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Matching Problem in Multimodal
Transportation

Wenjing Guo1, Bilge Atasoy1, Wouter Beelaerts van Blokland1, and
Rudy R. Negenborn1

Abstract
Multimodal transportation, as an efficient and sustainable alternative to unimodal transportation, refers to the utilization of
multiple modes, the utilization of standard loading units, and flexibility in planning. The complexity of multimodal transporta-
tion at the operational level lies in being able to deal with dynamic events that are unknown before their realization.
However, stochastic information on some of the events might be available from historical data. This paper proposes an antici-
patory optimization approach to handle dynamic shipment requests in multimodal transportation by incorporating stochastic
information of requests’ origin, destination, volume, announce time, release time and due time. The experimental results
show that the anticipatory approach outperforms a myopic approach in which decisions are made only based on determinis-
tic information in reducing total costs under various scenarios of the multimodal matching system.

Hinterland transportation refers to the movement of
cargo between deep-sea ports and inland terminals within
specific time windows (1). Hinterland services mostly rely
on road transportation characterized by dense networks
and high flexibility in planning. The growing volumes of
hinterland transportation challenge the dominance of
road services, however, because of costs, congestion, and
growing environmental constraints. Compared with
truck transportation, barge and train transportation gen-
erate lower cost and carbon emissions but have less flexi-
bility because of fixed schedules (2).

Multimodal transportation is an efficient and sustain-
able alternative to unimodal transportation under proper
operations. It is defined as the transportation of goods
by a sequence of multiple modes (e.g., road, rail, water)
(3). The handling activities between different modes at
transshipment terminals can be facilitated by using stan-
dardized loading units (i.e., containers). In addition, the
flexibility offered by multimodal transportation guaran-
tees ‘‘optimal’’ planning when disturbances (e.g., dynamic
events) happen.

According to the decision horizon, multimodal trans-
port planning can be divided into three groups: strategic
planning in which long-term decisions (such as hub loca-
tion problems) are made; tactical planning regarding
medium-term decisions (such as service network design
problems); and operational planning dealing with

dynamicity and stochasticity that are not explicitly
addressed at the tactical level (4). While extensive studies
(2, 5–9) have addressed problems at the strategic and tac-
tical level in multimodal transportation, only a few stud-
ies (10–12) have focused on the operational level. This
paper investigates a dynamic and stochastic shipment
matching (DSSM) problem in multimodal transportation
at the operational level.

The advance of information and communication tech-
nologies as well as the growing amount of available his-
torical data makes it possible to gather relevant dynamic
and stochastic information for advanced shipment
matching in multimodal transportation. The DSSM
problem is therefore defined as the online matching of
shipment requests and multimodal services with the utili-
zation of dynamic information of newly arrived ship-
ment requests and stochastic information of future
requests. The characteristics of the problem include:

� static shipment requests which arrive in the multimo-
dal matching system before the planning horizon;
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� real-time shipment requests which arrive dynami-
cally over time;

� stochastic information about future requests;
� soft time windows, that is, delay in delivery is

available but with a penalty;
� capacitated and time-scheduled barge and train

services;
� departure-time flexible truck services with time-

dependent travel times;
� transshipment operations at terminals.

The DSSM problem is dynamic since some input data
(i.e., real-time shipment requests) are revealed in a
dynamic fashion over a planning horizon (e.g., one
week). Because of the capacity limitation of barge and
train services, matching decisions made at an early stage
of the planning horizon might affect the ability to make
good matching decisions at a later stage. In such a
dynamic problem, the probability distributions of future
requests’ information (including origin, destination, vol-
ume, announce time, release time and due time) are usu-
ally available. Therefore, the problem is said to be
stochastic. By incorporating stochastic information into
the dynamic decision-making process, decision makers
might hold some barge and train capacity for future
requests which are predicted to be more ‘‘important.’’ In
this way, decisions made for current requests might be
suboptimal but the global performance over the planning
horizon might be ‘‘optimal.’’

The challenge faced by dynamic and stochastic prob-
lems is known as the curse of dimensionality. This paper
presents a multistage stochastic programming model to
describe the DSSM problem. It develops a rolling hori-
zon (RH) approach to handle dynamic events (e.g., real-
time shipment requests). At each iteration of the RH
framework a sample average approximation (SAA)
method is employed to include stochastic information
(e.g., the probability distribution of future requests). The
combined utilization of the RH framework and the SAA
method is therefore an anticipatory optimization
approach (AOA). The myopic optimization approach
(MOA) is defined as the utilization of the RH framework
alone. Decisions made by the MOA are therefore based
on deterministic information. This study compares the
performance of the AOA with the MOA under various
scenarios of a multimodal matching system.

The remainder of this paper is structured as follows.
The next section summarizes the relevant studies in the
literature. It then presents the problem description and
the mathematical formulations and develops the myopic
approach and the anticipatory approach. After that, it
describes the instance generation and presents the experi-
mental results. The final section provides concluding
remarks and future research directions.

Literature Review

With the development of computing power, online deci-
sions can be made incorporating dynamic and stochastic
information. In the literature, dynamic and stochastic
approaches have been investigated in many areas, such as
vehicle routing problems (13–16), pickup and delivery
problems (17–21), resource allocation problems (22–24),
and multimodal container routing and flow control prob-
lems (11, 12, 25). However, to the best of the authors’
knowledge, none of the studies in the literature investi-
gated dynamic and stochastic models for the DSSM
problem.

With regard to dynamic and stochastic vehicle routing
problems, Bent and Hentenryck (13) proposed a multiple
scenario approach to generate routing plans continu-
ously for scenarios which include known requests and
sampled future requests. Hvattum et al. (14) designed a
multistage stochastic programming model with recourse
to deal with stochastic customers. Because of the compu-
tational complexity, they developed a heuristic solution
method based on sampled information and on ideas bor-
rowed from progressive hedging. Albareda-Sambola
et al. (15) proposed an adaptive policy which aims at esti-
mating the best time period to serve each request within
its associated time window by incorporating the prob-
abilistic information of future customers. Ulmer et al.
(16) proposed an offline-online approximate dynamic
programming for dynamic vehicle routing with stochastic
requests. Compared with vehicle routing problems, the
DSSM problem investigates the ‘‘optimal’’ matching
decisions between vehicles and requests instead of vehicle
routing decisions.

In relation to dynamic and stochastic pickup and
delivery problems, Cortes et al. (17) developed a hybrid
predictive control framework that incorporates predicted
information of future requests in real-time routing deci-
sions. Ghiani et al. (18) described anticipatory algorithms
that anticipate near-future demand through Monte Carlo
sampling procedure to manage several decisions (e.g.,
vehicle dispatching and route rescheduling) in a unified
way. Schilde et al. (19) investigated the benefits of incor-
porating stochastic information on return transport
requests for a dynamic stochastic dial-a-ride problem.
Lowalekar et al. (20) presented a multistage stochastic
optimization formulation to consider potential future
demand scenarios in online spatial-temporal matching of
services to customers and a Benders Decomposition
method to deal with large numbers of future scenarios.
Agussurja et al. (21) proposed a Markov decision process
model for a dynamic ride-sharing problem with stochas-
tic multiperiod demands. Because of the curse of dimen-
sionality, they employed three techniques to speed up the
solution process: representative states, state space discre-
tization, and SAA. While there are similarities, the
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present work differs from research on pickup and deliv-
ery problems in several ways: first, capacitated vehicles
with fixed routes are considered; second, while some
vehicles (e.g., trucks) have flexible departure times, others
(e.g., barges and trains) follow fixed time schedules;
third, transshipment operations between different vehi-
cles are considered.

Regarding dynamic and stochastic resource allocation
problems, Bilegan et al. (22) designed a rail freight load
acceptance management system to accept or reject
requests dynamically, taking into account future demand
forecasting. Wang et al. (23) designed a booking system
for barge transportation to perform accept or reject deci-
sions for each new transport request based on expected
objective function over a given time horizon. Wang et al.
(24) developed a Markov decision process model to
describe a dynamic and stochastic resource allocation
problem from the viewpoint of an intermodal operator.
At each decision epoch, the intermodal operator deter-
mines the booking limits on each product to be sold dur-
ing the next time interval. While the resource allocation
problem focuses on accepting or rejecting decisions to
control the capacity of resources better, the DSSM prob-
lem investigates the ‘‘optimal’’ matches between vehicles
and requests, and consequently the routes of requests.
Furthermore, while the resource allocation problem aims
to maximize profits, the DSSM problem aims to mini-
mize costs.

In the literature, only a few articles have studied
dynamic and stochastic container routing and flow con-
trol problems in multimodal transportation. Li et al. (11)
proposed a receding horizon control approach to control
and to reassign the container flows in a receding way.
Van Riessen et al. (12) designed a decision tree to derive
real-time decision rules for suitable allocation of contain-
ers to inland services. Rivera and Mes (25) proposed an
algorithm based on approximate dynamic programming
to assign newly arrived containers to either barges or
trucks to achieve better performance over a planning
horizon. While the container routing and flow control
problems focus on the container level (i.e., integer deci-
sions indicating the number of containers assigned to ser-
vices), the DSSM problem focuses on the shipment
request level (i.e., binary decisions indicating the match-
ing between requests and services).

This paper addresses the key limitations of previous
work by providing the following contributions. First, it
presents a multistage stochastic optimization model to
describe the DSSM problem in multimodal transporta-
tion. Second, because of the curse of dimensionality, it
proposes an AOA to solve the problem under realistic
instances in a reasonable time. The AOA uses a SAA
method to generate sampled requests and approximate
expected objective functions at each decision epoch of an

RH framework. Third, numerical experiments are con-
ducted to validate the performance of the anticipatory
approach in comparison with a myopic approach.

Problem Description and Mathematical
Formulations

Problem Description

We consider a platform in which a network operator
receives shipment requests from shippers and receives
services from carriers. Network operators can be multi-
modal operators, terminal operators, or alliances formed
between several carriers and terminal operators.
Examples of shippers include freight forwarders, drayage
operators, and ocean carriers. Carriers can be barge car-
riers, rail operators, or truck companies.

Shippers announce shipment requests before ship-
ments are released at deep-sea terminals, and ask to
receive the matching plan before shipments’ release time.
Each shipment request r 2 R is characterized by its
announce time tannouncer , release time treleaser at deep-sea
terminal or, due time tduer at inland terminal dr, and con-
tainer volume ur. Let R0 be the set of shipment requests
arriving before the planning horizon, namely,
tannonucer = 0, r 2 R0. Define Rt as the set of shipment
requests received at time period t= (t � 1)h, th½ �,
t 2 f1, . . . , Tg. Here, h is the length of time periods, T is
the number of time periods within the planning horizon.
Therefore, for request r 2 Rt, (t � 1)h ł tannouncer ł th.
Furthermore, request r is unknown before its announce
time. However, the probability distributions
fpo,pd ,pu,ptannounce ,ptrelease ,ptdueg of future requests’ ori-
gin, destination, volume, announce time, release time,
and due time are assumed available. In addition, the only
the requests considered are those accepted by network
operators without the consideration of accept/reject
decisions.

Carriers provide multimodal services to network
operators. According to the modalities in hinterland
transportation, services can be divided into three groups:

� Barge services. Each barge service s 2 Sbarge is
characterized by its departure time TDs at origin
terminal os, arrival time TAs at destination termi-
nal ds, free capacity Us, transport cost cs, and car-
bon emissions es.

� Train services. Each train service s 2 Strain is char-
acterized by its departure time TDs at origin termi-
nal os, arrival time TAs at destination terminal ds,
free capacity Us, transport cost cs, and carbon
emissions es.

� Truck services. Each truck service is viewed as a
fleet of trucks which has flexible departure times
and an unlimited capacity. Because of traffic
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congestion at several time periods throughout a
day, the travel time of truck services is time depen-
dent (26). Therefore, each truck service s 2 Struck

is characterized by its origin terminal os, destina-
tion terminal ds, time-dependent transit time
ttrucks (t), transport cost cs, and carbon emissions
es. Here, trs is the departure time of truck service s
for shipment r.

A path P is defined as a combination of one or more
services in sequence. The path P is feasible if the services
within a combination satisfy time-spatial compatibility.
Specifically, for two consecutive services si, si+ 1 within
path P, the destination of service si must be the same as
the origin of service si+ 1; the arrival time of service si

must be earlier than the departure time of service si+ 1

minus loading and unloading time at transshipment ter-
minal dsi

. The set P denotes the collection of all feasible
paths. A match (r, p) means shipment r will be trans-
ported by path P from its origin to its destination. A
match between request r 2 R and path
p= s1, . . . , sl½ � 2 P is feasible if it satisfies time-spatial
compatibility:

� Spatial compatibility. The origin terminal of ship-
ment request r should be the same as the origin of
service s1; the destination of request r should be
the same as the destination of service sl.

� Time compatibility. The release time of request r
should be earlier than the departure time of service
s1 minus loading time at origin terminal or.

Let Pr be the set of all feasible paths for request r, and
let crp denote the cost of matching request r with path P
which consists of transport cost generated by using ser-
vices, transfer cost and storage cost generated at trans-
shipment terminals, penalty cost caused by delay in
delivery (charged per container per hour), and carbon tax
charged for carbon emissions of services. The objective of
the multimodal matching system is to minimize the total
costs for matching all the shipment requests with paths
over a given planning horizon (e.g., one week). However,
decisions need to be made at the end of each time period
(i.e., each time stage) with dynamic information of newly
received requests and stochastic information about future
requests.

An illustrative example of the DSSM problem is
shown in Figure 1. At time period 1 (06:00–07:00), the
platform receives shipment request r1 with 10 TEU
(twenty-foot equivalent units). Path p1 = s1, s4½ � (i.e.,
train-truck service combination), path p2 = s2, s5½ � (i.e.,
barge-truck service combination), and path p3 = s3½ �
(i.e., truck service) are all feasible for request r1. At time
period 2 (07:00–08:00), the system receives request r2

with 8 TEU. Path p2 = s2, s5½ � and path p3 = s3½ � are fea-
sible for request r2 while path p1 = s1, s4½ � is infeasible
because the departure time of s1 (09:00) minus loading
time (1 h) is earlier than the release time of request r2

(09:00). The probability information of requests that will
arrive in time period 2 and 3 is available. The platform
needs to create matches for request r1 at time stage 1
(07:00), and create matches for request r2 at time stage 2
(08:00).

Figure 1. Illustrative example of the DSSM problem.
Note: DSSM = dynamic and stochastic shipment matching; TEU = twenty-foot equivalent units.
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An illustrative example of the DSSM process is shown
in Figure 2. The number on the arcs means the cost of
matching requests with services. At time stage 1 (07:00),
the platform creates matches for current received request
r1 incorporating the information of predicted future
request r2. Path p1 will be assigned to request r1 instead
of path p2 since 70 r1, p1ð Þ+ 50(r2, p2)\50(r1, p2)+
100(r2, p3). At time stage 2, decision for request r2 is
made incorporating the information of predicted future
request r3. Here, request r2 is assigned to path p2, since
40(r2, p2)+ 50(r3, p3)\80(r2, p3)+ 25(r3, p2). The total
cost of matching for request r1 and r2 is 70+ 40= 110.
In comparison, if only dynamic information is used for
decision making (without the information of future
requests), the platform will assign p2 to request r1 at time
stage 1 (local ‘‘optimal’’). Since the free capacity of path
p2 has already been assigned to request r1, request r2 can
be only matched with path p3 at time stage 2. Then the
total cost of matching without the utilization of stochas-
tic information is 50+ 80= 130.110.

Mathematical Formulations

The notation used in this paper is listed below. Let xt
rp be

a binary variable which equals 1 if shipment request
r 2 Rt is matched with path p 2 P, otherwise 0. Let O be
the entire populations of requests over a planning hori-
zon 0, Thð �. Prs is denoted as the set of feasible paths
including service s 2 Sbarge [ Strain for shipment r,
Prs = fpjp 2 Pr, s 2 pg. The DSSM problem can be
described by a multistage stochastic programming
(MSP) formulation shown as follows:

min
X 0,X 1, ...,X T

X

r2R0

X

p2Pr

crpx0
rp +EOf

X

r2R1

X

p2Pr

crpx1
rp

+ . . . +
X

r2RT

X

p2Pr

crpxT
rpg

ð1Þ

subject to

X

p2Pr

xt
rp = 1, 8r 2 Rt, t 2 f0, . . . , Tg, ð2Þ

X

r2R0

X

p2Prs

urx
0
rp ł Us, 8s 2 Sbarge [ Strain, ð3Þ

X

r2Rt

X

p2Prs

urx
t
rp ł Us �

X

t
0 2f0, ..., t�1g

X

r2Rt
0

X

p2Prs

urx
t
0

rp,

8s 2 Sbarge [ Strain, t 2 f1, . . . Tg,
ð4Þ

xt
rp 2 f0, 1g, 8r 2 Rt, p 2 P, t 2 f0, . . . Tg: ð5Þ

The objective of the MSP formulation is to minimize
the expected total cost over the planning horizon.
Constraints in Equation (2) ensure that only one path
will be assigned to each shipment request. Constraints in
Equations (3) and (4) ensure that the total volume of
shipment requests assigned to service s 2 Sbarge [ Strain

does not exceed its free capacity at every time stage.
The MSP is viewed as a multistage stochastic pro-

gram since set R0 is known, but sets R1, . . . ,RT are
unknown before the planning horizon. At each time
stage (the end of each time period), one of the sets will
become known, and Rt is the set which becomes known
at time stage t. Therefore, we have the following deci-
sion process:

r1

r2

70
p1

p3

p2

50

07:00 08:00
Time stage

100

100

50

10 TEU

10 TEU

10 TEU

10 TEU

r2

r3

40

p1

p3

p2

25

80

50

0 TEU

10 TEU

8 TEU

5 TEU

Received requests Predicted future requests Paths

Feasible matches Matching decision

Figure 2. Illustrative example of the dynamic and stochastic shipment matching (DSSM) process.
Note: TEU = twenty-foot equivalent units.
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decision X 0
� �

! observation R1
� �

! decision X 1
� �

! observation RT
� �

! decision X T
� �

The objective of this study is to design the decision
process in such a way that the expected value of the total
cost is minimized while optimal decisions are allowed to
be made at every time stage t= f0, 1, . . . , Tg. The values
of the decision vector X t, chosen at stage t 2 f1, . . . , Tg,
depend on the information j½0, t�= fR0,R1, . . . ,Rtg avail-
able up to time stage t, but not on the results of future
observations. Ut = ½Ut

1, . . . ,Ut
s , . . . ut

jS0 j�, t 2 f0, . . . , Tg,
s 2 Sbarge [ Strain are denoted as state variables. Here,
U0

s =Us, s 2 Sbarge [ Strain. State variables are updated at
each stage according to the current observation jt, cur-
rent decisions X t, and current values of state variables
Ut. Let Ot be the populations of shipment requests after
time stage t. The dynamic stochastic programming
(DSP) formulation of the DSSM problem at stage
t 2 f0, . . . , T � 1g is presented as:

P0 Qt(U
t, jt,X t)= min

X t

X

r2Rt

X

p2Pr

crpxt
rp

+EOt ½Qt + 1(U
t + 1, jt + 1,X t + 1)�

ð6Þ

subject to

X

p2Pr

xt
rp = 1, 8r 2 Rt, ð7Þ

X

r2Rt

X

p2Prs

urx
t
rp ł Ut

s , 8s 2 Sbarge [ Strain, ð8Þ

Ut + 1
s =Ut

s �
X

r2Rt

X

p2Prs

urx
t
rp, 8s 2 Sbarge [ Strain, ð9Þ

xt
rp 2 f0, 1g, 8r 2 Rt, p 2 P: ð10Þ

Constraints in Equation (7) ensure that the requests
received at time period t will be matched with one feasible
path. Constraints in Equation (8) ensure that the total
volume of shipments assigned to service s 2 Sbarge [ Strain

Sets

R0 Shipment requests arrived before the planning horizon
Rt Shipment requests that are received at time period t� 1ð Þh, th½ �, t 2 f1, . . . , Tg
R̂t Active shipment requests at decision epoch t, t 2 f1, . . . , Tg
�Rt Active shipment requests that will be expired before decision epoch t+ 1, t 2 f1, . . . , T � 1g
vk

g A sample of shipment requests received at time period k 2 ft+ 1, . . . , t+Hg under scenario g 2 f1, . . . ,Gg
S Transport services within the planning horizon, S= Sbarge [ Strain [ Struck

P Feasible paths
Pr Feasible paths for shipment request r
Prs Feasible paths for shipment request r including service s
O Entire populations of shipment requests over planning horizon 0, Thð �
Ot Entire populations of shipment requests after decision epoch t

Parameters

or Origin terminal of shipment request r 2 R
dr Destination terminal of shipment request r 2 R
ur Container volume of shipment request r 2 R
tannounce
r Announce time of shipment request r 2 R

trelease
r Release time of shipment request r 2 R

tdue
r Due time of shipment request r 2 R

crp The cost of matching request r with path P
Us Free capacity of service s 2 Sbarge [ Strain at decision epoch 0
Ut

s Free capacity of service s 2 Sbarge [ Strain at decision epoch t
h The length of time periods
T The number of time periods within a planning horizon, t 2 f0, 1, . . . , Tg
EO The expected total cost over the planning horizon
EOt The expected total cost after decision epoch t
G The number of scenarios
H The length of prediction horizon

Variables

xt
rp Binary decision variable; 1 if active request r 2 R̂t is matched with path p 2 P, 0 otherwise

ygk
rp Binary decision variable; 1 if sampled request r 2 vk

g is matched with path p 2 P, 0 otherwise
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does not exceed its free capacity at time stage t.
Constraints in Equation (9) denote the state transition at
time stage t. The free capacity of service s 2 Sbarge [ Strain

at time stage t + 1 is updated by the free capacity of s at
stage t and the matching decisions created at stage t.

For time stage T, all the information within the plan-
ning horizon is known, therefore,

QT (U
T , jT ,X T )= min

X T

X

r2RT

X

p2Pr

crpxT
rp ð11Þ

Optimization Approaches

In the DSP formulation presented above, it is very diffi-
cult to estimate EOt since the size of Ot might be huge
even for a small instance of the DSSM problem. To
address the DSSM problem with large instances, two
optimization approaches are proposed: an MOA and an
AOA. Both of them are based on the RH approach to
handle dynamic events. The RH approach is known as
an efficient periodic re-optimization approach for
dynamic problems, such as crowdsourced delivery prob-
lems (27), ride-sharing problems (28), and long-haul
transportation for perishable products (29).

MOA

This section presents an MOA in which decisions are
made based on deterministic information only. The myo-
pic approach is based on the RH framework. The multi-
modal matching system is therefore re-optimized at pre-
specified time points f0, h, 2h, . . . , Thg. The length
between two consecutive re-optimization time points is
called the optimization interval, h. At each decision
epoch t, decisions for all active shipment requests R̂t are
made. Request r is active if its announce time is earlier
than th (i.e., tannouncer ł th), and its release time is later
than th (i.e., treleaser ø th). However, the decision for
request r 2 R̂t is fixed only if treleaser ł (t + 1)h, namely
the request will be expired before the next decision
epoch. Denote �Rt as the set of active requests that will be
expired before decision epoch t + 1. The network opera-
tor will inform shippers of the decisions only if a fixed
match is made for them. Thus, all the fixed matches
made at time stage t will have effects on the free capacity
of service s 2 Sbarge [ Strain at time stage t + 1.

Under the MOA, the objective is to minimize the total
cost of the current-stage decisions made for active
requests. The formulation of the DSSM problem at stage
t 2 f0, 1, . . . , Tg is therefore changed to:

P1 min
X t

X

r2R̂
t

X

p2Pr

crpxt
rp ð12Þ

subject to

X

p2Pr

xt
rp = 1, 8r 2 R̂t, ð13Þ

X

r2R̂
t

X

p2Prs

urx
t
rp ł Ut

s , 8s 2 Sbarge [ Strain, ð14Þ

Ut + 1
s =Ut

s �
X

r2�R
t

X

p2Prs

urx
t
rp, 8s 2 Sbarge [ Strain, ð15Þ

xt
rp 2 f0, 1g, 8r 2 R̂t, p 2 P: ð16Þ

AOA

This section proposes an AOA in which decisions are
made based on dynamic information and stochastic
information. Specifically, the RH approach is applied to
handle dynamic events. At each iteration of the RH
framework, an SAA method is employed to deal with the
stochastic information. Under the SAA method, EOt in

the DSP formulation is approximated as G�1P
g2f1, ...,Gg

which comprises G scenarios fv1,v2, . . . ,vg, . . . ,vGg,
where vg = fvt + 1

g ,vt + 2
g , . . . ,vt +H

g g. Let vk
g be a sam-

ple of shipment requests received at time period k under

scenario g. Each scenario has the same probability G�1.
The scenarios are generated based on sampling probabil-
ity distributions of future requests’ origin, destination,
volume, announce time, release time, and due time. In

addition, G�1P
g2f1, ...,Gg is an unbiased estimator of EOt ,

and will converge to EOt with probability of 1 as the sam-
ple size G goes to infinity and the prediction horizon

H = T . Let ygk
rp be the binary variable which equals 1 if

request r 2 vk
g is matched with path p 2 Pr, 0 otherwise.

The formulation of the DSSM problem at each stage fur-
ther changes to:

P2 min
X t , Y t+ 1, ..., Y t+H

P

r2R̂
t

P
p2Pr

crpxt
rp

+ 1
G

P
g2f1, ...,Gg

P
k2ft + 1, ..., t +Hg

P
r2vk

g

P
p2Pr

crpygk
rp

ð17Þ

subject to

X

p2Pr

xt
rp = 1, 8r 2 R̂t, ð18Þ

X

p2Pr

ygk
rp = 1, 8g 2 f1, . . . ,Gg,

k 2 ft+ 1, . . . , t +Hg, r 2 vk
g,

ð19Þ

X

r2R̂
t

X

p2Prs

urx
t
rp +

X

k2ft + 1, ..., t +Hg

X

r2vk
g

X

p2Prs

ury
gk
rp ł Ut

s ,

8s 2 Sbarge [ Strain, g 2 f1, . . . ,Gg,
ð20Þ
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Ut + 1
s =Ut

s �
X

r2�R
t

X

p2Prs

urx
t
rp, 8s 2 Sbarge [ Strain, ð21Þ

xt
rp 2 f0, 1g, 8r 2 Rt, p 2 P, ð22Þ

ygk
rp 2 f0, 1g, 8g 2 f1, . . . ,Gg,

k 2 ft+ 1, . . . , t +Hg, r 2 vk
g, p 2 P:

ð23Þ

The objective is to minimize the costs for active
requests at time stage t and the average costs for sampled
requests from time stage t + 1 to t+H under G scenar-
ios. Constraints in Equations (18) and (19) ensure that
one shipment will be matched with one path. Constraints
in Equation (20) ensure that the total volume of ship-
ment requests assigned to service s 2 Sbarge [ Strain at
time stage t under all the scenarios does not exceed its
free capacity at time stage t. Constraints in Equation
(21) update the free capacity of service s 2 Sbarge [ Strain

at time stage t+ 1. Here, the free capacity of barge and
train services at the next time stage is only affected by
the decisions for requests �Rt which are active at current
time stage and will be expired at the next time stage.

Numerical Experiments

This section evaluates the performance of the MOA and
AOA proposed above. The approaches were implemen-
ted in MATLAB, and all experiments were executed on
3.70GHz Intel Xeon processors with 32 GB of RAM.
The optimization problems were solved with CPLEX
12.6.3.

Instances Generation

This study used a hinterland multimodal network for the
numerical experiments, which includes three deep-sea
terminals (i.e., node 1, 2, and 3) and seven inland term-
inals (i.e., node 4, 5, 6, 7, 8, 9, and 10), as shown in
Figure 3. It involved one week of services including 49

barge services, 33 train services, and 34 truck services.
The inland waterway and railway distances were derived
from the website of European Gateway Services (https://
www.europeangatewayservices.com/en) and InlandLinks
(https://www.inlandlinks.eu/en), and the road distances
were calculated based on Google maps. The transit cost,
loading or unloading cost, storage cost, penalty cost, and
carbon tax coefficients used in the experiments were
derived from Li et al. (11), van Riessen et al. (30), and
Qu et al. (31). The length of the planning horizon was set
to one week for all the instances. The length of the opti-
mization interval was set to 1 h in the MOA and the
AOA. In the AOA, the size of scenarios was set to 10,
and the length of the prediction horizon was set to 12 h.

Several instances were generated to represent different
characteristics of shipments within the given network.
Each shipment is characterized by its announce time,
release time, due time, OD pair, and container volume.
It is assumed that:

� the origins of shipments are independent and iden-
tically distributed among f1, 2, 3g with probabil-
ities f0:66, 0:2, 0:14g;

� the destinations are independent and identically
distributed among f4, 5, 6, 7, 8, 9, 10g with
probabilities f0:306, 0:317, 0:153, 0:076, 0:071,
0:034, 0:043g;

� the container volumes of static shipment requests
are drawn independently from a uniform distribu-
tion with range ½10, 30�; the container volumes of
dynamic requests are drawn independently from
uniform distributions with range ½1, 9�;

� the announce time of static requests is 0, while the
frequency of dynamic requests arriving in the sys-
tem belongs to Poisson distributions with mean
ATAVE;

� the release time of static requests is drawn inde-
pendently from a uniform distribution with range
½1, 120�; the release time of dynamic requests is
generated based on its announce time,
treleaser = tannouncer +DT , DT belongs to a uniform
distribution with range ½1, 6�;

� the due time of shipment requests is generated
based on its release time and lead time,
tduer = treleaser + LDr, the lead time of shipments are
independent and identically distributed among
f24, 48, 72g (unit: hours) with probabilities
f0:15, 0:6, 0:25g.

In this paper, it is assumed that the probability distri-
butions are available and accurate. Therefore, the same
probability distributions were used to generate instances
and scenarios.

5
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Inland terminals

Deep-sea terminals
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Figure 3. Topology of a hinterland multimodal network.
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Comparison between the MOA and the AOA

To compare the performance of the MOA and the AOA,
five groups of instances were designed with different
degrees of dynamism: 25%, 50%, 75%, 87.5%, and
100%. The degree of dynamism is defined as the ratio
between the number of containers from dynamic requests
and the total number of containers over the planning
horizon. For each group, there are 10 replications. ‘‘Gaps
in total costs’’ were used as the performance indicator
which is given by (benchmark value–objective value)/
benchmark value. Here, the total cost generated by the
MOA is the benchmark value, while the total cost gener-
ated by the AOA is the objective value. Therefore, the
higher the ‘‘gaps in total costs’’, the better the perfor-
mance of the AOA. Figure 4 shows that the AOA has
better performance than the MOA in all the instances in
reducing total costs and the gaps between the AOA and
the MOA grow with the increase of the degree of dyna-
mism from 25% to 87.5%. Nevertheless, further increas-
ing the degree of dynamism to 100%, the gap in total
costs stays around 4%. In addition, the average compu-
tational time per time step under the AOA is within 80 s
for all the instances.

To understand the differences in matching process
between the MOA and the AOA, the matching results of
one of the instances at every time stage were analyzed.
Here, ‘‘gaps in cumulated costs’’ were used to represent
the differences in cumulated cost at previous stages
between the MOA and the AOA. The higher the ‘‘gaps
in cumulated costs,’’ the better the performance of the
AOA. ‘‘Gaps in cumulated barge and train capacity utili-
zation’’ were used to represent the differences in

cumulated capacity utilization of barge and train ser-
vices. Figure 5 shows that in earlier stages (before time
stage 36), the MOA tries to use as much barge and
train capacity as possible, and the cumulated cost is
lower than the AOA. However, in later stages (after
time stage 104), the MOA has no barge and train
capacity that can be used. In comparison, the AOA
holds some capacity of barge and train services for
requests arriving in later stages, the cumulated total
cost over the planning horizon is lower than the MOA;
the cumulated capacity utilization of barge and train
services over the planning horizon is higher than the
MOA. It is predictable that the longer the planning
horizon, the better the performance of the AOA since
it anticipates the future.

Figure 4. Comparison of the MOA and the AOA under different degrees of dynamism.
Note: AOA = anticipatory optimization approach; CPU = central processing unit; MOA = myopic optimization approach.
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Note: MOA = myopic optimization approach; AOA = anticipatory
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Performance of the AOA with Imperfect Predictions

In the instances presented so far, it was assumed that the
decision maker has the accurate probability distributions
of future requests. Thus, the probability distributions
used in sampling in the AOA are the same as the prob-
ability distributions used in generating the above
instances. However, because of uncertainties in demand
during special periods (e.g., high inflation rate periods,
Valentine’s Day, Black Friday), the demand might be
lower or higher than normal periods. In this section, five
groups of instances were designed with different degrees
of dynamism and having lower demand realizations. The
container volume of these instances is drawn indepen-
dently from a uniform distribution with range ½1, 3�.
Another five groups of instances were designed with
higher demand realizations drawn from a uniform distri-
bution with range ½7, 9�. Figure 6 shows that when reali-
zations are lower than normal periods, the performance
of the AOA is almost the same as the MOA in all the
instances and even worse for instances with 100% degree
of dynamism. The reason is that using the AOA, the sys-
tem will hold some capacity for future requests which
actually have lower demand realizations than the predic-
tion. On the other hand, when the realizations are higher
than normal periods, the AOA still has better perfor-
mance than the MOA.

Conclusions and Future Research

This paper introduced a DSSM problem in multimodal
transportation. The problem is dynamic since some ship-
ment requests arrive in the system in real time. The prob-
lem is stochastic since the probability distributions of

future requests are available from historical data. A MSP
formulation was presented to describe the problem.
Because of the curse of dimensionality, two approaches
were developed: a myopic optimization approach (MOA)
in which decisions are made based on deterministic infor-
mation, and an anticipatory optimization approach
(AOA) in which decisions are made based on incorporat-
ing dynamic and stochastic information.

These two approaches were validated on a hinterland
multimodal network. The results indicate that the AOA
has better performance than the MOA in reducing total
costs under various scenarios of the multimodal match-
ing system. Furthermore, the performance of the AOA
was tested under imperfect prediction of the future. The
results show that the AOA has no improvement when
realizations are lower than normal periods as it reserves
capacity for predicted future requests, but has better per-
formance when realizations are higher than normal
periods.

This paper did not present the impact of the length of
optimization intervals, the length of the prediction hori-
zon, and the size of scenarios. Future research can be
carried out on these aspects. On the other hand, consid-
ering the computational complexity for instances under
dynamic and stochastic scenarios, an efficient algorithm
combined with parallel computing needs to be designed
in the future.
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