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We compare the performance of Monte Carlo algorithms for the simulation of the random-cluster represen-
tation of theq-state Potts model for continuous values ofq. In particular we consider a local bond update
method, a statistical reweighting method of percolation configurations, and a cluster algorithm, all of which
generate Boltzmann statistics. The dynamic exponentz of the cluster algorithm appears to be quite small, and
to assume the values of the Swendsen-Wang algorithm forq=2 and 3. The cluster algorithm appears to be
much more efficient than our versions of the other two methods for the simulation of the random-cluster model.
The higher efficiency of the cluster method with respect to the local method is primarily due to the fact that the
computer time usage of the local method increases more rapidly with system size; the difference between the
dynamic exponents is less important.
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I. INTRODUCTION

The Potts modelf1g, which can be seen as a generaliza-
tion of the Ising model, has been the subject of considerable
research in recent decadesf2g. Many of these investigations
make use of the Kasteleyn-Fortuin mapping on the random-
cluster modelf3g. Remarkably, the symmetry parameterq of
theq-state Potts model appears as a continuous parameter in
the random-cluster model. Thus the random-cluster model is
a generalization of the Potts model to noninteger values ofq
sand on this basis one might even choose to refer to such a
model with nonintegerq as a Potts modeld. For the integer
q=1, the random-cluster model reduces to the bond-
percolation model.

Another mapping, formulated by Baxter, Kelland, and Wu
f4g, leads from the random-cluster model on a planar lattice
to the six-vertex model, which is a limiting case of Baxter’s
eight-vertex modelf5g. This second mapping lends further
physical meaning to the random-cluster model.

While many questions concerning the random-cluster
model could be answered exactlyf6,7g, in many cases, espe-
cially in more than two dimensions, numerical approxima-
tions are needed. For integerq.1 one can obviously apply a
Metropolis-type algorithm to the Potts representation of the
model. However, such simulations suffer from the critical-
slowing-down phenomenon, which inhibits the investigation
of relatively large system sizes. This problem was partly
solved by Swendsen and Wangf8g. Their algorithm is non-
local in the sense that arbitrarily large groups of Potts vari-
ables are flipped at the same time. As a result, critical slow-
ing down, as expressed by the dynamic exponentz, is
reduced, though not eliminated. The dynamic exponent is
still dependent on the number of statesq and the dimension-
ality d, as reviewed in Ref.f9g.

Simulation methods have been developed as well for non-
integerq. While the random-cluster model is rich and inter-
esting in its own right, the work on such algorithms for gen-
eralq may further be justified by fundamental questions such
as whether the renormalization scenariof10g for the two-
dimensional Potts model does also apply in more than two

dimensions. Although this question can also be studied by
means of analytical approximationsf11,12g, their accuracy is
difficult to estimate and numerical tests are thus desirable.
Furthermore, some critical exponents, for instance, the so-
called backbone exponent of the Potts model is not exactly
known, even in two dimensions. It may be determined nu-
merically as a function ofq by means of Monte Carlo meth-
ods, and then it is natural to include noninteger values ofq
f13g for a more complete coverage.

A local Monte Carlo algorithm for the nonintegerq
random-cluster model in two dimensions was formulated by
Sweenyf14g. It updates individual bond variables. Although
it has been reported that critical slowing down is absentf15g,
the Li-Sokal methodf16g is also applicable here and it fol-
lows thatzùa /n where a and n are the specific-heat and
correlation-length exponents, respectively. Therefore systems
with a positive specific-heat exponenta mustdisplay critical
slowing down, as has been confirmed laterf17g. In this al-
gorithm, the transition probabilities depend on nonlocal in-
formation: whether neighbor sites are connected by a perco-
lating path of bond variables. Thus the execution of a bond
update may require the exploration of a large percolation
cluster. Since the pertinent cluster size is divergent at criti-
cality, the number of operations needed for an update of the
system increases faster than the number of sitesN in the
system. How much faster it increases still depends on the
sophistication of the algorithm; the Sweenyf14g algorithm is
relatively efficient because it avoids the formation of a whole
cluster by following only its perimeter instead.

In a different approach, Huf18g applied a statistical re-
weighting procedure to bond percolation configurations in
order to sample theqÞ1 random-cluster model. While this
model has no critical slowing down in the sense that it gen-
erates uncorrelated configurations, the number of samples
needed before a significant weight occurs increases rapidly
with the system sizef19g. In practice, this effect is similar to
critical slowing down in the sense that many simulation steps
have to be performed before a meaningful new sample is
obtained.
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Given the recent simulationsf13,15g that have been per-
formed using the local bond update method, it would be
interesting to compare with the performance of a cluster al-
gorithm for continuousq random-cluster models. Indeed the
Swendsen-Wang algorithm can be adapted to include nonin-
teger values ofq; such an algorithm was described by
Chayes and Machtaf20g. The resulting cluster algorithm is
simple, and requires only of orderN operations for an update
of the system. But it is applicable only forqù1.

In this work we report a comparison between our versions
of these three algorithms for noninteger values ofq. We il-
lustrate their performance by means of simple applications,
and we estimate the dynamic exponent of the cluster algo-
rithm for three values ofq. We feel that our findings may be
of some use for those planning numerical investigations of
the random-cluster model. In Sec. II we summarize the algo-
rithms, and we report our results in Sec. III.

II. ALGORITHMS

For the convenience of the reader, we summarize the three
algorithms for the simulation of the random-cluster model.
To expose the close relation with the discrete-q Potts model,
we start from the Potts partition sum

Zs = Fp
i=1

N

o
si=1

q Gp
ki j l

expsKdsis j
d, s1d

where thesi are site variables, and the second product is
over all nearest-neighbor pairski j l. The couplingK includes
a factor 1/kBT and is restricted toKù0. The mapping on the
random-cluster modelf3g eliminates the site variablessi
=1,2, . . . ,q after introducing bond variablesbij =0 or 1 be-
tween neighboring sitesi and j . Bondsbij =1 s0d are consid-
ered to be presentsabsentd. In terms of the new variables one
obtains the random-cluster partition sum

Zs = Zb ;Fp
ki j l

o
bij=0

1 Gqncunb = o
hbj

p
k=1

nc

qunb
skd

, s2d

whereu;eK−1, nb is the number of present bonds, andnc
the number of clusterssor componentsd formed by these
bonds. The sum onhbj is shorthand for the sum on all bond
variables, andnb

skd is the number of nonzero bonds in thekth
cluster.

Equations2d can serve directly to formulate a Metropolis-
type importance-sampling algorithm for local updates of the
bond variablesbij . A bondsbij =1d contributes a reducedsi.e.,
divided by kBTd energy lns1/ud if sites i and j are already
connected by some other path of such bonds, or lnsq/ud if
they are not connected. Thus the local update of a bond
variable requires the performance of a task that is essentially
nonlocal: to determine whetheri and j belong to the same
cluster. After completion of this task, the energy change due
to the bond “flip” is known, and thereby the transition prob-
abilities. Given the time-consuming nature of the task men-
tioned, one naturally avoids it if not necessaryf15g. The
latter possibility arises if the value of the random number
used for the bond update is such that the resultsbij =0 or 1d

does not depend on whetheri and j are connected.
In the statistical reweighting method as formulated by Hu

f18g one generates independent configurations of bond vari-
ables using the percolation model. This ensemble of configu-
rations can be described by Eq.s2d with q=1. The bond
probability is p=u/ su+1d. Thus the probability distribution
of hbj is

Pq=1shbjd = pnbs1 − pdNb−nb = unb/Zq=1, s3d

with

Zq=1 = Fp
ki j l

o
bij=0

1 Gunb = s1 + udNb, s4d

whereNb is the total number of nearest-neighbor bonds in
the system. The expectation value of an observableA de-
pending onhbj is, in the random-cluster model,

kAlRC= Fp
ki j l

o
bij=0

1 GAqncunb/Zb. s5d

This can be rewritten as

kAlRC=
fpki j l obij=0

1 gAqncunb

Zq=1
3

Zq=1

Zb
= kAqnclP/kqnclP,

s6d

where the subscriptP denotes averaging on percolation con-
figurations generated by Eq.s3d. The advantage of this
method is that the relevant quantitiesAqnc and qnc can be
sampled on the basis of percolation configurations which are
uncorrelated, and simple to generate. The disadvantage is
that the reweighting factorqnc can vary, in particular for large
system sizes, over such a large range that, among the gener-
ated configurationshbj, those which contribute significantly
to the k¯lP averages become very scarcef19g.

The cluster algorithm can conveniently be described in
terms of a mapping between the random-cluster model, Eq.
s2d, and a model with site as well as bond variables. To this
purpose one defines auxiliary “color” variablest̃k=0 or 1 for
each clusterk=1,2, . . . ,nc:

Zb = o
hbj

p
k=1

nc

o
t̃k=0

1

unb
skds1−t̃kdfsq − 1dunb

skd
gt̃k. s7d

Clusters of color 0 and 1 have weight 1 andq−1, respec-
tively. The sum over the colors can be replaced by a sum
overN site-color variablesti =0 or 1 if, at the same time, one
includes a factordtit j

bij swith the convention 00=1d for each
bond variable, so that all sites in one cluster have the same
color:

Zb = Ztb ; o
htj

o
hbj

p
ki j l

sudtit j
dbijp

k=1

nc

sq − 1dtsskd, s8d

wheresskd is a site in thekth cluster. For a given site con-
figuration htj one distinguishes three types of bondssi j d:

type 0 : ti = tj = 0;
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type 1 : ti = tj = 1;

type 2 : ti + tj = 1.

Accordingly, superscripts are appended to the pertinent sum-
mation and product signs

Ztb = o
htj

Fo
hbj

s0dp
ki j l

s0dubijGFo
hbj

s1dp
ki j l

s1dubijp
k=1

nc
s1d

sq − 1dG
3Fo

hbj

s2dp
ki j l

s2ds1 − bijdG , s9d

where the clusters of color 1 are labeled1,2, . . . ,nc
s1d. Execu-

tion of the type 0 and 2 sums and rewriting the type 1 sum
yields the partition sum expressed in site variables, and bond
variables only of type 1:

Ztb = Ztb1 ; o
htj

Fp
ki j l

s0ds1 + udGo
hbj

s1dFp
k=1

nc
s1d

sq − 1dunb
skdG .

s10d

Just as Eq.s2d describes the probability distribution of bond
configurations of the random-cluster model, Eq.s10d repre-
sents the probability distribution of a system with both site
variables ti =0,1 and bond variablesbij between nearest-
neighbor sites of type 1. The random selection of clusters of
color 0 with probability 1/q leads to the ensemble of Eq.s8d
which describes a system of both site and bond variables. A
partial summation on bond variables then leads to Eq.s10d.
In a Monte Carlo application of this mapping one makes use
of the fact that the terms in the partition sums are propor-
tional to the probability corresponding configuration. Subse-
quent assignments of values to random variables in the
Monte Carlo procedure are decided such that the resulting
probability of each configuration is in agreement with the
partition function as expressed in the pertinent variables.
This guarantees that the equilibrium distribution is always
maintained. Thus starting from a bond configuration drawn
from the equilibrium ensemble of Eq.s2d:

s1d assign color 0 to each cluster with probability 1/q;
s2d erase all bondsbij =1 between type-0 sites;
s3d choose new bondsbij =1 between type-0 sites with

probability u/ su+1d;
s4d form clusters on the type-0 sites;
s5d erase the color variables.

Here we have stochastically executed the step from Eqs.
s2d–s7d, followed by the steps leading to Eq.s10d; and then,
in reverse order, back to Eq.s2d. This leads to a new bond
configuration that again satisfies the equilibrium statistics of
Eq. s2d. We note that these steps resemble the Swendsen-
Wang procedure; a difference is that one here uses 2 instead
of q colors, and that they are not treated equivalently. The
use of a probability 1/q restricts the useful range of the
algorithm toq.1. The above description of the algorithm is
given such as to closely follow the mapping; the actual pro-
cedure is even simpler because it is not necessary to keep
track of the bond variablesbij . These variables are only

needed during the cluster formation process. The information
to which cluster a site belongs is stored as an integer that is
unique for each cluster.

III. TESTS AND APPLICATION

We have tested the three algorithms under investigation
by comparing their numerical results mutually and, forq=2,
with those of conventional algorithms. The results agree
within the statistical errors.

A. Application to specific-heat calculation

To illustrate the use of the Monte Carlo algorithms under
consideration, we have calculated the Potts specific heat for
the random-cluster model on the square lattice for two non-
integer valuesq. These areq=4 cos2s7p /22d=1.169̄ and
q=4 cos2s5p /14d=0.753̄ . The dimensionless specific heat
sspecific heat divided byNkBd is here defined on the basis of
differentiation of the free energy density lnZ to the Potts
couplingK, with Z, e.g., defined as in Eq.s2d:

C ;
K2

N

]2 ln Z

]K2 s11d

with ] /]K=eK] /]u. Since the the sumnb of the bond vari-
ables is conjugate to lnu, the specific heat can be obtained
from the fluctuations ofnb. It is sufficient to sample the first
two moments ofnb:

C =
K2

N
F su + 1d2

u2 sknb
2l − knbl − knbl2d +

u + 1

u
knblG .

s12d

The value of the temperature exponent of the Potts model
is known as a function ofq. This expression was conjectured
by den Nijs f21g; see also Ref.f7g. For the specific-heat
exponent a this expression leads toa=4/3−2/
f3−6 arccossÎq/2d /pg. This formula allows us to select the
value ofq corresponding to a given value ofa.

We first simulated theq=4 cos2s7p /22d Potts model,
which has a specific-heat exponenta=−1/2. We have calcu-
lated the Potts specific heatC of the square-lattice model in
a suitable temperature range, and obtained the curve shown
in Fig. 1, which does indeed display a square-root type cusp
as implied bya=−1/2. During these simulations we found
that the cluster algorithm was the most efficient one, i.e.,
produced a more accurate result in a given computer time.
The results in Fig. 1 are those generated by the cluster
algorithm.

Next, we simulated the square-latticeq=4 cos2s5p /14d
Potts model, which has a specific-heat exponenta=−1. We
have calculated the Potts specific heat and obtained the curve
shown in Fig. 2, which does indeed display a pronounced
kink as implied bya=−1. The results in Fig. 2 are those
generated by the local bond update algorithm, because it be-
came clear that it was more efficient than the reweighting
algorithm.

These two figures, together with the well-known logarith-
mic divergence of the specific heat forq=2, illustrate that the
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critical singularity becomes less strong whenq decreases.
The use ofK as the temperature parameter facilitates a com-
parison with the results for the integer-q Potts model. The
negative specific heat forq=4 cos2s5p /14d,1 reflects the
fact that the Potts energy per bond decreases with tempera-
ture: the reduced energy isK in the ordered state andK /q in
the disordered one. This illustrates the unphysical nature of
the Potts model forq,1. We note, however, that the

random-cluster modelis physical. For instance, its energy
snot reducedd ERC=−kBTknc ln q+nb ln ul is a well-behaved,
increasing function of the temperatureT when the nonre-
duced parameterskBT ln q andkBT ln u are kept constant.

B. Efficiency of the algorithms

While the dynamical exponent is an important factor in
the efficiency of an algorithm, it is not the only one. The
degree of overlap between generated and target distributions
is crucial in reweighting methods, and furthermore, the com-
puter time per spin update may depend strongly on the sys-
tem size. From a practical point of view one may be inter-
ested in the computer time needed to reach a result with a
given statistical accuracy. Thus, to compare the performance
of the three algorithms in a quantitative way, we have simu-
lated the two-dimensional random-cluster model on the
square lattice, and determined a dimensionless ratio similar
to the Binder cumulantf22g. To this purpose we sampled
powers of the cluster sizes

Ssmd ; o
k=1

nc

sk
m, s13d

wheresk is the size of thekth cluster, form=2 and 4. Then
the dimensionless ratioQ is defined as

Q ;
kSs2dl2

k3sSs2dd2 − 2Ss4dl
, s14d

which, for the caseq=2, reduces to the ratio of magnetiza-
tion momentskm2l2/ km4l. The computer timet per lattice
site needed to reach a statistical accuracy of 10−4 in Q serves
as an inverse measure of the efficiency. The results in terms
of t=s104dQ/Ld2tR, where tR is the CPU time of a run in
seconds,dQ is the statistical error inQ, andL is the linear
system size, are shown in Fig. 3. These results indicate that
the cluster algorithm is more efficient than the other two,
increasingly so for larger system sizes. The reweighting
method appears to become rapidly inefficient with increasing
system sizes. Here one may remark that a simple statistical
analysis of the probability that the Monte Carlo algorithm
generates a state in the center of the target distribution yields
factors in whichN appearsin the exponent. This argument
thus indicates that the data fort obtained by the reweighting
method increase exponentially withL2.

The interpretation of the results in Fig. 3 still requires
some reservation. First, the reweighting method naturally be-
comes more efficient whenq approaches 1. Nevertheless, the
data shown are clear enough to indicate that the useful range
of q is quite narrow for the reweighting method. Second, our
version of the local bond-update algorithm is relatively
simple and forms clusters, instead of tracing their perimeter
as in Sweeny’s version. Since the fractal dimension of the
perimeter is smaller than that of the cluster itself, Sweeny’s
version is expected to be more efficient than ours for suffi-
ciently large system sizes, but at the expense of a more com-
plicated code. Given the simplicity and efficiency of the
cluster algorithm, we consider it the best choice for the in-
vestigation ofq.1 models.

FIG. 1. Dimensionless Potts specific heatC of the q
=4 cos2s7p /22d=1.169̄ random-cluster model versus tempera-
tureT=1/K. The statistical errors do not exceed the size of the data
points. The data points are extrapolations of finite-size data in the
range 6øLø384, obtained by means of the cluster Monte Carlo
algorithm. The finite-size data converge exponentially except at the
critical point where power-law behavior occurs. Satisfactory con-
vergence was found for allT except in very narrow rangessDT
<0.02d on both sides of the critical point.

FIG. 2. Dimensionless Potts specific heatC of the q
=4 cos2s5p /14d=0.753̄ random-cluster model versus tempera-
ture T=1/K. The statistical errors are larger than in the preceding
figure, in some cases they exceed the symbol size. The data points
are extrapolations of finite-size data in the range 4øLø40, ob-
tained by means of the local bond-update Monte Carlo method. The
finite-size data converge exponentially except at the critical point
where power-law behavior occurs. Satisfactory convergence was
found for allT except in narrow rangessDT<0.2d on both sides of
the critical point.
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C. Dynamic exponent of the cluster algorithm

As mentioned in the Introduction, the reweighting method
does not suffer, at least formally, from any critical slowing
down, and thus its dynamic exponent isz=0. The dynamic
exponent of the local bond-update method has recently been
investigated by Wanget al. f17g for q=2 and 3. Their analy-
sis, apparently more accurate than earlier investigations
f14,15g, reported nonzero but still rather small values ofz
that are, depending on the value ofq, comparable with, or
even somewhat smaller than those of the Swendsen-Wang
algorithm. Forq→1 one expectsz→0 because the bond
variables become independent. To evaluate the dynamic uni-
versality class of the cluster algorithm for continuousq, we
have determined the dynamic exponentz for three different
values ofq, on the basis of simulations ofL3L square lat-
tices with sizesL=6,12, . . . ,160. We sampled the energy
and determined its autocorrelation timestL, in units of clus-
ter steps as described in Sec. II, from least-squares fits to the
exponentially decaying autocorrelation function. The results
are shown in Fig. 4. We have analyzed theirL dependence as
tL.Lz by means of least-squares fits. We obtainz=0.08s1d
for q=4 cos2s7p /22d, and z=0.551s8d for q=3. The result
for q=3 is consistent with an existing result for the
Swendsen-Wang algorithm, namelyz=0.56s1d f17g, but it is
larger than the result of a more detailed studyf23g, using
system sizes up toL=1024, which isz=0.515s6d. The ques-
tion thus arises whether the difference with the continuous-q
cluster algorithm, which amounts to a few standard devia-
tions, indicates that the dynamic universality classes of the
two algorithms are different. We do not consider the numeri-
cal evidence to be sufficient to reach such a conclusion: it
was noted in Ref.f23g that the largest system sizessL
ù128d led to a significantly smaller result in comparison
with the smaller system sizes. This suggest the presence of

slowly converging correction terms in the autocorrelation
times; such corrections could also be present in our results
for the continuous-q cluster algorithm, and thus also explain
the difference with our value ofz.

Especially forq=2 the autocorrelation times are not well
described by a single power law; the fits suggest the presence
of a second term proportional toLz8 with z8<−0.4. Allowing
for such a contribution we obtainz=0.254s10d for q=2,
which is consistent with a resultz=0.25s1d f24g for the
Swendsen-Wang algorithm, but larger than a more recent de-
terminationf9,25g which led toz=0.222s7d on the basis of
system sizes up toL=512. We found that ourq=2 result for
z depends considerably on the choice of the fit formula and
the range ofL. Instead of adding a second term, one can
choose to skip the smallest system sizes in order to obtain an
acceptable value of the residualx2. For system sizes in the
range 60øLø160 we thus findz=0.265s5d. This number, as
well asx2, increases when the lower limit of theL range is
decreasedsthese numbers agree better with earlier determi-
nationsf8,26g which are close toz=0.3d. Under these cir-
cumstances, we do not assign much significance to the dif-
ferences between the reported values ofz for the Swendsen-
Wang algorithm and the continuous-q cluster algorithm.
These differences are of the same order as those between
different results reported for the Swensen-Wang algorithm
and may be attributed to unresolved corrections to scaling.
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FIG. 3. Computer time usaget of the three algorithms for the
simulation of the continuous-q random-cluster model, versus linear
system sizeL. The time t is determined as the computer time in
seconds per lattice site required to reach an accuracy of 10−4 in the
dimensionless ratioQ of the random-cluster representation of the
critical q=2 Potts model. The data points apply to the statistical
reweighting methodsnd, to the local bond update methodssd, and
to cluster updatessPd.

FIG. 4. Autocorrelation timest versus system sizeL for three
critical Potts models:q=1.169̄ snd, q=2 ssd, andq=3 shd on
logarithmic scales. These results were obtained using the
continuous-q cluster algorithm. The statistical errors do not exceed
the size of the data points.
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