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A User-Centric Game for Balancing V2G Benefits
With Battery Degradation of Electric Vehicles

Arghya Mallick , Student Member, IEEE, Georgios Pantazis , Peyman Mohajerin Esfahani ,
and Sergio Grammatico, Senior Member, IEEE

Abstract— We present a novel user-centric vehicle-to-grid
(V2G) framework that enables electric vehicle (EV) users to
balance the tradeoff between financial benefits from V2G and
battery health degradation based on individual preference sig-
nals. Specifically, we introduce a game-theoretic model that
treats the conflicting objectives of maximizing revenue from
V2G participation and minimizing battery health degradation
as two self-interested players. Via an enhanced semi-empirical
battery health degradation model, we propose a finite-horizon
smart charging strategy based on a horizon-splitting approach.
Our method determines an appropriate allocation of time slots
to each player according to the user’s preferences, allowing
for a flexible, personalized tradeoff between V2G revenue and
battery longevity. We conduct a comparative study between
our approach and a multiobjective optimization formulation
by evaluating the robustness of the charging schedules under
parameter uncertainty and providing empirical estimates of
regret and sensitivity. We validate our approach using realistic
datasets through extensive tradeoff studies that explore the
impact of factors such as ambient temperature, charger type,
and battery capacity, offering key insights to guide EV users in
making informed decisions about V2G participation.

Index Terms— Electric vehicle (EV), game theory modeling,
smart charging, vehicle-to-grid (V2G).

I. INTRODUCTION

THE global energy sector is currently being transformed
by the rapid expansion of renewable energy sources and

the widespread adoption of electric vehicles (EVs), driving
research on the impact of those technologies on the elec-
tricity grid and the integration of energy storage systems to
address emerging challenges. The energy storage industry has
historically relied heavily on lithium-ion batteries (LIBs) [1];
however, due to factors such as material security and other
concerns [2], reducing the reliance on new battery purchases
has become essential. Along this direction, researchers have
proposed repurposing existing EV batteries for grid-support
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services [3], [4], [5]. This idea, known as vehicle-to-grid
(V2G), was first introduced in [6] and has been tested in
over 100 pilot projects worldwide since 2002 [7], [8]. Despite
these efforts, widespread adoption of V2G technology has
been slow, primarily due to regulatory challenges and societal
resistance [4]. The key to driving regulatory reform lies
in gaining the voluntary participation of EV users in V2G
programs. A crucial qualitative study in [9] identified the main
reasons for societal hesitation toward V2G, with two promi-
nent concerns being the uncertainty of financial benefits and
the potential for battery degradation (BD). To illustrate these
concerns, one EV user in [9] stated, “If discharging for V2G-
mode is done only a couple of times per year, then I would
find it acceptable to participate in V2G. But if you do V2G on
a daily basis (hundreds of times per year), I believe that the
battery pack will be damaged and then I would not partici-
pate.” Given these concerns, there is a pressing need for robust
research to evaluate the effects of V2G participation on battery
health and the associated financial benefits for EV owners.

Few studies [10], [11], [12], [13], [14] have rigorously
investigated the impact of V2G services on EV battery health.
Bishop et al. [10] demonstrated that BD is accelerated when
providing bulk energy and ancillary services through V2G.
However, their degradation model does not account for the
distinction between battery cell temperature and ambient tem-
perature, potentially leading to inaccurate results. Similarly,
the study in [11] assesses battery health degradation due to
V2G participation, concluding that the degradation is negli-
gible when compared to naturally occurring factors such as
driving and calendar aging. Nevertheless, neither the study
in [10] nor that in [11] offers a comprehensive analysis of the
tradeoffs between the financial benefits of V2G participation
and the associated financial losses due to BD. Furthermore,
these studies do not consider the effects of time-varying charg-
ing and discharging power (commonly referred to as smart
charging) on battery health during V2G sessions—a critical
omission given that a recent study [15] has demonstrated the
financial benefits of implementing smart charging for V2G
services. Thingvad et al. [12] presented an experimental study
involving real-world EVs engaged in V2G services over five
years. The authors propose an empirical method for measuring
battery capacity and demonstrate a total capacity fade of
17.8%, with one-third of this degradation attributable to cyclic
processes, including V2G usage and daily driving. Finally,
studies such as [13] and [14] have aimed to incorporate
user-centric considerations in developing smart-charging algo-
rithms under V2G services, taking BD into account. However,
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these works do not provide a framework that enables users to
individually balance their interests between maximizing V2G
participation and minimizing BD.

While the above studies provide insights into EV battery
health degradation from V2G participation, they fall short of
offering solid recommendations for EV owners regarding the
optimal timing and extent of participation in V2G to achieve
favorable outcomes. To address this gap, we propose a novel
framework that captures the tradeoffs between two conflicting
objectives: 1) the financial gains from V2G participation
and 2) the degradation of battery health. For the first time,
we model this tradeoff using game theory to simulate the
inherent competition between these objectives. In our game-
theoretic framework, each objective is assigned to a player,
and the players engage in a strategic game constrained by
factors such as EV charger ratings, required energy levels at
the end of V2G sessions, and battery dynamics. Building on
the game equilibrium solution, we delve deeper into practical
scenarios, examining the effects of varying ambient tempera-
tures, EV charger types, battery capacities, and other relevant
factors. Finally, we present key insights that hold significant
potential value for the stakeholders.

Our main contributions with respect to the related literature
are the following.

1) Novel Equilibrium Concept: We propose a
game-theoretic tradeoff between the two conflicting
objectives of V2G exploitation and BD (Section III)
where the two players involved determine the level of
participation via an a priori parameter while sharing
common constraints. The key difference in contrast
with the existing approaches [13], [14] is a user-defined
hyperparameter allowing users to balance their level
of V2G participation and BD, facilitating a more
user-friendly smart charging solution for widespread
EV adoption.

2) Complexity Versus Accuracy: For the BD modeling,
we provide a balance between complexity and accuracy
by deriving a smooth approximation of the empirical
battery health degradation model (Section II) proposed
in [16], thus making it suitable for integration into an
optimization framework. Unlike previous studies [12],
[13], [14], we calculate an offline solution for the battery
temperature dynamics, which is incorporated directly
into the semi-empirical degradation model, enhancing
its accuracy.

3) Sensitivity and Tradeoff Analysis: We compare the
proposed framework with a multiobjective optimiza-
tion approach and a state-of-the-art model predictive
control (MPC)-based method [14] using sensitivity and
regret metrics, and the empirical results indicate that
our method is significantly more robust when the
parameters of the objective function are subject to
perturbations. We perform a comprehensive tradeoff
analysis (Section IV) of our methodology to assess
the impact of factors such as ambient temperature,
EV charger ratings, V2G tariff structures, and battery
capacities. This analysis aims to alleviate uncertainties

for EV users, encouraging more active participation in
V2G programs.

Finally, Section V concludes the article by proposing direc-
tions for further research.

II. MODELING OF BATTERY HEALTH DEGRADATION

To accurately represent the health degradation of a Li-
ion battery, we leverage a capacity fading model from [16],
which explicitly relates the capacity fading of the Li-ion
battery with the so-called operating C-rate of the battery. The
operating C-rate of a battery is an important unit used for
measuring how fast a battery is charged or discharged with
respect to its capacity. The proposed model is based on the
distinction between two primary forms of capacity fading,
namely calendar aging and cyclic aging. Previous works have
employed physics-based models [17] and machine learning
models [18], [19] to predict BD. However, both approaches
have limitations, including high computational complexity
and reliance on extensive experimental datasets. To offer a
balance between model complexity and accuracy and thus
mitigate the challenges encountered in [17], [18], and [19], our
work follows a semi-empirical approach, integrating battery
temperature dynamics represented by differential equations
with empirical models on calendar and cyclic aging. This leads
to a model that is fit for fast and reliable real-time operation
with reasonable accuracy.

A. Calendar and Cyclic Aging

Calendar aging refers to capacity loss due to an irre-
versible process of gradual self-discharge. This capacity loss
is the result of lithium inventory loss during the solid-
state-interphase (SEI) formation at the graphite negative
electrode [16]. In other words, the growth of the SEI layer
consumes lithium, causing irreversible capacity loss. The
capacity loss in calendar aging increases with time (t) and
the temperature (Tb) of the battery. In this work, we leverage
an empirical model developed in [16] and [20] for capturing
calendar aging of Sanyo UR18650W Li-ion battery cells. Note
that our analysis and methodology are not restricted to this
particular battery model and can, in fact, be appropriately
adapted to handle other Li-ion models. According to this
model, the capacity loss due to calendar aging Qcal

loss,% is given
by

Qcal
loss,% = A exp

(
−

Ea

RTb

)
√

t (1)

where A is a preexponential factor, Ea is the activation energy,
which is 24.5 kJ/mol, and R is the ideal gas constant, which
is 8.314 J/mol/K. Note that the temperature Tb is implicitly
also a function of time.

To model cyclic aging, we follow the empirical model
proposed in [16]:

Qcyc
loss,% = B1(exp (B2|Irate|)Cratedncycle) (2a)

B1 = aT 2
b + bTb + c (2b)

B2 = dTb + e (2c)
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TABLE I
EXPERIMENTAL PARAMETERS OF THE EMPIRICAL MODEL [16]

where Crated is the capacity of the battery in Ah, Tb is the
battery temperature in K , ncycle is the number of cycles, Irate
is the operating C-rate of battery, and a, b, c, d , and e are
constants calculated from the experimental data and given in
Table I. Equation (2) is the degradation model of a single
battery cell. We need to scale down the battery pack level
charging/discharging power to a single-cell level. To alleviate
computational challenges, while retaining an accurate model,
we consider a smooth approximation of (2a)

Qcyc
loss,t = B1,t C2

ratedn̂

(
1 +

B̂2
2,t P2

bat,t

hs2

)
(3)

where n̂ = (nmax1t/T × 100), Pbat,t is the charg-
ing/discharging power of the battery (positive value implies
charging and negative value indicates discharging), nmax is
the maximum number of full cycles1 by time T , B̂2,t =

(B2,t/VbatCrated) with the coefficient (1/VbatCrated) being used
to convert Irate to Pbat,t , s = nseries × nparallel is the
scaling factor for bringing down Pbat,t to a single-cell level,
and nseries and nparallel are, respectively, the number of series
connected battery cells and parallel connected strings of cells
forming the battery in the EV. Vbat is the terminal voltage
of a single battery cell and h is an appropriate curve fitting
parameter for approximation of (2). Note that B1,t and B̂2,t

are time-varying due to Tb. The detailed derivation of (3) is
given in Appendix A.

Remark 1: We note that the degradation results of (1)
and (2) have recently been compared with experimental results
in [12] (see Figs. 10 and 11 in [12]) and found to be reasonably
accurate. Moreover, Thingvad et al. [12] conducted the com-
parison considering the typical usage of EVs under different
V2G services. Note that our recent work [21] provides a
more accurate data-driven BD model, which could easily be
integrated into our proposed framework due to its convexity
property with respect to charging/discharging power.
In the model above, a crucial factor is the accuracy of
the battery temperature Tb, which is not straightforward to
evaluate. To account for this, we combine our BD model with
a variant of the dynamic battery temperature model proposed
in [11].

1Assuming t f being the required time for a complete charging to discharg-
ing cycle, nmax is equal to ⌈T/t f ⌉), where ⌈·⌉ is the least integer function.

B. Dynamic Battery Temperature Model

The temperature of the battery (Tb) cell is influenced
by several factors, including ambient temperature, energy
consumed by the heating, ventilation, and air conditioning
(HVAC) system of the car, charging/discharging rate, and
efficiency of battery thermal management systems. Neubauer
and Wood [22] have utilized a car-level lumped capacitance
thermal network approach for modeling Tb considering the
above factors. Wang et al. [11] have used the model of [22] to
develop the following coupled differential equations for Tb:

Mc Ṫc = Kac(Ta − Tc) + Kbc(Tb − Tc) + qrad + qhvac (4a)

Mb Ṫb = Kab(Ta − Tb) + Kbc(Tc − Tb) + qbtms + Q (4b)

where Ta is the ambient temperature; Tc is the temperature of
the cabin of the EV; Kab and Kac are, respectively, the effective
heat-transfer coefficients between ambiance and battery, and
ambiance and cabin; Mc and Mb are the thermal mass of
the vehicle cabin and the battery, respectively; qrad is the
solar radiance falling directly on the car; qhvac is the heat
added to or, removed from the cabin by HVAC system of
the EV; qbtms is the heat added to or, removed from battery
pack by the battery thermal management system; and finally,
Q represents the heat generated from the battery during
charging/discharging process. In particular, Q is equal to
I 2 Rint, where I is the charging/discharging current and Rint
is an estimated internal resistance of the battery. To obtain
a solution of (4), we assume for simplicity the following: 1)
qrad is zero, which implies that the EV is in the shade of a
car parking lot or charging station; 2) qhvac is also zero as the
HVAC system is most of the time turned off during parking;
and 3) the goal of the battery thermal management system
is to regulate the battery temperature Tb, when the ambient
temperature Ta exceeds the 15 ◦C–30 ◦C range [23]. In case
Ta is between 15 ◦C and 30 ◦C, qbtms can be roughly assumed
to be equal to −0.9Q considering 90% heat removal efficiency
of battery thermal management system. We impose the above
assumptions as it is difficult to provide a good estimate of
qrad, qhvac, and qbtms without having access to a detailed
vehicle model and sensory data. Furthermore, these parameters
are inherently scenario-specific and may vary depending on
environmental conditions and vehicle-specific characteristics.
Ideally, an adaptive mechanism should be integrated into
the proposed framework to dynamically update it over time.
However, estimates of qhvac can be obtained by measuring
the energy consumption of the HVAC system. To access qrad
for a particular region, open-source websites such as NASA
Power [24] could be used. Once the values of qrad, qhvac, and
qbtms are retrieved, they can be incorporated in the solution
of (4).

In our proposed formulation, we use the battery temperature
Tb as a parameter. However, note that Tb is itself a function
of the battery’s current I , which plays the role of the decision
variable in the subsequent developments. Thus, for the heat Q
generated from the battery’s operation, we use its approxima-
tion Î 2 Rint, where Î := ρ((Pmax/Vbat)), with Pmax being the
maximum charging/discharging power and ρ is a user-defined
hyperparameter for denoting V2G participation level. The role
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Fig. 1. Evolution of battery temperature (Tb) with respect to ambient
temperature (Ta).

of the hyperparameter ρ is further elaborated in Section III-B.
By considering values of other parameters in (4) as given
in [22, Table I], we explicitly solve the dynamical equations
in (4), where the input is the profile of Ta . Thus, we plot Tb

in Fig. 1 for a 1-h duration and find the gradual difference it
creates with Ta . We use this precalculated profile of Tb in (2)
for better accuracy.

III. GAME-THEORETIC APPROACH TO BALANCE V2G
PARTICIPATION LEVEL WITH BD

A. Preliminaries on Game Theory

To model the tradeoff between the V2G exploitation and
BD, we consider a noncooperative game between N = 2 play-
ers, indexed by i ∈ I := {1, 2}. Each player i makes decisions
ui

∈ Rni in the feasibility set �i (u−i ) ⊆ Rni such that,
the objective function (or, utility function) θ i

: Rn
→ R is

minimized, where n =
∑N

i=1 ni , and u−i
:= col((u j ) j∈I\{i}).

Each player’s strategy depends on the other players’ strategies
u−i . Finally, let u := col(u1, u2) ∈ R2n be the collection of the
decision variables of both players, and �(u) :=

∏N
i=1 �i (u−i )

be the collective feasible set. We define game G as the two
coupled optimization problems as follows:

G : ∀ i ∈ I :

{
min

ui
θ i (ui , u−i )

s.t. ui
∈ �i (u−i ).

(5)

Let us focus on the solution concept of generalized Nash
equilibrium (GNE).

Definition 1 (Generalized Nash Equilibrium [25]):
A GNE of the game G in (5) is a tuple of strategies
u := col(u1, u2) ∈ � such that, for each player i ∈ I,
we have

θ i(ui , u−i)
≤ θ i(yi , u−i)

∀yi
∈ �i

(
u−i).

Therefore, at a GNE, no player can improve their objective
function value by unilaterally changing to any other feasible
solution, given the other player’s decision. We note that thanks
to the convexity of θ i (., u−i ) for all i ∈ I and the compactness
of the feasible set, the GNE problem in (5) admits at least one
solution [25].

To conclude the section, we recall the definition of a special
class of games that behaves similarly to a single optimization
problem.

Definition 2 (Exact Potential Games [26]): Consider G on
a nonempty, closed set � =

∏N
i=1 �i (u−i ), where �i (u−i ) :=

{ui
∈ Di : (ui , u−i ) ∈ �}, and Di a closed constraint set local

to agent i . G is an exact generalized potential game if there
exists a continuous function P(u) : Rn

→ R such that the
following holds:

P
(
x i , u−i)

− P
(
yi , u−i)

= θ i(x i , u−i)
− θ i(yi , u−i)

for all players i ∈ I, and all strategies x i , yi
∈ �i (u−i ). □

Definition 2 implies that each player’s seemingly selfish
behavior is aligned with an underlying common goal, repre-
sented by the potential function P .

B. Horizon-Splitting Method for V2G Smart Charging

Our model considers an EV parking lot or charging station,
also referred to as a system operator, which provides V2G
services to the parked EVs. Specifically, the system operator
delivers grid support services through the solution of an
optimization problem, ensuring the satisfaction of operational
constraints and charging options of the parked EVs. The
operator determines the terms of energy exchange with the
parked EVs by issuing a V2G price signal to each incoming
EV [27].

As opposed to previous methodologies, our work takes
the EV owners’ perspective and develops a framework that
allows them to individually choose their participation level in
V2G services. In our model, this personalized participation
level is controlled via a hyperparameter that illustrates the
subjective importance each EV owner assigns to their EV’s
possible BD because of charging/discharging during V2G.
Without loss of generality, we consider that each vehicle
is charging/discharging for T time intervals, each with a
duration of 1t = 15 min. We aim to devise a smart
charging/discharging strategy for each time interval t ∈ [T ],
where [T ] := {1, 2, . . . , T }. To model the inherent competition
between V2G services and BD, we consider a game between
a player that optimizes with respect to the V2G revenue and
a player that minimizes their BD cost.

Given this game-theoretic model, each vehicle user deter-
mines the value of a hyperparameter that illustrates how
much they value their battery health. Note that being overly
conservative with respect to their BD might be less beneficial,
especially when V2G yields significantly higher returns to the
EV user. This hyperparameter is then used to determine the
tradeoff between V2G and BD by assigning a subset of [T ] to
one player, and the rest intervals to the other player. Each of
the players optimizes their respective objectives during their
allocated intervals only.

Let us define T w
m as the set of possible subsets of [T ], where

w indicates the number of intervals chosen and m indicates
which particular subset of intervals is chosen from [T ].

We define the decision vector for player 1 (V2G) as u1
:=

col((Pbat,t )t∈T w
m

), where Pbat,t > 0 (< 0) signifies the charging
(discharging) of the EV’s battery; the decision vector for
player 2 (BD) is defined as u2

:= col((Pbat,t )t∈T̃ w
m
), where

T̃ w
m := [T ] \ T w

m . The way the horizon is split encapsulates
the relative importance that the EV user assigns between the
two objectives.
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We first introduce the operational constraints that need
to be satisfied at each time step t ∈ [T ]. The bounds on
charging/discharging power of the EV charger are as follows:

P ≤ Pbat,t ≤ P, ∀t ∈ T w
m or T̃ w

m . (6)

The constraints related to battery energy dynamics are given
by

E ≤ E0 + ηavg1t

 t∑
j=1

Pbat, j

 ≤ E, ∀ t ∈ T w
m or T̃ w

m (7)

where E0 is the initial energy level of the battery and ηavg is
the average charging/discharging efficiency. The final energy
level (Edes), as set by the user, should be met with ϵ tolerance
by time T as∣∣∣∣∣∣Edes −

E0 + ηavg1t

 T∑
j=1

Pbat, j

∣∣∣∣∣∣ ≤ ϵ. (8)

Note that constraints (7) and (8) couple the strategies of
players V2G and BD, while constraint (6) is local. For
compactness, we collect all the constraints in the set �i given
by

�1(u−1) :=
{
u1

∈ Rm1 | (7) and (8) hold, ∀t ∈ T w
m

}
�2(u−2) :=

{
u2

∈ Rm2 | (7) and (8) hold, ∀t ∈ T̃ w
m

}
and define the local feasibility sets U 1

:= {u1
:

(6) holds, ∀ t ∈ T w
m } and U 2

:= {u2
: (6) holds, ∀ t ∈ T̃ w

m}.
Player V2G then solves the optimization problem

min
u1∈U 1

θ1(u1, u2)
:=

∑
i∈[T ]

αi (Pbat,i1t)

s.t. u1 ∈ �1
(
u2) (9)

where αt (in C/kWhr) is the V2G price2 as provided by the
charging operator and 1t is the fixed time interval. Player BD
solves the optimization problem

min
u2∈U 2

θ2(u1, u2) := γ

∑
i∈[T ]

Qcyc
loss,i (Pbat,i )


s.t. u2 ∈ �2(u1) (10)

where γ is the weight associated with battery health degrada-
tion and Qcyc

loss,i is the capacity loss at the i th interval as given
in (3). Note that θ2 does not take into account the calendar
loss Qcal

loss from (1). This modeling choice stems from the fact
that Qcal

loss remains constant for given values of Tb and t . The
calendar loss is thus present, irrespective of the EV usage.
As such, we focus solely on the cyclic battery aging Qcyc

loss,
since, contrary to the calendar aging, Qcyc

loss directly depends
on the power rate Pbat,t , which constitutes a decision variable
in our methodology. We denote the game between players V2G
and BD by Ḡ .

Remark 2: Previous studies [28], [29] have demonstrated
that battery capacity fade is influenced by the average state of

2This dynamic price inherently encodes different ancillary services offered
to the grid, which include demand response, peak shaving, and congestion
management.

Fig. 2. Assuming T = 4 and w = 3, the allocation of time intervals to both
players is shown. Player V2G gets 3 intervals of relatively higher V2G price
(αt ), and the remaining interval goes to player BD.

charge (or equivalently, state of energy, E) and the depth of
discharge (DoD). However, the effects of the average state of
charge and DoD on BD are highly dependent on individual EV
usage patterns. In particular, we note that: 1) parameters such
as the initial energy level (E0) and desired energy level (Edes)
are user-defined and inherently stochastic and 2) variations in
driving behavior significantly influence how average state of
charge and DoD affect battery health. As a result, our V2G
framework has limited control over these factors. Therefore,
we do not explicitly incorporate average state of charge or
DoD into our BD model.
In our game-theoretic formulation, the hyperparameters w

and m provide two degrees of freedom when choosing a
solution. By varying w keeping m fixed, we essentially prefer
one objective over another, and by varying m keeping w

fixed, we change the quality of the solution. We can choose
m in T Cw combinatorial ways. Thus, our horizon-splitting
model provides a more flexible setting when it comes to
choosing an appropriate smart charging strategy compared
to other approaches. We propose the following price-based
interval assignment strategy for choosing one of the
m combinations.

1) Once w is chosen by the EV user, sort the T intervals
based on the value of αt in descending order.

2) Assign the first w intervals to player V2G and the rest
(T − w) intervals to player BD, keeping the order of
sorting intact.

A schematic is given in Fig. 2 to better illustrate the strategy.
The main idea behind devising the above strategy is to allocate
the intervals with a higher price (αt ) to player V2G so that it
can exploit the higher price value to its advantage. However,
note that if (T − w) is small, then the impact of choosing an
optimal m becomes minimal.

Thanks to the convexity and compactness of the problem
data, there always exists a GNE solution for our model.
Furthermore, we show next that our game Ḡ in (9) and (10)
is an exact potential game.

Proposition 1 (Potential Game Characterization): The
GNE problem Ḡ in (9) and (10) is an exact generalized
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potential game with potential function

P(u) :=

∑
j∈T w

m

(α j Pbat, j1t) + γ
∑
j∈T̃ w

m

Qcyc
loss, j (Pbat, j ). (11)

Proof: See Appendix B.
Based on Proposition 1, the following optimization problem

provides a Nash equilibrium solution to the game Ḡ in (9)
and (10)

GP : min
u∈U×�

P(u) (12)

where u := col((Pbat,t )t∈[T ]), � := {u :

(7) and (8) hold, ∀t ∈ [T ]}, and U := {u : (6) holds, ∀t ∈

[T ]}. Given that the problem in (12) is a convex optimization
problem, we can retrieve a globally optimal solution, which
corresponds to a GNE of Ḡ . In what follows, we propose a
different formulation of the decision problem at hand based
on multiobjective optimization.

Remark 3: In general, the choice of the hyperparameter w

is based on the subjective importance users assign to the BD.
However, as a rule of thumb, one could select the w∗ that
corresponds to the minimum of the sum of BD and charging
cost. Consider u∗

w as the solution of (12) parameterized in w.
Therefore, w∗

:= arg minw∈[T ] [θ1(u∗
w) + θ2(u∗

w)] could well
be used as a reference guide for the user.

C. Robustness of V2G Charging: Game Theory Versus
Multiobjective Optimization

We model a tradeoff between the two conflicting objectives
of V2G profit maximization and BD minimization using a
multiobjective optimization approach. In this case, a user-
defined weight is assigned to each objective, reflecting its
relative importance to the user. We frame our problem in terms
of a multiobjective optimization problem as follows:

min
u∈U×�

J (u) :=
[
ρθ1(u1, u2)

+ (1 − ρ)θ2(u1, u2)] (13)

where u, �, and U are defined as in the formulation of
GP in (12). ρ ∈ [0, 1] is the weight chosen by the user to
indicate which objective among V2G revenue and BD health
is more favorable. We want to investigate the outcome of
the game-theoretic approach (Section III-B) and the multiob-
jective optimization approach. To this end, we evaluate both
methodologies based on the same case study. Note that, for the
capacity loss model of the EV battery in (3), the parameters
B1,t and B2,t change after several cycles of operation. Thus,
a sensitivity study of both solution approaches with respect to
B1,t and B2,t is of utmost importance. To study the robustness
properties of both approaches, we first solve (12) and (13) and
retrieve their solutions xgt and xmo, respectively, that is,

ugt(w, ζ ) = arg min
u∈U×�

P̃(u, ζ ) (14a)

umo(ρ, ζ ) = arg min
u∈U×�

J̃ (u, ζ ) (14b)

where P̃(·) and J̃ (·) are the perturbed versions of P(·) and
J (·), respectively; ρ ∈ [0, 1], w ∈ [T ], and ζ ∈ [a, a] is an

uncertain perturbation parameter. Given {ugt, umo}, we define
the sensitivity functions as follows:

Sgt(w, ζ ) :=

∥∥ugt(w, ζ0) − ugt(w, ζ )
∥∥

∥ζ − ζ0∥
(15a)

Smo(ρ, ζ ) :=
∥umo(ρ, ζ0) − umo(ρ, ζ )∥

∥ζ − ζ0∥
(15b)

where ζ0 is the nominal value of the uncertain parameter, ∥·∥

is the Euclidian norm, and ζ follows an uniform distribution
constructed on [a, a]. Such a sensitivity analysis is important
because the tradeoff insights derived from our study should
remain meaningful to a certain extent, irrespective of the
changes in battery condition. When we solve (12) or (13)
considering ζ0, we do not know the true realization of ζ

in advance. This motivates us to investigate the impact of a
different realization of ζ other than ζ0. We define the notion
of empirical regret in the following sense:

Rgt(w, ζ ) :=
P̃(ugt(w, ζ0), ζ ) − P̃(ugt(w, ζ ), ζ )

P̃(ugt(w, ζ ), ζ )
(16a)

Rmo(ρ, ζ ) :=
J̃ (umo(ρ, ζ0), ζ ) − J̃ (umo(ρ, ζ ), ζ )

J̃ (umo(ρ, ζ ), ζ )
(16b)

where the term P̃(ugt(w, ζ ), ζ ) (resp. J̃ (umo(ρ, ζ ), ζ )) signi-
fies the objective function value corresponding to the solution
when the decision maker knows the true realization of ζ in
advance, and P̃(ugt(w, ζ0), ζ ) (resp. J̃ (umo(ρ, ζ0), ζ ) is the
value of the objective function based on the solution where the
decision maker considered ζ0. In other words, the empirical
regret indicates the relative loss of the objective function value
if changes in BD parameters are not considered in the formu-
lation. Thus, the solution approach with a smaller sensitivity
or regret value is considered more reliable, especially when
the horizon is long.

IV. NUMERICAL SIMULATIONS

A. Simulation Setup

Since both optimization problems in (12) and (13) are
convex, we used the Python-based package Pyomo [30] to
formulate the problem and solved them using the MOSEK [31]
solver. We consider the V2G tariff profile αt of [27] (see
Fig. 7 in [27]), thus leveraging a dynamic pricing strategy
for EVs to provide demand response-based ancillary services
to the local distribution grid. Furthermore, we assume the EV
user takes part in the V2G program between 8 A.M. and 8
P.M. The discretizing interval (1t) is 15 min. Considering
T = 48 intervals (i.e., 12 h), MOSEK solver takes < 50 ms to
solve (12). The processor used is Apple M1 Pro with a 10-core
CPU. Such a low computation time is due to the convexity of
the optimization problems, which allows our proposed method
to be implemented in real-time in an embedded platform with
reasonable computational power. The upper (E) and lower (E)
bounds of available energy in the battery are 1 and 0.2 (in p.u.),
respectively. Similarly, maximum (P) charging/discharging
power is 22 kW. The user tolerance ϵ is 0.02 (in p.u.). The
desired energy level of the battery (Edes) is 0.9 (in p.u.). The
capacity of a single-cell battery Crated is 1.5 Ah. Different
parameters for 50 kWh battery pack are nseries, nparallel, and
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Fig. 3. (a) Box plots on the sensitivity of the solution profiles for
the game-theoretic and multiobjective approaches. (b) Box plot for regret
evaluation of both approaches.

nmax with the values of 83, 94, and 5.28, respectively. The
terminal voltage (Vbat) of the battery pack is 350 V.

Given various standardized charging technologies available
in the market, we are particularly focused on bi-directional
EV chargers with variable charging/discharging rates, as a
recent study [15] demonstrates the financial benefits of it
compared to charging with a fixed C-rate. For this purpose,
we choose a Level-2 three-phase on-board charger of power
rating 22 kW, which Eaton and other major manufacturers
currently manufacture [32]. The market analysis in [33] shows
that most passenger EVs have battery capacity in the range
of 50–100 kWh. To account for the vast majority of users,
we conduct the studies based on the battery capacity of
50 kWhr in this section. Detailed results on how different
capacity values affect the obtained results can be found in
Section IV-C. For our simulation studies, we consider that a
new battery costs 207 C/kWh (battery pack cost of Chevrolet
Bolt in [34]). After a 30% loss in capacity, it can be further
used as a second-life battery in other storage applications.
Hence, we consider the resale value of it as 45 C/kWhr [35].
The effective cost of our EV battery stands at ((207 −

0.7 × 45)/0.3) = 585 C/kWhr, which is the value of γ

in (10). In the following, we construct several case studies to
investigate the tradeoff between BD and the V2G exploitability
of EVs.

B. Comparative Study of Sensitivity and Regret

We use the notions defined in Section III-C to compare the
empirical robustness of the game-theoretic and the multiob-
jective approaches by evaluating (15) and (16). In Fig. 3(a),
the box plot of Sgt and Smo is illustrated, for varying values
of the hyperparameters w (or, ρ), respectively,3 and different
realizations of the uncertain parameter ζ . The parameter ζ is
assumed to take values in the support set [0.9ζ0, 1.1ζ0]

n , with
ζ0 being the nominal value. The V2G session is set for 12 h
(T = 48 intervals).

Fig. 3(a) shows that the game-theoretic solution is signifi-
cantly more robust compared to the multiobjective one. As a
result, the tradeoff insights derived from the game-theoretic
solutions remain meaningful irrespective of the realizations
of ζ in the support set compared to the multiobjective one.
Finally, Fig. 3(b) depicts a comparison of the regret of
the cumulative cost functions of both approaches as defined
in (16). We observe that, under perturbations in ζ , the loss
in the objective function value of the game-theoretic approach
is significantly smaller compared to the multiobjective one.
Having such low regret explains why our proposed method
may not require further robustification against uncertainty,
as opposed to a multiobjective approach. Thus, our approach
avoids overly conservative decision-making without sacrificing
safety against small perturbations.

C. V2G Exploitability and BD Tradeoff

The tradeoff is influenced by various factors, including
average ambient temperature, EV battery capacity, charging
duration, and the V2G tariff rate for energy transactions.
However, we concentrate on three key factors that significantly
affect both players.

1) Impact of Ambient Temperature: As discussed in
Section II, battery temperature (Tb) plays a critical role in
battery health degradation. EVs are operated globally across
diverse climate zones, each with distinct average ambient
temperatures (Ta) that vary by season. To account for this,
we consider average Ta values of 10 ◦C, 20 ◦C, and 40 ◦C to
represent EV usage in cold,4 mild, and hot regions, respec-
tively. The influence of Ta is illustrated in Figs. 4 and 5.
Note that in Fig. 4, the markers represent different user-defined
tradeoffs on the charging cost and BD cost, controlled by the
hyperparameter w. Specifically, the markers on the left-hand
side of the plot correspond to the costs when the user has
chosen a high value of w, that is, they are more interested in
minimizing the V2G charging cost without being concerned
about the BD. Similarly, the markers on the right-hand side
of the figure correspond to lower values of w and represent
the case when the user prioritizes their vehicle’s battery health
over minimizing the V2G charging cost.

We observe that for Ta = 20 ◦C, putting more emphasis on
minimizing the charging cost of V2G leads to more savings

3Because of the discrete nature of w, we considered T number of discrete
realizations of ρ ∈ [0, 1].

4In latest generation EVs, battery preheating is conducted by battery thermal
management system [36] to bring back Tb at 15 ◦C before operation in
cold geographical locations. Our analysis does not capture this phenomenon.
Instead, it is suitable for existing EVs devoid of such features.
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Fig. 4. Tradeoff curve for comparison between charging cost and cyclic BD
cost while taking part in V2G for different Ta . The markers along the curve
indicate discrete solutions of (12) for decreasing values of w.

Fig. 5. Capacity loss for different choices of w by the user under different
Ta .

in the long run than being concerned with the vehicle’s BD.
However, this pattern starts changing as the environmental
temperature decreases. In fact, for colder regions with Ta < 10
◦C, EV users should exercise greater caution when selecting
a higher value of w, that is, placing more emphasis on V2G
exploitability, as the BD costs can be significantly higher in
the long run, as evidenced by the slope of the curve. Fig. 5
illustrates the percentage battery capacity loss due to cyclic
aging as a function of the hyperparameter w for different
temperatures. A key observation is that as Ta increases, the
slope of Qcyc

loss with respect to (w/T ) decreases. This indicates
that changes in V2G participation levels have a smaller impact
on cyclic BD in higher temperature zones.

2) Impact of Varying V2G Tariff Profiles: The V2G tariff
profile αt can exhibit different levels of variance depending
on the flexibility available at the charging station or parking
lot and the ancillary service requirements of local distribution
system operators. A high variance profile characterized by fre-
quent fluctuations and greater distances between consecutive
peaks and troughs is depicted in Fig. 6(a). Such profiles are
common in regions with a high share of intermittent renewable
energy sources and a large population of EVs. Conversely,
regions without these conditions may experience a relatively
low variance in the αt profile. The level of variance in αt

significantly impacts the tradeoff curve, as shown in Fig. 6(b).
Higher variance allows users to exploit V2G more effectively

Fig. 6. (a) Profiles of V2G tariff (αt ) for different variances and the
(b) tradeoff curve for comparison between charging cost and cyclic BD cost
while taking part in V2G for different variances in αt .

Fig. 7. Tradeoff curve for comparison between charging cost and cyclic BD
cost for chargers of different power ratings.

for monetary gains. As illustrated in Fig. 6(b), users can opt
for a higher value of w while accounting for BD costs under
a high variance αt profile.

3) Impact of Charger Power Ratings: Currently, common
EV chargers are classified into Level-1 (up to 7 kW), Level-2
(7–22 kW), and Level-3 (≥ 50 kW) categories. We investigate
the tradeoff when the same EV is charged using chargers with
power ratings of 6.6, 22, and 50 kW. The results, depicted
in Fig. 7, show that variations in both charging cost and BD
cost are more pronounced when using higher-rated chargers.
This indicates that both V2G exploitation and the extent of
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Fig. 8. Smart charging profiles for different choices of w.

battery health degradation accelerate as the charger power
rating increases. Therefore, higher-rated EV chargers offer
users greater flexibility in selecting their preferred operating
point on the tradeoff curve.

D. Smart Charging Profiles of EVs

Fig. 4 illustrates how users can select their desired operating
point by adjusting the hyperparameter w in our proposed
framework. Fig. 8 depicts the charging power of an EV as
w varies, alongside the corresponding V2G tariff profile (αt )
on the secondary y-axis. Player V2G aims to minimize total
charging costs by purchasing energy at low prices and selling it
back to the grid at higher prices. Conversely, player BD seeks
to reduce the C-rate of charging and discharging, resulting in
a relatively flat charging profile with minimal exploitation of
the αt profile. Notably, regardless of the w values, the final
energy level consistently approaches the user’s desired energy
level Edes.

E. Long-Term Tradeoff Analysis for Different Battery
Capacities

A crucial aspect of this work involves studying the
long-term effect of V2G services on BD, that is, how a
gradual, seemingly negligible accumulation of daily degra-
dations due to V2G can affect battery health in the long
run. To this end, we conducted a projection study using
one year of real data for EVs with battery capacities of
50, 75, and 100 kWh. The setup for the year included
the following:

The EV user drives an average of 30 km daily, resulting
in approximately 5 kWh of energy consumption per day [37].
The EV user participates in a V2G program three days a week,
with each session lasting 12 h. One year’s worth of ambient
temperature data (Ta) for Delft, the Netherlands, was used,
as sourced from [38]. Each data point in the daily V2G tariff
profile was sampled from a Gaussian distribution, with the
mean taken from [27], Fig. 7 and a standard deviation of 10%.
This setup was chosen to reflect a realistic scenario, allowing
the tradeoff analysis to yield practical insights. Numerical
simulations based on this data produce the tradeoff plot shown
in Fig. 9(a), which reveals that the cyclic degradation cost
becomes increasingly competitive with the charging cost as

Fig. 9. (a) Tradeoff curve of the one-year-long projection study where the
EV battery capacities are varied. (b) Corresponding battery capacity losses as
the user-defined hyperparameter w varies.

Fig. 10. Comparison of power and energy profiles based on: 1) MPC-based
method [14] (solid violet) and 2) our proposed method (dashed orange). Both
methods respect power constraints and reach the desired final energy Edes of
0.8, as set by the user.

battery capacity decreases.5 Note in both figures that the
number of charging/discharging cycles increases as battery
capacity decreases, leading to greater cyclic degradation by

5Note that a positive charging cost in Fig. 9(a) indicates that the EV
user incurs a cost, whereas a negative cost indicates that the EV user is
compensated by the V2G service provider at the end of the year.
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Fig. 11. (a) Box plot for comparison of the total cost between the MPC-based
method [14] and the proposed method when ζ in θ2(·) is perturbed. (b) Box
plot in logarithmic scale for comparison of the regret metric [following (16)]
between these methods.

the end of the year. Second, the ratio of battery capacity to
charger power rating plays a significant role in BD. A lower
ratio results in higher cyclic degradation because the charg-
ing/discharging cycles occur at a higher C-rate for smaller
batteries when using the same charger. Previous studies [16],
[39] have shown that cycling a battery with a higher C-rate
causes increased battery health degradation. The key takeaway
from Fig. 9(a) is that EV users with lower-capacity batteries
must carefully manage their level of V2G participation. For
larger-capacity batteries, full participation in V2G is likely to
result in minimal additional BD costs relative to the monetary
benefits gained.

F. Comparison With MPC-Based Method in [14]

In the recent work, Lu et al. [14] proposed an MPC-based
V2G charging algorithm for EVs, incorporating BD into the
optimization framework. Considering that their algorithm is
applied to each EV separately, it serves as a state-of-the-art
benchmark to compare our method. To ensure a fair compar-
ison, we assume that the objective in [14] is to minimize the
sum of the charging cost and the BD cost. We also use
the same BD model for both methods. Furthermore, we use
the same set of uncertain samples to evaluate various metrics.

In our game-theoretic framework, we assign equal importance
to both cost components by setting w = T/2. Using identical
V2G tariff profiles and constraint settings for both methods,
the resulting solutions are presented in Fig. 10. As expected,
both approaches satisfy all constraints and successfully achieve
the user-specified terminal energy level Edes by the end of the
V2G session.

However, when we investigate the behavior of total cost
(charging cost + BD cost) as the uncertain parameter ζ

in the BD cost function (θ2) is perturbed, we observe the
following: 1) assuming ζ is sampled from a uniform dis-
tribution with support set [0.9ζ0, 1.1ζ0]

n , Fig. 11(a) shows
that, our method incurs a slightly higher expected total cost
compared to its counterpart and 2) on the contrary, when we
evaluate regret [following the definitions in (16)] for both
methods, our method significantly outperforms the MPC-based
approach [as shown in Fig. 11(b)]. These results suggest that
our approach offers improved robustness against parameter
uncertainty, albeit at the expense of a marginal increase in
total cost.

V. CONCLUDING REMARKS AND FUTURE WORK

In this article, we introduce a game-theoretic horizon-
splitting approach to model the conflicting objectives of
financial gains from V2G participation and BD from the user
perspective. This methodology is a more robust alternative to
existing approaches, offering system designers the ability to
fine-tune the balance between V2G exploitability and battery
health using adjustable hyperparameters. Our tradeoff analysis
yields the following key results: 1) for EVs with higher
battery capacities, users should consider higher levels of V2G
participation, as the relative impact on BD is reduced and
2) users are encouraged to increase V2G participation during
periods of high volatility in V2G pricing, particularly when
using high-power chargers, as this can maximize financial
benefits with low impact on battery health.

Future research will focus on implementing our proposed
methodology in real-world test scenarios. Particularly, using
real V2G tariffs and measuring the capacity of the EV battery,
we aim to validate our theoretical conclusions. Additionally,
as V2G services are heavily dependent on electricity pricing
aligned with grid demands, our next objective is to develop a
fair pricing mechanism using learning-based approaches and
integrate it into our smart charging framework.

APPENDIX

A. Derivation of (3)

From (2), we write

Qcyc
loss,% = B1

(
exp (B2|Irate|)Cratedncycle

)
.

As, we want the battery pack level power Pbat to be brought
down to cell level c-rate, that is, Irate, considering a total
number of s = nseries × nparallel cells, rated battery voltage
Vbat, and capacity Crated

Qcyc
loss,% = B1

(
exp

(
B2|Pbat|

sVbatCrated

)
Cratedncycle

)
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where ncycle is the number of full charging–discharging cycles.
We want to know the fraction of a cycle at every interval (1t).
For that, we approximate ncycle = (nmax1t/T ), where nmax is
the maximum number of possible full cycles in a single V2G
session of T intervals. In addition, the term Qcyc

loss,% is the
percentage capacity loss of rated capacity (Crated). We find the
capacity loss in Ah at time t as, Qcyc

loss,t = (Crated/100)Qcyc
loss,%.

Finally, by representing n̂ = (nmax1t/T × 100), we incorpo-
rate the above changes as

Qcyc
loss,t = B1,t C2

ratedn̂
(

exp
(

B2,t |Pbat,t|

sVbatCrated

))
.

The above function is convex in Pbat,t but nonsmooth at
Pbat,t = 0. One could always use optimization solvers that can
handle nonsmooth convex optimization problems. However,
we are interested in the smooth version of it as it becomes
more computationally efficient, and standard solvers are eas-
ily available. Therefore, we consider the approximation of
expα|x |

≈ (1 + (α2x2/h)), where h being a curve fitting
parameter. After replacing the corresponding terms, we have

Qcyc
loss,t = B1,t C2

ratedn̂

(
1 +

B̂2
2,t P2

bat,t

hs2

)
where B̂2,t = (B2,t/VbatCrated).

B. Proof of Proposition 1

The local feasibility set of (9) and (10) are convex and
there exists � :=

∏2
i=1 �i (u−i ), which is a nonempty, closed,

and convex set. Therefore, our problem satisfies conditions
of Definition 2. Now, we define the following exact potential
function candidate:

P(u) :=

∑
j∈T w

m

(
α j Pbat, j1t

)
+ γ

∑
j∈(T̃ w

m)

Qcyc
loss, j

(
Pbat, j

)
.

Given x1, y1
∈ �1(u−1), x1

:= [P̂bat,t ], y1
:= [P̃bat,t ], ∀t ∈

T w
m , and u−1

:= [Pbat,t ], ∀t ∈ T̃ w
m , for player 1 (V2G), we have

P
(
x1, u−1)

− P
(
y1, u−1)

=

∑
j∈T w

m

α j
(
P̂bat, j − P̃bat, j

)
1t

=

∑
j∈T w

m

(
α j P̂bat, j1t

)
+

∑
j∈T̃ w

m

(
α j Pbat, j1t

)
−

∑
j∈T w

m

(
α j P̃bat, j1t

)
+

∑
j∈T̃ w

m

(
α j Pbat, j1t

)
= θ1(x1, u−1)

− θ1(y1, u−1) (in view of (9)).

Similarly, given x2, y2
∈ �1(u−2), x2

:= [P̂bat,t ], y2
:=

[P̃bat,t ], ∀t ∈ T̃ w
m , and u−2

:= [Pbat,t ], ∀t ∈ T w
m , for player

2 (BD), we have

P
(
x2, u−2)

− P
(
y2, u−2)

=

∑
j∈T̃ w

m

γ
(

Qcyc
loss, j

(
P̂bat, j

)
− Qcyc

loss, j

(
P̃bat, j

))

= γ

∑
j∈T̃ w

m

Qcyc
loss, j

(
P̂bat, j

)
+

∑
j∈T w

m

Qcyc
loss, j

(
Pbat, j

)
− γ

∑
j∈T̃ w

m

Qcyc
loss, j

(
P̃bat, j

)
+

∑
j∈T w

m

Qcyc
loss, j

(
Pbat, j

)
= θ2(x2, u−2)

− θ2(y2, u−2) (in view of (10)).

Therefore, P(u) is an exact potential function according to
Definition 2. ■
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