Treewidth based algorithms for
Tree Containment in phylogenetics

by

Robbert V. Huijsman

To obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday January 31, 2023 at 10:00 AM.

Student number: 4490797
Project Duration: April, 2022 - Januari, 2023

Faculty: Faculty of Applied Mathematics, Delft

Thesis committee: Dr.ir. L.J.J. van Iersel TU Delft, supervisor
Dr. M.E.L. Jones Jones TU Delft, supervisor
Prof.Dr. M.M. de Weerdt TU Delft

o]
TUDelft

1 Abstract

TREECONTAINMENT is a well-known problem within phylogenetics, which asks
whether a binary phylogenetic tree is embedded in a binary phylogenetic net-
work. For this problem, Jones, Weller and van Iersel (2022) [I] have created an
algorithm that uses dynamic programming on tree-decompositions to achieve
a running time that is exponential in the tree-width parameter instead of in
the number of reticulations. However, due to the implicit formulations of two
crucial steps in this algorithm, this running time cannot be achieved in practice
without finding ways to generate the required structures explicitly. This paper
provides two new sub-algorithms that can do that. To further improve the per-
formance of the algorithm, I introduce a number of criteria and other methods
that can be used to reduce the number of structures generated. Additionally,
I describe a way to manipulate the nice tree-decompositions to create a more
favorable order of bags for the dynamic programming. These sub-algorithms
and improvements are used by two new algorithms TWITCH and PITCH, whose
implementations are compared to a brute force algorithm and a new branch-
ing cherry-picking algorithm named BOTCH. The latter has an FPT running
time that is exponential in the number of vertices that have only reticulations
as children. The comparisons show that the implementations of the dynamic
programming algorithms TWITCH and PITCH are slower in practice than the
brute force algorithm, despite their numerous improvements. Of the four new
implementations, BOTCH has the best test results and it is shown to be fast in
practice.

2 Introduction

FPT (fized parameter tractable) algorithms have a time complexity where all ex-
ponential terms are dependant on a certain parameter. Hence, if this parameter
is constant, the time complexity is no longer exponential but instead polyno-
mial. A popular parameter for FPT algorithms is the trecwidth of a graph. This
parameter shows how similar the graph is to a tree and can be very small for
graphs that are close to trees.

Phylogenic trees and networks are used to represent the evolutionary history
of DNA. TREECONTAINMENT is a well-known problem within phylogenetics,
which asks whether a phylogenetic tree is embedded in a phylogenetic network.
This problem can arise when a newly generated network representing the evo-
lutionary history of genomes needs to be confirmed using existing phylogenetic
trees. The former can be a network instead of a tree (for which the problem
would be easy) due to genetic hybridization events that frequently occur in
for example fungi or flora. These hybridization events are represented using
reticulations, which are vertices that have multiple incoming arcs but only one
outgoing arc.

This problem is closely related to NETWORKCONTAINMENT and HYBRIDIZA-
TIONNUMBER. The former asks whether an input network is contained within
another input network, while the latter has a set of input trees and asks whether
there exists a network with at most k reticulations that contains them. Notably,
verifying a solution of a HYBRIDIZATIONNUMBER instance can be done by solv-
ing multiple TREECONTAINMENT instances. Development of new methods for
TreeContainment may in the long term contribute to the development of new
methods for these harder problems, for which no FPT algorithms with reason-
able dependence on the parameter exist.

2.1 Related literature

Kanj et al. (2008) [2] have shown that the TREECONTAINMENT problem is un-
fortunately NP-hard for general binary phylogenetic networks. One approach
to deal with this is by trying to find specific restrictive types of input networks
that do permit polynomial-time algorithms. The following are some examples
of network types for which this approach has been successful: Tree-child net-
works, where Janssen and Murakami (2021) [3] have created an algorithm with
linear time complexity, which can even solve the more general problem NET-
WORKCONTAINMENT. Genetically stable networks (which includes tree-child
networks), where Gambette et al (2016) [4] have created an algorithm with
a quadratic time complexity. Nearly stable networks and reticulation visible
networks, where Weller (2017) [5] has created an algorithm with a linear time
complexity.

A different approach is to try to find an FPT algorithm for the general prob-
lem where the parameter in which it is exponential is limited. Some examples
of this approach are as follows: Kanj et al. (2008) [2] have created an algorithm
with a time complexity of O(2% |N|?), where k is the number of reticulations.

For large values of k, this is an improvement over the well-known brute force
algorithm (also shown in section , which has a O(2¥|N|) time complexity.
Weller (2017) [5] further improved this to a running time of O(3" |N|?) where
t* is the maximum number of “unstable component-roots”. Note that while the
base of the exponent is worse, t* is considered a much smaller exponent. Finally,
Jones et al (2022) [1] have created a new dynamic programming algorithm that
this paper is largely based on. It solves TREECONTAINMENT in (29(°) . |N|)
time complexity, where t is the tree-width of V.

2.2 Motivation

The aforementioned dynamic programming algorithm from Jones et al (2022) [1]
is interesting for multiple reasons. First of all, its running time is exponential in
the tree-width which has some useful properties. For example, Kelk et al (2018)
[6] have shown that the square root of the level (largest number of reticula-
tions in a biconnected component) is an upper bound for the tree-width. Seeing
the effects of this running time in practice is quite interesting, especially given
the lack of other dynamic programming algorithm implementations on tree de-
compositions in phylogenetics. Furthermore, the popularity of tree-width based
fixed parameter tractable algorithms outside of phylogenetics has supported the
development and accessibility of algorithms that can find tree-decompositions.
One of these is the well-known MINIMUM DEGREE HEURISTIC mentioned by
Bodlaender (1993) [7] that is used in one of the implementations in this paper.
Lastly, Jones et al have given an implicit description in some parts of the al-
gorithm, which does not guarantee the possibility of an implementation. Two
steps in the algorithm in particular require generating all structures for which
certain rules hold. However, the approach of generating all possible structures
and removing those that do not follow the specified rules for this would violate
the theoretical running time. Hence, creating the implementation also proves
the practical feasibility of this algorithm, which might encourage the creation
of similar algorithms for other problems in phylogenetics.

2.3 My contributions

In this paper I introduce two new explicitly stated sub-algorithms that can
replace the aforementioned implicit steps from the algorithm from Jones et al
(2022) [1], which makes the implementation of their dynamic programming con-
cept feasible. These sub-algorithms are used in two new algorithms TWITCH and
PITCH, for which I have also created a series of improvements that increase their
speed. Additionally, this paper introduces a new branching cherry-picking algo-
rithm BOTCH that can solve TREECONTAINMENT in O(2" - |N|) time, where ¢ is
the number of nodes that have only reticulations as children. I test implemen-
tations of these algorithms against a brute force algorithm to see their running
times in practice. From these tests, I conclude that the BOTCH algorithm is
quite fast in practice and that the TWITCH and PITCH algorithms are quite slow
in practice, despite their theoretical FPT running times.

3 Preliminaries

An overview of all definitions in this paper is shown in Figure [I} This section
contains all green and blue colored definitions from it.

Graph

Tree) Binary phylogenetic network (3.1) (I‘euh)

Display graph (3.2) Embedding (3.3) Path-decomposition (3.4)

!

Tree-decompaosition (3.5)

!

Nice Tree-decomposition (3.6)

Super-compact (5.1)

Figure 1: Definitions colored red are well known and expected to be familiar
to the reader. Definitions colored green are less well known and described in
this section. Definitions colored blue are algorithm-specific and are introduced
by Jones et al. (2022) [I]. Though the formulations in this paper may differ
slightly, they are functionally equivalent aside from iso-labellings. Definitions
colored orange are new and defined in this paper where needed. An arrow from
a definition a to a definition b shows that b requires prior knowledge of a. The
numbers next to the definition names match the numbers of the definitions in
the paper.

Definition 3.1. A phylogenetic network is a directed acyclic graph where every
node either has indegree 1 or outdegree 1 but not both. A phylogenetic network
is binary if its nodes have indegree and outdegree < 2. The nodes are referred
to by their following types:

1. Nodes with indegree 0 and outdegree 1 are roots. In a phylogenetic net-
work, there may only be one of these.

2. Nodes with indegree 1 and outdegree 0 are leaves.
3. Nodes with indegree 1 and outdegree 2 are tree nodes.

4. Nodes with indegree 2 and outdegree 1 are reticulation nodes.

Additionally, a phylogenetic tree is a phylogenetic network without reticulation
nodes.

In the rest of this paper, all trees and networks are assumed to be binary
phylogenetic trees and binary phylogenetic networks respectively. Nodes and
vertices may be used interchangeably.

Definition 3.2. Given a network NV and a tree T on the same set of leaves, a
display graph D(N,T) is a graph that is the union of all nodes and arcs from
both N and T.

Images of display graphs in this paper will always have the network drawn
on top, the leaves drawn in the middle and the tree drawn on the bottom.
Additionally, leaves are always drawn as squares, whereas non-leaves are drawn
as ellipses. See Figure [14] for an example of this.

Definition 3.3. An embedding is a function ¢ : T'— N that maps every vertex
from T to a vertex of N and every arc of T' to a path in N with the following
properties:

1. fveTNN, o) =v.

2. If wv € A(T), then 6(uv) must be an path from d(u) to 6(v) in N. Fur-
thermore, the paths d(uv) for uv € A(T) must be arc-disjoint.

In the rest of this paper, a node v € N that is in 6(V(T)) is often called an
embedding node, while the corresponding tree node 5! (u) is sometimes referred
to as the embedded node. Similarly, arcs in §(A(T)) are referred to as embedding
arcs with corresponding embedded arcs.

Definition 3.4. Let N be a network. A path decomposition X (N) of N is a path
whose nodes, referred to as bags, are sets S; C V(N) for i € {1,2,...,|X(N)|}.
These bags have the following conditions:

1. For every node a € V(N), there is an 4 such that a € S;.
2. For every arc ab € A(N), there is an i such that a,b € S;.

3. For any vertex a € V(N), the set of all bags that contain it must form a
path.

The number of elements in the largest bag of the decomposition minus 1 is
called the width. The minimal width value of a path decomposition for a given
network N is referred to as the pathwidth or pw(N). Subtracting 1 is done to
ensure that the pathwidth of a path is always 1.

The following is a definition of a similar decomposition where the path is
replaced by a tree.

Definition 3.5. Let N be a network. A tree decomposition X (N) of N is a tree
whose nodes, referred to as bags, are sets S; C V(N) for i € {1,2,...|X(N)|}.
These bags have the following conditions:

1. For every node a € V(N), there is an ¢ such that a € S;.
2. For every arc ab € A(N), there is an i such that a,b € S;.

3. For any vertex a € V(N), the set of all bags that contain it must form a
tree.

Again, the number of elements in the largest bag of the decomposition minus 1
is called the width and the minimal width value of a tree decomposition for a
given network N is referred to as the treewidth or tw(N). Subtracting 1 ensures
that the treewidth of a tree is always 1.

The following definition can apply to either of the two aforementioned de-
compositions:

Definition 3.6. A decomposition X(N) on a network N with bags S; for
i€ {1,2,...|X(N)|} is called nice if its bags are each of one of the following

types:
1. Leaf bags S, where S, =0
2. Introduce bags S, with 1 child bag S, where a € V(S) and S, = S, Ua
3. Forget bags S, with 1 child bag S, where a € V(S) and S, = Sy \ a
4. Join bags S, with 2 child bags S, and S, where S, = S, = S..

3.1 Algorithm specific preliminaries

Definition 3.7. Given a bag S and a set of labels Y, an iso-labelling is a
function ¢« : V(D(N,T)) — S UY where the co-domain value that is assigned
to the node is called the iso-label. It is bijective on S in the sense that no two
nodes in D(N,T) can be given the same labelling from S and every label from
S should be given to some node in D(N,T). However, any number of nodes
may be given labellings from Y. Aditionally, nodes with an iso-label from Y
may only be adjacent nodes with the same iso-label or nodes with an iso-label
from S.

The goal of the iso-labelling is to present which nodes in D(N,T) are corre-
sponding to a node in the current bag. The iso-label FUTURE indicates that
the node’s correspondance to a node in Dyn(Nyn,Trn) is currently unknown,
but will be decided in the future. The iso-label PAST indicates that the node
previously had a correspondance to a node in Dy (Nyy,Trn), which has now
been forgotten. To match the naming of FUTURE and PAST iso-labels, S is
often referred to as the present. For ease of reading, the symbol ¢ (with varying
subscripts) is used for all iso-labellings in the rest of this paper.

Definition 3.8. An (S,Y)—containment structure is a tuple (D(N,T),d,¢)
consisting of a display graph D(N,T), an embedding § on that display graph
and an iso-labeling ¢ with label set Y and present set S.

Definition 3.9. A signature is an (S, { FUTURE, PAST})-containment struc-
ture.

Again for ease of reading, the symbol o (with varying subscripts) is used for
all signatures in the rest of this paper.

Definition 3.10. Arcs and nodes can become redundant in the following ways:
e A non-embedding arc ab € N is redundant if ¢(a) = ¢(b).

e An arc ab € T and all arcs in its embedding path §(ab) are redundant if
t(a) = o(b) = v(a’) Va' € 5(abd).

e A non-embedding node a € N is redundant if all its arcs are redundant.

e A node a € T and its embedding §(a) are redundant if ¢(a) = ¢(6(a)) and
they both only have redundant arcs.

Redundancy is used to limit the size of display graphs in signatures.

Definition 3.11. A signature is compact if it has no network node a € N that
has all of the following properties:

1. a is not an embedding node

2. a has indegree 1 and outdegree 1

3. t(a) € {PAST,FUTURE}

4. 1(b) € {PAST,FUTURE} for any node b adjacent to a

A signature that is not compact can be turned into a compact signature by
compacting all nodes that violate the compactness definition. This is done by
removing the node and replacing any arc of it with a new arc from its parent
to its child in N and in any embedding path in ¢ (if applicable).

The opposite procedure is sometimes referred to as de-compacting a network
arc ab € N. This is done by inserting a node ¢ in between it, which requires
replacing the arc ab with the arcs ac and ¢b in N and in any embedding path
in 4.

Definition 3.12. A compact restriction is a procedure taken on a signature. A
compact {X — Y }-restriction changes the iso-labelling of all nodes iso-labelled
X into the iso-label Y. Subsequently, all nodes and arcs that have become
redundant during this procedure are removed. Lastly, the signature is made
compact by compacting all nodes that violate the compactness properties.

Due to the extensive use of restrictions in some proofs of this paper, the
alternate shorter notation ¢{x_y1(c) is often used to denote a {X — Y}-
restriction on signature o.

Definition 3.13. Let X be a Join bag with children Y, and Yr and let S
be the set of present nodes in X. Then a (S, {LEFT, RIGHT, FUTURE})-
containment structure is referred to as a reconciliation for o.

3.2 Theoretical algorithm

Before heading into the tree-decomposition algorithms developed and imple-
mented for this paper, it is important to mention the theoretical algorithm
created by van Iersel et al. (2022) [I] on which they are based. For lack of a
better name, this will be referred to as THE THEORETICAL ALGORITHM in the
rest of this paper. The pseudo code, in which C'V denotes the collection of
signatures in a bag, is as follows:

Algorithm 1 THE THEORETICAL ALGORITHM
1: Compute tw(Nyy) and tw(Dry(Nin, Tin))
2: if tw(Din(Nin,Tin)) > 2tw(Nry) + 1 then return False
3: Compute a nice tree-decomposition 7 of Drn(Nrn,Trn)

4: for bag X = (P, S, F) € T in a bottom-up traversal do
5: if X is a Leaf bag then

6: CVx <+ {compact signature o | t=1(PAST) = 0}

7: if X is an Forget bag with child bag ¥ = X U {z} then

8: CVx + {¢{Z_>PAST}(U) | 0 € CVy}

9: if X is a Introduce bag with child bag Y = X \ {z} then
10: CVx < {compact signature o | ¢;.pasTi(0) € CVy}
11: if X is a Join bag with children Y, and Yy then
12: for each compact reconciliation p for X do
13: 0L 4 Q{LEFT—PAST,RIGHTFUTURE} (/1)

14: OR + Q{RIGHT—PAST,LEFT—FUTURE} (/)

15: if o, € C'Vy, and or € CVy,, then

16: Add ¢(Lerr RIGHTPAST} (1) to CVx

17: if X is the Root bag then

18: if there is a 0 € X such that :=1(FUTURE) =) then return True

return False

The first two lines of this pseudocode are based on the following theorem by
Janssen et al (2018) [g]:

Theorem 1. Let N be an unrooted binary phylogenetic network and let T be
an unrooted binary phylogenetic tree on the same set of leaves as N. If there
exists an embedding of T in N then tw(Drn(Nin,Tin)) < 2tw(Niy) + 1

For the way this theorem is used in the algorithm’s check, note that a rooted
tree cannot be embedded in a rooted network if the unrooted form of the tree
cannot be embedded in the unrooted form of the network.

The rough idea behind the algorithm is to construct an embedding of Ty in
Nin by navigating through D;n(Nyy,Trn) using a tree-decomposition. Each
bag contains signatures which maintain constructed parts of the input graphs
with the corresponding constructed embeddings. The properties of tree-decompositions
ensure that the algorithm can add a node, add all its neighbors and then per-
manently forget the node again. In this way, the algorithm tries out every

embedding part combination through the node. When more nodes are added,
some of the attempted embedding part combinations will prove impossible and
can be discontinued, while new combinations are made using the successful em-
bedding parts. This is an advantage over the brute force algorithm shown in
Section [09.1] which can only find out that a embedding part does not work when
it has tried every embedding of T7y in Nyy that includes it. Additionally, THE
THEORETICAL ALGORITHM uses the FUTURE iso-label to delay decisions until
more information is known about the remainder of D(N;y,Try). An example
of this is when a node from Ty is added with a corresponding embedding node,
the embedding node will have the iso-labelling FUTURE. This prevents the al-
gorithm from immediately having to decide which network node it should be
embedded to. Some examples of this algorithm’s procedures on forget bags, in-
troduce bags and join bags are shown with images in Section A full example
of this algorithm from start to finish is shown in the appendix in Section

3.3 Examples

To display signatures in images, it is useful to introduce some consistent ways of
showing certain attributes. In the rest of this paper, nodes colored blue have the
FUTURE iso-label, nodes colored green have a present iso-label that is stated
in between round brackets and nodes colored red have a PAST iso-label. Leaves
are represented using rectangles, while other nodes are shown as ellipses. Arcs
displayed with solid arrowheads show that the arc is either an embedded arc or
an embedding arc. Arcs displayed with hollow arrowheads show that the arc
is not part of any embedding path. Embeddings are usually given by showing
a mapping of the nodes, since the combination of the node mapping and the
arrowheads is sufficient to determine all embedding paths (as shown in Section
7).

Within this section, Figure[2]shows two examples of forget node steps, Figure
shows two examples of introduce node steps and Figure 4] shows an example
of a join node step.

(b) Signature oy
(c) Signature o2

Ci)
- <
(a) Tree decomposition < 1) I

segment 5

O G
IS

C)/Q) (% -

€60

(?m

(? (d’) I
<

Figure 2: Examples of two signatures that undergo the forget node steps in
the tree-decomposition shown in image (a). The empty bag is the root and the
other bags are its child and grandchild. The signature o7 shown in image (b)
belongs to the bag containing the nodes a and b and the signature oo shown
in image (c) belongs to the bag containing only node a. The node embedding
dpofopis {6 —>1,7—3, 84, 9—5 12— 11} and the node embedding
d2 of o9 is the same without the node 12. Note that ¢, ,pagry(01) = 02 and
b{a—prasT}(02) = 0y Where oy is the empty signature (with empty functions for
its iso-labelling and embedding). In the former compact restriction, the arcs
(1,10), (10,11) and (10,2) become redundant when node 10 gets the PAST
iso-label. In turn, the nodes 10, 11 and 12 also become redundant. The latter
restriction causes all arcs and nodes to become redundant once node 7 is assigned
the PAST iso-label.

10

(c) Signature o2

(b) Signature o4

(a) Tree decomposition
segment

-0
e

2(a) \

> I

DO
oRENC

Figure 3: Examples of two signatures created by the introduce node steps on
the tree-decomposition shown in image (a). The empty bag is the leaf and the
other bags are its parent and grandparent. The signature o1 shown in image (b)
belongs to the bag containing only node a and the signature oo shown in image
(c) belongs to the bag containing the nodes a and b. The node embedding ; of
o118 {6 = 1, 5 — 5} and the node embedding d5 of o5 is the same. Note that
b{a—sruTURE} (01) = 0g Where oy is the empty signature (with empty functions
for its iso-labelling and embedding) and ¢y,—,ruTUure}(02) = 01. The former
is due to all arcs and nodes in o7 becoming redundant once the node 2 gets a
FUTURE iso-label. For the latter, note arcs (3,8) and (3, 7) become redundant
once 3 gets the FUTURE iso-label. This results in node 7 becoming redundant
and node 8 violating the compactness properties.

11

(b) Signature o, (c) Signature or

(d) Signature o

>

2
t

Figure 4: Example of a join node signature creation. Image (a) shows a seg-
ment of a tree-decomposition where the top-most bag is a join bag. The sig-
nature oy, from image (b) is contained in the left child bag and o from im-
age (c) is contained in the right child bag. These signatures have an iden-
tical embedding 6, = g = {h = 1,6 — 2,3 — 3,4 — 4}. The rec-
onciliation p in this case is identical to o5 or or with the following iso-
labelling: ¢, = {1,2 — LEFT, 5,6 — RIGHT, 3 — a, 4 — b}. Note that
¢{RIGHT—>PAST,LEFT—>PAST} (,u) =0, which is shown in image (d) The nodes 1
and 5 are removed due to redundancy.

(a) Tree decomposi-
tion segment

12

4 Implemented decomposition algorithms

The first algorithm introduced in this paper is referred to as TWITCH, which is
an acronym for ”tree-width implementation of TreeContainment by Huijsman”.
This algorithm is very similar to THE THEORETICAL ALGORITHM in its struc-
ture, but has some major differences in the procedures for introduce bags and
join bags. The key idea is that TWITCH explicitly constructs a set of signatures
for a bag based on the set of signatures of its children bags, whereas THE THE-
ORETICAL ALGORITHM constructs the same set by first generating all possible
signatures and then throwing away those that do not follow certain rules.

Let C'Vx denote the collection of signatures for bag X and let oy = (0, ¢g, tg)
be an "empty” signature where ¢y and ¢y are empty functions. Then the pseudo
code of TWITCH is as follows:

Algorithm 2 TWITCH

1: Compute a nice tree-decomposition 7 of Dry(Nrn, Trn)
2: for bag X = (P, S, F) € T in a bottom-up traversal do
3 if X is a Leaf bag then

4: CVyx + {O’@}

5: if X is an Forget bag with child bag Y = X U {z} then
6: CVx < {¢r.pasty(o) | 0 € CVy}

7: if X is a Introduce bag with child bag Y = X \ {z} then
8: CVx + Ugecv, explicit_introduce node(o, z)

9: if X is a Join bag with children Y7, and Yy then

10: CVx < U,, cov, .onccvy explicit_join_node(or, or)
11: if X is the Root bag then

12: if oy € CVx then return True

return False

Note that the seemingly different requirements in leaf bags between TWITCH
and THE THEORETICAL ALGORITHM do not make a difference. Signatures in
leaf bags cannot have present or PAST iso-labelled nodes since there have not
been any nodes introduced yet, and any signature with only FUTURE iso-
labelled nodes will have all of its arcs and vertices be redundant. Similarly,
signatures in root bags cannot have present iso-labelled nodes and thus if it also
has no FUTURE iso-labelled nodes, any PAST iso-labelled nodes would become
redundant.

The ¢(.ruTurg} can only affect the node z, its neighbors and its embed-
ding/embedded arcs (the inverse for introducing nodes, as shown in the proof of
Lemma [3). Hence, ¢;.rurure}(0) can be generated by taking o and check-
ing the redundancy and compact definitions locally instead of checking them in
the entire signature. This allows it to run with a constant running time. The
in-depth workings of this are explained in Appendix [C]

The two functions explicit_introduce_node and explicit_join_node generate
sets of signatures; their workings are more advanced and are explained in Section

13

and Section [6] respectively.

The second algorithm introduced in this paper is referred to as PITCH, which
is an acronym for ”path-width implementation of TreeContainment by Huijs-
man”. This algorithm differs from TWITCH by using a path-decomposition in-
stead of tree-decomposition. This allows for the usage of “super-compactness”
when introducing nodes, which is explained in Section 5.2 and Section[6.3] Since
path-decompositions have no join bags, PITCH does not have a join node step.
The pseudo code is as follows:

Algorithm 3 PITCH

1: Compute a nice path-decomposition P of Din(Nin,TIn)
2: for bag X = (P, S, F) € P in a bottom-up traversal do
3 if X is a Leaf bag then

4 CVx + {O’@}

5 if X is an Forget bag with child bag Y = X U {z} then

6: CVx + {qi){zﬁpAST}(U) | 0 € CVy}

7 if X is a Introduce bag with child bag Y = X \ {z} then

8 CVx + Ugecv, super-compact_explicit_introduce node(o, z)
9 if X is the Root bag then

10: if oy € CVx then return True
return False

Note that the first two lines of pseudo code in THE THEORETICAL AL-
GORITHM are omitted in TWITCH and PITCH. These lines made sure that
the algorithm immediately returned False if tw(D;n(Nin,Tin)) > 2tw(Niy).
The reason this check is omitted is that it requires an exact calculation of
tw(Drn(Nyin,Trn)), instead of the tree-decomposition that can be generated
by a heuristical approach. The most accessible implementation for this was the
treewidth function from SageMath [9]. Unfortunately, testing during develop-
ment showed that this check rarely returned False while simultaneously taking
more time than the PITCH algorithm itself. Hence, even though it is required
for the theoretical time complexity result for THE THEORETICAL ALGORITHM,
the check is not used in the implementations introduced in this paper.

This paper does not contain a centralized proof of correctness for TWITCH
and PITCH. Instead, it proves that the explicit functions used in TWITCH
and PITCH (which replace the implicit procedures in THE THEORETICAL ALGO-
RITHM) are sufficient to generate all signatures that are required for the proof
that van Tersel et al. (2022) [I] have created for THE THEORETICAL ALGORITHM.

14

5 Introduce node

When introducing new nodes, THE THEORETICAL ALGORITHM from van Ilersel
et al. (2022) [I] adds all signatures to the new bag for which there exists a
certain restriction in the child bag. This could theoretically be done by going
through all possible signatures of the required type and checking whether there
is a compact-{z =FUTURE}-restriction of it in the child bag. van Iersel et al.
(2022) [1] have shown an upper bound on the number of possible valid compact
signatures for each bag of 20(K%) Generating those by trying to create every
possible signature and removing those that are not a compact-{z -=FUTURE}-
restriction of a signature in the child bag is rather impractical, since the number
of possible signatures far surpasses the upper bound of 20(K*) Instead, this pa-
per introduces the sub-algorithm EXPLICIT_INTRODUCE_NODE, which is used in
the TWITCH algorithm as mentioned in Section d] EXPLICIT_INTRODUCE_NODE
aims to create only the required signatures by extending existing signatures in
the child bag.

5.1 Explicit introduce node

New node construction:

Let a be the node that is new in the introduce bag. To find out which existing
or new node a’ € D(N,T) could receive the iso-label a, the explicit introduce
node procedure goes the following steps:

1. Initiate a tuple of lists named present_list. For each parent b of a in
Din(Nrn,Trn) check if there exists a node b’ = ¢~1(b) € D(N,T). If
that is the case, do the following:

e Create a list of all children ¢ of ¥ in D(N,T) for which «(c) =
FUTURE and add it to the present_list tuple.

e If b € Nyy and a is a tree node or a reticulation node, create a list of
all outgoing arcs b'c’ of b’ to children ¢’ that could be de-compacted
to create a’. To be able to de-compact them, they should have the
following properties:

(a) ¢(c’) #PAST
(b) bu(¢') & Nin
(c) b € o(A(T))

2. For each child b of a in Dyn(Nyn,Trn) do the same as in step 1 and add
the acquired lists to the present_list tuple.

3. Initiate the list possible_candidates by taking the intersection

possible_candidates = N A;. This is done to check which nodes
A;Epresent_list

or arcs found in steps 1 and 2 have all the present parents and children in
the correct configuration.

15

4. Do the following based on the results of step 3:

(a) If possible_candidates # (), do the following:

e For each node a’ € possible_candidates, create a copy of the sig-

nature in which the node is iso-labeled ¢(a’) = a.

e For each arc b'¢’ € possible_candidates, also create a copy sig-

nature in which the arc b’c’ is de-compacted to create a’. Then
iso-label ¢(a’) = a.

(b) If possible_candidates = () while there were present neighbors in the
display graph, the function immediately returns (.

(c) If possible_candidates = () and there were no present neighbors in the
display graph, do the following:

i.

ii.

Create a copy signature with a newly created node a’ that is
iso-labelled ¢(a’) = a. Then do one of the following depending
on a:
o If a € Ny NTry (ais aleaf), let §(a) = o
e Ifa € Nyy\Tin: create b € T, iso-label it «(b') = FUTURE
and let 6(b') = a’. Also create copy signature without o
where a’ ¢ 6(T).
o Ifa € Trny \Nyn: create b’ € N, iso-label it ¢(b') = FUTURE
and let §(a’) = ¥'.
Check whether there are existing nodes with the FUTURE iso-
label that have the same node type as a in Dyn(Nyn,Tin). For
each, create a copy signature with the chosen node iso-labelled
a.

Adjacent arc construction:

Once these steps are done, there is a list of new signatures where the iso-label a
has been assigned to a new or existing node o’ in D(N,T). The following steps
construct any missing adjacent arcs and possible embedding paths of the node

a'.

5. Make requirements for additional arcs of a’ needed to make sure the num-
bers of incoming and outgoing arcs of a’ in D(N, T') match the numbers of
incoming and outgoing arcs of a in Dyn(Nyn,Trn). Two lists parent_list
and child_list respectively contain the number of required parents and chil-
dren that are currently missing. These lists also contain their types, which
is used to make handle leafs and certain edge cases. An example of this
can be seen in Figure

16

(b) D(N,T) during the introduc-
tion of a

(a) Din(Nin,TiN)

CD
O /

RN KNI
RN

Figure 5: Example of a node introduction. Node a is being introduced in the
signature shown in figure (b) by iso-labelling node ¢(2) = a. This signature has
the embedding 6 = {8 -1, 7— 2, 6 >3, 4 =4, 5—=5}. In D;n(Nin, Tin)
in figure (a), a has one tree node child and one leaf child. In figure (b), a
already has one child that is a tree node (node 3). Hence, the second child that
is currently missing should be a leaf node. The child_list (that is used for arc
requirements) therefore contains 1 leaf node.

6. Check if there are existing nodes or arcs that can be de-compacted in
D(N,T) to satisfy these requirements in parent_list and child_list from
step 5.

7. If new embedding paths will be created from the arcs to neighbors, check
if there are non-embedding nodes with degree 1 that can be inserted in
between embedding paths. These will be referred to as “extra nodes”.

8. Create a copy signature for each combination from steps 7 and 8, in which
all @’ adjacent arcs are added in the following way.

(a) If a is a leaf, the arc to a parent in the network and the arc to the
parent in the tree are added.

(b) If a € T, add neighbors (as specified in steps 5 and 6) of a and their
embeddings. Additionally, add copies of the new signature with any
combination of the “extra nodes” from step 9 added in between new
network arcs and add combinations with extra new nodes specifically
next to a.

17

(c) If a € ¢(T) (as determined in step 5), add neighbors (as specified in
steps 5 and 6) of a and their corresponding embedded nodes.

(d) If a € N\ ¢(T), create all three options for embedding paths if a is
a reticulation node or a tree node:

i. No path through a.
ii. A path through a from the leftmost parent or child of a.
iii. A path through a from the rightmost parent or child of a.

5.2 Super-compactness

When introducing a node into the network and creating its embedding node
neighbor, a new non-embedding node can be inserted in between the intro-
duced node and the embedding node neighbor. This does not alter the signa-
ture’s compactness, since the non-embedding node is adjacent to the introduced
PRESENT node. Since this is possible for all neighbors, it can increase the num-
ber of possible signatures considerably. Meanwhile, the added signatures also
have a larger size due to the additional nodes, which can give more options for
neighbors in the next node introductions. This motivates the following defini-
tion.

Definition 5.1. A signature is super-compact if it is compact and has no
indegree-1, outdegree-1 non-embedding FUTURE network nodes with one FU-
TURE node neighbor.

18

(a) Compact signature
(b) Super-compact signa-
ture

Ao

D) Gk
R

Figure 6: Two signatures that show the difference between compactness and
super-compactness. Let ¢, = {6 — 2,5 — 1,7 — 3,8 — 4} be the embedding
in both (a) and (b). Then node 9 in (a) is a non-embedding node that does not
fulfill the super-compactness criteria.

When using path-decompositions, it is safe to only consider super compact
restrictions since the non-embedding node can always be added later in between
if needed. This intuition is proven later in Lemmal[7} In the example from Figure
this is done when node 9 is introduced by de-compacting (1, 3). However,
only generating super-compact signatures can cause issues for the join node steps
using tree-decompositions, which is shown in Section This gives rise to an
alternate sub-algorithm called SUPER-COMPACT_EXPLICIT_INTRODUCE_NODE,
which is used in the PITCH algorithm that operates on path-decompositions
instead of tree-decompositions.

5.3 Improvements

When introducing nodes in specific situations, some of the options can be aban-
doned before further processing is done. This saves time by requiring fewer
actions or in some cases even having fewer signatures. Here is a list of the most
notable optimizations made in the explicit introduce node implementation:

e Forced embeddings: When an introduced network node has two leaf
children in the input graph, the node must be an embedding node. Hence,
the introduce constructor abandons the processing of any signature with
this condition where the node is not an embedding node. The same is
done for the root node in the network.

19

e Interchangeable nodes and leaves: When a new non-leaf node z is
introduced in the THE THEORETICAL ALGORITHM and ¢~!(z) is missing
a child ¢, in the signatures of the child bag. Then THE THEORETICAL
ALGORITHM will add signatures where c, is an embedding node and signa-
tures where ¢, is a non-embedding node in the embedding path (z, ¢, c..),
where c._ is the child of ¢,. In the latter signatures, there is a variant of
the signatures in which c., is a leaf and a variant of the signatures in
which c., is not a leaf. This is somewhat undesirable since it increases
the number of signatures in each bag, however it is necessary in certain
situations. When a non-leaf network embedding node z is introduced, it
could be that (unbeknownst to the algorithm) the embedding solution(s)
of Drn(Nyn,Trn) would require an embedding path from z to a leaf with
two or more non-embedding nodes in between. An example of this situa-
tion is the display graph D;n(Nyn,Trn) shown in Figure when node
a is introduced first as an embedding node. The embedding path can
only be extended by de-compacting it and adding another non-embedding
node in between the path. This means that the end of the embedding
path remains c._, which is an issue when c., is not a leaf.

EXPLICIT_INTRODUCE_NODE handles this differently. Instead, it only cre-
ates signatures where c._ is not a leaf, and then fixes the issue when
it occurs by changing c., and its corresponding embedded node into a
leaf. This can be done when a leaf node y is introduced and there is a
tree node with outdegree 0 embedded to a network node that also has
outdegree 0. In this case, EXPLICIT_INTRODUCE_NODE will create an ex-
tra signature where the two nodes are transformed into one leaf with
the label y. This is functionally doing the same as originally passing
both a signature where the node is a leaf and a signature where the
nodes are separate. However, by only passing one option and changing
it into the other when necessary, the work required for this structure
in subsequent bags is reduced. This is even more relevant for SUPER-
COMPACT_EXPLICIT_INTRODUCE_NODE, which is more reliant on adding
nodes in between paths later than creating initial long paths, due to the
super-compactness property. An example of the change of a node to a leaf
is shown for SUPER-COMPACT_EXPLICIT_INTRODUCE_NODE in Figure [I0]

20

(a) Input display graph

b) Initial signature
() & (c) Subsequent signature

Figure 7 Example of a situation where SUPER-
COMPACT_EXPLICIT_INTRODUCE_NODE uses interchangeable nodes and
leaves. When the children of node 1 are created in (b), it is unknown whether
they are leaves since a has no leaf children in the input display graph in (a).
When node f is introduced in (c), nodes 3 and 7 are merged into a leaf node.

e Root to root embedding: Note that the introduce node implementa-
tion assumes that every embedding node can always have its incoming
and outgoing arcs be embedding arcs to new or existing embedding nodes
(with possible extra nodes in between). This is trivially true for outgoing
arcs, since every path must lead to a leaf and leaves are always embed-
ded to themselves. Hence, every embedding node always has a number
of embedding node descendants equal or larger than its outdegree. For
incoming arcs, this assumption is not trivial and requires that we always
embed the root from the tree to the root from the network. Otherwise,
no ancestor of the embedding node in the network corresponding to the
root from the tree could be an embedding since there is no ancestor of
the root in the tree to embed to them. To show that this assumption
can be made without affecting the correctness of the algorithm, note the
following lemma:

Lemma 2. If there exists an embedding on D(N,T), then there exists an
embedding where the root node in T is embedded to the root node in N.

Proof. Assume there is an embedding o where the root node r¢ in T is
not embedded to the root node rx in N, but instead to another node r’.

21

Let p be the path from 7 to r/. Then there can be no embedding nodes in
p aside from 7’ itself. Let ¢ be the child of 77 and let p. be the embedding
path in o corresponding to the tree arc rrc. Then let ¢’ be an function
on T, A(T) identical to o except for the node rr being mapped to ry and
the arc rrc being mapped to the path p. Up. Then ¢’ is an embedding,
which proves the lemma. O

Embedding the root of the tree to the root of the network can only be
done reliably when the roots have outdegree 1. A counterexample can be
found in Section [Al

Mapping the root to the root is very advantageous, since it eliminates one
option (that multiplies with the other options) for every embedding node
introduction in the network. It also guarantees that reticulation nodes are
never embedding nodes, since a reticulation node could otherwise be the
embedding node corresponding to the root.

Lemma 3. Let X be an introduce bag that introduces node z, with child bag
Y. EXPLICIT INTRODUCE NODE generates every compact signature o of which
there exists a compact-{z —FUTURE}-restriction in bag Y.

Proof. Let oy be a signature from bag Y and let z be the node that is intro-
duced in bag X. Let ox be a signature from X such that oy is the compact-
{# 2FUTURE}-restriction of ox.

Assume «a is a node in Dx(Nx,Tx) that is not a neighbor of z or part of
a embedding path of z. Then a must exist in Dy (Ny,Ty), since it cannot be
removed by the compact-{z -FUTURE}-restriction by the definitions of redun-
dancy and compactness. Hence, any change from Dy (Ny,Ty) to Dx(Nx,Tx)
can only occur in neighbors of z or embedding paths of z.

Now assume that a is a neighbor of z in Dyn(Nrn, Trn), and the arc between
a and z is not added in Dx(Nx,Tx). In subsequent bags, this arc can only
be added to a parent bag when a compact-{a -FUTURE}-restriction would
remove it from a signature in the child bag. Since one of the arc’s ends (z) will
now no longer be iso-labelled FUTURE, the arc can never become redundant.
Hence, the arc cannot be added by introduction nodes unless it is introduced
immediately. If a itself is not an embedding node, the same holds for any arc
ab from a to a new embedding node b.

Now, instead assume a is an existing node that should be part of a new
embedding path of z, but is not added to it. In subsequent bags, this node
can only be added to the embedding path if the compact-{a —FUTURE}-
restriction would remove it from a signature in the child bag. Since z is no longer
iso-labelled FUTURE, the arc in the tree that is embedded to the embedding
path can no longer become redundant. Hence, the arcs connecting a with the
rest of the embedding path cannot become redundant and therefore a cannot
become redundant. Therefore, a cannot be added to the embedding path by
introduction nodes unless it is introduced immediately. Note that this does
not apply if a was not already existent in the network. In that case, a can be
introduced later by de-compacting an arc in the embedding path.

22

Hence, introduce node should add z to the signature and all its adjacent
nodes and embedding paths (excluding nodes that can be added by de-compacting
an arc later). This is exactly what is done in explicit introduce node, as ex-
plained in Section [5.1] O

Lemma 4. Let X be an introduce bag that introduces node z, with child bag
Y. EXPLICIT INTRODUCE NODE only generates compact signatures o of which
there exists an compact-{z —FUTURE}-restriction in bag Y .

This is clear from the specific ways in which explicit introduce node creates
new nodes and arcs. It only creates new nodes and arcs in the neighbors of the
introduced node and its embedding paths. These are exactly the parts that can
be changed from signatures in the previous bag, as shown in the first part of
the proof of Theorem |3| These previous two lemmas can be combined into the
following:

Lemma 5. Let X be an introduce bag that introduces node z, with child bag
Y. EXPLICIT INTRODUCE NODE generates exactly all compact signatures o of
which there exists an compact-{z — FUTURE}-restriction in bag Y.

This is sufficient to prove the correctness of its use in the TWITCH algorithm
due to the similarities with THE THEORETICAL ALGORITHM. An identical lemma,
exists for SUPER-COMPACT EXPLICIT INTRODUCE NODE:

Lemma 6. Let X be an introduce bag that introduces node z, with child bag
Y. SUPER-COMPACT EXPLICIT INTRODUCE NODE generates ezxactly all super-
compact signatures o of which there exists an compact-{z — FUTURE}-restriction
m bag Y.

The proof of this lemma is nearly identical to that of the combined proofs
of Lemma [3] and Lemma [4] However, this alone is not sufficient to prove the
workings of PITCH. It is also necessary to show that every possible embedding
structure that can occur within D;n(Nyn,Trn) can eventually be created by
using super-compactness node introductions.

Lemma 7. When every node is introduced once in a path-decomposition using
SUPER-COMPACT_EXPLICIT_INTRODUCE_NODE, every required possible embed-
ding structure that can occur within Din(Nin,Tin) can eventually be created.

Let a be the node that is given the iso-label z when z is introduced into
D,(N,,T,). Let z’ be a neighbor of z in the input graph, and let b be a
node that will be given the iso-label 2’ at some point. Depending on the order
of introductions, a and/or b can be newly created nodes, or a and/or b can
already be present in Dy (Ny, Ty) with the FUTURE iso-label. Without loss of
generality, assume b is a’s child. In the following summation of cases, the cases
where a node is introduced from the opposite side of the display graph (tree or
network) will be noted with O.

23

1. zeT
Nodes a and b will be created if they do not already exist in the Dy (N, Ty),
after which the arc (a, b) will be constructed. Note the following variation
of this case:

(01) ¢(a) or ¢(b) is introduced before a
In this case, a signature will be created where an embedding path is
created from ¢(a) to ¢(b). When this is done, (a,b) is constructed in
T as the arc that is embedded to the embedding path.

2. zegp(T)
(a) b€ o(T)

Since a and b are both embeddings, the arc (a,b) can be added as an
embedding path without any special procedures. The embedded arc
in the tree will be (¢~ 1(a),»~1(b)). Note the following variation of
this case:

02 ¢~ 1(a) or ¢~1(b) is introduced before a
In this case, a signature will be created where an embedded arc
is created from ¢~1(a) to ¢~1(b). When this is done, (a,b) is
constructed in T as the embedding path corresponding to the
embedded arc.
(b) b ¢ (T)
Since a is an embedding node, any arc starting at a must be part
of an embedding path. An embedding path cannot stop at b since b
is not an embedding node. Hence, the embedding path ((a,b), (b, ¢))
will be created using some existing or new embedding node c¢. The
embedded arc in the tree will thus be (¢~*(a), »~1(c)). The creation
of the embedding path differs depending on the previous existence of
b:

i. be D,(N,,T,)
Here, b will be used as an extra node and inserted in between
a and c¢ during the creation of the embedding path. This also
applies to when ¢~1(a) is introduced before a (O3).

ii. b¢ Dy(Ny,T,) Here, b will later be inserted in between a and ¢
by de-compacting the arc (a, ¢). This also applies to when ¢~ (a)
is introduced before a (04).

3. z € N\ ¢(T) When a is not an embedding node, it cannot be the start
of the path. Either a is created and connected to some existing or new
embedding node ¢, or a is created by de-compacting an arc. In the latter
case, a already has an embedding path going through it. In that case, b
can only be a non-embedding node and it can be connected through an arc
without any difficulties since there would be no path using the arc (a,b). If
a is not created by de-compacting an arc, b can either be a non-embedding
node or an embedding node:

24

(a) beo(T)
Let ¢ be a new or existing embedding node. Then a embedding path
can be constructed from ¢ to b, going through a. Note the following
variation of this case:

(05) ¢~1(b) is introduced before a or b
In this case, a signature will be created where an embedded arc
is created from ¢~!(a) to ¢~1(b). When this is done, (a,b) is
constructed in T as the embedding path corresponding to the
embedded arc.

(b) b ¢ o(T)
In this case, (a,b) can be constructed as an arc without any embed-
ding path using it. Alternatively, an embedding path can be created
that goes through a, but uses b as an extra node in between a and
an embedding descendant of a.

Hence, explicit introduce node can introduce any node with any arc to any other
adjacent node, in any setting (tree nodes, embedding nodes, non-embedding
nodes, combinations of these etc.), regardless of the order of introductions.

25

6 Join node

Similar to introduce node, THE THEORETICAL ALGORITHM generates every pos-
sible structure (compact reconciliations in this case), and then removes those
that do not satisfy certain requirements. To avoid doing this, this paper in-
troduces the sub-algorithm EXPLICIT_JOIN_NODE. This sub-algorithm instead
creates all signatures that satisfy the requirements directly. This is done in the
following way:

Let CVx be a join bag and let o7, and or be signatures in the left child bag
and the right child bag respectively

L. Calculate ¢ipastruTUrE) (L) and ¢rpasT—ruTure)(or). The imple-
mentation of this is very similar to that of the restrictions taken in forget
node steps.

2. For each restricted signature calculated in step 1, check if there are nodes
that can be changed into leaves (as described in Section . Change
nodes that should certainly be leaves into leaves and try every combination
of nodes or leaves for those that remain uncertain.

3. Check if the resulting signatures from step 2 are isomorphic (as described
in Section [7.1]). If they are isomorphic, compute the mapping and let o/
and o, be the versions of the signatures oy and op with the changed

leaves.
4. Create the resulting signature o = o/ U o’ %)),
gs1g L{L,RHPAST}(R\¢{PASTHFUTURE}(R))
using the isomorphism mapping from step 3. The union U here

{L,R—PAST}
denotes a construction where the display graph and embeddings are cre-
ated using the union and its iso-labelling is defined using the subscript
text instructions. The setminus \ denotes a construction where all nodes
and arcs from the signature right of the symbol are removed from the
signature left of the symbol. The iso-labellings (aside from removing the
aforementioned nodes) is unchanged. This construction is defined more
formally in Section [6.2]

5. Compact any nodes that violate the compactness properties and remove
any nodes or arcs that are redundant in o.

The first two steps are done in a single loop that goes through all signatures
of both the left and right bags once. The last two steps are done in a double
loop that goes through every combination of one signature from the left bag and
one signature from the right bag. The second and fourth steps are explained in
detail in Section [6.1] and Section [6.2] respectively.

6.1 Uncertain leaf nodes

As mentioned in Section [5.3] nodes are sometimes changed into leaves when
necessary. Situations can occur where a signature from one child bag has PAST

26

iso-labeled leaf nodes, while the signature from the other child bag has not yet
changed these (now FUTURE iso-labeled) nodes into leaves. To compare these
signatures, a series check is done on all tree nodes (since network nodes might
be non-embedding nodes which cannot be leaves). These checks are shown in
the flowchart in Figure

| Does x have iso-label FUTURE and out-degree 07

Yes

| Does the parent ., have an iso-label in 7 |

/
Does the parent p sy of the

embedding 8(x) have an so-label m §7

Yes

| Does p) have a leaf’ child in D(N, T)?

‘ Does i(p,) have a leaf child in (N, T)? [

Are all children of up 5,) leaves in D(N, T)? ‘ Are all children of i(p) leaves m D(N, T)?

Is the other child of py, a leaf? |

No

No

No

Is the other child of p, a leaf?

No

Is the other child of pgy) a
FUTURE iso-labelled cmbuidmg node
with indegree-1 and outdegree-07

Daes the other child of py have a
FUTURE iso-label and autdegree-0?

Figure 8: A flowchart that shows actions taken in EXPLICIT_JOIN_NODE, based
on the properties of a tree node x.

Note that only the out-degree of the tree node is checked and not the in-
degree or the degrees of the embedding node. This is done since tree nodes
cannot have indegree-2 and since the embedding node always has identical in-
degree and outdegree as the embedded tree node. Also note that the iso-labelling
of the embedding node is not checked. If the embedding node would have an
iso-labelling in S U {PAST}, then it would already either have been a leaf or
a node with outdegree larger than 1 (and thus the embedded node also has
outdegree larger than 1). Hence, it can be assumed that the embedding node
has a FUTURE iso-label.

27

6.2 Signature construction

This subsections shows how to construct the resulting signature that was de-
scribed in step 4 of EXPLICIT_JOIN_NODE in Section@ Let f : ¢pasTt—ruTUrE}(OL) —
dpasT—FUTURE} (OR) be the mapping for the isomorphism between the restric-

tions. Then the algorithm makes a copy o of o, and loops through every node

a € Dr(Ng,Tr). If f(a) is not defined, create a new node element a’ (with a
unique number). The set of nodes a € Dg(Ng, Tr) for which f(a) is not defined

is referred to in Section@ as 0z \ ¢1paST—FUTURE} (0k). When this is done for
ai,...,a,, extend

f(z) = f(z)if 2 € ¢pasT—ruTUuRE} (OL)
ajif v =a;, foriel,...,n

When this is done, the algorithm loops through all arcs ab € Dgr(Ng,Tr) and
does adds the arc f'(a)f'(b) to o. In the python library networkx used for
phylogenetic networks in this implementation, adding these arcs f(a)f’(b) also
automatically adds any nodes f'(a) or f/(b) if they were not yet present in o.
The embeddings are added in the same way by using the extended mapping f.
The iso-labelling for « € D(N,T) is then defined by

tr(x) if f’(x) is undefined (i.e. x ¢ Dgr(Ng,TR))
tr(x) if f'(z) is defined but f(x) is undefined (i.e. ¢ D (N, Tr)
@) PAST if f(z) is defined and ¢r(x) = PAST or (x(f(z)) = PAST
vz) = —_—
(i.e. x € ¢rpasT—ruTUrE}(0L))
FUTURE if f(x) is defined and v (z) # PAST and vz(f(x)) # PAST
tp(x) = g(x) if f(z) is defined and ¢f(z) € S
After these have been added, the resulting signature is the signature that was
: 3 3 _ /! ! !
earlier referred to in Section|6|as o = UL{L,R—%AST} (O'R\¢{PAST_>FUTURE} (UR)).

The following is an important lemma that shows the correctness of this join node
approach.

Lemma 8. Let (LUR,S,F) be a join bag and let or, and or be signatures in
the left child bag and the right child bag respectively. The { PAST — FUTURE}-
restrictions of oy, and ogr are isomorphic if and only if there is a valid compact
reconciliation pu and a signature o such that:

1. 0 = ¢{LEFT,RIGHT—PAST} (1)
2. 0L = G{LEFT—PAST,RIGHT—FUTURE} (1)
3. OR = Q{LEFT—FUTURE,RIGHT—PAST} (1)

Proof. To prove ”<" let there be valid compact reconciliation p and a signature
o with properties 1,2 and 3 (as shown in Lemma . By the definition of a

28

reconciliation, there are no PAST nodes in p. Hence,

¢{PAST—>FUTURE} (oL
@{PASTFUTURE} (¢{LEFTHPAST,RIGHTHFUTURE} (1)

)
)
@{LEFT—FUTURE,RIGHT»FUTURE} (/4)
)

¢{PASTFUTURE} (P{LEFT FUTURE,RIGHT PAST} (/1)
¢{PASTFUTURE} (OR)-

Note that these equations hold true due to the transitivity of restrictions, which
is proven by van Iersel et al. (2022) [I, Lemma 4].

To prove "=", let ¢pastruTurg}(0r) and ¢pastruTURE} (OR) be iso-
morphic. For ¢ and p, use the following constructions:

©w=c (0r \ ¢(pasT—FUTURE} (OR))

3 U
{L>LEFT,RRIGHT}

0 =Q{LEFT, RIGHT—PAST} (1)

Then property 1 follows immediately from the construction of ¢ and u. For
property 2, start with the direction

orL g(b{LEFTHPAST,RIGHT%FUTURE}(U)

=Q{LEFT—PAST,RIGHT >FUTURE} (UL (UR \ @{PAST—FUTURE} (UR)))

U
{L—»LEFT,R—RIGHT}

Let ab be an arc in o, and assume ab ¢ 0, € ¢{LEFT-PAST,RIGHT—FUTURE} (1)
Neither endpoint a or b can be given an iso-label from the present, otherwise

the arc is always in ¢ Err—pasT,RIGHTFUTURE}(#). There are three cases:

1. ab is a non-embedding arc. Then ab can only be redundant in o if ¢(a) =
1(b). However, this is impossible since t1,(a) = ¢ (b) and tg(a) = tr(b).

2. ab is a tree arc with embedding path §(ab).

(a) vr(a) = (b)) = FUTURE. Assume the union changes the iso-
labelling by having ¢1,(b) = tgr(b) = PAST. Then the {LEFT —
PAST,RIGHT — FUTURE}-restriction still ensures that t(a) =
t(b) = FUTURE. Assume that the nodes ¢ € d5(ab) have iso-
labelling ¢1,(¢/) = PAST. Then «(¢’) = PAST. Hence, ab does not
become redundant in this construction and has not changed its iso-
labelling either.

(b) tr(a) = ¢r(b) = PAST. This is almost identical to (a).

3. ab is an embedding arc. This is almost identical to (2).

29

The proof of property 3 is identical when using the following construction:

= U
=0y (LLEFT B RIGHT) (or \ ¢pasT—ruTURE} (OR))

L) OR
{L—LEFT,R—RIGHT}

(o1 \ ¢pasT—ruTURE} (0L))-

R U
{L—LEFT,R—RIGHT}

To prove the other direction (o7 2 ¢{LErT—PAST,RIGHTFUTURE} (1)), let
ab be an arc in

}{LEFT—PAST,RIGHT »FUTURE} (1) =

@{LEFT—PAST,RIGHT»FUTURE} (UL (or \ ¢pasT—ruTurE} (OR))

U
{L—»LEFT,R—RIGHT}

(or\ ¢{PAST—>FUTURE}(UR))> =

oy, U
{LPAST,R 5FUTURE}

and assume that ab ¢ op. Since the restriction cannot add arcs (it can only

take them away) and ab ¢ oy, it follows that ab € (UR\QS{pAST_,FUTURE}(JR)).

Hence, ab € o but ab is removed by the restriction ¢ pasT—ruTURE} ON OR.

Since ab ¢ ¢{PAST~>FUTURE} (O'R)7 it also follows that ab ¢ ¢{PAST~>FUTURE} (O'L)

since they are isomorphic. However, ab is not removed by the ¢{1ErTPAST RIGHT-FUTURE}
restriction of the union. In both restrictions, the nodes in R are iso-labelled FU-

TURE. Hence, the union with oy must add or changes something that prevents

ab from being removed by ¢{LEFT—>PAST,RIGHT—>FUTURE}-

For ab to become redundant in ¢pasr—rurure}(0r), it must be that
tr(a),tr(b) ¢ S. Since ®{PASTFUTURE} (or) and ¢{PASTHFUTURE}(0'R) are
isomorphic, it follows that ¢z (a),cr(b) ¢ S since present nodes are unchanged
by ¢rpasT—ruTUurg}- There are two options for ab:

1. ab is a non-embedding arc. Then ab would be redundant if ¢(a) = ¢(b).
Hence, having ab exist in o would require tg(a) = PAST and tg(b) =
FUTURE or the other way around, both of which go against the iso-
labelling rules in og.

2. abis a tree arc with embedding path dg(ab). Since both become redundant
with the same criteria, ab could be the the tree arc or some arc in the
embedding path without loss of generalization. Assume §g(ab) contains no
present nodes, otherwise it cannot become redundant in ¢(pasT . FUTURE}-
Since PAST and FUTURE iso-labelled nodes may not be adjacent, it must
be that tg(a) = tr(b) and tg(a) # tr(c’) for ¢ € dr(ab). There is again
two cases:

(a) tg(a) = tr(b) = PAST, tgr(¢’) = FUTURE for ¢ € dgr(ab). If
tp(a) = FUTURE, then ta) = tgr(a) = PAST due to the union

30

restriction. If ¢1(¢/) = PAST for ¢’ € dr(ab) then ab and the arcs in
0(ab) will become redundant immediately.

(b) tr(a) = tr(b) = FUTURE, tg(c') = PAST for ¢ € dg(ab). This is
very similar to the (a).

Hence, if ab would be made redundant from or by ¢(past—ruTurg)}, there is
nothing that can be added in the specified union with oy that can prevent ab
from becoming redundant in ¢y ErT_PAST RIGHT »FUTURE}-

Now assume that ab is removed in ¢(pasT—FUTURE} because an adjacent
node is compacted. Note that the arc must be an embedding arc since otherwise
with the other criteria of a compaction, it would be removed by redundancy.
Compactions require nodes to be non-embedding nodes, have indegree-1 and
outdegree-1, and have the same iso-label as its parent and child. Hence, there
are three cases to be considered:

1. An endpoint of ab was compacted in ¢(pasT—ruTURE} due to a change in
it being an embedding node, while the union has caused it to no longer
be an embedding node. A restriction cannot remove a tree node from
a signature without also removing its embedding node, so an embedding
node in a signature can never become a non-embedding node.

2. One endpoint of ab was compacted in ¢ pasT—ruTURE} due to a change in
its indegree and outdegree, but the union restriction has changed that. As
already established, arcs within o that are made redundant by ¢ pasT,FUTURE}
are also removed by the ¢(rprTPAST RIGHTFUTURE} €ven after taking
the union with or. Hence, the indegree and outdegree cannot be made
smaller by taking the union. The indegree and outdegree can also not
be made bigger, since this would require the node to have indegree-1 and
outdegree-1 in oi. In this case, og would not be a compact signature.

3. An endpoint of ab was compacted in ¢pasT—ruTUurE} due to a change in
it having the same iso-label as its child and parent in o, but the union has
changed that. It has already been established that the union restriction
cannot cause an arc to have endpoints with differing iso-labels.

Since there cannot be a node without adjacent arcs in signatures, this also
concludes that there is no node in o that is removed by the ¢ pasT,FUTURE}
but not by d){LEFT—)PAST,RIGHT—)FUTURE} after taking the union with gr,.

Again, the proof of property 3 is identical when using the following construc-
tion:

=0 (or \ ¢pasT—FUTURE} (OR))

L U
{L-LEFT,R—RIGHT}

L U OR
{L—LEFT,R—RIGHT}

U .
R BT Ao RIGHT) (o1 \ ¢pasT—ruTURE} (0L))

31

6.3 Super-compact incompatibility

From testing, the join node procedure implementation does not fully work with
the super-compact node introductions. Signatures that represent similar graph
structures and embeddings from the left and right child bags of a join node
often do not match up. This is caused by a difference between the PAST iso-
labelled graph structure parts in one child bag with the corresponding FUTURE
iso-labelled structure parts in the other. Notably, the PAST iso-labelled graph
structure parts seem to be larger with more nodes, even when using the same
super-compact principle in the forget node procedure. This results in expected
signatures missing from the join node bags, which further results in some of
the test cases giving an incorrect False result. Due to the great time and effort
required to identify the issues behind missing expected signatures in test cases
(that often include thousands of signatures), gaining a greater understanding of
this issue is rather tricky and trying to solve this problem has been left out of
the scope of this paper.

32

7 Signature filters

Certain features of signatures can be used to disqualify them without affecting
the end result of the algorithm. Often, this can be done before the creation
of such a feature during the explicit introduce node sub algorithm. However,
sometimes this can be difficult or impractical to implement in such a way. In-
stead, certain features are checked in loops that go through all signatures in a
bag before the algorithm can proceed to the next bag. Since these checks occur
after the features have already been created, the checks are sometimes referred
to in this paper as filters. This section describes all filters in detail.

7.1 Isomorphism check

Definition 7.1. Two Signatures g1 = (Dl(Nl, Tl), 51, Ll) and 092 = (DQ(NQ, TQ), 52, LQ)
are isomorphic if there exists a bijective mapping f : V/(D1(N1,T1)) — V(D2(N2, Tz))
such that:

1. ab e A(D1(N1,Th)) < f(a)f(b) € A(D3(N2,T3)).
. t1(a) = 1a(f(a)) for a € V(D1(Ny,T1))

3. £(61(a)) = b>(f(a)) for a € V(T)

4. f(91(ab)) = d2(f(ab)) for ab € A(T1)

[\

Isomorphic signatures can occur in bags due to symmetries in the introduc-
tion of new nodes or due to the removal of non-symmetric nodes or arcs due
to redundancy or compacting of PAST nodes. For two isomorphic signatures,
the object class implementation will not return True when checked on equality.
However, both signatures will behave exactly the same under all procedures of
TWITCH or PITCH. Hence, they are detrimental to the running time of the
algorithm, as the same work will need to be done multiple times. Worse still,
the consequences of an isomorphism created in one bag may persist throughout
the rest of the tree-decomposition if not removed. When this effect occurs in
multiple bags, the running time increase can even be exponential in the number
of bags in the tree decomposition.

To combat this problem, a check is done after each bag that removes isomor-
phisms. This uses the VF2 algorithm made by Cordella et all [I0], which can
detect isomorphisms between two directed graphs with and returns a mapping.
This algorithm has a worst-case time complexity of O(|N|! - |N|) and best-case
time complexity of O(|N|?). Before passing the display graph to this algorithm,
several node and arc attributes are added to simulate the iso-labelling and the
embedding in the display graph. This is done in the following way:

e For every node, add the node’s iso-labelling to the node attribute.

e For every network arc, add a binary value that displays whether the arc
is part of some embedding path.

33

e For every tree node, add a new outgoing arc to the corresponding embed-
ding node in the network. Give the added arc a special attribute such that
it doesn’t interfere with normal arcs.

Lemma 9. The three additional attributes mentioned above ensure that the VF2
algorithm only finds isomorphism mappings that match all 4 properties of the
signature isomorphism (Definition .

Proof. Assume the VF2 algorithm returns an isomorphism mapping. Property
1 is included in the definition of (non-attribute) graph isomorphisms, which
the VF2 algorithm creates. Property 2 is ensured by adding the iso-labelling
attributes to each node. For property 3, let there be nodes a € T1 and o’ € Ny
such that d1(a) = a’. By construction there is an arc aa’ with special attribute
to indicate that it represents an embedding. By graph isomorphisms, it holds
that f(a)f(a’) € A(D2(N2,T3)). Then since an embedding is injective, there
can be no other arcs with the special embedding attribute adjacent to f(a) or
f(a’). Hence f(a) must be embedded to f(a’), or in other words d2(f(a)) =
f(a’) = f(é1(a)). For property 4, note that there can only be one embedding
path from an embedding node to another embedding node. Since the arcs of
such a path are given a special arc attribute, the mapping is forced to have
embedding paths match between the two signatures. O

7.2 Descendant check

In the network N, the set of nodes that are adjacent to a certain node can
change when arcs are de-compacted. However, when a node is a descendant of
another node, it will always remain a descendant of that node. The descendant
check goes through N by starting at the leaves and iterating through their pre-
decessors until it reaches the root. During this iteration, it keeps track of every
present node’s set of present descendants. These sets of present descendants
are then compared to pre-calculated sets of descendants for nodes in Nyy. If a
present node has a present node descendant that is not a descendant in Ny,
the signature is eliminated.

When a node is changed or an arc is added somewhere in the display graph,
all ancestors of that node may have their list of descendants altered. Hence, a
local descendant check (that would only check nodes near the change) is often
not sufficient for this purpose. Also note that when all nodes are checked for
their descendants, there is no need to check for their ancestors due to symmetry
(a is an ancestor of b if b is a descendant of a).

7.3 Distance check

The distance check removes signatures where for any combination of present
nodes a,b such that there is a path from a to b, with present iso-labellings
t(a),(b) € S, the following equation does not hold:

distance(a,b) < distance(t(a), (b)) (1)

max max

34

Note that it can be assumed that there is a path from ¢(a) to ¢(b), otherwise the
descendant check would have already removed the signature prior. The distance
check can be done safely since a path between a and b in the signature cannot
become shorter unless nodes are compacted or made redundant. Both require
nodes to be iso-labelled PAST, which in turn requires the node to have had a
present iso-label at some point. When the maximum distance between a and b
is larger than the maximum distance in Dyn(Nry,Trn), there are not enough
present iso-labels between a and b to create this path.

Additionally, for each present node a the distance to the furthest descendant
is checked. The difference here is that the furthest descendant can also be a
non-present node. If this distance is larger than the distance from ¢(a) to its
furthest descendant in Dyn(Nyn,Trn) then the signature is removed.

Conveniently, the distances of the nodes in the signatures can be calculated
in the same loop as the descendant check. This minimizes the amount of extra
work required.

7.4 Grandparent check

The grandparent check removes signatures which have present nodes a,b with
present iso-labellings ¢(a), ¢(b) € S such that ¢(a) is the grandparent of ¢(b) but
a is not the parent or grandparent of b. When a node is introduced, all its
neighbors are added immediately as previously explained in Section [} Hence,
if b is introduced after a, b can always be attached to a child of a or b can be
introduced by de-compacting the arc between a and one of a’s children. When
a is introduced after b, the same can be done for a parent of b. Hence, any
signature where a is not a parent or grandparent of b after both a¢ and b have
been introduced can be removed safely.

7.5 Sibling check

Sibling check removes signatures where two present nodes a,b € D(N,T) do
not share a common parent while ¢(a) and ¢(b) do share a common parent
in Dyny(Nin,Tin). When two present nodes a,b € D(N,T) do not share a
common parent, for similar reasons as for the grandparent check, they cannot
share a common parent in any subsequent signatures. Hence, those signatures
where a and b do not share a common parent can be removed by the sibling
check without affecting the outcome of the algorithm. Sibling check does the
same for nodes who share a common child in D;n(Nrn,Trn), for which the
same reasoning applies.

7.6 Neighbor check

Since arcs cannot be de-compacted in T, checks for T specifically can be much
more thorough. For every node a € V(T), neighbor check collects the set of
present neighbors {b € V(T) | b is adjacent to a and ¢(b) € S}, and checks if
that set is contained within any of the pre-calculated sets of neighbors of nodes

35

in Try. If there is a node for which this does not hold true, the signature is
removed. This can be done for any node in 7', regardless of its iso-labelling.

7.7 Quantity checks

The quantity check is the simplest check performed on signatures. It checks a
number of inequalities:

L [V(N)| < [V(Nrw)|
2. [V(T)| < [V(T1N)
3. 67N (V(N)| < V(i)

4. {a € V(N) such that a is a reticulation node}| < IV(NIN)I;‘V(T’N”

5. |[{a € V(N) such that a is a non-embedding tree node}| < |V(N’N)|2_|V(TIN)‘

If any of these inequalities do not hold for a given signature, that signature is
removed. Most of these checks do not remove signatures in large test-cases with
large amounts of reticulations. They are instead most helpful to the algorithm
when dealing with with very odd test-cases. An advantage of these is that most
of them run in O(1) speed.

36

8 Nice-decomposition manipulation

When an introduced node a € Dyn(Nry, Try) is adjacent b € Dy (Nyin, Trn),
the iso-labelling definition requires :=!(a) to be to be adjacent to t=1(b). This
means that the introduction of a has fewer options, and thus results in fewer
signatures, if b has already been introduced prior (and vice versa).

This property of having introduced nodes be adjacent to other present nodes
can be prioritised during the transition from a tree/path-decomposition to a
"nice” tree/path-decomposition. The following is a piece of pseudo code that
shows how this is accomplished in the leaves of the decompositions:

Algorithm 4 Nice-decomposition manipulation

1: procedure IMPROVED_NICE_DECOMPOSITION_LEAVES(X (D(N,T)))
2 subgraphs = ()

3 for leaf bag X, € X(D(N,T)) do

4 Let X = {z1,...z,}

5: for z € (X}, \ done_nodes) do

6: todo_list + todo list \ {x}

7 done_nodes < done_nodes U {z}

8 connected_nodes + {x}

9 for y € (X \ done_nodes) do

10: if y is adjacent to connected_nodes then

11: connected_nodes < connected_nodes U {y}

12: done_nodes < done_nodes U {y}

13: subgraphs + subgraphs U {connected_nodes}

14: Let (Ch)n<|subgraphs| be the sequence of sets C,, € subgraphs, re-
ordered from largest to smallest.

15: Let (an)n<|x,| be the sequence of elements in Cj, ..., C., where the
first |C] elements are in C etc.

16: Replace Xy with (an)n<|x,| in X(D(N,T))

17: for 0 <i < |Xj| do

18: Add the arc ((an)n<i, (@n)n<i—1)} to X(D(N,T))

return False

Note that the subsequences used in line 18 refer to bags with the elements
of the subsequence as its elements. Also note that the second loop for y does
not iterate over {x}, as done_nodes has been updated between the two loops.
Lastly, note that this code defines (ay)n<o = 0, which forms the leaf nodes in
the nice-decomposition.

By the construction of the connected_nodes sets, the subsequent elements
within the connected subgraphs are always adjacent to eachother. By the re-
ordering of the sets based on their size, the algorithm also prioritises nodes in
larger connected sub-graphs of present nodes over nodes in smaller connected
sub-graphs of present nodes.

The nice-decomposition segments in between bags (as opposed to leaves) are

37

done in a somewhat similar way. The biggest difference is that the code now
searches for nodes from the parent bag that are adjacent to those in the child
bag, instead of searching for connected subgraphs. This makes the in between
segments a little easier, and hence the pseudo code is omitted.

38

9 Implemented branching algorithms

This section introduces new implementations of two branching algorithms that
do not use tree-decompositions. These algorithms have the added role within
this paper to provide a benchmark for testing the tree-decomposition algorithms
discussed in Section 4

9.1 Brute force

The following is a brute force algorithm that, given D;n(Nin,Trn), attempts
to find an embedding of Ty in N;x by going through all possible embeddings
in a depth-first manner.

Algorithm 5 Brute force

1: procedure BRUTE_FORCE((D;n(Nin,TiN)))
2 todo_list + {Nrn}

3 while todo_list # () do

4: N < last element of todo_list

5: todo_list < todo list \ {N}

6 if there are reticulation nodes in N then
7 x < reticulation node

8

9

Ny« N
: Remove the left incoming arc of z in Ny,
10: ”Clean up” the left parent of z in Ny,
11: Nr <+ N
12: Remove the right incoming arc of « in Ng
13: ”Clean up” the right parent of z in Ng
14: todo_list < todo list U{Np, Ng}
15: else
16: if N’ is isomorphic with T' then
17: return T'rue

return False

Detecting whether N’ is isomorphic with T is done using the tree isomor-
phism algorithm made by Aho et al. [I1]. This algorithm’s time complexity is
linear in the number of nodes in the trees O(|T)).

When the incoming arcs are removed in lines 9 and 12, this can leave former
tree node parents with indegree 1 and outdegree 1 or former reticulation node
parents with indegree 2 and outdegree 0 B Cleaning up a node in this algorithm
hence refers to compacting these nodes with indegree 1 and outdegree 1 and
removing these nodes with indegree 2 and outdegree 0. The latter can lead to
a chain reaction where multiple cleanups need to be performed in a row.

The idea behind this brute force algorithm is relatively well-known and there-
fore a proof of its correctness is omitted in this paper. Its worst-case running

INote that = cannot have a parent that is the root, since roots have outdegree 1 in this
paper and thus are unable to have a reticulation node child.

39

time is O(2" - |Trn|), where 7 is the number of reticulation nodes. For positive
test-cases, the more possible embeddings exist, the more likely it is that the
depth-first implementation of brute force finds one quickly. Hence, its average
running time for positive test-cases will be faster by a factor of s + 1 where s is
the number of possible embeddings of T7n in Nyy.

9.2 BOTCH

This section introduces an algorithm that will be referred to in this paper as
BOTCH. This is an acronym for ”branching onwards to tree-child by Hui-
jsman”. This algorithm uses the cherry-picking algorithm from Janssen and
Murakami (2021) [3] and specifically its implementation from Huijsman (2019)
[12]. This algorithm can solve TreeContainment in linear time for the following
class of networks:

Definition 9.1. A phylogenetic network is tree-child if it does not contain
either of the following;:

1. A reticulation node with a reticulation node parent.
2. A tree node whose children are both reticulation nodes.

BOTCH uses brute-force techniques to remove network nodes that do not
follow this tree-child criteria, in order to turn the network into a tree-child
network. This makes the implementation similar to that of the brute-force
algorithm shown in Section [0.1] aside from the following differences:

1. The algorithm now only selects reticulation nodes that violate the tree-
child criteria instead of all reticulation nodes for the branching process.

2. The isomorphism check is changed to the tree-child algorithm implemen-
tation.

The pseudo-code is as follows:

40

Algorithm 6 BOTCH

1: procedure BOTCH((D[N(NIN,TIN)))
2 todo_list <+ {Nrn}

3 while todo_list # () do

4: N <« last element of todo_list

5: todo_list + todo list \ {N}
6

7

8

9

x < node_selector(N)
if © # None then

NL «~ N
: Remove the left incoming arc of x in N,
10: ”Clean up” the left parent of x in Ny,
11: Nr+ N
12: Remove the right incoming arc of x in Ng
13: ”Clean up” the right parent of = in Ng
14: todo_list < todo-list U{Nr, Nr}
15: else
16: if cherry_picking_algorithm(N,Trn) = True then
17: return True

return False

The simple function node_selector checks the parents and siblings of reticu-
lation nodes to find a node that violates the tree-child criteria. When no node
is found, a None statement is passed. The function cherry_picking_algorithm
refers to the aforementioned implementation from Huijsman (2019) [12].

Its worst-case running time complexity is O(2% - |Nry|), where k is the num-
ber of reticulation nodes that violate the tree-child criteria.

41

10 Testing method

10.1 Test graph generation

Positive and negative test cases are generated differently. Both involve first
generating a tree and then generating N;y based on the tree. For positive
test-cases, the generated tree is used as T7y. For negative test-cases, a second
tree is generated independently of the first and then used as Tjy. This second
randomly generated tree is not embedded in the network most of the time, as
opposed to the first tree which is always embedded. When the second tree
happens to be embedded by chance, it is removed from the test-cases manually.

Creating the tree is done by initiating all leaf nodes and then carefully yet
randomly attaching tree nodes until there is just one connected subgraph re-
maining. The network is then created by taking a copy of the tree, changing
the node names from all non-leaf nodes. Reticulation nodes are added by de-
compacting 2 arcs and connecting the nodes created from these de-compactions.
This is done carefully to avoid creating loops in the graph. The pseudo code is
on the next page.

Lines 14 to 18 warrant a bit of explanation here. The goal is to ”replicate”
tree arcs ab by constructing an arc cd. When b > n — 1, the node b is a tree
node and the algorithm needs to let d be a new node corresponding to b, but
exclusive to the network. This is done by adding the number of nodes in the
tree n — 1 to it. When b < n — 1, the node b is a leaf node and the algorithm
can use d = b since leaves are identical in the tree and the network. The same is
done for ¢, which is always a new node since leaves do not have outgoing arcs.

Line 23 mentions a function named descendant_search. This simple function
takes a node and returns a list of all its descendants.

The implementation in the code uses uses two functions named number_to_letters
and letters_to_number. These functions convert integers 0,1, ... to strings
a,b,...,y,z,aa,ab... and back. These optional functions are used to create
clarity between the letter nodes in Ty and N;y and the numbered nodes in
signatures. The use of these functions is omitted in the pseudo-code.

The order of the resulting lists of arcs are then randomized to make sure the
algorithms are not effected by it. For example, it influences the arc selection of
the brute force algorithm, which causes it to find embeddings much faster for
non-randomized lists of arcs than it would normally.

10.2 Decompositions

The tree-decompositions are made using the treewidth_min_degree function of the
networkx python library, which uses the well-known MINIMUM DEGREE HEURIS-
TIC shown by Bodlaender (1993) [7]. The path decompositions are the certifi-
cates from the pathwidth function in Sage. The running times of the algorithms
that create these decompositions are not included in the running times for com-
parisons with brute force. Note that the tree-decompositions are made using
a heuristic, while the path-decompositions are made using an exact algorithm.

42

Algorithm 7 Graph generation

1: procedure MAKE_TREE_ARCS(n)
2 for i € {0,...,n—1} do
3 leaf <1
4 leaf list < leaf list U{leaf}
5: arc_list < ()
6 while leaf list # () do
7 T4 n
8 n<n+1
9: Yy, z <random consecutive elements of leaf _list.
10: arclist < arclist U{(x,y), (x, 2)}
11: leaf list < (leaf list \ {y, z}) U{z}
return arc.list
12: procedure MAKE_NETWORK_ARCS(n, m, tree_arc_list)

13: for arc ab € tree_arc_list do
14: c+—a+n—1

15: if b >n —1 then

16: d<—b+n—-1

17: else

18: d<+b

19: arclist < arclist U{(c,d)}

20: E=3xn-2
21: for i€ {0,1,...,m} do

22: (a,b), (c,d) + random arcs in arc_list

23: while ab = cd or a € descendant_search(c) do

24: (a,b), (¢,d) + random arcs in arc_list

25: <+ k

26: y<—k+1

27: k< k+2

28: arclist < arc.list \ {(a,b), (c,d)}

29: arclist « arclist U {(a,z), (z,b), (c,y), (y,d), (z,y)}

return arc_list

43

This choice was made purely based on convenience of available existing imple-
mentations.

44

11 Results

This section contains the results of the testing that was done with the four
algorithms discussed in this paper. To reiterate: TWITCH is the new tree-
decomposition algorithm, PITCH is the new path-decomposition algorithm with
super-compactness that allows for smaller structures, BRUTE FORCE is a well-
known brute-force branching algorithm used primarily as a benchmark and
BOTCH is a new branching algorithm that uses a cherry-picking algorithm.
Each of the following scenarios had up to 100 test cases. The algorithms
were run on increasingly large test-cases until a test-case required more than
an hour. Test-cases that took an hour are represented in the plots using cross
markers. Due to the variance in running times for these algorithms, it is possible
that some test-cases after the last performed one take less than an hour. These
are not included, aside from one exception in Figure due to some oddities.
The test cases for PITCH were sometimes limited by the path-decomposition
algorithm, which is why those running times often stop quite a bit before the
running times get close to an hour. This can be seen when there is no cross
marker at the end. Also note that the running times for generating the tree-
decompositions and path-decompositions are not included in these results. The
test cases where Nyy contains 17y are referred to as positive test cases, and
those where Njxn does not contain Ty are referred to as megative test cases.

(a) positive test cases (b) negative test cases

reticulations reticulations
0 5 10 15 20 25 30 35 5 10 15 20 25 30 35

X X X o® X
3 ° L 3 .
10 . . 10 . K]
. 0
°® .)
o L
102 * - 102 . -
. . L
. e . o .
* .
10? o o®* * 10% A
T L T
E 104 . o E 100 D
. o
L . L . ®
e o 0
- . o N .
10 o o . 10 o -
.
. . s Brute Force «® o s Brute Force
1072 . BOTCH 1072 . BOTCH
o e ® TWITCH " e TWITCH
N e e PITCH 3 e PITCH

1073 { @ ssten 10~

o] 10 20 30 40 50 60 70

30

40
leaves

50

Figure 9: Test cases with a ratio of 2 leaves : 1 reticulation

45

60 70

(a) 5 leaves, varying reticulations, (b) 5 reticulations, varying leaves

positive test cases positive test cases
X X r XX X
« Brute Force « Brute Force
10° 4 = BOTCH 10° 4 = BOTCH
" s TWITCH © s PITCH
. .
107] N . . * e PICH w] e, e
S e
10 4 10 4 . .
5 5 e 0
E 0 E 0 8
E 1004 E 1004 . .
1071 10-14
10-2 10-2
103 4 103 1 ‘ ‘
0 20) 60 80 100
reticulations leaves

Figure 10: Test cases where one parameter is constant 5.

Figures [TI] and [[2] show the running time performance of BRUTE FORCE
and BOTCH on test cases with larger input graphs. The TWITCH and PITCH
algorithms were left out of these tests due to their inability to handle large
input graphs as shown in earlier tests. The wrong answer is ignored in

(a) 10 leaves, varying reticulations, (b) 10 reticulations, varying leaves,
positive test cases positive test cases
X
. Brute Force L] Brute Force
10°4 . BoTcH . 10° 4 = BOTCH
s L]
.
102 4 . .- .. 102 4
10! § . L4 L] 10! §
B . . o) . Jo%e” el
(1) o
E 1074 % ’ .) . E 1004 . .- .'w--:. ."-l‘h e,
. . . Hes
10-1 o ® e ° 1074 .
LI * . ° ‘e
:
10724 s : 10724 o... oot '.‘..“... . Tl
S uturer lue o
. .
1031 e ee 10-34
o 10 20 30 40 0 20 40 60 80 100
reticulations leaves

Figure 11: Test cases where one parameter is constant 10.

46

(a) 20 leaves, varying reticulations,

positive test cases

(b) 20 reticulations, varying leaves,
positive test cases

e Brute Force
BOTCH

time(s)

time(s)

® Brute Force
BOTCH

o 5 10

15 20 25
reticulations

30

35 0 20

40 60 80 100

leaves

Figure 12: Test cases where one parameter is constant 20.

Note that all tests of TWITCH up to this point have been performed with an
older version of the code, which did not contain two minor changes. Due to the
nature of these changes, the new speed should be a bit slower.

To further analyse the time complexity behaviour of TWITCH, a series of
tests have been performed on test cases that had a constant treewidth. These
tests have been performed both with and without the quantity check described
in Section to see if that changes the behaviour. Test cases with up to 8
reticulations and were set up, but only those with 1 or 2 reticulations could
be completed within an hour. Due to the low number of completed test cases,
each test was done three times on different graphs with identical sizes. Table

contains the results of these tests.

Test number

Quantity check: ON

Quantity check: OFF

1 reticulation Test 1 0.38602s 3.30119s
Test 2 0.31601s 2.89516s
Test 3 0.85505s 60.2694s
Average 0.51903s 22.1553s
2 reticulations Test 1 26.8035s 90.2631s
Test 2 196.707s 826.123s
Test 3 423.327s 2340.86s
Average 215.613s 1085.75s

Table 1: Results of TWITCH for testcases with constant treewidth 3 and constant
number of leaves 3.

47

Another small test was done with PITCH to show the effectiveness of the
signature filters and super-compactness. The results are shown in Table

Bag Signatures in PITCH | Signatures without | Signatures without
signature filters super-compactness

Bagl | 3 4 11

Bag2 | 11 64 56

Bag 3 | 40 550 207

Bag 4 | 111 1656 564

Bag 5 | 16 126530 DNF

Bag 6 | 120 DNF DNF

Table 2: Numbers of signatures within bags for PITCH, PITCH without the signa-
ture filters and PITCH without super-compactness. These bags were taken from
a path-decomposition of a positive test case with 8 leaves and 4 reticulations
(reused from one of the tests shown in Figure @ In this path-decomposition,
bag 0 was a leaf bag and bags 1-6 were all consecutive introduce bags. DNF is
used to indicate that a bag did not finish within an hour.

During these tests, all of the four algorithms returned the correct results for
both the positive and negative test cases that they managed to complete. Both
TWITCH and PITCH reported a small amount of minor error debug messages
during testing, but these have not affected the outcomes.

48

12 Conclusion

The attempts to create a version of the algorithm from van Iersel et al (2022) [I]
that could be implemented in practice have been successful. Notably, TWITCH
manages to produce the same outcomes as THE THEORETICAL ALGORITHM for
the introduce node and join node steps in very different but implementation-
wise feasible ways. Meanwhile, PITCH uses a path-decomposition instead of
a tree-decomposition which allows for a further improvement of the introduce
node step through super-compactness. The number of possible signatures in
these algorithms has been further reduced by the filters shown in Section [7] and
the nice-decomposition manipulation shown in Section [§]

Despite these efforts to increase the speed of TWITCH and PITCH, they have
still failed to outperform the benchmark implementation of BRUTE FORCE as
shown in Section Additionally, although the number and size of test cases
that could be completed was somewhat limited, it does seem that the tree-
width and path-width-based running time scaling of TWITCH and PITCH in
their current implementations is worse than the reticulation-based running time
scaling of BRUTE FORCE.

From the tests in Section it seems that the other new algorithm BOTCH
is the fastest among the tested algorithms. Only in some of the more odd test
cases from Figure [I0a] and Figure with high number of reticulations and
very low numbers of leaves, did it occur that BRUTE FORCE was faster than
BOTCH. Having very few leaves increases the proportion of reticulation nodes in
Ny, which increases the percentage of reticulation nodes that violate the tree-
child properties. When most reticulation nodes violate the tree-child property,
BOTCH loses its main advantage of having to branch much less than BRUTE
FORCE. Interestingly, debug information shows that BRUTE FORCE requires far
fewer embedding “guesses” than BOTCH to find a correct embedding. When
the number of reticulations is much higher than the number of leaves, there
are usually many correct possible embeddings. It could be possible that the
BOTCH algorithm’s consecutive embedding ”guesses” are more similar to each
other than the consecutive embedding ” guesses” of the BRUTE FORCE algorithm.
Another oddity in the comparison between BOTCH and BRUTE FORCE can be
seen in Figure When leaves are added, the proportion of reticulation
nodes within Nj;y decreases due to the increase in tree nodes. Hence, the
number of reticulation nodes that violate the tree-child properties decreases,
which improves the running time of BOTCH. For BRUTE FORCE, an opposite
effect occurs. While the number of reticulation nodes remains constant, the
average number of reticulations removed per branch due to consecutive cleanups
decreases due to the increase in tree nodes. This means that more branches need
to be checked, which slows down the running time of BRUTE FORCE.

Direct comparisons between TWITCH and PITCH are made somewhat diffi-
cult since the TWITCH implementation uses a tree-decomposition heuristic while
the PITCH implementation uses an exact path-decomposition, which is not ac-
counted for in the running times. Based on the running time results and the
signature quantity tests, I would expect the difference between compact signa-

49

tures and super-compact signatures to have a greater impact on the running
time than the difference between using a tree-decomposition and using a path-
decomposition. Furthermore, given that the combined running times of both
PITCH and the exact path-decomposition (which never ran for more than an
hour due to the website limitations) combined were shorter than TWITCH, it
seems that PITCH is superior to TWITCH in their current implementations.

Both BRUTE FORCE and BOTCH are depth-first algorithms, which means
that there is much more variance in their running time for positive test cases.
Meanwhile for negative test cases, these algorithms must always try every com-
bination. PITCH and TWITCH instead run breadth-first, which means that their
positive test cases should be very consistent. However, by the nature of those
algorithms, they can stop immediately when finding a structure that has no
possible embedding. Hence, they are expected to have more variance in run-
ning times for negative test cases. The most noticeable example of this is the
incredible speed of the last solved PITCH test case in Figure [Ob]

12.1 Future recommendations

With BOTCH being the fastest among the tested algorithms in the running time
tests, it might be the most fruitful to seek improvements for BOTCH. Here are
two theoretical ways in which I expect the BOTCH algorithm could be improved:

e Instead of first creating all branches and then processing each of them
using the cherry-picking algorithm, I conjecture that it might be possible
to instead first run the cherry-picking algorithm and branch when needed.
This means that for negative cases, the cherry-picking process until the
first branch would only be done once instead of 2% times where k is the
number of reticulation nodes that violate tree-child properties. With the
rough approximation that all cherry-picking processes in between the vio-
lating reticulation nodes take an equal amount of time, this would result

in an average negative test-case running time of O(Zfzo 2iW)

O((2k1 — 1)%) = (’)(%\D(N, T)|) as opposed to the current aver-
age O(2¥|D(N,T)|). This approach does hinge on the correctness of the
cherry-picking algorithm when used interchangeably with the branching
that removes reticulation nodes, which is unproven as of now. Note that if
this works, it also becomes possible to use the cherry-picking algorithm to
give other algorithms a “head start” by running it until the first necessary
branch and then switching to another algorithm. This could be advanta-
geous when the other algorithm is slower by default but faster than the
2% branching on reticulation nodes that violate the tree-child property.

e Currently, BOTCH selects its reticulation nodes that violates the tree-child
properties in an arbitrary (deterministic by the order of the arcs in the im-
plementation of the input graphs). However, it might be advantageous to
select these reticulation nodes more carefully when dealing with networks
with very large numbers of reticulations. When there is a chain of n de-
scendants that are all consecutive reticulation nodes, removing the lowest

50

arc connecting them will cause the cleanup to remove all of them. This
results in n+4 1 branching options when always processing the lowest retic-
ulation node first, instead of the 2™ options when always processing the
highest reticulation node first. Somewhat similarly, when there is three or
more sibling nodes whose parents are reticulation nodes, processing the
middle ones is more effective than processing the ones on the edge.

Due to the sheer size and complex nature of the TWITCH and PITCH algo-
rithms, there are also many ways to improve them. While I am not sure I would
recommend it given the poor performance of these algorithms in the tests, some
of them are listed here:

e Change the approach of PITCH to depth-first instead of breadth-first. Note
that this is impossible for TWITCH due to join nodes. A depth-first imple-
mentation would be able to find solutions before trying all other options,
which means the theoretical average running time can be divided by 1+ s
where s is the number of possible embeddings. In practice, this might be
even better since the isomorphism checks (which iterates through every
pair of signatures) take less time for bags in earlier depth-first iterations
since there will be fewer other signatures in the bags.

e Find a way to make the join node steps of TWITCH compatible with super-
compactness.

e The current decomposition manipulation only prioritises nodes that are
adjacent to each other in Dyn(Nyn,Trn). Given the existence of the
sibling and grandparent filters that deal with nodes that have distance
2 between them in Dyy(Nyn,Trn), it might be beneficial to have the
nice-decomposition manipulation also gives some priority to nodes with
distance 2. Even more impactful would be finding or creating a heuristical
decomposition algorithm that can provide tree- or path-decompositions
where the nodes in bags are more often adjacent to each other by default.

Aside from improving these algorithms further, there are also other places
in which further advancements could still be possible. BOTCH uses branching
until the input network is tree-child, after which it can use the cherry-picking
algorithm. It might be possible to use a similar approach with other algo-
rithms that can solve TREECONTAINMENT on specific subsets of networks. For
example, it might be interesting to try branching until the network is nearly sta-
ble or reticulation visible, after which the linear running time algorithm from
Weller (2017) [5] could be used. Alternatively, one could look at other prob-
lems within phylogenetics. Now that is the tree-width approach is shown to be
implementable for TREECONTAINMENT, it might be interesting for future re-
search to take a look at tree-width approaches for TREECONTAINMENT or even
HYBRIDIZATIONNUMBER.

o1

References

[1]

Leo van Iersel, Mark Jones, and Mathias Weller. Embedding phylogenetic
trees in networks of low treewidth, 2022. 30th Annual European Symposium
on Algorithms, ESA 2022.

Iyad A. Kanj, Luay Nakhleh, Cuong Than, and Ge Xia. Seeing the trees
and their branches in the network is hard. Theoretical Computer Science,
401(1):153-164, 2008.

Remie Janssen and Yukihiro Murakami. On cherry-picking and network
containment. Theoretical Computer Science, 856:121-150, 2021.

Philippe Gambette, Andreas D. M. Gunawan, Anthony Labarre, Stéphane
Vialette, and Louxin Zhang. Solving the tree containment problem for
genetically stable networks in quadratic time. In Zsuzsanna Liptdk and
William F. Smyth, editors, Combinatorial Algorithms, pages 197-208,
Cham, 2016. Springer International Publishing.

Mathias Weller. Linear-time tree containment in phylogenetic networks.
In RECOMB International conference on Comparative Genomics, pages
309-323. Spinger 2018.

Steven Kelk, Georgios Stamoulis, and Taoyang Wu. Treewidth distance on
phylogenetic trees. Theoretical Computer Science, 731:99-117, 2018.

Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern.,
11:1-21, 1993.

Remie Janssen, Mark Jones, Steven Kelk, Georgios Stamoulis, and Taoyang
Wu. Treewidth of display graphs: bounds, brambles and applications. J.
Graph Algorithms Appl., 23:715-743, 2019.

The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.7), 2021. https://www.sagemath.org.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved al-
gorithm for matching large graphs. In In: 3rd IAPR-TC15 Workshop on
Graph-based Representations in Pattern Recognition, Cuen, pages 149-159,
2001.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and
analysis of computer algorithms, 1974.

Robbert Huijsman. Tree-child network containment. Bachelor’s thesis,
Delft University of Technology, 2019.

92

A Root to root embedding counterexample

The following counterexample shows that for roots with outdegree 2, not every
display graph that has an embedding also has an embedding where the roots
are mapped to eachother.

Figure 13: An example of a display graph where the root of the tree cannot
be embedded to the root of the network. However, the root of the tree can be
embedded to node d.

93

B Full example

In this example, THE THEORETICAL ALGORITHM is used to see whether there
exists an embedding of the tree shown in in the network from figure.

(c) Display graph Din(Nin, TInN)

(a) Network Nin
(b) Tree T]N

Figure 14: The construction of a display graph from a tree and a network. Note
that for this example, the tree and network have roots with outdegree 2 instead
of 1.

o4

(b) Nice tree decomposition

(a) Tree decomposition

o

=1

00e80EE

T

- — (S

DBEE0E

Figure 15

Even in small examples, the total number of possible signatures for every bag
within the nice tree decomposition is rather large. Hence, the following example
only shows one signature for each bag. Specifically, the signatures chosen are
the signatures that are required to reach the last step of the algorithm. Let
¢ be the embedding of D;n(Nin,Trn), and for bags i € {1,...,30} let ¢; be
this embedding restricted to D;(N;,T;). To save space in this example, the
display graphs are denoted by stating their nodes. The set also includes all
arcs from included nodes to other included nodes in Dy (Nin,Trn), except
when explicitly stated otherwise. Note that this notation could be somewhat
confusing, since (in the algorithm) the only mapping from a signature display
graph to the input display graph D;n(Nin,Tin) is given by the iso-labelling.
The signatures are as follows:

1. Bag 1 is a leaf bag. For every valid signature in the leafs, there may be

99

no nodes assigned with the Past label. Since S = () in the roots, the only
available label that a vertex can be given is Future. Hence, if the display
graph D1 (N7, T}) of this bag contained any nodes, they would immediately
become redundant. Thus o7 uses the rather empty signature

o1 = (0,81,1), where ¢1(v) is the empty function.

. Bag 2 is an introduce bag, which means that it contains all signatures
for which the previous bag contained the compact-{z — FUTURE}-
restriction. Observe the following signature which is used for bag 2:
o2 = ({a,c,d,g,i}, &, 12) where

FUTURE ifv € {a,d,g,i}
t2(v) = :
c ifv=c

To see that this signature is actually contained within bag 2, note that
its {¢ = FUTURE}-restriction is o1 since giving ¢ the future label would
make all nodes and arcs redundant.

. Similar to the previous bag, bag 3 is also an introduce bag and contains
the signatures for which the previous bag contains the {g — FUTURE}-
restrictions. Using o9, this gives

03 = ({aa ¢, d? 9, Z}7 ¢7 LS) Where

_ JFUTURE ifv € {a,d,i}

ta(v) v ifve{eg}

. Bag 4 is another introduce bag, which introduces vertex i. Like bag 2, the
following signature follows from the previous somewhat non-trivially:
04 = ({a? ba c, d7 g, h7 Z}) ¢7 L4) Where
FUTURE ifv € {a,b,d,h}
t(v) = . .
v ifved{cg,i}
To see that the {i — FUTURE}-restriction of o4 is indeed o3, note that

the restriction makes the arcs ab and ih redundant. When these arcs
become redundant, the vertices b and h also become redundant.

. Bag 5 is a forget bag which forgets vertex g. Therefore, it contains the
{g — PAST}-restrictions of signatures from the previous bag. This results
in the following signature:

o5 = ({a,b,c,g,h,i}, @, 5) where
FUTURE if v € {a,b,d, h}
t5(v) = { PAST if v e {g}
v if v e {ec,i}

. Bag 6 is an introduce bag which introduces vertex h. This has the following
signature: og = ({a,b,c,d,e, f,g,h,i},®, 1) where

96

10.

11.

12.

FUTURE if v € {a,b,d,e, f}
t6(v) = { PAST if ve{g}
v if v e{eh,i}
To see that the {h — FUTURE}-restriction of o¢ is indeed o5, note that

the restriction makes the arcs bd, be, df, he and hf redundant. When these
arcs become redundant, the vertices e and f also become redundant.

Bag 7 is a forget bag which forgets vertex 7. This has the following signa-
ture: o7 = ({a,b,¢,d, e, f,g,h,i}, $,17) where

FUTURE ifv € {a,b,d,e, f}
t7(v) = ¢ PAST ifve{g,i}

v ifve{ch}

Bag 8 is an introduce bag which introduces vertex d. This has the following
signature: os = ({a,b,c,d,e, f,g,h,i},d,ts) where

FUTURE if v € {a,b,e, f}
tg(v) = ¢ PAST ifve{g,i}

v ifve{cdh}

Bag 9 is a leaf bag which (like bag 1) has the rather empty signature:

o9 = (0, ®,19), where 19(v) is the empty function.

Bag 10 is an introduce bag which introduces vertex d. This has the fol-
lowing signature: o109 = ({b,¢,d, f,h}, ®,119) where

{FUTURE if ve {be f,h}
t1o(v) = .

v if v e {d}

To see that the {d — FUTURE}-restriction of 019 is indeed o9, note that
the restriction makes the arcs bd, cd,df and hf redundant. When these
arcs become redundant, all vertices in the display graph also become re-
dundant.

Bag 11 is an introduce bag which introduces vertex f. This has the fol-
lowing signature: o117 = ({b,¢,d, f,h}, ¢, t11) where
FUTURE ifv € {b,c,h}

(V) = {v if ve {d f}

Bag 12 is an introduce bag which introduces vertex h. This has the fol-
lowing signature: o132 = ({a,b,c,d, e, f, h,i}, ®,112) where

FUTURE ifv € {a,b,c,e,i}
ti2(v) = .

v if ve{d,f h}
restriction of o5 is indeed o1, note that the restriction makes the arcs
ab, be, he and ih redundant. When these arcs become redundant, the ver-
tices a, e and 7 also become redundant.

To see that the {h — FUTURE}-

o7

13. Bag 13 is a forget bag which forgets vertex f. This has the following
signature: 013 = ({a,b,¢,d, e, f,h,i}, ¢, 113) where
FUTURE ifv €{a,b,c e i}
t13(v) = ¢ PAST ifoe{f}
v ifve{dh}

14. Bag 14 is an introduce bag which introduces vertex c¢. This has the fol-
lowing signature: o14 = ({a,b,¢,d,e, f,g,h,i}, ¢, 114) where
FUTURE if v € {a,b,e,g,i}
t14(v) = ¢ PAST ifve{f} To see that the {d — FUTURE}-
v ifve{ed h}
restriction of o4 is indeed 13, note that the restriction makes the arcs
ac, cg and ig redundant. When these arcs become redundant, the vertex
g also become redundant.

15. Bag 15 is a join bag with children bags 8 and 14. Consider the following
well-behaved F-partial solution: op_partial = ({@,b,¢,d, e, f,9,h,i}, &, tr_partial)
where

FUTURE ifv € {a,b,e, f,g,i}

ifve{edh} '

Then consider the reconciliation that is the (L — LEFT, R — RIGHT)-

restriction of the previous F-partial solution: u = ({a,b,c,d,e, f, g, h,i}, ¢, 1)

Where

LF —partial (U) =

FUTURE ifv € {a,b, e}

RIGHT ifve {f}

LEFT ifve{g,i}

v ifve{ed h}

Then o, = 0g and og = o014. Hence, the algorithm adds the compact-
{{LEFT,RIGHT} — PAST}-restriction: o15 = ({a,b,c,d, e, f,g,h,i}, o, t15)
where

tu(v) =

FUTURE ifv € {a,b,e}
L15(’U) = ¢ PAST ifv e {f7g7 Z}
v if ve{edh}

16. Bag 16 is an introduce bag which introduces vertex b. This has the fol-
lowing signature: o1 = ({a,b,c,d, e, f, h,i}, ®,116) where
FUTURE ifv € {a,e}
t16(v) = ¢ PAST ifve{f,gi}
v if ve{bcd h}

17. Bag 17 is a leaf bag which with signature:

o17 = (0, ¢, t17), where t17(v) is the empty function.

98

18. Bag 18 is an introduce bag which introduces vertex b. This has the fol-

lowing signature: o15 = ({a,b,d, e, f, h,i}, ¢, 118) where

{FUTURE if ve {a,de, f hi}
ts(v) = .
v if v e {b}

To see that the {d — FUTURE}-restriction of o015 is indeed o17, note
that the restriction makes the arcs ab, bd, be, eh, df, hf and ih redundant.
When these arcs become redundant, all vertices in the display graph be-
come redundant.

19. Bag 19 is an introduce bag which introduces vertex e. This has the fol-
lowing signature: o19 = ({a,b,e,d, f,h,i}, d,t19) where
FUTURE ifv €{a,d, f,h,i}
t19(v) = .
if ve{be}

20. Bag 20 is an introduce bag which introduces vertex h. This has the fol-
lowing signature: oo9 = ({a,b,d, e, f,h,i}, d,120) where
{FUTURE if v € {a,d, f,i}

t20(v) = ifve{beh}

21. Bag 21 is a forget bag which forgets vertex e. This has the following
signature: o917 = ({a,b,d,e, f,h,i}, P, 121) where
FUTURE if v € {a,d, f,i}
t91(v) = ¢ PAST if v e {e}
v if v e {bh}

22. Bag 22 is an introduce bag which introduces vertex d. This has the fol-
lowing signature: o929 = ({a,b,¢,d, e, f, h,i}, d, 122) where
FUTURE ifv € {a,c, f,i}
taa(v) = ¢ PAST if ve{e} Note that the arc bd would be
v if ve{b,d h}
missing from this signature, as it would otherwise be redundant.

23. Bag 23 is an introduce bag which introduces vertex c. This has the fol-
lowing signature: oo3 = ({a,b,¢,d,e, f,g,h,i}, @, 103) Where
FUTURE ifv € {a,f, g,i}
t23(v) = ¢ PAST ifve{e}
v if ve{bcd h}
To see that the {d - FUTURE}-restriction of o3 is indeed o092, note that

the restriction makes the arcs ac,cg and ig redundant. When these arcs
become redundant, the vertex g becomes redundant.

24. Bag 24 is a join bag with children bags 23 and 16. Consider the following
well-behaved F-partial solution: op_partial = ({@,b,¢,d, €, f,9,h, i}, &, tp_partial)
where

99

25.

26.

27.

28.

29.

FUTURE ifv € {a,e, f,g,i}

v ifve{bcdh}

Then consider the reconciliation that is the (L — LEFT, R — RIGHT)-
restriction of the previous F-partial solution: u = ({a,b,¢,d, e, f, g, h,i}, ¢, 1,)
where

LF —partial (U) =

FUTURE ifv € {a}
RIGHT ifve{f g}

() =\ LppT if v e {e}
v ifve{bcd h}
Then o5 = 093 and oro1g. Hence, the algorithm adds the compact-

{{LEFT,RIGHT} — PAST}-restriction: oo4 = ({a,b,¢,d,e, f,g,h,i}, P, t24)
where
FUTURE if v € {a}

to4(v) = ¢ PAST ifvelef,g,i}
v if ve{bcd h}

Bag 25 is a forget bag which forgets vertex h. This has the following
signature: o095 = ({a,b,c,d,e, f,g,h,i}, P, 1o5) where

FUTURE ifv € {a}
to5(v) = ¢ PAST ifvedef,g,hi}

v ifve{bcd}

Bag 26 is a forget bag which forgets vertex d. This has the following
signature: oo6 = ({a,b,c,d,e, f,g,h,i}, @, 126) where

FUTURE ifv € {a}
tog(v) = ¢ PAST ifve{de,f,ghi}

v if v e {b,c}

Bag 27 is an introduce bag which introduces vertex a. This has the fol-
lowing signature: o7 = ({a,b,¢,d, e, f,g,h,i}, ¢, t27) where

or(0) = PAST ifve{d,e, f,g,h,i}
A Y if v e {a,b,c}

Bag 28 is a forget bag which forgets vertex c¢. This has the following
signature: o8 = ({a,b,c,d,e, f,g,h,i}, @, 128) where
PAST ifv € {e,d,e, f,g,h,i}

tas(v) = v if v e {a,b}

Bag 29 is a forget bag which forgets vertex b. This has the following sig-
nature: o99 = ({a,b,¢,g,h,i},d,29) where
PAST ifve{b,cg,h,i
120 () = . {b.c.g,h,i}
v ifve{a}
The nodes d,e and f disappeared from the display graph due to the

60

30.

{b — PAST}-restriction which makes the arcs bd,be,df and eh redun-
dant. When these arcs become redundant, the vertices d, e and f become
redundant.

Bag 30 is a forget bag which forgets vertex a. This has the following
signature: o39 = (0, ,t30), where 130(v) is the empty function. The
lack of nodes is caused by the {a — PAST}-restriction, which makes all
remaining arcs and nodes redundant.

This signature of the tree’s root bag has an iso-labelling that has no ver-
tices with the FUTURE label, so the algorithm terminates and returns
True.

61

C Forget node

The forget node procedure first checks the redundancy of arcs adjacent to the
removed node or part of any embedding paths of the removed node. Then, it
checks the redundancy of endpoints of the redundant arcs. By only checking
the local arcs and nodes, the procedure can be performed with a running time
that is only dependant on the length of the embedding paths.

In the following pseudo code, the set of all redundant arcs in T is written as
Tro and the set of all redundant vertices in T is written as T;.,,. Similarly, N,
and N,., denote the sets of redundant arcs and vertices in IV respectively.

62

Algorithm 8 Forget Node

1: procedure FORGET_NODE((D(N,T), ¢,t))
2: signature_node < 1=*(2)

3 isolabel(signature_node, PAST)

4: Trvy Ny < local_redundancy_check((D(N,T), ¢,t), Tra, Nya)
5: for a € T}, do

6 signature.remove(a)

7 for u € N,, do

8

signature.remove(u)
return (D(N,T)

9: procedure LOCAL_REDUNDANCY_CHECK((D(N,T), ¢,t))
10: part_of _embedding < True

11: if z ¢ tree;n then

12: if 3 y € treeyn such that z = ¢(y) then

13: Zy

14: else

15: part_of _embedding = False

16: if part_of_embedding = True then

17: for arc za adjacent to z do

18: if 1(a) = ¢(z) then

19: if 1(u) = 1(2) V node u € ¢(za) then
20: Add za to tra_list

21: for arc vw € ¢(za) do

22: Add vw to nra_list

23: else

24: for arc a’'b’ adjacent to z do

25: if @'V’ is part of an embedding then

26: ab <+ ¢~ (a't')

27: if +(a) = ¢(b) then

28: if «(x) = t(a) V node x € ¢(adb) then
29: Add ab to tralist

30: for arc xy € ¢(ab) do

31: Add zy to nra_list

32: else

33: if ¢(u) = ¢(v) then

34: Add uv to nra_list

35: Add all elements of tra_list to T},
36: Add all elements of nra_list to N,

37: for node a € tra_list do

38: if ¢(a) = t(¢p(a)) then

39: if bc € T}, V arc bc adjacent to a then
40: if uwv € Ny V arc uv adjacent to ¢(a) then
41: Add a to Ty,

42: if a is not a leaf then

43: Add ¢(a) to Ny,

44: for node u € nra_list do

45: if w is not part of an embedding then

46: if vw € N, V vw adjacent to u then
47: Add u to N,,

return 7,.,, N,.,

In this pseudo code, lines 9 - 36 find all redundant arcs, lines 37 - 41 find all
redundant tree nodes and lines 42 - 47 find all redundant network nodes. When
the forgotten node is in the network, finding the new redundant network arcs
cannot be done by simply checking adjacent arcs. When the forgotten node is
the final node of a embedding path to receive a PAST label, all arcs (including
non-adjacent arcs) in the path become redundant. This is also shown in Figure
110l

Figure 16: Part of a display graph in a signature. This signature has the
embedding: § = {3 — 3, 4 — 1}. When a is forgotten and gets the PAST
label, all arcs become redundant.

Hence, when local redundancy_check is given a network node that is part of
an embedding, it instead looks at the tree node that is embedded to it (lines 11-
13). Afterwards, the procedure checks every adjacent tree arc according to the
redundant tree arc definition. When a tree arc becomes redundant, all network
arcs in its embedded path also become redundant.

When the forgotten node is from the network but does not have a tree node
embedded to it, the procedure instead loops over all adjacent network arcs.
These are then separated based on whether they are part of a path that has a
tree arc embedded to it, and handled according to the redundant arc definitions.

When searching for redundant nodes, the procedure iterates through tra_list
and nra_list instead of T,., and N,,. This is done since these lists only contain
the new redundant arcs, and non-redundant nodes cannot become redundant
nodes without having one of their adjacent arcs changed. Afterwards, tree
nodes are checked based on the redundant tree node definition (lines 38-41).
Network nodes that have a tree node embedded to them are found when the
corresponding tree node is found (lines 42-43). Other network nodes are checked
separately (lines 44-47).

64

	Abstract
	Introduction
	Related literature
	Motivation
	My contributions

	Preliminaries
	Algorithm specific preliminaries
	Theoretical algorithm
	Examples

	Implemented decomposition algorithms
	Introduce node
	Explicit introduce node
	Super-compactness
	Improvements

	Join node
	Uncertain leaf nodes
	Signature construction
	Super-compact incompatibility

	Signature filters
	Isomorphism check
	Descendant check
	Distance check
	Grandparent check
	Sibling check
	Neighbor check
	Quantity checks

	Nice-decomposition manipulation
	Implemented branching algorithms
	Brute force
	BOTCH

	Testing method
	Test graph generation
	Decompositions

	Results
	Conclusion
	Future recommendations

	Root to root embedding counterexample
	Full example
	Forget node

