
Delft University of Technology
Master of Science Thesis in Computer Science

Partial-Order Reduction in
Reachability-based Response-Time

Analyses

Sayra Sabah Ranjha

Supervisors:
Dr. Mitra Nasri

Dr. Geoffrey Nelissen

Embedded
Networked
Systems

Partial-Order Reduction in Reachability-based
Response-Time Analyses

Master of Science Thesis in Computer Science

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Sayra Sabah Ranjha

Supervisors:
Dr. Mitra Nasri

Dr. Geoffrey Nelissen

7th of July 2021

mailto:s.s.ranjha@student.tudelft.nl

Author
Sayra Sabah Ranjha

Title
Partial-Order Reduction in Reachability-based Response-Time Analyses

MSc Presentation Date

13th of July 2021

Graduation Committee
Prof. dr. Koen Langendoen (chairman) Delft University of Technology
Dr. Mitra Nasri (supervisor) Eindhoven University of Technology
Dr. Geoffrey Nelissen (supervisor) Eindhoven University of Technology
Dr. Burcu Kulahcioglu Ozkan Delft University of Technology

The work presented in this thesis has lead to a paper which is being submitted
to the Real-Time Systems Journal of Springer.

Abstract

The temporal correctness of safety-critical systems is typically guaranteed via a
response-time analysis, whose goal is to determine the worst-case response time
(WCRT) of a set of input jobs when they are scheduled by a given schedul-
ing policy on a computing resource. However, response-time analysis is a hard
problem to solve, with most variations of the problem being NP-hard. Recently,
Nasri et al. [18] have introduced an exact reachability-based response-time ana-
lysis that is based on exploring the space of possible decisions that a scheduler
can take for a set of jobs/tasks. Their solution is at least three orders of mag-
nitude faster than other exact response-time analyses and scales well.

Despite its current success in scalability, the schedule-abstraction-based ana-
lysis still faces one big fundamental limitation: in the reachability graph that it
builds, each edge can only include one single scheduling decision. As a result,
as soon as there are large uncertainties in the release time or execution time of
the jobs in the input job set, the number of states generated by the schedule-
abstraction graph grows exponentially because the analysis will try to explore
all (valid) combinations of ordering between jobs.

We improve the scalability of the schedule-abstraction-based analysis by in-
troducing partial-order reduction (POR) rules that allow combining multiple
scheduling decisions on one edge and hence avoiding combinatorial exploration
of all possible orderings between jobs in cases where there are large uncer-
tainties. Our solution is an exact schedulability analysis and provides a safe
response-time analysis that reduces the size of the graph while only introducing
a small overestimation on the WCRT of the jobs.

Our key idea is to identify subsets of jobs for which the combinatorial explor-
ation of all orderings is irrelevant to the schedulability of the job set. Exploring
these combinations is irrelevant when all scenarios lead to a system state without
encountering a deadline miss in any of those scenarios. Dispatching such jobs
can be considered in a single step (that combines all those scheduling decisions),
which further defers the state-space explosion.

We show that our solution is able to reduce the runtime of the analysis by
five orders of magnitude on average, and the number of explored states by 98%
on average in comparison to the original schedule-abstraction-based analysis of
Nasri et al. [18] for randomly generated periodic task sets. This achievement
comes with a negligible cost of an average 0.1% increase in the WCRT of the
jobs. This shows that POR allows us to analyze even more task sets than the
original and has the potential to scale even further.

iv

Preface

Working on this thesis has been an amazing journey. I would like to thank
Mitra Nasri and Geoffrey Nelissen for their incredible supervision, for poking
holes through my theories whenever I had not done so myself, and above all for
being such a joy to work with. I feel very proud of what we have achieved in
this thesis, and I cannot wait to carry on with this research in the future.

Sayra Sabah Ranjha

Delft, The Netherlands
7th July 2021

v

vi

Contents

Preface v

1 Introduction 1

1.1 Related work and hardness results 1

1.2 Problem definition and research questions 2

1.3 Contributions . 4

1.4 Organization . 5

2 Prerequisites and terminology 7

2.1 Task properties . 7

2.1.1 Task activation models . 7

2.1.2 Execution models . 8

2.1.3 Type of deadline . 9

2.1.4 Modeling periodic tasks 9

2.2 Scheduling algorithms . 10

2.2.1 Categorization by the time the scheduler is activated . . . 10

2.2.2 Categorization by work-conservation 10

2.2.3 Categorization by priority assignment 11

2.2.4 Well-known scheduling policies 11

2.3 Schedulability tests . 13

3 System model and assumptions 15

3.1 Job and system model . 15

3.2 Scheduler model . 16

3.3 Creating job sets from periodic task sets 16

4 Related work 17

4.1 Exact schedulability analyses . 17

4.1.1 Fixed-point iteration-based analyses 17

4.1.2 Reachability-based analysis 18

4.2 Partial-order reduction . 19

4.2.1 Static partial-order reduction 19

4.2.2 Dynamic partial-order reduction 20

4.2.3 Applicability to schedulability analyses 20

vii

5 Motivation and problem definition 21
5.1 Schedule-abstraction graph . 21

5.1.1 Expansion phase . 22
5.1.2 Merge phase . 23

5.2 Motivation and basic idea . 24
5.3 Problem definition . 25

5.3.1 Ensuring an exact schedulability analysis 25
5.3.2 Creating the candidate reduction set 26

6 Partial-order reduction 27
6.1 Earliest finish time of a reduction set 27
6.2 Latest finish time of a reduction set 30
6.3 Earliest and latest finish times for each job in a reduction set . . 33

6.3.1 Earliest finish time of Ji ∈ JM 33
6.3.2 Latest start and finish time of Ji ∈ JM 34

6.4 Interfering jobs . 37
6.4.1 Work-conserving interference condition 37
6.4.2 Priority-driven interference condition 41

6.5 Ensuring the absence of deadline misses 42
6.6 Safe partial-order reduction . 43

6.6.1 Algorithm for reduction set creation 45
6.7 Algorithm for partial-order reduction 47

7 Empirical evaluation 51
7.1 Experiment on benchmark task sets 52

7.1.1 Task set generation . 52
7.1.2 The effect of the order in which interfering jobs are added

to the reduction set (EXP1) 54
7.1.3 The impact of utilization on state-reduction ratio (EXP1) 56
7.1.4 The impact of utilization on speedup (EXP1) 63
7.1.5 The impact of partial-order reduction on WCRT (EXP1) 64
7.1.6 The effect of release jitter and execution time variation on

the speedup (EXP2) . 66
7.2 Experiment on synthetic task sets 67

7.2.1 Task set generation . 67
7.2.2 The impact of the number of tasks on the performance of

POR (EXP3) . 69
7.2.3 The scalability of partial-order reduction (EXP4) 71

8 Conclusions and future work 73
8.1 Summary of contributions . 73
8.2 Conclusions . 73
8.3 Future work . 74

viii

Chapter 1

Introduction

Safety-critical real-time systems can be found in many industries, including
avionics, railway, and automotive industries. The safety of these systems de-
pends on both functional and temporal correctness. Guaranteeing temporal
correctness is typically done via a response-time analysis, whose goal is to de-
termine the worst-case response time (WCRT) of a set of input jobs when they
are scheduled by a given scheduling policy on a computing resource. Typically,
a real-time system is said to be temporally correct or schedulable if the WCRT
of each job is smaller than its deadline. Namely, for a given scheduling policy,
no execution scenario (under the set of valid scenarios that respect the assump-
tions of the system) must exist such that any of the jobs violates its timing
constraints.

1.1 Related work and hardness results

The problem of response-time analysis is a hard problem to solve. Eisenbrand
et al. [10] show that computing response times for periodic tasks scheduled by
a fixed-priority (FP) scheduling policy1 (which is a policy where all instances of
a task are assigned the same priority) on a single-core platform is an NP-hard
problem, and there is no polynomial-time algorithm for approximating response-
times within any constant factor unless P = NP. They also establish that the
response-time analysis problem for the earliest deadline first (EDF) policy (a
policy where the task instance with the earliest deadline has the highest priority)
is coNP-hard [9].

Ekberg [11] shows that despite there being a polynomial-time solution for
the rate-monotonic scheduling policy (which is a FP policy where the priorit-
ies of the tasks are monotonic to their periods) when the utilization (i.e., the
workload generated by the task set per unit of time) is bounded by ln(2) (Liu
and Layland’s bound [17]), the FP-schedulability problem is NP-complete when
the utilization is bounded by c > ln(2). The author also proves that for ar-
bitrary priorities, this problem is already NP-complete for utilizations bounded
by c > 0. Table 1.1 contains a complete overview of the complexity of the FP-
schedulability problem as provided by [11]. It shows that all variations of the
problem are either NP-complete or NP-hard. In this table, p and d refer to the

1A scheduling policy determines in which order tasks are dispatched on a processor.

1

Implicit deadlines
(d = p)

Constrained deadlines
(d ≤ p)

Arbitrary deadlines
(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete
Pseudo-polynomial time

algorithm exists

Weakly NP-complete
Pseudo-polynomial time

algorithm exists

Weakly NP-hard
Exponential time
algorithm exists

(Open)

Utilization
bounded by a
constant c < 1

Weakly NP-complete for
(i) c > 0 and

arbitrary priorities, or
(ii) c > ln(2) and RM;

In P for c ≤ ln(2) and RM

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

(Open)

Table 1.1: Overview of the complexity of the FP-schedulability problem

taken from [11]. d and p refer to the relative deadline and period of the

tasks.

tasks’ period and relative deadline, respectively. For example, p = d refers to
periodic tasks whose relative deadlines are equal to their periods.

Despite the hardness results, there have been several solutions to the prob-
lem of schedulability and response-time analysis. For example, utilization-based
schedulability tests (i.e., schedulability tests that are based on a mathemat-
ical relation between the utilization of individual tasks) are polynomial-time
but they are only sufficient (i.e., a task set that passes the test is certainly
schedulable, but one that fails the test is not necessarily unschedulable) and
thus pessimistic [4,17,19].

Known exact analyses fall into two general categories: (i) fixed-point iteration-
based analyses [3,8,15] that have pseudo-polynomial time complexity and (ii)
reachability-based analysis [14,18,20–22,24,25]. Fixed-point iteration-based ana-
lyses are typically faster than reachability-based analyses, however, the exact-
ness of those analyses is limited to special cases, e.g., preemptive periodic or
sporadic (event-triggered) tasks scheduled by fixed-priority scheduling [3] or
earliest-deadline first (EDF) [5], or non-preemptive sporadic tasks scheduled by
fixed-priority [8] or EDF policy [15].

Reachability-based analyses, on the other hand, are often exact in more gen-
eral cases, e.g., preemptive [14] or non-preemptive [25] periodic and sporadic
tasks scheduled by global fixed-priority scheduling policies (these are FP policies
for multiprocessor systems where tasks can migrate between processors). How-
ever, the problem with reachability-based analyses is their poor scalability, as
they generally support limited period values and tasks [14,24,25].

1.2 Problem definition and research questions

Recently, Nasri et al. [18] have introduced a reachability-based response-time
analysis that is based on exploring the space of possible decisions that a sched-
uler can take for a set of jobs. They searched this space by building a graph
called the schedule-abstraction graph (SAG). To defer the state-space explo-
sion, Nasri et al. [18] have introduced two main techniques to reduce the state
space: (i) powerful interval-based abstractions to aggregate similar system states
(schedules), and (ii) state-merging rules to combine system states whose future
is the same or can be explored together. These techniques allowed their solution
to be at least 3000 times (three orders of magnitude) faster than other exact
response-time analyses that are based on generic formal verification tools such

2

as UPPAAL [25] and to scale to very large system sizes (e.g., to 32 cores and
30 parallel tasks in [21]).

Limitation of current schedule-abstraction-based analyses. Despite
the current success in scalability, the schedule-abstraction-based analysis still
faces one big fundamental limitation: each edge can only include one single
scheduling decision (i.e., dispatching of one job) [18,20–22]. As a result, as
soon as there are large uncertainties in the release time or execution time of
the jobs in the input job set, the number of states generated by the schedule-
abstraction graph grows exponentially because the analysis will try to explore
all (valid) combinations of ordering between jobs (more detailed explanation
and examples are provided in Section 5.2).

Our goal. The goal of our work is to improve the scalability of reachability-
based response-time analyses using partial-order reduction (POR). POR is a
technique frequently used to defer state-space explosion in the domain of con-
current software system verification [1,7,13]. In the context of concurrent system
verification, POR relies on the fact that the order of concurrent operations often
does not matter because all orders lead to the same system state, which means
that all but one order can be discarded from the state-space.

As a concrete problem, in this work we will focus on the response-time ana-
lysis problem for a set of non-preemptive periodic tasks (and arbitrary job sets)
with constrained deadline (d ≤ p) scheduled by a job-level fixed-priority (JLFP)
scheduling policy (which is a more general class of scheduling policies and in-
cludes both the FP and EDF policies) on a single-core platform. As shown
by Table 1.1, this problem is NP-hard. A recent survey of Akesson et al. [2]
on industrial real-time systems shows that more than 80% of real-time systems
have periodic (time-triggered) activities and about 40% of them execute the
tasks on single-core platforms. Their findings shows that this problem is not
only relevant now but also in the next ten years as as indicated by over 30% of
industrial practitioners that filled-in the survey.

Challenges and research questions. The existing POR approaches cannot
be directly applied to schedulability analyses in real-time systems because the
rules for these approaches are specific to the domain of concurrent systems. This
poses a number of challenges that we need to address to create a POR technique
that is applicable to schedule-abstraction-based analyses.

First of all, the concurrent system specific POR rules assume that the order of
independent operations (operations that do not interfere with each other, e.g.,
read operations) always result in the same system state, whereas this is not
true for schedulability analyses because different job execution orders do not
necessarily lead to the same system state. Hence, we need to define under what
conditions it is still safe to ignore the ordering between jobs and aggregate the
possible resulting states into one. This leads us to our first research question:

RQ 1. When does the execution order of jobs not contribute to a violation of
timing properties (such as a deadline miss)?

In the context of concurrent system verification, POR simply discards redund-
ant operation orders [1,7,13], while we cannot simply do this in a schedulability
analysis because different orders may lead to system states that are equivalent
in terms of executed jobs and schedulability, but not in terms of response-time
bounds. Hence, the second challenge is to find a way to incorporate these orders

3

without explicitly exploring them because discarding this information entirely
will lead to inexact analyses. This motivates our second research question:

RQ 2. How to maintain the exactness of schedule-abstraction-based analyses by
including the information of the possible job execution orders without exploring
each order explicitly?

Given the answer to the above research questions, we have a set of POR
rules that allows us to (i) ignore the ordering between jobs and aggregate the
possible resulting states into one, (ii) without explicitly exploring every possible
ordering, (iii) while maintaining an exact analysis. However, we still need to
determine how a schedule-abstraction-based analysis should manage a POR,
which includes (i) in what phase of the analysis the POR is performed, (ii) how
to represent a POR state, and (iii) what to do when it is not safe to ignore the
ordering between jobs. This prompts our third research question:

RQ 3. How to incorporate our proposed partial-order reduction rules in existing
schedule-abstraction-based analyses?

Finally, we want to find out whether applying POR on reachability-based
response-time analyses can improve their scalability similar to the rate POR
improves the scalability of concurrent system verification. As the schedule-
abstraction-based analysis by Nasri et al. [18,20,21] is currently the most scalable
exact response-time analysis for various scheduling problems, we aim to extend it
with POR to determine to what degree the analysis’s scalability can be improved
even further.

1.3 Contributions

To address these research questions, we extend the schedule-abstraction-based
analysis by introducing partial-order reduction (POR) rules that allow combin-
ing multiple scheduling decisions on one edge and hence avoiding combinatorial
exploration of all possible orderings between jobs in cases where there are large
uncertainties without jeopardizing the soundness of the analysis and without
making it more pessimistic. This further reduces the size of the graph, while
maintaining the exactness of the original analysis in terms of schedulability2

and only introducing a small overestimation on the WCRT.
Our key idea is to identify subsets of jobs for which the combinatorial explor-

ation of all orderings is irrelevant to the schedulability of the job set. Exploring
these combinations is irrelevant when all scenarios lead to a system state without
encountering a deadline miss in any of those scenarios. Dispatching such jobs
can be considered in a single step (that combines all those scheduling decisions),
which further defers the state-space explosion.

We perform a thorough empirical evaluation comparing the original schedule-
abstraction-based analysis with our POR extension in terms of runtime, state-
space, and scalability under many different system configurations. An example
illustrating the difference between the old and new analysis is shown in Fig-
ure 5.1 and will be elaborated upon in Section 5.2.

2A job set is said to be schedulable if no job misses its deadline under any schedule that
the underlying scheduling policy can generate for those jobs at runtime.

4

For randomly generated synthetic task sets, our solution reduces the runtime
of the analysis by five orders of magnitude on average, and the number of
explored states by 98% on average in comparison to the original schedule-
abstraction-based analysis of Nasri et al. [18]. This achievement comes with a
negligible cost of an average 0.1% increase in the WCRT of the jobs3. Further-
more, our solution was able to scale to 70 tasks and 6 · 106 jobs per hyperperiod
(which is the least-common multiple of the period of the tasks in the task set),
while the original analysis reached the timeout of four hours well before 5 · 104

jobs per hyperperiod. The results of the empirical evaluation will be discussed
in more detail in Section 7.

1.4 Organization

Chapter 2 introduces the background knowledge and definition required to un-
derstand the thesis for the readers who might not be familiar with the termino-
logies and concepts of real-time systems. Chapter 3 sets up our system model,
workload model, notations, and assumptions used in this work. Chapter 4
provides an overview of the state-of-the-art of exact schedulability analyses and
partial-order reduction. In Chapter 5, we first provide details of the original
schedule-abstraction-based response-time analysis of Nasri et al. [18] which is
the basis of our work. Then we motivate the goal of the thesis by discussing the
limitations of the original schedule-abstraction-based analysis [18], and form-
ally define the problem that we aim to solve in the thesis. Chapter 6 presents
the partial-order reduction technique used to extend the schedule-abstraction-
based analysis. We empirically evaluate our new partial-order reduction-based
analysis in Chapter 7 and compare it with the original analysis. Finally, we
conclude the thesis in Chapter 8 and propose suggestions for future work.

3A job is an instance of a task. A periodic task generates jobs periodically.

5

6

Chapter 2

Prerequisites and
terminology

The aim of this chapter is to provide required background knowledge on real-
time systems for the readers who might not be familiar with the terminology
and the concepts of real-time systems. We have taken most of the definitions
from the book of Giorgio Buttazzo on real-time systems [6]. Readers who are
familiar with these concepts may continue from Chapter 3.

First, in Section 2.1, we describe some properties by which tasks can be char-
acterized, such as the activation model, execution model, and type of deadline.
Section 2.2 explains how scheduling algorithms can be categorized in different
ways, e.g., the time the scheduler is activated (Section 2.2.1), whether it is work-
conserving or not (Section 2.2.2), and the method used to assign priorities to
tasks (Section 2.2.3). We discuss a number of well-known scheduling policies in
Section 2.2.4. We conclude the chapter with a description of different categories
of schedulability tests (Section 2.3).

2.1 Task properties

A task is a computation executed by a processor. Tasks can be characterized
by their activation model (Section 2.1.1), execution model (Section 2.1.2), and
deadline (Section 2.1.3). We will also explain in more detail how periodic tasks
and their jobs can be modeled (Section 2.1.4).

2.1.1 Task activation models

Tasks can be distinguished by their activation model, which describes the arrival
pattern of tasks, i.e., when instances of a task arrive in the system. The different
release patterns are periodic, sporadic, and aperiodic. Figure 2.1 illustrates the
differences between each release pattern.

Periodic. The jobs of a periodic task arrive at a certain frequency. The time
between two consecutive arrivals is the period of a task. If a task has period p,
then the time between consecutive job arrivals is exactly p. Task 1 in Figure 2.1
shows a periodic task with period 10. Note that in this example, Task 1 does
not have a release jitter.

7

Task 1

Release time

Task 2

Task 3

0

0

0

10

10 20 30

25

7 18 25

time

time

time

Figure 2.1: An example showing different task activation models. Task 1 is
a periodic task with period 10, task 2 is a sporadic task (with a minimum
inter-arrival time of 10), and task 3 is an aperiodic task.

Task 1
(high priority)

Task 2
(low priority) 0

5

Task 1
(high priority)

Task 2
(low priority) 0

5

Figure 2.2: An example showing different execution models. The left sched-
ule shows a preemptive task set, and the right schedule shows a non-
preemptive task set.

Sporadic. The jobs of a sporadic task have a minimum inter-arrival time,
which is also referred to as period. In contrast to periodic tasks, the time between
consecutive job arrivals for a sporadic task with period p is at least p instead of
exactly p. Task 2 in Figure 2.1 is a sporadic task with a minimum inter-arrival
time of 10.

Aperiodic. The jobs of an aperiodic task have random and unbounded
arrival times. Task 3 in Figure 2.1 is an aperiodic task.

2.1.2 Execution models

Tasks can be characterized by their execution model, which can either be pree-
mptive or non-preemptive and describes whether the execution of a task can be
interrupted/preempted.

Preemptive execution. Preemptive execution models allow the execution
of a job to be preempted by the scheduler (or the operating system). This
happens typically when there is a higher-priority job that has been released
(added to the ready queue). If a job is preempted, it is placed back in the
ready queue until the next time that the scheduler resumes the task. The left
schedule in Figure 2.2 shows a set of preemptive tasks. Observe that Task 2 is
preempted by a higher-priority task, i.e., Task 1, and resumes its execution as
soon as Task 1 is finished.

Non-preemptive execution. Under non-preemptive execution, when a job
is dispatched (starts its execution, or equivalently, when the processor is alloc-
ated to the job), it is not forced to release the processor (e.g., by the scheduler
or by the operating system). Hence, it may not yield the processor until it
completes its execution. Consequently, a running non-preemptive job cannot be
preempted by a higher-priority job. The right schedule in Figure 2.2 shows a set
of non-preemptive tasks. Observe that Task 2 keeps running until completion
even though a higher-priority task is released during its execution.

8

𝜏𝑖

Earliest
release time

𝑟𝑖,𝑘
𝑚𝑖𝑛

𝐽𝑖,𝑘

𝑟𝑖,𝑘
𝑚𝑎𝑥

𝑠𝑖,𝑘 𝑓𝑖,𝑘

𝐶𝑖

𝑟𝑖,𝑘

Release jitter Execution time
𝜎𝑖 𝑑𝑖,𝑘

Deadline

Start time Finish time
Latest

release time

Release time

Response time
𝑓𝑖,𝑘 − 𝑟𝑖,𝑘

𝑚𝑖𝑛

Figure 2.3: An example showing the properties of the kth job Ji,k of a periodic
task τi.

2.1.3 Type of deadline

Tasks can be characterized by the type of deadline they have. The deadline
type of a task indicates the consequences of missing a deadline for that task.

Hard deadline. If a task with a hard deadline suffers a deadline miss, it
may have a catastrophic effect on the system.

Soft deadline. If a task with a soft deadline suffers a deadline miss, the
system will still function correctly and the output of the task still has some
value, but it reduces the quality of service.

Firm deadline. A firm deadline is similar to a soft deadline, but the output
of a firm task missing its deadline is of no use anymore, hence, the task can be
discarded.

2.1.4 Modeling periodic tasks

A periodic task is modeled by a 4-tuple τi = (Ti, Di, [C
min
i , Cmaxi], σi), where Ti

denotes the period, Di the relative deadline, Cmini the best-case execution time
(BCET), Cmaxi the worst-case execution time (WCET), and σi the maximum
release jitter of τi. We refer to the uncertainty of execution time as execution
time variation. Execution time variation can be caused by e.g., processor caches,
input dependencies, out-of-order-execution, or program path diversity.

A periodic task τi releases an infinite set of instances, called jobs, during its
life time. The kth job Ji,k of a periodic task τi is released at ri,k ∈ [rmini,k , rmaxi,k],

where rmini,k = (k − 1)Ti and rmaxi,k = (k − 1)Ti + σi. We refer to rmini,k and rmaxi,k

as the earliest release time and latest release time of Ji,k, respectively. This
uncertainty of the release time is referred to as release jitter. Some causes of
release jitter are interrupt latency and timer inaccuracy. The different properties
of Ji,k discussed in this section are shown in Figure 2.3. Section 3.3 describes
how to create a job set from a set of periodic tasks.

Deadline. The absolute deadline di,k of the Ji,k is relative to its earliest
release time rmini,k , i.e., di,k = rmini,k +Di.

Start and finish time. The start time si,k of Ji,k is the time at which the
job starts executing on the processor. The finish time fi,k is the time at which

9

Ji,k completes its execution. If the finish time of Ji,k is larger than its deadline,
i.e., fi,k > di,k, then Ji,k is said to suffer a deadline miss.

Response time. The response time of Ji,k is the length of the interval
between its earliest release time rmini,k and its finish time fi,k, i.e., the response

time of Ji,k is fi,k − rmini,k . The best-case response time (BCRT) of τi is the
minimum response time among all jobs of τi, and the worst-case response time
(WCRT) of τi is the maximum response time among all jobs of τi.

Slack. The slack of a job Ji,k is the difference between the finish time and
deadline of a job, i.e., di,k − fi,k. Negative slack indicates a deadline miss.

Tardiness. The tardiness of a job is the difference between the finish time
and deadline of the job, i.e., max{0, fi,k − di,k}. Tardiness can never be a
negative value.

Hyperperiod. A set of periodic tasks τ = {τ1, . . . , τn} has a hyperperiod H,
which is defined as the least common multiple of the periods in the task set, i.e.,
H = lcm(T1, . . . , Tn). The hyperperiod of a task set is the minimum amount of
time after which the arrival pattern of the task set repeats.

Utilization. Periodic tasks have utilization. Utilization is an indication of
the processor load caused by a task or a task set. The utilization Ui of task τi is
the fraction of processor time spent to execute τi and is defined as Ui = Cmaxi /Ti.
The total utilization U of a system is the fraction of processor time spent to
execute all tasks in the task set, i.e., it is the sum of the utilizations of all tasks.

2.2 Scheduling algorithms

A scheduling algorithm or scheduling policy determines in which order tasks are
dispatched on a processor. The decisions made by the scheduling algorithm
result in a particular assignment of tasks the processor, also referred to as a
schedule. Scheduling algorithms can be categorized in different ways, such as
the time the scheduler is activated (Section 2.2.1), whether it is work-conserving
or not (Section 2.2.2), and the method used to assign priorities to tasks (Sec-
tion 2.2.3). We will conclude this section by discussing a number of well-known
scheduling policies (Section 2.2.4).

2.2.1 Categorization by the time the scheduler is activated

Scheduling algorithms can be categorized by the time that scheduling decisions
are taken, namely online or offline.

Online scheduling. Online scheduling policies take scheduling decisions at
runtime, i.e., the scheduler is called every time a task is releases or completes.

Offline scheduling. Offline scheduling policies take all scheduling decisions
beforehand, so before any task has been dispatched. These scheduling decisions
are then stored in a table, which is then used by the dispatcher at runtime to
dispatch tasks according to the predetermined schedule.

2.2.2 Categorization by work-conservation

Scheduling algorithms can be categorized based on whether they are work-
conserving or non-work-conserving.

10

𝜏1

𝜏2

𝜏3

deadline
miss

𝜏1

𝜏2

𝜏3 idle

Figure 2.4: An example showing how a non-work-conserving scheduling
policy can insert an idle interval to prevent a deadline miss.

Work-conserving. Work-conserving scheduling algorithms do not leave the
processor idle as long as there is a ready job in the system. The schedule on the
left in Figure 2.4 shows there is a deadline miss for the second job of τ1 when
the tasks are scheduled using a work-conserving policy.

Non-work-conserving. Non-work-conserving scheduling algorithms may
schedule an idle interval, even if there is a ready job in the system. The schedule
on the right in Figure 2.4 shows that an idle time is scheduled after the first job
of τ2 even though the first job of τ3 is ready. As a result, there is no deadline
miss for any of the jobs when they are scheduled using a non-work-conserving
policy.

2.2.3 Categorization by priority assignment

Scheduling algorithms can be categorized to the following three categories based
on how they prioritize jobs over each other: (i) task-level fixed-priority, (ii) job-
level fixed-priority, and (iii) job-level dynamic priority algorithms. The rest of
this section introduces these policies.

Task-level fixed-priority (FP). Tasks are assigned priorities and each job
of a task has the same priority. An example of a task-level fixed priority assign-
ment is rate-monotonic (RM), which assigns priorities to tasks based on their
period, where a smaller period corresponds to a higher priority.

Job-level fixed-priority (JLFP). A JLFP scheduler is a scheduler where
jobs are assigned priorities based on its parameters at its release time. This
means that jobs of the same task can have different priorities. An example of
a job-level fixed priority assignment is the earliest deadline first (EDF) policy.
EDF assigns priority in order of absolute deadline, where the job with the
earliest deadline has the highest priority.

Job-level dynamic-priority. Jobs are assigned priorities based on paramet-
ers that can change over time. An example is the shortest remaining execution
time first policy, which assigns priorities to jobs based on their remaining exe-
cution time, where the job with the shortest execution time remaining has the
highest priority.

2.2.4 Well-known scheduling policies

In this section we introduce the following well-known scheduling policies: (i) rate
monotonic (RM), (ii) deadline monotonic (DM), (iii) earliest deadline first (EDF),
(iv) shortest job first (SJF), and (v) first in first out (FIFO). Furthermore,
we describe two different categories of scheduling policies for multiprocessor
scheduling, namely global and partitioned scheduling.

11

𝜏1

𝜏2

𝜏3

Rate monotonic

Deadline monotonic

Earliest deadline first

First in first out

Shortest job first

𝜏1

𝜏2

𝜏3

𝜏1

𝜏2

𝜏3

𝜏1

𝜏2

𝜏3

𝜏1

𝜏2

𝜏3

Figure 2.5: An example showing how scheduling policies can generate differ-

ent schedules for the same task set. Pictured are non-preemptive versions

of rate monotonic, deadline monotonic, earliest deadline first, shortest job

first, and first in first out. T1 = 5, C1 = 3, and D1 = 5. T2 = 10, C2 = 2, and

D2 = 9. T3 = 20, C3 = 3, and D3 = 8.

Rate monotonic (RM) The rate monotonic (RM) scheduling policy assigns
priorities to tasks based on their period, where a smaller period corresponds to
a higher priority. Hence, RM is a fixed-priority scheduling policy. The schedule
on the left side of the top row in Figure 2.5 shows how a task set is scheduled
under a non-preemptive RM policy. τ1 has the shortest period and thus the
highest priority, followed by τ2 and finally τ3.

Deadline monotonic (DM) The deadline monotonic (DM) scheduling policy
assigns priorities to tasks based on their relative deadline, where a smaller re-
lative deadline corresponds to a higher priority. Hence, DM is a fixed-priority
scheduling policy. The schedule on the left side of the middle row in Figure 2.5
shows how a task set is scheduled under a non-preemptive DM policy. In this
example, τ1 has the highest, τ3 the medium, and τ2 the lowest priority.

Earliest deadline first (EDF) The earliest deadline first (EDF) scheduling
policy assigns priority to jobs in order of absolute deadline, where the job with
the earliest deadline has the highest priority. Since jobs of the same task can
have different priorities, EDF is a job-level fixed-priority scheduling policy. The
schedule on the left side of the bottom row in Figure 2.5 shows how a task set
is scheduled under a non-preemptive EDF policy.

Shortest job first (SJF) The shortest job first (SJF) scheduling policy
assigns priorities to tasks based on their execution time, where a smaller execu-
tion time corresponds to a higher priority. As a result, SJF is a fixed-priority
scheduling policy. The schedule on the right side of the middle row in Figure 2.5
shows how a task set is scheduled under a non-preemptive SJF policy. τ2 has
the smallest execution time and thus the highest priority, followed by τ1 and τ3.

12

Space of all task sets

Task sets accepted by a necessary
test for scheduling policy 𝐴

Task sets accepted by an exact
test for scheduling policy 𝐴

Task sets accepted by a sufficient
test for scheduling policy 𝐴

Figure 2.6: An example showing how necessary, sufficient, and exact
schedulability tests relate to each other in the space of all task sets.

First in first out (FIFO) The first in first out (FIFO) scheduling policy
schedules jobs in order of their arrival, i.e., the job that arrives first is executed
first. The schedule on the right side of the middle row in Figure 2.5 shows how
a task set is scheduled under a FIFO policy.

Multiprocessor scheduling policies

Online scheduling policies for multiprocessor systems can be categorized into
two broad categories depending on whether the migration is allowed or not:

Global scheduling Under a global scheduling policy, tasks may migrate
between processors. The system manages a single ready queue and the processor
that a task runs on is determined at runtime. The concept of global scheduling
can be applied to the scheduling policies mentioned previously, e.g., to create a
global FP or global EDF scheduling policy.

Partitioned scheduling Under a partitioned scheduling policy, each task is
assigned to a particular processor offline, and the processor a task runs on cannot
be changed at runtime. Each processor manages its own ready queue. Hence,
the partitioned scheduling problem reduces to deciding on an assignment of tasks
to processors followed by uniprocessor scheduling. The concept of partitioned
scheduling can be applied to the scheduling policies mentioned previously, e.g.,
to create a partitioned EDF scheduling policy.

2.3 Schedulability tests

A schedulability test determines whether a set of tasks is schedulable under a
given scheduling policy A using a given system model. Schedulability tests can
be categorized into the following categories based on what the output tells us
about the schedulability of a job set: (i) necessary, (ii) sufficient, and (iii) exact.
Figure 2.6 shows how these categories relate to each other.

Necessary test A schedulability test is a necessary test for scheduling policy
A if all task sets that fail the test (i.e., are deemed unschedulable by the test)
are certainly unschedulable by A.

Sufficient test A schedulability test is a sufficient test for scheduling policy
A if all task sets that pass the test (i.e., are deemed schedulable by the test) are
certainly schedulable by A.

13

Exact test A schedulability test is an exact test for scheduling policy A if it
is both a necessary and sufficient test for A. Namely, all task sets that fail the
test are certainly unschedulable, and all task sets that pass the test are certainly
schedulable by A.

14

Chapter 3

System model and
assumptions

3.1 Job and system model

We consider the problem of scheduling a finite set of non-preemptive jobs J
on a uniprocessor platform. A job Ji = ([rmini , rmaxi], [Cmini , Cmaxi], di, pi) is
characterized by its earliest release time rmini , latest release time rmaxi , best-
case execution time (BCET) Cmini , worst-case execution time (WCET) Cmaxi ,
absolute deadline di, and priority pi. We assume a discrete time model, meaning
the job timing parameters are integer multiples of the system clock.

Job Ji non-deterministically releases at a time instant ri ∈ [rmini , rmaxi] and
executes for an a priori unknown amount of time Ci ∈ [Cmini , Cmaxi]. Because
of this uncertainty, we say that job Ji is possibly released at time t if rmini ≤ t <
rmaxi and certainly released at time t if t ≥ rmaxi . Furthermore, we say a job is
ready at time t if it is released but did not start executing before t.

Because we assume that every job Ji is non-preemptive, a job Ji that starts
executing at time t finishes its execution by time t+Ci, continuously occupying
the processor during the interval [t, t+ Ci). We denote the finish time of Ji by
fi. Once Ji finishes its execution by fi, the processor becomes available again
and the next job may start. The response time of Ji is the length of the interval
between its earliest release time rmini and its finish time fi, i.e, the response
time of Ji is fi − rmini .

As the deadline of a job is absolute, we assume that it is not affected by the
uncertainty on the release time (referred to as release jitter in the rest of this
work). We assume that if pi < pj , job Ji has a higher priority than job Jj ,
i.e., a lower value of pi indicates a higher priority. Additionally, priority ties
are broken by task ID and then job ID, so we assume that the “<” operator
implicitly uses this tie-breaking rule.

We use 〈 〉 to refer to an ordered set (or a sequence) and { } to refer to a
non-ordered set. Neither of the two contains repeated items. We use min∞{X}
and max0{X} over a set of positive integers X to indicate that the minimum of
an empty set is equal to ∞ and the maximum of an empty set is equal to 0.

15

3.2 Scheduler model

We consider all non-preemptive job-level fixed-priority (JLFP) scheduling al-
gorithms. Despite the original schedule-abstraction graph from Nasri et al. [18]
supporting both work-conserving and non-work-conserving scheduling policies,
we only focus on work-conserving policies in this thesis, i.e., policies that do
not leave the processor idle as long as there is a ready job in the system. Like
the original analysis, we solely focus on schedulers that are priority-driven and
deterministic, i.e., schedulers that only schedule a job if it is the highest-priority
ready job in the system and always produce the same schedule for a given ex-
ecution scenario, where an execution scenario is defined as follows (according
to [18,20]).

Definition 1. (from [18]) An execution scenario γ = (C,R) for a set of jobs
J = {J1, J2, . . . , Jm} is a sequence of execution times C = 〈C1, C2, . . . , Cm〉
and release times R = 〈r1, r2, . . . , rm〉 such that, ∀Ji ∈ J , Ci ∈ [Cmini , Cmaxi]
and ri ∈ [rmini , rmaxi]

We consider a set of jobs J to be schedulable under a given scheduling policy
A if there exists no execution scenario of J that results in a deadline miss when
scheduled by A.

3.3 Creating job sets from periodic task sets

Forming the job set. A given periodic task set τ = {τ1, . . . , τn}, where each
task is introduced as a 4-tuple τi = (Ti, Di, [C

min
i , Cmaxi], σi), can be converted

to the job set described in Section 3.1 as follows. First, compute the hyperperiod
H of τ , where H = lcm(T1, . . . , Tn). Then, for each task τi, we compute the
number of jobs that that task releases within one hyperperiod, i.e., ni = dHTi

e.
Finally, we generate a job set constructed from all jobs of all tasks in one
hyperperiod:

J = {Ji,k | ∀i, 1 ≤ i ≤ n,∀k, 1 ≤ k ≤ ni}. (3.1)

Assigning parameters of a job. The kth job of τi is characterized as
follows: Ji,k = ([rmini,k , rmaxi,k], [Cmini , Cmaxi], di,k, pi,k), where rmini,k = (k − 1)Ti,

rmaxi,k = (k − 1)Ti + σi are the release interval of the job, and di,k = rmini,k + Di

is the absolute deadline of the job.
Assigning priority of a job. The priority pi,k of a job Ji,k is determined

by the scheduling policy. For example, rate-monotonic (RM) priorities can be
obtained by ordering all tasks by their period in ascending order, and assigning
each task a priority corresponding to their position in that order. Then each
job of a task will inherit priority of the task (recall that RM is a task-level
fixed-priority scheduling policy).

For the EDF policy, the priority of each job is equal to the value of the
absolute deadline of that job; the earlier (equivalently, the smaller) the absolute
deadline, the higher the priority. Recall that EDF is a job-level fixed-priority
policy (but a task-level dynamic priority policy).

16

Chapter 4

Related work

The purpose of this chapter is to provide an overview of the state-of-the-art
of exact schedulability analyses and partial-order reduction. Section 4.1 intro-
duces different types of exact schedulability analyses. We distinguish between
fixed-point iteration-based analyses (Section 4.1.1) and reachability-based ana-
lysis (Section 4.1.2), and describe how they work and what their limitations are.
Section 4.2 introduces the concept of partial-order reduction and presents differ-
ent variations of partial-order reduction techniques, namely static (Section 4.2.1)
and dynamic (Section 4.2.2) partial-order reduction. Finally, Section 4.2.3 ex-
plains why existing partial-order reduction approaches are not directly applic-
able to schedulability analyses.

4.1 Exact schedulability analyses

Despite the hardness results introduced in Section 1.1, there have been several
exact solutions to the problem of schedulability and response-time analysis.

4.1.1 Fixed-point iteration-based analyses

Davis et al. [8] propose an exact schedulability analysis that provides exact
WCRT for non-preemptive sporadic tasks scheduled by FP. The analysis com-
putes the WCRT of tasks by solving recurrence relations by means of fixed-point
iteration. In each step, the amount of the new interference that the task might
get from higher-priority tasks is added to the current estimation of the WCRT
until no new interference can be included (reaching a convergence in the fixed-
point iteration).

Although this analysis is relatively fast (for an analysis solving an NP-hard
problem), and is exact for sporadic tasks, it is pessimistic when applied on
periodic tasks as shown by Nasri et al. [18], since the analysis assumes a worst-
case release pattern for the tasks which may never happen in a periodic system.
Namely, it includes more (and worst) scenarios than those that can happen in
a periodic task set. As a result, when applied on periodic tasks, it is only a
sufficient analysis.

17

4.1.2 Reachability-based analysis

Reachability-based analyses determine the schedulability of task sets by explor-
ing system states and checking whether there is a reachable state where some
task suffers a deadline miss.

Linear hybrid automata-based analysis

Sun et al. [24] provide an exact schedulability analysis for preemptive sporadic
tasks scheduled by global fixed-priority scheduling on multiprocessor systems.
The analysis uses linear hybrid automata to model the system, and then checks
for the reachability of a state where some task suffers a deadline miss.

Though exact, this analysis is not scalable. The evaluation results show that
it can handle at most only seven tasks and four cores. Furthermore, it is only
shown to be exact for sporadic tasks and not for periodic tasks. Additionally, the
analysis by Sun et al. [24] considers preemptive tasks, while our work considers
non-preemptive tasks.

Timed automata-based analysis

An exact schedulability analysis based on timed automata (TA) is introduced
by Guan et al. [14]. This analysis considers preemptive periodic and sporadic
tasks scheduled under global fixed-priority scheduling on multiprocessor sys-
tems. Timed automata are used to model the system, the scheduler, and the
tasks. Then the authors have used the UPPAAL model checker to check if a
state containing a deadline miss is reachable in the model. Similar to the ana-
lysis by Sun et al. [24], the TA-based analysis by Guan et al. [14] has limited
scalability because it is only able to handle integer task periods between 8 and
20. Furthermore, this analysis also only considers preemptive tasks.

Yalcinkaya et al. [25] introduce an exact TA-based schedulability test for
non-preemptive self-suspending periodic and sporadic tasks. Like the analysis
by Guan et al. [14], the system is modeled by timed automata and UPPAAL is
utilized as a model checker. With the ability to scale up to 60 tasks on 2 cores,
30 tasks on 4 cores, and 15 tasks on 8 cores, it scales better than the TA-based
analysis by Guan et al. [14]. However, it still suffers from scalability issues as
the runtime increases rapidly with the utilization, number of tasks, and number
of cores as it has been shown in [21].

Schedule-abstraction-based analysis

Recently, Nasri et al. [18] have introduced a reachability-based response-time
analysis that is based on exploring the space of possible decisions that a sched-
uler can take for a set of jobs. They searched this space by building a graph
called the schedule-abstraction graph (SAG). Each vertex in the graph represents
the state of the platform/resource after the execution of a set of jobs. An edge
between two vertices v1 and v2 represents a scheduling decision. Since the SAG
has been designed for non-preemptive jobs [18], the scheduling decision is to de-
termine “a next job that can possibly be dispatched” on the platform/resource
after the state v1. Dispatching of this job will change the platform/resource
state from v1 to v2. While building the graph, the response time of each job
that is being dispatched on an edge is tracked and hence when the graph is fully

18

constructed, the method outputs the smallest and largest response time of each
job in all scenarios (edges) that involve that job.

To defer the state-space explosion, Nasri et al. [18] have introduced two main
techniques to reduce the state space: (i) powerful interval-based abstractions to
aggregate similar system states (schedules), and (ii) state-merging rules to com-
bine system states whose future is the same or can be explored together (details
of these steps will be explained in Section 5.1). These techniques allowed their
solution to be at least 3000 times (i.e., three orders of magnitude) faster than
other exact response-time analyses that are based on generic formal verification
tools such as UPPAAL [25] and to scale to very large system sizes (e.g., to 32
cores and 30 parallel tasks in [21]).

However, despite their current success in scalability, the schedule-abstraction
based analysis still faces one big fundamental limitation: each edge can only
include one single scheduling decision (i.e., dispatching of one job) [18,20–22].

As a result, as soon as there are large uncertainties in the release time or
execution time of the jobs in the input job set, the number of states generated
by the schedule-abstraction graph grows exponentially because the analysis will
try to explore all (valid) combinations of ordering between jobs. As we will show
in our work, such a combinatorial exploration can be avoided in many cases by
introducing partial-order reduction (POR) rules that combine a set of jobs on
one single edge without jeopardizing the soundness of the analysis and without
making it more pessimistic.

4.2 Partial-order reduction

Partial-order reduction is a technique frequently used in the verification of con-
current software systems by model checking. The state-space that needs to be
explored to verify a concurrent system suffers from the problem of state-space
explosion, as the number of states that need to be considered grows exponen-
tially with the number of concurrent processes.

The problem is that concurrent operations on shared variables are often inde-
pendent, i.e., they do not interfere with each other. For example, read operations
on a shared variable are independent. The order in which such independent
operations are performed does not matter as every order leads to the same sys-
tem state. However, model checkers explore all possible combinations of such
operations, leading to an explosion of the explored state-space. Partial-order re-
duction reduces the state-space by ignoring such redundant orders of concurrent
operations.

In the rest of this section, we first introduce two categories of partial-order
reduction techniques used for concurrent system verification, i.e., static (Sec-
tion 4.2.1) and dynamic (Section 4.2.2) partial-order reduction. Next, we sum-
marize why these techniques cannot directly be used in the context of the
response-time analysis problem.

4.2.1 Static partial-order reduction

Clarke et al. [7] describe a method of static partial-order reduction. Static
analysis is used to determine what shared memory locations can be accessed

19

by concurrent processes. Based on this information, the POR removes state
transitions that do not add additional information to the state-space.

Static POR requires a concurrent program to perform static analysis on. Ap-
plying this concept to schedulability analyses would require a schedulability
analysis that explicitly simulates the execution of jobs as a concurrent program
that accesses some shared resources. Even if we would have such a schedulabil-
ity analysis, the POR rules do not respect the fact that different job execution
orders do not necessarily lead to the same system state. Hence, the technique
of static POR is not applicable to schedule-abstraction based analyses.

4.2.2 Dynamic partial-order reduction

Flanagan et al. [13] introduce a dynamic POR that determines shared memory
accesses at runtime, and expands the execution trace by backtracking until all
alternative paths in the state-space are explored. This dynamic POR is extended
by Abdulla et al. [1] to make an optimal solution in terms of the number of paths
that are explored.

The difference between static and dynamic POR is that the former static-
ally identifies shared memory accesses, while the latter does so by executing
the program. Therefore, dynamic POR is not directly applicable to schedule-
abstraction based analyses for the same reasons as static POR.

4.2.3 Applicability to schedulability analyses

The POR approaches discussed above cannot be directly applied to schedulabil-
ity analyses in real-time systems because the rules for existing POR approaches
are specific to the domain of concurrent systems.

To add POR to the schedule-abstraction based analyses, we need to define:
(i) when the execution order of jobs does not contribute to a violation of timing
properties (such as a deadline miss), and (ii) how to incorporate POR into the
system state and the analysis.

The addition of POR to schedule-abstraction based analyses poses a num-
ber of challenges: (i) In the context of concurrent system verification, POR
simply discards redundant operation orders, while we cannot simply do this in
a schedulability analysis because different job orders may lead to system states
that are equivalent in terms of executed jobs and schedulability, but not in
terms of response-time bounds. Discarding this information entirely will lead to
inexact analyses, so we need to ensure that the POR technique we define does
not entirely discard such orders. (ii) Naively solving this problem by keeping
such job execution orders would limit the effect that POR can have on the state-
space, because different job orders rarely result in system states with equivalent
response-time bounds. Hence, we need to find a to incorporate these job exe-
cution orders instead of discarding them like the conventional POR approaches
without explicitly exploring them.

20

Chapter 5

Motivation and problem
definition

The goal of this work is to improve the scalability of the SAG by introducing
the concept of partial-order reduction (POR) to it. This chapter provides a
motivation for this goal and a definition of the problem we will solve. First,
Section 5.1 describes how the SAG works and then Section 5.2 explains why
the SAG is inefficient in its current form and provides an idea of how POR can
solve this inefficiency. Finally, Section 5.3 formally defines the problem we aim
to solve.

5.1 Schedule-abstraction graph

This section introduces the reachability-based response-time analysis of Nasri
et al. [18]. The analysis searches the space of possible decisions a scheduler can
take for a set of jobs J by building a graph called the schedule-abstraction graph
(SAG). This SAG is a directed acyclic graph (DAG) denoted by G = (V,E) and
defined as follows:

Edges. E is the set of edges, where an edge ek = (vi, vj , Jl) between system
states (vertices) vi and vj represents a scheduling decision. Since the SAG is
designed for non-preemptive jobs, the scheduling decision is to determine “a
next job that can possibly be dispatched” on the platform after state vi. Hence,
each edge ek is labeled with the job Jl that is dispatched after state vi and
evolves that state to a new system state vj .

Paths. A path P starting from vertex v1 and ending with vertex vi is a
possible sequence of scheduling decisions to go from initial system state v1 to
vi. We denote J P as the set of jobs dispatched on a path P . We only consider
paths that start from v1.

Vertices. V is the set of vertices or system states, where each vertex repres-
ents the state of the platform after the execution of a set of jobs. Each vi ∈ V
has a label [Amin1 (vi), A

max
1 (vi)] that represents the availability interval of the

processor in state vi in the form of an uncertainty interval (defined in [21]).
Here, Amin1 (vi) and Amax1 (vi) are the earliest and latest finish time of the set of
jobs that are on any path from v1 to vi. Equivalently, the processor is not avail-
able to dispatch a new job before Amin1 (vi), it can become available at any time

21

during the interval [Amin1 (vi), A
max
1 (vi)], and it is certainly available from time

Amax1 (vi) onward. This interval captures the non-determinism in the release
time and execution time of the jobs that have been dispatched on the platform
before reaching this state.

We say that the processor becomes possibly available after system state vi at
time Amin1 (vi) and certainly available at time Amax1 (vi).

Construction of the graph. Nasri et al. [18,20–22] have constructed the
schedule-abstraction graph following a breadth-first approach. Namely, after the
initial state v1 is added, all possible scheduling decisions that can be taken after
v1 are found (in a phase called expansion phase). For each of these decisions,
one edge and a new system state is added to the state v1. Then, one-by-one,
each of the new states is expanded separately in a breadth-first manner.

To defer the state space explosion, the schedule-abstraction graph also in-
cludes a merge phase, where newly created states (from the expansion phase)
are assessed and if certain conditions hold, they are merged together. In the
following sections, we explain the expansion and merge phases with more details.

5.1.1 Expansion phase

In the expansion phase, the shortest path (or one of them in case of multiple
shortest paths) P in the graph (connecting v1 to vp) is expanded. The expansion
phase finds all jobs Jj that can be a direct successor of state vp.

A job Jj is said to be a direct successor of a state vp if there exists an execution
scenario in which job Jj is dispatched after state vp and before any other job.
For all these jobs, a vertex is created and added to the graph by connecting it
to vp, the leaf vertex of P , with an edge. A job Jj can be dispatched next after
path P ending with state vp if its earliest start time after vp, ESTj , is not later
than its latest start time after vp, LSTj , i.e., if

ESTj ≤ LSTj (5.1)

Definition 2. (From [21]) A job Jj ∈ J \ J P is a direct successor for path
P ending in vertex vp if and only if (5.1) holds.

A job cannot start executing before its earliest release or before the earliest
time the processor becomes available. Hence, the earliest time that Jj can start
executing after state vp is

ESTj = max{Amin1 (vp), r
min
j } (5.2)

The latest start time of Jj , i.e., LSTj , is influenced by two properties of
the underlying scheduling policy, namely, the scheduler (i) applies a job-level
fixed-priority policy when deciding the next job to be dispatched, and (ii) it is
work-conserving. More formally, a job Jj can be a direct successor of vp if it
can start executing before a higher-priority job is certainly released (from (i)).

Nasri et al. [21] define the upper bound on the certain release of a higher-
priority job as follows

thigh , min
∞
{rmaxx | Jx ∈ J \ J P ∧ px < pj}. (5.3)

From (5.3), we derive the last time instant that Jj can start executing before
a higher-priority job is certainly released as thigh − 1.

22

The second upper bound on the latest start time of Jj is twc under work-
conserving policies. It is the time at which the processor is certainly available
and a not-yet-scheduled job is certainly released (because if these two conditions
hold, then the scheduler will certainly dispatch a job on the platform). Nasri et
al. [21] define twc as follows:

twc , max{Amax1 (vp),min
∞
{rmaxx | Jx ∈ J \ J P }} (5.4)

Combining the two upper bounds from (5.3) and (5.4), the latest time instant
at which Jj can start such that Jj is dispatched after state vp and before any
other job is

LSTj = min{twc, thigh − 1} (5.5)

When expanding the shortest path P ending with vertex vp, a new vertex vq
is created for each direct successor Jj of P by adding Jj at the end of P . This
vq represents the state of the platform after executing Jj after vp. The earliest
finish time (EFTj) of Jj after vp (or equivalently, the earliest availability time
of vq, i.e., Amin1 (vq)) is obtained as follows [21]:

EFTj = ESTj + Cminj (5.6)

The latest finish time (LFTj) of Jj after vp (or equivalently, the earliest
availability time of vq, i.e., Amax1 (vq)) is obtained as follows [21]:

LFTj = LSTj + Cmaxj (5.7)

The EFTj and LFTj provide a lower bound on the BCRT and an upper
bound on the WCRT of Jj , respectively. After building the graph (i.e., after
exploring all possible scheduling scenarios for Jj), the smallest lower bound will
be reported as the BCRT and the largest upper bound will be reported as the
WCRT of job Jj .

5.1.2 Merge phase

After creating a vertex vq by expanding vp, we enter the merge phase. In the
merge phase, system states whose future is the same or can be explored together
are merged into a single state to defer the state-space explosion. The future of
system states is the same if their sets of dispatched jobs are equal and if their
processor availability intervals overlap (intersects).

More formally, for the newly created state vq with path Q, we check if there
exist any states in the graph that can be merged with vq. Nasri et al. [21]
defined the criteria by which two states vq and vr can be safely merged without
introducing pessimism in the analysis as follows:

Definition 3. (From [21]) Two system states vq and vr reachable from v1 via
pathsQ andR, respectively, can be merged if JQ = J R and [Amin1 (vq), A

max
1 (vq)]∩

[Amin1 (vr), A
max
1 (vr)] 6= ∅.

To merge vq and vr, we first update the label of vq as follows:

[Amin1 (vq), A
max
1 (vq)]← [Amin1 (vr), A

max
1 (vr)] ∪ [Amin1 (vq), A

max
1 (vq)] (5.8)

Then, all edges pointing to vr are pointed to vq. Now, path R ends with vq
instead of vr and vr is removed from the graph. This means that the future of

23

both paths Q and R can be explored by only expanding a single state (i.e., the
updated vq).

Note that due to the condition JQ = J R in Definition 3, the only states
that can be merged are those that are reachable from v1 with the same set of
jobs. As explained earlier, Nasri et al. [18,20,21] build the graph with a breadth-
first manner. Hence, to find states that could possibly be merged with a newly
created state, we only need to look at the states that are reachable from v1 with
the same number of jobs and then check the conditions of Definition 3. This
has a linear complexity w.r.t. the number of vertices that are on the front of
the graph (the ones that are being expanded in one iteration).

The algorithm that builds the graph alternates between the expansion and
merge phases until there exist no more incomplete paths in the graph, or it
encounters a deadline miss (the algorithm can be adjusted to stop as soon as it
finds a deadline miss, or to continue anyway until it processes all input jobs).

5.2 Motivation and basic idea

The current schedulability analysis using the SAG from Nasri et al. [18] does
not scale well when there are large uncertainties in the release time or execution
time because there are too many possible job execution orderings the analysis
needs to consider, as shown in [18] and our own experiments in Section 7. Many
of these job execution orderings are not relevant to explore as they analyze all
the different execution orderings of the same set of jobs, of which none may ever
lead to a deadline miss. If we could somehow avoid all these possible scenarios
from being explored, we could get a performance gain in the analysis.

Example 1. Consider the job set in Figure 5.1a. Due to the release jitter,
either J1, J2, or J4 can start first (can be released first), after which any of the
two remaining jobs can be dispatched. For example, if J4 is released at time 5
and J1 and J2 are released at time instants 9 and 7, respectively, the first job
that will be dispatched by the scheduler is J4 and then job J2 and finally job
J1. Alternatively, we could see a scenario in which J1 is dispatched first (i.e.,
when it is released at time 6 but all other jobs are released after time 6). The
SAG captures all these scenarios (and possible orderings between the jobs in
the graph shown in Figure 5.1b.

As we can see, the corresponding SAG as constructed by the algorithm in [18]
and shown in Figure 5.1b, has nine nodes and 13 edges. Yet, none of the possible
job execution orderings of J1, J2, and J4 considered in the graph may lead to
a deadline miss (for any of these jobs or the future jobs, e.g., J3). Ideally, we
would want to skip over these three jobs without exploring every individual job
execution ordering.

The partial-order reduction technique proposed in this work allows us to
identify job orderings that are not relevant to explore, and treat them as a
single scheduling decision in the SAG, i.e., depict them as a single edge. Fig-
ure 5.1c shows the schedule-abstraction graph constructed using our proposed
POR technique, where J1, J2, and J4 are put on a single edge, removing the
need to enumerate all possible scenarios between these jobs and shrinking the
resulting schedule graph. Note that the interval (i.e., label) recorded in v8 in

24

𝐽𝑖 𝑟𝑖
𝑚𝑖𝑛 𝑟𝑖

𝑚𝑎𝑥
𝐶𝑖
𝑚𝑖𝑛 𝐶𝑖

𝑚𝑎𝑥 𝑑𝑖 𝑝𝑖

𝐽1 6 9 1 2 20 1

𝐽2 7 10 1 2 20 2

𝐽3 18 20 1 3 25 3

𝐽4 5 9 1 2 20 4

𝐽1

9

𝐽2

𝐽4

7 13

6 9

5

7 10

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

𝜙1

20

𝐽3
18

Legend

𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥

Processor availability

20

20

20

25

(a)

𝐽1

𝐽4

𝐽1 𝐽2 𝐽4 𝐽3

𝐽2
𝐽4

𝐽4

𝐽1

𝐽1

𝐽2

𝐽2

𝑣1 𝑣2 𝑣5 𝑣8 𝑣9

𝑣6

𝑣7𝑣4

𝑣3

[7,13] [8,15]

[8,10]

[8,9]

[9,17]

[9,12]

[19,23]

[9,10]

[10,19]

(b) Schedule-abstraction graph con-
structed by the original analysis
from [18] using NP-FP.

𝐽1, 𝐽2, 𝐽4 𝐽3𝑣1 𝑣2 𝑣3

[7,13] [19,23][10,19]

(c) Schedule-abstraction graph con-
structed by partial-order reduction
using NP-FP.

Figure 5.1: An example showing the difference between the schedule-
abstraction graph constructed by the original analysis and the new partial-
order reduction analysis.

Figure 5.1b is the same as the interval recorded in v2 in Figure 5.1c, even though
the latter did not explore all different scenarios.

In this work, we extend the SAG algorithm with the idea of POR sketched
above. In the expansion phase of the schedule-abstraction graph algorithm, in-
stead of simply expanding the graph with a new vertex for each direct successor,
we perform POR to see whether a set of future (i.e., not yet dispatched) jobs
can be “reduced” to a single scheduling decision that encompasses all orderings
of the original jobs without explicitly exploring all these orderings. If the set
of jobs meets the conditions for a safe POR, then it is added to the graph by
adding a single new edge and vertex. In the case that the conditions are not
met, the graph is expanded with a new vertex for each direct successor as in the
original SAG algorithm.

5.3 Problem definition

5.3.1 Ensuring an exact schedulability analysis

An important property of the original schedulability analysis by Nasri et al. [18]
is that it is both an exact schedulability and response-time analysis. The
analysis is an exact schedulability analysis, meaning that any job set deemed
schedulable (resp. unschedulable) by the analysis is indeed schedulable (resp.
unschedulable).

Definition 4. An analysis is an exact schedulability analysis if and only if
there is no execution scenario (see Definition 1) in a job set that is deemed
schedulable by the analysis that may result in a deadline miss. If a job set is

25

deemed unschedulable, then there is at least one execution scenario in that job
set that results in a deadline miss.

Definition 5. An analysis is an exact response-time analysis if and only if (i)
there is no execution scenario in a job set such that any job has a response-time
smaller than the BCRT or larger than the WCRT returned by the analysis for
that job, and (ii) there must be an execution scenario in the job set that results
in the reported BCRT and WCRT for that job.

However, since the goal of POR is to eliminate the need to explore excessive
job execution orderings, we need to make a trade-off between the exactness of
the analysis and its scalability. In this work, we allow deriving response time
bounds that are not tight (i.e., our lower bound might be smaller than the actual
BCRT of the job and our upper bound might be larger than the actual WCRT
of the job) in return for a reduced state-space. However, we make sure that the
analysis remains exact in terms of schedulability. Namely, the analysis’ verdict
whether a job set is schedulable or not remains exact. Note that the response-
time analysis remains safe, i.e., it always returns a lower and upper bound on
the exact BCRT and WCRT, respectively. A safe response-time analysis only
satisfies condition (i) in Definition 5.

Safe POR. Next, we need to determine under what conditions a POR of
a set of jobs maintains the exactness of the schedulability analysis while also
maintaining the safeness of the response-time analysis. Or, in other words, when
a partial-order reduction can be considered safe. We denote the set of jobs to
be considered for reduction in the POR, also called the reduction set, by JM .

Definition 6. A partial-order reduction of a set of jobs JM is safe if and only
if it maintains the exactness of the schedulability analysis (Definition 4) and the
safeness of the response-time analysis (i.e., satisfies condition (i) in Definition 5).

5.3.2 Creating the candidate reduction set

The key to having an exact schedulability analysis with POR is that the reduc-
tion does not affect the analysis of the execution of jobs not contained in the
reduction set.

Definition 7. Given a system state vp, the reduction set JM (vp) is defined
as the set of jobs such that there is no other job in J \ JM (vp) that can start
executing before all jobs in JM finish their execution.

If for a state vp, the reduction set JM is not empty, then all the direct
successors of vp must be part of JM . We will discuss how to compute JM in
detail in Section 6.6.1. Having defined the reduction set JM and the criteria
that should hold for a safe partial-order reduction, we are ready to introduce
our problem as follows:

Definition 8. Given a system state vp, find the reduction set JM (vp) that
satisfies the conditions of Definitions 6 and 7.

26

Chapter 6

Partial-order reduction

This section explains how the partial-order reduction (POR) is performed dur-
ing the expansion phase of the SAG algorithm by Nasri et al. [18]. Figure 6.1
provides a visual high-level overview of the POR algorithm. First, the candid-
ate reduction set is created (Section 5.3.2). The next step is to check whether
any of the jobs in the reduction set may potentially suffer a deadline miss (Sec-
tion 6.5). If so, the POR of this particular set of jobs is rejected (Section 6.5).
Otherwise, the analysis checks whether there are any jobs that may interfere
with the execution of the reduction set (Section 6.4). If no such jobs exist, the
POR is accepted and the reduction set is added to the SAG as a single schedul-
ing decision (Section 6.7). Section 6.6 explains how to ensure a POR remains
safe when there are interfering jobs for a reduction set. Finally, Section 6.7
summarizes how to construct the SAG using POR.

6.1 Earliest finish time of a reduction set

When adding a single job Ji to a path P ending in vertex vp, the original SAG
analysis creates a new vertex vq by computing the EFT and LFT of Ji after
vp. Likewise, to add a reduction set JM as a single vertex to path P ending
in vertex vp, we need to compute the EFT and LFT of any job included in
JM after vp in order to create vq. This vq corresponds to the final vertex the
original schedule-abstraction graph algorithm would create after scheduling all
jobs in JM . For instance, in the example of Section 5.2 shown in Figure 5.1c,
we generate a single node v2 that corresponds to the abstract system state after
the execution of the set of jobs JM = {J1, J2, J4} according to any potential
execution scenario.

It is important that the EFT we compute for JM is exact (i.e., the EFT is a
lower bound on the finish time of the set of jobs JM , and there is an execution
scenario where all jobs in JM have finished exactly at EFT), as otherwise it
would change the execution of jobs that are scheduled after the jobs in the
reduction set after applying the POR.

Definition 9. The EFT of a reduction set JM (vp) is exact iff the set of jobs
JM (vp) cannot complete its execution earlier than EFT and there exists an
execution scenario such that all jobs in JM (vp) have completed exactly at EFT.

27

Create reduction set
(Section 5.3.2)

Check if there is a
potential deadline miss

(Section 6.5)

Reject reduction
(Section 6.5)

Yes

Check if there are
interfering jobs

(Section 6.4)

No

Expand reduction set
(Section 6.6)

Accept reduction
(Section 6.6.2)

No Yes

Figure 6.1: High-level overview of our partial-order reduction algorithm.

Consider the example in Figure 6.2. The left scenario shows the correct EFT
for JM = {J1, J2}, namely 17 (obtained by scheduling J1 and J2 as early and for
as short as possible). As a result, J3 is always the next job and will finish before
its deadline. Now imagine that we end up with an under-estimated EFT of
14 by assuming that the jobs in JM start from the earliest time the processor
becomes available, as in the right scenario. In this case, the analysis would
falsely think that, in addition to the scenario where J3 executes first, there is
an additional execution scenario where J4 can execute before J3, in which J3
may suffer a deadline miss.

The EFT of a set of jobs JM can be determined by scheduling all jobs as
early as possible and assuming that they have their smallest execution time
(BCET). While this does not necessarily result in the EFT for all individual
jobs, it will be the EFT of at least one of them (and hence represents the EFT
of the entire set). Algorithm 1 shows how to obtain the EFT of a reduction set,
i.e., EFT (JM , vp).

Algorithm 1: Earliest finish time of JM after state vp

Input : Job set JM , system state vp
Output: Earliest finish time EFT (JM , vp)

1 Sort JM by rmin ascending and break ties by p descending;

2 EFT ← Amin1 (vp);

3 for each job Jx ∈ JM do
4 EFT ← max{EFT , rminx }+ Cminx ;
5 end

6 return EFT ;

The following lemma shows that the EFT (JM , vp) calculated by Algorithm 1
is a tight lower bound for the earliest time at which the processor can possibly

28

4𝐽1

𝐽2

𝐽4

10

16

12

𝐽3
17

2

24

𝐽1

𝐽2

𝐽4
7 13

10

16

12

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

𝜙1

𝐽3
17 24

14

3

17

3

20

8

28

4

11

14

8

24

26

7 13

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

𝜙1

(a) (b)

15 15

3

Figure 6.2: An example showing a scenario with a correct EFT (a) and a

scenario with an under-approximated EFT (b). Under-estimating EFT can

result in the inclusion of impossible job ordering which will never happen in

reality. Here, JM = {J1, J2}, and J = {J1, J2, J3, J4} with priority assignment

p1 < p2 < p3 < p4. Furthermore, the execution time of the jobs are as follows:

C1 ∈ [4, 4], C2 ∈ [3, 3], C3 ∈ [2, 3], and C4 ∈ [8, 10]

become available after dispatching the jobs in set JM (in any possible order that
the jobs in JM can have in their execution scenarios) when they are dispatched
after state vp.

Lemma 1. The set of jobs JM scheduled after state vp cannot complete its
execution earlier than EFT (JM , vp) as returned at line 6 of Algorithm 1.

Proof. At line 1 of Algorithm 1, the jobs in JM are sorted in ascending order
of rmin, and any ties are broken by highest priority. Let Jk denote the kth job
in the ordered set JM , and let JMk = {J1, J2, . . . , Jk} denote the re-ordered
(re-indexed) set of jobs in JM . And finally, let EFT k be the value computed
at line 4 of Algorithm 1 after the kth iteration of the for-loop.

We prove by induction that EFT k is a lower bound on the finish time of all
jobs in JMk assuming that no job Jj /∈ JMk executes between the jobs in JMk .
The base case considers the first job J1. Job J1 is the job with the earliest rmin

in JM , and in case of a tie, the highest-priority one. We prove that line 4 of
Algorithm 1 computes a lower bound on the EFT of J1. Since a job cannot start
executing before it is released and the processor is available, max{Amin1 , rmin1 }
is a lower bound on the start time of J1. Therefore, J1 cannot finish before
max{Amin1 , rmin1 } + Cmin1 as computed at line 4 since Cmin1 is the minimum
execution time of J1.

In the induction step, EFT k−1 is a lower bound on the finish time of the jobs
in {J1, . . . , Jk−1} assuming no other job executes between them. We show that
EFT k as computed at line 4 of Algorithm 1 is the EFT of all jobs {J1, . . . , Jk}.
We divide the proof into two cases depending on whether Jk starts its execution
before or after the completion of the jobs in JMk−1 = {J1, . . . , Jk−1}.

Case (i): Assume that Jk does not start its execution before the jobs in
JMk−1 have finished, namely, it does not start before EFT k−1. We know that
Jk cannot start before rmink since Jk cannot start before it is released. Thus,
max{EFT k−1, rmink } is a lower bound on the start time of Jk. Since Cmink is the
minimum execution time of Jk, if Jk starts executing at max{EFT k−1, rmink }
then it cannot finish before EFT k = max{EFT k−1, rmink +Cmink } as computed
at line 4. Furthermore, since Jk starts executing after all jobs in JMk−1 completed

29

their own execution, the finish time EFT k of Jk is also an upper bound on the
finish time of all the other jobs in JMk = JMk−1 ∪ {Jk}.

Case (ii): Assume that Jk starts executing before EFT k−1. Let sk be the
start time of Jk. By assumption, sk < EFT k−1. Since Jk cannot start before it
is released, rmink ≤ sk. We show that EFT k computed as EFT k = EFT k−1 +
Cmink by Algorithm 1 is a lower bound on the finish time of JMk = JMk−1 ∪ {Jk}.
Since all jobs in JMk−1 have their release before that of Jk by line 1 of Algorithm 1,

the processor executes at least EFT k−1 − sk time units of workload from the
jobs in JMk−1 after sk. Thus, when including Jk, the processor must execute at

least EFT k−1−sk+Cmink time units of workload of JMk after sk. Therefore, the
jobs in JMk cannot complete before sk+EFT k−1−sk+Cmink = EFT k−1+Cmink ,
which is EFT k as computed at line 4 of Algorithm 1.

Hence, if we apply the inductive step to all jobs in JM , then line 6 of Al-
gorithm 1 returns a lower bound on the earliest time the processor can finish
scheduling all jobs in JM .

Lemma 2. There exists an execution scenario such that all jobs in JM have
completed exactly at EFT (JM , vp) as returned by line 6 of Algorithm 1.

Proof. If each Ji ∈ JM releases at rmini and executes for exactly Cmini time
units and the processor becomes available at Amin1 , then, the execution of JM
will complete exactly at EFT (JM , vp) as returned by line 6 of Algorithm 1
since this algorithm practically simulates the schedule of the jobs in JM under
the given execution scenario. Hence, there exists an execution such that all jobs
in JM have completed exactly at EFT (JM , vp).

Corollary 1. The EFT (JM , vp) as returned by line 6 of Algorithm 1 is the
exact earliest finish time of JM .

Proof. The set of jobs JM cannot complete its execution before EFT (JM , vp)
(Lemma 1), and there exists an execution scenario such that the jobs in JM
complete at EFT (JM , vp) (Lemma 2). Hence, EFT (JM , vp) is exact.

6.2 Latest finish time of a reduction set

Similarly, the latest finish time we compute for JM should also be exact (i.e.,
the LFT is an upper bound on the finish time of the set of jobs JM , and there
is an execution scenario where all jobs in JM have finished exactly at LFT), as
otherwise it could also change the execution of jobs that are scheduled after it.

Definition 10. The LFT of a reduction set JM (vp) is exact iff the set of
jobs JM (vp) cannot complete its execution later than LFT and there exists an
execution scenario such that all jobs in JM (vp) have completed exactly at LFT.

Consider the example in Figure 6.3. The left scenario shows the correct LFT
for JM = {J1, J2}, namely 18, which is obtained by scheduling J1 and J2 as late
and for as long as possible. Then, J3 can start and finish before its deadline at
time 23. Again, imagine that we compute an imprecise LFT of 20, by assuming
that the jobs in JM start from the time that the latest job is certainly released,
as in the right scenario of Figure 6.3. Now J3 starts later and misses its deadline.

30

𝐽1

𝐽3
17

12

7 13

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

𝜙1

15

3
16

2
18

23
5

𝐽1

𝐽3

7 13

17

12

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

𝜙1

15

23
5

25
𝐽2
11

𝐽2
11

3
18

2
20

(a) (b)

Figure 6.3: An example showing that over-approximated LFT may result

in the inclusion of impossible scenarios. (a) a correct LFT and (b) over-

approximated LFT, for the reduction set JM = {J1, J2} and a job set J =

{J1, J2, J3} with priority assignment p1 < p2 < p3. The execution time of the

jobs are as follows C1 ∈ [2, 3], C2 ∈ [2, 2], and C3 ∈ [1, 5].

Hence, the LFT should be exact as otherwise we could wrongly conclude that
a job set is unschedulable.

The latest finish time of a set of jobs JM can be determined by scheduling all
jobs as late for as long as possible. This property is formally proven in Lemma 3.

Algorithm 2: Latest finish time of JM after state vp

Input : Job set JM , system state vp
Output: Latest finish time LFT (JM , vp)

1 Sort JM by rmax ascending and break ties by p descending;

2 LFT ← Amax1 (vp);

3 for each job Jx ∈ JM do
4 LFT ← max{LFT , rmaxx }+ Cmaxx ;
5 end

6 return LFT ;

Lemma 3. The set of jobs JM scheduled after state vp cannot complete their
execution later than LFT (JM , vp) as returned by line 6 of Algorithm 2.

Proof. At line 1 of Algorithm 2, the jobs in JM are sorted in ascending order of
rmax, and any ties are broken by highest priority. Let Jk denote the kth job in
the ordered set and let JMk = {J1, . . . , Jk} denote the re-indexed set of jobs in
JM sorted by their rmax (in Line 1 of the algorithm). Finally, let LFT k be the
value computed at line 4 of Algorithm 2 after the kth iteration of the for-loop.

We prove by induction that LFT k is an upper bound on the finish time of
all jobs in JMk assuming that no job Jj /∈ JMk executes between the jobs in JMk .
The base case considers the first job J1. J1 is the job with the earliest rmax

in JM , and in case of a tie, the highest priority one. We prove that line 4 of
Algorithm 2 computes an upper bound on the LFT of J1. Because of the work-
conserving property of the scheduler, a job cannot start later than the time by
which it is certainly released and the processor is certainly available. Hence,
max{Amax1 , rmax1 } is an upper bound on the start time of J1. If J1 starts at

31

max{Amax1 , rmax1 } it cannot finish after max{Amax1 , rmax1 }+Cmax1 as computed
at line 4 of Algorithm 2 since Cmax1 is the maximum execution time of J1.

In the induction step, LFT k−1 is an upper bound on the finish time of the jobs
in {J1, . . . , Jk−1} assuming no other job executes between them. We show that
LFT k as computed at line 4 of Algorithm 2 is the LFT of all jobs {J1, . . . , Jk}.
We divide the proof into two cases depending on whether Jk starts its execution
before or after the completion of the jobs in JMk−1 = {J1, . . . , Jk−1}.

Case (i): If Jk does not start its execution before the jobs in JMk−1 have

finished, then, we know that LFT k−1 is the latest time at which the processor
becomes available to other jobs including Jk. We also know that Jk will be
released at the latest by time rmaxk . Hence, an upper bound on the start time
of Jk is max{LFT k−1, rmaxk } because at that time, a work-conserving scheduler
must dispatch a job (in this case, Jk).

Since Cmaxk is the maximum execution time of Jk, if Jk starts executing at
max{LFT k−1, rmaxk } then it cannot finish after LFT k = max{LFT k−1, rmaxk +
Cmaxk } as computed at line 4. Furthermore, since Jk starts executing after all
jobs in JMk−1 completed their own execution, the finish time LFT k of Jk is also

an upper bound on the finish time of all the other jobs in JMk = JMk−1 ∪ {Jk}.
Case (ii): If Jk starts executing before LFT k−1, then let sk be the start

time of Jk. By assumption, sk < LFT k−1. We show that LFT k computed as
LFT k = LFT k−1 +Cmaxk by Algorithm 2 is an upper bound on the finish time
of JMk = JMk−1 ∪ {Jk}.

Since all jobs in JMk−1 have their latest release (rmax) before that of Jk by

line 1 of Algorithm 2, the processor executes at most LFT k−1 − sk time units
of workload from the jobs in JMk−1 after sk. Thus, the processor must execute at

most LFT k−1−sk+Cmaxk time units of workload of JMk after sk. Therefore, the
jobs in JMk cannot complete after sk+(LFT k−1−sk+Cmaxk) = LFT k−1+Cmaxk ,
which is LFT k as computed at line 4 of Algorithm 2.

Hence, if we apply the inductive step to all jobs in JM , then line 6 of Al-
gorithm 2 returns an upper bound on the latest time the processor can finish
scheduling all jobs in JM .

Lemma 4. There exists an execution scenario such that all jobs in JM have
completed exactly at LFT (JM , vp) as returned by line 6 of Algorithm 2.

Proof. If each Ji ∈ JM releases at rmaxi and executes for exactly Cmaxi time
units and the processor becomes available at Amax1 , then, the execution of JM
will complete exactly at LFT (JM , vp) as returned by line 6 of Algorithm 2.
Hence, there exists an execution such that all jobs in JM have completed exactly
at LFT (JM , vp).

Corollary 2. The LFT (JM , vp) as returned by line 6 of Algorithm 2 is the
exact latest finish time of JM .

Proof. The set of jobs JM cannot complete its execution after LFT (JM , vp)
(Lemma 3), and there exists an execution scenario such that the jobs in JM
complete at LFT (JM , vp) (Lemma 4). Hence, LFT (JM , vp) is exact.

Example 2. Consider the schedules in Figure 6.4. The left shows the sched-
ule that is constructed to compute EFT (JM , vp), and the right one shows

32

7 13

7 13

8 10

11 12

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

2

1

1

4

2

2

17

19

218

7 13

7 13

8 10

11 12

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

𝐽3

𝐽2

𝐽1

𝐽3

𝐽2

𝐽1

𝜙1 𝜙1

Figure 6.4: An example showing how EFT (JM , vp) and LFT (JM , vp) are com-

puted respectively. JM = {J1, J2, J3} with priority assignment p1 < p2 < p3.

In this example, C1 and C2 ∈ [1, 2], and C3 ∈ [2, 4].

𝐽1

16
𝐽2

𝐽3

7 13

5 15

7

6 14

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

1

2

1

𝜙1

8

10

11

𝐽1

16
𝐽2

𝐽3

7 13

5 15

7

6 14

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

3

3

2

𝜙1

17

19

22

Figure 6.5: An example showing how EFT (JM , vp) and LFT (JM , vp) are com-

puted respectively. JM = {J1, J2, J3} with priority assignment p1 < p2 < p3.

In this example, C1 ∈ [1, 2], C2 ∈ [2, 3], and C3 ∈ [1, 3].

the schedule that is constructed to compute LFT (JM , vp). Note that for
EFT (JM , vp), the jobs are scheduled in order of rmin and their execution time
is set to Cmin, while for LFT (JM , vp), this is rmax and Cmax respectively.
Because all rmax are before or at Amax1 , the jobs are scheduled starting from
Amax1 as this is the latest time the processor becomes available.

Next, consider the schedules in Figure 6.5. Again, the left and right schedules
are respectively for EFT (JM , vp) and LFT (JM , vp). Now, all rmin are before
Amin1 , so for EFT (JM , vp) the jobs are scheduled starting from Amin1 as the
processor cannot possibly be available before this time. Because all rmax after
Amax1 , the jobs are scheduled at their rmax to get the latest finish time of JM .

6.3 Earliest and latest finish times for each job
in a reduction set

Since the analysis is a response-time analysis we also need to compute the EFT
and LFT of the individual jobs in JM . As stated before, the response-time
analysis will not be exact as the partial-order reduction algorithm does not
explore all possible orderings of jobs in JM . Yet it remains safe, i.e., the
analysis always returns a lower bound on the EFT and an upper bound on the
LFT of each job.

6.3.1 Earliest finish time of Ji ∈ JM

The earliest finish time of job Ji ∈ JM is lower bounded by

ÊFT i(JM , vp) = max{Amin1 (vp), r
min
i }+ Cmini (6.1)

33

Lemma 5. Ji ∈ JM scheduled after state vp cannot complete its execution

earlier than ÊFT i(JM , vp) as defined in (6.1).

Proof. Ji cannot start before rmini as a job cannot start before it is released, and
Ji cannot start before Amin1 as Amin1 is the earliest time at which all jobs before
Ji finish. Hence, max{Amin1 , rmini } is a lower bound on the start time of Ji. If
Ji starts at max{Amin1 , rmini } it cannot finish before max{Amin1 , rmini } + Cmini

as Cmini is the minimum execution time of Ji.

6.3.2 Latest start and finish time of Ji ∈ JM

In order to compute an upper bound on the LFT of Ji, we need an upper
bound on the start time of Ji. As shown by Davis et al. [8], the following
execution scenario results in a late start time for job Ji: a lower priority job
starts its execution just before Ji is released and hence blocks Ji’s execution
and, subsequently, all higher-priority jobs interfere with Ji. Since we consider a
JLFP scheduling policy, the latest time at which a lower-priority job Jl can have
a chance to be dispatched before Ji is when it starts its execution at rmaxi − 1
(and Ji is released at rmaxi) because after rmaxi − 1, job Jl will no longer be a
high-priority job in the system as long as Ji has not been dispatched.

While the above-mentioned scenario is very pessimistic and often does not
happen in practice, assuming that scenario allows us to easily compute an upper
bound on the start time of Ji using a fixed-point iteration equation. Note that
it is possible to compute a tighter upper bound on Ji’s start time. However, it
would require exploring more scenarios and thus more overhead, which we are
trying to minimize. Following the above discussion, we compute an upper bound
si(vp) on the start time of Ji in system state vp using the following recursive
equations:

s
(0)
i = max{Amax1 , rmaxi − 1 + max

∀Jj∈JM
{Cmaxj | pi < pj}} (6.2)

s
(k)
i = s

(0)
i +

∑
{Jj |Jj∈JM∧rmin

j ≤s(k−1)
i ∧pj<pi}

Cmaxj (6.3)

The upper bound si(vp) is then equal to s
(k)
i when s

(k)
i = s

(k−1)
i .

Lemma 6. The fixed-point iteration in (6.3) converges.

Proof. s
(k)
i increases or remains constant since only non-negative terms are ad-

ded because ∀Jj , Cmaxj ≥ 0. Furthermore, s
(k)
i increases when there exists

Jj ∈ JM such that Jj has a higher priority than Ji and s
(k−2)
i < rminj ≤ s(k−1)i .

If such a Jj does not exist, there is no more job that has a higher priority than

Ji and is possibly released at s
(k−1)
i and s

(k)
i = s

(k−1)
i . Therefore, as long as it

does not converge, (6.3) must add at least one more job from JM (vp) at every
iteration. Since the number of jobs in JM is finite, the number of iterations by
(6.3) is upper bounded by |JM (vp)|. This proves the lemma.

Lemma 7. In system state vp, Ji ∈ JM starts executing no later than si(vp).

34

Proof. The proof is by contradiction. Assume that the processor starts execut-
ing Ji ∈ JM later than si(vp). Then, there should either be a larger blocking
by a lower-priority job or a larger interference by higher-priority jobs than ac-
counted for by si(vp). We divide the proof into two cases depending on whether
there is a larger blocking or interference for Ji. We show that there cannot be
a larger blocking or interference than what is already included in si(vp).

Case (i): There is a larger blocking for Ji. This means either the processor
becomes possibly available later than Amin1 , or there exists a job with a lower
priority that can execute for longer than what is used in (6.2). The former
contradicts the assumption that Amin1 is the exact earliest time at which the
processor becomes possibly available. The latter contradicts the assumptions
that a lower-priority job cannot execute for longer than Cmaxj before Ji starts,
and that (6.2) uses the lower-priority job with the largest Cmax.

Case (ii): There is a larger interference for Ji. (6.3) terminates when there

is no more higher-priority job that possibly releases at s
(k−1)
i . If Ji can start

later than si(vp), the jobs currently included in si(vp) can execute longer than
their Cmax, or there must be a higher-priority job that is released before Ji
starts but is not included in si(vp). The former is not possible as Cmax is the
maximum execution time of a job. The latter means that there is still a Jj with
pj < pi and rminj < si(vp). But this contradicts the assumption that (6.3) has
terminated.

Hence, when (6.3) terminates, the resulting s
(k)
i is the latest time instant the

processor may start scheduling Ji ∈ JM after vp.

A second upper bound on the start time of Ji is also given by LFT (JM , vp)−
Cmaxi (as we will show in Lemma 8). We need this second upper bound because

in some cases, s
(k)
i can become larger than LFT (JM , vp)−Cmaxi and we would

prefer a smaller (less pessimistic) upper bound on the LFT of a job in JM .

Lemma 8. The processor starts executing Ji ∈ JM after vp no later than
LFT (JM , vp)− Cmaxi .

Proof. By contradiction. Assume that the processor starts executing Ji ∈ JM
later than LFT (JM , vp)−Cmaxi , say at LFT (JM , vp)−Cmaxi +x, where x > 0.
Since, according to the definition of JM , no job Jj /∈ JM can start executing
before all jobs in JM finish their own execution, it means that that the processor
is busy executing jobs in JM \Ji until LFT (JM , vp)−Cmaxi +x. Consequently,
at least one job in JM \ Ji finishes at LFT (JM , vp) − Cmaxi + x. And then,
Ji starts at LFT (JM , vp) − Cmaxi + x. Now if Ji executes for its worst-case
execution time Cmaxi , then it finishes at LFT (JM , vp) + x. This contradicts
Corollary 1 that states that LFT (JM , vp) is the latest time instant the processor
may be busy executing jobs in JM .

Combining these two upper bounds, we define L̂ST i(JM , vp) as an upper
bound on the latest start time of Ji ∈ JM .

L̂ST i(JM , vp) = min{si(vp), LFT (JM , vp)− Cmaxi } (6.4)

Example 3. The top left schedule in Figure 6.6 shows how the first upper
bound on the latest start time of J2, s2(vp), is computed by (6.2) and (6.3). J3
gives the largest blocking compared to Amax1 , thus it is scheduled at rmax2 − 1.

35

Figure 6.6: An example showing the scheduling scenario for s2(vp) as com-

puted in (6.2) and (6.3) (top left), the scenario for computing LFT (JM , vp)

(top right), and the valid scheduling scenario that results in the true latest

start time for J2 after vp (bottom). JM = {J0, J1, J2, J3} with priority as-

signment p0 < p1 < p2 < p3. In this example, C0 ∈ [1, 1], C1, C2 ∈ [1, 2], and

C3 ∈ [7, 10].

Next, all higher priority jobs that can interfere are scheduled, namely J0 and J1.
After scheduling these jobs, there is nothing left that can push J2 any further,
so s2 = 24. Note that this schedule would actually be impossible, as for J3 to
start at time 11, J0 and J1 would have to be finished already as they have a
higher priority than J3 and are both certainly released by time 11.

The top right schedule depicts the second upper bound given by LFT (JM , vp)−
Cmax2 = 28 − 2 = 26. This is larger than s2(vp), showing that (6.2) and (6.3)
can give a tighter upper bound than LFT (JM , vp)− Cmaxi .

The true latest start time of J2 is shown in the bottom schedule, where indeed
J0 and J1 execute before J3 so that J3 can push J2 as far as possible, resulting in
a start time at time 21. This shows that neither s2(vp) nor LFT (JM , vp)−Cmax2

is a tight upper bound on the latest start time of J2.

Example 4. Figure 6.7 shows a set of jobs where s2 = 25 (left) is larger
than LFT (JM , vp) − Cmax2 = 21 (right). This shows that in some cases,
LFT (JM , vp) − Cmaxi can give a tighter upper bound on the latest start time
of Ji than si(vp).

Since the latest start time of Ji ∈ JM is upper bounded by L̂ST i(JM , vp),
the latest finish time of Ji ∈ JM is upper bounded by

L̂FT i(JM , vp) = L̂ST i(JM , vp) + Cmaxi (6.5)

Lemma 9. Ji ∈ JM scheduled after state vp cannot complete its execution later

than L̂FT i(JM , vp) as defined in (6.5).

Proof. As L̂ST i(JM , vp) is the latest start time of Ji (Lemma 7), Ji cannot

start later than L̂ST i(JM , vp). If Ji starts at L̂ST i(JM , vp), it cannot finish

36

Figure 6.7: An example where s2(vp) is larger than LFT (JM , vp)−Cmax
2 . JM =

{J0, J1, J2} with priority assignment p0 < p1 < p2. The execution time range

for all jobs is [1, 2].

later than L̂ST i(JM , vp)+Cmaxi because Cmaxi is the maximum execution time
of Ji.

6.4 Interfering jobs

In this section, we discuss the properties that will allow us to construct a safe
reduction set JM , where no execution scenario that may lead to a deadline miss
is overlooked (missed). To understand the importance of this requirement, let’s
look at the following example. Consider the scheduling scenario in Figure 6.11.
Reducing J1, J2, and J4 to a single edge in the schedule-abstraction graph would
remove the depicted scheduling scenario where J3 executes before J4 and causes
a deadline miss for J4. Keeping this scenario in the graph is thus important,
as otherwise the analysis would not see the deadline miss for J4 and incorrectly
conclude that this job set is schedulable. Therefore, the partial order reduction
of this particular set of jobs is unsafe.

As shown in the example above, one case where aggregating scheduling de-
cisions for a set of jobs J S ⊆ J \ J P may affect the analysis of the execution
of other jobs is when some other job Jj /∈ J S is able to execute between two
jobs in J S . We call such a job Jx that can execute between two arbitrary jobs
in J S but is itself not in J S an interfering job.

Definition 11. A job Jx /∈ J S is an interfering job for J S iff Jx can execute
before any of the jobs in J S .

The conditions that should hold for a job Jx to be able to interfere with J S
relate to the priority-driven and work-conserving properties of the scheduling
algorithm.

In the rest of this section, we assume that J S is a set of candidate jobs that
is being considered when constructing the final reduction set JM .

6.4.1 Work-conserving interference condition

A job Jx can execute between two jobs in J S if Jx is released before the end
of an idle interval between the execution of two jobs in J S . Figure 6.8 shows
an example of a job Jx (here, it is J3) that is released before the end of an idle
interval between two jobs in J S = {J1, J2}. In this example, we see that even
though J3 has a lower priority than J1 and J2, it is able to execute between
these jobs because the scheduling algorithm is work-conserving and there can

37

Figure 6.8: An example where J3 interferes with the partial-order reduction

of J S = {J1, J2} because J3 releases before the end of an idle time in J S.

J = {J1, J2, J3} with priority assignment p1 < p2 < p3. The execution time

range for J1, J2 and J3 is [1, 2].

be an idle interval between them (i.e., when J1 is released at 6 and J2 is released
at 12).

Computing idle intervals in J S

In order to find out whether a job Jx is released before the end of an idle
interval between the execution of jobs in J S , we need to determine the possible
idle intervals between the execution of jobs in J S . To do so, we use the property
stated in the following Lemma:

Lemma 10. The latest idle interval before the execution of Ji ∈ J S cannot end
later than rmaxi .

Proof. By contradiction. Suppose that there could be an idle interval before
the execution of Ji ∈ J S that ends at rmaxi + 1. Then it means that the
processor remains idle until rmaxi + 1 even though Ji is certainly released. This
contradicts the assumption that the scheduling policy is work-conserving, as a
work-conserving scheduling policy never keeps the processor idle when there is
a ready job.

To determine whether there is an idle interval ending by rmaxi , we schedule as
little workload as possible before rmaxi and see whether that minimum workload
is enough to keep the processor busy until rmaxi . A minimal workload before
rmaxi can be obtained by only scheduling jobs that are certainly released before
rmaxi as early as possible and considering that they run for their BCET, while
scheduling all other jobs after rmaxi .

As a first step, we define the set of jobs in J S that are certainly released
before rmaxi in Definition 12. We then characterize the largest possible idle
interval that may end in rmaxi in Lemma 11.

Definition 12. Given a system state vp and a candidate reduction set J S , the
set of jobs C(t, vp) ⊆ J S that are certainly released before time t is defined as

C(t, vp) = {Jj ∈ J S | rmaxj < t} (6.6)

Lemma 11. Let Ji be a job in J S that is released at rmaxi . If there is an idle
interval just before the execution of Ji starts, then EFT (C(rmaxi , vp), vp) is a
lower bound on the start time of that idle interval.

38

Figure 6.9: An example showing how to find all idle intervals ending with

jobs in J S = {J1, J2, J3}. The priority assignment is p1 < p2 < p3. The

execution time range for each job is [2, 2].

Proof. Since by Definition 12, all jobs in C(rmaxi , vp) must have been released
strictly before rmaxi , if there is an idle interval before Ji starts to execute, then
all the jobs in C(rmaxi , vp) must have completed their execution by rmaxi (by the
work-conserving property).

Now, by contradiction, suppose that there is an idle interval that starts before
EFT (C(rmaxi , vp), vp). This means that the jobs in C(rmaxi , vp) can finish before
EFT (C(rmaxi , vp), vp). This contradicts the fact that EFT (C(rmaxi , vp), vp) is
the earliest finish time of any job in C(rmaxi , vp) as proven in Corollary 1.

Example 5. Figure 6.9 shows how to find all idle intervals ending with jobs
in J S = {J1, J2, J3}. The top left schedule shows how the idle interval ending
with J1 is found. Since there is no job that is certainly released before J1,
EFT (C(rmax1 , vp), vp) = Amin1 = 7 resulting in an idle interval [7, 8) for J1.

The top right schedule shows the idle interval ending with J2. J2 is scheduled
as early and as short as possible, so EFT (C(rmax2 , vp), vp) = 9, resulting in an
idle interval [9, 10) for J2. Finally, the bottom schedule shows how to find the
idle interval ending with J3 by scheduling J1 and J2 as early and as short as
possible. However, EFT (C(rmax2 , vp), vp) = 11 = rmax3 , making the idle interval
[11, 11) and therefore empty. Thus, there is no idle interval possible that ends
at rmax3 .

If EFT (C(rmaxi , vp), vp) is strictly smaller than rmaxi , then an idle interval
exists that starts at EFT (C(rmaxi , vp), vp) and ends by rmaxi . If otherwise,
EFT (C(rmaxi , vp), vp) = rmaxi , then there will be no idle interval immediately
before rmaxi . To determine whether it is possible for some job Jx to interfere
with J S because of the work-conserving property of the scheduling algorithm,
we are only interested in the nonempty idle intervals between the execution of
jobs in J S . If there is an empty (i.e., no) idle interval between two jobs in J S ,
then the work-conserving property of the scheduler could not be the reason for
some job Jx to execute between these two jobs. We denote the set of jobs in
J S with a nonempty idle interval ending with their release by J δ.

39

Figure 6.10: An example showing how to find all idle intervals ending with
jobs in J S = {J1, J2, J3} with priority assignment p1 < p2 < p3. The execution
time range for J1 is [2, 2], for J2 it is [3, 3] and for J3 it is [4, 4].

Definition 13. The set of jobs defining the end of a nonempty idle interval J δ
is defined as

J δ = {Ji | Ji ∈ J S ∧ EFT (C(rmaxi , vp), vp) < rmaxi } (6.7)

If for a given J S , the set J δ is empty, then there cannot be any idle intervals
between the jobs in J S . The following lemma proves this claim.

Lemma 12. If J δ = ∅, there exists no execution scenario such that there is an
idle interval between the execution of two jobs in J S(vp) scheduled after vp.

Proof. If J δ = ∅ it means that for each Ji ∈ J S , EFT (C(rmaxi , vp), vp) ≥ rmaxi .
Since EFT (C(rmaxi , vp), vp) is a lower bound on the start time of the idle interval
ending with rmaxi (Lemma 11) , the idle interval ending with rmaxi is empty for
each rmaxi . Hence, there is no idle interval between any two arbitrary jobs in
J S .

Example 6. Consider the schedule in Figure 6.10 that shows how to find all
idle intervals between jobs in J S = {J1, J2, J3}. Note that in this example we
only need one schedule to find all idle intervals. The schedule shows how the idle
interval ending with J1 is found. Since there is no job that is certainly released
before J1, EFT (C(rmax1 , vp), vp) = Amin1 = 7 resulting in an empty idle interval
[7, 7) for J1. Next, the schedule also shows the idle interval ending with J2. J1
is scheduled as early and as short as possible, so EFT (C(rmax1 , vp), vp) = 11,
resulting in an empty idle interval [11, 11) for J2. Finally, the schedule shows
how to find the idle interval ending with J3 by scheduling J1 and J2 as early
and as short as possible. EFT (C(rmax2 , vp), vp) = 14, resulting in an empty idle
interval [14, 12) for J2. As all idle intervals are empty, there is no time instant
the processor may be idle between the execution of any two jobs in J S .

When determining whether some job Jx /∈ J S can potentially interfere with
J S by executing in an idle interval between two jobs in J S , we only care
whether Jx is released before the end of some idle intervals between the jobs of
J S . Namely, we do not need to know which idle interval in particular. Hence,
we only need to determine the latest time at which an idle interval ends. We
denote that time instant by δM .

δM (vp) = max{rmaxj | Jj ∈ J δ} (6.8)

40

Figure 6.11: An example where J3 interferes with the partial-order reduction

of J S = {J1, J2, J4} because J3 releases before a lower-priority job in J S.

J = {J1, J2, J3, J4} with priority assignment p1 < p2 < p3 < p4. The execution

time range for J1, J2, and J4 is [1, 2] and for J3 it is [1, 3].

Using δM (vp), we can formulate the condition that should hold for a job
Jx /∈ J S to be able to interfere with the jobs in J S due to the work-conserving
property of the the scheduling algorithm.

Lemma 13. If a job Jx /∈ J S can execute in an idle interval between two jobs
in J S, then

J δ 6= ∅ ∧ rminx < δM (vp) (6.9)

Proof. If J δ 6= ∅, δM (vp) is the latest end of an idle interval ending before
the execution of the last job in J S . Jx is released before δM (vp), so Jx will
be a ready job at some idle instant before δM (vp). As the scheduler is work-
conserving it will not leave the processor idle when there is a ready job, and
hence will schedule Jx. Thus, Jx can execute between two jobs in J S and
interferes with J S .

6.4.2 Priority-driven interference condition

A job Jx /∈ J S can execute between two arbitrary jobs in J S if it has not been
scheduled yet, it has a higher priority than a job Jl ∈ J S , and Jx is released
before Jl started to execute. The case depicted in Figure 6.11 is an example of
a higher-priority job (J3 in this case) interfering with J S = {J1, J2, J4} because
it is released before the time at which a lower-priority job in J S (i.e., J4) has
started executing.

In order to define the conditions under which there is no interfering job for
a candidate reduction set J S , we first define the set J high containing the jobs
that have a higher priority than at least one job in J S , formally

J high = {Jx | Jx ∈ J \ (J S ∪ J P) ∧ ∃Jl ∈ J S , px < pl} (6.10)

Lemma 14. If there exists no Jx /∈ J S such that (6.9) holds and ∀Jy ∈ J high,

∀Jl ∈ J S such that py < pl we have rminy > L̂ST l(J S , vp), then there exists no

interfering job for J S.

41

Proof. Under a non-preemptive work-conserving job-level fixed-priority policy,
a job Jx /∈ J S can only start its execution before a job Ji ∈ J S if and only if:
(i) Jx has a higher priority than Ji and Jx is possibly released before Ji starts
executing or (ii) if the processor is idle before the start of Ji, and Jx possibly
releases before or during this idle time interval.

Lemma 13 proves that (6.9) must hold if Jx interferes with J S by executing
in an idle interval. Since by the lemma’s assumption, (6.9) does not hold for
any job Jx /∈ J S , no job respects condition (ii). Therefore, if the claim does not
hold, then there must be a set of jobs J I not in J S (i.e., J I ∩ J S = ∅) that
satisfies condition (i). That is, for all Jx ∈ J I , there exists Jl ∈ J S such that
px < pl and Jx is released before Jl starts executing.

According to Lemmas 7 and 8, L̂ST l(J S , vp) is an upper bound on the start
time of an arbitrary job Jl ∈ J S when no job interferes with J S . Hence, for
the jobs in J I to interfere with J S , there must be at least one job Jy ∈ J I and

a job Jl ∈ J S such that py < pl and Jy is released before or at L̂ST l(J S , vp)
(from condition (i)). This contradicts the lemma’s assumption that rminy >

L̂ST l(J S , vp). Therefore, the set J I must be empty, thereby proving that no
job can interfere with J S .

6.5 Ensuring the absence of deadline misses

Recall that J S is a set of candidate jobs that is being considered when con-

structing the final reduction set JM . If L̂ST i(J S , vp) is larger than the deadline
of at least one of the jobs Ji ∈ J S , then we cannot reduce the execution of the
jobs in J S to a single execution scenario, because encountering a deadline miss

based on the over-approximated L̂ST i(J S , vp) does not always imply an actual
deadline miss.

Consider the schedule in Figure 6.12. J1 appears to have a deadline miss since

L̂ST 1(J S , vp) = 15 so that L̂FT 1(J S , vp) = 17 > 16 = d1. This execution
scenario is possible, so indeed J1 misses its deadline if we would explore all
execution scenarios individually. However, upon finding a job Ji ∈ J S such that

L̂ST i(J S , vp) > di, we cannot simply conclude that the deadline miss for Ji can
actually happen. Consider the example in Figure 6.13. Here, J2 seems to have

a deadline miss because L̂ST 2(J S , vp) = 16, so L̂FT 2(J S , vp) = 19 > 17 = d2.

However, this L̂ST 2(J S , vp) is of course an upper bound on the latest start time
of J2. The right schedule in Figure 6.13 shows the actual latest start time of J2,
which is 13. So in reality, J2 will not miss its deadline because the true LFT

of J2 is 16. Therefore, from considering L̂ST 2(J S , vp) only, we would falsely
conclude that J2 misses its deadline even though it is not possible.

Hence, when creating the final reduction set JM from J S , we need to be cer-
tain that even when considering the upper-bounded LFT, all Ji ∈ J S certainly
finish before their deadlines.

Lemma 15. None of the jobs in J S misses its deadline if

∀Ji ∈ J S , L̂FT i(J S , vp) ≤ di (6.11)

42

Figure 6.12: An example where L̂ST 1(J S , vp) correctly indicates a deadline
miss for J1 in J S = {J1, J2, J3} with priority assignment p1 < p2 < p3. The
execution time range for J1, J2 is [1, 2] and for J3 it is [1, 8].

Figure 6.13: An example where L̂ST 2(J S , vp) falsely indicates a deadline miss
for J2 in J S = {J0, J1, J2, J3} with priority assignment p0 < p1 < p2 < p3. In
this example, C0 ∈ [1, 1], C1 ∈ [1, 2], C2 ∈ [2, 3], and C3 ∈ [2, 5].

Proof. Lemma 9 shows that L̂FT i(J S , vp) is an upper bound on the latest finish
time of Ji ∈ J S . Hence, if it is smaller than the deadline of Ji, then it is certain
that Ji ∈ J S cannot miss its deadline.

If a partial-order reduction is unsafe because of a potential deadline miss,
unfortunately there is not much we can do other than fall back on the original
algorithm to explore all possible scenarios. This is needed to ensure that all
deadline misses are reported correctly.

6.6 Safe partial-order reduction

If a partial-order reduction is unsafe because there exists a Jx that can interfere
with candidate reduction set J S (see Definition 11), we can add Jx to J S

and check whether a reduction of this new J S
′

= J S ∪ {Jx} is safe. Note
that after adding Jx to J S , we need to recompute all properties of this new

J S
′

, i.e. L̂ST i(J S
′

, vp), ÊFT i(J S
′

, vp), and L̂FT i(J S
′

, vp), for all Ji ∈ J S
′
,

EFT (J S
′

, vp), LFT (J S
′

, vp), and δM (vp).
Let’s return to the example in Figure 6.8. Here, J3 is able to interfere with

J S = {J1, J2}. If we add J3 to J S , the partial-order reduction of J S
′

=
{J1, J2, J3} would be safe. Thus, adding Jx to J S sometimes allows us to
convert an unsafe partial-order reduction to a safe one.

When there are multiple jobs interfering with J S , the question is in what
order they will be added to J S as different addition orders can have different

43

Figure 6.14: An example where adding interfering jobs to J S = {J1, J2, J4}
in order of descending priority results in a safe partial-order reduction.
J = {J1, J2, J3, J4, J5} with priority assignment p1 < p2 < p3 < p4 < p5. In this
example, C1 and C2 are in [4, 4], C3 ∈ [1, 1], C4 ∈ [1, 2], and C5 ∈ [1, 8].

Figure 6.15: An example where adding interfering jobs to J S = {J1, J2, J4}
in order of ascending rmin results in a safe partial-order reduction. J =
{J1, J2, J3, J4, J5} with priority assignment p1 < p2 < p3 < p4 < p5. In this
example, C1 and C2 are in [2, 2], C3 ∈ [1, 2], C4 ∈ [1, 10], and C5 ∈ [5, 5].

results. Consider the example in Figure 6.14 where J S = {J1, J2, J4}. There is
an idle interval [15, 16) and LFT (J S , vp) = 23. If we add J3 to J S first, there
is no idle interval left in which J5 can be inserted, and since LFT (J S , vp) is
now 24 there are no deadline misses, so this is a safe partial-order reduction.
On the other hand, if we add J5 to J S first, then LFT (J S , vp) = 31 and

L̂ST 4(J S , vp) = 29. As we can now no longer rule out a deadline miss for
J4, this partial-order reduction is not safe. So, in this case adding the higher
priority job to J S first is the better approach as this leads to a safe partial-order
reduction.

Now, consider the example in Figure 6.15 where J S = {J1, J2, J4}. There is
an idle interval [11, 16) and LFT (J S , vp) = 18. If we add J5 to J S first, there
is no idle interval left in which J5 can be inserted, and since LFT (J S , vp) is
now 23 there are no deadline misses, so this is a safe partial-order reduction.
On the other hand, if we add J3 to J S first, then LFT (J S , vp) = 28 and

L̂ST 4(J S , vp) = 26. As we can now no longer rule out a deadline miss for
J4, this partial-order reduction is not safe. So, in this case adding the earlier
released job to J S first is the better approach as this leads to a safe partial-order
reduction.

44

This shows that different scenarios have different “optimal” orders of adding
interfering jobs to J S , where optimal means that the addition of Jx to J S leads
to a successful POR. Note that the non-optimal addition orders we explored
in the previous examples are actually scenarios that would have never been
possible. For Figure 6.14, J5 could never execute before J4 because both J4
and J5 have been certainly released at the start of the idle interval at time 15.
So, J4 would execute first because of its higher priority. In Figure 6.15, J4 can
never insert itself between jobs in J S because the processor will be certainly
idle and J5 will be certainly released before rmin4 , causing J5 to start before J4.

However, we have no way of knowing whether these scenarios are actually
impossible without exploring the different execution scenarios in J S first. This
would technically mean to manually perform the original SAG analysis on the
jobs in J S which is obviously not efficient. Consequently, we choose to use a
heuristic approach when adding jobs to J S . Our approach is not optimal and
hence may fail to form a reduction set when it is possible to form one. Later in
Chapter 7, we will evaluate the performance of the heuristic(s).

6.6.1 Algorithm for reduction set creation

Algorithm 3 shows how to create the final reduction set JM for a system state
vp. In short, interfering jobs are added to the set of candidate jobs J S until the
POR is either accepted because of a lack of interfering jobs, or rejected because
of a potential deadline miss.

In line 1 of Algorithm 3, J S is initialized with the direct successors of vp,
i.e., successors that the original SAG analysis would naturally add immediately
after state vp according to Definition 2. In the while-loop, the algorithm first
computes properties of J S (line 3) and then it checks whether there is a potential
deadline miss for J S (line 5). If so, it returns the empty set (line 6) since
the partial-order reduction of J S is inherently unsafe and therefore rejected.
Otherwise, the algorithm continues by searching for the interfering jobs.

Dealing with interfering jobs. Through lines 8-11, the algorithm forms
the interfering job set J I . If this set J I is empty (line 12), i.e., there are no
jobs interfering with J S , the partial-order reduction can be considered safe and
thus the algorithm returns J S as the final reduction set (line 13). If this set
is not empty (line 14-17), the algorithm tries to add one of the interfering jobs
Jx ∈ J I to the current J S (line 15). That job is the one chosen according to
the input criterion X.

Criteria to expand the reduction set. We use two greedy criteria (de-
noted by X) to select one job Jx ∈ J I from the interfering set and add it to
the reduction set J S . The first criterion, called priority order, selects the the
highest-priority job in J I . The second heuristic, called release order, selects
the job with the earliest rminx . After adding Jx to J S (line 16) the while-loop
repeats, either until the partial-order reduction is accepted (line 13) or rejected
(line 6).

Complexity of Algorithm 3. Recall that m = |J | is the number of jobs
in the whole job set. Determining the properties of J S (line 3) can be done in

O(m logm) (because of the sorting involved in computing ÊFT i(J S , vp) and

L̂FT i(J S , vp)). Despite the fact that m can be considerably large, in practice,
due to the release time of the jobs that is typically widely spread throughout the

45

Algorithm 3: Algorithm for constructing a reduction set

Input : System state vp, criterion X
Output: The reduction set JM (vp)

1 J S ← direct successors of vp (Definition 2);
2 while true do

3 Compute ÊFT i(J S , vp) and L̂FT i(J S , vp) ∀Ji ∈ J S using (6.1)
and (6.5);

4 Compute δM (vp) using (6.8) ;

5 if ∃Ji ∈ J S s.t. L̂FT i(J S , vp) > di then
6 return ∅;
7 end

8 J I ← ∅;
9 while ∃Jj ∈ J \ (J P ∪ J S) s.t. (J δ 6= ∅ ∧ rminj < δM (vp) or

∃Ji ∈ J S s.t. pj < pi ∧ rminj ≤ L̂ST i(J S , vp)) do
10 J I ← J I ∪ {Jj};
11 end

12 if J I = ∅ then
13 return J S ;

14 else
15 Jx ← a job in J I according to criterion X;

16 J S ← J S ∪ {Jx};
17 end

18 end

46

hyperperiod (or a long observation window), only limited jobs will be included

in J S and considered in the calculation of ÊFT i(J S , vp) and L̂FT i(J S , vp).
This can be confirmed by our experiments.

Determining δM (vp) (line 4) happens in O(m2), as an idle interval for a single
job can be determined in O(m). The complexity of the while-loop (lines 9-11)
is O(m2), as we can determine whether a single job interferes in O(m) (finding
lower-priority jobs in J S takes at most O(m) and the comparisons are O(1)).
The heuristics we use to select a Jx on line 15 have a complexity of O(m) because
we only want to find the highest-priority job or the job with the earliest release
and these two can be obtained by traversing over the interfering jobs sets once.

The algorithm performs the above operations until either J S is accepted or
rejected, so at most m times. Hence, the complexity of Algorithm 3 is O(m3).

In conclusion, a partial-order reduction of a final reduction set JM is safe,
i.e., maintains the exactness of the schedulability analysis and the safeness of
the response-time analysis, if JM is created according to Algorithm 3, namely,
(i) there exists no Jx such that Jx can interfere with JM , (ii) there exists no
Ji ∈ JM such that Ji misses its deadline, (iii) the EFT and LFT of JM are
computed using Algorithms 1 and 2 respectively, and (iv) the EFT and LFT
of Ji ∈ JM are computed using (6.1) and (6.5) respectively.

Lemma 16. A partial-order reduction of a reduction set JM as returned by
line 13 of Algorithm 3 maintains exact schedulability

Proof. There are no jobs that can interfere with the jobs in JM (Lemma 14).
Therefore, the earliest finish time and latest finish time of JM as computed
in Algorithms 1 and 2 respectively, are exact because they are exact under the
assumption that the processor schedules no Jj ∈ J \ JM (Corollary 1 and 2
respectively). Hence, the reduction of JM to a single scheduling decision will not
affect the analysis of the execution of jobs not contained in JM . Furthermore,
the reduction will not affect the schedulability analysis of the reduction set JM
itself, as no Ji ∈ JM can miss its deadline (Lemma 15). Thus, if the partial-
order reduction of JM is safe, it will maintain the exactness of the schedulability
analysis.

Lemma 17. A partial-order reduction of a reduction set JM as returned by
line 13 of Algorithm 3 maintains safe response-time bounds.

Proof. As the partial-order reduction of JM will not affect the analysis of the
execution of jobs not contained in JM (Lemma 16), the response-time bounds
of jobs not contained in JM will remain exact as in the original analysis by
Nasri et al. [18]. For the jobs contained in JM , the earliest and latest finish
times are lower and upper bounds respectively (Lemma 5 and 9 respectively).
Therefore, the response-time bounds of jobs in JM are also safe.

6.7 Algorithm for partial-order reduction

Algorithm 4 summarizes how to construct the schedule-abstraction graph using
partial-order reduction. It is based on the schedule-abstraction graph construc-
tion algorithm of Nasri et al. [21], with the addition of partial-order reduction
at lines 4-13.

47

First, the reduction set is created at line 4 using Algorithm 3. If the reduction
set is not empty (line 5), the partial-order reduction was accepted, in which case
a vertex vk is created with the EFT and LFT of JM (line 6). At line 7, path
P is extended by connecting the new vertex vk to the previous vertex vp. Next,
the algorithm performs the merge phase at lines 8-12, which works just like the
merge phase (Section 5.1.2) for single jobs.

If the result from Algorithm 3 is ∅, it means that the partial-order reduction
for the direct successors of vp was rejected due to a potential deadline miss. In
this case, the direct successors of vp are scheduled individually as per the original
schedule-abstraction graph algorithm to obtain exact response-time bounds for
these jobs. This allows us exactly conclude whether there was a deadline miss.

Note that the original SAG algorithm by Nasri et al. [18,20,21] builds the
graph in a breadth-first manner, as explained in Section 5.1. Therefore, they
only need to check whether the states that are on the front of the graph could
possibly be merged with a newly created state. As such, only states on the
front of the graph are kept in memory. However, Algorithm 4 does not build
the graph in an exclusively breadth-first manner since multiple jobs can be
added to a single edge (by means of a reduction set). Due to these depth-first
elements, not all jobs on the front of the graph will have the same number of
jobs. Discarding all states outside of the front potentially removes states that
could later be merged with, causing redundant paths to be explored, and thus
increasing the potential for state-space explosion. Hence, we store states in a
priority queue sorted by the number of scheduled jobs, so that the state with
the minimum number of jobs is always the first to be expanded (line 3). This
guarantees the other states in the queue have at least as many scheduled jobs,
meaning that any potential state to merge with can be found.

48

Algorithm 4: Algorithm for constructing the schedule-abstraction
graph using partial-order reduction

Input : Job set J
Output: Schedule graph G = (V,E)

1 Initialize G by adding a root vertex v1 with interval [0, 0];

2 while ∃ path P from v1 to a leaf vp s.t. |J P | < |J | do
3 P ← the path with the smallest set J P from v1 to a leaf vertex vp;

4 Create JM using Algorithm 3;

5 if JM 6= ∅ then
6 Create vk with label [EFT (JM , vp), LFT (JM , vp)] according to

Algorithms 1 and 2;

7 Connect vp to vk by an edge with label JM ;
8 while ∃ path Q that ends with vq such that vk and vq can be

merged (Definition 3) do
9 Merge vk and vq by updating vk using (5.8);

10 Redirect all incoming edges of vq to vk;
11 Remove vq from V ;

12 end

13 end
14 else
15 for each direct successor job Jj of vp (Definition 2) do
16 Create vk with label [Amin1 (vk), Amax1 (vk)] based on (5.6) and

(5.7);
17 Connect vp to vk by an edge with label Jj ;
18 while ∃ path Q that ends with vq such that vk and vq can be

merged (Definition 3) do
19 Merge vk and vq by updating vk using (5.8);
20 Redirect all incoming edges of vq to vk;
21 Remove vq from V ;

22 end

23 end

24 end

25 end

49

50

Chapter 7

Empirical evaluation

We conducted experiments to answer the following questions: (i) Does par-
tial-order reduction provide a speedup and state-space reduction over the ori-
ginal schedule-abstraction graph implementation? (ii) Does the order of adding
interfering jobs to the reduction set affect the performance of partial-order re-
duction? (iii) How is the worst-case response time affected by the partial-order
reduction? (iv) How do release jitter and execution-time variation affect the
speedup?

Baselines. To answer these questions, we applied two variations of Al-
gorithm 4 to task sets with scheduling policy NP-FP (with rate-monotonic pri-
orities). The first variation chooses Jx in Algorithm 3 to be the highest-priority
job in J I (referred to as partial-order reduction with priority order), while the
second variation chooses Jx to be the job in J I with the earliest rmin (referred to
as partial-order reduction with release order). The original schedule-abstraction
graph algorithm from Nasri et al. [18] was used as a baseline (referred to as
‘original’).

Experiments. We have performed two wide sets of experiments, one us-
ing benchmark task sets that follow the specifications of automotive industry
(Section 7.1) and one using synthetic task sets that are more representative
of commercial systems (Section 7.2) to remove any bias the period distribu-
tion may have on the performance of POR. The benchmark task sets have
semi-harmonic periods, which is beneficial for original algorithm since jobs are
released simultaneously which limits the job combinations the analysis needs to
explore. Therefore, we expect to see that POR provides a limited performance
gain for benchmark task sets. In contrast, synthetic task sets have random peri-
ods, meaning that jobs are released randomly which causes more branching in
the original analysis. As such, we expect that POR can provide a significant
performance gain on synthetic tasks by combining all these branches.

Figure clarification. Line plots show averages and error bars. The error
bars show the 95% confidence intervals of the averages. The gray background
behind a data point indicates that this data point has fewer than 10 samples
and as such has a lower confidence. Box plots have whiskers at the 2nd and 98th

percentiles, and outliers are not shown.
Host. The experiments were performed on a Dutch national cluster called

SURFsara Cartesius cluster, with nodes equipped with two Intel Xeon E5-2690
v3 processors clocked at 2.6 GHz and 64 GB RAM. The analysis was implemen-

51

ted as a single-threaded C++ program.
Metrics. We use the following metrics to evaluate the performance of partial-

order reduction.

• State-reduction ratio: It is defined as 1 − NA/NO, where NA is the
number of states explored by analysis A for a job set J and NO is the
number of states explored by the original schedule-abstraction-based ana-
lysis for the same job set. Namely, the closer the state reduction ratio is
to 1, the more states the analysis is able to remove from the state-space
in comparison to the states explored by the original analysis.

• POR success ratio: It is the number of successful attempts for partial-
order reductions (Section 6.7) divided by the total number of attempted
reductions. The closer it is to 1, the more reductions were successful (i.e.,
they satisfy the conditions of Definitions 6 and 7).

• Speedup: The speedup of an analysis A on a job set J is defined as
the CPU time required by the original analysis to analyze J divided by
the CPU time required by analysis A for J . Therefore, a speedup > 1
indicates that the analysis was faster than the original analysis.

• Relative WCRT: It is the WCRT of a task τi reported by analysis
A divided by the WCRT of τi reported by the original analysis. The
BCRT and WCRT of τi is determined by taking the minimum BCRT and
maximum WCRT amongst all jobs of τi in the hyperperiod. A relative
response time > 1 indicates an over-approximated response time reported
by analysis A, while a relative response time < 1 indicates an under-
approximation. In Section 7.1.5 we will discuss the relative WCRT for
different priority classes in a system.

7.1 Experiment on benchmark task sets

7.1.1 Task set generation

In this experiment, task sets were generated according to the description of
automotive benchmark applications by Kramer et al. [16]. They describe period
distribution and execution time statistics that are realistic for runnables in auto-
motive applications, where runnables with the same period are grouped into
tasks. A runnable is generated by drawing the period from {1, 2, 5, 10, 20, 50,
100, 200, 1000} with probabilities {0.04, 0.02, 0.02, 0.29, 0.29, 0.04, 0.24, 0.01,
0.05} and computing the WCET using the statistics for the respective period
as also mentioned in [16].

Using these statistics, we randomly generate a task set with target utilization
U by generating runnables until the sum of the utilizations of all runnables was
equal to U and grouping these runnables into tasks. Runnables were grouped
into tasks in a manner similar to [18]. The procedure for grouping runnables into
tasks works as follows. We draw a packing threshold ai uniformly at random
from [0, 2(T1 −

∑
∀rj ,Tj=T1

Cmaxj)], where r denotes a runnable. Runnables
with the same period are aggregated into a task τi until Cmaxi reaches the
threshold ai. The process of randomly choosing an ai and aggregating runnables
into a task is repeated until all runnables are assigned to tasks. A maximum

52

packing threshold of 2(T1 −
∑
∀rj ,Tj=T1

Cmaxj) is chosen because a necessary
schedulability condition for non-preemptive tasks is that ∀i, 2 ≤ i ≤ n : Cmaxi ≤
2(T1 − Cmax1), where T1 is the shortest period and n is the number of tasks.

A task set was deemed unschedulable as soon as an execution scenario con-
taining a deadline miss was encountered, or when the timeout of four hours
was reached. We generated 200 task sets for each configuration of release jitter,
execution-time variation, and utilization U ∈ {0.1, . . . , 0.9}.

Design of experiment

This section describes the parameters that were used for the experiments (values
for execution time variation and release jitter). We also explain what type of
analysis was used (i.e., response-time analysis or schedulability analysis), and
how task sets that the analyses timed out on are handled in the results sections.

Experiment 1 (EXP1) The purpose of this experiment is to evaluate the
state-reduction ratio, speedup, and WCRT of the analyses. The results will be
discussed in Sections 7.1.2, 7.1.3, 7.1.4, and 7.1.5.

Task set parameters. We varied the utilization for four different configur-
ations of release jitter and execution-time variation. For two configurations, the
execution-time variation was set to Cmini = (1− β) · Cmaxi for β ∈ {0, 1}, with
the release jitter fixed to 100µs. For the remaining two configurations, the re-
lease jitter was drawn randomly with a uniform distribution from [0, α·(Ti−Ci)]
(i.e., the jitter is fraction of the slack of each task) for α ∈ {0, 0.1}, with Cmini

fixed to 0.8 · Cmaxi .

Type of analysis. We continued the analysis until either the end of the hy-
perperiod or the timeout was reached, even after finding a scenario containing a
deadline miss. This allowed us to make a fair comparison between schedulable
and unschedulable task sets. Otherwise, we would have an incomplete view on
unschedulable task sets, since they would have lower CPU times and smaller
state-spaces as the utilization increases because the analysis would be prema-
turely terminated.

Handling timeouts. We removed timed out task sets from the results be-
cause they could not be used to fairly compare response-times and state-spaces
between the analyses as they would have progressed at different rates through
the job set. Removing these task sets from the speedup results allowed us to
directly compare the speedup results with the state-space results, as otherwise,
the SAG’s runtime would be undefined and hence it would not be possible to
derive the speedup for task sets that could not be analyzed within the time
limits.

Experiment 2 (EXP2) The purpose of this experiment is to evaluate the
effect of release jitter and execution time variation on the speedup provided by
POR. The results will be discussed in Section 7.1.6.

Task set parameters. For the experiments in Section 7.1.6, we varied the
parameters that determine the release jitter and execution-time variation of the
tasks. For the scenarios where the release jitter was varied, the release jitter was
drawn uniformly at random from [0, α · (Ti −Ci)] (i.e., the jitter is a fraction of
the slack) where α ∈ {0, 0.05, . . . , 0.5}, and Cmini was fixed to 0.8·Cmaxi . For the

53

scenarios where the execution-time variation was varied, Cmini = (1−β) ·Cmaxi

where β ∈ {0, 0.1, 0.2, . . . , 1}, and the release jitter was fixed to 100µs.

Type of analysis. We performed a schedulability analysis, i.e., we stopped
the analysis as soon as a deadline miss was encountered. The reason for this
will be explained in Section 7.1.6.

Handling timeouts. Timed out task sets were not removed as we only
consider the speedup in this experiment, for which the timed out task sets are
also relevant to include in the comparison.

7.1.2 The effect of the order in which interfering jobs are
added to the reduction set (EXP1)

In this section, we determine whether the order in which interfering jobs are
added to the reduction set JM have any effect on the performance of partial-
order reduction, in terms of speedup, state-space size, and WCRT.

Observation 1. There is no significant difference between adding jobs in order
of highest priority and adding them in order of earliest release in terms of
speedup, relative WCRT, and state-reduction ratio.

Figures 7.11, 7.2, 7.3, and 7.4 show speedup results for the four different
configurations of execution-time variation and release jitter described in Sec-
tion 7.1.1. The average speedup based on all tasks, schedulable tasks, and
unschedulable tasks (shown in d, e, and f respectively) is very similar if not the
same for both POR with priority order and POR with release order in most
cases. The averages have a more apparent difference in a handful of cases. Fig-
ures 7.3d, e, and f show that release order has a slightly larger average speedup
for task sets with no jitter. Figure 7.4f shows that release order has a larger
average speedup for unschedulable task sets with α = 0.1 and U = 0.2 and
U = 0.3, while priority order has a larger speedup for U = 0.9. The 2nd and
98th percentiles are a bit more varied between the two, with sometimes priority
order and other times release order having a larger value. Table 7.1 contains an
overview of the statistics of the speedup, which confirms the similarity of both
solutions. So there is no clear winner between priority order and release order
when considering the speedup.

Table 7.2 shows the statistics of the relative WCRT for all task sets by ana-
lysis, i.e., for partial-order reduction with priority order and partial-order re-
duction with release order. The average WCRT and 98th percentile only differ
slightly (0.00007 and 0.003613 respectively) between the two analyses, while the
other values are the same. This shows that the order in which interfering jobs
are added to the reduction set barely impacts the response times.

Figures 7.5, 7.6, 7.7, and 7.8 show state-space results for the four different
configurations of execution-time variation and release jitter described in Sec-
tion 7.1.1. These state-space results are the number of states (a, b, c), state-
reduction ratio (d, e, f), and POR success ratio (g, h, i) based on all tasks,
schedulable tasks, and unschedulable tasks. The averages and percentiles for
state-reduction ratio and POR success ratio are very similar for both variations
of POR analyses. Table 7.3 shows more state-reduction ratio statistics, including

1The gray background indicates that a data point has fewer than 10 samples and as such
has a lower confidence.

54

(a) (b) (c)

(d) (e) (f)

Figure 7.1: Speedup results for benchmark tasks sets with no execution

time variation (i.e., β = 0). (a, b, c) show the impact of utilization on

schedulability, CPU time, and exploration front width. (d, e, f) show the

impact of utilization on speedup for all, schedulable, and unschedulable

tasks.

Min 2% Median Average 98% Max
Analysis Schedulability

POR (priority order)
all 0.362 0.611 0.966 2.085 9.250 451.598

schedulable 0.362 0.723 1.510 4.220 22.485 451.598
unschedulable 0.372 0.598 0.880 0.935 1.619 5.630

POR (release order)
all 0.385 0.611 0.968 2.090 9.153 447.058

schedulable 0.385 0.744 1.533 4.234 23.046 447.058
unschedulable 0.420 0.598 0.882 0.935 1.630 5.413

Table 7.1: Speedup statistics for benchmark task sets for both partial-order

reduction variants

minimum and maximum values and percentiles. Again, the differences between
priority and release order are minimal.

In conclusion, it appears that between priority and release orders, the order in
which interfering jobs are added to the reduction set JM does not significantly
affect the performance of partial-order reduction, as neither clearly outperforms
the other. We have a number of hypotheses for the negligible difference between
priority and release order: (i) the highest priority job and earliest released job
are often the same job, i.e., both variations of the analysis add jobs in the same
order, (ii) multiple interfering jobs need to be added to a reduction set regardless
of the order in which they are added (e.g., because multiple jobs are released
before some lower priority job in the reduction set), and (iii) some PORs only
succeed for priority order while others only succeed for release order, but the
number of PORs for which this holds evens out.

55

(a) (b) (c)

(d) (e) (f)

Figure 7.2: Speedup results for benchmark tasks sets with BCET= 0 (i.e.,

β = 1). (a, b, c) show the impact of utilization on schedulability, CPU

time, and exploration front width. (d, e, f) show the impact of utilization

on speedup for all, schedulable, and unschedulable tasks.

Min 2% Median Average 98% Max
Analysis

POR (priority order) 1.000 1.000 1.000 1.020 1.195 8.377
POR (release order) 1.000 1.000 1.000 1.020 1.199 8.377

Table 7.2: Response time statistics for both partial-order reduction variants

7.1.3 The impact of utilization on state-reduction ratio
(EXP1)

In this section, we look at the effect of utilization on the number of success-
ful partial-order reductions and on how this reduces the state space that is
explored by the analysis. Our hypothesis is that the state-space explored by
the analyses with partial-order reduction is smaller than that of the original
algorithm. Moreover, we expect that as the utilization increases, there are more
deadline misses thus fewer successful partial-order reductions, meaning that the
size of the state-space becomes closer to that of the original analysis.

As Section 7.1.2 showed, the difference between POR with priority order and
POR with release order is negligible. Hence, we only focus on the results of the
POR with priority order (to keep the figures more readable).

Figures 7.5, 7.6, 7.7, and 7.8, show different values representing the state-
space and partial-order reductions as a function of the total utilization for the
four different configurations of execution-time variation and release jitter (β = 0,
β = 1, α = 0, and α = 0.1 respectively) described in Section 7.1.1. The depicted
results are the number of states (a, b, c), state-reduction ratio (d, e, f), and POR
success ratio (g, h, i) based on all tasks, schedulable tasks, and unschedulable
tasks.

56

(a) (b) (c)

(d) (e) (f)

Figure 7.3: Speedup results for benchmark tasks sets with no jitter (i.e.,

α = 0). (a, b, c) show the impact of utilization on schedulability, CPU

time, and exploration front width. (d, e, f) show the impact of utilization

on speedup for all, schedulable, and unschedulable tasks.

Min 2% Median Average 98% Max
Analysis Schedulability

POR (priority order)
all −0.002 0.000 0.219 0.284 0.859 0.991

schedulable 0.000 0.000 0.540 0.446 0.916 0.991
unschedulable −0.002 0.007 0.192 0.197 0.465 0.812

POR (release order)
all −0.002 0.000 0.217 0.283 0.859 0.991

schedulable 0.000 0.000 0.540 0.446 0.916 0.991
unschedulable −0.002 0.007 0.190 0.195 0.461 0.812

Table 7.3: State-reduction ratio statistics for benchmark task sets for both
partial-order reduction variants

As shown in Figures 7.5a, 7.6a, 7.7a, and 7.8a, the analyses with partial-
order reduction have on average a smaller state-space than the original analysis
in their schedule-abstraction graph when applied on benchmark task sets. This
is shown more clearly by the state reduction ratio in Figures 7.5d, 7.6d, 7.7d, and
7.8d. We computed the average state-reduction ratio across all utilization, jitter,
and execution time variation values. On average, both partial-order reduction
analyses have a state-space that is 28% smaller than that of the original analysis
for benchmark task sets. This confirms our hypothesis that the state-space
explored by the analyses with partial-order reduction is smaller than that of the
original algorithm. Also note that for the original analysis, the average number
of states for β = 1 and α = 0.1 are larger than for β = 0 and α = 0 respectively,
i.e., uncertainty in the execution time and release jitter increase the state-space
explored by the original algorithm.

The POR success ratio decreases as the utilization increases, as can be ob-
served in Figures 7.5g, 7.6g, 7.7g, and 7.8g. As the utilization increases, more
task sets become unschedulable and unschedulable task sets have on average

57

(a) (b) (c)

(d) (e) (f)

Figure 7.4: Speedup results for benchmark tasks sets with 10% jitter (i.e.,

α = 0.1). (a, b, c) show the impact of utilization on schedulability, CPU

time, and exploration front width. (d, e, f) show the impact of utilization

on speedup for all, schedulable, and unschedulable tasks.

a lower POR success ratio than schedulable task sets, namely 0.42 and 0.95
respectively. However, the POR success ratio also decreases as the utilization
increases for schedulable task sets. As the utilization increases, either the reduc-
tion sets or the execution times become larger, which causes more uncertainty
for the partial-order reduction with regard to deadline misses. And since the
partial-order reduction algorithm is pessimistic, there will be more failed re-
ductions instead. This confirms our next hypothesis that the success of POR
decreases as the utilization increases.

Figures 7.5a, 7.6a, and 7.8a show that for tasks with jitter, the size of the
state-space explored by POR gets closer to that of the original analysis as the
utilization increases. This is more apparent in Figures 7.5d, 7.6d, and 7.8d,
which show that as the utilization increases, the state reduction ratio decreases.
The decrease in state-reduction ratio can be explained by the decreasing number
of cases that POR can successfully form a reduction set. This can be seen in
Figures 7.5g, 7.6g, and 7.8g.

In contrast, for tasks without jitter, the difference between the state-space
explored by POR and the original analysis increases with the utilization (Fig-
ure 7.7a). The increasing difference is caused by the state-reduction ratio be-
coming larger as utilization increases (Figure 7.7d). However, we can see in
Figure 7.7g that the POR success ratio decreases with the utilization, while
the increasing state-reduction ratio would suggest otherwise. This is unlike the
tasks with jitter where these trends were the same. Our hypothesis was that
the increasing state-reduction ratio could be explained by an increase in the
number of jobs in the reduction sets. However, task sets with jitter show the
same trend and even have larger reduction sets on average, so this is also not

58

Based on all task sets

(a)

Based on schedulable task sets

(b)

Based on unschedulable task sets

(c)

(d) (e) (f)

(g) (h) (i)

Figure 7.5: State-space results for benchmark tasks sets with no execution

time variation (i.e., β = 0). (a, b, c) show the impact of utilization on the

size of the state-space for all, schedulable, and unschedulable tasks. (d, e, f)

show the impact of utilization on state-reduction ratio for all, schedulable,

and unschedulable tasks. (g, h, i) show the impact of utilization on the

POR success ratio for all, schedulable, and unschedulable tasks.

an explanation.

Observation 2. The average number of states in both the original and POR
analyses is larger for unschedulable task sets than for schedulable task sets.

A task set is unschedulable if at least one job misses its deadline. When a
job misses its deadline, some workload of this job is carried over beyond its
deadline. This can create an area of variable blocking time (by tardy jobs) for
the not-yet-processed jobs. The variable blocking time caused by the carry-in
jobs is analogous with release jitter for the jobs that are affected by the carry-in
workload. Consequently, the number of branches in the graph increases due to
the increase in the number of jobs that can be scheduled next. This might be
the cause of a general increase in the number of states for unschedulable task
sets compared to schedulable task sets.

Consider the job set in Figure 7.9. If J1 always finishes before its deadline,
the execution order of J2 and J0 is deterministic as J1 finishes before the release

59

Based on all task sets

(a)

Based on schedulable task sets

(b)

Based on unschedulable task sets

(c)

(d) (e) (f)

(g) (h) (i)

Figure 7.6: State-space results for benchmark tasks sets with BCET= 0 (i.e.,

β = 1). (a, b, c) show the impact of utilization on the size of the state-space

for all, schedulable, and unschedulable tasks. (d, e, f) show the impact of

utilization on state-reduction ratio for all, schedulable, and unschedulable

tasks. (g, h, i) show the impact of utilization on the POR success ratio for

all, schedulable, and unschedulable tasks.

of J2, so J2 will always is dispatched before J0. However, if J1 is able to miss
its deadline as in the right schedule, it creates a different scenario where J0
executes before J2. If J1 can either finish before or after its deadline, there are
two execution scenarios instead of one.

Looking at the average number of states per graph, we can see that for task
sets with jitter the difference between the original analysis and POR is larger for
schedulable task sets (Figures 7.5b, 7.6b, 7.8b) than for unschedulable task sets
(Figures 7.5c, 7.6c, 7.8c). This becomes even more apparent when looking at
the difference in state-reduction ratio between schedulable (Figures 7.5e, 7.6e,
7.8e) and unschedulable (7.5f, 7.6f, 7.8f) task sets.

More specifically, the average state-reduction ratio is 65% for schedulable
task sets and 18% for unschedulable task sets. We computed the average state-
reduction ratio by taking the average state-reduction ratio across all utilizations
and all tasks with jitter > 0 (i.e., for β = 0, β = 1, and α = 0.1) separated by
schedulability. This difference in state-reduction ratio might be attributed to

60

Based on all task sets

(a)

Based on schedulable task sets

(b)

Based on unschedulable task sets

(c)

(d) (e) (f)

(g) (h) (i)

Figure 7.7: State-space results for benchmark tasks sets with no jitter (i.e.,

α = 0). (a, b, c) show the impact of utilization on the size of the state-space

for all, schedulable, and unschedulable tasks. (d, e, f) show the impact of

utilization on state-reduction ratio for all, schedulable, and unschedulable

tasks. (g, h, i) show the impact of utilization on the POR success ratio for

all, schedulable, and unschedulable tasks.

the difference in POR success ratio, which is much higher for schedulable task
sets (Figures 7.5h, 7.6h, 7.8h) than for unschedulable ones (Figures 7.5i, 7.6i,
7.8i), namely 0.93 and 0.39 respectively.

Contrarily, task sets without jitter (Figure 7.7) have a larger state-reduction
ratio for unschedulable task sets (25%) than for schedulable ones (7%). How-
ever, the POR success ratio is larger for schedulable task sets, so this does not
explain the difference in state-reduction ratio for tasks without jitter. Our next
hypothesis was that the difference might be caused by the reduction set size,
with the unschedulable task sets having larger reduction sets, but this also was
not the case.

Observation 3. Unschedulable task sets have a lower POR success ratio, i.e.,
a lower ratio of PORs that satisfy the conditions of Definitions 6 and 7, than
schedulable task sets.

On average, schedulable task sets have a POR success ratio of 0.95, whereas

61

Based on all task sets

(a)

Based on schedulable task sets

(b)

Based on unschedulable task sets

(c)

(d) (e) (f)

(g) (h) (i)

Figure 7.8: State-space results for benchmark tasks sets with 10% jitter

(i.e., α = 0.1). (a, b, c) show the impact of utilization on the size of the

state-space for all, schedulable, and unschedulable tasks. (d, e, f) show

the impact of utilization on state-reduction ratio for all, schedulable, and

unschedulable tasks. (g, h, i) show the impact of utilization on the POR

success ratio for all, schedulable, and unschedulable tasks.

unschedulable task sets have a POR success ratio of 0.42. As previously ex-
plained, when a job misses its deadline the workload that is carried over beyond
its deadline may cause a blocking time for the next jobs that are not yet in-
cluded in the graph. As this results in more branches, the set of jobs considered
for partial-order reduction (i.e., the reduction set) also becomes larger, which
in turn may result in a potential deadline miss being detected. Hence, the POR
phase fails to form the reduction sets. Moreover, a deadline miss can also chain
to other deadline misses, since a job missing its deadline can push other jobs to
miss their deadline as well. Because the partial-order reduction is pessimistic,
the reduction fails if there is at least one such potential deadline miss. Hence,
if a task set is unschedulable it will reject partial-order reduction more often.

62

Figure 7.9: J = {J0, J1, J2} with priority assignment p0 < p1 < p2. The execu-

tion time range for J0 is [1, 2], for J1 it is [2, 7], and for J2 it is [3, 4].

7.1.4 The impact of utilization on speedup (EXP1)

In this section, we look at the effect of utilization on the performance of partial-
order reduction in terms of speedup. Our hypothesis is that as the utilization
increases, there are more deadline misses thus fewer successful partial-order
reductions and therefore a smaller speedup.

As Section 7.1.2 showed that the difference between POR with priority order
and POR with release order is negligible. Hence, we only focus on the results
of the POR with priority order.

Figures 7.1 7.2, 7.3, and 7.4 show speedup results for the four different config-
urations of execution-time variation and release jitter described in Section 7.1.1.
Depicted are the schedulability ratio (a), CPU time or runtime (b), and explor-
ation front width (c) based on all tasks, and the speedup based on all tasks,
schedulable tasks, and unschedulable tasks (d, e, and f respectively).

Observe that the schedulability ratio is the same for all analyses, as the POR
algorithm (Algorithm 4) preserves the schedulability exactness of the original
analysis (Lemma 16).

Figures 7.1b, 7.2b, 7.3b, and 7.4b show that the average CPU time increases
as the utilization increases. This can be explained by the increase in exploration
front width (Figures 7.1c, 7.2c, 7.3c, 7.4c) and state-space (Figures 7.5a, 7.6a,
7.7a, 7.8a).

The average speedup over all utilization, jitter, and execution time variation
values (i.e., the average speedup of Figures 7.1d, 7.2d, 7.3d, and 7.4d combined)
is equal to 2.1, so on average the POR algorithm is faster than the original
algorithm.

Observe in Figures 7.1d, 7.2d, and 7.4d that the average speedup for POR
is larger than 1 for utilizations between 0.1 and 0.5, i.e., POR is on average
faster than the original analysis. The speedup becomes very close to 1 and even
slightly smaller than 1 from 0.6 utilization onward. On average, the speedup for
task sets with jitter is 2.43. An explanation for this decreasing speedup might
be the average state-space for partial-order reduction approaching that of the
original analysis, which in turn is a result of the decreasing POR success ratio
as explained previously in Section 7.1.3.

For tasks without jitter (Figure 7.3d) we see the opposite, namely that the
speedup is smaller than 1 between 0.1 and 0.3 utilization, while it is larger than 1
from 0.4 utilization onward. This might be attributed to the fact that the state-
reduction ratio increases as utilization increases for task sets without jitter, in
contrast to the task sets with jitter where the state-reduction ratio decreases
instead (Section 7.1.3). On average, the speedup for task sets without jitter

63

is 1.06. The reason for the speedup being so small for low utilizations might
be the following. If there is no jitter, the sequence of tasks is deterministic for
low utilizations. Even though there is execution time variation, this only causes
branching for high utilizations. In Figure 7.3c we can see that for U ≤ 0.4, the
maximum width of the graph is ranges from 1 to 2 for the original algorithm,
meaning that the graphs for low utilizations often only have one or two branches.
Partial-order reduction only has a benefit when there are a lot of branches to be
potentially reduced, so in cases where the graph only has one or two branches, all
the partial-order reduction algorithm does is adding overhead. Hence, partial-
order reduction is slower than the original algorithm in these cases.

Observe that for task sets with jitter, the speedup of schedulable task sets
(Figures 7.1e, 7.2e, 7.4e) is larger than for unschedulable task sets (Figures 7.1f,
7.2f, 7.4f). For schedulable task sets the average speedup across all utiliza-
tions is 5.98, while for unschedulable task sets it is 0.88. An explanation for
this is the difference between the state-reduction ratio for schedulable and un-
schedulable task sets, which is on average larger for schedulable task sets than
for unschedulable ones, as shown in Section 7.1.3.

Again, the task sets without jitter depict a different scenario for schedulable
and unschedulable task sets (Figures 7.3e and 7.3f). Here, the average speedup
for unschedulable task sets (1.16) is larger than for schedulable task sets (0.94).
Like for the task sets with jitter, we can attribute this to the difference between
the state-reduction ratio for schedulable and unschedulable task sets, which
in this case is larger for unschedulable task sets. Note that the POR success
ratio for unschedulable task sets (Figure 7.7i) is higher than in the other jitter
and execution time variation configurations (Figures 7.5i, 7.6i, and 7.8i). Recall
from Observations 2 and 3 that a deadline miss can introduce additional “jitter”
that can hinder the success of partial-order reductions. Perhaps because these
task sets do not have release jitter, the “jitter” introduced by deadline misses
is by itself not enough to impede the performance of partial-order reduction.
Also note that the average number of states for schedulable (Figure 7.7b) and
unschedulable task sets (Figure 7.7c) is not too different, in contrast to the other
configurations.

7.1.5 The impact of partial-order reduction on WCRT
(EXP1)

In this section, we determine the effect of partial-order reduction on the accuracy
of response times, as well as how this effect changes for different parameters.
Our hypothesis is that partial-order reduction reports larger worst-case response
times than the original analysis and the more successful partial-order reductions
there are, the larger the error becomes. There should be no response times that
are smaller than reported by the original analysis.

As Section 7.1.2 showed that the difference between POR with priority order
and POR with release order is negligible, the numbers mentioned in the text
will only be that of POR with priority order.

Table 7.4 shows the statistics of the relative WCRT by execution time vari-
ation.We see that the average and max relative WCRT is slightly larger for the
largest execution time variation (β = 1), but the other values remain the same,
namely 1. So, execution time variation has no effect on the relative WCRT for
the 98th percentile of task sets.

64

Observation 4. Utilization has a larger effect on relative WCRT for tasks
with large jitter than for tasks with small or no jitter.

Table 7.5 shows the statistics of the relative WCRT by utilization for each
value of jitter for partial-order reduction using priority order. Observe that for
small jitters (i.e., no jitter and a jitter of 100µs), all values apart from the max
are very close to 1 for all utilizations. For the large jitter (0.1 · (Ti − Ci)) on
the other hand, the relative WCRT is larger and there is a trend where as the
utilization decreases, the relative WCRT increases. A visual representation of
the trend for large jitter is provided in Figure 7.10a using box plots, where the
whiskers of the box plots represent the 2nd and 98th percentiles.

The increasing relative WCRT as the utilization decreases can partially be
explained by the fact that the lower the utilization, the more successful reduc-
tions are performed. And the more successful reductions, the more relative
error in the WCRT the analysis introduces, because partial-order reductions
over-approximate the WCRT of jobs. However, this does not explain why we
only see this trend for larger jitters and not for very small ones.

Table 7.6 shows the statistics of the relative WCRT by priority family for
each value of jitter for partial-order reduction using priority order. A visual
representation of the relative WCRT statistics for large jitter is provided in
Figure 7.10b using box plots.

For each task set, tasks are divided into different priority families because we
cannot simply accumulate tasks by their priority level, as priorities are relative.
For example, a priority of 4 is low for a task set with 5 tasks, but high for a
task set with 25 tasks. In order of descending priority, the first 25% of tasks are
assigned to the high category, the next 25% to medium-high, the following 25%
to medium-low, and the final 25% to low.

We can see that for the small jitters, only high priority tasks have a slight
error of about 5% at the 98th percentile. Also, only high priority tasks have a
larger average error than the other priorities. The errors for lower priority tasks
are very small. Even the max values are 1 for medium-low and low priority
tasks when there is no jitter, and for all except high priority tasks for a jitter
of 100µs. Looking at the large jitter however, the averages, 98th percentiles and
maximum values are again larger, and we see a trend where the error is largest
for high priority tasks and becomes lower as the priority decreases.

One aspect explaining the larger errors for the high priority tasks for all

jitters is that with the over-approximated latest start time L̂ST i(JM , vp) we
may consider scenarios that cannot actually happen to a job. The period for high
priority tasks is so small that by doing this we over-approximate the response
time by almost its entire period. Another explanation is that far more partial-
order reductions are performed for high priority tasks in comparison to lower
priority tasks, as shown in Figure 7.11. As the lower priority jobs are relatively
rarely involved in successful reductions, their response-times are of course also
less affected.
Observation 5. Despite its overapproximation of the WCRT, the POR ana-
lysis still reports the same schedulability as the original analysis for all task
sets.

A partial-order reduction is only accepted when there certainly is no deadline
miss, and in all other cases it is rejected so that the analysis can find the exact
response-time bounds.

65

Min 2% Median Average 98% Max
Execution time variation

0 1.000 1.000 1.000 1.000 1.000 1.264
1 1.000 1.000 1.000 1.001 1.000 1.528

Table 7.4: Response time statistics for benchmark task sets by execution
time variation for partial-order reduction with priority order

Min 2% Median Average 98% Max
Jitter Utilization

0

0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.073
0.5 1.000 1.000 1.000 1.003 1.000 1.523
0.6 1.000 1.000 1.000 1.006 1.069 1.899
0.7 1.000 1.000 1.000 1.003 1.000 1.880
0.8 1.000 1.000 1.000 1.001 1.000 2.073
0.9 1.000 1.000 1.000 1.000 1.000 1.261

100µs

0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.002 1.024 1.209
0.3 1.000 1.000 1.000 1.003 1.067 1.261
0.4 1.000 1.000 1.000 1.003 1.016 1.528
0.5 1.000 1.000 1.000 1.001 1.000 1.276
0.6 1.000 1.000 1.000 1.000 1.000 1.173
0.7 1.000 1.000 1.000 1.000 1.000 1.348
0.8 1.000 1.000 1.000 1.000 1.000 1.153
0.9 1.000 1.000 1.000 1.000 1.000 1.038

0.1 · (Ti − Ci)

0.1 1.000 1.000 1.191 1.674 5.284 8.377
0.2 1.000 1.000 1.135 1.414 3.952 5.759
0.3 1.000 1.000 1.000 1.118 2.285 3.644
0.4 1.000 1.000 1.000 1.041 1.546 2.237
0.5 1.000 1.000 1.000 1.006 1.110 2.111
0.6 1.000 1.000 1.000 1.004 1.045 1.878
0.7 1.000 1.000 1.000 1.001 1.001 1.451
0.8 1.000 1.000 1.000 1.000 1.000 1.076
0.9 1.000 1.000 1.000 1.000 1.000 1.053

Table 7.5: Response time statistics for benchmark task sets by utilization
for partial-order reduction with priority order

7.1.6 The effect of release jitter and execution time vari-
ation on the speedup (EXP2)

In this section, we look at the effect of release jitter and execution variation
on the speedup of partial-order reduction over the original analysis. Our hypo-
thesis is that for large jitters, there are fewer successful partial-order reductions
resulting in a smaller speedup, and that for large execution time variations the
speedup keeps increasing. For both jitter and execution time variation we saw
in Sections 7.1.3 and 7.1.4 that as jitter and execution time variation increased,
the state-reduction ratio and speedup both increased. But for jitter we expect
to reach a tipping point where the jitter becomes too large and starts to impede
the partial-order reduction.

In contrast to the previous experiments, we performed a schedulability ana-
lysis, i.e., we stopped the analysis as soon as a deadline miss was encountered.
As we found in Section 7.1.4 that the largest average speedup came from the
schedulable task sets and not the unschedulable ones, we decided to focus on
the speedup of the schedulable task sets. Therefore, it is fine to stop analyzing
the unschedulable task sets as soon as a deadline miss is encountered. Also,
task sets that timed out were not removed from the results as time outs are still

66

(a) WCRT by utilization (b) WCRT by priority family

Figure 7.10: Boxplots of WCRT for benchmark tasks sets with 10% jitter
(i.e., α = 0.1)

Min 2% Median Average 98% Max
Jitter Priority

0

High 1.000 1.000 1.000 1.006 1.073 2.073
Medium-high 1.000 1.000 1.000 1.000 1.000 1.548
Medium-low 1.000 1.000 1.000 1.000 1.000 1.000

Low 1.000 1.000 1.000 1.000 1.000 1.000

100µs

High 1.000 1.000 1.000 1.003 1.044 1.528
Medium-high 1.000 1.000 1.000 1.000 1.000 1.000
Medium-low 1.000 1.000 1.000 1.000 1.000 1.000

Low 1.000 1.000 1.000 1.000 1.000 1.000

0.1 · (Ti − Ci)

High 1.000 1.000 1.000 1.127 2.733 8.313
Medium-high 1.000 1.000 1.000 1.106 2.740 8.377
Medium-low 1.000 1.000 1.000 1.045 1.528 5.268

Low 1.000 1.000 1.000 1.014 1.231 2.209

Table 7.6: Response time statistics for benchmark task sets by priority for
partial-order reduction with priority order

relevant when looking at speedup only.

Figure 7.12a shows the average speedup as a function of execution time vari-
ation for schedulable task sets. Observe that the average speedup increases as
the execution time variation increases. As expected following the results from
Section 7.1.4, the speedup for unschedulable task sets is < 1 (Figure 7.12b).

Figure 7.12c shows the average speedup as a function of release jitter for
schedulable task sets. The speedup peaks at α = 0.05 for both POR with
priority order and release order. After this peak the speedup decreases but
remains > 1 until α = 0.50. An explanation for the decreasing speedup as the
jitter increases is that a larger jitter might cover the release of more jobs. In
turn, more jobs might interfere with each other, creating more opportunities
for a POR to be rejected. Again, Figure 7.12d shows that the speedup for
unschedulable task sets is < 1 except for task sets without jitter, as explained
in Section 7.1.4.

7.2 Experiment on synthetic task sets

7.2.1 Task set generation

In this experiment, task sets were generated according to the technique by
Emberson et al. [12] for generating synthetic task sets. They describe period
distribution and execution time statistics that are representative of commercial

67

(a) Jitter = 0 (b) Jitter = 100µs (c) Jitter = 0.1 · (Ti − Ci)

Figure 7.11: Plots of the number of successful partial-order reductions for
benchmark task sets by priority family and by jitter

systems. We generate a task set with n tasks by randomly drawing n period
values from a log-uniform distribution in the range [10, 100] ms with a granu-
larity of 5ms. Next, we generate n task-utilization values that sum to target
utilization U using the RandFixedSum algorithm [23]. The periods and task-
utilization values are combined to obtain Cmaxi for each task.

Design of experiment

This section describes the parameters that were used for the experiments on
synthetic task sets. The type of analysis used and the way that timed out task
sets are handled is common for both experiments.

Type of analysis. For both experiments, we continued the analysis until
either the end of the hyperperiod or the timeout of four hours was reached, even
after finding a scenario containing a deadline miss.

Experiment 3 (EXP3) The purpose of this experiment is to evaluate the
impact of the number of tasks on the state-reduction ratio, speedup, and WCRT
of the POR analysis. The results of this experiment will be discussed in Sec-
tion 7.2.2.

Task set parameters. The number of tasks n per task set was chosen from
{5, 10, 15, 20, 25, 30, 35}. For each n we generated 200 task sets. We set Cmini

to 0, the jitter to 100µs, and the utilization to 0.3.
Jobs per hyperperiod. Task sets with more than 50.000 jobs per hyper-

period were discarded to limit the runtimes.
Handling timeouts. Task sets that reached the timeout of four hours were

included in all results except for the relative WCRT to demonstrate the scalabil-
ity improvement provided by POR. Timed out task sets were removed from the
relative WCRT results because it is unknown whether the analysis has explored
the scenario that leads to the WCRT of a job. If not, the analysis will report
an underestimation on the WCRT which we cannot use for comparison.

Experiment 4 (EXP4) The purpose of this experiment is to evaluate the
scalability of the POR analysis. We only evaluate the scalability of POR with
priority order. The original algorithm is not included as we will go beyond

68

(a) (b)

(c) (d)

Figure 7.12: Experimental results for benchmark task sets for speedup by
execution time variation and release jitter. (a) and (b) show the speedup
by execution time variation for schedulable and unschedulable task sets
respectively. (c) and (d) show the speedup by release jitter for schedulable
and unschedulable task sets respectively.

the number of jobs per hyperperiod that the original algorithm can explore
within four hours. As Section 7.1.2 showed that the difference between POR
with priority order and POR with release order is negligible, we decided to
not include POR with release order in this experiment. The results of this
experiment will be discussed in Section 7.2.3.

Task set parameters. The number of tasks n per task set was chosen from
{10, 20, 30, 40, 50, 60, 70}. For each n we generated 200 task sets. We set Cmini

to 0, the jitter to 100µs, and the utilization to 0.3.

Jobs per hyperperiod. Task sets with more than 6.000.000 jobs per hy-
perperiod were discarded.

Handling timeouts. Task sets that reached the timeout of four hours were
included in all results as we don’t make any comparison between analyses.

7.2.2 The impact of the number of tasks on the perform-
ance of POR (EXP3)

In this section, we look at the impact of the number of tasks per task set on the
performance of the POR analyses in terms of speedup, state-reduction ratio,
and relative WCRT.

Figure 7.13 shows different values as a function of the number of tasks per
task set. The depicted results are the schedulability ratio (a), number of states
(b), CPU time (c), the ratio of timed out task sets (d), state-reduction ratio
(e), speedup (f), POR success ratio (g), and relative WCRT (h).

69

Observation 6. POR has a higher schedulability ratio than the original al-
gorithm for n ≥ 15.

The POR analyses have a schedulability ratio close to 1 for all n, while the
schedulability ratio quickly drops to 0 for the original analysis as n increases
(Figure 7.13a). Observe that this decrease in schedulability corresponds to the
ratio of timeouts (Figure 7.13d) that the original analysis suffers. The task sets
are deemed unschedulable by the original analysis because the analysis timed
out after four hours, while the POR analyses were able to explore the entire
state-space and conclude the task sets were schedulable within the time limit.
This shows that the POR allows for more complex task sets to be analyzed
before the timeout is reached.

Figure 7.13e shows that the state-reduction ratio increases as n increases.
While the number of states explored by POR remains rather constant for all
values of n (with the exception of a peak at n = 20 caused by an outlier),
the size of the state-space explored by the original analysis keeps growing as n
increases (as can be seen in Figure 7.13b). As a result, the state-reduction ratio
for POR keeps increasing and approaches 1. The average state-reduction ratio
is 98.53%.

Observation 7. The average speedup increases as n increases until n = 25,
after which the speedup decreases slightly.

We can observe in Figure 7.13c that the runtime of the original analysis
increases as n increases, while the runtime of POR is significantly lower and
increases more slowly and even decreases from n = 20 to n = 25. This together
with the increasing state-reduction ratio results in an increasing speedup. The
slight speedup decrease for n ≥ 30 is caused by the runtime for POR increasing
while the runtime for the original analysis remains constant (namely four hours).
The average speedup is 1.12 · 105.

Observation 8. The speedup for log-uniform task sets is orders of magnitude
larger than the speedup for automotive task sets.

The average speedup for automotive tasks is about 2.08, whereas it is 1.12 ·
105 for log-uniform tasks. Note that most of the log-uniform task sets were
schedulable, and that the average for automotive also includes all utilizations
and execution time variations. If we apply the same restrictions to the automot-
ive tasks we get an average speedup of about 25.95, which is still three orders
of magnitude smaller than the speedup for log-uniform tasks.

The difference is between the automotive and log-uniform task sets is their
period distribution. Automotive task sets have semi harmonic periods, whereas
log-uniform task sets have random periods. This randomness causes the hyper-
periods for log-uniform task sets to quickly become very large (e.g. 50.000+),
while they stay relatively small for automotive task sets (e.g. up to 5000). Also,
automotive task sets have a smaller state-space to explore due to the semi har-
monic periods. Because the tasks are (periodic and) synchronous, a lot of jobs
arrive at time 0 where they will all interfere with each other in case there is re-
lease jitter. So, at the start there will be a number of branches for the different
decisions that can be made. However, after passing the area of release jitter, the
job order becomes deterministic (i.e., the SAG becomes a line) until the next
set of jobs arrives. At that point, the same thing happens because of the semi
harmonic nature of the periods. In contrast, log-uniform tasks will not have the

70

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.13: Results for synthetic task sets. (a, b, c) show the impact of
the number of tasks on schedulability, state-space size, and CPU time. (d,
e, f) show the impact of the number of tasks on timeouts, state-reduction
ratio, and speedup. (g, h) show the impact of the number of tasks on the
POR success ratio and relative WCRT.

same behavior after the initial release at time 0. As the periods are random,
at any point in time there may be a job release that can cause more branching.
As a result, the state-space for log-uniform tasks can easily grow beyond that
of automotive tasks. Since the state-space of automotive task sets is already
rather small, the potential performance gain of POR is also relatively small and
hence the speedup is lower. Conversely, the state-space for log-uniform tasks
can become huge which also increases the potential for POR to achieve a large
performance gain.

Figure 7.13h shows the relative WCRT for task sets for which none of the
analyses timed out. Observe that the relative WCRT is very close to 1 for all
values of n, with an average of 1.001.

7.2.3 The scalability of partial-order reduction (EXP4)

In this section, we evaluate the scalability of the POR analysis in terms of
the number of tasks per task set and number of jobs per hyperperiod that the
analysis is able to analyze before timing out on all job sets.

71

(a) (b)

(c) (d)

Figure 7.14: Results for the scalability experiment for synthetic task sets.
(a, b) show the impact of the number of tasks on CPU time and state-space
size. (c, d) show the impact of the number jobs per hyperperiod on CPU
time and state-space size.

Figures 7.14a and 7.14b show the average runtime and number of states in
the state-space plotted by the number of tasks per task set. To reduce the effect
of outliers on the averages, we only included task sets with runtimes in the
90th percentile. As a result, we can see the trend for the number of tasks more
clearly. Observe in Figure 7.14a that the average runtime increases linearly with
the number of tasks, with a slight decrease for n ≥ 60. The same trend holds
for the number of states in Figure 7.14b. This decrease for n ≥ 60 might be an
artifact of the distribution of the number of jobs per hyperperiod.

Figures 7.14c and 7.14d show a scatter plot of the runtime and number of
states in the state-space by the number of jobs per hyperperiod. In these figures
we included all task sets as we are not plotting averages. Observe that both
runtime and number of states appear to have a linear relation with the number
of jobs per hyperperiod. Even though there are some timeouts between 1.5 ·106

and 6 · 106 jobs, the vast majority of task sets are analyzed within four hours.
This shows that the POR analysis is able to scale to 70 tasks per task set and
6 · 106 per hyperperiod with the potential to scale even further.

72

Chapter 8

Conclusions and future
work

8.1 Summary of contributions

We have improved the scalability of the schedule-abstraction-based analysis by
introducing partial-order reduction (POR) rules that allow combining multiple
scheduling decisions on one edge and hence avoiding combinatorial exploration
of all possible orderings between jobs in cases where there are large uncertainties
without jeopardizing the soundness of the analysis and without making it more
pessimistic.

The key idea of our POR technique is to identify subsets of jobs for which
the combinatorial exploration of all orderings is irrelevant to the schedulability
of the job set. Exploring these combinations is irrelevant when none of these
scenarios lead to a deadline miss. Our POR rules allow the dispatch of such jobs
to be considered in a single step (that combines all those scheduling decisions),
which further defers the state-space explosion.

Our solution is an exact schedulability analysis and a safe response-time ana-
lysis that reduces the size of the graph while only introducing a small overes-
timation on the WCRT as shown by our experiments.

8.2 Conclusions

Coming back to the research questions RQ1 to RQ3 defined in Section 1.2, in
this dissertation we showed that

RQ1 The execution order of a set of jobs (called the candidate reduction set)
does not contribute to a violation of timing constraints if Lemma 15 holds
for that set of jobs (see Section 6.5).

RQ2 Our POR maintains the exactness of the schedulability analysis (Lemma 16)
and provides safe response-time bounds (Lemma 17) by constructing re-
duction sets (see Definition 7) using Algorithm 3. We also provide solu-
tions to compute tight lower and upper bounds on the finish time of the
reduction set (Corollary 1 and 2) without having to explore each job exe-
cution ordering.

73

RQ3 The POR rules (derived in Chapter 6) can be applied during the ex-
pansion phase of the original schedule-abstraction analysis as shown in
Algorithm 4.

On average, our solution was able to reduce the runtime in half for benchmark
task sets and by five orders of magnitude for synthetic task sets. Furthermore,
it reduced the number of explored states by 28% for benchmark tasks and over
98% for synthetic task sets. We found that the performance gain was the largest
for schedulable task sets, whereas for unschedulable task sets POR was often
slower than the original analysis while still providing some reduction in the
explored number of states.

To achieve this performance gain, we compromised the exactness of the response-
time bounds (though they remained safe). Yet, our experiments show this over-
estimation to be very small on average, namely 2% for benchmark tasks and
0.1% for synthetic tasks.

Lastly, on synthetic task sets, our solution was able to scale to 70 tasks
with 6 · 106 jobs per hyperperiod without even approaching the time limit of
four hours, whereas the original analysis already failed to complete at 25 tasks
with 5 · 104 jobs per hyperperiod. This shows that POR allows us to analyze
more complex task sets (with more jobs) than the original analysis and has the
potential to scale even further.

In conclusion, partial-order reduction has proven itself to be a successful and
promising technique for improving the scalability of schedule-abstraction-based
analyses.

8.3 Future work

When there is a potential deadline miss, our current POR solution simply gives
up on forming a reduction set. This happens more often when there is a large
uncertainty in the release time of the jobs or when there are tardy (missed)
workload from previous jobs in a system state. The need to explore all possible
scenarios in case of a potential deadline miss may result in an exponential in-
crease in states. That is why we currently decided to just drop a candidate set
if there is a risk of deadline miss. However, we still see some potential rooms
for improvement when forming a candidate set.

One such solution could be a two-step algorithm where instead of rejecting a
reduction set when a potential deadline miss is detected, the analysis allows the
reduction set to be applied on the graph anyway. This creates a single state rep-
resenting the processor availability after executing all jobs in the partial-order
reduction, which can then be used to continue the analysis for the remaining
jobs. Then, the set of jobs in the partial-order reduction set is analyzed separ-
ately (using the original SAG analysis) to get the actual response times of those
jobs and conclude whether there is an actual deadline miss or not. Note that
during the aforementioned analysis, no partial-order reduction will be tried as
we already concluded that merging the entire set is not possible, saving overhead
from more (failed) attempts at partial-order reduction. Once this set of jobs
has been analyzed, the resulting sub-graph is not expanded anymore, as the re-
duced state is already in the main schedule-abstraction graph. Essentially, this
creates a hierarchical schedule-abstraction graph where the states created from

74

partial-order reduction represent a sub-graph in case of a potential deadline
miss.

Continuing the analysis from the reduced state instead of expanding it in place
can have an exponential impact on the performance. Imagine a graph where
JM is the same for all states on the front, and the partial-order reduction of JM
will be rejected because of a potential deadline miss. In our current approach,
all possible orderings of jobs in JM will be explored for each state on the front.
Let’s say that the front consists of x states, and that exploring all possible
orderings of jobs in JM requires y states. Then, x · y states are added to the
graph. Now consider the two-step approach where the reduced state is added
to the graph and JM is analyzed separately. In this case, only x+ y states are
added to the graph.

An additional benefit of this new approach is that it allows for more efficient
parallelization of the analysis because the sub-graphs can be analyzed independ-
ently from the main graph. This is in contrast to the current approach which
does not lend itself for efficient parallel computing. Currently, states can be
generated in parallel but threads have to be merged again in case of a merge in
the graph, which creates a lot of overhead in creating and merging threads.

Another way to reduce the pessimism is by making the latest start time

L̂ST i(JM , vp) of a job Ji ∈ JM more precise. Currently, the computation of

L̂ST i(JM , vp) uses the worst-case scenario where Ji suffers from both maximum
blocking and maximum interference, which is a scenario that rarely happens.
Having a tighter upper bound on the latest start time of a Ji ∈ JM will result in
fewer false-positives for jobs interfering with JM , in turn increasing the number
of successful partial-order reductions.

The current POR only supports work-conserving scheduling policies, whereas
the original SAG by Nasri et al. [18] also supports non-work-conserving policies.
In the future, POR could be extended for non-work-conserving policies by ad-
apting the work-conserving interference condition (6.9) to incorporate various
idle-time insertion policies.

Furthermore, support for precedence constraints can be added by applying
the condition that a Jx can only interfere with JM if all predecessors of Jx are
finished before Jx can start. Finally, POR can be extended for multiprocessor
systems.

75

76

Bibliography

[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Optimal dynamic partial order reduction. SIGPLAN Not., 49(1):373–384,
January 2014.

[2] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and
Robert I. Davis. An empirical survey-based study into industry practice in
real-time systems. In 2020 IEEE Real-Time Systems Symposium (RTSS),
pages 3–11, 2020.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8:284–292, 1993.

[4] Theodore P. Baker. An analysis of fixed-priority schedulability on a multi-
processor. Real-Time Syst., 32(1–2):49–71, February 2006.

[5] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In [1990] Proceedings 11th Real-
Time Systems Symposium, pages 182–190, 1990.

[6] Giorgio C Buttazzo. Hard real-time computing systems: predictable schedul-
ing algorithms and applications, volume 24. Springer Science & Business
Media, 2011.

[7] Edmund M Clarke, Orna Grumberg, Marius Minea, and Doron Peled. State
space reduction using partial order techniques. International Journal on
Software Tools for Technology Transfer, 2(3):279–287, 1999.

[8] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network
(can) schedulability analysis : refuted, revisited and revised. Real-Time
Systems, 35(3):239–272, 2007.

[9] Friedrich Eisenbrand and Thomas Rothvoß. Edf-schedulability of synchron-
ous periodic task systems is conp-hard. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, page
1029–1034, USA, 2010. Society for Industrial and Applied Mathematics.

[10] Friedrich Eisenbrand and Thomas Rothvoß. Static-priority real-time
scheduling: Response time computation is np-hard. In 2008 Real-Time
Systems Symposium, pages 397–406, 2008.

77

[11] Pontus Ekberg. Rate-monotonic schedulability of implicit-deadline tasks is
np-hard beyond liu and layland’s bound. In 2020 IEEE Real-Time Systems
Symposium (RTSS), pages 308–318, 2020.

[12] Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the
synthesis of multiprocessor tasksets. In International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS
2010), pages 6–11, 2010.

[13] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction
for model checking software. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’05,
page 110–121, New York, NY, USA, 2005. Association for Computing Ma-
chinery.

[14] Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu. Ex-
act schedulability analysis for static-priority global multiprocessor schedul-
ing using model-checking. In Proceedings of the 5th IFIP WG 10.2 Inter-
national Conference on Software Technologies for Embedded and Ubiquit-
ous Systems, SEUS’07, page 263–272, Berlin, Heidelberg, 2007. Springer-
Verlag.

[15] K. Jeffay, D.F. Stanat, and C.U. Martel. On non-preemptive scheduling
of period and sporadic tasks. In [1991] Proceedings Twelfth Real-Time
Systems Symposium, pages 129–139, 1991.

[16] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive
benchmarks for free. In 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[17] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20(1):46–61, January
1973.

[18] Mitra Nasri and Bjorn B. Brandenburg. An exact and sustainable analysis
of non-preemptive scheduling. In 2017 IEEE Real-Time Systems Sym-
posium (RTSS), pages 12–23, 2017.

[19] Mitra Nasri, Morteza Mohaqeqi, and Gerhard Fohler. Quantifying the effect
of period ratios on schedulability of rate monotonic. In Proceedings of the
24th International Conference on Real-Time Networks and Systems, RTNS
’16, page 161–170, New York, NY, USA, 2016. Association for Computing
Machinery.

[20] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A response-
time analysis for non-preemptive job sets under global scheduling. In
Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time
Systems, ECRTS 2018, Leibniz International Proceedings in Informatics,
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, June 2018.

[21] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. Response-time
analysis of limited-preemptive parallel dag tasks under global scheduling. In
Sophie Quinton, editor, 31st Euromicro Conference on Real-Time Systems,

78

ECRTS 2019, Leibniz International Proceedings in Informatics, LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, July 2019.

[22] Suhail Nogd, Geoffrey Nelissen, Mitra Nasri, and Björn B. Brandenburg.
Response-time analysis for non-preemptive global scheduling with fifo spin
locks. In 2020 IEEE Real-Time Systems Symposium (RTSS), pages 115–
127, 2020.

[23] Roger Stafford. Random vectors with fixed sum.
https://nl.mathworks.com/matlabcentral/fileexchange/

9700-random-vectors-with-fixed-sum, 2006.

[24] Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact
schedulability test of sporadic tasks on multiprocessor Global Fixed-
Priority scheduling. Real-Time Systems, December 2015.

[25] Beyazit Yalcinkaya, Mitra Nasri, and Björn B. Brandenburg. An ex-
act schedulability test for non-preemptive self-suspending real-time tasks.
pages 1228–1233, May 2019.

79

https://nl.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://nl.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum

	Preface
	Introduction
	Related work and hardness results
	Problem definition and research questions
	Contributions
	Organization

	Prerequisites and terminology
	Task properties
	Task activation models
	Execution models
	Type of deadline
	Modeling periodic tasks

	Scheduling algorithms
	Categorization by the time the scheduler is activated
	Categorization by work-conservation
	Categorization by priority assignment
	Well-known scheduling policies

	Schedulability tests

	System model and assumptions
	Job and system model
	Scheduler model
	Creating job sets from periodic task sets

	Related work
	Exact schedulability analyses
	Fixed-point iteration-based analyses
	Reachability-based analysis

	Partial-order reduction
	Static partial-order reduction
	Dynamic partial-order reduction
	Applicability to schedulability analyses

	Motivation and problem definition
	Schedule-abstraction graph
	Expansion phase
	Merge phase

	Motivation and basic idea
	Problem definition
	Ensuring an exact schedulability analysis
	Creating the candidate reduction set

	Partial-order reduction
	Earliest finish time of a reduction set
	Latest finish time of a reduction set
	Earliest and latest finish times for each job in a reduction set
	Earliest finish time of Ji JM
	Latest start and finish time of Ji JM

	Interfering jobs
	Work-conserving interference condition
	Priority-driven interference condition

	Ensuring the absence of deadline misses
	Safe partial-order reduction
	Algorithm for reduction set creation

	Algorithm for partial-order reduction

	Empirical evaluation
	Experiment on benchmark task sets
	Task set generation
	The effect of the order in which interfering jobs are added to the reduction set (EXP1)
	The impact of utilization on state-reduction ratio (EXP1)
	The impact of utilization on speedup (EXP1)
	The impact of partial-order reduction on WCRT (EXP1)
	The effect of release jitter and execution time variation on the speedup (EXP2)

	Experiment on synthetic task sets
	Task set generation
	The impact of the number of tasks on the performance of POR (EXP3)
	The scalability of partial-order reduction (EXP4)

	Conclusions and future work
	Summary of contributions
	Conclusions
	Future work

