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Abstract

Many artificial intelligence (AI) systems are built
using black-box machine learning (ML) algo-
rithms. The lack of transparency and interpretabil-
ity reduces their trustworthiness. In recent years,
research into explainable Al (XAI) has increased.
These systems are designed to tackle common
ML issues such as trust, accountability, and trans-
parency. However, research into the evaluation of
XAI is still low. In this paper, common trends
in the evaluation of state-of-the-art model-agnostic
XAI models and any missing or undervalued eval-
uation methods are identified. First, a taxonomy
is explored, and an overview of existing evalua-
tion metrics found in literature is made. Then, us-
ing this overview, a thorough analysis and compar-
ison of the evaluation methods of 5 state-of-the-
art model-agnostic XAl models (LIME, SHAP, An-
chors, PASTLE, and CASTLE) is done. It has been
discovered that only a small subset of the found
evaluation metrics is used in the evaluation of the
state-of-the-art models. Metrics that are not often
assessed in user-studies but deserve more attention
are (appropriate) trust, task time length, and task
performance. For synthetic experiments, only fi-
delity is commonly assessed. The models are also
only assessed using proxy tasks, none of them are
assessed using real-world tasks. In addition, each
identified metric was found to have various differ-
ent measurement methods and units of measure-
ment, indicating a lack of standardization.

1 Introduction

For many, artificial intelligence (AI) has become a major part
of everyday life. With the increasing prevalence of Al in so-
cial media, advertisement, product and entertainment recom-
mendations, customer service, recruitment and hiring, self-
driving cars, surgeries, and others, some might consider Al
inescapable, indispensable even [1].

At the basis of these Al systems often lie black-box ma-
chine learning (ML) algorithms. These algorithms have hid-
den internal functionalities, which causes many decisions and
predictions made by them to often not be well understood
by their users. This lack of transparency and interpretabil-
ity reduces their trustworthiness, which is especially critical
in the use of ML techniques in high-stakes applications that
greatly affect human lives, most prominently in the domains
of medicine, criminal justice, transport and finance [2].

Explainable AI (XAI) attempts to improve on the uncer-
tainty brought by ML algorithms by providing “Al systems
that can explain their rationale to a human user, characterize
their strengths and weaknesses, and convey an understanding
of how they will behave in the future” [3]. XAI techniques try
to tackle common ML issues such as trust, accountability, and
transparency by either the design of transparent models that
are inherently interpretable, or by providing post-hoc expla-
nations for a model’s decisions and predictions. These expla-

nations include natural language explanations, visual expla-
nations, numeric explanations, and explanations by example
[1][4].

However, trustworthiness does not only rely on the avail-
ability of explanations, but also on the quality of these ex-
planations. Despite this, explanations produced by XAl are
often not systematically assessed, nor is there a consensus
on how to assess the validity and reliability of an explana-
tion [51[6]. And even though in recent years there has been
a vast increase in research into new XAl techniques, research
into the evaluation of explanation generation techniques and
the evaluation of generated explanations is still lacking be-
hind [7]. This paper aims to fill some of the gaps in the re-
search into the evaluation of XAI, with a focus on the set of
model-agnostic XAl techniques. Specifically, the goal is to
identify common trends in the evaluation of state-of-the-art
model-agnostic XAl models, and identify any missing or un-
dervalued evaluation methods. To this point, the following
sub-questions are addressed:

¢ What different evaluation methods exist in the field of
XAI?

* How are state-of-the-art model-agnostic XAI models
evaluated?

* What evaluation methods are still missing or are under-
valued in the evaluation of model-agnostic XAI?

The rest of this paper is organised as follows. First, a brief
introduction to model-agnostic XAl is given in Section 2. In
Section 3, a taxonomy and description of current evaluation
methods of XAI can be found. Next, in Section 4, the evalu-
ation of selected state-of-the-art model-agnostic XAl is anal-
ysed and compared. Section 5 then reflects on the ethics of
this research. Section 6 provides a discussion on the results
found in Section 4, and any missing evaluation methods or
methods that deserve more attention are identified, along with
recommendations for future work. Lastly, final conclusions
are presented in Section 7.

2 Background

XAI can be in the form of inherently interpretable models,
meaning no additional methods are needed to explain them.
The models are either simple enough to be directly under-
stood, can be split up into understandable parts, or are math-
ematically well understood [8]. Some examples are decision
trees, linear and logistic models, and Bayesian methods [8].
Models that are not inherently interpretable can be explained
using post-hoc explanations (e.g., natural language, visual,
numeric, or example-based explanations [1][4]). Post-hoc
techniques make use of (interpretable) helper models to gen-
erate explanations, which are called surrogate or proxy mod-
els. These surrogate models either fully mimic the behaviour
of the model that is being explained, or approximate a sub-
aspect of it.

Post-hoc XAI techniques can be categorised into model-
agnostic and model-specific techniques. Model-agnostic
techniques can be applied to any type of ML model, whereas
model-specific techniques can only be applied to a particular
type of ML model (e.g., neural networks) [9].



Ribeiro et al. argue that an explainer should be model-
agnostic [10]. Often, users have to decide between a number
of competing models for the same end-goal. Model-agnostic
techniques allow users to generate the same type of explana-
tions for each model, which allows for a more straightforward
comparison of the models. In addition, model-agnostic tech-
niques will have the ability to explain any future models.

Taking the importance of model-agnosticism into account,
and the scope of model-agnostic and model-specific tech-
niques and the potentially different ways they can be eval-
uated, this study focusses on the subset of model-agnostic
techniques. For this research, several state-of-the-art model-
agnostic models were selected, of which the evaluation meth-
ods will be analysed. These models are briefly summarized
in Table 1.

Table 1: State-of-the-art model-agnostic XAl models

Model
LIME [10]

Year
2016

Explanations based on

Local interpretable approxi-
mations of complex models,
and identification of the local
important variables.
Assigning an  importance
value to each feature for a
specific prediction.

If-then rules called ‘anchors’,
if an anchor holds, the pre-
diction is (almost) always the
same.

Feature importance combined
with pivots.

Feature importance combined
with clusters.

SHAP [11] 2017

Anchors [12] 2018

PASTLE [13] 2021

CASTLE [14] 2021

3 Evaluation Methods of XAI

Before XAl techniques can be evaluated, there need to be pre-
cise definitions of the criteria that an XAI technique can be
assessed on. Doshi-Velez and Kim [15] proposed the follow-
ing division of evaluation approaches: application-grounded,
human-grounded, and functionality-grounded. Each of these
are detailed in the below paragraphs, and for each a list of
relevant evaluation metrics found in literature is composed.

The lists are aimed to be as comprehensive as possible, but
are by no means complete. Some metrics were vaguely de-
scribed and had no measurement methods. This is mentioned
where relevant, and these metrics will not be considered fur-
ther. Metrics were also often found to have different names in
various studies. Metrics with similar definitions are grouped,
with alternative names given where applicable. An overview
of all metrics can be found in Table 2.

3.1 Human-centred methods:
application-grounded evaluation &
human-grounded evaluation

Application-grounded and human-grounded evaluation ap-

proaches both involve user-studies, with the biggest differ-

ence being that the first involves end-users or domain-experts

and the latter involves lay humans. Because of this similarity,
[6] merges them into one group called human-centred eval-
uation. [16] also does not distinguish between application-
and human-grounded evaluation, but instead considers only
the user aspect. In this paper a similar approach is taken, as
the metrics found are relevant for both evaluation types. All
metrics can be measured for both end-users and lay humans,
albeit in different contexts (end-task or proxy task).

Application-grounded evaluation approaches assess the
quality of explanations within the context of their final ap-
plication (i.e., the real-world objective the XAl system is de-
signed for). These evaluation methods involve human experi-
ments with end-users or domain experts, and are aimed to dis-
cover to what extent the explanations assist in the execution
of the end-task. Because application-grounded approaches
directly test the capabilities of the system for the real-world
application that they are built for, they are a strong indica-
tor of the quality of the explanations. A few drawbacks are
that these evaluation methods are often (1) expensive, due to
the need to compensate highly trained domain experts and (2)
time consuming, due to the need for approval (e.g., by Human
Research Ethics Committees) and the time needed to conduct
the experiments [15].

Human-grounded evaluation measures the quality of ex-
planations through simpler human experiments compared to
application-grounded evaluation. These evaluation methods
are carried out with lay humans, and with simplified tasks that
still maintain the essence of the final application. These are
aimed at testing more general concepts related to the quality
of explanations. Though human-grounded evaluation is still
time consuming for the same reasons as application-grounded
evaluation is, it is less expensive due to the use of lay humans
and still gives a strong indication of the quality of explana-
tions [15].

The metrics to be used in human-centred evaluation are as
follows:

Trust can be seen as the confidence a user has in the sys-
tem. The subjective nature of trust means it is often
measured through subjective methods, such as question-
naires and interviews [17]. Objective measures include
user compliance and user perceived system competence.
Trust can also be expressed as the degree to which a user
agrees with the model, giving way to another objective
measure: the percentage of predictions, both correct and
incorrect, that a user accepts [16]. A user can then be
considered to have 100% trust in a model when they ac-
cept all correct and incorrect predictions. However, to-
tal trust should not be desired unless the model is 100%
accurate. To reduce the risk of users accepting wrong
predictions, trust should not be higher than the model’s
accuracy.

Appropriate trust Regardless of how satisfying explana-
tions are, users should be able to detect erroneous pre-
dictions. Thus, from the definition of trust follows ap-
propriate trust [16], which can be defined as the user’s
ability to distinguish between correct and incorrect pre-
dictions. Appropriate trust is measured by having users
identify correct and incorrect predictions. It is also of-



Table 2: Overview of evaluation metrics

Evaluation approach

Both model-agnostic & model-specific

Human-centred

Preference

Trust, Appropriate Trust, Satisfaction, Understanding, Task time length, Task | -
performance, Ability to detect errors/Bias detection, Physiological indicators,

Functionality-grounded

Novelty, Representativeness

Fidelity, Accuracy, Level of (dis)agreement, Reliability, Privacy, Agreement,
Monotonicity, Non-sensitivity, Effective complexity, Consistency, Validity,
Proximity, Sparsity, Diversity, Closeness, Feasibility, Identity, Separability,

Implementation
invariance, Conti-
nuity, Selectivity

ten called the user’s accuracy [16] or human judgement
[8]. The other side of this coin is persuasiveness, which
is the system’s capability to nudge a user into a certain
direction [8]. In certain contexts, such as recommender
systems, false-positives and false-negatives are not un-
desirable, as their purpose is to convince users to try or
buy something. Persuasiveness is thus often in conflict
with appropriate trust.

Satisfaction tests the clarity and usefulness of an explana-
tion based on the views of the end-users [4]. Satisfac-
tion is measured using subjective methods, such as inter-
views, self-reports, and case studies, or quantified using
Likert-scale questionnaires [17].

Understanding The ability for a human to grasp the work-
ings of a model [6]. Mental models form a represen-
tation of the user’s understanding, and are often mea-
sured using interviews, self-explanation, or Likert-scale
questionnaires [17]. An objective method is to measure
user’s accuracy in predicting model output [4][17].

Task time length Also known as response time or (time) effi-
ciency [81[18]. The time needed for a user to complete a
proxy task. It gives an indication of how long it takes to
build a viable mental model after being presented with
an explanation [8]. An example could be, when given
an explanation and an input, the time needed for a user
to make a prediction of the model output [18]. Faster
user decisions indicate an intuitive understanding of ex-
planations [19], which is especially important in time-
sensitive applications such as recommender systems and
automated driving [8].

Task performance measures whether explanations improve
user’s decision making for a designated task [4]. Mea-
surement methods thus depend on the specific task,
which can either be a proxy task or an end-task. An
example is the number of correct or incorrect diagnoses
made by a doctor who is guided by a medical assistant
system [8].

Ability to detect errors [19] and Bias detection The de-
gree to which explanations help in detecting errors.
This is closely related to bias detection: If users can
detect erroneous predictions, they can identify general
patterns of bias in the system by taking into account the
frequency of the errors [16].

Physiological indicators Though there has not been a lot of
research into this area yet, physiological indicators of

humans could be measures of explanation quality. Zhou
et al. [20] found that presenting users with the influence
of training data points on predictions causes significant
differences in Galvanic Skin Response (GSR) and Blood
Volume Pulse (BVP), suggesting that these physiologi-
cal signals can be used as indicators of user trust.

Preference and Confidence Preference was mentioned in
[19]. Although there was no clearly formulated descrip-
tion, preference could either be the user’s preference for
a certain type of explanation, or their preference for a
specific method. One could argue that preference is al-
ready implicitly measured through the aforementioned
metrics. For example, higher trust in one method over
the other could indicate a preference for that method.
However, preference can also explicitly be determined
through binary choice. Confidence, or more precisely
the user’s confidence in a system, was more often men-
tioned in [6], [17] and [19]. There were also no clear def-
initions for confidence, but it often seemed to be paired
with trust, or even be used interchangeably with trust.
For these reasons, from henceforth, confidence and trust
will be considered the same metric.

Metrics that were found but had no clear definition and mea-
surement methods were: likelihood to deviate [19], expec-
tation, curiosity, cognition, context knowledge [16], and re-

liance [6]1[16][17].

3.2 Functionality-grounded evaluation

Unlike the aforementioned approaches, functionality-
grounded evaluation approaches do not involve humans.
Instead, these measure formal properties of the explainer
as proxies for explanation quality, and are all quantitative
metrics. Because these do not involve humans, they are
not expensive nor time consuming, unlike the preceding
approaches. In addition, these can be used earlier in the
evaluation cycle when techniques are not yet complete,
or when human experiments are deemed to be unethical
[15]. What proxies to use often depends on the type of
explanations produced by the system, though also general
metrics exist.

Before listing the metrics belonging to this category, it is
important to state that objective assessment of explanation
quality using quantitative metrics should not replace human-
centred evaluation whenever possible. The perceived quality
of explanations is user- and context-dependent, and thus in-
herently subjective [19]. Instead, the quantitative metrics can
be used to help make a selection of explanations to be used

Model-specific only




in user-studies, which in turn will lead to more efficient user-
studies. With that said, the functionality-grounded metrics
can be found below.

Fidelity Also often called faithfulness or soundness [81[16].
Fidelity is a measurement for the correctness of explana-
tions [17], and represents how accurately the explanation
reflects the behaviour of the underlying model [16][21].
This metric is only relevant for post-hoc techniques, as
the fidelity of inherently interpretable models is natu-
rally always 100% [8]. Fidelity is considered to be one
of the most important properties of an explanation, be-
cause a low fidelity would mean the explanation does
not reflect the prediction at all, making the explanation
essentially useless [21]. There are several methods to
measure fidelity, there is not one defined standard. One
method could be to determine the accuracy of the surro-
gate model output with respect to the output of the model
that is being explained [18]. Another method is to com-
pare generated explanations to golden standard explana-
tions or explanations from some inherently interpretable
model [17]. Researchers also consider consistency in
explanation results and computational interpretability as
evidence for explanation correctness. Some more mea-
surements of fidelity will be discussed below.

Accuracy The fraction of predictions that are correct. This is
ameasure of correctness and only refers to the prediction
quality of the surrogate model, and thus only applies to
post-hoc techniques [8].

Level of (dis)agreement The fraction of instances that are
(not) assigned the same label by an approximation and
the black-box model it is approximating, and can be seen
as a measure of fidelity [22].

Reliability and Privacy are vaguely described in [15] and
[16], and no clear methods of measurement were found.
Privacy means that sensitive information in the data is
protected. Reliability seems to be closely related to ac-
curacy, and could be considered synonymous with it
[16].

Agreement Feature attribution (or feature importance)
methods explain a prediction by calculating the contri-
bution of each input feature toward the individual pre-
diction. These contributions are the input features’ im-
portance values (attribution), which can be used to cre-
ate a ranking of important features [23]. For these kind
of explanations, agreement is a popular evaluation met-
ric, which is a measure of the correlation between two
ranked lists. Agreement is usually used to compare
new explanation techniques to established ones. Two
different methods are said to agree if there is a strong
correlation between their computed importance rank-
ings. [23] found two issues with this metric: First, even
though two explanation methods can indicate the same
features as important, if these features do not end up
in similar positions in the rankings, the rankings will
only be weakly correlated, and thus their agreement will
still be low; Second, because explanations are task-,
model-, and context-specific, there often is not a single

ground-truth explanation. Because of this, agreement
can only determine whether two explanations are sim-
ilar, but not whether any of them are necessarily correct.
For these reasons, [23] recommend practitioners to stop
using agreement as an evaluation metric.

Monotonicity [24] A measurement for the faithfulness of a
feature attribution explanation. It is defined as the Spear-
man’s correlation between the absolute importance val-
ues and corresponding (estimated) expectations. The
calculation for the expectations follows from the argu-
ment that the importance of a feature should be propor-
tional to how imprecise the prediction would be if its
value was unknown. A precise formula is given in [24].

Non-sensitivity [24] Another measurement indicative of the
faithfulness of a feature attribution explanation. Ensures
that an importance value of zero is only assigned to fea-
tures to which the model is not functionally dependent
on. A precise formula is given in [24].

Effective complexity [24] The minimum number of features
(ordered on importance value) that are needed to meet a
performance measure of interest. A low effective com-
plexity means that some features can be ignored because
their effect is small (non-sensitivity). Explanations with
low effective complexity are said to be both simple and
broad.

Implementation invariance, Continuity, Selectivity These
metrics are defined for deep neural networks, and are
thus model-specific metrics. Implementation invariance
means that attributions for functionally equivalent (the
outputs are equal for all inputs, despite different imple-
mentations) networks should always be identical [25].
To ensure that two nearly equivalent data points have
explanations that are also nearly equivalent, continuity
is defined as a quality metric [19]. Selectiviry measures
how fast the prediction value goes down when removing
features with the highest attributions [19].

Consistency A generalisation of implementation invariance
that is relevant for post-hoc techniques. States that func-
tionally equivalent models should produce the same ex-
planation [8].

For counterfactual explanations, [26] identified the most com-
monly used evaluation metrics. Counterfactual explanations
tell the user what features need to be changed in order to tran-
sition to the desired outcome by using (close) datapoints that
already have the desired outcome. An essential property is
thus that these changes need to be actionable (i.e., it is actu-
ally possible to make changes to the suggested features). For
example, changes suggested to immutable features such as
race and country of birth are not actionable, whereas changes
to mutable features such as income and education are action-
able. In summary, the following quantifiable proxies for ease
of actionability are defined:

Validity The ratio of counterfactuals with the desired class
label to the total number of generated counterfactuals.
Higher validity is preferred.

Proximity The distance from the input datapoint to the gen-
erated counterfactual. Counterfactuals that are closer to



the input datapoint are easier to act upon, because they
require less and smaller changes to be made.

Sparsity The amount of feature change needed to get to the
desired outcome. A small number of features is pre-
ferred, though there is no consensus on a hard cap.

Diversity When multiple counterfactuals are generated for a
single datapoint, it is important that at least one is easily
actionable for the user. To allow the user to choose the
easiest one, a diverse set of counterfactuals is desired.
Diversity is defined as the distance between each pair of
counterfactuals, and higher diversity is preferred.

Closeness to training data The average distance to the k-
nearest datapoints. Counterfactuals closer to the training
data are seen as more realistic.

Feasibility Measures if modifications to a counterfactual are
realistic by determining if they satisfy the causal rela-
tion between features. To be considered actionable and
realistic, it is desired that counterfactuals maintain any
known causal relations between features. For example,
getting a new degree also means an increase in age, age
cannot decrease.

In [21], several more functionality-grounded metrics for the
correctness of explanations are proposed, though no clear
measurement methods were given:

Identity states that identical input instances should have
identical explanations. An instance that is explained
multiple times by the same XAI method is expected to
always get the same generated explanation. If this is not
the case, the method can be considered inaccurate due to
its random nature.

Separability states that non-identical input instances should
not have identical explanations. Follows from the same
logic as identity, but there is one caveat: Separability
does not hold if the model has more degrees of freedom
than needed to represent the prediction function.

Novelty states that input instances should not come from a
region in instance space that is far from the distribution
of the training data. If it is, the model can be inaccurate,
making the explanation useless.

Representativeness describes how many instances are cov-
ered by an explanation. Explanations can cover the en-
tire model or only an individual prediction.

4 Comparison of Evaluation Methods of
State-of-the-Art Model-Agnostic XAI

Based on the previously identified evaluation methods listed
in Section 3, an analysis of the evaluation of 5 state-of-the-
art model-agnostic XAl models (see Table 1) will be done. A
comparison of their evaluation approaches and metrics can be
found in Table 3.

LIME

Ribeiro et al. [10] evaluated LIME with both user-studies
and simulated experiments. In total, three simulated exper-
iments and three user-studies were done. For the simulated

experiments, none of them involved humans, and all can thus
be considered functionality-grounded evaluation. In the first
experiment, inherently interpretable models (sparse logistic
regression and decision trees) were trained in such a way that
they use at most 10 features for any instance. These features
are the golden set of features that these models consider im-
portant. Then, the test set is used to generate predictions and
corresponding explanations. The fraction of golden features
that are present in each explanation is calculated and aver-
aged over all test instances. The authors refer to this as the
recall on truly important features and its goal is to measure
the faithfulness (fidelity) of the explanations.

In the second simulated experiment, 25% of features were
randomly selected to be ‘untrustworthy’. First, using only
a black-box classifier, test set predictions were labelled un-
trustworthy if removing the untrustworthy features from the
input changed the prediction, and otherwise they were consid-
ered trustworthy. Then, using LIME, test set predictions were
deemed untrustworthy if removing all untrustworthy features
that are present in the corresponding explanation changes the
prediction. The predictions that are deemed either trustwor-
thy or untrustworthy by the black box and by LIME explana-
tions are then compared, and the F1-score on the trustworthy
predictions is measured. With this experiment, the authors
assert that they are trying to determine if LIME is helpful in
assessing trust in predictions. One could argue that they are
doing this by measuring the fidelity of LIME explanations to
the black box. In particular, the level of (dis)agreement seems
to be measured.

In the last simulated experiment, noisy features are inten-
tionally added to a dataset on which pairs of competing classi-
fiers are trained. The classifiers are trained in such a way that
between pairs the difference in validation accuracy is within
0.1% and the difference in test accuracy is at least 5%. The
better classifier is the one with higher test accuracy, but it is
not possible to determine this just by examining the validation
accuracy. Explanations are generated for X instances from the
validation set, and explanations that contain the noisy fea-
tures are marked as untrustworthy. For each classifier, the
total predictions in the validation set marked as untrustwor-
thy are determined, and the one with the least untrustworthy
predictions is the one selected as the better classifier based on
explanations. This is compared to the actual better classifier
based on test set accuracy. Multiple runs are done, and the ac-
curacy of picking the correct classifier based on explanations
is calculated over varying values of X. The goal of this exper-
iment is to determine whether the explanations provided by
LIME can assist in model selection. Though this can be con-
sidered functionality-grounded evaluation due to the lack of
user-involvement, none of the prior identified metrics relate
to the goal of this experiment.

In the first user-study, a classifier was trained on a flawed
dataset; the dataset contained features that do not general-
ize. Another version of the same classifier was trained on
a cleaned version of the dataset, where many features that
do not generalize had been removed. The subjects of the
study were lay humans recruited through Amazon Mechan-
ical Turk. The users were then shown raw data side-by-side
with explanations, and their accuracy in choosing the better



Table 3: Comparison of the evaluation of 5 model-agnostic XAI models

Model Application- Human- Functionality- Real- Proxy | Human-centred | Functionality-
grounded grounded grounded world task | metrics grounded
evaluation evaluation evaluation task metrics

LIME v v v v Trust Fidelity

Understanding Level of
Task performance | (dis)agreement
Task time length 1 unseen
Ability to detect
errors/Bias detec-
tion
SHAP v v v 1 unseen Accuracy
Fidelity
Computational
efficiency
(unseen)
Anchors v v v Understanding Fidelity
Task time length
PASTLE v v Understanding
1 unseen
CASTLE v v v Understanding Fidelity
Computational
efficiency
(unseen)

algorithm (in this case the ‘cleaned’ classifier) was measured.
Specifically, the users were asked to select what they thought
would be the algorithm that would perform best in the real
world. Explanations were either generated by LIME, or by a
greedy procedure that served as a baseline. From the fact that
the human subjects chosen were lay humans, this can be con-
sidered human-grounded evaluation. In this experiment, the
authors tested whether the explanations provided by LIME
established sufficient frust and understanding for the users to
pick the better algorithm.

In the second user-study, lay humans were again the sub-
jects. Here, the ‘bad’ classifier from the previous study
(trained on uncleaned data) was used to show explanations
in addition to raw data. The users were asked to mark fea-
tures for removal based on the explanations. These were then
removed from the dataset, which was used to train new clas-
sifiers. The experiment started with 10 subjects, after which
multiple rounds were done. Each round, multiple new users
marked features for removal and multiple classifiers were
trained. For each round, a path of classifiers originating from
the first 10 subjects could be traced, and for each path the av-
erage accuracy of the classifiers was measured on a real-world
dataset. In addition, the average accuracy across all paths was
also measured. For each subject, the time spent cleaning was
also measured. This was again a human-grounded evalua-
tion. Now, task performance and task time length were mea-
sured. The task here was to improve the model by performing
feature engineering based on explanations, and (the improve-
ment in) model accuracy was used as a measure to gauge its
success.

The last user-study was done with graduate students that
have taken at least one graduate ML course. A classifier was

trained to distinguish between pictures of wolves and huskies.
The classifier was intentionally made biased by hand select-
ing the training data. All pictures of wolves had snow in the
background, whereas the husky pictures did not. This way,
the classifier learned to predict ‘wolf’ when there is snow,
and ‘husky’ otherwise. The users where then shown 10 pre-
dictions without explanations, of which 8 were classified cor-
rectly, 1 contained a wolf without snow and was thus pre-
dicted as ‘husky’, and 1 contained a husky with snow and
was thus predicted as ‘wolf’. The subjects where then asked
whether they trusted the algorithm to work well on real world
data, why they did or did not, and how they think the clas-
sifier distinguishes between wolves and huskies. Then, the
users where shown the images and corresponding explana-
tions, and were asked the same questions again. The users in
this study were by no means lay humans, and can be consid-
ered domain-experts, making this application-grounded eval-
uation. Through interview questions, the effect of explana-
tions on trust and the ability to detect errors/bias detection
(could users identify snow as a potential feature) was mea-
sured.

SHAP

Lundberg and Lee [11] evaluate SHAP with three experi-
ments. First, the number of function evaluations needed to
get accurate feature importance estimates was compared be-
tween SHAP, Shapley sampling values, and LIME. Here, the
goal was to evaluate the computational efficiency and accu-
racy of SHAP. Since this does not involve humans, it can
be considered functionality-grounded evaluation. However,
none of the prior metrics correspond to computational effi-
ciency.



Then, in a user-study, SHAP was compared to two other
feature attribution methods: LIME and DeepLIFT. The sub-
jects in the study were lay humans recruited through Amazon
Mechanical Turk. Explanations generated by each method
were compared to explanations of simple models provided
by the users. In particular, the agreement between user
explanations and the generated explanations was measured.
The goal was to evaluate whether the generated explana-
tions where consistent with human intuition of simple mod-
els. Since this was a user-study with lay humans, it can be
considered human-grounded evaluation. However, none of
the prior identified human-grounded metrics can be related to
this method.

Lastly, the performance of SHAP, DeepLIFT, and LIME
on MNIST digit image classification was compared. The ac-
curacy in predicting the correct classification based on the
explanations was measured and compared. Since no humans
were involved, this can be considered functionality-grounded
evaluation. As predictions from explanations were compared
to the expected output, this can be seen as a measure of fi-
delity.

Anchors

Ribeiro et al. [12] first evaluated Anchors through a simulated
experiment. Three different models were trained on the same
datasets, and explanations were generated using LIME and
Anchors. Users were simulated, and coverage was measured
as the fraction of instances they predict after seeing explana-
tions, and precision was measured as the fraction of the pre-
dictions that were correct. Since no real users were actually
involved, this can be considered functionality-grounded eval-
uation. Since predictions are made based on explanations and
then verified against the expected output, this can be seen as
a measure of fidelity. A high coverage and precision indicate
that the explanations accurately reflect the output of the un-
derlying model, and thus indicate a high fidelity. Though An-
chors did better on both counts, the experiment was not very
indicative of real users. Therefore, a user-study was done.

The user-study was done with students who had or were
taking a ML course. The users were shown 10 predictions.
First without explanations, then with one, and two LIME or
anchor explanations. Before and after seeing each round of
explanations, they had to predict the output of the classifier
on 10 random unseen instances. Users were only supposed
to predict if they were very confident, and answer “I don’t
know” otherwise. The coverage was measured as the frac-
tion of instances where the users made an actual prediction
(and not “I don’t know”), and precision was only measured
in those instances. In addition, the time spent per prediction
was also measured. Lastly, a poll was used to ask user’s pref-
erences for explanations (Anchors vs LIME). Since the users
had knowledge of ML, they are not considered lay humans.
Thus, this can be classified as application-grounded evalu-
ation. By measuring coverage and precision, user’s under-
standing of the model was quantified. A combination of high
coverage and precision indicates high understanding. Task
time length was also measured to quantify how long it takes to
understand the explanations. Preference was measured sub-
jectively through the poll.

PASTLE

La Gatta et al. [13] evaluated PASTLE through two user-
studies. For both user-studies, the subjects had basic knowl-
edge about ML. Thus, both user-studies can be considered
application-grounded evaluation. In the first experiment, the
users were shown explanations for 5 instances, either gen-
erated by PASTLE or by LIME. Then, they had to sort the
instances in ascending order to what they perceived to be the
probability of the instance being assigned a predetermined
class. The following metrics were then computed using the
results:

— Mean Precision (P@k): The fraction of correctly sorted
instances among the first k of the ranking.

— Mean Average Precision (mAP): Penalizes errors in the
first positions of the ranking averaging the overall Aver-
age Precision (AP) value for each answer.

These metrics were used to quantify the user’s understanding
of the model after having seen explanations.

In the second experiment, a ground-truth ordering was ob-
tained based on the probability of the instances being as-
signed the predetermined class by the black-box model. Sim-
ilar to the previous experiment, users were asked to rank the
instances after having seen PASTLE or LIME explanations.
These rankings were compared to the ground-truth ranking.
The aim of this experiment was to determine whether the
differences between rankings was due to the different expla-
nation techniques, or due to random variance. However, no
prior found metric can be related to this aim.

CASTLE

CASTLE provides decision rules which suggest how the pre-
diction of the model generalizes to unseen instances, and
outputs local information about feature importance [14]. La
Gatta et al. [14] evaluated CASTLE by comparing it to An-
chors, which also provides decision rules (see Table 1), in a
number of experiments. First, a computational comparison
between CASTLE and Anchors was done by comparing the
run times of both. Since no users are needed for this, it can
be considered functionality-grounded evaluation. However, it
cannot be related to any of the prior found metrics.

Then, explanations for the same test set where generated
using both CASTLE and Anchors. For each decision rule, the
coverage was measured as the fraction of instances that are
covered by the rule. The precision was measured as the frac-
tion of instances that are correctly classified by the rule. This
experiment also did not involve humans, and is thus consid-
ered functionality-grounded evaluation. Similar to the previ-
ously analysed Anchors experiment, classifications are made
based on the explanations and verified against the expected
output. Thus, this can again be seen as a measure of fidelity,
with high coverage and precision indicating high fidelity.

Lastly, a user-study was done with undergraduate ML and
statistics students. The design is similar to the user-study per-
formed in [12]. First, users were shown 10 predictions with-
out explanations, after which they had to predict the class of
10 unseen instances. Then, users were shown 10 predictions
with explanations, either generated by CASTLE or by An-
chors, after which they again had to make predictions of 10



unseen instances. Users were asked to predict only if they
were confident, and had to answer “I don’t know” otherwise.
Coverage and precision were calculated similarly to the user-
study performed in [12] (refer to the analysis of Anchors).
Since the subjects had knowledge of ML or statistics, this can
be considered application-grounded evaluation. The cover-
age and precision measure were used to quantify the user’s
understanding of the model.

5 Responsible Research

Ethics are an integral part of any research. This paper has
been written with ethical responsibility in mind. Most of this
research consisted of studying existing literature, for which
the references are listed below. All information taken from
these sources is properly cited throughout the text, and no
source has been misrepresented or misquoted, ensuring that
this research is reproducible. To ensure reliability, nearly all
sources are peer-reviewed scientific papers. Some sources
were only available on arXiv', and where thus not peer-
reviewed. However, before using them for the purposes of
this paper, they have been checked to ensure they come from
trusted researchers and institutions, and contain reliable in-
formation.

6 Discussion and Future Work

From the results in Section 4 and in particular Table 3, it can
be seen that only a small subset of the identified metrics in
Section 3 is actually used in the evaluation of the state-of-
the-art model-agnostic XAl models. From the prior identified
human-centred metrics, 6 out of 9 were found to be measured.
In comparison, this was only 3 out of 20 for the prior iden-
tified functionality-grounded metrics. Thus, a wider variety
of human-centred metrics is used in evaluation compared to
functionality-grounded metrics.

For human-centred evaluation, the most measured metric is
understanding, which is measured in the evaluation of 4 mod-
els. There is an apparent lack of trust assessment, despite this
being one of the main goals of XAl. Task time length and task
performance are practical metrics to quantify the effective-
ness of explanations and to compare different XAI models,
but seem to currently be overlooked as they are only mea-
sured for 2 models.

For functionality-grounded evaluation, fidelity appears to
be the most measured metric, which is also measured for 4
models. As level of (dis)agreement is just another measure of
fidelity, the only other prior identified functionality-grounded
metric measured is accuracy. However, accuracy is only
measured for one model, despite it being an effective measure
of correctness. In Section 3, various metrics are listed to as-
sess the quality of feature attribution methods. Despite 4 out
of 5 models using some form of feature attribution (LIME,
SHAP, PASTLE, and CASTLE), none of these metrics are
assessed.

In addition, there are also metrics used in the evaluation
of the 5 analysed XAI models that were not already identi-
fied in Section 3, which are indicated in Table 3 as unseen.

"https://arxiv.org/

There are four total, the first being computational efficiency,
which is measured for both SHAP and CASTLE. Since it was
not present in any of the surveys that were used to create the
list in Section 3, it can be concluded that computational effi-
ciency is not often measured in the evaluation of XAI. Higher
computational efficiency can be desired in time-sensitive ap-
plications, such as recommender systems and automated driv-
ing, but also in less time-sensitive applications, as waiting for
explanations to be generated can negatively impact the user
experience. For SHAP the consistency of generated explana-
tions with human intuition was also measured. The remaining
two unseen metrics were found in the evaluation of LIME and
PASTLE. For LIME, the accuracy of picking the correct clas-
sifier based on explanations was measured in a functionality-
grounded experiment. In the evaluation of PASTLE, PAS-
TLE and LIME were compared, and it was assessed whether
different user rankings of features was due to the different
explanation techniques or due to random variance.

Furthermore, from both the listed metrics in Section 3 and
the analysis of the evaluation methods in Section 4, it is obvi-
ous that for each identified metric, there is a wide variety of
measurement methods and units of measurement. If the iden-
tified metrics are to be used to compare different XAI mod-
els, it would be beneficial to have standardised measurement
methods and units of measurement for each metric. This will
allow for more straightforward comparisons. Some identified
metrics in Section 3 also had no clear definitions. If these are
to be used for evaluation, they should be clearly defined and
have clear methods of measurement.

Lastly, it can also be noted from Table 3 that even though
both human-centred and functionality-grounded evaluation is
nearly always done (with the exception being for PASTLE),
this is always done with proxy-tasks, and never in the context
of real-world applications. To have a stronger indication of
success of explanations, it would be beneficial to have more
tests in real-world applications.

From the above observations, the following future research
directions are proposed:

* Evaluate the state-of-the-art models on unmeasured or
rarely measured human-centred metrics found in Section
3, most notably (appropriate) trust, task time length, and
task performance.

* Evaluate the state-of-the-art models on unmeasured or
rarely measured functionality-grounded metrics found in
Section 3, such as accuracy, or the measures of correct-
ness (identity, separability, novelty, representativeness).

e Evaluate LIME, SHAP, PASTLE, and CASTLE using
the functionality-grounded metrics specific for feature
attribution methods found in Section 3, such as mono-
tonicity, non-sensitivity, and effective complexity.

* Assess the benefits and potential future use of the unseen
methods and metrics found in the analysis in Section 4,
such as computational efficiency and the consistency of
explanations with human intuition.

* Clearly define and standardise measurement methods for
all metrics in Section 3.



» Evaluate the state-of-the-art model-agnostic XAI mod-
els using real-world tasks.

7 Conclusion

In this paper, an analysis of different evaluation methods
of model-agnostic XAI was conducted in order to iden-
tify common trends and any missing or undervalued eval-
uation methods. A taxonomy was presented, and currently
used evaluation metrics were divided into human-centred and
functionality-grounded evaluation. The results show that
there is a lack of variety in the metrics that are assessed in the
evaluation of the state-of-the-art model-agnostic XAl mod-
els. Understanding and fidelity are the most commonly tested
metrics, and there is an apparent lack of trust assessment in
human-centred evaluation, despite this being one of the main
goals of XAI. Other overlooked metrics in human-centred
evaluation are rask time length and task performance. For
functionality-grounded evaluation, there is an even greater
amount of unused but promising evaluation metrics. Specif-
ically, several metrics were found to assess feature attribu-
tion methods. Despite LIME, SHAP, PASTLE, and CASTLE
all being feature attribution methods, none of these metrics
were assessed. In addition, several promising metrics for cor-
rectness were found: identity, separability, novelty, and rep-
resentativeness. Lastly, there is a lack of evaluation using
real-world tasks, and a lack of standardisation in measure-
ment methods and units of measurement.
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