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ABSTRACT  

In the past, soil-layer delineation methods can usually only take a single type of input data, e.g., soil-type data at boreholes. 
However, this does not fit in the geotechnical engineering practice where multiple types of data are usually available 
during site investigation (e.g., borehole data and cone penetration test data are both available). This paper adopts a novel 
data-driven method for soil-layer delineation that accommodates multiple types of site investigation data. The basic idea 
is to include liquid limit (LL), plasticity index (PI), and fines content (FC) into the soil parameters of analysis. According 
to the Unified Soil Classification System (USCS), the information of (LL, PI, FC) can be used to determine whether the 
soil is sand, silt, or clay. As a result, the conditional random field simulation results for (LL, PI, FC) can be used to 
delineate sand, silt, and clay layers. If extra soil parameters (such as cone penetration test results) are incorporated, the 
novel method can accommodate multiple types of site investigation data. A real example of the Fucino Basin in Italy is 
adopted to demonstrate the application of the novel data-driven soil-delineation method. 
 
Keywords: soil-layer delineation; site characterization; spatial variability; conditional random field. 
 

1. Introduction 

In geotechnical engineering, there are two main tasks 
in site characterization. One is to delineate soil layers 
based on site-specific data. The other is to determine the 
spatial variation of soil parameters based on the data 
within each delineated soil layer. The first task can be 
achieved by soil-layer delineation methods. In the past, 
various soil-layer delineation methods have been 
proposed, such as the coupled Markov chain (CMC) 
methods (e.g., Qi et al. 2016; Li et al. 2019; Varkey et al. 
2023a), Markov random field (MRF) methods (e.g., Li et 
al. 2016a; Zhao et al. 2021; Wei and Wang 2022), 
methods based on a training image (e.g., Caers and Zhang 
2004; Hu and Chugunova 2008; Shi and Wang 2021a,b), 
CPT-based SBT methods (CPT stands for cone 
penetration test, and SBT stands for soil behavior type) 
(e.g., Li et al. 2016b; Wang et al. 2020; Varkey et al. 
2023b), etc. 

A common feature of the aforementioned soil-layer 
delineation methods is that they only take a single type of 
input data. For example, the CMC, MRF, and training-
image methods only take the soil-type data at boreholes 
as input. Figure 1 shows the locations and soil-type data 
of the boreholes at a site in Perth city, Australia. The site 
in Figure 1 was analyzed by Qi et al. (2016) using the 
CMC method (Elfeki and Dekking 2001). The CMC 
method takes the soil-type data at the boreholes as the 
input to simulate the soil types at unexplored locations 
using the Markov chain theory. The task of soil-layer 
delineation is done once the soil types at unexplored 
locations are simulated (e.g., Figure 2). In contrast, the 
CPT-based SBT methods only take the CPT data as input 
to simulate conditional random fields of CPT parameters 

at unexplored locations. The SBTs at unexplored 
locations can be determined based on the simulated CPT 
parameters according to the Robertson’s SBT chart 
(Robertson 2009). The task of soil-layer delineation is 
done once the SBTs at unexplored locations are 
simulated. 

 
(a) Borehole locations 

 
(b) Soil-type data at boreholes 

Figure 1. Soil-type data of the boreholes at a site in Perth city, 
Australia (source: Qi et al. 2016). 
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Figure 2. Realization of soil types at unexplored locations 
using the CMC method (source: Qi et al. 2016). 
 

However, a routine geotechnical site investigation 
program usually consists of multiple types of site-
specific data, e.g., borehole data such as soil type, 
Atterberg limits, water content, fines content, SPT N 
value, undrained shear strength, preconsolidation stress, 
etc. and CPT data such as cone tip resistance, sleeve 
friction, CPT pore water pressure, etc. The CMC, MRF, 
and training-image methods can only take the soil-type 
data at boreholes as input, whereas the CPT-based SBT 
methods only take the CPT data as input. The limitation 
of these soil-layer delineation methods is evident. It is not 
clear how to conduct soil-layer delineation using multiple 
types of site-specific data (e.g., take both borehole soil-
type and CPT data as inputs) with these methods. It is 
also not clear how to incorporate other soil parameters 
(such as SPT N value) that may be correlated to the soil 
type into the analysis. There is a need to develop a new 
soil-type delineation method that can take multiple types 
of site-specific data to fit in the geotechnical engineering 
practice. 

Recently, Kamyab Farahbakhsh and Ching (2024) 
developed a new soil-layer delineation method that can 
take multiple types of site-specific data. This method 
adopts the HBM-MUSIC-3X method (Ching et al. 2022) 
previously developed by the second author as the main 
analysis engine. The HBM-MUSIC-3X method has the 
following features: 

• It can model the cross-correlation between the 
multivariate soil parameters in site investigation 
(e.g., Atterberg limits, water content, SPT N value, 
CPT parameters, etc.). If there are sufficient 
pairwise site-specific data, the cross-correlation 
parameters (such as the covariance matrix) can be 
estimated by the site-specific data. 

• It can model the spatial-correlation (or auto-
correlation) of the soil parameters. If there are 
sufficient CPTs, the auto-correlation parameters 
such as the scale of fluctuation can be estimated 
by the CPT data). 

• In the case that there are insufficient pairwise site-
specific data (which is usually the case), it can 
learn the cross-correlation behaviors from 
(generic) sites in a soil database using the 
hierarchical Bayesian model (HBM) (Ching et al. 
2021). The HBM learning outcome can be 
transferred to the target site to reduce the 
uncertainty in the cross-correlation. 

If the cross-correlation and auto-correlation parameters 
of the target site are known (or estimated), the HBM-

MUSIC-3X method can further simulate the conditional 
random fields of the soil parameters by conditioning on 
the site-specific borehole and CPT data. 

The basic idea proposed by Kamyab Farahbakhsh and 
Ching (2024) of implementing HBM-MUSIC-3X to soil-
layer delineation is simple. If liquid limit (LL), plasticity 
index (PI), and fines content (FC) are considered in 
HBM-MUSIC-3X, it can therefore simulate the 
conditional random fields of (LL, PI, FC) by conditioning 
on the site-specific borehole and CPT data. Because the 
USCS main soil type (e.g., sand, silt, and clay) can be 
determined based on (LL, PI, FC), the conditional 
random fields of (LL, PI, FC) can be converted to the 
conditional soil-type field. The task of soil-layer 
delineation is done once the conditional soil-type field at 
unexplored locations is simulated. Moreover, if extra soil 
parameters (e.g., Ic and SPT N; Ic is the CPT SBT index 
proposed by Robertson 2009) are included in the analysis, 
the HBM-MUSIC-3X method can consider the cross-
correlation among (LL, PI, FC, Ic, SPT N). By doing so, 
the new method can take multiple types of site-specific 
data into the analysis and fuse all available information 
to simulate the conditional random fields of (LL, PI, FC). 
This circumvents the main limitation of the past soil-
layer delineation methods that they can only take a single 
type of input data. Moreover, the new method can 
simulate the conditional random fields of (Ic, SPT N) as 
well, so the second task of site characterization (simulate 
the spatial variation of soil parameters) is also achieved 
in the meantime. 

There are two technical gaps in the new method that 
cannot be addressed by the original HBM-MUSIC-3X 
method. First, the ground is categorized into sand, silt, 
and clay. Each soil type has its own cross-correlation 
parameters, so some clustering analysis is needed in the 
new method. Kamyab Farahbakhsh and Ching (2024) 
developed a clustered-HBM-MUSIC-3X method to fill 
this gap. Second, the original HBM-MUSIC-3X method 
does not model the soil-layer transition behavior (e.g., the 
transition probability matrix in the CMC method). Some 
probabilistic soil-layer transition model is needed in the 
new method. Kamyab Farahbakhsh and Ching (2024) 
adopted the Markov random field (MRF) model to fill 
this gap. These technical details are not presented in the 
current paper. Interested readers are referred to Kamyab 
Farahbakhsh and Ching (2024) for these details. The 
main purpose of the current paper is to present the 
analysis results for the real case study of the Fucino Basin 
in Italy (Abruzzo, L’AQ). 

2. Real case study 

In the real case study, the investigated area is the 
Fucino Basin, located in Abruzzo Region, central Italy. It 
is a tectonic basin filled with hundreds of meters of soft 
lacustrine deposits. For further geological details refer to 
Boncio et al. (2018). Over an investigation region of 
roughly 8000 m  8000 m (see Figure 3), 165 boreholes 
and 15 cone penetration tests (CPTs) are conducted. At 
each borehole, only quantitative soil-type data (gravel, 
sand, silt, and clay) are available at certain depths. Figure 
4 shows the soil-type data at the boreholes. At each CPT, 
the SBT index (Ic) data are available. The boreholes and 
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CPTs are sparse: only a small fraction of the total area of 
8000 m  8000 m is investigated. Given the sparse data, 
the soil types at unexplored locations are highly uncertain. 
With the significant uncertainty in soil types, it is 
challenging to assess the liquefaction risk of the Fùcino 
Basin because the liquefaction potential of soil is closely 
related to its soil type. The main purpose of the case study 
is to simulate the soil types of unexplored locations based 
on the sparse regional investigation data. To simplify the 
illustration, only the simulation of the soil types along the 
A-A section in Figure 3 is demonstrated in the current 
paper. Figure 5 shows a zoom-in plot around the A-A 
section. There are three CPTs nearby the A-A section. 
Their Ic profiles are shown in Figure 6. Because the site 
investigation includes boreholes and CPTs, we consider 
the following four soil parameters: (LL, PI, FC, Ic). Note 
that (LL, PI, FC) are necessary for our soil-layer 
delineation method. To consider the CPT data in the 
investigated region, the parameter Ic is also included. 
 

 
Figure 3. Plan view of the investigated region in the Fucino 
Basin, Italy. 
 

 
Figure 4. The soil-type data at the boreholes. 

3. Soil database and HBM 

For this particular case study, there is insufficient 
pairwise data to estimate the site-specific cross-
correlation among the four soil parameters (LL, PI, FC, 
Ic). This is because (a) (LL, PI, FC) data are not available 
at boreholes (only soil-type data are available); (b) there 
are very limited nearby CPT-borehole pairs. As a result, 
the uncertainty in the cross-correlation is significant. To 
reduce this uncertainty, the HBM is adopted to learn the 

cross-correlation behaviors of generic sites in a soil 
database of (LL, PI, FC, Ic). Figure 7a and Figure 8a show 
the database of (LL, PI, FC, Ic) from 188 generic sites 
compiled by Kamyab Farahbakhsh and Ching (2023), 
where Figure 7a shows the database in the (LL, PI) space, 
and Figure 8a shows the database in the (FC, Ic) space. 
Data points from different sites are shown as different 
colors. The HBM can learn the cross-correlation 
behaviors of the 188 generic sites. To illustrate the HBM 
learning outcome, Figure 7b and Figure 8b show the 
cross-correlation behaviors of the “hypothetical sites” 
generated by the trained HBM. For instance, each 
(skewed) ellipse in Figure 7b represents the cross-
correlation of (LL, PI) of a hypothetical site. These cross-
correlation behaviors are transferred to the target site 
(Fucino Basin) through the trained HBM and serve as the 
“prior (cross-correlation) model” for the target site. 
 

 
Figure 5. The zoom-in plot for the A-A section. 
 

 
Figure 6. Ic profiles of the CPTs nearby the A-A section. 
 

 
Figure 7. (a) (LL, PI) data; (b) cross-correlations of the 
hypothetical sites generated by the trained HBM. 
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Figure 8. (a) (FC, Ic) data; (b) cross-correlations of the 
hypothetical sites generated by the trained HBM. 

4. Analysis results 

The simulation of soil types at unexplored locations 
of the Fucino Basin is demonstrated in this section. This 
is done by first updating the prior model into the posterior 
model by Bayesian analysis based on the HBM-MUSIC-
3X method (Section 4.1) and then followed by simulating 
the conditional random fields (LL, PI, FC) at unexplored 
locations (Section 4.2). Then, the simulated (LL, PI, FC) 
are converted to the soil type (sand, silt, clay) based on 
the USCS criteria. 

4.1. Bayesian analysis based on HBM-MUSIC-
3X method 

The Bayesian analysis of the HBM-MUSIC-3X 
method requires the knowledge of the following three 
items: 

• (Item #1: prior cross-correlation model) There are 
insufficient pairwise site-specific data at the target 
site (Fucino Basin) to estimate these parameters. 
The cross-correlation parameters learned from the 
soil database are transferred to the target site using 
the HBM to serve as the prior cross-correlation 
model. 

• (Item #2: auto-correlation model) The Whittle-
Matérn (WM) auto-correlation model (Guttorp 
and Gneiting 2006; Liu et al. 2017; Ching and 
Phoon 2018) is adopted to model the spatial 
correlation. There are two kinds of auto-
correlation parameters for the WM model: the 
scale of fluctuation () and smoothness (). The 
vertical scale of fluctuation (z) and vertical 
smoothness (z) are identified from the CPT Ic 
profiles: z  0.32 m and z  1.35. However, it is 
not feasible to identify the horizontal scale of 
fluctuation (h) and horizontal smoothness (h) 
because the horizontal spacings among the CPTs 
are large. Instead, their values are assumed to be 
h  50 m and h  1.35 for the purpose of 
demonstration. 

• (Item #3: site-specific data) The site-specific data 
include the soil-type data at the boreholes (i.e., 
Figure 4) and the Ic data at all CPTs. Note that for 
this particular case study, (LL, PI, FC) 
information is not available at the boreholes. Only 
the soil-type data (sand, silt, clay, etc.) are 
available. 

In the essence of HBM-MUSIC-3X, the HBM trained 
by the soil database (item #1, e,g,, Figures 7 and 8) serves 

as the “prior cross-correlation model” of the Fucino 
Basin site. The likelihood function specifies the cross-
correlation and spatial-correlation (item #2) in the site-
specific data. The prior cross-correlation model is then 
updated by the site-specific data (item #3) into the 
“posterior cross-correlation model” of the Fucino Basin 
site through the Bayesian analysis. There is no analytical 
solution for this Bayesian analysis. The Gibbs sampler 
(GS) algorithm (Geman and Geman 1984; Gilk et al. 
1996) is adopted to solve the Bayesian problem 
numerically by drawing samples from the posterior 
model. During the GS algorithm, a “truncation sampling” 
method is used to deal with the situation that only soil-
type data are available at boreholes but (LL, PI, FC) are 
not: the (LL, PI, FC) samples are drawn from a truncated 
distribution, i.e., the probability density of (LL, PI, FC) 
inconsistent with the observed soil type is set to zero. 

Figure 9 illustrates the behaviors of the posterior 
cross-correlation model. Figure 9a (posterior FC-Ic) can 
be compared with Figure 8b (prior FC-Ic), whereas 
Figure 9b (posterior LL-PI) can be compared with Figure 
7b (prior LL-PI). As mentioned earlier, a clustered-
HBM-MUSIC-3X method is adopted in this study, so the 
LL-PI & FC-Ic behaviors for the sand, silt, and clay 
clusters are separately shown in Figure 9. 
 

 
Figure 9. (a) posterior FC-Ic behaviors; (b) posterior LL-PI 
behaviors. 

4.2. Conditional random field simulation results 
of soil types at unexplored locations 

With the posterior cross-correlation, auto-correlation 
model, and the site-specific data, the conditional random 
fields of (LL, PI, FC, Ic) can be simulated at unexplored 
locations. The conditional random field simulation 
results over two unexplored locations are demonstrated 
in this section: 

• (Case 1) The AA-section in Figure 3. Its Y 
coordinate is fixed at Y = 3600 m, whereas its X 
coordinate ranges from 1500 to 3500 m, and its z 
coordinate ranges from 0 to 20 m. 

• (Case 2) The horizontal plane with z = 6 m. Its (X, 
Y) coordinate cover the full range: its X 
coordinate ranges from 0 to 8000 m, and its Y 
coordinate ranges from 0 to 8000 m. 

Figure 10 shows one realization of the conditional 
random fields for Case 1. The (LL, PI, FC) results in 
Figures 10a, b, c can be converted into one realization of 
the USCS results shown in Figure 11a. One hundred 
realizations are simulated, and Figure 11b shows the 
most probable USCS result over the AA section. Note 
that CPT#11 is close to the AA section (see Figure 5; the 
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distance from CPT#11 to the AA section is about 22 m). 
For comparison, Figure 12 shows the most probable soil-
type profile and the sample medians and 95% confidence 
intervals of (LL, PI, FC, Ic) calculated based on the 100 
realizations at the location closest to CPT#11. 
Consistency between the simulated (LL, PI, FC, Ic) and 
the Ic profile of CPT#11 is evident. Figure 13 shows the 
one realization of the conditional random field for Case 
2. Again, one hundred realizations are simulated. One 
realization of the USCS results shown in Figure 14a, 
whereas Figure 14b shows the most probable USCS 
result. 
 

 
Figure 10. One realization of the conditional random fields for 
Case 1: (a) LL; (b) PI; (c) FC; (d) Ic. 
 

 
Figure 11. (a) One realization of USCS results for Case 1; (b) 
most probable USCS result. 

 
Figure 12. Conditional random field results (median & 95% 
confidence interval) at the location closest to CPT#11: (a) 
probability profile of USCS; (b) LL; (c) PI; (d) FC; (e) Ic. 

5. Conclusion 

In this paper, a real example of the Fucino Basin in 
Italy is adopted to demonstrate the application of a novel 
data-driven soil-delineation method. The method can 
handle multiple types of inputs, including soil-type data 
at boreholes and other soil parameters such as CPT 
results. The method can also take advantage of a soil 
database to reduce uncertainty in cross-correlation. The 
technical details for this novel method can be found 
elsewhere (Kamyab Farahbakhsh and Ching 2024). The 
purpose of the current paper is to demonstrate the 
analysis results of the real example. 
 

 
Figure 13. One realization of the conditional random fields for 
Case 2: (a) LL; (b) PI; (c) FC; (d) Ic. 
 

 
Figure 14. (a) One realization of USCS results for Case 2; (b) 
most probable USCS result. 

Acknowledgements 

The first two authors are grateful for the financial 
support provided by the National Council of Science and 
Technology of Taiwan (grant 112-2221-E-002-074-
MY3). 

References 

Boncio, P., S. Amoroso, G. Vessia, M. Francescone, M. 
Nardone, P. Monaco, D. Famiani, D. Di Naccio, A. Mercuri, 
M.R. Manuel, F. Galadini, and G. Milana. 2018. “Evaluation of 
Liquefaction Potential in an Intermountain Quaternary 

1615



 

Lacustrine Basin (Fucino Basin, Central Italy): Implications for 
Seismic Microzonation  Mapping.” Bulletin of Earthquake 
Engineering 16(1): 91-111. 

Caers, J. and T.F. Zhang. 2004. “Multiple-point 
Geostatistics: A Quantitative Vehicle for Integrating Geologic 
Analogs into Multiple Reservoir Models.” In Integration of 
Outcrop and Modern Analogs in Reservoir Modeling (eds: 
Grammar, G.M., P.M. Harris, and G.P. Eberli), American 
Association of Petroleum Geologists, Memoirs, 383- 394. 

Ching, J. and K.K. Phoon. 2018. “Impact of Auto-
correlation Function Model on the Probability of Failure.” 
Journal of Engineering Mechanics 145(1): 04018123. 

Ching, J., K.K. Phoon, Z.Y. Yang, and A.W. Stuedlein. 
2022. “Quasi-site-specific Multivariate Probability Distribution 
Model for Sparse, Incomplete, and Three-dimensional Spatially 
Varying Soil Data.” Georisk 16(1): 53-76. 

Ching, J., S. Wu, and K.K. Phoon. 2021. “Constructing 
Quasi-site-specific Multivariate Probability Distribution Using 
Hierarchical Bayesian Model.” ASCE Journal of Engineering 
Mechanics 147(10): 04021069. 

Elfeki, A. and M. Dekking. 2001. “A Markov Chain Model 
for Subsurface Characterization: Theory and Applications.” 
Mathematical Geology 33(5): 569-89. 

Geman, S. and D. Geman. 1984. “Stochastic Relaxation, 
Gibbs Distribution and the Bayesian Restoration of Images.” 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence 6: 721-741. 

Gilks, W.R., D.J. Spiegelhalter, and S. Richardson. 1996. 
Markov Chain Monte Carlo in Practice. Chapman and Hill, 
London. 

Guttorp, P. and T. Gneiting. 2006. “Studies in the History 
of Probability and Statistics XLIX on the Matérn Correlation 
Family.” Biometrika 93(4): 989-995. 

Hu, L.Y. and T. Chugunova. 2008. “Multiple-point 
Geostatistics for Modeling Subsurface Heterogeneity: A 
Comprehensive Review.” Water Resources Research 44: 
W11413. 

Kamyab Farahbakhsh, H. and J. Ching. 2023. “Inferring 
Spatial Variation of Soil Classification by Both CPT and 
Borehole Data.” Geo-Risk 2023, Washington D.C., USA, 142-
151. 

Kamyab Farahbakhsh, H. and J. Ching. 2024. “Data-driven 
Soil-layer Delineation and Conditional Random Field 
Simulation - A Unified Approach.” In preparation. 

Li, J., M.J. Cassidy, J. Huang, L.M. Zhang, and R. Kelly. 
2016b. “Probabilistic Identification of Soil Stratification.” 
Géotechnique 66(1): 16-26. 

Li, J., Y.M. Cai, X.Y. Li, and L.M. Zhang. 2019. 
“Simulating Realistic Geological Stratigraphy Using Direction-
dependent Coupled Markov Chain Model.” Computers and 
Geotechnics 115: 103147. 

Li, Z., X.R. Wang, H. Wang, and R.Y. Liang. 2016a. 
“Quantifying Stratigraphic Uncertainties by Stochastic 
Simulation Techniques Based on Markov Random Field.” 
Engineering Geology 201: 106-122. 

Liu, W.F., Y.F. Leung, and M.K. Lo. 2017. “Integrated 
Framework for Characterization of Spatial Variability of 
Geological Profiles.” Canadian Geotechnical Journal 54(1): 47-
58. 

Qi, X.H., D.Q. Li, K.K. Phoon, Z. Cao, and X.S. Tang. 2016. 
“Simulation of Geologic Uncertainty Using Coupled Markov 
Chain.” Engineering Geology 207: 129-140. 

Robertson, P.K. 2009. “Interpretation of Cone Penetration 
Tests – A Unified Approach.” Canadian Geotechnical Journal 
46(11): 1337-1355. 

Shi, C. and Y. Wang. 2021a. “Non-parametric and Data-
driven Interpolation of Subsurface Soil Stratigraphy from 
Limited Data Using Multiple Point Statistics.” Canadian 
Geotechnical Journal 58(2): 261-280. 

Shi, C. and Y. Wang. 2021b. “Development of Subsurface 
Geological Cross-section from Limited Site-specific Boreholes 
and Prior Geological Knowledge Using Iterative Convolution 
XGBoost.” Journal of Geotechnical and Geoenvironmental 
Engineering 147(9): 04021082. 

Varkey, D., A.P. van den Eijnden, and M.A. Hicks. 2023a. 
“Predicting Subsurface Stratigraphy using an Improved 
Coupled Markov Chain Method.” Proceedings of the 14th 
International Conference on Applications of Statistics and 
Probability in Civil Engineering, Dublin, Ireland, July, 9-13. 

Varkey, D., M.A. Hicks, and A.P. van den Eijnden. 2023b. 
“Predicting Subsurface Classification in 2D from Cone 
Penetration Test Data.” Transportation Geotechnics 43: 101128. 

Wang, Y., Y. Hu, and T. Zhao. 2020. “Cone Penetration 
Test (CPT)-based Subsurface Soil Classification and Zonation 
in Two-dimensional Vertical Cross Section Using Bayesian 
Compressive Sampling.” Canadian Geotechnical Journal 57(7): 
947-958. 

Wei, X.X. and H. Wang. 2022. “Stochastic Stratigraphic 
Modeling Using Bayesian Machine Learning.” Engineering 
Geology 307: 106789. 

Zhao, C., W.P. Gong, T.Z. Li, C.H. Juang, H.M. Tang, and 
H. Wang. 2021. “Probabilistic Characterization of Subsurface 
Stratigraphic Configuration with Modified Random Field 
Approach.” Engineering Geology 288: 106138. 

1616


	Blank Page



