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Abstract
Byzantine agreement protocols allow distributed systems to achieve consensus de-

spite faulty nodes. The classical solution to the Byzantine agreement can only tolerate
less than 1/3 of the total nodes being faulty, while a quantum-aided protocol has the
potential to tolerate up to 1/2 of the nodes being faulty. However, the quantum states
used in the protocol are vulnerable to decoherence, a process that results in the degra-
dation of a quantum state. This research investigates how memory decoherence affects
the failure rate of a three-party quantum Byzantine agreement protocol. The primary
contribution is demonstrating that the protocol is resilient to carbon T2 decoherence,
as its Z-basis measurement scheme is insensitive to phase errors. Conversely, the fail-
ure probability increases with decreasing carbon T1 decoherence values. Extrapolating
from the observed trend of decreasing failure with longer T1 coherence times, the pro-
tocol’s performance on nitrogen vacancy center hardware is expected to approach the
ideal, noiseless limit due to their experimentally established long T1 times.

1 Introduction
The allegory introducing the Byzantine Generals Problem [10] depicts several Byzantine
army generals, each commanding their own division, who must collectively decide whether
to attack or retreat. The challenge, however, is that a fraction of these generals are traitors,
deliberately relaying incorrect messages to sabotage the loyal ones. How do the loyal generals
decide on a unified plan, even in the presence of meddling traitors? They must use a strategy
that allows them to identify and overcome false messages. However, instead of a battalion
of generals, there is a network of nodes, a bit-sequence to be agreed upon in place of a battle
plan, and faulty or non-faulty nodes instead of traitorous or loyal generals.

In computer science, Byzantine agreement is the process of multiple nodes in a network
coming to a consensus on a common value, despite the presence of faulty nodes. A faulty
node, like the disloyal general, behaves inconsistently, sending incorrect data to other par-
ticipating nodes and interfering with the consensus process. Said nodes can be acting with
malicious intent or can just be malfunctioning. This problem is relevant in fault-tolerant
distributed systems communications [8]. For instance, in blockchain technologies, nodes
must agree on the order and validity of transactions to maintain a consistent ledger, while
avoiding fraudulent entries. One example of a ledger that uses a consensus protocol to
manage Byzantine faults is the XRP Ledger (associated with Ripple) [18].

Achieving a Byzantine agreement has constraints on the faulty parties that can be tol-
erated. In a system of n nodes, the classical (i.e., non-quantum, based purely on digital
communication/computation) agreement protocol can only tolerate less than a third of the
nodes being faulty [10]. Any more, and consensus cannot be reliably reached. Whereas,
the quantum Byzantine agreement protocol can tolerate less than half of the total nodes
being faulty [7]. For example, classical consensus requires at least three non-faulty nodes
to tolerate one faulty node, whereas the quantum protocol needs only two. As the network
scales, this advantage becomes more pronounced, highlighting its improved performance
with increasing network size [6]. What makes the protocol a quantum one is the usage of
multiple entangled multi-qubit states [2].

Previous work in [9] studied optimal protocol parameters and how measurement and
state quality degrade with quantum noise. While it confirms noisy hardware affects the
quantum states, the contributions of different noise sources and their quantitative impact
on failure rates in a quantum network environment remain unexplored. One such source of
noise, and the focus of this report, is decoherence. Qubits cannot maintain their quantum
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state indefinitely, gradually drifting away from their originally prepared states. This is
known as decoherence. In this paper, the Byzantine agreement protocol’s failure probability
is simulated. This paper builds on the work of [9] by investigating an aspect not addressed
in their simulation: the impact of memory decoherence on the functioning of the protocol.
The research question this paper aims to answer is: How is the success probability of the
quantum Byzantine agreement protocol affected by memory decoherence in a three-party
network? Three nodes are used as they are the minimum amount required to demonstrate
the quantum protocol with faulty nodes, which is impossible with the classical one [6]. The
problem is not applicable to smaller networks [6].

This paper is structured as follows: Chapters 2 and 3 provide the necessary background
and formalize the research problem. The simulation methodology and experimental details
are in Chapters 4-5. The results are presented in Chapter 6, and analyzed and discussed
in Chapter 7, leading to the final conclusion in Chapter 9. Ethical considerations are in
Chapter 8.

2 Research Background
This section outlines the foundational works for this research. Section 2.1 introduces key
quantum information concepts. Section 2.2 details the quantum-aided protocol. Section 2.3
explains the experiment’s noise source, and Section 2.4 describes the noise model used to
assess the protocol under decoherence.

2.1 Fundamental Quantum Concepts
Whereas a bit must be either zero or one, a qubit, the fundamental unit of quantum informa-
tion, can be a combination of both states simultaneously. This is known as a superposition.
Quantum states are represented as a complex vector and are written using Dirac notation,
where |0⟩ and |1⟩ represent the basis states of a qubit [13]. A general qubit state is written
as |ψ⟩ = α|0⟩ + β|1⟩), where α and β are the amplitudes of the qubit. They are complex
numbers such that |α|2+|β|2 = 1. The probability of measuring zero or one is determined by
the squared magnitude of its amplitude [13]. In the example in Equation 1, the probability
of measuring zero is | 1√

2
|2 = 1

2 .
Measuring a qubit removes it from superposition and into a single classical state; from

that point onward, measuring the qubit will always give the same outcome. Like bits may
be manipulated with logic gates, qubits can be controlled by quantum gates, which are
represented by unitary matrices [13]. An example of a quantum gate is a Pauli-Z (Z) gate.
The Z gate applies a phase flip to the |1⟩ state, but leaves |0⟩ unchanged. The effect of the
Z gate on the quantum state in Equation 1 is shown in Equation 2.

|+⟩ = 1√
2
(|0⟩+ |1⟩) (1)

Z =

[
1 0
0 −1

]
, Z|+⟩ = 1√

2
(|0⟩ − |1⟩) (2)

Furthermore, qubits can be entangled, a phenomenon where the measurement of one
qubit instantaneously influences the outcome of another, no matter how far apart they
are [21]. An analogy that describes entanglement is that of a "magic" coin. Assume you
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and your friend each have a coin and go to a location far and unknown to the other. If you
flip your coin and see heads, you know with 100% certainty that your friend’s coin will also
fall on heads when they flip it. The magic coin represents two entangled qubits. Flipping a
coin to see its outcome corresponds to measuring a qubit, and the result, heads or tails, is
equivalent to measuring a zero or one.

Physically, in the scope of this research, qubits can be represented either using the spin
of an electron or the spin of a nearby carbon-13 nucleus. Electrons are light and thus easier
to control, making it convenient to perform operations, such as quantum gates, on them.
Carbon qubits are stable and less likely to be affected by external forces, so they are preferred
for storing quantum information for longer periods. Readers seeking a deeper understanding
of the concepts in this section may consult [13].

2.2 Weak Broadcast with Entangled States
A Byzantine agreement includes a network of nodes where a single node aims to broadcast
a message (or bit, in the case of this research) to all other nodes [7]. All nodes must decide
on an output value, xi, and the protocol is deemed a success if:

• Given a non-faulty sender that broadcasts the bit xs, non-faulty receivers output xs.

• Given a faulty sender, the non-faulty receivers all output the same value or ⊥.

⊥ signals an abort, meaning the node does not decide on any output value. This process
is also referred to as a Weak Broadcast. This paper will focus on a Weak Broadcast among
three parties (one sender and two receivers). What makes this protocol a quantum one is
the usage of multiple copies of an entangled four-qubit state [2]:

|ψ⟩ = 1

2
√
3
(2 |0011⟩ − |0101⟩ − |0110⟩ − |1010⟩ − |1001⟩+ 2 |1100⟩)

The state aids in verifying honesty by distributing the qubits among the three nodes.
The measurement outcomes are used to cross-check if a node has received the right value.
Multiple copies of the state are used because the failure probability of the protocol converges
to zero as the number of states used approaches infinity [9]. The usage of the quantum
states enables the protocol to tolerate less than half of the nodes being faulty [7], which
is an enhancement compared to the classical version, which can only tolerate fewer than a
third of the total nodes being faulty [10].

2.3 Quantum Teleportation and Decoherence
For each node to make use of the quantum state, the qubits in the quantum state need to
be distributed between the nodes in the network. The qubits are distributed using a process
called quantum teleportation: the transfer of a qubit from one place to another without
changing its quantum state, even when neither the sender nor receiver has information on
how the quantum state was prepared [1]. For the sake of an example that is similar to the
process in [1], let us assume Alice wants to send the qubit |ϕ⟩, which is in an arbitrary and
unknown state, to Bob. An Einstein-Podolsky-Rosen (EPR) pair [13], |Φ+⟩ = 1√

2
(|00⟩ +

|11⟩), is created. One qubit of |Φ+⟩ is given to Alice and the other to Bob. Alice measures
|ϕ⟩ and her EPR qubit in the Bell basis and stores the outcomes in the classical bits m0 and
m1 respectively. She sends m0 and m1 to Bob (also classically). Bob applies a Pauli-Z gate
to his EPR qubit if m0 is 1 and a Pauli-X gate to his EPR qubit if m1 is 1. The Pauli-Z
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gate is described in Section 2.1 and the Pauli-X gate swaps the |0⟩ state with |1⟩ and vice
versa. His EPR qubit is now transformed into |ϕ⟩. Since Alice measured |ϕ⟩, it is no longer
in the state |ϕ⟩; thus, the "teleportation" is complete.

We have established that the Byzantine agreement protocol relies on quantum telepor-
tation, which itself depends on generating an EPR pair between two nodes. This raises the
question of how the EPR pair is created between each node. One of the ways entanglement
is distributed across long distances is entanglement swapping [20]. This process is not always
successful upon its first attempt due to imperfections encountered when physically control-
ling quantum information over a distance [20]. Realistically, multiple attempts to establish
an EPR pair are made before one is actually created, introducing latency to the quantum
teleportation process. Furthermore, quantum memories also have their imperfections; one
of them being that they cannot preserve quantum states indefinitely [13]. The qubits held
in memory can start to get corrupted, and the repeated attempts required to establish an
EPR pair prolong this storage duration. By corrupted, it means they gradually deviate from
the original state they were initialized to. This process is known as decoherence [13].

The research by [9] calculates the optimal values for the protocol’s parameters µ and λ,
and finds the experimental failure rates of the protocol given a varying number of quantum
states used. They also evaluate the fidelity of both the measurements and the quantum
states; that is, how closely the experimentally prepared state and the resulting measurements
match the ideal quantum state mentioned above and its expected measurement outcomes
when implemented on quantum computing hardware. This demonstrates that the quantum
state, and subsequently the protocol, is impacted by noisy hardware. Some aspects that
still need to be investigated are: (i) Noise arising from quantum hardware is not a single,
uniform phenomenon; there are specific sources of noise, and how these individually impact
the quality of the quantum state. (ii) How noise quantitatively impacts the protocol’s failure
rate in a quantum network environment.

2.4 Decoherence Noise Models
Since we want the quantum state to be intact for the duration of the protocol, carbon qubits
are the better-suited choice due to their longer stability. Unfortunately, carbon qubits also
decohere, albeit slower than their electron counterparts, so the degradation of a qubit is
still unavoidable. Therefore, investigating the impact of decoherence aids in understanding
the protocol’s practical performance. There are two types of decoherence a carbon qubit
is subject to: T1 and T2 decoherence. The former impacts a qubit’s amplitudes, and the
latter its phase. This research aims to investigate the impact of both decoherence types. The
probability a single qubit is subject to both types of decoherence is defined by Equation 3 [3].

The model used to demonstrate the effects of T2 decoherence is a dephasing channel. A
dephasing channel probabilistically introduces a phase flip, by applying a Pauli-Z gate, to a
qubit. This gate flips the phase of the |1⟩ component of a qubit state, but leaves the proba-
bilities of measuring |0⟩ and |1⟩ unchanged. As T1 approaches infinity, the term e∆t/2T1 will
approach one. Thus, the probability, pT2 , of a qubit undergoing T2 decoherence is defined
in Equation 4. The model used to demonstrate the effects of T1 noise is amplitude damp-
ing [3]. Amplitude damping gradually decreases the chances of measuring |1⟩ and increases
the probability of measuring |0⟩. Equation 5 represents the formula for the probability, pT1 ,
of a qubit undergoing T1 decoherence [3].

pT1T2 =
1

2

(
1− e−∆t/T2 · e∆t/2T1

)
(3)
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pT2 =
1

2

(
1− e−∆t/T2

)
(4)

pT1 = 1− e−∆t/T1 (5)

In equations 3, 4, and 5, T1 and T2 represent the respective decoherence time values
and ∆t is the "idle time" of a qubit: while a qubit isn’t actively participating in operations
(like gates, teleportation, or measurement), it is vulnerable to decoherence noise. Since
measurement collapses a quantum state to a classical bit, decoherence also does not impact
measured qubits. Therefore, in this report, ’idle time’ refers to the duration during which
a qubit is exposed to decoherence and is not acted upon by any operations prior to its first
measurement. Additionally, the decoherence times are not entirely independent. The T1
time sets an upper bound on the T2, resulting in the constraint T2 ≤ 2T1 [4]. Studying the
effect of decoherence helps evaluate the robustness of the agreement protocol under realistic
network conditions where it is unavoidable.

3 Problem Statement
This section describes in depth the problem the research question aims to solve, framed as
follows: What is the failure probability of the Byzantine agreement protocol under noiseless
conditions, and how is this failure probability affected by noise? More specifically, the noise
source this research considers is the effect of T1 and T2 carbon decoherence. For both
cases, the failure probabilities will also take into account the presence of faulty nodes in the
network. Faulty nodes refer to nodes in the network that behave incorrectly, either due to
crashes, communication errors, or malicious intent, and may send incorrect or inconsistent
messages that disrupt the protocol.

4 Methodology
In this section, the formalization of the research methodology will be outlined. Section 4.1
describes the protocol’s step-by-step procedure, and section 4.2 includes how faulty behavior
is incorporated into the simulation. Section 4.3 describes the noisy scenarios used.

4.1 Protocol Overview
The protocol uses three parameters: 0 < µ < 1/3, 1/2 < λ < 1, and m, which is the number
of shared quantum states. The step-by-step procedure of the protocol is as follows:

1. Invocation Phase: In three-node network, the sender, S, creates the entangled state
|ψ⟩ with a quantum circuit (detailed in Section 5). The state is distributed via quantum
teleportation such that S keeps the first two qubits, and each receiver, R0 and R1,
gets one of the remaining two. Multiple shared states are needed to ensure statistical
reliability. Thus, quantum states are created and teleported m times, resulting in S
holding 2m qubits, and R0 and R1 holding m qubits each. All nodes measure their
respective qubits. S sends a bit x to R0 and R1. A check set is sent to each receiver,
containing the indices of the quantum states where both of S’s measurements equal
x. The check set aids the receivers in independently confirming that the correct value
has been sent by S.
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2. Check Phase: The protocol proceeds with classical checks and communication. Each
receiver verifies:
(a) The check set from S contains at least T = ⌈m · µ⌉ indices.
(b) The measurement outcomes for all of their qubits in the check set are opposite

to x.
If both hold, the receivers accept x (setting x0 = x and x1 = x); otherwise, they abort
by setting xi =⊥. The threshold T prevents a faulty sender from passing check (b)
with a small check set, increasing its reliability. µ has an upper bound of 1/3 as the
probability of obtaining either the measurement outcome |0011⟩ or |1100⟩ is 1/3 each.
As µ gets closer to 1/3, the check in (a) gets stricter. µ cannot be zero, as that would
allow an empty check set, defeating the threshold’s purpose. The opposite outcome
is expected due to the entanglement of |ψ⟩. If this does not hold, it indicates to the
receivers that x is erroneous, leading to an abort.

3. Cross-calling Phase: R0 sends its output (x0) and check set (ρ0) to R1 so R1 can
verify it has agreed on the right value.

4. Cross-check Phase: R1 updates its value to x1 = x0 if all of the following are true:
(a) x0 ̸= x1, x0 ̸=⊥, and x1 ̸=⊥
(b) ρ0 contains at least T = ⌈m · µ⌉ indices.
(c) For the qubits at the indices in ρ0, R1 measures the opposite value to x0 at least

λ · T + |ρ0| − T times.
By verifying the opposite value is measured for a large fraction of the indices, R1

confirms R0 has decided on x0 correctly. Said fraction of indices is decided by λ. λ
has an upper bound of one, exclusive, to account for measurement errors. However, go
too low and R1 may end up accepting an incorrect value, thus a lower bound of 1/2 to
ensure R1 measures the appropriate value for a majority of the qubits. R1 adopts R0’s
output value if the checks pass and assumes the value S sent is incorrect, since by the
definition of a Weak Broadcast, all non-faulty nodes should agree on the same value.
Otherwise, it retains its previous value, assuming R0 is the faulty node. Without this,
R1 would blindly accept its initial output from the check phase.

The protocol’s outcome is a failure if it does not match the conditions for a Weak
Broadcast mentioned in Section 2. Decoherence exclusively occurs before the generation of
the check sets by the sender in the Invocation step. The idle time during which qubits can
decohere is the period between their initial preparation and first measurement in Step 2.
This excludes time spent on teleportation. Qubits do not undergo decoherence while a gate
is acting on them. A detailed timeline of each qubit’s decoherence events is shown in Figure
1. For this simulation, all classical communication channels are assumed to be error-free.

4.2 Simulated Faulty Behavior
The simulation includes three fault cases: one with no faulty nodes, one where S is faulty
and another where R0 is faulty. The faulty strategies used align with those in [9], with at
most one faulty node per scenario, since the quantum Byzantine agreement requires less
than half of the nodes to be faulty [7].

1. S Faulty: In the invocation phase, S sends x to R0 and 1 − x to R1, manipulating
check sets such that R1 receives indices where S measures two 1− x outcomes, while
R0 receives a mix of indices from the remaining outcomes. It aims to pass checks in
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Step 2 but fail Step 4(c), causing R0 to output x and R1 to output 1−x, thus violating
Weak Broadcast.

2. R0 Faulty: S behaves honestly and sends x along with valid check sets. During cross-
calling, R0 sends 1− x and a manipulated check set, which contains the indices where
R0 expects R1 to measure x enough times to pass the check. As a result, R1 accepts
the incorrect value, while R0 outputs the original, violating Weak Broadcast.

A third possible outcome in these faulty scenarios is a domain violation, treated as an
immediate protocol failure to ensure a secure upper bound on the failure probability [9]. This
occurs when a faulty node lacks sufficient measurement outcomes to construct convincing
check sets. For S faulty, a domain violation occurs when sets l1, l2, or l3 from Algorithm 1
are too small, as constrained by Equation 6 [9]. For R0 faulty, a violation occurs if set l4
from Algorithm 2 is too small, as defined in Equation 7 [9]. In both equations 6 and 7,
Q = T − ⌈Tλ⌉+ 1 and T = ⌈m · µ⌉.

T −Q ≤ |l1| Q ≤ |l2| T ≤ |l3| (6)
|l4| ≤ m− T (7)

The case of R1 being faulty is not considered, as this node does not send information to
any of the others. If R1 were the (only) faulty node, the other two nodes would reach an
agreement, guaranteeing success [9].

Figure 1: Decoherence timeline of a quantum state. Purple dots mark decoherence of
all qubits except those in gate operations. Yellow, light blue, and red dashes indicate
decoherence of the first receiver’s, second receiver’s, and sender’s qubits, respectively. Black
dashes mark intervals where only other qubits are decohering, and black lines indicate no
decoherence. Qubits cease to decohere after their first measurement.

4.3 Simulated Decoherence Scenarios
First, the simulations will be run in a noiseless environment to establish a baseline for
comparison. Then, the noise source from section 2.4 will be introduced, and the failure
probabilities will be compared. An example run of the protocol under noise can be found in
Appendix C. This research considers two noisy scenarios:

1. Only T2 Decoherence: The effect of varying T2 times is investigated first, while
assuming T1 is infinite and not in effect.
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Algorithm 1 How the sender (S) creates
the check sets
Require: x (Value to agree on)

let l1 ← [ ], l2 ← [ ], and l3 ← [ ]
for i← 1 to m do

q0, q1, q2, q3 ← PrepareQubits
Teleport(q2 to R0, q3 to R1)
b0, b1 ← Measure(q0, q1)
if b0 = x and b1 = x then

append i to l1
else if b0 ̸= x and b1 ̸= x then

append i to l3
else

append i to l2
end if

end for
if S is faulty then

let check_set0 ← random sample of
size Q from l2

append random sample of size T −Q
from l1 to check_set0

Send check_set0 to R0 and l3 as
check_set1 to R1

else
Send the check set l1 to R0 and R1

end if

Algorithm 2 How the faulty receiver R0

manipulates check sets

Require: x0 (Value agreed on by R0),
check_set0 (Check set sent to R0 by S),
qubits (List of qubits of length m)
let l4 ← [ ], l5 ← [ ], l6 ← [ ]
for i← 1 to m do

q ← qubits[i]
if i /∈ check_set0 and q ̸= x0 then

append i to l5
else if q = x0 then

append i to l6
else

append i to l4
end if

end for
x0 ← 1− x0
check_set01 ← l5
if |l5| < T then

nmin ← T − |l5|
else

nmin ← 0
end if
append random sample of size nmin from
l6 to check_set01
Send x0 and check_set01 to R1

2. Combined T1 and T2 Decoherence: A "T1-only" scenario, where T2 is infinite and
ineffective, is not achievable, as the constraint T2 ≤ 2T1 requires that T2 is finite.
Therefore, the combined effect, of varying both T1 and T2 is analyzed.

5 Experimental Setup
This section outlines the simulation environment used to compute the failure probability
of the agreement protocol in both noiseless and noisy scenarios. Section 5.1 describes the
general and noiseless setup, while Section 5.2 details the modifications made to introduce
noise.

5.1 General Simulation Setup
Simulations were performed in Python using SquidASM [14], which supports quantum net-
works and noise modeling. The values chosen for the parameters µ and λ were 0.272 and
0.94 respectively. These were the optimal values calculated by [9]. For m, values from 20 to
400 in increments of 10 were used, with each m value simulated separately.
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Figure 2: Loop circuit preparing the quantum state: q0 and q1 go to S, q2 and q3 to R0 and
R1 each [9].

The network configuration of three nodes, for S, R0, and R1, was used. For the noiseless
simulation, a generic network model was used, meaning the communication between nodes
is instant and error-free. The quantum states were prepared on S’s node using the loop
circuit in Figure 2. The steps in Section 4.1 are implemented by the nodes, and each of
them returns either a one or zero, an abort, or a domain violation. The return values are
used to evaluate the success of the protocol, following the truth table in Table 1. The success
or failure is indifferent to the input bit x, so the noiseless experiment was conducted with
only x = 0.

S R0 R1 No faulty S faulty R0 faulty
x x x ✓ ✓ ✓
x x 1− x × × ×
x x ⊥ × ✓ ×
x 1− x x × × ✓
x 1− x 1− x × ✓ ×
x 1− x ⊥ × ✓ ×
x ⊥ x × ✓ ✓
x ⊥ 1− x × ✓ ×
x ⊥ ⊥ × ✓ ×
ϵ ⊥ or x or 1− x ⊥ or x or 1− x N/a × N/a

⊥ or x or 1− x ϵ ⊥ or x or 1− x N/a N/a ×

Table 1: Protocol outcomes for various fault scenarios with x ∈ 0, 1 [9]. ✓: success, ×:
failure, ⊥: abort, ϵ: domain violation, N/a: not applicable.

Monte Carlo simulations with 10,000 samples were used to calculate the failure probabil-
ities corresponding to the cases of no faults, S being faulty, and R0 being faulty. [5] aided in
running the large amount of simulations needed for generating the aforementioned number
of samples. The exact values for each m, calculated with the formulas in Appendix B [9],
were also plotted.

5.2 Noisy Experiment Setup
To simulate noise, changes were made to the network. First, a nitrogen vacancy (NV)
device [16] was used to model the nodes. The device models nitrogen-vacancy centers in
diamonds, including their electron and nuclear spin qubits and noise parameters, which are
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used in this context to vary the carbon qubit’s T1 and T2 decoherence times. The value
of m was fixed at 280. This value is chosen as it is a balance between maintaining a low
failure rate and not using too many shared quantum states (resource efficiency). Ideally, the
number of states for a zero percent failure rate would be used, but as proven by [9], that
would take an infinite amount of states to achieve.

To evaluate the impact of T2 on the failure rate, carbon T2 times were varied from 10−6

to 10 seconds. In SquidASM, noise parameters must be integers, making it impossible to set
T1 to infinity. Instead, T1 was set to zero, which effectively disables dephasing based on NV
device implementation behavior [3]. For the second experiment, assessing the joint impact
of T1 and T2, both values were varied across the same range, 10−6 to 10 seconds. For both
noisy simulations, decoherence values were incremented following a cubic growth pattern.
This non-linear scaling captures sensitivity to short decoherence times while showing trends
at higher values. The lower bound of 10−6 simulates near-instantaneous decoherence, and
10 seconds was chosen as an upper bound to represent a tenfold improvement [3].

The quantum links between the sender and each receiver were modeled with probabilistic
entanglement generation using depolarizing links, which allow specification of fidelity (how
close the generated state is to a perfect EPR pair), per generation attempt duration, and
success probability [15]. The success probability of generating an EPR pair was set to
0.001 [3], per attempt duration to 10−6 seconds, and fidelity 1 to ensure the EPR pairs
generated are ideal. This means entanglement generation, on average, takes 103 × 10−6 =
0.001 seconds. Again, the failure probability was calculated using the Monte Carlo method,
with 1,200 samples used for the T1 and T2 experiment and 500 for T2. To ensure balanced
input evaluation, half of the samples used x = 0 and the other half x = 1.

6 Results
This section presents the results of all the simulations. Figure 3 shows the noiseless simula-
tion results, plotting failure probability against the number of shared states (m) for all fault
configurations. The orange circles are the exact failure probabilities for each m value, and
purple crosses the Monte Carlo simulation outcomes. Error bars, calculated as the standard
error of a Bernoulli trial, are plotted on the Monte Carlo points; however, due to the large
sample size, they are not distinguishable. Most of the Monte Carlo points overlap with the
exact values for the upper bounds of the failure rate. This is by design, as the simulations
model the worst-case scenario by assuming a protocol failure occurs whenever the faulty
node’s optimal strategy cannot be executed due to a domain violation.

Figure 5 and 4 depict the failure probability results against varying noise levels for
T2 decoherence and the combination of T1 and T2 respectively. The red dashed and blue
lines represent the exact and Monte Carlo noiseless failure probabilities (from Figure 3)
respectively for m = 280. It can be observed from all the sub-figures in Figure 5 that
the failure probability is not significantly affected by the decoherence values and all points
remain close to the exact value/noiseless line. In Figure 4, it can be observed that the failure
probabilities follow a curve, decreasing as T1 and T2 increase.
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(a) No faulty nodes (b) R0 faulty

(c) S faulty

Figure 3: Failure probability vs No. of shared states, for m = 20 to 400

(a) No faulty nodes (b) Sender faulty

(c) Receiver 0 faulty

Figure 4: Failure probability vs T1 and T2 Carbon Decoherence Time with p = 0.001 and
m = 280
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(a) No faulty nodes

(b) S faulty (c) R0 faulty

Figure 5: Failure probability vs T2 Carbon Decoherence Time with p = 0.001 and m = 280

7 Discussion
A key finding is that carbon T2 decoherence has negligible impact on the protocol’s fail-
ure probability, due to dephasing affecting only the phase, not the amplitude, of quantum
states [13]. A maximally dephased state, where all phases are flipped, illustrates this:

|σ⟩ = 1

2
√
3

(
− 2 |0011⟩+ |0101⟩+ |0110⟩+ |1010⟩+ |1001⟩ − 2 |1100⟩

)

p|0011⟩ = p|1100⟩ =

∣∣∣∣ −22
√
3

∣∣∣∣2 =
1

3
, p|1001⟩ = p|0110⟩ = p|1010⟩ = p|0101⟩ =

∣∣∣∣ 1

2
√
3

∣∣∣∣2 =
1

12

While the state is different, the measurement outcomes and their probabilities, p|state⟩,
are not, as seen in the equation above. This is because of the sole reliance on Z-basis
measurements, which distinguish between |0⟩ and |1⟩ only. This outcome holds regardless
of the EPR generation probability, as results are not influenced by dephasing to begin with.

In contrast, the results for T1 and T2 decoherence combined suggest that shorter times
lead to poorer protocol performance. Earlier, we proved that the effect of T2 is negligible,
thus the conclusion can be drawn that the change in performance is attributed to the effect
of T1 noise. Also, following Figure 4’s downward curve, it can also be deduced that, with
increasing values of T1, the failure probability will approach its noiseless value. This is
supported by the probability that none of the four qubits in the quantum state decohere for
T1 = 10 hours and T2 = 1 second (realistic T1 and T2 time estimations on NV hardware [3].)

is
(
1−

[
1
2

(
1− e− 0.001

1 · e 0.001
2·36000

)])4

≈ 0.998. The equation raised to the fourth power is
from Section 2.4.

In Figure 1, much of the decoherence experienced by the qubits of S and R1 occurs
while waiting for teleportation to complete sequentially. Ideally, teleportation would occur
simultaneously to reduce idle time. However, this sequential teleportation is due to the
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limitations of SquidASM’s NV model [16]. The NV device can store one electron spin qubit
and several carbon-13 spin qubits [16]. As described in Section 2.3, teleportation requires
an EPR pair that must be created on the electron spin qubits of both the sender and
receiver. Since each node has only one electron spin qubit, simultaneous teleportation is
not possible. The practicality of this protocol is another point of consideration. When the
protocol achieves Weak Broadcast by aborting in the case of faulty nodes, it prevents a fail
but does not identify which node was the source of the error. This may limit its usefulness
in real-world systems where identifying faulty nodes is necessary. Furthermore, the method
for calculating the protocol’s failure rate may be too pessimistic, due to the exclusion of
domain violations. These instances of successful but passive defense could provide a more
realistic measure of the protocol’s resilience, as these outcomes could be observed in the
protocol’s practical application.

Future work could explore the protocol’s vulnerability to decoherence in non-Z bases,
which would reveal the impact of Pauli-Z-induced phase changes and allow analysis of T2
decoherence effects. The protocol could also be modified to allow some tolerance in the
Check Phase to account for T1-induced bit flips. Instead of requiring all outcomes to oppose
bit x, a parameter could define the minimum fraction of matching outcomes. Future work
includes optimizing this new parameter to include noise acceptance without being so lenient
that faulty senders can succeed.

8 Responsible Research
Part of this research involves the reproduction of the methodology and experiment presented
by Guba et al. [9]. All sections of this research that are taken from [9] are clearly cited.
While the methodology is built on [9], the simulation code was developed independently
by the researcher. The results of the reproduction of the experiment have been honestly
presented, even in the event of deviations from the original.

Secondly, to ensure that the original experiment conducted in this research is also re-
producible, the code used was uploaded to GitHub with clear instructions on how to run it.
The source code is publicly available and can be found here [12]. All software tools used,
as well as the steps taken to conduct this experiment, are also mentioned in this paper.
This aligns with the reproducibility recommendations given in [19]. This research does not
involve the collection of human subject data, therefore it does not require ethical approval
related to human participation.

Beyond the reproducibility of this research, the quantum Byzantine agreement protocol
has the potential to strengthen fault-tolerant distributed communication against malicious
behavior and transmission errors. The protocol may be applied in fields like blockchain
technologies [18] and database management systems [8], which all involve the mitigation
of Byzantine faults. From an ethical standpoint, the protocol may contribute to building
systems that are more resilient to manipulation and corruption, which this research has a
positive impact on as it evaluates one of the hurdles the protocol may face in its deployment.

Another point of consideration is that the concept of quantum networks is fairly new and
not yet widespread in its use. Just like the propagation of the contemporary internet [17], if
quantum networking technology were to be publicly available in the future, some regions and
companies would have access to it earlier than others [11]. This creates an imbalance where
only some parties have the ability to use and reap the benefits of the quantum Byzantine
agreement while others remain vulnerable. This imbalance does not imply that research into
quantum-aided protocols should be halted. Rather, it highlights the importance of ensuring
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that access to quantum technologies becomes sufficiently widespread and equal before such
protocols are implemented in critical infrastructure, preventing disparity in its usage.

9 Conclusion
This research set out to answer the question: How is the success probability of the quantum
Byzantine agreement protocol affected by memory decoherence in a three-party network?
To address this, the noiseless failure probability of the protocol, as a function of the number
of shared states, m, including three scenarios: no faulty nodes, a faulty sender, and a faulty
receiver, was simulated. The simulation results matched the results from [9], confirming the
validity of our simulation framework. Then, the impact of carbon T1 and T2 decoherence
noise levels were investigated by introducing two decoherence scenarios using an NV device
model: one isolating the effects of T2 decoherence and another combining T1 and T2 noise.

T2 carbon decoherence has negligible impact on failure probability because dephasing
errors (modeled by Pauli-Z) only affect phase, which the protocol disregards due to exclusive
Z-basis measurements that decided only by amplitudes. This is observed regardless of how
long the quantum state is exposed to T2 decoherence, demonstrating resilience. In contrast,
the second finding is that T1 and T2 decoherence combined impacts the protocol performance,
with shorter coherence times leading to higher failure rates. Since the effect of T2 was
established to be negligible, this performance degradation can be attributed to T1 noise.
The protocol’s performance on NV hardware should approach the noiseless failure rate due
to their long T1 times. In conclusion, while this study confirms the protocol’s resilience to
T2 decoherence, it highlights its vulnerability to short T1 decoherence times.

The protocol simulation’s limitations include its inability to identify faulty nodes, an
overly pessimistic failure calculation by treating all domain violations as failures, and deco-
herence caused by sequential teleportation delays, which arise from the NV device hardware
restricting each node to a single electron spin qubit, preventing simultaneous teleportation.
A next step could be to investigate the protocol’s performance with measurements in differ-
ent bases, which would make the protocol sensitive to T2 decoherence. The protocol can also
be adapted to tolerate some bit-flip errors during the Check Phase by setting a minimum
fraction of matching outcomes, balancing noise robustness and security.
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A Figure 4 of [9]
This appendix presents the collection of graphs depicting the failure probabilities of the
Byzantine agreement protocol from [9]. They served as a reference point for comparing the
protocol simulations developed in this research.
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Figure 6: Failure probability of the Weak Broadcast protocol under three adversary config-
urations. (a) No faulty nodes (b) S faulty (c) R0 faulty. Exact results (green circles) and
Monte Carlo estimates (red crosses) for failure probability. Parameters used: µ = 0.272, λ
= 0.94. Simulation results use 10,000 random events for each m.

B Exact Value Formulas
This appendix includes the formulas used to estimate the upper bounds of the failure proba-
bilities of the protocol given varying values of m. These formulas were taken from [9]. They
assume x, the value to be agreed upon, is zero, T = ⌈m · µ⌉, and Q = T − ⌈T · λ⌉+ 1.
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The exact value formula for p(nf)f , for the no faulty nodes configuration:

p
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The exact value formula for p(S)
f,↑ , for the S faulty configuration:
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The exact value formula for p(R)
f,↑ , the R0 faulty configuration:
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C Example Run with Decoherence Errors
This appendix traces a single run (with m = 1) of the protocol where an honest sender
S broadcasts the bit x = 0 to two honest receivers. However, noise is present, and its
consequence on the protocol is highlighted.

C.1 T1 Decoherence Error
In this run, a T1 decoherence error occurs and influences the outcome of the protocol as
follows:

1. Invocation and Noise: The process begins with S measuring its qubits as ‘00‘ and
sending the check set ρ = {0} to both receivers. In a noiseless scenario, the receivers’
qubits would be in the state |11⟩. However, we assume that during the idle time before
measurement, the qubit held by receiver R0 is affected by T1 decoherence. This noise
results in the joint state of the receivers’ qubits being |01⟩.
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2. Check Phase: The receivers measure their qubits, but their paths diverge due to the
error.

• R0 measures its corrupted qubit and gets the outcome ‘0‘. It then checks if this
outcome is opposite to the sender’s bit x = 0. The check fails, because ‘0‘ is not
the opposite of ‘0‘.

• R1’s qubit is unaffected. It measures the outcome ‘1‘, which is the correct opposite
value. Its check passes.

3. Cross calling and check phase: Since its check failed, R0 must abort and sets its
final output to x0 =⊥. Since its check passed, R1 sets its output to x1 = 0. R0 sends
its outcome and check set to R1, who will then see that R0 has aborted; thus, it will
retain its original value ‘0‘.

According to the Weak Broadcast success conditions from Section 2.2, when a non-faulty
sender broadcasts xs, all non-faulty receivers must also output xs. Since R0 outputs ⊥, this
condition is not met, and the protocol run is considered a failure.

C.2 T2 Decoherence Error
In this run, a T2 decoherence error occurs and influences the outcome of the protocol as
follows:

1. Invocation and Noise: The process begins with S measuring its qubits as ‘00‘ and
sending the check set ρ = {0} to both receivers. In this scenario, S’s first qubit and
R1’s qubit are subject to dephasing. The quantum state is now:

|ψZ⟩ =
1

2
√
3
(−2 |0011⟩+ |0101⟩ − |0110⟩+ |1010⟩ − |1001⟩ − 2 |1100⟩)

2. Check Phase: The receivers measure their qubits, but their paths diverge due to the
error.

• R0 measures its qubit and gets the outcome ‘1‘. It then checks if this outcome is
opposite to the sender’s bit x = 0. The check passes.

• R1 also measures a ’1’. Its check also passes.

3. Cross calling and check phase: R0 and R1 both agree on the sender’s bit x = 0,
so no changes are made to the outputs in this phase.

According to the Weak Broadcast success conditions from Section 2.2, when a non-faulty
sender broadcasts xs, all non-faulty receivers must also output xs. Since all nodes output
x, this condition is met, and the protocol run is considered a success.
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