

**Delft University of Technology** 

# The Bi<sup>3+</sup> 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds

Awater, Roy H.P.; Dorenbos, Pieter

DOI 10.1016/j.jlumin.2016.12.021

**Publication date** 2017 **Document Version** Accepted author manuscript

Published in Journal of Luminescence

**Citation (APA)** Awater, R. H. P., & Dorenbos, P. (2017). The Bi<sup>3+</sup> 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds. *Journal of Luminescence*, *184*, 221-231. https://doi.org/10.1016/j.jlumin.2016.12.021

### Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

**Copyright** Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

# Vacuum Referred Binding Energies of Bi<sup>3+</sup> in Insulators Based on the Metal-to-Metal Charge Transfer Energy

Roy H. P. Awater\* and Pieter Dorenbos

Luminescence Materials Research Group (FAME-LMR), Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, The Netherlands

E-mail: R.H.P.Awater@tudelft.nl

### Abstract

# Introduction

The luminescence of the  $Bi^{3+}$  activator ion in a variety of host compounds has been extensively studied over the last 50 years.<sup>1</sup> The  $Bi^{3+}$  ion has a  $6s^2$  outer electron configuration with the  ${}^{1}S_{0}$  ground state. Optical transitions to the  $6s^{1}6p^{1}$  configuration result in the  ${}^{3}P_{0,1,2}$  triplet and  ${}^{1}P_{1}$  singlet excited states (in order of increasing energy). The optical transitions from the  ${}^{1}S_{0}$  ground state to the  ${}^{3}P_{1}$ ,  ${}^{3}P_{2}$  and  ${}^{1}P_{1}$  excited states are labeled A, B and C, respectively (see Fig. 1). The  ${}^{1}S_{0} \rightarrow {}^{3}P_{0}$  and  ${}^{1}S_{0} \rightarrow {}^{3}P_{2}$  are spin-forbidden, although the transition to the  ${}^{3}P_{2}$  can be induced by coupling with unsymmetrical lattice vibrational modes.<sup>2</sup> As a result of spin-orbit coupling and mixing with the  ${}^{1}P_{1}$  state, the  ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$  transition becomes allowed. The  ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$  is a spin allowed transition. Therefore, only the A- and C-bands have a high enough absorption strength to be used in phosphor applications. A more detailed discussion on the optical transitions of  $6s^{2}$  ions can be found in the literature.<sup>3,4</sup>

- Trends in bismuth luminescence as function of h-parameter. Applications: phosphors, scintillators, sensitizer for Eu (and other Ln) emission.

When  $Bi^{3+}$  is incorporated into a host lattice an additional absorption band is observed, which is often labeled as the D-band. This absorption originates from a metal-to-metal charge transfer (MMCT) transition, meaning that an electron from bismuth is transferred to the host cation  $Bi^{3+}/M^{n+} \rightarrow Bi^{4+}/M^{(n-1)+}$ . Recently, Boutinaud *et al.* developed a model to predict energy of the MMCT transition in d<sup>0</sup> and d<sup>10</sup> transition-metal oxides doped with  $Bi^{3+}$ .<sup>5,6</sup>

## MMCT<sup>7</sup>

Location of energy levels determines optical properties and performance of devices. Com-

parison with lanthanides (Dorenbos model). 6s electrons are not shielded, unlike the 4f, therefore expected that the chemical environment has a critical influence on the location of the optical transitions of the bismuth ion.

In this paper we located the vacuum referred binding energies of the  $Bi^{3+}$  ion in a variety of host compounds.



Figure 1: The energy levels of the free  $Bi^{3+}$  ion.

- Main focus paper: using MMCT to locate Bi3+ energy levels. Show that energy of s2 electron varies considerably with chemical environment.

- Bismuth self-quenching via pair emission as suggestion but focus for different paper. Potentially include bismuth as sensitizer.

Historical overview bismuth doped materials. What has been done: work of Blasse for phosphors, used in glass industry as probe ion,

Electronic configuration  $Bi^{3+}$ .

Bismuth pair formation. General for s2 elements in alkali halide crystals (and possibly all solids).

Incorporation into crystal results in an extra absorption/excitation band, the MMCT transition. Also depression of emission wavelength, very dependent on host lattice due to unshielded outer electrons. Metal-to-metal charge transfer, useful for determining energy levels. Compare with IVCT of Pr3+ and Tb3+.

Heavily-doped and self-activated bismuth compounds will be discussed in future work.

Dorenbos model: chemical shift, optical depression Ce3+, VRBE Redshift model, charge transfer model Crystal field splitting and centroid shift only for Ce3+ or also applicable for Bi3+?

- Lanthanide free, which are expensive and only produced in China.

- How does s2 luminescence work? Electron transitions, quantum mechanical splitting?
- Work of Blasse in the sixties.
- Dorenbos model on lanthanides.
- MMCT model Boutinaud.
- Paper of Wang, quantitative relation bismuth sp energy and host lattice.
- Bismuth as a sensitizer for Eu (and other Ln?) luminescence.
- Paper by Du: Chemical trends of electronic and optical properties of ns2 ions in halides
- Optical electro negativity (Duffy)

## Methodology

- How to locate bismuth energy levels? MMCT, A, C bands. B-band in most compounds to weak to be observed. Therefore excluded in this discussion.

- VRBE model

- Comparison with lanthanide spectroscopy: CT-bands, chemical shift model, redshift model, crystal field splitting, centroid shift.



Figure 2: Electronic transitions in Bi<sup>3+</sup>-doped compounds.

# **Results and discussion**

Controleer toekenning A-band en D-band excitaties!

Aim of this paper: show Bi3+ energy levels in many compounds. Trends, how do these levels change with respect to chemical environment? Different emission bands, A-, C- and MMCT-band. Different excitations, A-band and MMCT. Difference between MMCT and C-band. In some compounds only MMCT, how to distinguish than between A-band?

- List (table) of all literature data found.
- VRBE schemes of  $\mathrm{Bi}^{3+}$  in compounds.
- Compare with MMCT-model by Barandiaran et al.
- Pieter's model on energy level locations
- MMCT model Boutinaud et al.
- Example of concentration quenching (self-quenching/autoquenching)
- Comparison U-parameter and h-parameter: does it work for Bi3+?
- Stokes shift: calculate and show trends?
- Comparison with Eu and Ce. Eu at -4 eV and almost independent of host. Plot together

as function of U-parameter?

- Paper by Guifang: Y2O3 Bi3+ with lanthanides, how does sensitization work?

- Nephelauxetic sequence: increasing covalancy, large effect on electron energies of 6s2 configuration, comparison with lanthanides.

- Shift of peak positions (A-band and MMCT excitations and A-band emission).

-

Data collected for 112 compounds. 7-digit compound identification number<sup>8</sup> Data VRBE of host compounds from Dorenbos literature.

How does pair or mmct luminescence work? What is the emitting state?

Ju12 gave suggestion for mechanism bismuth sensitization of europium. We show that energy levels of excited state are at around -3.5 eV, matching with europium excited state!

Data on MMCT transition is rather scars for wide band gap compounds because of limitation in excitation energy of most research group (200 nm limit).

| ID      |                                     |       | Excitation |       | Emi   | ssion               |      |
|---------|-------------------------------------|-------|------------|-------|-------|---------------------|------|
| number  | Compound (A)                        | A     | С          | D     | А     | $\operatorname{CT}$ | Ref. |
|         |                                     |       |            |       |       |                     |      |
| 0000000 | free ion                            | 75980 | 114610     | _     | _     | _                   | 9    |
| 1190010 | $BaF_2$                             | 46375 | 63880      | 75490 | 38320 | _                   | 10   |
| 1190020 | $\mathrm{SrF}_2$                    | 46620 | 65815      | 73480 | 44120 | _                   | 10   |
| 1190030 | $\mathrm{CaF}_2$                    | 47265 | 66140      | 73960 | 44440 | _                   | 10   |
| 1190404 | $\mathrm{NaYF}_4$                   | 40330 | 50010      | _     | _     | 22745               | 11   |
| 2290002 | RbCl                                | 27780 | 43860      | 47620 | _     | _                   | 12   |
| 2290003 | KCl                                 | 30305 | 47160      | 49750 | _     | _                   | 12   |
| 2290004 | NaCl                                | 30770 | 47170      | 50505 | _     | _                   | 12   |
| 2290041 | $\rm CsMgCl_3$                      | 35250 | —          | _     | _     | 23875               | 13   |
| 2290101 | $\mathrm{Cs}_2\mathrm{NaLaCl}_6$    | 31455 | —          | _     | 29280 | _                   | 14   |
| 2290401 | $\mathrm{Cs}_{2}\mathrm{NaYCl}_{6}$ | 31000 | _          | _     | 30035 | _                   | 15   |
| 3390003 | KBr                                 | 27030 | 42920      | 46295 | _     | _                   | 12   |
| 3390071 | $\rm CsCdBr_3$                      | 34925 | _          | _     | 17100 | _                   | 13   |
| 3390401 | $\mathrm{Cs}_2\mathrm{NaYBr}_6$     | 27100 | _          | _     | 25490 | _                   | 14   |
| 4490003 | KI                                  | 26315 | 41670      | 44845 | _     | _                   | 12   |
| 5174020 | $\rm Sr_3AlO_4F$                    | 32050 | _          | _     | 23420 | _                   | 16   |
| 5190400 | YOF                                 | 37300 | —          | 50000 | 30300 | _                   | 1    |
| 5290100 | LaOCl                               | 30000 | _          | 37200 | 29000 | 22500               | 1    |
| 5290300 | GdOCl                               | 29600 | _          | 38875 | 22500 | 20165               | 17   |
| 5290400 | YOCl                                | 30100 | _          | 39200 | 25000 | —                   | 1    |
| 5390100 | LaOBr                               | _     | _          | 36535 | 27180 | 20165               | 18   |
| 5532100 | $LaP_3O_9$                          | 42500 | _          | _     | _     | 21900               | 19   |
| 5532105 | $LiLaP_4O_{12}$                     | 43555 | —          | _     | —     | 23310               | 20   |

# Table 1: Spectroscopic data on $Bi^{3+}$ in compounds.

| ID      |                                             |       | Excitation | 1     | Emi   | ssion |       |
|---------|---------------------------------------------|-------|------------|-------|-------|-------|-------|
| number  | Compound (A)                                | А     | С          | D     | А     | CT    | Ref.  |
|         |                                             |       |            |       |       |       |       |
| 5532300 | $\mathrm{GdP}_3\mathrm{O}_9$                | 41500 | _          | _     | _     | _     | 19    |
| 5532400 | $YP_3O_9$                                   | 41500 | _          | _     | 34100 | _     | 19    |
| 5532500 | $LuP_3O_9$                                  | 41500 | _          | _     | 34600 | _     | 19    |
| 5532600 | $ScP_3O_9$                                  | 39500 | _          | _     | 35000 | _     | 19    |
| 5534100 | $LaPO_4$                                    | 40815 | _          | 57145 | -     | 22220 | 21    |
| 5534400 | $YPO_4$                                     | 44445 | _          | 58820 | 40985 | 29850 | 22    |
| 5534500 | $LuPO_4$                                    | 44445 | _          | _     | 42375 | 30030 | 22    |
| 5550013 | $\mathrm{KBaBP}_2\mathrm{O}_8$              | 41665 | _          | _     | 25840 | _     | 23    |
| 5552100 | $\rm LaB_3O_6$                              | 38460 | _          | _     | 26315 | _     | 15    |
| 5552140 | $\rm LaMgB_5O_{10}$                         | 33785 | _          | _     | 29760 | _     | 17,24 |
| 5552160 | $\rm LaZnB_5O_{10}$                         | 33560 | _          | _     | 29760 | _     | 24    |
| 5552170 | $\rm LaCdB_5O_{10}$                         | 33900 | _          | _     | 30300 | _     | 24    |
| 5552300 | $\mathrm{GdB}_3\mathrm{O}_6$                | _     | _          | _     | _     | _     | 15    |
| 5552440 | $\rm YMgB_5O_{10}$                          | 37315 | _          | _     | 30675 | _     | 17,24 |
| 5552460 | $\rm YZnB_5O_{10}$                          | 37040 | _          | —     | 30120 | —     | 24    |
| 5552470 | $\mathrm{YCdB}_{5}\mathrm{O}_{10}$          | 37315 | _          | —     | 30395 | —     | 24    |
| 5554000 | $\mathrm{GaBO}_3$                           | 36215 | _          | —     | 34520 | 23630 | 25    |
| 5554000 | $\mathrm{InBO}_3$                           | 35210 | _          | _     | 32895 | 25000 | 26    |
| 5554035 | ${\rm LiCaBO}_3$                            | 32895 | _          |       | 26455 | _     | 27    |
| 5554100 | $\mathrm{LaBO}_3$                           | 37260 | _          | _     | 27910 | 21695 | 28    |
| 5554300 | $\mathrm{GdBO}_3$                           | _     | _          | _     | _     | _     | 28    |
| 5554400 | $\mathrm{YAl}_3\mathrm{B}_4\mathrm{O}_{12}$ | 38500 | _          | _     | 34500 | _     | 1     |
| 5554400 | $YBO_3$                                     | 40485 | _          | 54055 | 34015 | 31250 | 29    |

Table 1: Continued

| ID      |                                                 |       | Excitation | 1     | Emi   | ssion |     |
|---------|-------------------------------------------------|-------|------------|-------|-------|-------|-----|
| number  | Compound (A)                                    | A     | С          | D     | A     | СТ    | Ref |
|         |                                                 |       |            |       |       |       |     |
| 5554500 | $LuBO_3$                                        | 34840 | _          | _     | 31850 | _     | 26  |
| 5554600 | $ScBO_3$                                        | 34360 | _          | _     | 33390 | _     | 28  |
| 5555430 | $\mathrm{CaYBO}_4$                              | 35800 | _          | _     | _     | _     | 30  |
| 5555430 | $\rm Ca_4 YO(BO_3)_3$                           | 32260 | 43480      | _     | 26315 | _     | 31  |
| 5563400 | $\rm Y_2Sn_2O_7$                                | 35715 | _          | _     | 30300 | 19610 | 32  |
| 5564025 | $\rm Li_4SrCa(SiO_4)_2$                         | 32260 | _          | 44445 | 32260 | _     | 33  |
| 5564040 | ${\rm MgGeO}_3$                                 | 34480 | _          | 46510 | 27780 | _     | 34  |
| 5564060 | $\rm Zn_2GeO_4$                                 | 33330 | _          | _     | _     | 19420 | 35  |
| 5564300 | $\rm{Gd}_2\rm{GeO}_5$                           | 32260 | _          | 42555 | 22220 | _     | 36  |
| 5564405 | $\rm LiYSiO_4$                                  | 35700 | _          | _     | _     | _     | 30  |
| 5565400 | $\rm Y_2SiO_5$                                  | 36295 | _          | _     | 29035 | 16750 | 37  |
| 5565500 | $\rm Lu_2SiO_5$                                 | 33875 | 40570      | 47990 | 27990 | 18150 | 38  |
| 5570000 | $\rm ZnGa_2O_4$                                 | 27780 | _          | 35715 | 24390 | 18520 | 39  |
| 5570100 | $LaAlO_3$                                       | 35090 |            | _     | 26670 | _     | 40  |
| 5570100 | ${\rm LaGaO}_3$                                 | 32570 | _          | 41670 | 26315 | _     | 41  |
| 5570100 | ${\rm LaInO}_3$                                 | 29400 | _          | _     | 23810 | _     | 40  |
| 5570300 | $\mathrm{Gd}_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$ | 36100 | _          | _     | 26180 | _     | 42  |
| 5570300 | $\mathrm{Gd}_3\mathrm{Ga}_5\mathrm{O}_{12}$     | 34480 | _          | _     | _     | 21280 | 43  |
| 5570400 | $\mathrm{Y}_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$  | 36495 | _          | 49260 | 32950 | 21290 | 44  |
| 5570400 | $\rm Y_4Al_2O_9$                                | 33875 | _          | _     | 25810 | _     | 45  |
| 5570400 | $YAlO_3$                                        | 35690 | _          | 52500 | 29600 | _     | 46  |
| 5570400 | $Y_3Ga_5O_{12}$                                 | 35200 | _          | _     | 31250 | 23810 | 47  |
| 5570500 | $\mathrm{Lu}_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$ | 36970 | _          | 49875 | 33510 | 20650 | 44  |

Table 1: Continued

| ID      |                                     |       | Excitation |       | Emi   | ssion |      |
|---------|-------------------------------------|-------|------------|-------|-------|-------|------|
| number  | Compound (A)                        | А     | С          | D     | А     | CT    | Ref. |
|         |                                     |       |            |       |       |       |      |
| 5573300 | $\mathrm{Gd}_{2}\mathrm{GaSbO}_{7}$ | 34480 | —          | _     | 27030 | _     | 48   |
| 5581030 | ${\rm CaMoO}_4$                     | _     | —          | 30900 | _     | 17540 | 5    |
| 5582030 | $\mathrm{CaWO}_4$                   | —     | _          | 34845 | _     | 21370 | 49   |
| 5582060 | $\rm ZnWO_4$                        | —     | _          | 29410 | _     | 17860 | 50   |
| 5582070 | $\mathrm{CdWO}_4$                   | —     | _          | 28570 | _     | 18180 | 50   |
| 5582400 | $Y_2WO_6$                           | —     | _          | 29300 | _     | 19400 | 1    |
| 5583100 | $LaVO_4$                            | —     | _          | 30860 | _     | 18215 | 5    |
| 5583300 | $\mathrm{GdVO}_4$                   | —     | _          | 30490 | _     | 17985 | 51   |
| 5583400 | $YVO_4$                             | —     | _          | 30030 | _     | 17545 | 51   |
| 5583500 | $LuVO_4$                            | _     | _          | 29850 | _     | 17360 | 52   |
| 5583600 | $\mathrm{ScVO}_4$                   | —     | _          | 28170 | 21505 | 15750 | 53   |
| 5584030 | $\rm CaNb_2O_6$                     | —     | _          | 31300 | 19610 | _     | 5    |
| 5584100 | $\rm LaNbO_4$                       | _     | _          | 32790 | 24390 | _     | 54   |
| 5584300 | $\mathrm{GdNbO}_4$                  | —     | _          | 32575 | 22470 | _     | 55   |
| 5584400 | $\mathrm{YNbO}_4$                   | _     | _          | 31850 | 22520 | 18520 | 56   |
| 5585300 | $\rm GdTa_7O_{19}$                  | 32260 | _          | _     | 20835 | _     | 57   |
| 5585400 | $\rm YTaO_4$                        | 34480 | _          | 40000 | 23810 | _     | 58   |
| 5586030 | $CaTiO_3$                           | _     | _          | 27030 | _     | 17240 | 59   |
| 5586400 | $\rm Y_2Ti_2O_7$                    | _     | _          | 31250 | _     | 18180 | 22   |
| 5587030 | ${\rm CaZrO}_3$                     | 31250 | _          | _     | 25640 | _     | 40   |
| 5587100 | $\rm La_2Zr_2O_7$                   | 34480 | _          | 40820 | 25975 | 19420 | 60   |
| 5588030 | $CaHfO_3$                           | 32500 | _          | _     | 26200 | _     | 47   |
| 5589110 | $BaLa_2ZnO_5$                       | 31250 | _          | 37040 | 24390 | _     | 61   |

Table 1: Continued

| ID      |                             |       | Excitation | 1     | Emi   | ssion |      |
|---------|-----------------------------|-------|------------|-------|-------|-------|------|
| number  | Compound (A)                | А     | С          | D     | А     | CT    | Ref. |
|         |                             |       |            |       |       |       |      |
| 5590020 | SrO                         | 27260 | _          | 37910 | 22990 | _     | 62   |
| 5590030 | CaO                         | 28935 | _          | 36455 | 25445 | _     | 9    |
| 5590100 | $La_2O_3$                   | 32470 | _          | 40160 | 21980 | 20835 | 51   |
| 5590104 | $\mathrm{NaLaO}_2$          | 28500 | _          | _     | 18000 | _     | 63   |
| 5590300 | $\mathrm{Gd}_2\mathrm{O}_3$ | 28820 | _          | _     | 23530 | 18450 | 64   |
| 5590304 | $\rm NaGdO_2$               | 29100 | _          | 39500 | 26000 | —     | 63   |
| 5590305 | $\rm LiGdO_2$               | 30200 | _          | 38900 | 21700 | —     | 63   |
| 5590400 | $Y_2O_3$                    | 30100 | _          | 38000 | 24400 | 20800 | 1    |
| 5590404 | $\mathrm{NaYO}_2$           | 28300 | _          | 39400 | 26000 | _     | 63   |
| 5590405 | $\rm LiYO_2$                | 30800 | _          | _     | 18000 | _     | 63   |
| 5590500 | $\rm Lu_2O_3$               | 26860 | _          | 30380 | 24800 | 19520 | 51   |
| 5590504 | $\mathrm{NaLuO}_2$          | 28400 | _          | 39100 | 26100 | —     | 63   |
| 5590505 | $\rm LiLuO_2$               | 30300 | _          | _     | 19500 | _     | 63   |
| 5590600 | $Sc_2O_3$                   | 29840 | _          | 37100 | 24600 | 19840 | 65   |
| 5590604 | $\mathrm{NaScO}_2$          | 27700 | _          | 38700 | 26200 | _     | 63   |
| 5590605 | $\rm LiScO_2$               | 31600 | _          | 39500 | 24700 | —     | 63   |
| 6690020 | SrS                         | 23230 | _          | 30245 | 20970 | 12500 | 62   |
| 6690030 | CaS                         | 24270 | 28795      | 32020 | 22220 | 16530 | 9    |
| 6690040 | MgS                         | 24035 | 28550      | 30890 | 22885 | —     | 66   |
| 7790030 | CaSe                        | 22100 | 25970      | 29035 | 20200 | 15625 | 9    |

| Table 1: C | Continued |
|------------|-----------|
|------------|-----------|



Figure 3: The A-band energies of  $Bi^{3+}$  in compounds.

Fig. 3 shows a decrease in the A-band absorption energy as function of the compound identification number (A). The strong decrease in the A-band transition energy from 9.4 eV in the free bismuth ion to 2.7 eV in selenide compounds is caused by a strong crystal field interaction of the 6s-electron with the chemical environment. The decrease follows the nephelauxetic sequence<sup>67</sup>

$$F^- < O^{2-} < Cl^- < Br^- < I^- < S^{2-} < Se^-$$
 (1)

$$P^{5+} < B^{3+} < Si^{4+} < Al^{3+} < RE^{3+} < AE^{2+}$$
(2)



Figure 4: The MMCT energies of  $Bi^{3+}$  in compounds.

 $\mathrm{Eu}^{3+}$  charge transfer energies in compounds<sup>68</sup>

For  $Bi^{3+}$  doped in compounds containing transition metals (titanates, vanadates, niobates, tantalates, molybdates and tungstates) broad excitation and emission bands are observed. This is typical for charge transfer type of transition and was also observed by Boutinaud *et al.*.<sup>5</sup> These type of compounds have a low lying conduction band bottom and therefore in most of these compounds no interconfigurational transitions (A- or C-band) are observed, since the <sup>3</sup>P<sub>1</sub> state is located inside or close to the conduction band bottom.



Figure 5: The exchange energies  $(E^{exch} \text{ of } Bi^{3+} \text{ in compounds.})$ 



Figure 6: The A-band and CT emission energies in compounds.

The fact that the MMCT/pair emission is rather constant could indicate that the emission is not from cation- $Bi^{3+}$  luminescence transition but from bismuth pairs (IVCT).



Figure 7: The vacuum referred binding energies of  $Bi^{3+}$  in compounds.



Figure 8: The vacuum referred binding energies of  $Bi^{3+}$  in compounds.



Figure 9: The vacuum referred binding energies of  $Bi^{3+}$  in compounds.



Figure 10: The vacuum referred binding energies of  $Bi^{3+}$  in compounds.

The chemical shift of the 6s-electron binding energy towards higher energy (less binding) as compared to the binding energy in the gaseous bismuth ion (free ion) is introduced by the crystal field of the host compound.

# Conclusions

## Acknowledgments

This work was supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. This work was partly funded by Saint Gobain Crystals, France.

# References

- Blasse, G.; Bril, A. Investigations of Bi<sup>3+</sup>-activated phosphors. J. Chem. Phys. 1968, 48, 217–222.
- (2) Srivastava, A. M.; Camardello, S. J. Concentration dependence of the Bi<sup>3+</sup> luminescence in LnPO<sub>4</sub> (Ln = Y<sup>3+</sup>, Lu<sup>3+</sup>). Opt. Mater. 2015, 39, 130–133.
- (3) Ranfagni, A.; Mugnai, D.; Bacci, M.; Viliani, G.; Fontana, M. P. The optical properties of thallium-like impurities in alkali-halide crystals. *Adv. Phys.* **1983**, *32*, 823–905.
- (4) Jacobs, P. W. M. Alkali halide crystals containing impurity ions with the ns<sup>2</sup> groundstate electronic configuration. J. Phys. Chem. Solids 1991, 52, 35–67.
- (5) Boutinaud, P.; Cavalli, E. Predicting the metal-to-metal charge transfer in closed-shell transition metal oxides doped with Bi<sup>3+</sup> or Pb<sup>2+</sup>. Chem. Phys. Lett. **2011**, 503, 239– 243.
- (6) Boutinaud, P. Revisiting the spectroscopy of the Bi<sup>3+</sup> ion in oxide compounds. *Inorg. Chem.* 2013, 52, 6028–6038.
- (7) Barandiarán, Z.; Meijerink, A.; Seijo, L. Configuration coordinate energy level diagrams

of intervalence and metal-to-metal charge transfer states of dopant pairs in solids. *Phys. Chem. Chem. Phys.* **2015**, *17*, 19874–19884.

- (8) Dorenbos, P. The 5d level positions of the trivalent lanthanides in inorganic compounds.
   J. Lumin. 2000, 91, 155–176.
- (9) Yamashita, N.; Asano, S. Luminescence centers of Ca(S : Se) : Bi<sup>3+</sup> and CaO : Bi<sup>3+</sup> phosphors. J. Phys. Soc. Japan 1976, 40, 144–151.
- (10) Oboth, K. P.; Lohmeier, F. J.; Fischer, F. VUV and UV spectroscopy of Pb<sup>2+</sup> and Bi<sup>3+</sup> centres in alkaline-earth fluorides. *Phys. Stat. Sol. b* **1989**, *154*, 789–803.
- (11) Chong, K.; Hirai, T.; Kawai, T.; Hashimoto, S.; Ohno, N. Optical properties of Bi<sup>3+</sup> ions doped in NaYF<sub>4</sub>. J. Lumin. 2007, 122-123, 149–151.
- (12) Radhakrishna, S.; Setty, R. S. S. Bismuth centers in alkali halides. *Phys. Rev. B* 1976, 14, 969–976.
- (13) Wolfert, A.; Blasse, G. Luminescence of s<sup>2</sup> ions in CsCdBr<sub>3</sub> and CsMg<sub>3</sub>. J. Solid State Chem. 1984, 55, 344–352.
- (14) Wolfert, A.; Blasse, G. Luminescence of Bi<sup>3+</sup>-doped crystals of Cs<sub>2</sub>NaYBr<sub>6</sub> and Cs<sub>2</sub>NaLaCl<sub>6</sub>. J. Solid State Chem. **1985**, 59, 133–142.
- (15) van der Steen, A. C. Luminescence of  $Cs_2NaYCl_6 Bi^{3+}$  (6s<sup>2</sup>). *Phys. Stat. Sol. b* **1980**, 100, 603–611.
- (16) Noh, M.; Cho, S.-H.; Park, S. Tunable luminescence in Bi<sup>3+</sup> and Eu<sup>3+</sup> co-doped Sr<sub>3</sub>AlO<sub>4</sub>F oxyfluorides phosphors. J. Lumin. **2015**, 161, 343–346.
- (17) Wolfert, A.; Blasse, G. Luminescence of the Bi<sup>3+</sup> ion in compounds LnOCl (Ln = La, Y, Gd). Mater. Res. Bull. 1984, 19, 67–75.

- (18) Wolfert, A.; Blasse, G. Luminescence of Bi<sup>3+</sup>-activated LaOBr, a system with emission from different states. J. Lumin 1985, 33, 213–226.
- (19) Oomen, E. W. J. L.; Blasse, G. Luminescence of  $Bi^{3+}$  in the metaphosphates  $LnP_3O_9$ (Ln = Sc, Lu, Y, Gd, La). J. Solid State Chem. **1988**, 75, 201–204.
- (20) Babin, V.; Chernenko, K.; Demchenko, P.; Mihokova, E.; Nikl, M.; Pashuk, I.; Shalapska, T.; Voloshinovskii, A.; Zazubovich, S. Luminescence and excited state dynamics in Bi<sup>3+</sup>-doped LiLaP<sub>4</sub>O<sub>12</sub> phosphates. J. Lumin. **2016**, 176, 324–330.
- (21) Moncorgé, R.; Boulon, G.; Denis, J. P. Fluorescence properties of bimuth-doped LaPO<sub>4</sub>.
  J. Phys. C 1979, 12, 1165–1171.
- (22) Srivastava, A. M.; Comanzo, H. A.; Camaradello, S. J. On the Bi<sup>3+</sup> Ti<sup>4+</sup> charge transfer transition in the pyrochlore Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> : Bi<sup>3+</sup>. Opt. Mater. 2015, 48, 31–35.
- (23) Han, B.; Zhang, J.; Li, P.; Li, J.; Bian, Y.; Shi, H. Photoluminescence properties of novel KBaP<sub>2</sub>O<sub>8</sub>:M (M= Pb<sup>2+</sup> and Bi<sup>3+</sup> phosphors. Opt. Mater. 2014, 37, 241–244.
- (24) Jagannathan, R.; Manoharan, S. P.; Rao, R. P.; Kutty, T. R. N. Luminescence and energy levels of Mn<sup>2+</sup> in LnMB<sub>5</sub>O<sub>10</sub> (Ln=La, Gd and Y; M = Mg, Zn and Cd). Jpn. J. Appl. Phys. **1990**, 29, 1991–1996.
- (25) Dotsenko, V. P.; Efryushina, N. P.; Berezovskaya, I. B. Luminescence properties of GaBO<sub>3</sub>: Bi<sup>3+</sup>. Mater. Lett. **1996**, 28, 517–520.
- (26) Dotsenko, V. P.; Berezovskaya, I. B.; Efryushina, N. P. Photoionization and luminescence properties of Bi<sup>3+</sup> in In<sub>1-x</sub>Lu<sub>x</sub>BO<sub>3</sub> solid solutions. J. Phys. Chem. Solids 1995, 57, 437–441.
- (27) Pekgözlü, I.; Erdoğmuş, E.; Çubuk, S.; Başak, A. S. Synthesis and photoluminescence of LiCaBO<sub>3</sub>: M (M: Pb<sup>2+</sup> and Bi<sup>3+</sup>) phosphor. J. Lumin. **2012**, 132, 1394–1399.

- (28) Wolfert, A.; Oomen, E. W. J. L.; Blasse, G. Host lattice dependence of the Bi<sup>3+</sup> luminescence in orthoborates LnBO<sub>3</sub> (with Ln = Sc, Y, La, Gd, or Lu). J. Solid State Chem. 1985, 59, 280–290.
- (29) Chen, L.; Zheng, H.; Cheng, J.; Song, P.; Yang, G.; Zhang, G.; Wu, C. Site-selective luminescence of Bi<sup>3+</sup> in the YB<sub>3</sub> host under vacuum ultraviolet excitation at low temperature. J. Lumin. 2008, 158, 115–119.
- (30) Blasse, G. The ultraviolet absorption bands of Bi<sup>3+</sup> and Eu<sup>3+</sup> in oxides. J. Solid State Chem. 1972, 4, 52–54.
- (31) Ju, G.; Hu, Y.; Chen, L.; Wang, X.; Mu, Z.; Wu, H.; Kang, F. The luminescence of bismuth and europium in Ca<sub>4</sub>YO(BO<sub>3</sub>)<sub>3</sub>. J. Lumin. 2012, 132, 717–721.
- (32) Srivastava, A. M. On the luminescence of Bi<sup>3+</sup> in the pyrochlore Y<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. Mater. Res. Bull. 1999, 37, 745–751.
- (33) Pekgözlü, I.; Erdoğmuş, E.; Yilmaz, M. Synthesis and photoluminescence of Li<sub>4</sub>SrCa(SiO<sub>4</sub>)<sub>2</sub>: M (M: Pb<sup>2+</sup> and Bi<sup>3+</sup>). J. Lumin. 2015, 161, 160–163.
- (34) Katayama, Y.; Ueda, J.; Tanabe, S. Effect of Bi<sub>2</sub>O<sub>3</sub> doping on persistent luminescence of MgGeO<sub>3</sub>:Mn<sup>2+</sup> phosphor. Opt. Mater. Express **2014**, 4, 613–623.
- (35) Zhang, S.; Hu, Y.; Chen, R.; Wang, X.; Wang, Z. Photoluminescence and persistent luminescence in Bi<sup>3+</sup>-doped Zn<sub>2</sub>GeO<sub>4</sub> phosphors. *Opt. Mater.* **2014**, *36*, 1830–1835.
- (36) Guo, P.; Zhao, F.; Li, G.; Liao, F.; Tian, S.; Jing, X. Novel phosphors of Eu<sup>3+</sup>, Tb<sup>3+</sup> or Bi<sup>3+</sup> activated Gd<sub>2</sub>GeO<sub>5</sub>. *J. Lumin.* **2003**, *105*, 61–67.
- (37) Babin, V.; Gorbenko, V.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.;
   Zorenko, Y. Photoluminescence and excited state structure in Bi<sup>3+</sup>-doped Y<sub>2</sub>SiO<sub>5</sub> single crystal films. *Radiat. Meas.* 2013, 56, 90–93.

- (38) Gorbenko, V.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zorenko, Y. Photoluminescence and excited state structure of Bi<sup>3+</sup>-related centers in Lu<sub>2</sub>SiO<sub>5</sub>:Bi single crystal films. J. Lumin. 2013, 134, 469–476.
- (39) Zhuang, Y.; Ueda, J.; Tanabe, S. Photochromism and white lon-lasting persistent luminescence in Bi<sup>3+</sup>-doped ZnGa<sub>2</sub>O<sub>4</sub> ceramics. *Opt. Express* **2012**, *2*, 1378–1383.
- (40) van Steensel, L. I.; Bokhove, S. G.; van de Craats, A. M.; de Blank, J.; Blasse, G. The luminescence of Bi<sup>3+</sup> in LaInO<sub>3</sub> and some other perovskites. *Mater. Res. Bull.* 1995, 30, 1359–1362.
- (41) Jacquier, B.; Boulon, G.; Sallavuard, G.; Gaume-Mahn, F. Bi<sup>3+</sup> center in a lanthanum gallate phosphor. J. Solid State Chem. 1972, 4, 374–378.
- (42) L.Tian,; Wang, L.; Zhang, L.; Zhang, Q.; Ding, W.; Yu, M. Enhanced luminescence of Dy<sup>3+</sup>/Bi<sup>3+</sup> co-doped Gd<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> phosphors by high-efficiency energy transfer. J. Mater. Sci: Mater. Electron 2015, 26, 8507–8514.
- (43) Novoselov, A.; Yoshikawa, A.; Nikl, M.; Solovieva, N.; Fukuda, T. Shaped single crystal growth and scintillation properties of Bi:Gd<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub>. Nucl. Instrum. Meth. Phys. Res. A 2005, 537, 247–250.
- (44) Zorenko, Y.; Mares, J. A.; Kucerkova, R.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, M.; Beitlerove, A.; Jurek, K. Optical, luminescence and scintillation characteristics of Bi-doped LuAG and YAG single crystalline films. J. Phys. D: Appl. Phys. 2009, 42, 075501.
- (45) Babin, V.; Lipińska, L.; Mihokova, E.; Nikl, M.; Shalapska, T.; Suchocki, A.; Zazubovich, S.; Zhydachevskii, Y. 2015,
- (46) Krasnikov, A.; Lipińska, L.; Mihokova, E.; Nikl, M.; Shalapska, T.; Suchocki, A.; Za-

zubovich, S.; Zhydachevskii, Y. Time-resolved photoluminescence and excited state structure of  $Bi^{3+}$  center in YAlO<sub>3</sub>. *Opt. Mater.* **2014**, *36*, 1705–1708.

- (47) Setlur, A. A.; Srivastava, A. M. The nature of Bi<sup>3+</sup> luminescence in garnet hosts. Opt. Mater. 2006, 29, 410–415.
- (48) Srivastava, A. M.; Szarowski, A. On the quenching of Bi<sup>3+</sup> luminescence in the pyrochlore Gd<sub>2</sub>GaSbO<sub>7</sub>. J. Solid State Chem. **1999**, 146, 494–498.
- (49) Zorenko, Y.; Pashkovsky, M.; Voloshinovskii, A.; Kuklinski, B.; Grinberg, M. The luminescence of CaWO<sub>4</sub> single crystals. J. Lumin 2006, 116, 43–51.
- (50) Wang, L.; Lv, Z.; Kang, W.; Shangguan, X.; Shi, J.; Hao, Z. Applications oriented design of Bi<sup>3+</sup> doped phosphors. *Appl. Phys. Lett.* **2013**, *102*, 151909.
- (51) Boulon, G. Processus de photoluminescence dans les oxydes et les orthovanadates de terres rares polycristallins actives par l'ion Bi<sup>3+</sup>. J. Phys. (Paris) **1971**, 32, 333–347.
- (52) Kang, F.; Peng, M.; Zhang, Q.; Qiu, J. Abnormal anti-quenching and controllable multi-transitions of Bi<sup>3+</sup> luminescence by temperature in a yellow-emitting LuVO<sub>4</sub>:Bi<sup>3+</sup> phosphor for UV-converted white LEDs. *Chem. Eur. J.* **2014**, *20*, 11522–11530.
- (53) Kang, F.; Yang, X.; Peng, M.; Wondraczek, L.; Ma, Z.; Zhang, Q.; Qiu, J. Red photoluminescence from Bi<sup>3+</sup> and the influence of the oxygen-vacancy perturbation in ScVO<sub>4</sub>: A combined experimental and theoretical study. J. Phys. Chem. C 2014, 118, 7515–7522.
- (54) Park, T. K.; Ahn, H. C.; Mho, S. I. High concentration of Bi<sup>3+</sup> incorporated into RNbO<sub>4</sub>:Eu<sup>3+</sup> (R = La, Y, Gd) as red phosphors for white LED applications. J. Korean Phys. Soc. 2008, 52, 431–434.
- (55) Liu, X. M.; Lin, J. Enhanced luminescence of gadolinium niobates by Bi<sup>3+</sup> doping for field effect emission displays. J. Lumin. 2007, 122-123, 700–703.

- (56) Shin, S. H.; Jeon, D. Y.; Suh, K. S. Charge-transfer nature in luminescence of YNbO<sub>4</sub>:Bi blue phosphor. J. Appl. Phys. 2001, 90, 5986–5990.
- (57) Kubota, S. I.; Yamane, H.; Shimada, M. Luminescence properties of Gd<sub>1-x</sub>Bi<sub>x</sub>Ta<sub>7</sub>O<sub>19</sub>.
   J. Alloys Compds. 1998, 281, 181–185.
- (58) Blasse, G.; Bril, A. Luminescence phenomena in compounds with fergusonite structure.
   J. Lumin. 1970, 3, 109–131.
- (59) Boutinaud, P.; Cavalli, E.; Mahiou, R. Photon conversion in Bi<sup>3+</sup>/Pr<sup>3+</sup>-codoped CaTiO<sub>3</sub>. J. Phys.: Condens. Matter 2012, 24, 295502.
- (60) Srivastava, A. M.; Beers, W. W. On the impurity trapped exciton luminescence in La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> : Bi<sup>3+</sup>. J. Lumin **1999**, 81, 293–300.
- (61) Chang, Y.-S. Blue Emitting Phosphors of BaLa<sub>2</sub>ZnO<sub>5</sub> Activated by Bismuth ions. J. Electrochem. Soc. 2011, 128, 2027–2030.
- (62) Ellervee, A. F. Luminescence of Pb<sup>2+</sup> and Bi<sup>3+</sup> centres in alkali-earth sulphides and oxides. *Phys. Stat. Sol. b* **1977**, *82*, 91–98.
- (63) van der Steen, A. C.; van Hesteren, J. J. A.; Slok, A. P. Luminescence of Bi<sup>3+</sup> ion in LiLnO<sub>2</sub> and NaLnO<sub>2</sub> (Ln = Sc, Y, La, Gd, Lu). J. Electrochem. Soc. 1981, 128, 1327–1333.
- (64) Liu, G. X.; Zhang, R.; Xiao, Q. L.; Zou, S. Y.; Peng, W. F.; Cao, L. W.; Meng, J. X. Efficient  $Bi^{3+} \rightarrow Nd^{3+}$  energy transfer in  $Gd_2O_3:Bi^{3+},Nd^{3+}$ . Opt. Mater. 2011, 34, 313–316.
- (65) Bordun, O. M. Luminescence of bismuth-activated ceramics of yttrium and scandium oxides. J. Appl. Spectrosc. 2002, 69, 67–71.
- (66) Asano, S.; Yamashita, N. Luminescence et interaction phonon-electron dans le luminophore MgS:Bi<sup>3+</sup>. Phys. Stat. Sol. b 1981, 105, 305–310.

- (67) Dorenbos, P. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds. J. Lumin. 2013, 136, 122–129.
- (68) Dorenbos, P. The Eu<sup>3+</sup> charge transfer energy and the relation with the band gap of compounds. J. Lumin. 2005, 111, 89–104.

Graphical TOC Entry