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A LINEARISED RIEMANN SOLVER FOR THE TIME-DEPENDENT 

EULER EQUATIONS OF GAS DYNAMICS. 

by 
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Department of Aerod3mamics and Fluid Mechanics 

College of Aeronautics 

Cranfield Institute of Technology 

Cranfield, Beds. MK43 OAL, England 

ABSTRACT 
The time-dependent Euler equations of Gas Dynamics are a set of non-linear 

hyperbolic conservation laws that admit discontinuous solutions (e.g.shocks). 

In this paper we are concerned with Riemann-problem based numerical methods 

for solving the general initial-value problem for these equations. 

We present an approximate, lineeu'ised Riemann solver for the time-dependent 

Euler equations. The solution is direct euid involves few and simple arithmetic 

operations. The Riemsmn solver is then used, locally, in conjimction with the 

WAF numerical method to solve the time-dependent Euler equations in one and 

two space dimensions with general initial data. For flows with shocks waves of 

moderate strength the computed results are very accurate. For severe flow 

regimes we advocate the use of the present linearised Riemann solver in 

combination with the exact Riemzinn solver in an adaptive fashion. Numericad 

experiments demonstrate that such an approach can be very successful. One and 

two-dimensional tes t problems show that the linearised Riemann solver is used 

in over 99 7. of the flow field producing net computing savings by a factor of 

about 2. A reliable and simple switching criterion is also presented. Results 

show that the adaptive approach effectively provides the resolution and 

robustness of the exact Riemann solver at the computing cost of the simple 

linearised Riemann solver. The relevance of the present methods concerns the 

numerical solution of multi-dimensional problems accurately and economically. 

to appear in PRQC. ROY. SOC. LONDON (Sept. 1991) 
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1. INTRODUCTION. 

Riemêmn-problem based methods (or RP methods) have made a significant 

impact in Computational Fluid Dynamics in the last decade. Their initial 

success for compressible, time-dependent inviscid flows with shock waves has 

been extended to other hjrperbolic flows such as steady supersonic flows, 

shallow water flows and more recently, to parabolic flows such as the 

compressible Navier Stokes equations. 

Key characteristics of RP methods is their ability to capture shock waves 

and other sharp features with optimal resolution and without the spurious 

oscillations (or much reduced) of traditional finite difference methods with 

added artificial viscosity. Their conservative chau-acter ensures correct 

positions of the computed shock waves and their robustness is a much 

appreciated feature, particularly in an industrial computing environment. 

Despite their computational attractions, RP methods are more complex than 

traditional methods. Also, they are three to four times more expensive in 

computing time. The introduction of linearised Riemann solvers (e.g. Roe, 

1981, 1986) meant a significant step forward in terms of simplification of 

algorithms and reduction of computing expense. As a result, however, accuracy 

and robustness for some special but important flow regimes has been 

compromised. Exsunples are very strong shocks, low-density flows (Einfeldt et 

al, 1991) and shear waves. 

In this paper we present émother approximate Riemann solver based on a 

local linearisation of the Euler equations. The solution is direct and 

involves few and very simple arithmetic operations. The Riemann solver is then 

used in conjuntion with the Weighted Average Flux (or WAF, for short) 

numerical method (Toro, 1989b) to solve the time-dependent, non-linear Euler 

equations. For flows containing shock waves of moderate strength, that is 

pressure ratios of about three, the numerical results are very accurate. For 

severe flow regimes we advocate the adaptive use of the present Riemann solver 

in conjunction with the exact Riemann solver in a single numerical method. The 

WAF method offers the necessary flexibility to do this, as it uses the exact 

solution of the Riemann problem or any approximation to it. To this end we 

also propose a simple and reliable switching criterion with little 

empiricism. 
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Tests on a very severe blast-wave problem, where the initial data for 

pressure differs by five orders of magnitude, show that the linearised Riemann 

solver is used to solve 99.8 7. of all Riemann problems in the computations; 

the quality of the solution is identical to that obtained when using the exact 

Riemsum solver throughout. We are thus effectively obtaining the accuracy and 

robustness of the exact Riemann solver at the expense of the simplest Riemann 

solver. 

The rest of this paper is organized as follows: In section 2, after 

recalling the main features of the exact solution of the Riemann problem, we 

present the linearised Riemann solver and a switching criterion. In section 3 

we êissess the performance of the linearised Riemann solver. Conclusions are 

drawn in section 4. 

2 . A LINEARISED RIEMANN SOLVER. 

The Riemann problem for the time-dependent, one-dimensional Euler 

equations is the initiad-value problem with piece-wise constemt data p , u , 

p and p , u , p . The left (L) amd right (R) states are separated by a 

discontinuity at x=0. The solution is self-similar and contadns four constant 

s tates separated by three waves as shown in the x- t picture of Fig. 1. The 

left and right waves are usually called acoustic waves, as they are associated 

with the eigenvalues u-a and u+a of the Jacobian matrix, where a is the sound 

speed. These waves can either be shock or rarefaction waves. The middle wave 

is always a contact discontinuity. There are therefore four possible wave 

patterns. Across the acoustic waves all variables change. The change takes 

place continuously across rarefactions and discontinuously across shocks. We 

call the region between the acoustic waves the star region. The pressure p* 

and velocity u* are constant throughtout the star region, while the density 

jumps discontinuously from its constant value p* to the left of the contact 

to i ts constant value p* to the right of the contact. 

No closed-form solution to the Riemann problem is known, not even for the 

case of ideal gases. Iteratively, however one can find the solution to any 

desired accuracy. Current exact Riemann solvers are based on solving a single 

non-linear algebraic equations for the pressure p* (e.g. Toro, 1989a, 1991). 

We now present a linearised approximate solution for the values in the 

s tar region. The one-dimensional, ideal time-dependent Euler equations are 

writ ten in primitive-variable form as 
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W + AW = 0 
t X 

(2) 

with the obvious notation for the vector of unknowns W and the coefficient 

matrix A. The components of W are density (p), pressure (p) and velocity (u); 

a = v'(3rp/p) is the speed of sound and y is the ratio of specific heats. The 

coefficient matrix A depends on the solution vector W which makes system (2) 

non-linear. We perform a local linearisation as follows: 

For sufficiently close nearby states W and W we assume the coefficient 

matrix A is constant and can be expressed in terms of an average s tate W. This 

s ta te is to be defined in terms of the data states W and W . Equations (2) 

become a linear system. The eigenvalues of A are 

X = u - a , X = u , X = u + a 
1 2 3 

with associated right eigenvectors 

(3) 

R = 
1 

- a 

- - 2 
P a 

R = 
2 

p 

0 

0 

• V 

p 

a 

- - 2 
P a 

(4) 

Results (3)-(4) hold for the nonlinear case too, but here eigenvalues and 

eigenvectors are expressed in terms of the average state W, yet to defined. 
• • • • 

In solving the Riemann problem we want to find values for p , u , p and p 

(see Fig. 1). This is accomplished by using standard techniques for linear 

h)nperbolic systems. Across the left wave associated with the eigenvalue X = 

u - a the jumps in p, u and p satisfy 

dp _ du _ dp 

p - a pa 
giving the relations 

4 



a ^ ^ N 
u + — = constant 

u + 
P a 

p = constant 

(5) 

Similar arguments applied to the wave families associated with eigenvalues 

X = u , X = u + a give 

u = constant 

p = constant 
(6) 

across the contact wave and 

a 
— P = constant 

p = constant 

(7) 

P a 

across the right acoustic wave. 

Relations (6) across the contact wave simply confirm the constamcy of p 

and u in the s tar region, which is a property of the exact Riemann solver 

(see Fig. 1). 

Application of (5) across the left acoustic wave gives 

a • a • 
u + — p = u + — p 

P P 

(8) 

1 • ^ 1 • 
\ + ^r-r PL = " * ^ " ^ P 

p a p a 

and of (7) across the r i g h t acoustic waves gives 

(9) 

— p = u - — p * ^ * 

P 
(10) 
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1 • 1 • u - p = u - p 
R *̂ R - - ^ 

(11) 

P a P a 

As for the average values p, a there are several possible options. Two obvious 

choices are 

P = -( P , + P,) 

a = -(a + a ) 
2 L R -' 

(12) 

P = ip^P^) 
1 / 2 

a = - ( a + a ) 
2 L R 

(13) 

The geometric mean for the density has two interesting connections. One 

relates to the Riemann problem for the isothermal gas dynaonics equations, for 

which, if one assumes that both acoustic waves are rarefaction waves, an exact 

solution for the density in the star region exists and is given by 

— 1/2 
p = {.p p ) expl-(u - u )/(2a)] 

where a is a constant sound speed. The second connection is that to Roe's 

linearised Riemann solver (Roe, 1981), the Roe average for the density is 

precisely a geometric mean. 

Another possible choice comes from considering the Riemann problem for the 

isentropic gas dynamics equations. These form a non-linear two by two system 

with a constant region s tar between the acoustic waves. Under the asumption 

tha t these two waves are rarefaction waves one can obtadn a direct solution 

for p and a given as 
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a = - (a + a„) - - (y-i)(u„- u ) 
2 L R 4 R L 

L 

(14) 

Choice (13) appears to be a good compromise between simplicity and 

accuracy, pau'ticularly when our intentions are to use the linearised Riemann 

solver only in regions of slowly-varying data. One could adso select the 

frozen values to satisfy certain desired properties for the linearised Riemann 

solver, such as recognition of shocks or rarefactions. 

Having chosen the average avalues equations {8)-(ll) give the explicit 

solution 

• 1 ^PR " PL^ u = i (u + u ) = - (15) 
2 L R „ - -

2p a 

P* = ^ (P, - P,) - ^ \ - \ ) Ü6) 

Pl = P^^^ (u^ - u*) - ^ (17) 
a 

PI = P^* -?- ("' - \) (18) 
a 

Note that for the case of an isolated contact discontinuity travelling with 

speed u* = u = u the solution (15) - (18) is exact. For numerical purposes 

this is a welcome property of the present approximate Riemann solver; 

capturing contacts is more difficult than capturing shock waves 

We wish to use this Riemann solver only in regions of slowly varying data. 

First we set 
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P^in = ""in {p__ , p^} 

Pn.ax = ""^'^ ^PL • PR> ^ '^^^ 

Q = P / p , 
max ' min 

and restr ic t the use of the linearised Riemann solver (15) - (18) to cases 

in which 

p £ p £ p ( 2 0 ) 
min max 

This restriction forbids the case in which both acoustic waves are 

rau'efactions (p* is less than p ) and also the case of two shocks (p* is 
mln 

greater than p ). The first case can lead to negative densities in the 
max 

linearised solver; this is known to happen in all linearised Riemann solvers 

(Einfeldt et. al 1991). The second case leads to pressure ratios greater than 

Q, which exceeds the pre-chosen allowable ratio. Both the two-rarefaction and 

the two-shock cases arise naturally at reflective boundaries; it would be 

unwise to compromise accuracy and robustness in those regions. 

From equation (16) 

p* = 1 p , (1 + Q) - - ^ (u^ - u ) 
2 mln Z R L 

which, if substituted into (19) gives 

p ^ - p (1 + Q) - A A ( u - u ) £ p 
mln 2 mln 2 R L max 

Some manipulations produce 

-p (0-1) £ p a ( u - u ) s p (Q-1) (21) 
min L R mln 

Thus restrictions (20) on the pressure produce restrictions (21) on the 

velocity difference. 

Some empiricism is still present when selecting Q in (19) and (21). A 

cautious and yet successful choice is Q = 2. 
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The extension of the linearisation to computing solutions to the two or 

three dimensional Euler equations is straightforward, ais in the 

fractional-step procedure only the dimensionally-split Riemann problem needs 

be considered. For the two-dimensional Euler equations the x-split Riemann 

problem has variables p, p, u (normal component of velocity) amd v (tangential 

component of velocity). The structure of Riemann problem is identical to that 

of the one-dimensional case shown in Fig. 1. In fact the solution for p, u and 

p is the same as in (15)-(18) amd the solution for the velocity component v is 

V to the left of the contact wave and v to the right of the contact wave. 
L R ^ 

Note that this is precisely as in the exact solution to the x-split Riemann 

problem. 

As it stands, the linearised Riemann solver can compute entropy-violating 

solutions xmder locally sonic flow conditions. This problem is easily remedied 

by replacing the star state closest to the t-axis (see Fig. 1) by the solution 

along the t-axis obtained by using the exact equations with the value for 

pressure in the region star taiken from the lineairised Riemann solver. 

3. TEST PROBLEMS. 

Two kinds of tests are used to assess the accuracy of the proposed 

linearised Riemann solver. First we consider the local values in the star 

region and compau'e the approximate values to the exact solution. Then we 

assess the performance of the lineairised Riemann solver when used, locally, to 

compute the global solution to the non-linear Euler equations. The locad 

values are used to compute intercell numerical fluxes and then it is the flux 

difference that really matters in the solution updating procedure of 

conservative RP methods. In the author's experience appreciable errors in the 

local values are permissible before they begin to show in the numerical 

results, as we shall see. 

3.1 LOCAL VALUES. 

We consider the Riemann problem with data p = p = 1 . 0 , p = p = 1/2 and 

7 = 1.4. We allow the velocities { and thus the velocity difference) to vary 

and consider three cases. 

Table 1 shows a comparison of the present method with that due to Roe 

(Roe, 1981) and the exact solution. 
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PRESENT 

ROE 

EXACT 

CASE A 

p* U* 

1.0 0.5 

0.8400 0.5482 

0.9689 0.5267 

1.0 

0.9747 

0.9777 

P* ^ R 

0.8571 

0.8881 

0.7953 

PRESENT 

ROE 

EXACT 

PRESENT 

ROE 

EXACT 

CASE B 

0.7500 

0.6108 

0 .7009 

0.7817 

0.8061 

0.7929 

CASE C 

0 .5000 

0 .4033 

0.4982 

1.0634 

1.0751 

1.0604 

0.8214 

0.7904 

0.7758 

0.6429 

0.6119 

0 .6080 

0.6786 

0.7096 

0.6357 

0 .5000 

0.5257 

0.4987 

TABLE 1. Compau'ison of results for local values. 

For case (a) the velocity difference takes the minimum value in inequality 

(21), in case (b) this difference is zero and for case (c) it takes the 

maximum value in inequality (21). The Roe vadues are obtained by 

re-interpreting Roe's Riemann solver as suggested by Toro (1991). It should be 

pointed out that Roe's numerical method does not use the star values of the 

solution of the local Riemann problem. It is legitimate however to use the Roe 

averages, corresponding wave strengths and right eingenvectors to compute the 

jumps in the conserved variables across the waves in the solution of the 

Riemamn problem. In this way we can obtain values for p, u and p in the stau-

region, and we call them the Roe values. 

For the pressure and velocity values the present approximate Riemamn 

solver is consistently more accurate than the re-interpretion of Roe's solver. 

For the density vadues the two approximate solutions are comparable. This test 

is very reassuring. Even more so when we do not propose to use the present 

approximate Riemann solver everjrwhere in the flow field but only at those 

places satisfying inequalities (2) for Q = 2, say. 
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3.2. NUMERICAL APPLICATIONS. 

Here we use the Riemamn-problem solution (15)-(18) locally, to compute 

intercell numericall fluxes as done in the Weighted Average Flux (WAF) method 

proposed by Toro (1989b). An updated version of the method as applied to the 

Euler equations is given by Toro (1991). 

We consider four test problems. The first is a shock-tube test problem 

for which the pressures and densities are in the ratio 2 to 1. These are 

chosen as in section 3.1 with initial discontinuity at x = 0.5. For the 

velocities we take u = u = 0. This problem has exact solution and we use it to 
L R 

assess the performance of the approximations. 

Fig. 2 shows a comparison between the numerical solution using the 

lineau*ised Riemamn solver throughout (s)ntnbol) and the exact solution (line) at 

time t = 0.3 units. The numerical solution is remarkably good for this tes t 

in which conditions (21) with Q = 2 are satisfied throughout. Choice (12) for 

the average values p and a is used. In order to appreciate the quality of the 

solution for this reasonably mild test we solve the same problem using the 

two-step Lax-Wendroff method without artificial viscosity. Fig. 3 shows the 

results . In practice of course one uses the Lax-Wendroff method with 

au*tificial viscosity; this reduces the amplitude of the oscillations but 

smears discontinuities. This test clearly shows that even in the flow regions 

of slowly varying data we need to use sophisticated numericad methods such as 

RP methods. 

The second test problem is the so called Sod's shock-tube test problem 

(Sod, 1978). It consists of a shock tube of unit lenght with diaphragm placed 

at X = 1/2 auid left (L) and right (R) data given as 

p = 1.0 u = 0.0 p = 1.0 

p = 0.125 u = 0.0 p = 0.1 
'^R R '̂ R 
r = L4 

Fig. 4 shows a comparison bewteen the computed (symbol) and exact (line) 

solutions at time 0.25 units. The linearised Riemann solver with average 

values (13) is used throughout. The quality of the solution is the same as 

that in which the exact Riemann solver is used throughout; see Fig. 5. This is 

encouraging, since for this test problem the initial pressure ratio is 10 and 
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the shock wave that results has pressure ratio 3. If average values (12) are 

used the computed solution is similair but slightly inaccurate near the tail of 

the rarefaction wave. Compare to the results of Fig. 6 obtained when Roe's 

method is used 

As a third test for the method in which the linearised Riemann solver is 

used adaptively in conjunction with the exact Riemann solver we take the so 

called blast-wave test of Woodward and Colella (1984). It was specially 

designed to test both the robustness and accuracy of numerical methods. It is 

a severe test . This problem is adso a shock-tube problem but has no exact 

solution. The main features of the solution are however well known and we 

expect our methods to reproduce those features accurately. The exact Riemann 

solver used is that given by Toro (1991). 

A domain of unit length is discretised by M = 3000 cells and the initial 

shock-tube like date consists of three constant states separated by diaphrams 

at X = 0.1 and x = 0.9. The left (L), middle (M) and right (R) states are 

p = 1 . 0 p = 1 . 0 p = 1 . 0 
'^L ^M '^R 

u = 0 . 0 u = 0 . 0 u = 0 . 0 
L M R 

p = 10^ p = 10"^ p = 10^ 
^L *̂ M *̂ R 

7 = 1.4 

Fig. 7 shows the numerical results at time 0.028, shortly after the collision 

of the two strong shocks emanating from the initial discontinuities. The 

numerical solution was obtained with the adaptive Riemamn solver with Q = 2. 

To plotting accuracy there is no difference between this solution and that 

obtadned using the exact Riemann solver throughout. 

The solution was evolved by 5185 time steps and more than fifteen and a 

half million local Riemann problems were solved out of which 99.87. were solved 

by the lineau-ised Riemann solver (15) - (18). 

As a fourth tes t problem we solved the two-dimensional, time-dependent Euler 

equations for flow over a wedge at an amgle of 30 degrees to the oncoming 

stream. Fig. 8 shows the computational domain and the computed isopycnics at a 

fixed time. The flow travels from left to right at a Mach number of 5.5. The 

shock reflection pattern is known as double Mach reflection. To plotting 

accuracy this result is identical to that obtadned when using the exact 

Riemann solver throughout. This two-dimensional computation was carried out by 
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Dr. James Quirk, to whom the author is indebted. 

Finally, a CPU-time comparison is in order. For a typical problem the 

figures are: 1.0 for WAF with the linearised Riemann solver throughout; 1.03 

for WAF using the linearised and exact Riemann solvers adaptively; 1.8 for 

Roe's method and 2.0 for WAF with the exact Riemann solver throughout. 

5. CONCLUSIONS. 

An approximate linearised Riemann solver applicable to the time-dependent 

Euler equations and a Riemann-problem adaptation procedure have been 

presented. For slowly-varying data the solver is sufficienly accurate to be 

used adaptively in conjunction with the exact Riemamn solver. The practical 

usefulness of the proposed schemes is illustrated by solving realistic one and 

two-dimensionad test problems. One of the most severe applications shows that 

the linearised Riemann solver is used to solve over 99 7. of all Riemann 

problems solved in the computations without affecting the accuracy of the 

computed solution. Thus one effectively retains the accuracy and robustness of 

exact Riemann solvers at the computing cost of the very simple approximate 

Riemamn solver presented in this paper. 
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Shock or 
ra re fac t ion 

Fig. 1. Structure of the exact solution to the Riemann problem for the 

time-dependent, one-dimensional Euler equations. There are four constant 

states separated by three waves. Solution in region • star beteen the left and 

right waves is main step to obtain complete solution. 



VELOCITY INTERNAL ENERGY 

Fig. 2. Comparison between the numerical (symbol) and exact solutions for a 

shock-tube problem. The numerical solution was obtained with the WAF method 

using, locally, the present linearised Riemann solver throughout the flow 

field. 
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Fig. 3. Comparison between the numerical (symbol) and exact solution for a 

shock-tube problem. The numerical solution was obtained using the two-step 

Lax-Wendroff method without artificial viscosity. 
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Fig. 4. Comparison between the WAF numerical (s)rmbol) and exact (line) 

solutions to Sod's problem at time 0.25 units. The linearised Riemann solver 

is used throughout. 
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Fig.5 Comparison between the WAF numerical (symbol) and exact (line) 

solutions to Sod's problem at time 0.25 units. The exact Riemann solver is 

used throughout. 
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Fig. 6 Comparison between the Roe numerical (symbol) and exact (line) 
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Fig. 7. Numerical solution (line and symbols) to the blast-wave problem 

Woodward and Colella. The WAF method is used together with the linearised 

the exact Riemann solvers used adaptively. 



Fig. 8. Numerical solution of a double Mach reflection problem 
for flow at Mach 5.5 over a wedge at 30 degrees. The 
linearised and exact Riemann solvers are used adaptively. 


