Improved fermion-to-qubit mappings for local and
sparse fermionic Hamiltonians

A way to map fermionic Hamiltonians onto qubit Hamiltonians while preserving locality and
sparsity and minimizing the number of qubits

Koen Eggen

A
Q\‘ >
}" < ‘

\\\\\/\/ e

Improved fermion-to-qubit mappings for local and
sparse fermionic Hamiltonians

A way to map fermionic Hamiltonians onto qubit Hamiltonians while
preserving locality and sparsity and minimizing the number of qubits

by

Koen Eggen

Delft University of Technology,
to be defended publicly on Monday June 2, 2025.

Student number; 5641276
Project duration: February, 2025 — June, 2025

Thesis committee: Prof. dr. B.M. Terhal, TU Delft, supervisor
Dr. E. Greplova, TU Delft, supervisor
Dr. M. Blaauboer, TU Delft
Dr. B. Janssens, TU Delft

Daily supervisor: MSc. ir. M. Stroeks, TU Delft

Faculty: Faculty of Applied Physics and Applied Mathematics, TU Delft

o]
TUDelft

Abstract

In order to perform simulations of fermionic systems on a quantum computer, there is an encoding
needed which maps the fermionic Hamiltonian onto a qubit Hamiltonian. In this thesis, a fermionic
encoding is constructed which is less constraining in terms of the required operations that realize this
mapping compared to other known mappings.

In the constructed mapping, the Bravyi-Kitaev superfast encoding is used to place qubits at the edges
of a graph corresponding to a physical system of n fermionic modes. From this encoding certain stabi-
lizer constraints arise which ensure that the correct fermionic operators are being encoded throughout
the entire simulation, and which are used to detect the occurrence of any errors during the simulation.

In combination with the superfast encoding, a randomized algorithm developed by Freedman-Hastings
is combined with a stacking- and sewing procedure of the graph and a Vertex Coloring algorithm to ob-
tain a cycle basis which governs the properties of these stabilizer constraints.

This constructed mapping obtains a locality and sparsity of the qubit Hamiltonian terms and stabilizer
constraints of O(1), while keeping the total number of qubits O(npoly(log(n))). Here poly(log(n)) means
some polynomial in log(n). Itis also numerically shown that the number of qubits can be further reduced,
while keeping the locality of the stabilizer constraints (1), and the locality and sparsity of the qubit
Hamiltonian terms and the sparsity of the stabilizer constraints O(poly(log(n))).

Is is furthermore shown how to use this encoding to perform simulations of two fermionic systems,
namely the Fermi-Hubbard model on sparse hopping graphs and the sparse SYK model.

Abstract

1
2

9

Introduction

Fermions and qubits

2.1 Important concepts from linearalgebra
22 Fermions e
23 Qubits e

Preliminaries on graphs and cycle bases

3.1 Graphsandcyclesbases
3.1.1 Basic algorithms for constructing a cycle basis
3.2 Randomgraphs

Preliminaries on fermionic encodings

4.1 General idea of a fermionicencoding

Known fermionic encodings

5.1 The Jordan-Wigner transformation
5.2 The Bravyi-Kitaev superfastencoding
5.3 Astacking and sewing procedure L.
5.4 The Freedman-Hastings DecongestionLemma
5.5 Physical systemstoconsider

5.5.1 The Fermi-Hubbard model on sparse hopping graphs . . .

5.5.2 Sparse SYK Hamiltonians

Numerical results for known transformations

6.1 Results for the modified Erdos-Renyigraph
6.2 Results for the sparse SYKgraph.

Constructing the improved fermionic encoding

7.1 Twoscenariosl
7.2 The Vertex Coloring algorithm
7.3 Differentsewingmethods
7.4 Combiningeverything

Numerical results for the improved fermionic encoding

8.1 Generalresults L
8.2 Discussion for scenario 1: optimizing the locality and sparsity . . .
8.3 Discussion for scenario 2: optimizing the number of qubits

Formal proof of the properties of the improved fermionic encoding

10 Discussion and further research

Bibliography

A Derivations and examples

A.1 Example using the Majoranaoperators
A.2 Commutation relations in the Bravyi-Kitaev superfast encoding . .
A.3 Horton’s algorithm oo
A.3.1 Dijkstrasalgorithm
A.3.2 Example of Horton’s algorithrm
A.4 Example of the algorithm of Freedman-Hastings

A.5 Derivations for representing the Fermi-Hubbard model on a graph

11

contents

Contents 1ii
A.6 Proof of the properties of the different sewingmethods 58

B Relevant plots 59
B.1 Horton’s algorithm applied to the Erdos-Renyigraph 59
B.2 Straightsewing e 59
B.2.1 Novertexoverlap e 59

B.2.2 Overlaponatmostivertex 61

B.2.3 Overlaponatmost2vertices 62

B.2.4 Overlaponatmost3vertices 63

B.3 Triangular sewing withoutoverlap 64
B.4 Straight-6sewing e e 65
B.4.1 Overlaponatmostivertex 65

B.4.2 Overlaponatmost2vertices 66

B.4.3 Overlaponatmost3vertices 67

B.5 Skew sewing withoutoverlap 68

C GitHub 69

Introduction

Everything that is present in the world around us is made of fundamental particles, and in particular
fermions play a crucial role [1]. This is the reason that we are interested in performing simulations of
fermionic systems to get more insight in their properties and behaviour. One could try to use a normal
modern day computer to perform these simulations, but doing very precise simulations quickly becomes
too computationally heavy for a normal computer. This is mainly caused by the exponential blow-up of
number of calculations needed, since fermions are quantum particles [2].

To perform these simulations, one will need a quantum computer made up of quantum particles
called qubits [3]. To be able to perform the simulations on a quantum computer, one first needs to
map the fermionic Hamiltonians to qubit Hamiltonians, so that a quantum computer is able to read the
information provided. This mapping is called a fermionic encoding [4].

An aspect of a fermionic encoding is to represent the n fermionic modes by a graph for which certain
edge and vertex operators can be defined [5]. These operators can be used to represent the interac-
tion terms in the fermionic Hamiltonian, and they will be mapped onto qubit operators. In this way the
fermionic Hamiltonian will be mapped onto a qubit Hamiltonian.

Most of the interesting physical systems are described by so called local and sparse fermionic Hamil-
tonians [6]. A local Hamiltonian means that each term in the Hamiltonian involves only a constant
number of modes while the number of fermionic modes n can grow, and a Hamiltonian is sparse if
each mode only occurs in a constant number of terms.

The fermionic encoding should preserve both the locality and sparsity of the Hamiltonian terms. This
is because performing quantum simulations with constant weight qubit operators ensures that the quan-
tum simulation requires only a limited amount of resources. [2]. Such a mapping might require a number
of qubits that exceeds the number of fermionic modes. However, we want to keep the total number of
qubits as low as possible. This is because current quantum hardware consists of only a small number
of qubits, and so most quantum hardware does not have the resources to perform simulations requiring
a lot of qubits [4].

So, the goal of a fermionic encoding is to rewrite the fermionic operators such that their fermionic
nature is preserved, and that the resulting qubit Hamiltonian is local and sparse. To furthermore bound
the amount of resources needed, this should all be done while keeping the total number of qubits as
low as possible.

There are already several known fermionic encodings. The most intuitive one is the Jordan-Wigner
transformation where qubits are placed at each vertex in the graph onto which the encoding is applied
[4]. Another more complex transformation is the Bravyi-Kitaev superfast encoding, where the qubits
are placed at every edge of the graph [5], [7].

However, the Jordan-Wigner transformation does not preserve the locality of the Hamiltonian. In
contrast, the Bravyi-Kitaev superfast encoding does provide a local and sparse qubit Hamiltonian, but
with the need of some extra stabilizer constraints [5]. These stabilizer constraints define a subspace
that corresponds to the space occupied by the fermionic modes to be encoded. Furthermore, these
constraints make sure that we stay within this subspace throughout the entire simulation [7] and are

1

used to detect the occurrence of errors during the simulation [2].

The locality and sparsity of these stabilizer constraints are governed by the properties of a cycle
basis of the graph onto which the encoding is applied [6]. The locality is determined by the length of
the cycles in the basis, and the sparsity is the number of cycles in which a given edge participates.
The main disadvantage of the Bravyi-Kitaev superfast encoding is that these stabilizer constraints are
not necessarily local and sparse, but we aim to achieve this to minimize the strain on the quantum
computer during simulations [2], [8], [9].

In Ref. [10] and [11], another type of fermionic encoding is constructed, which provides a compact
mapping which preserves operator locality and sparsity and limits the required qubit to mode ratio to at
most 2.5. However, this mapping can only be applied to regular tilings with maximum degree at most
4 and cubic lattices. Since we consider more general sparse graphs in this thesis, we will not discuss
this mapping in more detail.

In this thesis, we consider two known algorithms to modify the graph onto which the Bravyi-Kitaev
superfast encoding is applied, and to construct a cycle basis for this graph. The first algorithm uses a
stacking procedure of the graph and sews a cycle in each layer to obtain small cycles [6]. This algorithm
provides a cycle basis where the locality and sparsity of the stabilizer constraints are both O(1), but on
the other hand uses O(n?) qubits to obtain this. The other algorithm is developed in the Decongestion
Lemma of Freedman-Hastings, which provides a cycle basis with sparsity O(poly(log(n)) and only uses
O(n) qubits [12]. However, the length of the cycles in this cycle basis could be as big as O(n).

So for general sparse graphs onto which the superfast encoding is applied, there currently does
not exist an algorithm which modifies the graph and constructs a cycle basis for this new graph, such
that it exhibits all the desired properties mentioned above. This sets the goal of this thesis, formally
formulated in the research question:

How to obtain a fermionic encoding from a local and sparse fermionic Hamiltonian, to a local
and sparse qubit Hamiltonian, while minimizing the required number of qubits?

In this thesis, we use the Bravyi-Kitaev superfast encoding in combination with a new algorithm
to modify the graph and construct a cycle basis for it. This algorithm makes use of a certain Vertex
Coloring algorithm, which is used to obtain an improved stacking- and sewing procedure of the graph
and the cycles in its cycle basis. In this way we construct a fermionic encoding which does exhibit all
desired properties.

We consider two different scenarios throughout this thesis. In the first scenario we obtain locality
and sparsity of the qubit Hamiltonian terms and of the stabilizer constraints of O(1), while keeping the
required number of qubits O(npoly(log(n)). In the second scenario, we are more interested in reducing
the number of qubits. We have numerically obtained a total number of qubits of O(npoly(log(n)) with a
reduced pre-factor compared to the first scenario. To achieve this, we have increased the locality and
sparsity of the qubit Hamiltonian and the sparsity of the stabilizer constraints to O(poly(log(n)), while
keeping the locality of the stabilizer constraints O(1).

In chapter 2 we first discuss the necessary theory on fermions and qubits needed to understand the
rest of this thesis. We move on by laying the mathematical foundation on graphs and cycle bases in
chapter 3 and discuss a special type of random graph called a Erdos-Renyi graph. In chapter 4 we
describe the goal and properties of a general fermionic encoding in more detail, after which we will
discuss several known fermionic encodings in chapter 5. We apply these known transformations to
two specific physical systems, and then discuss the results of numerically implementing this in chapter
6. In chapter 7 we discuss the two scenarios in more detail and we construct the improved fermionic
encoding. We again apply this improved encoding to a physical system and we discuss the results
following from the numerical implementation of this in chapter 8. Finally, in chapter 9 we formally prove
the properties of this improved fermionic encoding. We end the thesis with a discussion were we look
back at the research question and provide some ideas for further research.

Fermions and qubits

Everything that is present in the world around us is made of fundamental particles. They are the
smallest building blocks of matter. According to the Standard Model [1], we can divide the fundamental
particles into two subgroups: fermions and bosons. What both groups have in common, is that they are
indistinguishable particles [13]. To see the consequences of this, consider a two particle wavefunction
U(z1,22). The probability of finding particle 1 at position z; and particle 2 at position z is given by
the absolute square of this wavefunction: |¥(x1,25)|?. Since both particles are indistinguishable, this
probability should remain the same if we switch the labels 1 and 2:

|U (21, 20)|> = | (22, 21)]°. (2.1)

This means that we must have: _
U(zy,20) = €U (29, 21). (2.2)

Here ¢ is some phase factor, and the symmetry postulate for fermions then states that e = —1.

Or in words: the wavefunction describing fermions should be antisymmetric under particle exchange.
This property of the wavefunction is one way to divide the fundamental particles into fermions and
bosons. Fermions are described by antisymmetric wavefunctions, and bosons by symmetric wave-
functions. An equivalent definition of these subgroups is the fact that bosons have integer spin and
fermions have half integer spin, but we will not discuss this property in much detail.

The group of fermions includes among others the electron, which plays a central role in all chemical
processes. This is mainly the reason why we are in particular interested in discovering and describing
all properties of fermions. Hence in this thesis, we are only concerned with fermions.

Before we dive further into the world of fermions, we will first develop the necessary language and
knowledge of basic quantum mechanics that we will need throughout this thesis. We start by introducing
some important concepts from linear algebra.

The theory presented in the rest of this chapter is largely based on the book written by M. A. Nielsen
and I. L. Chuang given in ref. [2].

2.1. Important concepts from linear algebra

The first concept that we discuss is the notation that we will use for vectors. The standard quantum
mechanical notation for a vector is the bra-ket notation developed by Paul Dirac: a ket is written as |¢),
Z1
and a bra as (¢)|. Sometimes we will write the vectors in column notation: |¢) =
Zn

We now introduce the concept of a vector space.

Definition 2.1.1. A complex vector space is a set V, whose elements are called vectors denoted by
z € C, which includes the following operations:

2.1. Important concepts from linear algebra 4

21 2] 21+ 24
1. Addition: | @ | + | 1 | = :
Zn 2l Zn + 2
21 cz1
2. Scalar multiplication: foranycc C,c | : | =
Zn CZn

In quantum mechanics, one special type of vector space plays a central role. This vector space
is called the Hilbert space, which is a vector space equipped with an inner product. We present the
general definition of an inner product:

Definition 2.1.2. A function (-,-) from V x V to C is an inner product if it satisfies the following:
1. (-,-) is linear in the second argument, meaning that (|v),> . Ai |[w;)) = >, Ai(|v) , [wy)).
2. (|v),|w)) = (Jw),|v))*, where x means taking the complex conjugate.
3. (Jv), |v)) > 0, with equality if and only if |v) = 0.
For example, the vector space C™ has an inner product defined by

Z1

(1 syn)s (1)) = D wiz=[yis - wnl | 1] - (2.3)
i=1

Zn
Using this knowledge, we now discuss the definitions of a linear span and the basis of a vector space:

Definition 2.1.3.

1. If (Y1), ..., |¥n)) is a system of vectors, then the linear span of these vectors, written as
Span(|i1), ..., |¢¥n)), is the set of all linear combinations), a; |1;) of the vectors (|11) , ..., |1n)).
2. If V is a n—dimensional vector space, then the system B = (|¢1),...,|¢r)) of vectors in V is

called a basis for V if:

(a) The vectors in B are orthogonal, meaning that the inner product (|¢;),|¢;)) = 0 for any
i,je{,1,...,k},i#j.

(b) Span(B) =V.

(c) The system B is linear independent, which means that no vector in B can be written as a
linear combination of other vectors in 5.

We continue by introducing another important concept used in quantum mechanics, namely the
concept of a linear operator.

Definition 2.1.4. A linear operator between vector spaces V and W is defined to be any function
AV — W which is linear in its inputs: A (>, a; |v:)) = >, ai A([¥i)).

The most convenient way to represent linear operators is in terms of their matrix representations.

Definition 2.1.5. Suppose A : V — W is a linear operator, and suppose that |v1) , ..., |v,) is a basis
for V, and |w.),...,|wy) is a basis for W. Then for all j € {1,...,m}, there exist complex numbers
A1j7 ey Anj such that A |’Uj> = 21 Aij \wl>

The matrix with entries A;; is then the matrix representation of the operator A.

In the matrix representation of any operator A, the matrix A € C™*™ is a linear operator sending
vectors in the vector space C™ to the vector space C™ by a matrix multiplication of the matrix A by a
vector in C".

Throughout this thesis we will need several special operators and matrices, satisfying certain prop-
erties:

2.2. Fermions 5

Definition 2.1.6.
1. A Hermitian operator, given in its matrix representation satisfies the following property:
At = (49T = A, implying that (Jv) , A |w)) = (AT [v), |w)).
2. A normal matrix satisfies AAT = AT A.
3. A unitary matrix satisfies UtU = 1.

The operators that we discuss throughout this thesis can furthermore satisfy certain important prop-
erties relative to each other, namely they can commute or anti-commute.

Definition 2.1.7.

1. The commutator of two operators A and B is defined as [A, Bl = AB — BA.
2. The anti-commutator is defined as {A, B} = AB + BA.

Two operators A and B are said to commute if [4, B] = 0, and anti-commute if {4, B} = 0.

Now, if we are given a set of vector spaces, we can construct a larger vector space using the tensor
product. The tensor product between two vector spaces V and W is written as V' ® W, and satisfies
the following properties:

1. For an arbitrary scalar z € C and elements |v) € V and |w) € W, z(Jv) ® |w)) = (2 |v)) ® |w) =
[v) ® (2 |w)).

2. For arbitrary |v1) , [v2) € V and |w) € W, (Jv1) + |v2)) ® |w) = |v1) @ |w) + |v2) ® |w).

3. For arbitrary |v) € V and |w1) , |we) € W, |v) @ (Jw1) + |we)) = |v) @ |w1) + |v) @ |wa).

The working of the tensor product can be made more clear by writing it in a convenient matrix rep-

resentation known as the Kronecker product. Suppose A € C™*™ and B € CP*4. Then we get the
following matrix representation for the tensor product:

AnB ApB - AyB
AnB AypB .- AyB
A®B = : . : : (2.4)
AmB ApeB - AnnB
which has dimensions ng x mp.
For example, the tensor product of vectors (1, 2) and (3, 4) is the vector:
1x3 3
1 3 1x4 4
M(@M_ 2x3| = |6 (2:5)
2 x4 8

Finally, we mention the notation of taking the tensor product of a vector with itself: [1/)%? = 1) @ |1)).
Tensoring a vector with itself k£ times is then written as |¢>®k.

Now that we have refreshed our knowledge about linear algebra, it is time to discuss the properties
of fermions in more detail.

2.2. Fermions

As said before, the wavefunction describing fermions should be antisymmetric. Up until now we have
only discussed what this means if we consider a system of only two particles, but we can generalize

this to IV particles. An arbitrary wavefunction consisting of N fermions |¥(z4,...,2y)) can be made
antisymmetric via the operation [4]:
Al (21, oan)] = sgn(®) [U(zpa), - p)) (2.6)

peEP

2.2. Fermions 6

where P is the set of all unique permutations of the N particles and sgn(p) is the sign of the per-
mutation p. Every time that two particles swap positions we multiply the state with a minus sign to
satisfy the symmetry postulate. We let s, denote the number of swaps needed to obtain a certain per-
mutation p € P from the original state |¥(z1,...,2zx)). So we must multiply the obtained permutation
|U(2p1), - - - Tp(ny) With a factor (—1)°», hence sgn(p) = (—1)°». From this we see that the parity of the
wavefunction changes if we have an odd number of swaps s,, and it remains unchanged if the number
of swaps is even.

Wavefunctions should always be normalised, since the probability of finding a particle somewhere
should always be equal to one, but the normalisation factor is omitted here for clarity. This normalisa-
tion factor depends on the overlaps between the permuted wavefunctions, but does not influence the
symmetry of the wavefunction.

Now that we have generalised the antisymmetric wavefunction to a system of N fermions, we want
to find a way to describe a general fermionic state. We consider a system consisting of n fermionic
modes in which N particles are present.

The description of fermionic systems using wavefunctions like ¥ (z1,...,zy) becomes very compli-
cated as the system size grows. The solution for this is the second quantised notation used in quantum
mechanics. This comes down to indicating for each mode whether or not this mode is occupied by a
fermionic particle, which automatically ensures the anti-symmetry of the wavefunction.

The second quantised notation makes use of special types of fermionic operators called the creation
and annibhilation operators. The creation operator applied on mode j is written as a} and this creates a
fermion at this particular mode. Taking the Hermitian conjugate of the creation operator, we obtain a;.
This is the annihilation operator for mode j, and it removes a fermion at that mode.

This mode label 5 could be a position label x or it could for example indicate spin. If j is a position
label, the state |¢(z1, x2)) then becomes af af |Q). Here, |Q2) is the vacuum state, defined as:

a; Q) =0 Vje€n]. (2.7)

Or in words: the vacuum state is defined as the fermionic state in which no particles are present. Us-
ing this state, we can mathematically express what it means for the fermionic states to be normalised.
Namely, this property can be expressed as (Q2|2) = 1.

The creation and annihilation operators satisfy the following anti-commutation relations:
{ajvai} = I(Sjk’
{aj,a} =0 — ajar, = —aga;,
(2.8)
{a}, aL} =0,

aj = (a;r-)2 =0.

Using the last relation, we note that we cannot create two fermions at the same mode j. This is
known as the Pauli exclusion principle [14].

With the creation and annihilation operators, we can define another type of fermionic operator, called
the number operator:
n; = ala;. (2.9)
This operator counts whether there is a fermion present at mode j. Summing over all modes gives the
total number of particles in the system.

Now using all of this, we can define a general description of a fermionic state consisting of n modes
and N particles:

W)= asal Q). (2.10)
Scl

where S is some subset of the collection of n modes, ag is some normalisation factor, ag is the (ordered)
creation of all modes in the subset S and |Q)) is the vacuum state. Note that if the state has NV particles,
we have |S| = N.

2.3. Qubits 7

We can calculate the number of particles present in this state as:

N=> n, (2.11)

J€[n]

As will become clear in chapter 5, we will need one last type of fermionic operators, namely the
Majorana operators cp;—; and cy;. They can be expressed in terms of the creation and annihilation

operators:
aj — T
C2j—1 = Gy + a;, Coj = i J . (212)

For the Majorana operators we also present the anti-commutation relations:

cl = ¢; for j € [2n] (Hermitian),

{cj,en} =216, — ¢ =1 forj € [2n]. (2.13)

In Appendix A.1, we have worked out an example using these anti-commutation relations for the
Majorana operators.

After completing the theory on fermions, we will now discuss the theory on qubits that we will need
throughout the rest of this thesis.

2.3. Qubits

In classical computation and information processing, the bit is a fundamental concept. It takes value 0
or 1 and is used to store and transfer information. The quantum counterpart of the bit is the quantum bit,
or qubit. In contrast to the distinct values a classical bit can take, the qubit state is a linear combination
of zeros and ones:

) = a0) + B 1) . (2.14)
Here the entire state is normalised, meaning that |a|? +|3|?> = 1. This phenomenon is called the princi-
ple of superposition, and it thus implicates that a qubit can be in a combination of the states |0) and |1),
a purely quantum mechanical phenomenon. The states |0) and |1) form a basis for the Hilbert space
in which the qubits live. When we measure a qubit, we find it to be in the state |0) with probability
||, and in state |1) with probability |3|2. It is because of this that we have the normalisation condition,
since all probabilities must some to one. An example of a qubit state is % |0) + % |1), where there

is a fifty percent chance of measuring the state |0), and a fifty percent chance of measuring the state |1).
There are different ways to realize a physical qubit, examples of such realizations are:

1. The two different polarizations of a photon, where vertically polarized corresponds to the state |0)
and horizontally polarized to |1).

2. The alignment of a nuclear spin in a uniform magnetic field.
3. Two states of an electron orbiting a single atom.

We do not further discuss this, since this is beyond the scope of this research.

One way to visualize the superposition states of qubits is to use the Bloch sphere. We can rewrite

eq. 2.14 as:
= oo (2) 0+ ()], 215

where 6,4,y € R. This is because for this representation we have |a|> + 3| = |e¢" cos (g)\z +

lei?sin (£)|* = cos? (£) + sin? (£) = 1, so we obtain a valid normalised qubit state.

The phase factor ¢*7 in front can be ignored, because it has no observable effects, so we can write:

1) = cos (g) 10) + ¢ sin (Z) . (2.16)

2.3. Qubits 8

This means that the qubit state |¢)) can be written as a point on a three-dimensional sphere with
radius 1, called the Bloch sphere. This sphere is shown in figure 2.1 [2]. So every point on the Bloch
sphere corresponds to a qubit state, but if we measure the state in the z-basis, we find that it collapses
to either of the two states |0) or [1) .

0

Figure 2.1: A qubit state |) visualized on a Bloch sphere.

The most important operators that we will need to describe qubits are the Pauli X, Y and Z operators:

0 1 0 —i 1 0
o s P A 217)
From these definitions we can see that if we for example apply the Pauli Z-operator twice on the same

_ L o] [t o 10
- 72 . = =
qubit, we then get: 7% = [0 _1] [O _1] [O 1} L

We impose the commutation relations of these Pauli operators (we denote the Pauli operators with
P; here):

P,P; = —P;P;, where i,j € {X,Y,Z}, i #j
. (2.18)

An important remark is that Pauli operators applied on different qubits always commute. Using these
Pauli operators, we can define some other operators which can be seen as the Pauli analogues of the
fermionic creation and annihilation operators, called the qubit raising and lowering operators. These

are respectively defined by:
1

o4 = 9 (X + ZY) 5
1 (2.19)
And they behave in a similar way as the creation and annihilation operators:
0) = 1), 1) =0,
o0y =1), o) 2.20)

o_[0)=0, o_[1)=]0).

To conclude the theory on qubits, we note that an n-qubit state lives in the n-fold tensor product of a
single-qubit Hilbert space: HS".

This theory about fermions and qubit provides the necessary foundation for understanding the rest
of this thesis. We will now continue with some theory about graphs and cycle bases.

TOne can find more information about quantum measurements and the basis in which a measurement is performed in ref. [2]

Preliminaries on graphs and cycle
bases

In this chapter, we discuss the mathematical theory on graphs and cycle bases that we will need through-
out this thesis. We will represent a fermionic system by a graph G containing V' vertices and E edges,
representing the operators needed to map a given fermionic Hamiltonian.

As will become clear in chapter 5, we will also need some knowledge about the cycle basis of a
graph. In chapters 5 - 8, we will apply the fermionic encodings to two specific types of graphs, namely
a graph corresponding to so called sparse SYK Hamiltonians, which are described in sec. 5.5.2, and
to a certain type of random graph corresponding to the Fermi-Hubbard model, which is described in
sec. 3.2.

3.1. Graphs and cycles bases

As said before, we have a graph G = (V, E) containing V' vertices and E edges. We first define the
concept of a sparse graph:

Definition 3.1.1. A graph G = (V, E) is sparse if the degree of each vertex is O(1).

As a consequence of this, a sparse graph will have a number of edges which is linear in terms of the
number of vertices: |E| = O(|V]). This can be shown using the Handshaking lemma [15], which says
that the sum over the degrees of the vertices in the graph is equal to twice the number of edges:

> dy =2|E], (3.1)

veV

where d, is the degree of vertex v. Since we know that d, is bounded by some d = O(1) forall v € V,

we can write:)\ d, < d-|V], toobtain: 2|E| < d-[V], or |E| = O(|V]).

Throughout this thesis, we will only consider sparse graphs G onto which we will apply the fermionic
encodings. We explain the reason behind this in chapter 4.
As will become clear in chapter 5, we will need to construct a cycle basis of the graph G:

Definition 3.1.2. [16]

1. A cycle is defined as a closed path between vertices in G where no edge is repeated.
2. Two cycles in G are independent if both cycles have an edge that is not present in the other one.

3. A cycle basis is a set of independent cycles in G that can be used to generate all other cycles in
the graph, by taking the symmetric difference of cycles in the cycle basis’.

3.1. Graphs and cycles bases 10

The number of cycles in a cycle basis is given by the cyclomatic number of the graph: g =m —n+e¢,
where m = |E|, n = |V]| and ¢ is the number of connected components (c = 1 for a connected graph).
From this we can for example see that a sparse graph will have a cyclomatic number O(|V]).

Throughout this thesis, we furthermore consider one specific type of cycle basis, namely a weakly
fundamental cycle basis:

Definition 3.1.3. Aset B ={C4,...,C,} of cycles is a weakly fundamental cycle basis [17] of a graph
G if there exists some permutation o such that

Oa(i)\ (Ca(l) U---u Cg(i_l)) #0,Vi=2,...,n. (3.2)

Here C,; is the collection of edges in the cycle C; and C,;\C,;, denotes all edges in C; except
those in C;.

This is the formal definition, but it comes down to the fact that a weakly fundamental cycle basis has
the property that its cycles can be placed into a linear ordering such that each cycle includes at least
one edge that is not included in any earlier cycle.

3.1.1. Basic algorithms for constructing a cycle basis

The most intuitive algorithm to construct a cycle basis of some graph G, is to use a spanning tree of G.
For simplicity, we assume here that G is connected. A spanning tree is a subgraph of G that includes all
vertices of GG, is connected and contains no cycles. One can then use the following steps to construct
a cycle basis using a spanning tree:

1. Find a spanning tree: choose a spanning tree of the graph, which contains n-1 edges.

2. Identify the remaining edges: these are the fundamental edges. These form fundamental cycles
when added back to the spanning tree.

3. Construct the cycle basis: each fundamental edge creates a cycle when added to the spanning
tree. Furthermore, since each fundamental edge only occurs in one cycle, these fundamental
cycles are independent and we see that they form a cycle basis.

Finding the spanning tree in step 1 can be done using a Depth-First Search (DFS) algorithm which
for connected graphs has a running time of O(|E|), since in the worst case we traverse every edge
once [18], [19]. The other steps can also be done in O(]E|) time, since we also traverse all edges in
the worst case. So we conclude that the Spanning Tree algorithm has a time complexity of O(|E|).

A commonly used algorithm to construct a minimum weight cycle basis is Horton’s algorithm. The
weight of a cycle basis is the sum of the weights of its cycles, which for each cycle can be determined
by adding the weight of the edges constructing the cycle.

Horton’s algorithm uses the following steps [20]:

1. For every vertex v € V and edge (z,y) € F, find the shortest paths P(v,z) and P(v,y) between
respectively v and x and v and y, using for example Dijkstra’s algorithm. After this, create the
cycle C(v,z,y) = P(v,z) + P(v,y) + (z,y).

2. Order the cycles by weight.

3. Consider the cycles as rows of a 0-1 matrix, where the columns correspond to the edges of the
graph and the rows are the incidence vectors of the cycles. Now use Gaussian elimination using
elementary row operations to find all independent cycles. Instead of processing one column at a
time, process each row in order of the weights of the cycles. In that way one obtains a minimum
weight cycle basis.

This algorithm uses Dijkstra’s algorithm to find a shortest path between two vertices, which is ex-
plained in Appendix A.3.1. In Appendix A.3.2 an example is given where Horton’s algorithm is used.

The total time complexity of Horton’s algorithm is O(|V'|*) [20], and thus this algorithm is slower than
the Spanning Tree algorithm. However, Horton’s algorithm can be used to find a minimum weight cycle
basis as is shown in ref. [20], which is not necessarily the case for the Spanning Tree algorithm.

"The symmetric difference between two sets A and B is defined as follows: AAB = A\ BU B\ A.

3.2. Random graphs 1

3.2. Random graphs

A specific type of graph that we consider onto which we will apply the fermionic encoding, is the Erdos-
Renyi G(n, p) random graph. This graph is constructed such that between every pair of vertices u,v € V'
an edge is drawn with probability p [21].

We need to determine some bound or value for this probability p. By construction, every vertex gets
in expectation degree p - (n — 1) since there are (n — 1) vertices with which a given vertex can form
a connected pair. Since we want to obtain a graph with constant expected degree to obtain a sparse
graph, we then note that we must have p - (n — 1) = ¢ for some constant ¢, or p %

By constructing the graph in the way described above, we could obtain a graph which has a vertex
with a degree higher than O(1), since we could add up to O(n) edges to each vertex. To overcome
this issue, we artificially modify the graph such that the degree of each vertex will be O(1). We do this
by considering all vertices who have a degree higher than some threshold, for which we will remove
incident edges uniformly at random until the degree of the given vertex is below the threshold value. In
this way the degree of each vertex in the graph will be O(1), and thus the resulting graph will be sparse
by def. 3.1.1. Throughout the rest of this thesis we will set this threshold for the degree equal to 4.

The reason that we consider this type of random graph, is that we can show that this graph is equal
to one spin-layer of the fermionic interaction graph representing the terms in the Fermi-Hubbard Hamil-
tonian, which is a widely used physical model in condensed matter physics. We will describe how to
represent this model by the random graph discussed above in sec. 5.5.1.

As we will see in chapter 5 we will need to construct a cycle basis of this random graph. As explained
earlier in this chapter, this can be done using different types of algorithms as for example the Spanning
Tree algorithm of Horton’s algorithm. The most important property of this cycle basis that we will need
is that there is always a cycle with non-constant length present in the basis, since in that case we need
to find a way to reduce the length of this cycle as will be explained in chapter 5.

After numerically implementing different types of algorithms for constructing a cycle basis, including
the Spanning Tree algorithm and Horton’s algorithm, we have always found a cycle with length Q(log(n))
in the basis of this random graph. These results are shown in Appendix B.1.

However, we have not formally proven that such a cycle always exists for this type of graph. If
one is interested in a graph which always has a cycle with non-constant length, one can for example
investigate the Margulis expander graphs constructed in ref. [22], for which it is shown that the length
of their shortest cycle is Q(log(n)).

Preliminaries on fermionic encodings

Now that we have discussed the theory of fermions and qubits, we move on to the part on fermionic
encodings. To perform simulations of fermionic systems on a quantum computer, we need to transform
the fermionic Hamiltonian to a qubit Hamiltonian. We achieve this by transforming the fermionic creation
and annihilation operators to the qubit Pauli operators. This can be done in several different ways,
each with its own advantages and disadvantages. In this chapter, we will discuss the general idea of a
fermionic encoding and the properties that need to be investigated when setting up such an encoding.

4.1. General idea of a fermionic encoding

The general idea of a fermionic encoding is to transform the fermionic creation and annihilation opera-
tors, a; and a}, to Pauli expressions. The mostimportant property that this encoding must exhibit, is that

it preserves the anti-commutation relation of the fermionic operators: {a;, aL} = 10;. If we construct
the encoding in the most trivial way by just mapping a creation/annihilation operator directly onto a
Pauli operator, we do not retain this anti-commutation relation since Pauli operators mutually commute
if they act on different qubits. Furthermore, Pauli operators are Hermitian while the creation/annihila-
tion operators are not. So we have to come up with a more complex way to transform the fermionic
operators.

There are several already existing fermionic encodings, of which we will discuss a few in chapter 5.
When defining more complex fermionic encodings than just directly mapping a fermionic operator onto
a Pauli operator, we introduce new kinds of properties of these encodings that we need to investigate
to assess the effectiveness and suitability of the mapping.

The main property of a fermionic encoding that we will investigate, is the preservation of the locality
and sparsity of the Hamiltonian. Throughout this thesis, we will only consider sparse and local fermionic
Hamiltonians, who are formally defined as follows [6]:

Definition 4.1.1. H = > " H, is a local sparse n-fermion (resp. n-qubit) Hamiltonian when the
maximum number of Majorana operators (resp. Pauli operators) in each term H; is O(1) (local) and
the maximum number of terms involving any fermion (resp. qubit) is O(1) (sparse).

An informal definition of both terms is that locality means that there are only a constant number of
fermions (resp. qubit) present in each term of the Hamiltonian, and sparsity means that each fermion
(resp. qubit) is present in only a constant number of terms of the Hamiltonian.

The reason that we consider such Hamiltonians, is that they are ubiquitous in physics. Most of the
condensed matter systems of interest are described by local and sparse Hamiltonians. This is because
the forces that are of most influence, are on-site repulsion forces and nearest neighbour repulsion and
attraction forces. Even if we consider next-nearest neighbour forces, they are still described by a local
and sparse Hamiltonian.

12

41. General idea of a fermionic encoding 13

Besides retaining the anti-commutation relations of the fermionic operators, we want the fermionic
encoding to return a local and sparse qubit Hamiltonian. The reason behind this, is quantum simulation-
based. When performing a quantum simulation, we are interested in determining the state |¢(¢)), which
is equal to:

() = et |y (4.1)

where |¢)) is the time-independent qubit state and H is the qubit Hamiltonian. In general, the Hamil-
tonian H is exponentially large, even when it is sparse, making the direct computation of the matrix
exponential computationally too hard. Therefore, we seek approximations of this exponential. One
way to do this, is to write the Hamiltonian as:

H=> H, 4.2)

and to perform short time evolutions under these separate Hamiltonian terms H;. However, since in
general H; and H;, do not commute, we cannot write e~*#* = . e~*#i*. Instead, we use something
known as the Trotter approximation [2]:

lim (eiAt/”eiBt/n)n = A+ (4.3)
n—oo
where A and B are Hermitian operators.

As we will show, in order to perform the simulation using a limited amount of resources, we want
these H; Pauli terms to have a constant weight, i.e. they must be local.

Given the local Pauli evolution terms, one has to decompose them into elementary gates in order
to run the approximate time evolution on a quantum computer. One way of doing this is by diagonal-
izing the Pauli term by a single layer of qubit gates and then implement the diagonal evolution term
by a decomposition into elementary gates [2]. This process can best be explained by using an exam-
ple, so assume that we have a term U, = e~ 9X122Xs where 6 is some coefficient arising from the
Trotterization.

During the simulation, we perform the calculations on one qubit and apply elementary gates to en-
tangle it with the other qubits in the term. These elementary gates are CNOT gates, which have the
key feature that they apply a conditional operation to the target qubits based on the state of the control
qubit, enabling entanglement between them [2].

The first step is to diagonalize Uy. For this example, this can be done using a Hadamard gate H,
which is defined as [2]:

H= % [} _11] . (4.4)

Applying Hadamard gates to qubits 1 and 3 transforms the X-operators to Z-operators, giving:

(Hlngg) Uy (H112H3) = exp (—i9H1X1H1 ® Zo @ H3 X3H3)

4.5
= exp(—i@ZlZng), ()

as one can calculate directly using HX H = Z.

After having diagonalized Uy, you can apply a gate sequence that involves a rotation along the z-axis
on one of the qubits to implement the diagonalized Uy. This rotation is given by R.(#) = e~*?%3, and
we apply it to the third qubit in the Pauli term. By entangling qubits 1, 2, and 3 with CNOT gates, this
operation effectively simulates the full exponential ¢?4142%3_ To obtain the simulated version of the
original operator Uy, we then reverse the basis change and disentangle the qubits again using CNOTs
and Hadamard gates. This process can be summarized in the circuit given in fig. 4.1.

The depth of this circuit is determined by the number of two-qubit gates needed, which is equal to
the number of CNOT gates as one can see in fig. 4.1. Since each non-identity Pauli operator in the
term requires a CNOT gate for the entanglement and disentanglement with the third qubit, the number
of CNOTs scales linearly with the weight of the Pauli terms, when performing the gate decomposition in
this way. This is the main reason that we want to obtain local Hamiltonian terms H;: if the Pauli terms
in the Hamiltonian have constant weight, they can be simulated using a circuit of constant depth.

41. General idea of a fermionic encoding 14

¢

— H 4 R,(6) | H [—

Figure 4.1: Circuit needed for the simulation of a Pauli term. The blocks with an H represent the Hadamard gate, the vertical
lines between a black dot and a dot with a + sign in it represent the CNOT gates, and the block with R (9) represents the
rotation along the z-axis. Furthermore, the horizontal black lines represent the qubits, ordered from top to bottom with the first
qubit in the term at the top and the last at the bottom.

So with this in mind, we can formulate the research question of this thesis once again:

How to obtain a fermionic encoding from a local and sparse fermionic Hamiltonian, to a local
and sparse qubit Hamiltonian, while minimizing the required number of qubits?

Now that we know what a fermionic encoding must satisfy, we discuss the working and properties of
several already existing fermion-to-qubit mappings in the next chapter.

Known fermionic encodings

In this chapter we discuss a few already known mappings from fermionic modes to qubits. We start
with one of the most intuitive ones, known as the Jordan-Wigner transformation, and we will see that
this encoding does not retain the locality of the Hamiltonian terms. After this we move on to the more
complex Bravyi-Kitaev superfast encoding. We will discover that in this encoding, certain stabilizer con-
straints arise which are not necessarily local nor sparse. The properties of these stabilizer constraints
are governed by modifying the graph onto which we apply the encoding, and constructing a cycle basis
for this newly obtained graph G'.

The first algorithm for constructing a cycle basis is a stacking- and sewing procedure, which results
in local and sparse stabilizer constraints but needs O(n?) qubits to achieve this. Another algorithm
is developed in the Decongestion Lemma of Freedman-Hastings, which provides a cycle basis with
sparsity O(poly log(n)) and an ordering of cycles in the basis such that each cycle overlaps with only a
polylogarithmic number of cycles later in the basis.

5.1. The Jordan-Wigner transformation

As said, one of the most intuitive transformation is the Jordan-Wigner transformation, which is an ex-
ample of an n-to-n encoding [4]: it maps n fermionic modes onto n qubits.

The idea of this transformation is to assign an occupied fermionic mode to a |1), and an unoccupied
mode to a |0). As discussed in chapter 3, we represent the operators needed to map a given fermionic
Hamiltonian by a graph G = (V, E)). The main idea of the Jordan-Wigner transformation is to let each
vertex in this graph correspond to a qubit. This is visualized for a 2D square lattice in fig. 5.1.

~O—O0—0—0O~ ~O—0O—0O—0

O—O—C0—C0 ~O—0O—0O—0
—

~-O—CO0——C0O—0- ~O—0O—0O—~

5
D,
D
G
5
O
e,
G

Figure 5.1: Visualization of the Jordan-Wigner transform for a 2D-square lattice. Here it can be seen that the qubits (blue) are
placed at the same positions in the grid as the fermionic modes (black).

We will use creation a; and annihilation a; operators together with the vacuum state |(2) to denote a

15

51. The Jordan-Wigner transformation 16

fermionic mode as in 2.10.

The Jordan-Wigner transformation assumes that there is some implicit ordering of the fermionic
modes (1,2,...,n). Using this ordering, the transformation can be mathematically formulated as fol-
lows [4]:

aj — HZk o5
k<j

(5.1)

T +
aj—> HZk 0 -
k<j

So the Jordan-Wigner transformation maps the fermionic creation and annihilation operators of fermionic
mode j onto the qubit raising and lowering operators, where each mapping gets additional Pauli Z-
operators applied to the modes earlier in the ordering than the given mode j. These Z-operators are
also called Jordan-Wigner strings or Z-strings.

In sec. 2.2 we have seen that the fermionic creation and annihilation operators anti-commute, and
any fermionic encoding must preserve this anti-commutation relation. In the Jordan-Wigner transforma-
tion, this is ensured by adding the Z-strings to the mapping of the creation and annihilation operators
onto the raising and lowering operators. We show this by directly calculating the anti-commutator
{aj,al}. We first assume that j < k:

{aj,al} = ajal + ala;

j—1 k—1 k—1 j—1
= <HZl> O'j_- <H Zl> O-I—:_'_ <H Zl> 0']:_' < Zi> O'j_
=1 =1 =1 =

1
Jj—1 j—1 k-1 k—1 j—1 j—1
<H Z¢> (H Z;) Zio; Zi | 1] 2| et + | 1] 2| % (H Z,) o (H Zi> o5
i=1 =1 l i—

=j+1 l=j+1

-1 2 k-1 k—1 j—1
<HZ;> Zi-—Zio; | 1] 2ot + | 1] <Hzl> Zjof Zjo;
=1

I=j+1 I=j+1 =1
k—1 k—1
=-0; H Z U,j—}— H 7 U]jJ;
1=j+1 I=j+1
k—1
= H Z, (U,joj —J;U,j)

I=j+1
=0.
(5.2)
Here we have used the fact that Pauli operators acting on different qubits mutually commute (and thus
the raising and lowering operators acting on different qubits also commute), that two Pauli Z-operators
acting on the same qubit square to identity, and that different Pauli operators acting on the same qubit
anti-commute, and thus we get o, Z; = —Z;0; .

51. The Jordan-Wigner transformation 17

Now for the case where j = k:

{a;, a}} = aja; + aTaj

(1) (1) (1) (1)
(L) e+ ([2) oo

=1-(o; a++o o)
=1

Here we have used that (o 0 + o— o;)=1.

In a similar way we can show that it also holds that {al,al} = I0;x and {a;, ar} = 15y,
So we see that the Jordan-Wigner transformation is valid in the sense that it maps the fermionic
operators onto qubit operators, while maintaining the anti-commutation relations.

So the Jordan-Wigner transformation makes us of the so called Z-strings to maintain the anti-commutation
relations for the mapped operators. However, these strings also form the main issue of this mapping.
To see this, consider the Fermi-Hubbard model, where the interactions are described by the following
Hamiltonian [4]:

Hpp = — Z Z]k(Jaangrakoa](,) ZUTLJTTLN, (5.4)

o={t1} <j.k>

where < i, j > indicates that modes ¢ and j are neighbouring modes.

Ineq. 5.4, the first term models the hopping terms, the second term considers the on-site interactions
and we sum over all possible interactions. We must also consider the different spin-states, since the
Pauli exclusion principle implies that two fermions present at the same site must have opposite spin,
and having two fermions present at the same site increases the total energy compared to having only
one fermion at every site with a value U;.

The on-site interaction terms do not cause any problems, since the number operators defined in eq.
2.9 are products of creation and annihilation operators on the same site. In that case their Z-strings
will cancel out since they both work on the same qubits earlier in the ordering and thus square to identity.

To discuss the hopping terms, first consider the case of a 1D lattice. A hopping term in this case will
transform as [4]:

T JW + -
ajajp1 —> 070, (5.5)

In this case, all Z-operators acting on qubits preceding the j-th qubit in the ordering will cancel out, so
still no problem arises here. However, this is not the case if we consider a 2D square lattice. Consider
the snake ordering of the modes as in fig. 5.2.

A hopping term between adjacent sites will map as given in eq. (5.5), but neighbouring modes who
are not adjacent in the given ordering will map as [4]:

a}ak IV ot H Zy | og - (5.6)

j<p<k

So now this mapping depends not only on the modes j and k, but also on all modes p with j < p < k.
In the worst case, such a hopping term will depend on 2L qubits for an L x L square lattice, which will
scale as O(N'/?). So, we see that in this case the Jordan-Wigner transformation provides non-local
qubit Hamiltonian terms. As said before, there are ways of fixing this to make this mapping local, but
these methods do not work for arbitrary local and sparse fermionic Hamiltonians, so we will not discuss
this in more detail.

5.2. The Bravyi-Kitaev superfast encoding 18

Z3

©

an
~
[]
@

-

OO
OENORROSIO

é]STéH

Figure 5.2: A Jordan-Wigner encoded lattice of a 4 x 4 square lattice of fermions. This qubit system encodes one of the two
spin-layers of a Fermi-Hubbard system on a 4 x 4 grid. The qubits are numbered in a "snake” ordering along the solid line, the
dashed lines are connections between modes who are not adjacent in the ordering. The Jordan-Wigner encoded hopping
terms between adjacent (blue) and non-adjacent (red) modes are shown. It can be clearly seen that for neighbouring modes in
the ordering, the Z-strings cancel each other out, while for non-neighbouring modes this is not the case, thus creating the
problem of non-locality.

So while the Jordan-Wigner transformation is an intuitive transformation and relatively easy to under-
stand, it is far from ideal in the sense of locality because of this behaviour caused by the Z-strings.

There has already been developed another transformation, called the Bravyi-Kitaev superfast encod-
ing, which in contrast does preserve the locality and sparsity of the Hamiltonian terms.

5.2. The Bravyi-Kitaev superfast encoding

The Jordan-Wigner transformation is an example of an encoding where the n fermionic modes get
mapped directly onto n qubits, by placing each qubit at a vertex in the graph G used for the encoding.
The Bravyi-Kitaev superfast encoding works slightly different. In this encoding, a qubit is placed on
every edge of this graph [5]. In this way, the n fermionic modes get mapped onto m = O(nd) qubits,
where d is the degree of the graph G. This can be derived by the Handshaking lemma as described
in sec. 3.1. From this, we immediately see the first reason that we consider a graph G with constant
degree d. If d would not constant, then the required number of qubits would not be bounded by a con-
stant, which is not beneficial since we want this number to be as low as possible as explained earlier.
Fig. 5.3 shows the visualization of this transform for a 2D square lattice. Compare this with fig. 5.1 of
the Jordan-Wigner transformation.

Essentially all physical observables are described by even operators, so we are in particular inter-
ested in transforming these kinds of operators. So let F be the algebra of all even operators’.

For this encoding, we will use the Majorana operators given in 2.12 to describe a fermionic state. We
will consider the following generators of F, written in terms of these Majoranas [5]:

Bj = —icyj_1c94 for each vertex j € V,
(5.7)
Aji = —icy ey for each edge (5, k) € E.

"An algebra is a vector space equipped with a bilinear product, which is a linear operation combining elements of two vector
spaces to obtain an element of a third vector space. Any element in an algebra can be expressed in terms of the generators of
that given algebra [23].

5.2. The Bravyi-Kitaev superfast encoding 19

OO0 e

O
O
R
Q
i
+
+

A~
Oan®,
)
)
VR
@,
)

O
-0
-0

9

!
+
+

Figure 5.3: Visualization of the Bravyi-Kitaev superfast encoding for a 2D-square lattice. Here it can be seen that a qubit (blue)
is placed at every edge between two fermionic modes (black).

It can be shown that these operators satisfy the following commutation rules?:

Bl =B;, Al =Aj, (5.8)

Bl =1 A5 =1, (5.9)

BjBy = BpBj, Ajr = —Ayj, (5.10)
AjBy = (—1)% 0B Ay (5.11)

Aj Ay, = (—1)00F0mTORF0hm Ay A (5.12)
*Ac).cnAcyc@) Ags-.c0) = 1 (5.13)

Where in the last equation (is any closed loop of length s in the graph that consists of vertices
€(0),¢(1),...¢(s) = ¢(0) € V. From these commutation rules we clearly see that the anti-commutation
relations of the fermionic creation and annihilation operators is reproduced for these generators.

Let X, Y;, and Z;;, be the Pauli operators acting on edge (j, k) € E. We label the edges incident
to vertex j € V as 1,...,d(j), we denote the corresponding ordering of these edges as <; and we
assume that every edge is oriented. Let ¢;;, = 1if j is the head of the edge, and ¢;;, = —1 if j is the tail.
We can now define the encoded versions of the generators B; and A, as [5]:

Bi= I[2

k:(j,k)EE
} (5.14)
Ajk = ijXjk H Zj H qu.
p:(5,p)<;(4:k) q:(k,q) < (k.j)

As an example consider the following (part of a) graph, shown in fig. 5.4. In this example, the edges
incident to vertex 1 are ordered as follows: (1,2) <y (1,3) <3 (1,4). The edges incident to vertex 2 are
ordered as (2,5) <3 (2,6) <2 (2, 1), and the edges incident to vertex 3 as (3,7) <3 (3,1).

We will find out how the generators By and Ay, are defined, for k = 2,3,4. We will start with the
simplest one, namely B;. This will become: By = Z12713714, so this is a product of Pauli Z-operators
on the edges (1,2), (1,3) and (1,4). For A, we get three terms:

Avg = =X 1279576,
Ay = X13Z19 737, (5.15)
Ay = X14Z12715.

2The derivation of all relations shown in this chapter are put in Appendix A

5.2. The Bravyi-Kitaev superfast encoding 20

Figure 5.4: A small example of a (part of a) connected graph with vertices V. = {1, ..., 7}, where qubits are placed on each
edge of the graph (the qubits on edges (2,5), (2,6) and (3,7) are not shown here for simplicity). We consider all edges incident
to vertex 1 and determine how the generators B; and A, are defined for k = 2, 3, 4.

From eq. 5.14 we see that in the Bravyi-Kitaev superfast encoding, local fermionic terms get mapped
onto local qubit terms if the degree of the graph used for the encoding is O(1). This is because for a
given fermionic term, as we showed in the example, the number of vertex and edge operators needed
to construct the encoded qubit term depends on both the number of edges incident to the given vertex,
possibly together with the number of edges incident to its neighbours. If the degree of every vertex is
then O(1), we know that the resulting number of operators needed for a given qubit term will also be
O(1).

In a similar way we show that the sparsity of the qubit Hamiltonian obtain from this encoding is also
O(1). Every edge (3, k) that represents a qubit participates in two vertex operators Bj and By,. Besides
this, the edge (j, k) participates in the edge operator lek as a Pauli operator X, and in the edge op-
erators of the neighbours of the vertices j and k as a Pauli operator Z;; (or Zy;). Since the degree of
every vertex is O(1), we know that every edge participates in O(1) terms and thus the sparsity of the
qubit Hamiltonian terms will be O(1).

It can be shown that the encoded generators given in 5.14 satisfy similar commutation relations as
in eq. 5.8-5.12, but not eq. 5.13. This is among others due to the fact that in general, X;; X, # I for
some (i,75),(4,k) € E.

To overcome this issue, we have to restrict the operators B; and A, on a certain subspace on which
these additional constraints are satisfied. For this, we will define the loop operator for any closed loop
¢ [8]:

A(Q) = " A¢0).cyAe).c@ - Ac(s—1).c(0)- (5.16)

It can be checked that A(¢) commutes with A, B; and itself. We now prepare a state |¢) such that
the following holds:

A(C) [¢) = |[¢) for all loops C. (5.17)
Define the subspace H.; as a stabilizer subspace:
M1 ={l¢) : A(Q) [v) = [v) forall loops ¢}. (5.18)

The number of independent stabilizers is equal to the number of independent loops in the graph,
which is the cyclomatic number of the graph: s = |E| — |V |+ 1. So the s independent stabilizers define
a stabilizer subspace of dimension:

dim (#y,) = 2/F1=s = 2lVI=1, (5.19)
Since all terms in the qubit Hamiltonian 2 commute with all loop operators A(g), we know that they
can be simultaneously diagonalised so that the eigenstates of H can be divided into {\¢?"+1)}j and

{lep™ ")}k, where {|¢2'"1)}; is the collection of states such that they have an eigenvalue of +1

for all loop operators, and {|¢2°t a”“)}k is the collection of states such that there is at least one loop
operator for which they do not have an eigenvalue of +1.

5.2. The Bravyi-Kitaev superfast encoding 21

Since the collection of states {\¢?"+1>}j consists of simultaneous eigenstates of a set of commutating
Hermitian operators, we know that these states are orthogonal. Furthermore, since the subspace .,
consists of all states that are simultaneous eigenstates of all fl((j) who have eigenvalue +1, we actually
know that the set {|¢2'"")}; forms a basis for 7.

This means that without loss of generality, we can write a state |¢)) € H, as:

W) =>a;le?t), (5.20)
J

where «; is some normalisation factor.

Now using this expression, we can determine the effect of applying the loop operator A(g) onto the
time-dependent state |+ (t)), which is defined as in eq. 4.1. We can show that the following holds:

A(Q) |9p(t)) = [1(t)) forall loops ¢, (5.21)

This means that we stay within the subspace created by the stabilizer constraints for all time ¢, so
these constraints will remain satisfied throughout the entire simulation, where we assume the simulation
is performed without any errors.

If we take possible errors into account, we must measure the stabilizer constraints during the quantum
simulation. This can be done using for example syndrome extraction circuits, which makes use of ancilla
qubits. Such a circuit connects the ancilla qubits to the data qubits and performs a measurement on the
ancilla qubits. In particular, this connection is a controlled operation, meaning that the unitary operator
corresponding to the stabilizer term is applied controlled on the ancilla qubit [2].

The ancilla qubits are prepared in the |+) state and the measurement is then performed in the z-
basis. Each loop operator A(¢) has eigenvalues +1 and the outcome of these measurements indicates
whether an error has occurred. If the measurement returns +1, the system remains in the stabilizer
subspace created by the loop operators, meaning no detectable error has occurred.

But if the measurement returns —1, the state has been moved out of the subspace by an error that
anti-commutes with at least one loop operator. So this is a sign that an error has occurred. To get rid
of these errors, we only retain those runs in which all stabilizer measurements return +1, effectively
filtering out states corrupted by detectable errors. This process of measuring the stabilizers during the
simulation to detect possible errors is called quantum error detection®.

The depth of the circuit used to perform the measurements during the simulation depends on the
number of CNOT gates needed to entangle the ancillas to the data qubits. The number of CNOT gates
required to measure a loop operator scales with its weight, so the depth of the circuit depends on the
weight of the stabilizer constraints. Thus, if we have stabilizer constraints with constant locality and
sparsity, we can perform these measurements using circuits of constant depth. This is the reason that
besides obtaining a local and sparse qubit Hamiltonian as described in chapter 4, we also want to
achieve local and sparse stabilizer constraints if we use the superfast encoding.

So to summarize, the Bravyi-Kitaev superfast encoding consists of a Hamiltonian H which is con-
structed by replacing the edge and vertex operators A;, and B;, given in eq. 5.7, by their qubit trans-
formations A;;, and B; as given in eq. 5.14, restricted on the subspace H.; created by the stabilizer
constraints given in eq. 5.16.

As already explained, by defining the encoding in this way we preserve the locality and sparsity of the
Hamiltonian terms. However, the main drawback of the superfast encoding is the fact that the stabilizer
constraints are non-local in the way they are constructed and used as described in this section, since
they involve a product of operators on any closed loop of undefined length.

A solution to this problem is to modify the original graph onto which we apply the encoding to obtain
a new graph G’, and then define the stabilizer constraints on a cycle basis of this new graph. If this
cycle basis then only contains constant-length cycles, and if each edge in G’ only occurs in a constant
number of cycles, we obtain respectively local and sparse stabilizer constraints.

There are different ways of modifying the graph and constructing a cycle basis for it. In sections 5.3
and 5.4 we discuss two algorithms implementing this.

3The interested reader can find more information about quantum simulation and error detection in ref. [2], [8] and [9].

5.3. A stacking and sewing procedure 22

5.3. A stacking and sewing procedure

The idea of this algorithm is to first create a cycle basis for the graph G onto which we originally applied
the superfast encoding, using another known algorithm. After this, we create as many copies of G as
there are cycles in the cycle basis, and stack them on top of each other to create a new graph G. Then
finally, in each layer, we 'sew’ the corresponding cycle of the cycle basis if their length is larger than
some threshold, such that we obtained a cycle basis consisting of only small constant-length cycles.
Together with this, every edge will be used a constant number of times. The original graph G will be an
induced subgraph of G, which means that the graph algebra of G is a subalgebra of the graph algebra
of G, and thus we still obtain a valid mapping of the fermionic Hamiltonian to a qubit Hamiltonian [6].

The algorithm is given in the proof of the Lemma given in Appendix B of ref. [6]. We present a slightly
modified version of the proof below:

Lemma 5.3.1. Consider a connected graph G on n vertices with degree O(1). There exists a (polyno-
mial time construable) connected graph G on O(n?) vertices with G as an induced subgraph, that has
a cycle basis consisting of cycles of length at most 4 and which uses every edge in G at most 4 times.

Proof.

Figure 5.5: The graph G = (V, E) consisting of six vertices that we use as an example.

(a) lllustration of the stacking
process with the graph shown in fig.

5.5. The blue edges are the new (b) lllustration of the sewing process
edges added in between copies of applied to a cycle of length 9. The blue
the graph. edges are again added in the process.

Figure 5.6: lllustration of the stacking- and sewing process.

We will explicitly construct the graph G. First, compute a cycle basis C for G by for instance using
the Spanning Tree algorithm or Horton’s algorithm. We know from sec. 3.1 that this cycle basis has
|E(G)|—|V(G)|+c elements, where ¢ is the number of connected components. For a connected graph,
we have ¢ = 1. Furthermore, since G has bounded degree, it is sparse, and thus we have |E| = O(|V]).
Using this, we see that the cycle basis has |E(G)| — [V(G)| + 1 = O(n) elements.

Order the cycles in the basis C in some arbitrary way. We now construct the graph G as follows.
For each cycle in C, we make a copy of the graph G and we "stack” these copies on top of each other.
We do this by connecting each vertex in a certain copy to the corresponding vertex in the copies directly

5.4. The Freedman-Hastings Decongestion Lemma 23

above and below (see fig. 5.6a for an illustration, using the graph shown in fig. 5.5). In this way, we
create |[E(G)| (|C| — 1) vertical cycles which have length 4, since the top and bottom layer are only
connected to one other layer.

These vertical cycles form an independent set, since for every pair of vertical cycles, both cycles
contain an edge that is not present in the other cycle. Furthermore, the set of cycles C is still an
independent set in G, since nothing has changed for them. Furthermore, the union of these two sets is
also independent, which can be seen using the same argument as for the vertical cycles. In particular,
this union forms a cycle basis for the graph G, since the size of any cycle basis of G (i.e., E(G)| —
|V(G)|+ 1) is equal the number of vertical cycles plus the dimension of the cycle space of G. This can
be seen by directly calculating both values.

Continuing the construction, consider for each cycle in the set C the corresponding copy of the
graph G. In this copy, we "sew” the cycle by adding edges across the cycle as illustrated in fig. 5.6b.
For each cycle ¢ in C' this creates smaller cycles of length 3 or 4. In this sewing process, we add at
most [(]/2 edges to G. In Theorem 4.4 of Ref. [24] it is shown that for any sparse graph there exists
a cycle basis with weight O(nlog(n)). So we see that we add at most O(nlog(n)) edges in the sewing
process. After sewing all the cycles in C, the construction of the graph Gis completed. Note that the
degree of the graph G is at most three higher than the degree of G, since to each vertex, we add two
extra edges in the stacking process and at most one extra edge in the sewing process.

We now construct the following cycle basis for the graph .. We take all vertical cycles, and all the
small cycles created after applying the sewing process to each cycle in C. As explained before, the
union of the vertical cycles and the cycle basis of G was a basis for G before the sewing process. Since
the sewing process only adds independent cycles to the basis, the resulting set of cycles is also a basis
for G.

It can be easily seen that every cycle in this cycle basis has length at most 4. Furthermore, every
edge occurs in at most a constant number of cycles in the basis. The vertical edges appear in a number
of vertical cycles bounded by the degree of G. The edges in each copy of the graph participate only
in the small cycles created in the sewing process plus at most two vertical cycles. So we see that the
number of cycles in which a given edge occurs is bounded. This can be mathematically formulated as:

sparsity = max{4,d;}, (5.22)

where the sparsity is equal to the maximal number of times that an edge is used in the obtained cycle
basis. Furthermore, d; is the degree of the original graph G, and the 4 comes from the edges in the
obtained stacked graph G that are not part of a sewed cycle. So we see that if the degree dyis O(1),
then we also have a sparsity scaling as O(1). O

So, following the steps described in the proof of this Lemma, we obtain a graph G with the original
graph G as an induced subgraph, and we obtain a cycle basis of G such that the locality and sparsity
of the cycles in the basis (and thus of the stabilizer constraints following from the superfast encoding)
are O(1).

However, the graph G is of size ©(n?), which is not beneficial for quantum simulations. So while
this algorithm to construct a cycle basis, in combination with the Bravyi-Kitaev superfast encoding, may
seem ideal at first site when looking at the locality and sparsity of the fermionic Hamiltonian and stabi-
lizer constraints, it still has its disadvantages.

We will now discuss another algorithm for constructing a cycle basis, which is given in the Decon-
gestion Lemma of Freedman-Hastings.

5.4. The Freedman-Hastings Decongestion Lemma

In this section, we present a way of obtaining a cycle basis of the original graph G by using the
Freedman-Hastings Decongestion Lemma shown in Appendix B in [12]. This Lemma is based on an
algorithm that provides a weakly fundamental cycle basis for the graph G onto which the encoding is
applied, where each edge e € E'is only used in a limited number of cycles in the cycle basis. This result
of the Lemma can be used to make sure that the stabilizer constraints arising from the Bravyi-Kitaev
superfast encoding can be made sparse while also limiting the required number of qubits.

5.4. The Freedman-Hastings Decongestion Lemma 24

We now present the Decongestion Lemma together with a slightly modified version of the proof as
compared to the proof given in Appendix B in [12]:

Lemma 5.4.1 (Freedman-Hastings Decongestion Lemma). Given a graph G = (V, E) with the de-
gree of each vertex O(1). There exists a weakly fundamental cycle basis in which each edge appears
in at most O(log(|V'|)?) cycles in the basis.

Furthermore, there is an efficient randomized algorithm, given in the proof of this lemma, to construct
such a basis. If we assign non-negative weights to each edge of the graph, then with probability €2(1)
the algorithm returns a cycle basis of total weight bounded by log(|V|) times the sum of edge weights
of the graph.

Furthermore, suppose the graph is sparse, and say that two cycles in the basis intersect if they share
at least one vertex. Then, each cycle in the constructed basis intersects at most polylogarithmically
many cycles later in the basis.

Proof.
The proof is based on the following recursive and randomized algorithm A. We let A(G) denote the
cycle basis returned with a graph G as input. If G has no edges, then A(G) = (). The algorithm consists
of the following steps:

1. If graph G has at least one vertex with degree 1, let v be an arbitrary vertex with degree equal to
1. Define G’ as the graph with only that vertex removed. Return A(G’)*.

2. Else, if the graph G has at least one vertex v with degree 2, let v be an arbitrary vertex with
degree equal to 2. There are two possibilities. Case A: If v has a self-edge e, let C be the cycle
consisting of that self-edge. Remove this edge from G to obtain a graph G’. Return {C'} U A(G").
Case B: If v does not have a self-edge, then v has edges to two other vertices x,y. Remove v
from G and add an edge (z, y) to obtain a graph G’. Compute A(G’). Then, for each cycle in the
resulting cycle basis, replace every occurrence of edge (x,y) with (z,v), (v,y) and return this as
A(G).

3. Else, find a simple cycle C of length at most O(log(|V|)) in G. Let G’ be the graph obtained from
G by removing an edge of that cycle, choosing that edge uniformly at random. Return C U A(G”).

We first prove that this algorithm always returns a weakly fundamental cycle basis for G. After this
we show that we can always find a cycle of length O(log(|V])) in step 3. Then we use the algorithm to
show that there exists a cycle basis where each edge appears at most O(log(|V|) log(|E|)) times, after
which we will prove the remaining claims.

We use induction to prove that the algorithm always returns a cycle basis. We assume that it returns
a cycle basis for all graphs with V/ < V vertices and for all graphs with V' vertices and E’ < E edges.
We will use this to prove it holds for all graphs with V' vertices and E edges. The base cases V =0 or
V > 0,FE = 0 are trivial. Then we assume the statement to be true for a graph on V’ < V vertices or a
graph on V vertices with £’ < E edges. Under this assumption, the statement will then also hold for
any other graph with the assumed properties because the algorithm is recursive. Note that if we are in
step 1, then v does not participate in any cycle, and so a cycle basis for G’ gives a cycle basis for G.
Furthermore, after step 2A or step 3 where we add a cycle C to the basis, we remove an edge in C.
It is because of this that the algorithm returns a weakly fundamental cycle basis, since this removed
edge cannot be present in any other cycles later in the basis.

To show that we can always find a cycle with length O(log(|V|)) in step 3, note that by assumption
all vertices have degree at least 3. Hence, starting from any given vertex there are more than 2! paths
of length [starting at that vertex, since for each edge of this path with length [we have 3 vertices to
which we can connect the edge. So, for [~ log(|V|) there must be two different paths with the same
endpoint following from a pigeonhole argument, since we have |V| vertices in the graph and 2'°s(IV1)
vertices in the path. This implies that we can always find a simple cycle of length O(log(|V])).

We move on by providing a bound on the number of cycles in which some edge e appears in a
cycle basis returned by the algorithm. The algorithm is recursive, starting with graph G and defining a

4In this algorithm we use the notation G’ to indicate the graph obtained after applying the modifications in the algorithm. Note
however that this graph will not be equal to the graph onto which the superfast encoding will be applied, since the algorithm of
Freedman-Hastings constructs a cycle basis of the original graph G.

5.4. The Freedman-Hastings Decongestion Lemma 25

sequence of graphs G',G”,G",.... Let Gy = G,G1 = G',Go = G”, Note that when the algorithm
constructs G from G, the set of edges of GG is some subset of the edges of G, possibly with an
extra edge added after step 2B. We call an edge f in G4 the child of an edge e in G; if f is the same
as edge e or if f is obtained in case 2B, where ¢ = (z,v) ore = (v,y) and f = (z,y). An edge f in
G; is the descendant of an edge e in G = G, if there is a sequence ey = e, e1,e2,...,¢e; = f with 44
being the child of ¢;, for k = 0,1,...,5 — 1. Note that if this descendant exists, then it is unique. Not
every edge e has a descendant in G;, because some edges are removed. We say that an edge e € G
is removed on step j if ¢ has a descendant in G;; but not in G .

Then, for any edge e € G, the number of cycles in which e appears in the cycle basis is equal to
the number of times that the algorithm constructs a cycle C' containing a descendant of e. If on the
j-th step, we construct a cycle containing a descendant of ¢ using step 2A of the algorithm, then ¢ is
removed on step j. So we see that the number of times that e appears in the cycle basis is bounded
by one plus the number of times that the algorithm uses step 3 and constructs a cycle C' containing a
descendant of e.

However, each time case 3 occurs, the descendant is removed with probability Q(1/log(|V])), since
we remove edges from the simple cycles of length 2(1/1og(|V'|)) uniformly at random. So, the proba-
bility that an edge e appears in at least w such cycles is bounded by

{1 —0 (1og(1|V|)ﬂ " (5.23)

As will become clear, we want to find for what w we can make this probability strictly smaller than
1/2|E|. So after setting this < 1/2|E| and taking the logarithm on both sides, we obtain:

1
w-log |1 —Q(————)| < —1log(2|E|). 5.24
2|10 (v)| < s 629
Now we use the approximation log(1 — x) ~ —x for small z to obtain:
Q(L) < —log(2|E|) (5.25)
w - — — —lo . .
log([V) ¢

And from this it follows that the inequality is satisfied for some w = O(log(|V'|) log(|E|)). So for this w

we obtain [1 -Q <m)} Y ﬁ as the probability that an edge e appears in at least w cycles. Now
we take the union bound over all edges to see that all edges appear in at least w cycles with probability

< |E| - 5 = 1/2. So from this, we see that no such edge exists with probability > 1/2.

For a dense graph we have |E| = O(|V|?), but since we consider sparse graphs in this thesis we
have |E| = O(|V]). So we see that with probability > 1/2 no edge exists in at least log(|V|) log(|E|) =
O(log(|V])?) cycles.

If G has multi-edges or self-edges, we can still show that the claim above holds. To obtain this, we
must first modify the graph in some way before running the algorithm. First, remove the self-edges
and replace every multi-edge with a single edge to obtain a graph G with V vertices and |E| = O(|V |?)
edges. Then construct a cycle basis for G using the algorithm. Then we know that every edge appears
at most O(log(|V])?) times in this cycle basis. Now, if an edge in G connects two vertices which have
multiple edges between them in G, replace each occurrence of that edge in the cycle basis with an
arbitrary one of those multi-edges in G. Then, add every self-edge of GG as a cycle to the cycle basis.
Also, if two vertices u, v in G' have multiple edges between them, labelled eq, e, . . ., ¢; for some k, add
the cycle eje}H foreach j = 1,...,k — 1 to this cycle basis. The result is a cycle basis for G with the
given property.

The algorithm A is efficient, since it is called at most | E| times in the recursion, since we remove an
edge in each step. Also, each step can be done efficiently. For example, a shortest cycle in the graph
can be found efficiently by, for each edge in turn, considering the graph with that edge removed and
finding a shortest path between the vertices which were endpoints of the edge. The algorithm finds a
basis which satisfies the given properties with probability > 1/2, and the properties of the basis can be
efficiently verified.

5.4. The Freedman-Hastings Decongestion Lemma 26

Now suppose that we add non-negative edge weights to each edge of the graph G. Then by lin-
earity of the expectation, the expected cycle basis weight is equal to the sum over the edges of the
weight of that edge times the expected number of times the algorithm constructs a cycle C' containing
a descendant of the edge.

Those cycles are constructed in step 3 of the algorithm. After constructing such a cycle with length

O(log(|V])), we remove an edge from this cycle with probability O (W) This process can be seen

as the number of Bernoulli trials that is needed to get one success, where a success is defined as re-
moving the given edge after constructing a cycle. The probability of a success is equal to the probability

of removing the given edge, so p = O (W) The random variable corresponding to the number of

trials until one success follows a Geometrical distribution, which has expected value % = O(log(|V]))
[25]. So we see that the expected number of times that the algorithm constructs a cycle C containing
a descendant of the given edge is O(log(|V])). Hence, the expected cycle basis weight is bounded by
the total edge weight times O(log(|V])). So with probability €2(1), the cycle basis weight is bounded by
the total edge weight times O(log(|V|)). Since in this thesis we consider the edge weights to be equal
to one and we furthermore have |E| = O(|V]) since we consider sparse graphs, we see that the cycle
basis weight is O(|V|log(|V])).

Finally, suppose that we consider a sparse graph G. Then the graph remains sparse while running
the algorithm as the degree can only decrease. When the algorithm constructs a cycle in step 2A or 3
with some graph G’ as its input, the cycle has length at most logarithmic in the number of vertices of G'.
All cycles constructed later on contain each edge of G, and since the graph is sparse also each vertex,
at most polylogarithmically many times. This is because every edge appears in at most O(log(|V])?)
cycles in the basis, and the expected number of times that the algorithm constructs a cycle later in the
basis containing a descendant of that edge is equal to O(log(|V])). So, we see that the cycle intersects
only polylogarithmically many cycles later in the basis. O

For better understanding of the algorithm given in the proof of this Lemma, we have put an example
of this algorithm in fig. A.4 in Appendix A.4.

One of the main properties of the algorithm given above is de Decongestion property, stating that each
edge appears in at most O(log(|V|)?) cycles in the basis. This is exactly the sparsity of the obtained
cycle basis. So, if we have n fermionic modes, then we note that the algorithm of Freedman-Hastings
is expected to have a sparsity which scales as O(log(n)?).

This Decongestion and the property that every cycle intersects only polylogarithmically many cycles
later in the basis, are two important properties of the algorithm of Freedman-Hastings that we want to
use in developing the improved fermionic encoding in chapter 7.

Besides the sparsity, we also want to say something about the length of the cycles in the cycle ba-
sis, and thus the locality of the stabilizer constraints in the Bravyi-Kitaev superfast encoding. For this
we consider the part of the Lemma 5.4.1 which says that the total weight of the obtained cycle basis
is O(nlog(n)). Looking at the algorithm, we note that all cycles of the cycles basis are developed in
step 2A and step 3, and since the total number of edges in the graph is O(|V]), the total size of the
cycle basis will be O(|V]). Combining this with the bound for the total weight of the cycle basis, there
are different scenarios possible, with the most interesting one regarding the locality for our case is the
scenario where all but one cycle have constant length. Then the length of the cycle with non-constant
length can be O(|V]log(|V])), since W = O(|V]log(|V])). So in this case the locality of the

cycle basis will be O(|V|log(|V])).

So we note that using this algorithm, both the locality and the sparsity of the cycle basis are not
expected to be bounded by a constant, which is in that sense worse than the algorithm described in
sec. 5.3. But since the required number of qubits of the algorithm of sec. 5.3 is O(n?) compared to
O(n) for the algorithm of Freedman-Hastings, we would like to combine these two algorithms described
in this chapter in some way in the improved fermionic encoding.

The hypothesis is then that we will be able to achieve constant locality and sparsity of both the qubit
Hamiltonian and the stabilizer constraints, while keeping the required number of qubits to achieve this

5.5. Physical systems to consider 27

somewhere between O(n) and O(n?). We will elaborate further on this part in chapter 7.

Before we discuss the numerical results of applying the algorithms considered in the previous sec-
tions, we first discuss two physical systems onto which we will apply these algorithms.

5.5. Physical systems to consider

As briefly mentioned in sec. 3.2, we need to construct a graph onto which we can apply the fermionic
encoding. In this section, we discuss two fermionic systems which we will map onto qubits, namely the
Fermi-Hubbard model and so-called sparse SYK Hamiltonians.

In general, we define the interaction graph representing a fermionic system, as a (hyper)graph where
the vertices correspond to the modes present in each term in the Hamiltonian, and for each term we
draw edges between all modes present in that particular term. As we see in eq. 5.4, the Fermi-Hubbard
model has terms consisting of only two modes, so for each term we draw one edge between two modes
to construct the interaction graph. For the sparse SYK Hamiltonians, we will see that this is not the
case and that we obtain hyperedges there.

An important remark is that the fermionic interaction graph is not necessarily the graph onto which
the fermionic encoding will be applied. In the next two sections, we show how to construct the graph
used for the encoding for both fermionic systems, first for the Fermi-Hubbard model and after that for
the sparse SYK Hamiltonians.

5.5.1. The Fermi-Hubbard model on sparse hopping graphs

The Fermi-Hubbard model describes a physical system with the Hamiltonian given in eq. 5.4. This
model is often used to describe a physical system in condensed matter physics, and as previously
stated in sec. 3.2, the graph corresponding to this Hamiltonian onto which we will apply the encoding,
will be a sparse random graph. This graph is a slightly modified version of the Erdos-Renyi random
graph, where the degree of some vertices is artificially decreased below a certain threshold. In this
graph we add edges between every pair of vertices with p % and we set the threshold for the degree
of each vertex equal to 4. We will now show why we can use this graph to find the results of transform-
ing the Fermi-Hubbard model using the Bravyi-Kitaev superfast encoding.

First we consider the on-site interaction terms. These consists of the terms made up of the number
operators: n;4n; . It can be shown that we can write a number operator in terms of the Majorana

operators in the following way: n; = $(I — iczj_1c2;)°. If we do this for both spin-states, we can write:

1 , .
nj N = 1(1 —idcgj14C251) (I —icaj_1,Ca5.)- (5.26)

If we look at eq. 5.7 from the Bravyi-Kitaev superfast encoding then we see that we can write:
1
njangy = 7 (I +Bip)(I + Bjy), (5.27)

and thus from this we see that for representing the on-site interaction terms of the Fermi-Hubbard model
we only need the vertex operators B; ,, which can be directly applied onto vertices in the graph.

We do something similar with the hopping terms by rewriting a;,o_akﬁ + a,lgajﬁ in terms of the edge
and vertex operators. It turns out that we can write:

1
CL;?gak,a + al,gaj,a = —5(0%,002]‘—1,0 + C2j.0Cok—1.0)
; (5.28)
- iAjk,o(Bj,a - Bk,a)~

5All derivations of this section are shown in Appendix A.5).

5.5. Physical systems to consider 28

From eq. 5.28 we see that we can represent the hopping terms using the vertex operators B;
and By, and the edge operators A;; ,. This means that for a hopping term, we only need the vertex
operators and the edge operators on the edge between the two vertices participating in that given term.

So this means that the graph onto which we will apply the fermionic encoding must consist of vertices
and edges between several pairs of those vertices for each hopping term. This is exactly the way how
we construct the random graph in sec. 3.2.

Furthermore, again note from eq. 5.27 that for the on-site interacting terms we only need the ver-
tex operator for that given vertex, and we do not need an edge operator to describe this term in the
Bravyi-Kitaev superfast encoding. That means that while the fermionic interaction graph representing
the Fermi-Hubbard model consists of two spin-layers connected by edges, we do not need the edge
operators between the vertices with different spin who are at the same site in the interaction graph.

Also, since the graphs representing both spin-layers are identical to each other, the cycle basis
and the corresponding locality and sparsity of the stabilizer constraints will be identical for both layers.
And thus, we only need to perform the calculations of the superfast encoding for one modified Erdos-
Renyi graph, and then we can use these results to investigate the properties for both spin-layers of the
fermionic interaction graph.

So we see that for the Fermi-Hubbard model, the graph onto which we will apply the encoding is
equal to one spin-layer of the fermionic interaction graph representing the Hamiltonian given in eq. 5.4.

5.5.2. Sparse SYK Hamiltonians

We consider one more physical system, which is a little bit more complicated than the Fermi-Hubbard
model. These systems are described by so called sparse Sachdev-Ye-Kitaev (SYK) Hamiltonians.
These Hamiltonians representing are a sum of terms consisting of four Majorana operators [26]:

H = Z JSCS(1)65(2)65(3)03(4). (529)
SC[nl,|S|=4

Here cs(;) is a Majorana operator working on the j-th component of the set S, and the Js are some
coefficients which are i.i.d. Gaussians with x =0and o = 1.

Looking at eq. 5.29, we note that these Hamiltonians consist of ©(n*) terms, instead of the ©(n)
terms that we need for the Hamiltonian to be sparse. To solve this issue, we go through all terms and
we remove each term with probability 1 —p, for some p € [0, 1] [26]. We note that while first having ©(n?)
terms, this procedure leaves us with ©(pn*) terms. To obtain ©(n) terms, we thus note that we need
p X nl—g where n is again the number of fermionic modes. After applying this procedure of removing
some terms, we obtain a sparse Hamiltonian with a high probability.

For the Fermi-Hubbard model we saw that one spin-layer of the fermionic interaction graph is equal
to the graph onto which we apply the superfast encoding. But in this case we will show that the graph
that will be used in the encoding of this system is not equal to the interaction graph representing the
Hamiltonian given in eq. 5.29.

To construct the graph onto which we apply the encoding, we investigate which vertex and edge
operators we need to represent each term in the Hamiltonian. If we for example consider a Hamiltonian
termlike co;_1cop—1c21—1c2m—1, then using eq. 5.7 from the Bravyi-Kitaev superfast encoding we directly
see that we can write this as:

€2j—1C2k—1C21—-1C2m—1 = —Ajr Alm, (5.30)

and thus we only need operators on the edges (j, k) and (I, m) to represent this Hamiltonian term in
the graph onto which we will apply the encoding.

We could also have a Hamiltonian term like c2;_1 car—1c21c2m, butusing eq. 5.7 and the anti-commutation
relations of the Majorana operators, we write this in terms of the edge and vertex operators as:

€2j—1C2k—1C21Com = —B; A B Aim, (5.31)

5.5. Physical systems to consider 29

and thus we see that we also only need the vertices j, k, [, m and the edges (j, k) and (I, m) to represent
this term in the graph onto which we will apply the encoding.

Another example of a term in the sparse SYK Hamiltonian is a term like ¢ _1c2jcor—1c2k. In this case
we only have to consider the vertex operators B; and By, since, again using eq. 5.7, we directly see
that we can write:

C25-1C25C2k—1C2k = (iBj) (in)

5.32
= —B;B. (5:32)

So we see that in this case we don’t have to add an edge to the graph onto which we will apply the
encoding.

In general, the terms in the sparse SYK Hamiltonian are made up of Majorana operators on the
vertices j, k,I,m. If we order the Majoranas in these terms in the correct way by using their anti-
commutation relations, we see that to construct the graph onto which we will apply the encoding, we
only have to add edges between the first two vertices and between the last two vertices, only between
the first two vertices or the last two vertices, or that we do not have to add an edge at all depending
on the number of different modes present in the term. So we see that for each term in the Hamiltonian
described in eq. 5.29 we have to add at most four vertices and two edges to the graph.

And finally, just like we did for the random graph described in sec. 3.2, we artificially modify the
resulting graph to obtain a degree of all vertices of O(1) by removing incident edges of a given vertex
uniformly at random until the degree becomes lower than some threshold value, which is set to 4.

So looking at the construction of the graph, we see that this graph is different than the interaction
graph representing the sparse SYK Hamiltonians. Furthermore, it is also different than the graph onto
which we apply the encoding if we consider the Fermi-Hubbard model. Where we have to add one
edge to the graph for each term in the Fermi-Hubbard Hamiltonian, we have to add zero, one, or two
edges to the graph for each term in the sparse SYK Hamiltonian.

In chapter 6 we discuss the results of numerically implementing the Bravyi-Kitaev superfast encoding
in combination with the stacking- and sewing-procedure from sec. 5.3 and the algorithm of Freedman-
Hastings from sec. 5.4. We apply this encoding first to the modified Erdos-Renyi graph corresponding
to the Fermi-Hubbard model, and after this we apply this encoding to the graph corresponding to the
sparse SYK Hamiltonians.

Numerical results for known
transformations

In this chapter we will discuss the results of the numerical implementation of the algorithm described
in chapter 5. We apply the algorithms both to the modified Erdos-Renyi graph described in sec. 3.2
corresponding to one spin-layer of the Fermi-Hubbard model, and onto the graph corresponding to the
sparse SYK Hamiltonians as described in sec. 5.5.2.

Throughout the rest of the thesis, we will use the Bravyi-Kitaev superfast encoding to map the
fermionic modes onto qubits, and in this chapter we use the stacking- and sewing algorithm described
in sec. 5.3 and the algorithm developed by Freedman-Hastings to modify the original graph G and con-
struct a cycle basis to the newly obtained graph G’, to govern the properties of the stabilizer constraints
arising from the superfast encoding.

We are mainly interested in investigating the locality and sparsity of the qubit Hamiltonian terms and
of the stabilizer constraints, and the total number of qubits used in the encoding.

1. The locality of the qubit Hamiltonian terms is bounded by the degree of the vertices in the obtained
graph G’ as described in sec. 5.2. Note that if we add edges to the graph in for example the
stacking- and sewing-process, than the degree of the graph G’, and thus the locality of the qubit
Hamiltonian terms will be increased.

2. In a similar way, as described in 5.2, the sparsity of a given qubit also depends on the degree of
the graph G'.

3. The locality of the stabilizer terms is equal to the maximum length of the cycles in the cycle basis
of the obtained graph G’.

4. The sparsity of the stabilizer terms is equal to the maximum number of cycles in the basis in which
a given edge appears, with the maximum taken over all edges in the graph G'.

5. Finally, the number of qubits is equal to the number of edges in the graph G'.

Now that we know what the relevant numerical results will be to investigate the properties of a given
encoding, we will discuss the results of the numerical implementation. We will first discuss the results of
applying the encoding to the modified Erdos-Renyi graph corresponding to the Fermi-Hubbard model,
followed by the results for the graph corresponding to the sparse SYK Hamiltonians.

6.1. Results for the modified Erdos-Renyi graph

The results of the numerical implementation of the algorithms on the modified Erdos-Renyi graph are
shown in fig. 6.1 - fig. 6.4.

30

6.1. Results for the modified Erdos-Renyi graph 31

From the proof of Lemma 5.4.1, we expect the sparsity of the cycle basis obtained from the algorithm
of Freedman-Hastings to be O(log(n)?), because of the Decongestion property. In fig. 6.1 we see that
this bound seems to be satisfied for the graph that we investigate.

Furthermore, following the results shown in fig. 6.1, it also seems to be plausible that the locality of
the cycles basis obtained by the algorithm of Freedman-Hastings is O(log(n)). This behaviour is also
plotted in fig. 6.2b, where the average length of cycles in the cycle basis obtained from the algorithm
of Freedman-Hastings is plotted against log(n). In this plot the data points eventually seems to lie
on a straight line, indicating that the average cycle length is indeed O(log(n)). This scaling of the av-
erage cycle length implies that there must be at least one cycle of non-constant length in the cycle basis.

From fig. 6.1 we can conclude that our expectations regarding the performance of the different al-
gorithms for constructing a cycle basis were true: the Spanning Tree algorithm performs the worst in
both the locality and the sparsity, followed by the algorithm of Freedman-Hastings and the stacking-
and sewing-procedure delivers the best results with both the locality and the sparsity being O(1).

One of the drawbacks of the stacking- and sewing-procedure is visualized in fig. 6.2a. Here the
average degree of the obtained interaction graph is shown, and it can be seen that the degree of the
vertices in the stacked graph G’ is on average the degree of the original interaction graph G plus 2.
This also matches our expectation, since the extra edges connected to a vertex v € G’ are the vertical
edges connecting vertices in different layers. This higher average degree has the consequence that
the locality of the qubit Hamiltonian terms for the stacking- and sewing-procedure will be 2 higher than
when using the algorithm of Freedman-Hastings.

Fig. 6.3a shows another drawback of the stacking- and sewing-procedure. In this figure the num-
ber of edges in the graph G’ obtained from this algorithm (and thus the number of qubits) is shown,
and as expected, this number is O(n?). In fig. 6.3b it can be seen that after applying the algorithm of
Freedman-Hastings, the number of edges is O(n), since this algorithm is applied to the original graph G.

Figures 6.4b and 6.4a can be used to verify another statement made in the proof of Lemma 5.4.1 of
Freedman-Hastings. Namely, in fig. 6.4a we see that we indeed have a cycle basis of size O(n).

In fig. 6.4b we see that the statement made that the total weight is bounded by the total edge weight
times O(log(n)) seems to be true for this type of graph. We consider the edge weights to be equal
to one in this thesis and since the number of cycles in the basis is O(n), we see that the statement
mentioned above implies that we expect the total weight of the basis to be O(nlog(n)). In fig. 6.4b we
plot the total weight of the basis versus nlog(n) and the data points seems to lie on a straight line, so
we conclude that this statement seems to be true for this type of graph.

Based on these results following from the numerical implementation, we can conclude that the al-
gorithm of Freedman-Hastings and the stacking- and sewing-procedure perform well in different cate-
gories. The stacking- and sewing procedure obtains a cycle basis where the locality and sparsity are
O(1), but the average degree of the obtained graph G’ (and thus the locality of the qubit Hamiltonian
terms) is the average degree of the original graph G plus 2, and the number of edges (and thus number
of qubits) is O(n?) instead of O(n) for the algorithm of Freedman-Hastings.

So we see that none of these algorithms exhibit all desired properties if applied to the modified Erdos-
Renyi graph. In the next chapter, we will combine these two methods to obtain an improved encoding.
Before moving on to the construction of this encoding, we first discuss the numerical results of applying
the known algorithms to the graph corresponding to the sparse SYK Hamiltonians.

6.1. Results for the modified Erdos-Renyi graph

32

60 60 7
— log(n) — log(n)~2 y
/ —n —n
50 +- Spanning tree 50 +- Spanning tree o=
/ --—- Stacked graphs --—- Stacked graphs
Freedman-Hastings Freedman-Hastings &>

40 = 40 7 .
,‘Z‘ I + b 4? i
= wn
© 30 5 % 30
o 7 o
A of n

20 . 20

10 10

0 0 50 100 150 200 250 0 0 50 100 150 200 250

Lattice size (n)

Lattice size (n)

Figure 6.1: Locality (left) and sparsity (right) of the stabilizer constraints for the modified Erdos-Renyi graph, using different
types of algorithms to construct a cycle basis for the Erdos-Renyi graph. We have plotted the Spanning Tree algorithm (red),

the stacked-graphs algorithm described in sec. 5.3 (

) and the algorithm developed by Freedman-Hastings (

) vs.

the number of fermionic modes n. In the plot for the locality we have also plotted the function log(n), and in the plot for the
sparsity the functions » and log(n)2. These curves can be used to compare how the locality/sparsity of the different algorithms
scale with the number of fermionic modes n.

7.5
o1 A

%_ 50 I \A"A"\IAH"“A“""A“"’K‘*‘-ﬁ-A—lﬁ-b-*;.‘-ﬂ-r‘."—ﬁ-‘—k‘.‘d—r‘t.Ai
© 1
S { 7.04
3]
2asq | s
= | 5,65
3 4 5
o @
[} [4
240 Average degree of G 3 6.0
S --+- Average degree of G_Stacked o
° 55

D
[©
o o
g [
L35 Z 5.09
[
[
E 4
5 45
Z 3.0

4.0
0 50 100 150 200 250 2 3 4

Lattice size (n)

(a) The average degree of the vertices in the original Erdos-Renyi

graph (left) and the obtained graph from the stacking and sewing
procedure (right), plotted vs. n.

Lattice size (log(n))

(b) The average length of cycles in the cycle basis for the Erdos-Renyi

graph, obtained from the algorithm of Freedman-Hastings and plotted

vs. log(n).

Figure 6.2: The average degree of the Erdos-Renyi graph (left) and average cycle length of the cycles in the cycle basis (right)
for the Erdos-Renyi graph, obtained from the algorithm of Freedman-Hastings (right).

6.1. Results for the modified Erdos-Renyi graph

33

70000 .
60000 o

50000 -

40000 .t

30000 -

Number of edges
LY

20000 o
-

10000

20000 30000 40000 50000 60000

Lattice size (n"2)

0 10000

(a) Number of edges in the graph G’ obtained from the stacking- and
sewing procedure described in sec. 5.3, plotted vs. n?.

3501

3004

N
a
=3

Number of edges

504

0 50 100 150 200 250
Lattice size (n)
(b) Number of edges in the original Erdos-Renyi graph G, the graph

onto which the algorithm of Freedman-Hastings is applied, plotted vs.
n.

Figure 6.3: The number of edges in the finally obtained interaction graph after applying the the stacking- and
sewing-procedure (left) and the algorithm of Freedman-Hastings (right). Eventually, the number of edges in the graph will be
equal to the number of qubits in the fermionic encoding, following from the Bravyi-Kitaev superfast encoding.

120

100

@
)

Number of cycles
- (=)
s 3

20

0 50 100 150 200 250
Lattice size (n)

(a) Size of the cycle basis for the Erdos-Renyi graph, obtained from
the algorithm of Freedman-Hastings.

800

N o
o =3
o =3

Weight of cycle basis

N
=3
=3

0 200 400 600 800 1000 1200 1400
Lattice size (nlog(n))

(b) Total weight of the cycle basis for the Erdos-Renyi graph, obtained
from the algorithm of Freedman-Hastings.

Figure 6.4: The size (left) and total weight (right) of the cycle basis for the Erdos-Renyi graph, obtained from the algorithm of
Freedman-Hastings. The size is equal to the number of cycles in the cycle basis. The total weight is defined as the sum of the
length of all cycles in the cycle basis. For the algorithm of Freedman-Hastings, we saw in sec. 5.4 that this equals the sum over

edges of the weight of that edge times the expected number of times the algorithm constructs a cycle ¢ containing a
descendant of the edge.

6.2. Results for the sparse SYK graph 34

6.2. Results for the sparse SYK graph

In this section we present the numerical results of applying the different algorithms discussed in chapter
5 applied to the graph corresponding to the sparse SYK Hamiltonians as discussed in sec. 5.5.2.

The results in all figures presented below seem to follow the same trends as for the modified Erdos-
Renyi graph, so the arguments given in sec. 6.1 also apply to this type of graph.

So, based on the numerical results presented in these sections, we can conclude that the algorithms
from chapter 5 seem to be applicable to various types of graphs with bounded degree.

40 50
— log(n) — log(n)"~2
— n — n
35 / «- Spanning tree Spanning tree
--—- Stacked graphs 40 / -—~-- Stacked graphs
30 / Freedman-Hastings / Freedman-Hastings
AR Horton S I N A e Horton
25 .
30 x
2z L5 = a
= w
T 20 ©
o . Q
— n
20
15
10 #
10
51/
0 0 20 40 60 80 100 120 140 0 0 20 40 60 80 100 120 140

Lattice size (n) Lattice size (n)

Figure 6.5: Locality (left) and sparsity (right) of the stabilizer constraints for a sparse SYK graph, using different types of
algorithms to construct a cycle basis. We have plotted the Spanning Tree algorithm (red), the stacked-graphs algorithm

described in sec. 5.3 () and the algorithm developed by Freedman-Hastings () vs. the number of fermionic modes
n. In the plot for the locality we have also again plotted the function log(n), and in the plot for the sparsity the functions n and
log(n)2.

5.0 7.04
- - ,.—A—*\k*AW,A—,‘-"*,/“‘—A-‘n-h“*—*—ri-*
Q A
0459 ~ 6.5
o /I
B £
240 i <
& ! X
- 1
Susl | 2
27§ 3
:(_S. ", 5 5.51
° 3.09 1 g
Q 4 o
S 5 501
L 254 >
© <
&
© 50 4.5
:>() Average degree of G

151 --+- Average degree of G_Stacked 4.0

0 20 40 60 80 100 120 140 15 20 25 3.0 35 40 45 5.0

Lattice size (n) Lattice size (log(n))

(a) The average degree of the vertices in the original sparse SYK (b) The average length of cycles in the cycle basis for a sparse SYK
graph (left) and the obtained graph from the stacking and sewing graph, obtained from the algorithm of Freedman-Hastings, plotted vs.

procedure (right), plotted vs. n. log(n).

Figure 6.6: The average degree of the graph (left) and average cycle length of the cycles in the cycle basis obtained from the
algorithm of Freedman-Hastings (right).

6.2. Results for the sparse SYK graph 35

25000
- 200+

20000 =

-
o
o

15000 /

-
15
I

10000 al

Number of edges
Number of edges

- 4
5000 ~ 50

0 5000 10000 15000 20000 0 20 40 60 80 100 120 140
Lattice size (n) Lattice size (n)

(a) Number of edges in the graph G’ obtained from the stacking- and (b) Number of edges in the original sparse SYK graph G, so the graph
sewing procedure described in sec. 5.3, plotted vs. n?. on which the algorithm of Freedman-Hastings is applied, plotted vs. n.

Figure 6.7: The number of edges in the finally obtained interaction graph after applying the the stacking- and
sewing-procedure (left) and the algorithm of Freedman-Hastings (right). Again, the number of edges in the graph will be equal
to the number of qubits in the fermionic encoding.

70
60 400
50 g
%]
@©
% 9 300
340 L
s 9
&30 S 200
E 5
Z 2 2
100
10
0 0
0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700
Lattice size (n) Lattice size (nlog(n))
(a) Size of the cycle basis for a sparse SYK graph, obtained from the (b) Total weight of the cycle basis for a sparse SYK graph, obtained
algorithm of Freedman-Hastings. from the algorithm of Freedman-Hastings.

Figure 6.8: The size (left) and total weight (right) of the cycle basis for a sparse SYK graph, obtained from the algorithm of
Freedman-Hastings. The total weight is equal to the sum over edges of the weight of that edge times the expected number of
times the algorithm constructs a cycle ¢ containing a descendant of the edge, and the size is equal to the number of cycles in

the cycle basis.

Constructing the improved fermionic
encoding

Now it is time to turn to the main part of this thesis, namely the construction of the improved fermionic
encoding. We will consider the Fermi-Hubbard model and the sparse SYK Hamiltonian respectively
described in sec. 5.5.1 and sec. 5.5.2, and we will derive an improved fermionic encoding which
maps these Hamiltonians onto local and sparse qubit Hamiltonians, with sparse and local stabilizer
constraints, while minimizing the required number of qubits.

The main idea is to use the sewing and stacking algorithm described in sec. 5.3, together with the
algorithm of Freedman-Hastings described in sec. 5.4 and a yet to be described Vertex Coloring algo-
rithm (which we will sometimes denote by "VC”), to obtain a local and sparse cycle basis of the graph
G’ used for the encoding, where the qubits are placed at the edges of the graph just as in the Bravyi-
Kitaev superfast encoding described in sec. 5.2.

The search for an improved fermionic encoding can be divided into two different scenarios. In the
first scenario, we are interested in keeping the locality and sparsity of both the Hamiltonian terms
and the stabilizer constraints as low as possible. To obtain this, we have to compromise in the total
number of qubits. In the second scenario, we are interested in keeping the total number of qubits as
low as possible, while allowing an increase in the locality and sparsity of the Hamiltonian terms and the
stabilizer constraints.

In this chapter, we will first discuss the different scenarios in more detail, and after that we will con-
struct the improved encoding for both scenarios. A formal proof of all properties of this improved en-
coding is given in chapter 9.

7.1. Two scenarios

As said before, the improved fermionic encoding depends on what one eventually wants to achieve. In
this thesis, we consider two different scenario’s:

1. Getting the locality and sparsity of the qubit Hamiltonian terms and of the stabilizer constraints to
be O(1) with a minimal pre-factor, while keeping the required number of qubits O(npoly(log(n)).
2. Increasing the locality and sparsity of the qubit Hamiltonian terms and stabilizer constraints for
the benefit of the required number of qubits. This scenario can be divided into two sub scenarios:

(a) Getting the required number of qubits to be O(n) at the expense of letting the locality of
the stabilizer constraints to superconstant, by direct application of the Freedman-Hastings
algorithm.

(b) Getting the required number of qubits to be O(npoly(log(n)) with a reduced pre-factor com-
pared to scenario 1.

36

7.2. The Vertex Coloring algorithm

37

Table 7.1 summarizes the results that we find for each scenario. Note that these are worst-case
bounds, the most interesting results of numerically applying this improved encoding are shown in chap-

ter 8.
VC with no overlap | Freedman-Hastings VC with small overlap
Locality qubit Hamiltonian terms o) o) O(poly(log(n)))
Sparsity qubit Hamiltonian terms o) o) O(poly(log(n)))
Locality stabilizer constraints o) O(n) o)
Sparsity stabilizer constraints o(1) O(poly(log(n))) O(poly(log(n)))
Number of qubits O(npoly(log(n))) O(n) O(npoly(log(n))) with a reduced pre-factor
Table 7.1: Bounds for the different properties of the improved fermionic encoding for each of the scenarios described in this

section.

In each scenario, the general improved fermionic encoding will be modified a little bit to match the
goals that we want to achieve. This consists of modifying the Vertex Coloring algorithm, as well as
applying different kinds of sewing methods.

7.2. The Vertex Coloring algorithm

In the improved fermionic encoding, we use a different kind of algorithm to set up the stacking- and
sewing process than the procedure described in sec. 5.3. In sec. 5.3, we sew only one cycle for each
layer, causing the need for ©(n?) qubits. We develop a Vertex Coloring algorithm which enables us
to sew multiple cycles in each layer, while also achieving constant locality and sparsity for both the
Hamiltonian terms and stabilizer constraints. This causes the bound for the required number of qubits
to drop to O(npolylog(n)) as we will show.

The idea behind the Vertex Coloring algorithm is the following:

1. For a given graph G, create a cycle basis using the algorithm of Freedman-Hastings.

2. Create a new graph G where the vertices correspond to the cycles in the obtained cycle basis for
G.

3. For every pair of vertices u,v € G, draw an edge between them if the corresponding cycles
overlap, which means that they share at least one vertex in the original graph G.

4. Now assign colors to each vertex in (in such a way that two vertices that share an edge do not
have the same color. In order to construct this coloring we create a partition R of the cycles in the
cycle basis obtained in step 1, using the property of the algorithm of Freedman-Hastings that every
cycle intersect polylogarithmically many cycles later in the basis. This partition is constructed such
that each subset R; only contains non-overlapping cycles, and we then assign the same color to
all vertices corresponding to cycles in the same subset R;.

5. Foreach subset R; make a copy of the original graph G and connect the layers with vertical edges
to obtain a graph G'.

6. In each layer of the graph G’, sew the cycles contained in the corresponding set R; to obtain only
constant-length cycles.

7. The final cycle basis consists of the small cycles obtained in step 7, together with the vertical
cycles created by the edges connecting the different layers of the graph G'.

To create the coloring and partition of step 4 and 5, we use the following algorithm [27]:

1. Start with the ordered cycle basis C' = [cy, ..., cy]| as obtained from the algorithm of Freedman-
Hastings.

2. Initialize R; = 0. Then while R # (), do:

7.2. The Vertex Coloring algorithm 38

(a) Enumerate C in reverse order, starting at the last cycle ¢y in C, to get cycles ¢; for j =
N,..., 1.

(b) If ¢; overlaps with any cycle in R;, set j = j — 1. Otherwise, add ¢; to R; and set j = j — 1.

(c) Remove the cycles in R; from R and seti =i+ 1.

3. Return the computed partition R = |J!_, R;.

The improved fermionic encoding then consists of using the Bravyi-Kitaev superfast encoding to map
the fermionic operators to Pauli operators as described in eq. 5.14, which creates a valid mapping to
a local and sparse qubit Hamiltonian when combined with the stabilizer constraints given in eq. 5.16.
Then we use the Vertex Coloring algorithm to create a new graph G’ which has the original graph G as
a induced subgraph and develop a cycle basis for this such that the stabilizer constraints also become
local and sparse.

Together with this, the Vertex Coloring algorithm in combination with the algorithm described in 1 - 3
enables us to use fewer layers than the algorithm described in sec. 5.3, such that the bound for the
number of qubits will drop to O(npoly log(n)) as we will show in chapter 9.

Depending on which of the two scenarios we consider, we can modify the Vertex Coloring to match
our goals. For scenario 1 where we are interested in keeping the locality and sparsity of the Hamiltonian
terms and the stabilizer constraints as low as possible, we will use the Vertex Coloring algorithm as
described above where no overlap is allowed between cycles that are sewed in the same layer. In this
way, the sparsity of the edges of each layer and the degree of the vertices in the graph G’ remain O(1),
but we compromise a bit in the number of qubits since we need more layers than in the case where we
admit some overlap.

This immediately introduces the modification needed for the second scenario, where we want to
keep the number of qubits as low as possible while still keeping the locality of the stabilizer constraints
O(1). For this scenario, we allow some overlap between the cycles sewed in the same layer, first on
only one vertex and after that on at most two or three vertices. As expected, this will enable us to use
even less layers in the stacking procedure and thus reducing the required number of qubits even further.

An important remark for this modification is that the average degree of the obtained graph G’ can get
to O(poly(log(n))) in the worst case, compared to O(1) in the case where we allow no overlap. This
is because it could be the case that one vertex in the graph is connected to O(poly(log(n))) cycles in
the cycle basis that are being sewed in the same layer, to which we will add O(poly(log(n))) edges in
the sewing process as shown in fig. 7.1. This increase in the average degree causes both the locality
and sparsity of the qubit Hamiltonian terms to be O(poly(log(n))) instead of O(1), since both depend
on the degree of the graph as explained in sec. 5.2.

Figure 7.1: A given vertex (gray) which is part of O(poly(log(n))) cycles and to which an edge is added for every cycle in the
sewing process (shown by the red lines). The black and red dotted lines respectively represent more cycles connected and
edges added to the given vertex.

This also causes the sparsity of the stabilizer constraints to be O(poly(log(n))) instead of O(1). This
is because the vertical edges between the different layers of the graph occur in the vertical cycles cre-
ated by the edges connected to the vertices of that vertical edge in each layer.

7.3. Different sewing methods 39

Besides modifying the Vertex Coloring for each of the two scenarios, we have also developed different
types of methods to sew up the cycles in each layer of the stacked graph G'.

7.3. Different sewing methods

In this thesis, we consider four different types of sewing methods:

1. Straight sewing.
2. Triangular sewing.
3. Straight sewing which obtains cycles of length at most 6, from now on called the straight-6 sewing.

4. Skew sewing.

In fig. 7.2 all sewing methods are shown when applied to a cycle of length 8 (and length 10 in fig.
7.2d). Note that these methods could also be applied to a cycle of odd length.

—@
L
(a) Straight sewing. (b) Triangular sewing.
—@—
® - -
(c) Straight-6 sewing applied to a cycle of length 8. (d) Straight-6 sewing applied to a cycle of length 10.

(e) Skew sewing

Figure 7.2: Different methods to sew a cycle.

In table 7.2 we summarize the properties of each sewing method. Here we let | denote the cycle
length. Furthermore, note that the locality of the stabilizer constraints is given by the maximum length

7.4. Combining everything 40

of the cycles in the cycle basis, and the locality and sparsity of the Hamiltonian terms are determined
by the degree of the vertices in the obtained graph G’. In the second row of table 7.2, we indicate the
increase in the degree of the vertices after adding edges in the sewing process, and thus we consider
the increase in the locality and sparsity of the qubit Hamiltonian terms here.

The proof of one these properties is shown in Appendix A.6, the rest can be proven in a similar way.

Straight sewing | Triangular sewing | Straight-6 sewing | Skew sewing
Locality stabilizer constraints 3or4 3 3,50r6 4
Locality/sparsity Hamiltonian terms +1 +1 or +2 +1 +1
Number of qubits (I even) . 1-3 |52 £2 1
Number of qubits (I odd) L3 1-3 |52 B3

Table 7.2: Properties of the different sewing methods.

We will use the properties shown in table 7.2 in the process of constructing an improved fermionic
encoding with these different types of sewing methods.

7.4. Combining everything

Now that we have discussed the possible modifications that we can apply to the Vertex Coloring algo-
rithm and the different possible sewing methods, we can combine everything to obtain a list of different
algorithms that we will test for both scenarios. The possible algorithms are the following:

1. Using the straight sewing where there is no overlap allowed between cycles that are being sewed
in the same layer in the Vertex Coloring algorithm.

Using the straight sewing where there is an overlap allowed on at most 1 vertex.

Using the straight sewing where there is an overlap allowed on at most 2 vertices.

Using the straight sewing where there is an overlap allowed on at most 3 vertices.

Using the triangular sewing where there is no overlap allowed between cycles in the same layer.
Using the skew sewing where there is no overlap allowed between cycles in the same layer.
Using the straight-6 sewing where there is an overlap allowed on at most 1 vertex.

Using the straight-6 sewing where there is an overlap allowed on at most 2 vertices.

Using the straight-6 sewing where there is an overlap allowed on at most 3 vertices.

© N Ok ®N

All of these algorithms are used to construct an improved cycle basis compared to the ones described
in chapter 5, where the cycle basis obtained from the algorithm of Freedman-Hastings is used as a
starting basis. Then this obtained cycle basis is used to improve the locality and sparsity of the stabilizer
constraints following from the Bravyi-Kitaev superfast encoding compared to using the algorithm of
Freedman-Hastings, and also reduce the number of qubits compared to the stacking- and sewing-
procedure described in sec. 5.3.

So the finally obtained improved fermionic encoding will consist of the Bravyi-Kitaev superfast en-
coding in combination with one of the algorithms shown above.

Numerical results for the improved
fermionic encoding

In this chapter, we discuss the results of numerically applying the improved fermionic encoding con-
structed in chapter 7 to the modified Erdos-Renyi graph corresponding to one spin-layer of the Fermi-
Hubbard model as described in sec. 5.5.1. Using the construction described in sec. 5.5.2, one could
also numerically apply the improved encoding to the graph corresponding to the sparse SYK Hamilto-
nians.

In this chapter we will first discuss the general results of the numerical implementation, after which
we will discuss the results for both scenarios described in sec. 7.1.

8.1. General results

In this section we show the general results after applying the different versions of the Vertex Coloring
algorithm together with the different sewing methods onto the modified Erdos-Renyi graph. In fig. 8.1
- 8.4 we respectively show the locality and sparsity of the stabilizer constraints, the qubit-to-mode ratio
and the average degree of the vertices in the obtained graph G’ for all different methods.

From fig. 8.1 and fig. 8.2 we see that we will have an improvement in respectively the locality and the
sparsity of the stabilizer constraints for all methods compared to the algorithm of Freedman-Hastings,
and that the normal stacking- and sewing-procedure described in sec. 5.3 respectively achieves the
second-to-lowest locality and the lowest sparsity of the stabilizer constraints together with some version
of the Vertex Coloring algorithm.

In fig. 8.3 we see that the reverse holds for the total number of qubits: after using the algorithm of
Freedman-Hastings we obtain the lowest qubit-to-mode ratio of O(1). When using the stacking- and
sewing-procedure described in sec. 5.3 we obtain a ratio of O(n?), which is the worst for all algorithms
considered.

And finally, in fig. 8.4 we see that the algorithm of Freedman-Hastings achieves the lowest average
degree of the vertices in the obtained graph G’ and thus the locality and sparsity of the qubit Hamiltonian
terms. This is because this algorithm does not modify the graph, causing the average degree to be
equal to the average degree of the original graph G. All other methods modify the graph G in such a
way that the average degree is increased.

Another important remark regarding fig. 8.4 is that it is hard to conclude whether we see the result
that the average degree of vertices in the obtained graph G’ can grow up to O(poly(log(n))) if we allow
some overlap in the Vertex Coloring algorithm. It could be the case that for example the average degree
of the graph obtained after allowing an overlap on 3 vertices could grow up to O(poly(log(n))), but that
cannot be concluded with certainty from the numerical results.

What we can conclude is that the average degrees for all methods are eventually somewhat concen-
trated within the same band. This is a positive result considering the locality and sparsity of the qubit

41

8.1. General results 42

Hamiltonian terms, because we see that we are able to reduce the number of qubits by allowing some
overlap, but the locality and sparsity of the Hamiltonian terms do not seem to increase too much on
average.

In sec. 8.2 and sec. 8.3 we discuss the numerical results in more detail for both scenarios and we
determine which method delivers the best results for that given scenario.
All other relevant plots that are not displayed in this chapter are placed in Appendix B.

141 Freedman-Hastings

----- Stacking and sewing

—e— VC straight sewing, no overlap
124 —+- VC straight sewing, 1 overlap
~w- \/C straight sewing, 2 overlap
—e— VC straight sewing, 3 overlap
--e-- VC triangular sewing, no overlap
—— VC skew sewing, no overlap

8 —+- VC straight-6 sewing, 1 overlap

»- VC straight-6 sewing, 2 overlap
61 /,VV
4,

—=— VC straight-6 sewing, 3 overlap

104

Maximum cycle length

D

0 50 100 150 200 250
Lattice size (n)

Figure 8.1: Locality of the stabilizer constraints for all different methods vs. the number of fermionic modes n.

164
Freedman-Hastings
w0 Al AL | Stacking and sewing
—e— VC straight sewing, no overlap
—+- VC straight sewing, 1 overlap
124 -~ VC straight sewing, 2 overlap
—e— VC straight sewing, 3 overlap
104 --»-- VC triangular sewing, no overlap
- —— VC skew sewing, no overlap
-‘é 5 -+ VC straight-6 sewing, 1 overlap
8 = VC straight-6 sewing, 2 overlap
w0 —s=— VC straight-6 sewing, 3 overlap
6,
PR E 2D 22 -l~0‘l‘ct‘:'-'X“.‘*-'I'.‘:‘"";“"""‘""‘l"""""':.'-""T%":'ﬂ'
| T ook 5 205000000
4 ‘?;/-
2,
0 50 100 150 200 250

Lattice size (n)

Figure 8.2: Sparsity of the stabilizer constraints for all different methods, vs. the number of fermionic modes n.

8.1. General results 43

801 -
/ - Freedman-Hastings

20 ,"’ P! ’,N\V‘,”’ ----- Stacking and sewing

/ A pes w4 —e— VC straight sewing, no overlap

/ 4 2 ¥ —+- VC straight sewing, 1 overlap
60 P v has - \C straight sewing, 2 overlap

,r'l #«N’” —e— VC straight sewing, 3 overlap
50 / ,'*\,4' --e-- VC triangular sewing, no overlap
! 4 —— VC skew sewing, no overlap

—+- VC straight-6 sewing, 1 overlap
- VC straight-6 sewing, 2 overlap
—=— VC straight-6 sewing, 3 overlap

40+

301

201

Vo Y
ye¥y ISR AR S 08 28 S TIwd

Number of edges divided by the lattice size n

D

0 50 100 150 200 250
Lattice size (n)

Figure 8.3: Number of edges divided by the number of fermionic modes n for all different methods, vs. the number of fermionic
modes n.

[ee]

S 4*‘”»”*‘”*’»04@“-«‘*“““«.“0—0. Freedman-Hastings
F N i e Stacking and sewing

—e— VC straight sewing, no overlap
—-- VC straight sewing, 1 overlap
- \/C straight sewing, 2 overlap
—e— VC straight sewing, 3 overlap
--e-- VC triangular sewing, no overlap
—— VC skew sewing, no overlap
—+- VC straight-6 sewing, 1 overlap
~-=- VC straight-6 sewing, 2 overlap
—=— VC straight-6 sewing, 3 overlap

~
-
4

o))

ey

Average degree of vertices in the obtained graph
w w

']

50 100 150 200 250
Lattice size (n)

o

Figure 8.4: Average degree of the vertices in the obtained graph G’ for all different methods, vs. the number of fermionic
modes n. Note that the locality and sparsity of the qubit Hamiltonian terms are determined by the average degree of the
vertices in G’.

8.2. Discussion for scenario 1: optimizing the locality and sparsity 44

8.2. Discussion for scenario 1: optimizing the locality and sparsity

In this scenario, we are interested in getting the locality and sparsity of both the Hamiltonian terms and
the stabilizer constraints as low as possible, while compromising in the total number of qubits.

Infig. 8.1 and fig. 8.2 it can be seen that the locality and sparsity of the stabilizer constraints are both
minimized when using the triangular sewing method where there is no overlap allowed in the Vertex
Coloring algorithm. In this case, the locality and sparsity of the stabilizer constraints are resp. equal to
3 and 4. Infig. 8.3 we can see that the triangular sewing methods has the second to worst total number
of qubits, so we see that we indeed have a trade off in terms of the number of qubits. However, looking
at fig. 8.4, we see that the triangular sewing method has the worst average degree of the obtained
graph G, causing the locality and sparsity of the qubit Hamiltonian to be the highest for all methods
considered.

If we look again at fig. 8.1 and fig. 8.2, we see that for example the straight sewing method where
there is an overlap allowed on at most 1 vertex, is the second best method for optimizing the locality
and sparsity of the stabilizer constraints. For this method, both the locality and sparsity of the stabilizer
constraints are equal to 4. In fig. 8.4 it can furthermore be seen that this method obtains a graph G’
with average degree lower than for the triangular sewing method.

In fig. 8.3 we see that this method uses a lower amount of qubits than the sewing methods where
we do not allow any overlap. We are not interested in keeping this number as low as possible in this
scenario, but since all the other results are similar between this method and the ones where we do not
allow any overlap, we can conclude that using the straight sewing method while allowing an overlap on
1 vertex in the Vertex Coloring algorithm, might be the best to consider in for scenario.

8.3. Discussion for scenario 2: optimizing the number of qubits

In this scenario, we want to keep the number of qubits as low as possible, while allowing an increase
in the locality and sparsity of the qubit Hamiltonian terms and the stabilizer constraints.

In fig. 8.3 we see that after the algorithm of Freedman-Hastings, the algorithm which combines the
straight or straight-6 sewing method with allowing an overlap on at most 3 vertices requires the lowest
amount of qubits. In fig. 8.4 we see that this method also obtains a graph G’ where the average degree
of the vertices is not increased too much compared to other methods.

From fig. 8.1 we know that the locality of the stabilizer constraints after using straight sewing is equal
to 4, where it is equal to 6 for straight-6 sewing. From fig. 8.2 it can however be seen that the sparsity
of the stabilizer constraints for these methods is the highest after the algorithm of Freedman-Hastings.
However, we still obtain an improvement in the sparsity of the stabilizer constraints compared to the
algorithm of Freedman-Hastings.

If we look at the second best options in terms of the number of qubits, we see from fig. 8.3 that
one could either choose the straight or straight-6 sewing method in combination with allowing a vertex
overlap on at most 2 vertices. Again the locality of the stabilizer constraints for these methods is resp.
equal to 4 and 6 and the sparsity of the stabilizer constraints is similar for both methods, but lower than
in the case where we allow overlap on at most 3 vertices. Finally, from fig. 8.4 we can conclude that
the average degree of the vertices in the obtained graph G’ might seem to be a little bit lower for the
straight-6 method compared to the straight sewing method.

So, if one does not care about the increase in sparsity of the stabilizer constraints, we conclude that
combining the straight or straight-6 sewing method with allowing an overlap on at most 3 vertices in the
Vertex Coloring algorithm is the best method to use for this scenario. If one is prepared to compromise
a little bit in the number of qubits, to bound the increase in the sparsity of the stabilizer constraints, we
conclude that combining the straight-6 sewing method with allowing an overlap on at most 2 vertices
is the best method.

Now that we have constructed an improved fermionic encoding for both scenarios, we will formally
prove all properties of this encoding in the next chapter.

Formal proof of the properties of the
improved fermionic encoding

We start with the proof of the most important property of the improved fermionic encoding, namely that
the number of qubits needed for the mapping is O(npoly(log(n))). For both versions of the Vertex Col-
oring, the same argument applies so we will only prove this once.

The total number of qubits consists of three terms, namely it is the sum of the number of edges in
all the layers of the graph, the number of vertical edges and the number of edges added in the sewing
process. We determine the bounds for all these terms separately:

1. # of edges in the layers = |E(G)| - # of layers.
2. # of vertical edges = |V (G)| - (# layers — 1).
3.
of sewing edges = total weight of the cycle basis of Freedman-Hastings - constant
= O(npoly(log(n))) - constant
= O(npoly(log(n))).

Here we used for the first equality that the number of sewing edges per cycle is equal to a constant
times the length of that cycle, and that the total weight of the cycle basis obtained from Freedman-
Hastings is O(npoly(log(n))) as has already been shown in sec. 5.4.

From this, we see that if we can prove that the number of layers needed to construct the graph G’ is
O(poly(log(n))), we obtain:

1. # of edges in the layers = |E(G)| - # of layers = O(npoly(log(n))).
2. # of vertical edges = |V (G)| - (# layers — 1) = O(npoly(log(n))).
3. # of sewing edges = O(npoly(log(n))).

And then the total number of qubits will be 3 - O(npoly(log(n))) = O(npoly(log(n))), which gives the
desired result’.

So we need to prove that we only need O(poly(log(n))) layers in the Vertex Coloring algorithm. Since
in each layer we sew all cycles that correspond to vertices with the same color, the number of layers
needed is equal to the number of different colors used in the Vertex Coloring algorithm. Recalling the
construction of the vertex coloring described in step 4, we see that this is equal to the number of sets
R; making up the partition R = | J;_, R;.

Thus we need to prove that the algorithm described in 1 - 3 obtains a partition R = Ule R;, such
that each R; contains non-overlapping cycles and that it terminates after at most O(poly(log(n))) steps.

"To be complete, it needs to be proven that all three bounds hold at the same time, since the results regarding the total number
of layers and the total weight of the cycle basis of Freedman-Hastings do not necessarily both hold at the same time. Using a
union bound, it can be proven that both results hold at the same time with probability €2(1).

45

46

This proof mostly uses results gathered from [27], and furthermore uses the property of the algorithm
of Freedman-Hastings that every cycle in the basis intersects only O(poly(log(n))) other cycles later in
the basis.

Proof.

By construction, we see that each R; only contains non-overlapping cycles. We will use induc-
tion to prove that after i partitions computed, every cycle ¢ remaining in R overlaps with at most
O(poly(log(n))) — i many cycles later in R. We assume the base case with ¢ = 0 holds. We will
show that the statement holds at step i + 1. At step i + 1, we have computed the partition R; ;. For
every cycle ¢; in R\ R;1, there must exists a ¢;; € R, 1 with j/ > j such that ¢; overlaps with ¢;..
Because if not, then ¢; would be included in R;1,. Therefore, the amount of cycles later in R overlap-
ping with ¢; must decrease by at least 1 after step ¢ + 1. This implies that after poly(log(n)) steps there
is only 1 cycle left that needs to be added to some set in the partition. So we see that the algorithm
terminates after poly(log(n)) + 1 = O(poly(log(n))) steps. O

Thus, we see that we need to add O(poly(log(n))) layers in the Vertex Coloring algorithm, implying
that the total number of qubits required for this algorithm is O(npoly(log(n))).

Now recall table 7.1 presenting the results of each scenario:

VC with no overlap | Freedman-Hastings VC with small overlap
Locality qubit Hamiltonian terms o) o) O(poly(log(n)))
Sparsity qubit Hamiltonian terms o) o) O(poly(log(n)))
Locality stabilizer constraints o(1) O(n) o(1)
Sparsity stabilizer constraints o) O(poly(log(n))) O(poly(log(n)))
Number of qubits O(npoly(log(n))) O(n) O(npoly(log(n))) with a reduced pre-factor

Table 9.1: Bounds for the different properties of the fermionic encoding for each of the scenarios described in sec. 7.1.

The results for the algorithm of Freedman-Hastings are proven in sec. 5.4 where we describe the
algorithm. Furthermore, the results for the locality and sparsity of the qubit Hamiltonian terms for the
Vertex Coloring algorithm without overlap is proven in sec. 5.2 where we describe the Bravyi-Kitaev
superfast encoding. For the version with overlap, these results are proven in sec. 7.2, together with its
results for the sparsity of the stabilizer constraints.

The results regarding the locality of the stabilizer constraints for both versions of the Vertex Coloring
algorithm, and the sparsity of the stabilizer constraints for the version without overlap, are proven in
sec. 5.3. This is because these results are similar to the results of the stacking- and sewing-procedure
from sec. 5.3. In the version of the Vertex Coloring algorithm without overlap, we sew multiple cycles in
each layer, but since those cycles do not overlap, we do not increase the average degree of the graph
(and thus the sparsity of the stabilizer constraints) any more than if we use the procedure from sec.
5.3. Also, since we still sew the cycles to obtain small cycles, the locality of the stabilizer constraints
for both versions of the Vertex Coloring algorithm will be the same as for the procedure from sec. 5.3.

With the proof regarding the number of qubits presented at the start of this chapter, we see that we
have proven all the results shown in table 9.1.

10

Discussion and further research

Previous research on fermionic encodings obtained a way to map fermionic modes onto qubits by
placing a qubit at every edge of the graph used in the encoding. This is done in the Bravyi-Kitaev
superfast encoding and it obtains local and sparse qubit Hamiltonian terms, which is needed to perform
a quantum simulation without using too many resources.

From this mapping, certain stabilizer constraints arise which are used for the quantum simulation. To
further minimally strain the quantum computer, these stabilizer constraints should also be made local
and sparse by modifying the graph used in the encoding and constructing a cycle basis for it. Further-
more, this should all be done while keeping the required number of qubits as low as possible.

Previous developed algorithms for constructing such a cycle basis, are a stacking- and sewing pro-
cedure of the graph and the algorithm developed by Freedman-Hastings. They obtained respectively
local and sparse stabilizer constraints while using O(n?) qubits, and a number of qubits scaling as O(n)
but a locality and sparsity of the stabilizer constraints respectively scaling as O(n) and O(poly(log(n))).
So neither of them exhibit all the desired properties of a fermionic encoding. This gave rise to the
research question of this thesis:

How to obtain a fermionic encoding from a local and sparse fermionic Hamiltonian, to a local
and sparse qubit Hamiltonian, while minimizing the required number of qubits?

In this thesis, we have developed a new algorithm to modify the graph used in the encoding and to
construct a cycle basis for it. This algorithm combines properties of the stacking- and sewing-procedure
and the algorithm developed by Freedman-Hastings, together with a newly developed Vertex Coloring
algorithm which enables us to sew multiple cycles in each layer of the stacked graph. We use the
Bravyi-Kitaev superfast encoding and govern the locality and sparsity of the stabilizer constraints that
arise from this with the constructed cycle basis.

In doing so, we have obtained a locality and sparsity of the qubit Hamiltonian terms and the stabilizer
constraints scaling as O(1), while keeping the required number of qubits O(npoly(log(n))). We also
presented a scenario in which we numerically obtained an even further reduced number of qubits, still
O(npoly(log(n))) but with a reduced pre-factor compared to the first scenario. In this second scenario,
we still obtain constant locality of the stabilizer constraints, and the locality and sparsity of the qubit
Hamiltonian terms and sparsity of the stabilizer constraints then become O(poly(log(n))).

We see that these results form an improvement to the results of using the Bravyi-Kitaev superfast
encoding in combination with the original stacking- and sewing-procedure or the algorithm of Freedman-
Hastings.

We have furthermore shown how to apply this improved fermionic encoding to graphs correspond-
ing to the Fermi-Hubbard model and sparse SYK Hamiltonians, and we have discussed the numerical
implementation of the algorithms considered in this thesis to both types of graphs.

47

48

So, we conclude that the fermionic encoding constructed in this thesis provides an improvement
compared to other known encodings in the sense of preserving the locality and sparsity of the qubit
Hamiltonian terms and the stabilizer constraints following from the Bravyi-Kitaev superfast encoding,
while keeping the required number of qubits as low as possible. This encoding can be used to simulate
certain fermionic systems on a quantum computer which has limited resources.

Possible future research can be done about further increasing the vertex overlap between the cycles
that are being sewed in the same layer to investigate whether it is possible to achieve constant locality
and sparsity of the qubit Hamiltonian terms and stabilizer constraints while keeping the total number of
qubits O(n), or O(npoly(log(n))) with an even further reduced pre-factor than achieved in this thesis.
Furthermore, one can think of other ways to sew the cycles which will have different properties regarding
the locality of the qubit Hamiltonian terms and stabilizer constraints. This may be used to achieve
alternative goals in quantum simulation than those discussed in this thesis.

A final option for follow-up research could be to investigate whether the Decongestion Lemma of
Freedman-Hastings still holds if the expected degree of the graph is constant, instead of the maximum
degree. If that would be true, then it would not be needed to artificially modify the graph to bound the
degree of all vertices below some threshold value. Some thinking about this has been done throughout
this research, but no final conclusion has been drawn yet.

(1]

(2]

(3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Bibliography

P. Sutter, What is the Standard Model, the subatomic physics theory that has been tested more
than any other? Sep. 2022. [Online]. Available: https://www.livescience.com/the-standard-
model.

M. Nielsen and |. Chuang, Quantum Computation and Quantum Information, 10th ed. Cambridge,
UK: Cambridge University Press, 2010, ch. 2.

J. Schneider and |. Smalley, What is a qubit? Feb. 2024. [Online]. Available: https://wuw.ibm.
com/think/topics/qubit.

C. Derby, “Compact fermion to qubit mappings for quantum simulation,” Ph.D. dissertation, Uni-
versity College London, London, United Kingdom, 2022.

K. Setia, S. Bravyi, A. Mezzacapo, and J. D. Whitfield, “Superfast encodings for fermionic quan-
tum simulation,” Phys. Rev. Res., vol. 1, p. 033033, 3 Oct. 2019. DOI: 10.1103/PhysRevResea
rch.1.033033. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevResearch.1.
033033.

Y. Herasymenko, A. Anshu, B. Terhal, and J. Helsen, Fermionic hamiltonians without trivial low-
energy states, 2023. arXiv: 2307 . 13730 [quant-ph]. [Online]. Available: https://arxiv.org/
abs/2307.13730.

S. B. Bravyi and A. Y. Kitaev, “Fermionic quantum computation,” Annals of Physics, vol. 298,
no. 1, pp. 210-226, 2002, ISSN: 0003-4916. DOI: https://doi.org/10.1006/aphy.2002.6254.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S000349160296
2548.

L. Clinton, J. Bausch, and T. Cubitt, “Hamiltonian simulation algorithms for near-term quantum
hardware,” Nature Communications, vol. 12, no. 1, Aug. 2021, ISSN: 2041-1723. DOI: 10.1038/
s41467-021-25196-0. [Online]. Available: http://dx.doi.org/10.1038/s41467-021-25196-0

V. Havli¢ek, M. Troyer, and J. D. Whitfield, “Operator locality in the quantum simulation of fermionic
models,” Phys. Rev. A, vol. 95, p. 032332, 3 Mar. 2017. DOI: 10.1103/PhysRevA . 95.032332.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.95.032332.

C. Derby, J. Klassen, J. Bausch, and T. Cubitt, “Compact fermion to qubit mappings,” Phys. Rev.
B, vol. 104, p. 035118, 3 Jul. 2021. DOI: 10.1103/PhysRevB. 104 .035118. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.104.035118.

C. Derby and J. Klassen, A compact fermion to qubit mapping part 2: Alternative lattice geome-
tries, 2021. arXiv: 2101.10735 [quant-ph]. [Online]. Available: https://arxiv.org/abs/2101.
10735.

M. Freedman and M. B. Hastings, Building manifolds from quantum codes, 2021. arXiv: 2012.
02249 [math.DG]. [Online]. Available: https://arxiv.org/abs/2012.02249.

Y. O. and, “Indistinguishable particles in quantum mechanics: An introduction,” Contemporary
Physics, vol. 46, no. 6, pp. 437—448, 2005. DOI: 10.1080/00107510500361274. eprint: https:
//doi.org/10.1080/00107510500361274. [Online]. Available: https://doi.org/10.1080/
00107510500361274.

D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics. Cambridge University
Press, Aug. 2018, ch. 5.1.1.

D. Gijswijt, “The power of shaking hands,” Delft University of Technology, Tech. Rep. [Online].
Available: https://diamhomes.ewi.tudelft.nl/~dgijswijt/papers/handshake.pdf.

M. P. Radcliffe, Cycle bases, Lecture Notes, 2018. [Online]. Available: https://www.math.cmu.
edu/~mradclif/teaching/241F18/CycleBases.pdf.

49

https://www.livescience.com/the-standard-model
https://www.livescience.com/the-standard-model
https://www.ibm.com/think/topics/qubit
https://www.ibm.com/think/topics/qubit
https://doi.org/10.1103/PhysRevResearch.1.033033
https://doi.org/10.1103/PhysRevResearch.1.033033
https://link.aps.org/doi/10.1103/PhysRevResearch.1.033033
https://link.aps.org/doi/10.1103/PhysRevResearch.1.033033
https://arxiv.org/abs/2307.13730
https://arxiv.org/abs/2307.13730
https://arxiv.org/abs/2307.13730
https://doi.org/https://doi.org/10.1006/aphy.2002.6254
https://www.sciencedirect.com/science/article/pii/S0003491602962548
https://www.sciencedirect.com/science/article/pii/S0003491602962548
https://doi.org/10.1038/s41467-021-25196-0
https://doi.org/10.1038/s41467-021-25196-0
http://dx.doi.org/10.1038/s41467-021-25196-0
https://doi.org/10.1103/PhysRevA.95.032332
https://link.aps.org/doi/10.1103/PhysRevA.95.032332
https://doi.org/10.1103/PhysRevB.104.035118
https://link.aps.org/doi/10.1103/PhysRevB.104.035118
https://arxiv.org/abs/2101.10735
https://arxiv.org/abs/2101.10735
https://arxiv.org/abs/2101.10735
https://arxiv.org/abs/2012.02249
https://arxiv.org/abs/2012.02249
https://arxiv.org/abs/2012.02249
https://doi.org/10.1080/00107510500361274
https://doi.org/10.1080/00107510500361274
https://doi.org/10.1080/00107510500361274
https://doi.org/10.1080/00107510500361274
https://doi.org/10.1080/00107510500361274
https://diamhomes.ewi.tudelft.nl/~dgijswijt/papers/handshake.pdf
https://www.math.cmu.edu/~mradclif/teaching/241F18/CycleBases.pdf
https://www.math.cmu.edu/~mradclif/teaching/241F18/CycleBases.pdf

Bibliography 50

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

C. Liebchen and R. Rizzi, “Classes of cycle bases,” Discrete Applied Mathematics, vol. 155, no. 3,
pp. 337-355, 2007, ISSN: 0166-218X. DOI: https://doi.org/10.1016/j.dam.2006.06.007.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0166218X0600
3052.

GeeksforGeeks, Depth first search or DFS for a graph, Mar. 2025. [Online]. Available: https:
//wuw.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/.

GeeksforGeeks, Time and space complexity of DFS and BFS algorithm, Mar. 2024. [Online].
Available: https://www.geeksforgeeks.org/time-and-space-complexity-of-dfs-and-bfs-
algorithm/.

J. D. Horton, “A polynomial-time algorithm to find the shortest cycle basis of a graph,” SIAM
Journal on Computing, vol. 16, no. 2, pp. 358-366, 1987. DOI: 10.1137/0216026. eprint: https:
//doi.org/10.1137/0216026. [Online]. Available: https://doi.org/10.1137/0216026.

GeeksforGeeks, Erdos Renyl Model (for generating Random Graphs), Jul. 2022. [Online]. Avail-
able: https://wuw.geeksforgeeks.org/erdos-renyl-model-generating-random-graphs/

G. A. Margulis, “Explicit constructions of graphs without short cycles and low density codes,”
Combinatorica, vol. 2, no. 1, pp. 71-78, Mar. 1982, ISSN: 1439-6912. DOI: https://doi.org/
10.1007/BF02579283.

D. Gijswijt, “Algebra 1,” Delft University of Technology, Tech. Rep., 2021.

T. Kavitha, C. Liebchen, K. Mehlhorn, et al., “Cycle bases in graphs characterization, algorithms,
complexity, and applications,” Computer Science Review, vol. 3, no. 4, pp. 199-243, 2009, ISSN:
1574-0137. DOI: https://doi.org/10.1016/j . cosrev.2009.08.001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013709000483.

Y. Huang, “Expected values of discrete random variables,” University of Chicago, Tech. Rep.
[Online]. Available: https://www.stat.uchicago.edu/~yibi/teaching/stat234/2022/L04.
pdf.

P. Orman, H. Gharibyan, and J. Preskill, Quantum chaos in the sparse syk model, 2024. arXiv:
2403.13884 [hep-th]. [Online]. Available: https://arxiv.org/abs/2403.13884.

Z. He, A. Cowtan, D. J. Williamson, and T. J. Yoder, Extractors: Qldpc architectures for efficient
pauli-based computation, 2025. arXiv: 2503 . 10390 [quant-ph]. [Online]. Available: https://
arxiv.org/abs/2503.10390.

K. Aardal, L. van lersel, and R. Janssen, Optimization: Lecture Notes AM2020 / IN4344. 2023,
ch. 10, Faculty of Electrical Engineering, Mathematics, and Computer Science.

https://doi.org/https://doi.org/10.1016/j.dam.2006.06.007
https://www.sciencedirect.com/science/article/pii/S0166218X06003052
https://www.sciencedirect.com/science/article/pii/S0166218X06003052
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/time-and-space-complexity-of-dfs-and-bfs-algorithm/
https://www.geeksforgeeks.org/time-and-space-complexity-of-dfs-and-bfs-algorithm/
https://doi.org/10.1137/0216026
https://doi.org/10.1137/0216026
https://doi.org/10.1137/0216026
https://doi.org/10.1137/0216026
https://www.geeksforgeeks.org/erdos-renyl-model-generating-random-graphs/
https://doi.org/https://doi.org/10.1007/BF02579283
https://doi.org/https://doi.org/10.1007/BF02579283
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.08.001
https://www.sciencedirect.com/science/article/pii/S1574013709000483
https://www.stat.uchicago.edu/~yibi/teaching/stat234/2022/L04.pdf
https://www.stat.uchicago.edu/~yibi/teaching/stat234/2022/L04.pdf
https://arxiv.org/abs/2403.13884
https://arxiv.org/abs/2403.13884
https://arxiv.org/abs/2503.10390
https://arxiv.org/abs/2503.10390
https://arxiv.org/abs/2503.10390

Derivations and examples

A.l. Example using the Majorana operators

In this section, we provide an example using the Majorana operators defined in 2.12.
Suppose we have an operator K = i" [[scpn, €s(1)Cs(2) - - - €s(q)» Where m and n are some integers
[S|=q

q even
and cg(;) is a Majorana operator working on the ith element of our set S. The question is now what value

of m do we need if we want K to be Hermitian, so Kt = K. We first write out K using the properties

described in 2.13: '

Kf= " [esweseesw
SCin),

[S|=q,
q even

_ \m T T T T
= (0™ JT 5501 e csa) (A1)
SClnl,
|S|=q,
q even
= ()" [eswese-v - es@esa
SCn],
IS|=aq,
q even
Now we need to swap the Majoranas to get the original K operator. Note that cg(,) needs to swap ¢ — 1
places to get to its original position, cg(,_1) needs g —2 swaps, cg(,—2) needs ¢ — 3 swaps, et cetera. So
in total we need ZZ;; k swaps to get all the Majoranas to their original position. Using the well-known
formula >~} k = w we see that we need ZZ; k= @ swaps, so we pick up @ minus
signs in the process. Thus we get:

KT = (—i)"(=1)2@= 72 T esayes) - esw@

“ | o (A.2)
:Zm(_l)m-i-q(q—)/ H Cs(1)Cs(2) " €S (q)
5C[n],

[S|=q,
q even

To obtain KT = K, we then note that we need m + @ = 2] forsome [= 0,+1,+2,.... We can

reduce this modulo 2, and then we finally see that we need m = % mod 2 for K to be a Hermitian
operator.

51

A.2. Commutation relations in the Bravyi-Kitaev superfast encoding 52

A 2. Commutation relations in the Bravyi-Kitaev superfast encod-
ing
Here the derivation is shown of the commutation relations described in eq. 5.8-5.13:
BJT = (—icgjcaji1) = icoji100; = —icajcaji1 = By,
A;k = (—icgjcon)’ = icopca; = —icajear = Ajy,
Bj = (—icgjcjq1)(—iciC241) = CojCojCojp1C2541 = 1,
A?k = (—icgjcor)(—lcajcar) = cojcajconcor = I,
BBy, = (—icgjcaji1)(—iCarCok+1) = CopCort1C2iC2j41 = BrBj,
Aji = —icgjcan = icorcaj = —Agj,
AijBy, = (—icgico))(—icancont1) = (—icancopt1)(—icaicoj) = BrAij, i,j #k,
Ay By = (—icarcaj)(—icapcory1) = —(—iconCort1)(—iconca;) = —BrArj, 1=k, j#k,

A By, = (—icgicar) (—icarCar+1)
—(—icancart1)(—tcaicar)
- _BkAik:7 v 7& k?] = k7

A Ap = (—icgica;)(—icarcar)
= (—icopca)(—icaicoy) = AAij, 4,5 # k1,
1% Aj A Akt A A i = i(—icaica;) (—icajcor) (—icarca) (—icaicom) (—icameai)
= i - (—i)®caiCa; Ca;jCokCakCoICaICOMCom Cai
:CQZ"I'I'I'I'C% :I, fors:5,V:{i,j,k,l,m}.
(A.3)
For clarity, all other cases of 5.12 are omitted, but they follow in a similar way.

For completeness, we also show the derivation of the same commutation relations, but now for the
encoded generators 5.14. For this derivation, keep in mind that Pauli operators commute if they work

A.2. Commutation relations in the Bravyi-Kitaev superfast encoding 53

on different qubits:

i
Bi={ JI zw| = II 2z=5.

k:(j,k)EE k:(j,k)EE

i
A=lenXn I Zo I 2w
p:(5,p)<; (j.k) q:(k,q) <k (k,7)
= Eijjk; H Zj H qu = Ajkv
p:(4,p)<; (4;k) q:(k,q)<x(k,j)

B= JI 2 Il Zi| =1, since 2° =1,

k:(j,k)EE k:(j,k)EE

ABo=lewXie 11 Zo 11 %) (X 11 Zo 11 2w =1
p:(4,p)<; (4,k) q:(k,q) < (k,j) p:(3,p)<;(4,k) q:(k,q) <k (k.j)

since X2 = Z% = I, and X and Z commute since they work on different qubits,

H Zja H Zka = Bkij

a:(j,a)EE a:(k,a)eE

S
[ssf}
o

I

by a similar reasoning,

Ap=enXpe Il Zw [l %2

p:(4,p)<; (4, k) q:(k,q)<w(k,j)
=X Il 2w II Zd]=-4u
p:(k,p)<w(k,5) a:(5,9)<; (4;k)
AZ‘J‘B]C = Einij H Zip H qu H Zkl
p:(4,p)<i(4,5) q:(5,a)<;(4,1) L(k,)EE

= H Zra | €5 X5 H Zip H Ziq :BkAij7 i,j # k,

l:(k,l)eEE p:(4,p)<i(4,5) q:(5,9)<; (5,%)

since if k is not a neighbour of i and j, this follows by independence of the Pauli operators.
And if k is a neighbour of i and j, then we get a term of for example Z;,Z;, = I,

ApiBi = | exj X H Zp H Ziq H Z1

p:(k,p) <k (k.j) ¢:(4,9) <5 (4,k) L(kDeE

=— H Z | €rj Xkj H Zp H Zjg | = BrAyj, i=k,j#k,
l:(kl)eE pi(k,p)<i(k.j) q:(4,9)<; (4,k)

since Z anti-commutes with itself when acting on the same qubit,

AijAkl = Ginij H Zip H qu Elekl H ka H Zlq

p:(4,p) <4 (3,k) q:(4,9)<; (4,%) pi(k,p) < (k) q:(l,9)<i(L,k)
= | exXn H Zip H Zy, €ij Xij H Zip H Zjg | = AnAi;.
p:(k,p) <k (k,l) q:(l,g)<i(L,k) p:(1,p)<i(i,k) q:(5,9)<; (4,9)

(A.4)

A.3. Horton's algorithm 54

A.3. Horton's algorithm

In this section, an example of applying Horton’s algorithm is given. Before giving the actual example,
first Dijkstra’s and the Greedy algorithms are discussed, since they are used in Horton’s algorithm.

A.3.1. Dijkstra's algorithm

Dijkstra’s algorithm for a graph G = (V, E) is an algorithm to find a shortest path in a graph between two
points s, ¢ € V [28]. In this algorithm, p(u) is the length of the shortest path from s to « for some v € V,
and b is the weight of an edge (throughout this paper we use b = 1). The step-by-step formulation of
the algorithm is then as follows:

Set W = {s}, where s is the source node.

Set p(s) = 0.

Set p(u) = by, forall (s,u) € E such thatu € V' \ {s}.
For all w € V' \ {s} such that (s,u) ¢ E, set bs,, = 0.
While VAW # {), do the following:

arowbd =

(a) Find the node u € V' \ W with the smallest p(u).

(b) Add u to the set V.

(c) For each neighbour v € V' \ W such that (u,v) € F, update the shortest known distance:
p(v) == min(p(v), p(u) + buv)

6. When VAW = 0, return p(t), the shortest path distance from s to ¢.
A.3.2. Example of Horton's algorithm

For the example, we consider the graph given in fig. A.1, where the weights of all edges are set to 1.

3

1

Figure A.1: The graph which will be used as an example of applying Horton’s algorithm.

Since all weights are equal to one, applying Dijkstra’s algorithm to this graph to find a shortest path
from node 2 to 4 for example is easy, we then get the path 2-3-4 or 2-1-4. After applying the first step
of Horton’s algorithm (1), we get the set of cycles displayed in fig. A.2a. We see that some cycles are
displayed more than once, so after removing all duplicates and ordering the cycles by weight, we get
the set of cycles given in fig. A.2b.

We denote these cycles respectively by Cy, Cs and Cs5. We now apply step 3 of Horton’s algorithm
to these cycles. We obtain the following cycle-edge incidence matrix:

[(1L2) (1.3) (L4) (23) (3,4)
Ci| 1 r 0 1 0
Cy| 0 1 10 1
Cs| 1 0 1 1 1

A.3. Horton's algorithm 55

3 3
3 3 5 2
2
; 4
4 1
1 1 3
3 3 3
2 2
4
" 4 1 3 3 3
1
1 1 > 2
3
3
2
2
4 4 1 4
; 4 1 1 1

(a) All cycles obtained after applying the first three steps of Horton’s (b) All distinct cycles, ordered by weight, obtained from the first three
algorithm, using the graph from fig. A.1. steps of Horton’s algorithm.

Figure A.2: Cycles obtained after applying the first three steps of Horton’s algorithm.

We see that the weights of the rows (and thus of the cycles) are respectively equal to 3, 3 and 4. So
we will process the cycles in this order. Since we start with an empty basis, we add the cycle C, to the
basis. After this, we move on to cycle C5. Using Gaussian elimination, we see that this cycle is linearly
independent from C in the cycle-edge incidence matrix, so we add it to the basis. Doing the same
for cycle C5, we see that this cycle is not linearly independent from the cycles which are already in the

basis, so we do not add this cycle to the basis (note that we are working modulo 2 since we consider
a 0-1 matrix here).

So we obtain a final cycle basis as shown in fig. A.3.

Figure A.3: The cycle basis obtained after applying all steps from Horton’s algorithm.

A.4. Example of the algorithm of Freedman-Hastings 56

A.4. Example of the algorithm of Freedman-Hastings

This section provides a visual example of the algorithm described in the proof of the Freedman-Hastings
Decongestion Lemma in 5.4.1. The example is displayed in fig. A.4.

In each step, the edge, vertex or cycle that we consider (depending on in which of the three cases
we are) is marked red, and the result of removing that vertex/edge and/or replacing it with another edge
is given after the right arrow. When we are in step three of the algorithm, the edge that we will remove
from the cycle is pointed out also by an arrow.

The resulting cycle basis C' is shown in the bottom right part.

In the last step shown in fig. A.4c, we use the last part of step 2B of the algorithm to replace the left

edge between nodes 3 and 9 with the original edges (2, 3) and (2, 9) that we removed in step 4 of the
example, before adding the cycle to the cycle basis.

A.5. Derivations for representing the Fermi-Hubbard model on a
graph

In this section we first present the derivations of the statements made in sec. 5.5.1 about representing
the Fermi-Hubbard model on a graph.

The first thing that we need to prove is that we can write:

1)
n; = 5([— ZCijlcQj). (A5)

To do this, remember the definition of the Majorana operators givenin eq. 2.12 and the anti-commutation

relations of the fermionic creation and annihilation operators given in eq. 2.8. We now present the
derivation:

t
1 . 1 X aj; — @;
5 (I —iezj_1c25) = 5 (1— i(a; + a;)ﬁ)
1 i i
=3 (I_ (a; +aj)(a; —]))
1
=5 (I - a? + ajﬁa; - a;r-aj + (a;-)Q)
1 (A.6)
=3 (I—I— aja;(- + aja; — I)
1
= 5 (24])
= aja;-
=n;.
The second thing that we must show is that we can write:
al ap, +al a; :—z(c ; + coj)
j,0%k,0 k,o%i,o 9 2k,0C2j—1,0 C25,0C2k—1,0
(A.7)

i
= 5Aiko(Bio = Bro)-

A5, Derivations for representing the Fermi-Hubbard model on a graph 57

(a) Steps 1-3 of the algorithm. (b) Steps 4-7 of the algorithm.

S 8 3 3
4 4
> 6 — 6 c O1 4 6 4 6
9 9
3 3 Cc1
. 3 c2 C3
Cé: = , 4 s
_______________________________________ I S c4 c5
9
(c) Steps 8-10 of the algorithm. (d) Steps 11-14 of the algorithm.

Figure A.4: Example of the algorithm described in the proof of the Freedman-Hastings Decongestion Lemma given in 5.4.1.

A.6. Proof of the properties of the different sewing methods 58

We will derive both equalities separately, starting with the second equality:

) 1 .)
§Ajk,a(Bj,a —By,) = 52iC2k (—icgj—1C2j + icok—1C2k)
i
= 502]‘021@ (—coj—1025 + cop—1C2k)
i
=3 (—cajcarcaj—1C25 + C2jCokCar—1Cak)
; (A.8)
= 5 (C2j02k02j02j—1 - 02j02k02k02k—1)
i
=5 (—cojC25CoKC25—1 — C25C2kCokC2k—1)
i
=73 (cancaj—1 + cajcop—1) .
Now we show that this is equal to ala; + aja;:
~ L (eonens 1+ caicon) = — [(ax —al) (a; +at) + (a; — af Lol
9 C2kC25—1 C25C2k—1) = Al ag ak a; aj a; aj ak ak
1 -
= 75 axa; + aka; — a,taj — aLa; + ajar + aja,TC — a;ak — a;aﬂ
1 -
=3 —ajar — a;ak + ajaL + a;az + ajar + ajaL - a}ak - a}a;;] (A.9)
1 -
=-3 _—2a§ak + Qajaﬂ
_ I
= a;ak +aa;.

A.6. Proof of the properties of the different sewing methods

In this section, we provide the proof of one of the properties shown in table 7.2 displaying the prop-
erties of the different sewing methods. The other properties shown in this table can be proven in a
similar way. The properties regarding the locality of the Hamiltonian terms and stabilizer constraints
are straightforward to see when looking at the image illustrating the sewing method, so we will prove
the relation between the number of qubits and the cycle length I. We will prove these results for the
straight sewing method.

We illustrate the straight sewing method once more in fig. A.5, now for both a cycle with even and odd
length [.

(a) Even length [= 8. (b) Odd length I = 7.

Figure A.5: Straight sewing for a cycle with even length [(left) and odd length [(right). The blue edges are the edges added in
the sewing process.

Note that the number of qubits added in the sewing process is equal to the number of edges added.
Now, if the length [is even, then we determine the number of edges that need to be added by first
removing the most left and most right vertices from the cycle. Then there are [— 2 vertices remaining.
We add an edge between every pair of vertices left, so the number of edges added is equal to 1_72

If [is odd, then we first remove the most left vertex and the two most right vertices. There are then
| — 3 vertices remaining, and we again add an edge between every pair of vertices left, so we add 52
edges in this case.

Relevant plots

In this chapter we show all other relevant plots that are not previously showed in this thesis. In sec. B.1
we show the locality and sparsity of the cycle basis obtained by using among others Horton’s algorithm.

In the rest of this chapter, we show the relevant plots for the different methods considered in chapter
8 that are not already shown there.

B.1. Horton's algorithm applied to the Erdos-Renyi graph

In fig. B.1 we show the locality and sparsity for the cycle basis obtained by among others Horton’s
algorithm, applied to the Erdos-Renyi graph described in sec. 3.2.

40 100

— log(n) { — log(n)~2
Y, —n i n
35 - Spanning tree + Spanning tree
/ -=~ Stacked graphs ," -=- Stacked graphs
/ Freedman-Hastings 80 ,/' Freedman-Hastings
30 / ————— Horton y Horton
25
60
z 2
- w
T 20 ©
o o
-)

-

v
N
=)

10

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Lattice size (n) Lattice size (n)

Figure B.1: Locality (left) and sparsity (right) of the cycle basis obtained by among others Horton’s algorithm, applied to the
Erdos-Renyi graph. From the locality plot, we can conclude that it seems to be true that there exists at least one cycle with
length at least O(log(n)).

B.2. Straight sewing

B.2.1. No vertex overlap

59

B.2. Straight sewing

60

I"\\
25000 1
I".‘
a'-’
(%]
‘% 200004 o
3 A
N
[J] -
o e
2 150001 ? 4
‘G) 4
- p—
<
'© 100004 &
.
¢ -
'/
50001 i
P
L
y
rd
ol £
0 10000 20000 30000 40000

Lattice size (nlog(n)~3)

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected
number of times the algorithm constructs a cycle C containing a

descendant of the edge.

12000

10000

o @
=3 o
=] =3
=3 =3

Number of edges
5
8
8

20001 ,.

0 10000

20000 30000
Lattice size (nlog(n)~3)

40000

(c) Number of edges in the obtained graph G’. In the final fermionic
encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.

7000

6000

5
=3
=3
=3

Number of cycles
() B
8 S
8 S
S S

2000

1000 1

250

50 100 150 200

Lattice size (n)

(b) Size of the obtained cycle basis. The size is equal to the number

3.975

3.950

3.925

3.900

3.875

Average cycle length
8
3

3.825

3.800

v
7
I
/
’

I
/

f

1
i
1
i
)
H
i
i
i
I
]
i
|
i
i
I
I
i
1
|
i
I
]
|
|
|
|
i

of cycles in the cycle basis.

B]
i
o e
e~

—

200 250

0

50 100 150
Lattice size (n)

(d) The average length of all cycles in the obtained cycle basis.

Figure B.2: Properties of the fermionic encoding after combining the straight sewing method with allowing no overlap between
cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

B.2. Straight sewing

61

B.2.2. Overlap on at most 1 vertex

17500 |
g
15000 1 /o
A ,—"{
/ “\/

2 125004 A

(%) -

8 laih

@ 10000

S 5

9 o

y

-

© 7500 o

£ o

) ~

9] 1 &

£ so00 "

y
~
A
2500 o
"'
/
s
ol 7
‘ 10000 20000 30000 40000

Lattice size (nlog(n)~3)

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected
number of times the algorithm constructs a cycle C containing a

descendant of the edge.

/
4000 1 ~
/
P
;
/
"‘
wn ’.
© 30001 .t
] '
/
> -
© 7
6 N
@ &
2 2000 4
£ Vel
=] =
=z P
/
1000 1 P
l,’
4‘/
—‘/'
0l oo
0 50 100 150 200 250
Lattice size (n)

(b) Size of the obtained cycle basis. The size is equal to the number
of cycles in the cycle basis.

7000 t
Lt 3.950
/
/
60001 Ao
AV 3.925
AV 2
0 =)
%sooo— s o
isi & 2 3.900
o 4)
« 40001 — S
°)
g s o 3875
30001 7 <)
£ g @©
S 7~ .
= Y ¢ 3850
2000 # 4
'1,
10001 ‘/ 3.825
0 3.800
10000 20000 30000 40000

Lattice size (nlog(n)~3)

(c) Number of edges in the obtained graph G’. In the final fermionic
encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.

Figure B.3: Properties of the fermionic encoding after combining the straight sewing method with allowing an overlap on at
most 1 vertex between cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

o
7
/
’
?
1
1
1
n
r
i
i
]
!
I
1
]
i
I
i
i
+
i
i
]
i
I
i
I
I
i
i

-
eaga A N -

‘J-‘,.'r"'-(
PR o

200 250

0

50

100 150
Lattice size (n)

(d) The average length of all cycles in the obtained cycle basis.

B.2. Straight sewing

62

B.2.3. Overlap on at most 2 vertices

,’. i’ \‘ ’
4 PN
8000 S 20004 / 4
,/\‘,’ ')-l'

) - o~
a2) /
Q 60001 paor” % 15004 FaNT

[} - > J
© o o e

9 L 5 v

s . a 5 &

S 4000+ rad - 1000 &~

= . IS 4

=) 7 5 &

&) e = &

= - s

2000 ,,,/' 500 ,-’
/ »
1'. ,"
Pl y
1' ""4
04 / 04 P
0 10000 20000 30000 40000 0 50 100 150 200 250
Lattice size (nlog(n)~3) Lattice size (n)
(b) Size of the obtained cycle basis. The size is equal to the number
of cycles in the cycle basis.

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected
number of times the algorithm constructs a cycle C containing a

descendant of the edge.

4000
3500 1
A,
LN

3000
~

N
a
o
S
X

Number of edges

= N

(% o

3 8

8 s

v

H

N

1000 1
~
500
-

30000

40000

0 10000 20000
Lattice size (nlog(n)~3)

(c) Number of edges in the obtained graph G’. In the final fermionic
encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.

B L
S

',_A,,‘..»-*~’
=

w
o

Average cycle length
w
'S

w
N}

3.0
200 250

0 50 100 150
Lattice size (n)

(d) The average length of all cycles in the obtained cycle basis.

Figure B.4: Properties of the fermionic encoding after combining the straight sewing method with allowing an overlap on at
most 2 vertices between cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

B.2. Straight sewing

63

B.2.4. Overlap on at most 3 vertices

5000 P
r’/’
/',
/"
4000 7
] L
8 .
%
% 3000+ ,"‘ y
> -~
9 £ \‘
‘G 4
- S
<
5 20001 y £
= 7
l-l
1000 oy
y
Al/
o+
10000 20000 30000 40000

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected
number of times the algorithm constructs a cycle C containing a

Lattice size (nlog(n)~3)

descendant of the edge.

2000 T
o
Ve
.
J"
3 o
1500 4 o
k] N
(9] II v
s /—-\,
“ 4
o s
2 10001 o~
£ &
> s
z A
&
500 /»'4
y
&
/
p
of ¢
‘ 10000 20000 30000

(c) Number of edges in the obtained graph G’. In the final fermionic

Lattice size (nlog(n)~3)

1400
s

12001
—
.

Number of cycles

800 1

=
=)
=3
=3
.

600 1
/

400
&7

200
g

250

0 50 100 150 200
Lattice size (n)

(b) Size of the obtained cycle basis. The size is equal to the number

of cycles in the cycle basis.

USRS
38 i
;
/
N
A/
< N
=) /
236 !
9] /
- s
< /
(%]
s g
/
o 34 {
o 1
3 !
© i
2 /
< !
3.2 /
/
!
J
!
i
J
i
/
301 4
[50 100 150 200 250

Lattice size (n)

(d) The average length of all cycles in the obtained cycle basis.

encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.

Figure B.5: Properties of the fermionic encoding after combining the straight sewing method with allowing an overlap on at
most 3 vertices between cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

B.3. Triangular sewing without overlap 64

B.3. Triangular sewing without overlap

14000
400001 7 J
,«/’ 'Ir’
o 12000 e
S 7
V; o
) At 4
@ 300001 455 i 10000 i~
2 a S 4
[0} ~d > o
] = 3 8000 %
> & - -
9 > 6 V.
o] —
45 20000 # 5 =
o v 2 6000 y
< - € 4’
o =4 E] P
] e = &
2 o 4000 g
10000 | /_’. A
-
-~ 2000 T
P el
i el
04 0f -
0 10000 20000 30000 40000 0 50 100 150 200 250

Lattice size (nlog(n)~3) Lattice size (n)
(a) Total weight of the obtained cycle basis. The total weight is equal (b) Size of the obtained cycle basis. The size is equal to the number
to the sum over edges of the weight of that edge times the expected of cycles in the cycle basis.

number of times the algorithm constructs a cycle C containing a
descendant of the edge.

20000
. 3000 1 PR ————
5 | s
17500 | L | =
» o
/ 2.999 ,
A B
o
15000 i A
g e]
@ e +,2.998 !
Q " o ;
9 125001 £ = J
S SN/ 9 !
@ i @ f
“ | , T 2,997 ;
5 10000 P S I
@ . o
Q & o N
1 - ©2.996{ i
E 7500 4 © !
> et [i)
Py 4 z i
50004 7 2,995 !
o
e
25001 .
e 2.994
ol
0 10000 20000 30000 40000 0 50 100 150 200 250

Lattice size (nlog(n)~3) Lattice size (n)

(c) Number of edges in the obtained graph G’. In the final fermionic (d) The average length of all cycles in the obtained cycle basis.
encoding, the number of edges is equal to the number of qubits

required for the encoding, since we place a qubit at every edge.

Figure B.6: Properties of the fermionic encoding after combining the triangular sewing method with allowing no overlap
between cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

B.4. Straight-6 sewing

65

B.4. Straight-6 sewing

B.4.1. Overlap on at most 1 vertex

17500
. 4000+ g
1/ ,/
15000 y A
/' "

2 12500 s "h
@ o1 3000+ ALY
] Pl @ N
ﬁ ot 9 o
5 100004 v > ; .

> “ u ;T

[9) ol ° A

o & L+ 2000 y

S 75004 = 2 A

= N € ! 4

iy 4 =] N

2 5000 [= o

P 4 1000 P
*
2500 e e
ol =g
o o
a"'
10000 20000 30000 40000 0 50 100 150 200 250
Lattice size (n)

Lattice size (nlog(n)~3)

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected
number of times the algorithm constructs a cycle C containing a

descendant of the edge.

7000 4
SN

6000

IN o
o =3
S S
=3 =3
N

Number of edges
]
8
8
>
‘\
\
3,

20004 i/

1000 o

ol 7
10000 20000 30000 40000

Lattice size (nlog(n)~3)

(c) Number of edges in the obtained graph G’. In the final fermionic
encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.

(b) Size of the obtained cycle basis. The size is equal to the number

of cycles in the cycle basis.

T

4.05

w w &
© © =3
=) v)

~.,

Average cycle length

w
©
o

3.80
200 250

100 150

0 50
Lattice size (n)

(d) The average length of all cycles in the obtained cycle basis.

Figure B.7: Properties of the fermionic encoding after combining the straight-6 sewing method with allowing an overlap on at
most 1 vertex between cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

66

B.4. Straight-6 sewing

B.4.2. Overlap on at most 2 vertices

g 20001 £
80001 £ N
. A
7 4
/ N o~
2 N 15001 e
8 6000 AV 0 >
Qa ! S ~
'l [} /

Q g a\ »

g /l\" < J’_,

o - r

‘S 4000+ e 5 10007 v

- () e} —~

< = IS ~

2 % 2 o

§ P of

P | 4
20001 v 500 4
./ —v"'
'1' ’I
'l” ,"/
e
of 04 ewn
20000 30000 40000 0 50 100 150 200 250
Lattice size (n)

10000

Lattice size (nlog(n)~3)

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected

number of times the algorithm constructs a cycle C containing a

descendant of the edge.

(b) Size of the obtained cycle basis. The size is equal to the number

of cycles in the cycle basis.

3500 | - gl T
% 4.0 -
l—"
30001 N]
AN J
3 S38 i
” Ao S /!
@ 2500+ A o :.
2 ol 9 i
; !
2 N Q36 i
5 2000 ‘/ O d
~ > 1
. 4 3 /
Qo Y [J] 1
€ 1500 - = !
~ © 34 i
> - @ ¢
=z # > H
1000 . < i
4 .'
500 y 4 B2
|
- {
|
04 / 3.0+
10000 20000 30000 40000 0 50 100 150 200 250
Lattice size (n)

Lattice size (nlog(n)~3)

(d) The average length of all cycles in the obtained cycle basis.

(c) Number of edges in the obtained graph G’. In the final fermionic
encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.

Figure B.8: Properties of the fermionic encoding after combining the straight-6 sewing method with allowing an overlap on at
most 2 vertices between cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

B.4. Straight-6 sewing

67

B.4.3. Overlap on at most 3 vertices

1200
5000 1 »°]
¢ INg
A i
P 1000 » N

¥ 4000+ - /

o e g i

”

Q s T 800 A~

g /J 2> K

S 3000+ bl - g

O N4 o »—

[l % 5 600 7

g S 2 /,-.’

5 2000 # 5 =

o] , = 400 .

= s =

000 < Sl
1000+ '/ 200 7
/,. 'H/
-
P e
o~ L ~
0 10000 20000 30000 40000 0 50 100 150 200 250
Lattice size (nlog(n)~3) Lattice size (n)
(b) Size of the obtained cycle basis. The size is equal to the number
of cycles in the cycle basis.

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected
number of times the algorithm constructs a cycle C containing a

descendant of the edge.

e e]

42
S — -
f ,f\/ B e st Lo NP L NP2
7 L
/ o
2000+ 7 4.0 /
r< ’
/
/ - i
o ad =) !
[- c 38 1
1500+ =] !
kel i - 1
v ! () /
“ A S |
o N >36 h
C s o #
[} J o
Q 10004 s o /
1 . @ H
5 o
= ",, g 3.4 :l
& < {
500 # i
Vs 3.2 i
Ve)
e /
- {
0+ 3.01 4
0 10000 20000 30000 40000 0 50 100 150 200 250
Lattice size (nlog(n)~3) Lattice size (n)
(d) The average length of all cycles in the obtained cycle basis.

(c) Number of edges in the obtained graph G’. In the final fermionic
encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.
Figure B.9: Properties of the fermionic encoding after combining the straight-6 sewing method with allowing an overlap on at
most 3 vertices between cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

B.5. Skew sewing without overlap

68

B.5. Skew sewing without overlap

300001
¢l,‘
=
250001 e
>
o
-
0 =
%]
G 20000 vy
o -
o Q7
S AN
0 15000 ot
s .
2
=) Vol
2100001 .
pid
P
50001 ,f"
p
/
ol
10000 20000 30000 40000

Lattice size (nlog(n)~3)

(a) Total weight of the obtained cycle basis. The total weight is equal
to the sum over edges of the weight of that edge times the expected
number of times the algorithm constructs a cycle C containing a

12000

10000

8000

6000

Number of edges

4000

2000

descendant of the edge.

20000 30000 40000

10000
Lattice size (nlog(n)~3)

(c) Number of edges in the obtained graph G’. In the final fermionic
encoding, the number of edges is equal to the number of qubits
required for the encoding, since we place a qubit at every edge.

7000

6000

5000

IS
S
=]
=3

Number of cycles
w
8
8
8

2000

1000 1

50 100 150 200 250

Lattice size (n)

(b) Size of the obtained cycle basis. The size is equal to the number

4.000

3.975

3.950

w
©
N
o

w
©
o
S

3.875

Average cycle length

3.850

3.825

3.800

/
r
I}
1
1]
|
i
i
i
Il
i
i
I
i
1
|
I
i
|
1
I
|
i
i
|
I
|
i
I
|
i

of cycles in the cycle basis.

e et e et
oo e e

e

0

50 100 150 250
Lattice size (n)

(d) The average length of all cycles in the obtained cycle basis.

Figure B.10: Properties of the fermionic encoding after combining the skew sewing method with allowing no overlap between
cycles that are being sewed in the same layer in the Vertex Coloring algorithm.

Gi1tHub

All the relevant Python code used for the numerical implementation of the algorithms discussed in this
thesis can be found at the GitHub page:
https://github.com/KoenEggen/Bachelor_Thesis_Koen_Eggen.git

69

https://github.com/KoenEggen/Bachelor_Thesis_Koen_Eggen.git

	Abstract
	Introduction
	Fermions and qubits
	Important concepts from linear algebra
	Fermions
	Qubits

	Preliminaries on graphs and cycle bases
	Graphs and cycles bases
	Basic algorithms for constructing a cycle basis

	Random graphs

	Preliminaries on fermionic encodings
	General idea of a fermionic encoding

	Known fermionic encodings
	The Jordan-Wigner transformation
	The Bravyi-Kitaev superfast encoding
	A stacking and sewing procedure
	The Freedman-Hastings Decongestion Lemma
	Physical systems to consider
	The Fermi-Hubbard model on sparse hopping graphs
	Sparse SYK Hamiltonians

	Numerical results for known transformations
	Results for the modified Erdos-Renyi graph
	Results for the sparse SYK graph

	Constructing the improved fermionic encoding
	Two scenarios
	The Vertex Coloring algorithm
	Different sewing methods
	Combining everything

	Numerical results for the improved fermionic encoding
	General results
	Discussion for scenario 1: optimizing the locality and sparsity
	Discussion for scenario 2: optimizing the number of qubits

	Formal proof of the properties of the improved fermionic encoding
	Discussion and further research
	Bibliography
	Derivations and examples
	Example using the Majorana operators
	Commutation relations in the Bravyi-Kitaev superfast encoding
	Horton's algorithm
	Dijkstra's algorithm
	Example of Horton's algorithm

	Example of the algorithm of Freedman-Hastings
	Derivations for representing the Fermi-Hubbard model on a graph
	Proof of the properties of the different sewing methods

	Relevant plots
	Horton's algorithm applied to the Erdos-Renyi graph
	Straight sewing
	No vertex overlap
	Overlap on at most 1 vertex
	Overlap on at most 2 vertices
	Overlap on at most 3 vertices

	Triangular sewing without overlap
	Straight-6 sewing
	Overlap on at most 1 vertex
	Overlap on at most 2 vertices
	Overlap on at most 3 vertices

	Skew sewing without overlap

	GitHub

