle of the ribbon reaches a peak just 
after the midway point.  The optimal solution for eliminating the residual libration does not involve simply climbing 
at a constant speed.  Instead, the speed peaks at approximately 15 % of the trip time, then slowly decreases to zero.  
The elevator reverses direction after approximately 45 % of the trip time, which causes the libration to reach its peak 
quickly.  The elevator then accelerates back towards geostationary, reaching a second peak of 200 m/s, after which 



the elevator is slowed back to a stop.  Increasing the transit time decreases the velocity peaks at the beginning and 
end of the transfer, and reduces the need for the elevator to travel back down the ribbon.  Increasing the time of 
travel leads to a decrease in the peak libration amplitude.  In addition, the libration peak shifts towards the end of the 
ascent.  For very long travel times, the ribbon undergoes a series of low amplitude oscillations about a non-zero 
mean, culminating in a slightly larger peak just prior to returning to the local vertical. 
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Fig. 9. Ribbon libration angle as a function of time of travel. 
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Fig. 10. Normalized distance of elevator along ribbon for optimal ascent. 
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Fig. 11. Optimal elevator speed as a function of time of ascent. 

C. Effect of Elevator Mass 
 The Coriolis forces exerted on the ribbon as a result of the elevator’s motion along it are directly proportional to 
the elevator mass.  Hence, the torque acting on the ribbon to disturb it away from the vertical position depends 
directly on the elevator mass.  In this section, the same basic system is used to simulate the effects of elevator mass 
on the optimal climber trajectories.  The ribbon is 100,000 km long with Young’s modulus 35 GPa, the maximum 
cross-sectional area is 10 mm2, and mass density of 1300 kg/m3.  The travel time is fixed at 10 days, and the elevator 
mass is varied between 1000 and 20,000 kg. 
 Optimal elevator trajectories are shown in Figs. 12 through 14.  Fig. 12 shows that the peak ribbon angle 
increases in direct proportion to the elevator mass.  This shape of the variation in ribbon angle is essentially the 
same, irrespective on the elevator mass.  Initially the ribbon remains in vertical equilibrium and only starts to display 
noticeable deviations after approximately 1 day of travel.  The libration peaks after approximately 7 days, after 
which the ribbon rapidly converges back to the stable equilibrium position.  Figs. 13 and 14 show the variation of 
the elevator position along the ribbon and the elevator’s speed, respectively.  These figures indicate that the optimal 
control inputs are relatively insensitive to elevator mass.  This is an important result because it means that the 
elevator load can be changed substantially without impacting the open-loop control.  Note, however, that this 
conclusion is only valid within the assumption that the ribbon remains straight.  Increasing the elevator mass will 
create larger Coriolis forces and hence induce larger lateral ribbon vibrations.  This was established through 
simulations in [6] and the main result is summarized in Fig. 15, which shows that the maximum lateral deviation of 
the tether from the line connecting the anchor and the counterweight is linearly proportional to the elevator mass. 
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Fig. 12. Ribbon libration angle as a function of elevator mass. 
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Fig. 13. Normalized distance of elevator along ribbon for optimal ascent as a function of elevator mass. 
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Fig. 14. Optimal elevator speed as a function of elevator mass. 
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Fig. 15.  Maximum lateral deflection of a flexible elevator ribbon during transit to geostationary altitude at a 

constant speed of 450 m/s. 

D. Effect of Tether Length 
 The final parameter that is examined in this work is the ribbon length.  Using the same parameters as in the 
previous example, but with an elevator mass of 1000 kg, the ribbon length is varied between 70,000 and 160,000 
km.  Results of the optimal trajectories are shown in Figs. 16 through 18.  It should be noted that changing the 
ribbon length changes the total mass and mass distribution in the system.  The results show, however, that changing 
the ribbon length has only a minor effect on the optimal trajectories.  The effect is more substantial than changes in 
elevator mass.  The trajectories are only affected because the system dynamics change due to the change in 
gravitational forces on the longer ribbon.  In reality, the ribbon length will be virtually constant during operations.  
Hence, even changes on the order of a few hundred kilometers would have negligible impact on the control of the 
elevator. 
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Fig. 16.  Ribbon libration angle as a function of tether length. 
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Fig. 17. Normalized distance of elevator along ribbon for optimal ascent as a function of tether length. 
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Fig. 18. Optimal elevator speed as a function of tether length. 

E. Numerical Simulation of an Optimal Trajectory in Flexible Ribbon Model 
 The optimal solution was implemented in a flexible, elastic elevator model described in Section II.  It has been 
found that the Young’s modulus of the tether material plays a very important role in the dynamics.  In particular, in 
order for the simple model to match the fundamental frequency of the multibody model, the Young’s modulus must 
be very large (significantly larger than would be obtainable with Carbon nanotubes).  An optimal solution was 
produced for a relatively short transit to Geostationary with a 100,000 km long ribbon.  The maximum cross-
sectional area is 10 mm2 with a density of 1300 kg/m3 and ultimate strength of 35 GPa.  The reference optimal 
solution for transit to geostationary altitude for a 1000 kg climber is shown in Figs. 19 and 20.  To implement the 
solution in the flexible model, the climber’s velocity was interpolated.  The libration angle of the flexible ribbon is 
shown in Fig. 21.  This illustrates that the libration angle predicted using the simple model is quite different from 
that produced using the multibody model.  The difference is almost two orders of magnitude, i.e., 100 times.  This 
has a significant impact on the dynamics because the induced velocities are drastically different.  However, the basic 
nature of the libration history is preserved, with the tether returning to an approximate vertical position.  In addition, 
the deflection of the elevator from the ribbon centerline is approximately constant at 1 km throughout the climb to 
geostationary, as shown in Fig. 22.  The lateral oscillations are also reduced by the optimal climber profile compared 
with a constant speed elevator ascent [6]. 
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Fig. 19.  Climber distance along ribbon for reference optimal solution. 
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Fig. 20.  Climber velocity for reference optimal solution. 
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Fig. 21.  Libration angle of ribbon using open-loop optimal solution implemented in flexible ribbon model. 
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Fig. 22.  Deflection of climber relative to line connecting anchor and counterweight for open-loop optimal 

solution. 

V. Conclusions 
 The control of the ascent of a space elevator to geostationary altitude has been considered.  The fundamental 
mode of vibration of an anchored ribbon is a rigid body oscillation about the anchor point on the Earth’s surface.  
This mode leads to large oscillations of the counterweight, which can be located up to 100,000 km above the anchor 
point.  As the elevator climbs the ribbon, Coriolis forces create a torque that initiates the librational mode.  The lack 
of damping in space causes this mode to persist.  Using a simplified model that only accounts for this mode, it is 
possible to solve the ascent problem using optimal control.  The results show that it is possible to eliminate the 
librational oscillations by reversing the direction of the elevator for a short time.  For a maximum speed of 50 m/s, 
with accelerations limited to 4 m/s2, the optimal trip time is on the order of 9.38 days. 
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