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Summary

Wind energy is already one of the cheapest forms of sustainable energy and is one of the
major technologies used to combat climate change. Nevertheless, its widespread success
depends greatly on its ability to compete with fossil-fueled power plants. Traditionally,
wind turbines try to benefit from economies of scale. They do this by growing towards
larger rotor diameters as soon as state-of-the-art technologies are able to support even
longer blades; a process that continues to this day. At present, 8–10-MW machines are
making their appearance on the market while 10- to 20-MW concepts—with diameters up
to 250 m—already lie on the drawing board.

A key issue in upscaling is estimating the long-term loads, most notably the extreme
loads, which are the result of decades of turbulent wind. These play an important role in
the design, because they determine the required strength for many load-carrying struc-
tures. However, designers are faced with a tremendous computational burden when trying
to predict extreme loads and often have to settle for a low accuracy. Therefore, any poten-
tial gains of a new blade shape or a new control method can be easily outweighed by the
sheer uncertainty. This has motivated this research on extreme wind gusts. Extreme wind
gusts are some of the most severe events that a turbine can encounter, and understanding
them will help to gain insight into important design loads.

Within this research work, the concept of a gust has been extended, from its common
perception to a mathematical description of fully three-dimensional velocity fields. The
notion that a gust is a three-dimensional phenomenon is very important—especially
when the size of turbine blades can outgrow the characteristic turbulent structures in
the atmospheric boundary layer. Velocity amplitudes are then no longer a convenient
measure of the severity, since small peaks are easily cancelled out over the rotor disk.
Instead, wind gusts are treated as concentrations of momentum, which are directly related
to the forces transferred to the structure.

The mathematical treatment of gusts has been carried out with spectral models under
the assumptions of homogeneity and Gaussian turbulence. These model the statistical
properties of turbulence in terms of the scales of motion (or wavelengths), while adhering
to the basic physics. The process of translating these properties to the spatial domain
can be manipulated to yield conditionally random velocity fields, containing wind gusts
with extremely high momentum contents. It was found that, in order to preserve the
conservation of mass, the fluid that is displaced in a wind gust has to recirculate. That is
why the streamlines around gusts are generally in the shape of vortex-like structures and
why velocity peaks cannot extend infinitely in space. Furthermore, the expected Euler
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characteristic appeared to be a good representation of the probability of finding such
events in a domain, even for very rare cases with long return periods.

Compared to many deterministic gust models, which assume a uniform inflow, these
stochastic gusts clearly reveal vulnerable areas in the rotor plane. This was demonstrated
with a simplified model of the DTU 10 MW reference turbine with a rotor diameter of 178
m. The rotor is especially susceptible to high bending moments when it is hit in the top
half of the disk, around two-thirds of the blade span, and during a blade’s downstroke.
Still, there are many more situations imaginable where an extreme gust does not trigger
any significant load; for example, by landing close to the blade root or simply missing
the blades altogether. For this reason, a single N -year gust has little to no contribution to
the N -year load. The long-term loads thus have to be found probabilistically, taking into
account the variation of all the environmental parameters.

Yet, many of such methods that rely on brute force (e.g., the crude Monte Carlo
method) are notoriously inefficient in the early design phases when computational re-
sources are scarcely available. For such cases, importance sampling methods are much
more reliable. They are based on the idea that, instead of simulating the entire life of
a wind turbine, the long-term extreme loads can be predicted by only evaluating the
response to the most severe events. This was demonstrated in this thesis with a simplified
model of the DTU 10 MW reference turbine (without control) as well as with the complete
NREL 5 MW reference turbine in the FAST v7 aeroelastic code. Several sampling distri-
butions were presented, spanning four-dimensional parameter spaces and taking into
account wind speed, gust amplitude, and gust position (lateral and vertical). The most
sophisticated method was able to reduce the deviation from the true 50-year blade root
bending moment by a factor 10 to 100—the equivalent of roughly a factor 1,000 increase
in efficiency—compared to extrapolating the results of a crude Monte Carlo method. Next
to manual sampling methods, an automated approach, based on a genetic algorithm, was
able to successfully generate extreme gusts that target certain weaknesses of the turbine.

The results of this work can be applied directly to predict the extreme loads of new
designs with less uncertainty. Moreover, the events that trigger these loads can now be
studied in detail. This allows the designers to work with less conservatism, which will help
to further reduce the cost of wind energy.



Samenvatting

Windenergie is één van de goedkoopste vormen van duurzame energie en één van de voor-
naamste technologieën om klimaatverandering tegen te gaan. Desalniettemin hangt het
grootschalige succes sterk af van de concurrentiepositie ten opzichte van fossielgestookte
centrales. Traditioneel gezien proberen windturbines te profiteren van een economisch
schaalvoordeel. Dit doen ze door te groeien naar grotere rotordiameters naarmate nieuwe
technieken beschikbaar komen die nog langere bladen mogelijk maken; een proces wat
tot op de dag van vandaag nog doorgaat. Tegenwoordig maken 8 tot 10 MW machines
hun opwachting op de markt, terwijl concepten van 10 tot 20 MW — met diameters tot
wel 250 m — al op de tekentafel liggen.

Een belangrijke kwestie bij het opschalen van windturbines is het schatten van de
langetermijnsbelastingen, voornamelijk de extreme belastingen, die het resultaat zijn van
tientallen jaren aan turbulente wind. Deze spelen een belangrijke rol in het ontwerp,
want ze bepalen voor een groot deel de sterkte-eisen van veel dragende constructies.
Ontwerpers worden echter geconfronteerd met een enorme rekenlast wanneer ze extreme
belastingen willen voorspellen. Daardoor moeten zij zich vaak neerleggen bij een lage
nauwkeurigheid en worden de eventuele winsten van een nieuwe bladvorm of regel-
methode al snel tenietgedaan door de enorme onzekerheid. Dit is de motivatie geweest
voor dit onderzoek naar extreme windvlagen. Extreme windvlagen zijn enkele van de
zwaarste gebeurtenissen die een windturbine kan tegenkomen, en ze begrijpen helpt om
meer inzicht te krijgen in belangrijke ontwerpbelastingen.

Binnen dit onderzoekswerk is het concept van een vlaag uitgebreid, van de alledaagse
opvatting naar een wiskundige omschrijving van volledig driedimensionale snelheids-
velden. Het idee dat een vlaag een driedimensionaal fenomeen is, is van groot belang —
zeker wanneer het formaat van turbinebladen de karakteristieke turbulente structuren in
de atmosferische grenslaag kan overtreffen. Snelheidsamplitudes zijn dan ook niet langer
een handige maat voor de zwaarte, omdat deze makkelijk over de rotorschijf uitgemiddeld
worden. In plaats daarvan worden windvlagen behandeld als concentraties van impuls,
die direct gerelateerd zijn aan de krachten die worden doorgespeeld aan de constructie.

De wiskundige behandeling van vlagen is uitgevoerd met spectrale modellen op
aanname van homogeniteit en Gaussische turbulentie. Deze modelleren de statistische
eigenschappen van turbulentie in termen van de verschillende bewegingsschalen (of
golflengtes), terwijl vastgehouden wordt aan de basisfysica. Het proces, waarin deze
eigenschappen worden vertaald naar het ruimtelijke domein, kan gemanipuleerd worden
om zo voorwaardelijk willekeurige snelheidsvelden te leveren met daarin windvlagen van
extreem hoge impulsgehaltes. Er is onder andere gevonden dat, om het massabehoud
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in stand te houden, de lucht die verplaatst wordt in een windvlaag moet recirculeren.
Daarom vormen de stroomlijnen rond vlagen in het algemeen een wervelachtige struc-
tuur en kunnen snelheidspieken niet tot in het oneindige uitstrekken. Verder bleek de
Eulerkarakteristiek een goede voorstelling te zijn van de kans om zulke gebeurtenissen
binnen een domein tegen te komen, zelfs voor hele zeldzame gevallen met lange herha-
lingstijden.

Vergeleken met veel deterministische vlaagmodellen, die een uniforme instroming
aannemen, leggen deze stochastische vlagen duidelijk kwetsbare gebieden in het rotorvlak
bloot. Dit is gedemonstreerd met een vereenvoudigd model van de DTU 10 MW ref-
erentieturbine met een diameter van 178 m. De rotor is met name vatbaar voor hoge
buigmomenten wanneer het in de bovenste helft wordt geraakt, rond tweederde van
de spanwijdte en gedurende de neergaande slag van een blad. Desondanks zijn er veel
meer situaties denkbaar waarin een extreme vlaag geen significante belasting veroorzaakt,
bijvoorbeeld wanneer het vlak bij de bladwortel landt of simpelweg de bladen helemaal
mist. Om deze reden heeft een enkele N -jaarsvlaag weinig tot geen invloed op de N -
jaarsbelasting. Langetermijnsbelastingen moeten daarom op een probabilistische wijze
gevonden worden, rekening houdend met de variatie van alle omgevingsparameters.

Toch zijn veel van zulke methoden die vertrouwen op brute kracht (bijv. de grove
Monte Carlo methode) behoorlijk inefficiënt in de vroege ontwerpfases wanneer weinig
rekenmiddelen voorhanden zijn. In zulke gevallen zijn zogenaamde importance sam-
pling methodes veel betrouwbaarder. Deze zijn gebaseerd op het idee dat, in plaats
van de gehele levensduur van een turbine te simuleren, de langetermijnsbelastingen
kunnen worden voorspeld met alleen de repons op de zwaarste gebeurtenissen. In dit
proefschrift is dit gedemonstreerd met een vereenvoudigd model van de DTU 10 MW refer-
entieturbine (zonder regeling) en de complete NREL 5 MW referentieturbine in de FAST v7
aeroelastische code. Verschillende steekproefverdelingen zijn hiervoor gepresenteerd, ver-
spreid over vierdimensionale parameterruimtes, inclusief windsnelheid, vlaagamplitude
en vlaagpositie (lateraal en verticaal). De meest geavanceerde methode kon de afwijking
tot de ware 50-jaarsbelasting verkleinen met een factor 10 tot 100 — het equivalent van
grofweg een factor 1,000 toename in efficiëntie — vergeleken met het extrapoleren van de
resultaten van een grove Monte Carlo methode. Naast handmatige steekproefmethodes
was ook een automatische aanpak, op basis van een genetisch algoritme, succesvol om
extreme vlagen te laten genereren die mikken op bepaalde zwaktes van de turbine.

De resultaten van dit werk kunnen direct worden toegepast om de extreme be-
lastingen van nieuwe ontwerpen te kunnen voorspellen met minder onzekerheid. Daar-
naast kunnen de omstandigheden waarin deze belastingen veroorzaakt worden in detail
bestudeerd worden. Dit stelt ontwerpers in de gelegenheid om minder conservatief te
werken, wat uiteindelijk helpt om de kosten van windenergie verder te verlagen.



Chapter 1

Introduction

1.1 Wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Historical development and trends . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Challenges in upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Probabilistic design and extreme loads . . . . . . . . . . . . . . . . . . 10

1.2 Why study gusts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14





“Anything that can go wrong, will go wrong.”

— MURPHY ’S LAW

ONE OF THE CHALLENGES in engineering is not to make sure things do not
fail, but to have them fail at the right time. This is especially true for

wind turbines, of which the cost price directly influences their commerical
viability. They spend years in a turbulent wind climate, sometimes in very
remote locations, trying to survive storms, waves, and gusts (while preferably
producing electricity in the process).

1.1 Wind energy
Climate change is one of the biggest threats to face future generations. Large-scale emis-
sions of greenhouse gases, deforestation, and intensive agriculture since the Industrial
Age have led to irreversible damage to the Earth’s climate and ecosystem. The scien-
tific proof for this is collected every five to six years in the assessment reports of the
Intergovernmental Panel on Climate Change (IPCC):

“Warming of the climate system is unequivocal, and since the 1950s, many of
the observed changes are unprecedented over decades to millennia. The atmo-
sphere and ocean have warmed, the amounts of snow and ice have diminished,
sea level has risen, and the concentrations of greenhouse gases have increased.”

(IPCC, 2013, p. 4)

The effects of this have become more prominent in recent history. It is likely1 that
that climate change has been the leading cause of the increase in heat waves and heavy
precipitation events seen since 1950 (Stocker et al., 2013, p. 110). This is a great threat for
the water and food security (not to mention the political instabilities it may cause). For
instance, a warmer climate can trigger an advance of alien plant and insect species that
may harm crops (Crowl et al., 2008; Diez et al., 2012; Epstein, 2001). Also, the bleaching of
coral reefs has a tremendous impact on fish stocks. Over 2016 alone, a 700-km stretch of
coral has died in the Great Barrier Reef (ARC Centre of Excellence for Coral Reef Studies,
2016), owing to warming ocean temperatures.

1 “Likely” is the term used by the IPCC to indicate a 66–100% probability.
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One of the key points in combating climate change is reshaping the world’s energy
supply. In 1971, the worldwide energy production amounted to 6,101 Mtoe (71.0 PWh),
86.7% of which came from fossil fuels (i.e., coal, oil, and natural gas). With the growth
in population size, this has increased to 13,699 Mtoe (159.3 PWh) in 2014, with fossil
fuels still making up 81.1% (IEA, 2016a). However, the production from renewable energy
sources has been on a slow but steady rise. In 2014, energy from wind, solar thermal, solar
photovoltaic, and geothermal has increased by 11.1%, 7.7%, 35.1%, and 8.3%, respectively
(IEA, 2016b).

1.1.1 Historical development and trends
Especially in Europe, wind energy has established itself as one of the most commercially
viable renewable energy sources. For 2030, the European Wind Energy Association (EWEA)
has estimated that wind energy will supply roughly a quarter of the EU’s total electricity
demand—533 TWh onshore and 245 TWh offshore (EWEA, 2015). Yet, the technical
potential (i.e., the total resource that can be harvested with present-day technology) is
estimated to be about 45 PWh onshore and another 30 PWh offshore (EEA, 2009).

Together with the ecological argument, the strongest driver for the development of
wind energy has been the price and availability of crude oil (see Figure 1.1). Up until the
Industrial Revolution, wind was one of the primary sources of energy and was used to
mill grain, saw wood, and pump water. After the invention of the steam engine, windmills,
watermills, and horse mills were starting to be replaced by fossil-fuel powered machines.
These grew more powerful as technology progressed, but could of course also operate
independently of the wind conditions. The Netherlands, for instance, housed some 10,000
windmills halfway through the 19th century, of which a little over 1,100 remain today.

During the electrification period, which started in the 1880s, power production be-
came more centralized, as the burning of fossil fuels is most effective in large combustion
chambers. Still, there was some interest in wind energy to power farms in rural areas.
Some notable examples of this are the machines built by Charles Brush (1849–1929) in
1888 and Poul la Cour (1846–1908) in 1891. At the time of World War I, scientific ad-
vancements in propeller technology led to a better understanding of rotor aerodynamics
(Van Kuik, 2007). Several full-scale prototypes were built over the course of the following
decades, with the most prominent one being the 1.25-MW Smith-Putnam machine in
1942, the largest turbine ever constructed for 37 years to come. It operated for 1,100 hours
until a major blade failure, which would have been prevented were it not for the material
shortages during World War II. In 1957, Johannes Juul (1887–1969)—who was a student of
Poul la Cour—designed a 24-m diameter, 200-kW turbine at Gedser, Denmark. It was a
three-bladed, upwind, stall-regulated machine that operated maintenance-free for eleven
years. Often called the “Danish design”, it formed the basis for modern wind turbines
seen today.

Wind energy technology took a big leap during the 1970s and 1980s. This was after
Arab oil-producing countries issued an oil embargo in late 1973, in response to the US aid
to Israel during the Yom Kippur War, which resulted in a 70% step increase in oil price.
Later, a second energy crisis would emerge in 1979, triggered by the Iranian revolution.
Therefore, driven by the desire for energy independence, the US government backed a
major research and development program at NASA. It focused primarily on large machines
that were viable for utility-scale electricity production. The first prototype was the 100-
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kW Mod-0, installed in 1975, which had a two-bladed rotor downwind of a lattice tower.
Already in 1979, the world’s first multi-megawatt machine was installed, being the 61-m
diameter, 2-MW Mod-1. The philosophy was that, in order to be cost-effective, wind
turbines have to be big enough to benefit from the economies of scale.2 Several larger
units were constructed in the years to follow: the Mod-2 (91 m, 2.5 MW), the WTS-4 (79.2
m, 4 MW), and the Mod-5B (97.5 m, 3.2 MW). Also, a 121.5-m diameter, 7.3-MW machine
was on the drawing board, but was never actually built.

Meanwhile in Denmark, students and staff of the Tvind school designed and con-
structed a 54-m diameter, downwind turbine on a large concrete tower. When it entered
operation in 1978, it was the world’s largest wind turbine at the time. It had its 40-year
anniversary in 2015.

There was also a considerable research effort into vertical-axis wind turbines (VAWTs),
primarily at Sandia National Laboratories. These had the advantage that they could op-
erate under any wind direction, thereby eliminating the need for a yaw system, and had
the heavy drivetrain located on the bottom instead of up on a tower. Among others,
experiments were carried out on a 17-m and a 34-m device, installed in 1977 and 1987,
respectively. The designs were eventually translated to a 17-m and 19-m diameter com-
mercial product, of which over 500 were installed up until the mid 1990s (Sutherland,
Berg and Ashwill, 2012). The largest VAWT ever to be constructed is the 96-m tall, 64-m
diameter, 4-MW machine located in Québec, Canada. Although there is no reason why
VAWTs should not be as successful as their horizontal-axis counterparts from a technical
perspective, the technology fell from grace due to the cost of the blades and issues with
reliability at that time. VAWTs namely suffer from strong torque fluctuations that affect the
fatigue life, but also have difficulties to start up in low wind speeds (e.g., see Bos, 2012).

During this era, wind turbines were widely sold as commercial products. In particular
in the United States, tax credit schemes for renewable energy together with the high oil
price made it very attractive for private developers to invest in wind energy. This led
to a proliferation of wind turbines, and about 12 GW of renewable energy capacity was
installed in California alone in the 1980s (Shukla and Sawyer, 2012, p. 136). Three giant
wind farms—Altamont Pass, Tehachapi, and San Gorgonio—together house more than
13,000 turbines and were responsible for 30% of the world’s installed wind power capacity
in 1995 (California Energy Commission, 2016). Most turbine designs that found their way
into the commercial market were two-bladed, based on the US research programs, and
three-bladed, based on the Danish design. Here as well, the trend moved towards larger
rotor diameters and higher power ratings. In 1985, about two-thirds of the newly installed
capacity comprised of units in the range of 51–100 kW (Rashkin and Goetze van Steyn,
1986, p. 12). Ten years later, in 1995, 46% of new installations were rated over 200 kW
(Siebensohn Small, 1997, p. 22).

The development in the United States slowed down in the mid-1990s after the oil
price collapse and with the renewable energy schemes ending. At that time, most of
the market activity moved to Europe, where the people had ongoing concerns about the
environment, strengthened by the Chernobyl disaster of 1986. Especially countries such

2 Much of the infrastructure costs—think of the grid connection, the foundation, and the installation—are
one-time investments that do not scale as rapidly as the price of a bigger machine. Therefore, larger wind
turbines can often deliver electricity at a lower kWh-price than smaller ones.
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Figure 1.1: Historical development of wind energy and its link to the price of crude oil (US Energy
Information Administration, 2016). 1: American Civil War (1861–1865). 2: Stock market crash
marking the start of the Long Depression (1873). 3: World War I (1914–1918). 4: Stock market
crash and beginning of the Great Depression (1929). 5: World War II (1939–1945). 6: Iranian
coup d’état (1953). 7: Six-Day War (1967). 8: Yom Kippur (Arab-Israeli) War (1973). 9: Iranian
Revolution (1979). 10: Iraqi invasion of Iran (1979). 11: Price collapse of crude oil (1986).

as Germany, Denmark, and Spain had some very successful policies in place that allowed
wind energy to flourish (Shukla and Sawyer, 2012, pp. 26–30).

The 1990s also saw the first offshore wind turbine: a 25-m diameter, 220-kW ma-
chine off the coast of Nogersund, Sweden. It was followed by the first offshore farm at
Vindeby, Denmark, consisting of eleven 450-kW turbines, located 2 km from shore. In the
Netherlands, four 500-kW machines were installed in the IJsselmeer. They ran from 1994
until they were removed in 2016 after meeting their end-of-life.3 Several pilot projects
were commissioned across Europe in the years after, such as a 5-MW farm at Tunø Knob,
Denmark in 1995 (ten 500-kW units, 5.5 km offshore) and a 2.75-MW farm in southern
Gotland near Burgvik, Sweden in 1997 (five 550-kW units, 5.7 km offshore).

The wind energy industry saw a sharp growth in the 2000s. This was mainly due to
increasing concerns about climate change, which materialized in the Kyoto Protocol in
1997, but also because of the volatile oil prices. A rapidly increasing world population,
emerging economies such as China, and tensions in the Middle East caused the price for
a barrel of crude oil to rise from $21.84, averaged over 2001, to $128.08 in July 2008 (US
Energy Information Administration, 2016). Over the same period, the total global installed
capacity of wind power increased fourfold, from 23.9 to 120.7 GW (GWEC, 2016). After
the 2008 financial crisis, the European and North-American markets stagnated and were

3 Already the (two-bladed) rotor broke off from one of the machines in late 2014 due to accumulated fatigue
damage (NUON, 2016).
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Figure 1.1 (continued): Historical development of wind energy and its link to the price of crude
oil (US Energy Information Administration, 2016). 12: Stock market crash (1987). 13: Gulf
War (1990–1991). 14: Stock market crash and start of the Asian financial crisis (1997). 15: 11
September terrorist attacks (2001). 16: U.S. invasion of Iraq (2003). 17: Global financial crisis
(2008). 18: Arab Spring (2011). 19: Oil price drop (2014).

overtaken by Asia. This was mainly due to the massive deployment of wind energy in
China, where 33.9 GW was installed in 2015 alone, totalling over 145 GW.4

4 One notable project is the construction of the onshore wind farm in Gansu, China, which began in 2009 and
is planned to output a total of 20 GW in 2020 (Reuters, 2009).
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Favored by the economies of scale, wind turbines and their power ratings grew as
new materials and control methods became available to support longer blades. In 2000,
the largest commercial machine already had a rotor diameter of 80 m and was rated
at 2.5 MW. Turbines of 3 MW and up shortly followed in the years after. Most of these
were upscales of previous versions, which is a strategy that many manufacturers chose to
eliminate part of the risk from the design process. A prototype of a 126-m diameter, 5-MW
machine was installed at the end of 2004. It was superseded by a 6-MW (an upgrade of an
earlier 4.5-MW version from 2002) and 7.5-MW unit in 2005 and 2007, respectively.

At the same time, with the prospect of higher energy yields, the industry also focused
more on offshore development. In 2000, the world’s largest offshore wind farm was
installed near Copenhagen with twenty 2-MW units. The first true large-scale farm was
constructed in Horns Rev, 14–20 km off the coast of Denmark. It features a total of 80
wind turbines—all 80-m diameter, 2-MW machines—and became operational in 2002. In
the Netherlands, the first offshore wind farm was commissioned in 2007 with 36 turbines
of 3 MW, located 10–18 km off the coast of Egmond aan Zee.

From the late 2000s, offshore wind farm projects have greatly increased in scale. A
second wind farm in Horns Rev, Denmark, commissioned in 2009, had the title of world’s
largest offshore farm with a total of 209 MW installed capacity. It was overtaken by a 300-
MW farm in 2010, and ultimately by a 630-MW farm in 2013, both off the coast of Kent
in the United Kingdom. In 2014, the oil price greatly dropped after a period of relative
stability, which caused much of the investments in the offshore oil and gas industry to
stagnate. However, despite the clear negative effect this has on the competitiveness of
wind power overall, it also led to lower interest rates, lower steel prices, and cheaper
offshore transport (e.g., see ECB, 2016). As of 2016, many projects exceeding 1–2 GW
already exist in a proposal stage.

The growth in the offshore wind energy sector also triggered many manufacturers
to focus on dedicated offshore turbines. These are tailored to the offshore wind climate,
but also aim to reduce some of the cost drivers. Two-bladed machines, of which a 6-MW
prototype was installed in 2014, are again interesting because of their lower top mass and
the ease of transport and installation. In addition, different foundation designs for deeper
waters are being investigated to expand the amount of suitable offshore sites. For very
deep waters where fixed-bottom foundations are no longer economical, floating wind
turbines may be a valid alternative. This also sparked a renewed interest in vertical-axis
wind turbines, which benefit from a low center of mass (e.g., see Paulsen et al., 2015).

1.1.2 Challenges in upscaling
The widespread success of wind energy is tied to its ability to be cost-effective. Especially
for offshore plants, the price per kWh of energy is still roughly twice of what is generated
onshore and and three to four times the price of brown coal.5 Most of the capital costs
of an offshore wind plant (30–50%) are made up by the wind turbines and, as drawn in
Figure 1.2, nearly half of the costs of the wind turbines are due to the tower and rotor
blades.

5 For Germany in 2013, the levelized cost of electricity (LCOE)—which is the average price of a unit of energy
that a plant produces compared to its investment costs, operations costs, and fuel costs, but excluding
any externalities—was 0.045–0.107 e/kWh for onshore wind, 0.119–0.194 e/kWh for offshore wind, and
0.038–0.053 e/kWh for brown coal (Kost et al., 2013).
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Figure 1.2: Capital cost breakdown (left) and cumulative mass distribution (right) of a represen-
tative offshore plant with a 5-MW wind turbine (DOTI, 2015; EWEA, 2007; Seidel, 2007; Taylor
et al., 2015).

Whereas many have argued that onshore machines have reached their maximum
size because of visual impact and transport limitations, offshore machines still continue
to grow. In 2014, the world’s largest wind turbine was a 164-m diameter, 8-MW prototype
installed in Denmark. A study on the upper limits concluded that even 20-MW units,
with a rotor diameter in the order of 250 m, are technically feasible (UpWind, 2011).
By upscaling the rotor, the energy yield of a wind turbine increases proportional to the
square of the diameter, while many of the capital costs—such as the price of the grid
connection—remain roughly the same. However, the volume and masses of many of
the structural components increase by the cube of the diameter.6 This is the effect of
the square-cube law, of which examples can be found from engineering to biology. For
instance, if a human being would be scaled up linearly, he or she would collapse under
their own body weight, since the masses outgrow the cross-section of the bones and
muscles.7 It also explains why ants are capable of carrying objects many times their own
weight, but whales suffocate if not supported by the buoyancy of seawater.

A wind turbine suffers from the square-cube law for the simple reason that every
additional kilogram of mass has to be supported by a structural element, which is sup-
ported by another structural element, which all have to be manufactured, transported,
and installed on a remote location. This puts an exceptionally high penalty on overdimen-
sioning the blades (i.e., making things stronger and heavier than they need to be), since
the extra weight is easily amplified by the tower and the foundation. In Figure 1.2, for

6 Doubling the length of the blades would increase the rotor area, and therefore the energy capture, by a factor
4. Unfortunately, it would also increase their volume and masses by a factor 8.

7 This is why the bones of elephants are proportionally much thicker than those of a mouse.
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example, a 410-ton rotor-nacelle assembly is carried by a 210-ton tower, mounted on a
510-ton jacket structure.

1.1.3 Probabilistic design and extreme loads
Over the years, the way for turbines to grow in diameter has been through advances
in materials science, structural design, and load reduction. However, this is becoming
increasingly difficult as machines push towards the limits of engineering. But apart from
finding new ways to cope with the higher loads, another strategy is to design closer to an
economical failure rate. This is the probabilistic design approach.

Ideally, a wind turbine should be strong enough to survive its design lifetime, but
not too strong. Every year of operation, there is a probability of a catastrophic failure,
such as a blade snapping off or the tower collapsing. This failure probability can be
reduced by increasing the safety limits on the design, thereby making it stronger but
heavier. However, at some point, preventing a very rare failure no longer outweighs the
cost of a more expensive design.8 In theory, it is exactly that point where a design is most
economical.

Various target failure probabilities exist for various applications, depending on the
consequence of failure. For example, unmanned offshore platforms are designed for an
annual failure probability of 0.05% (once every 2,000 years), but manned platforms are
designed for a 0.003% probability (once every 33,000 years), as set by the ISO (2001). In
the Netherlands, the probability that an area of land may flood is set per dike-ring. Based
on the number of inhabitants and the economic activity, this number may vary from 0.4%
(once every 250 years) to 0.01% (once every 10,000 years) (e.g., see Vergouwe, 2014, p.
12). Other examples are the so-called life-critical systems—such as defibrillator machines,
aircraft avionics, or car airbags—which are designed for a 0.001% annual failure rate (once
every 100,000 years). These target risks are deliberately set by designers or by society. In
fact, that such probabilities are not at all unrealistic is proven by the fact that many people
are willing to accept a one-in-ten-million chance to win the lottery.

The major structural components of a wind turbine are sized to handle the long-term
loads, which divide roughly into fatigue loads and extreme loads. Fatigue damage is caused
by cyclic loading, like the blades experiencing alternating low and high wind speeds while
rotating. Over a turbine’s design lifetime, it will accumulate the damage of well over 100
million of these cycles.

Extreme loads, on the other hand, are more or less coincidental events that are very
hard to predict. Because of the computational burden of running complex simulation
models, the load belonging to a certain target probability is often estimated by extrapolat-
ing the short-term load peaks. This process is sketched in Figure 1.3. A designer will run a
limited number of simulation cases from which the highest loads are extracted. Out of ten
extreme loads, for example, the five highest loads will determine the level that belongs
to a 50% probability of exceedance. Subsequently, the highest of ten loads sets the 10%
level. As long as these peaks are representative of one type of extreme load behavior, this
trend can be followed towards very low probabilities to find some N -year extreme load.
However, one can imagine that another randomized sample of loads would have produced

8 For example, one would readily accept an additional 0.1% chance of a turbine collapsing every year if it
would half the investment costs.



1.2 WHY STUDY GUSTS? 11

Load

Time

Load

Probability of exceedance

50%

10%

1

N years

The prediction uncertainty grows the
further a designer needs to extrapolate

Five out of ten
peaks (50%)

exceed this level

Only one out of
ten peaks (10%)

exceeds this level

Figure 1.3: Prediction of extreme load behavior after simulating only a fraction of the turbine’s
design lifetime. Load peaks are extracted from a time series and sorted. With enough data
available, a trend becomes visible that can be matched to a distribution function and extrapolated
to very low probabilities.

a different trend and a different N -year load. As a result, extreme load predictions are
clouded by uncertainty the further one needs to extrapolate.

Reducing this uncertainty is an important issue in wind turbine design. High un-
certainty means high risk, which will have to be accounted for by safety factors and may
lead to gross overdimensioning. Obtaining good extreme load predictions are particularly
difficult to obtain in the conceptual design phase. At that stage, the computational budget
for simulations has to be shared between several concepts and multiple design iterations.
Any gains made by gradual changes to a design can be easily outweighed by the uncer-
tainty. Therefore, it is hard to evaluate whether certain solutions are able to achieve actual
weight reductions.

1.2 Why study gusts?
Within the context of wind energy, this research on wind gusts is motivated by three
main objectives. The first reason is to better predict the extreme load behavior of wind
turbine components with less effort. One can imagine that extreme load peaks are highly
correlated to the gusts that are spawned within the wind field. When a designer has
the ability to directly model such interactions, in theory, the computational budget can
be used much more efficiently and the uncertainty surrounding ultimate design loads
can be tremendously reduced. This may mean lower safety factors and therefore weight
reductions, which in turn means lower capital costs and, ultimately, cheaper energy.

Secondly, wind turbine rotors have grown—and are still growing—to unprecedented
sizes. Whereas a strong gust could completely envelop a machine in the 1980s, the same
gust now only affects a fraction of a modern-day rotor blade. Some widely used gust
models that still assume a uniform inflow are outdated and need to be replaced by a more
physical model.

Finally, wind gusts form an interesting scientific topic. Although many have some
kind of idea of the concept of a gust, they remain rather abstract phenomena. In fact,
understanding gusts is one of the long-term research challenges that lie in the field of wind
energy (Van Kuik et al., 2016). This thesis work aims to make a significant contribution to
this.
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4 Gust loads on rotor blades
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Figure 1.4: Major storyline of this thesis.
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1.3 Thesis outline
In this thesis, the work is divided into four core chapters that can, more or less, be read
independently. Nevertheless, they are part of a bigger storyline, illustrated by Figure 1.4.

First, Chapter 2 will focus on gaining a better understanding of gusts and some of
the driving mechanisms. It is written to be accessible to a somewhat wider audience, as it
touches several fields of engineering. Furthermore, it also motivates the direction that is
taken in Chapter 3, which presents a mathematical description of a wind gust in a three-
dimensional velocity field. In addition, these events will be connected to a probability
to make them suitable for design exercises. Using this model, Chapter 4 will start to
explore some of the consequences of dealing with gusts that are finite in space. That the
understanding of extreme gusts indeed leads to better extreme load predictions is proven
by Chapter 5. Several methods are presented there to replace brute force Monte Carlo
methods that are able to achieve considerable reductions in uncertainty. Finally, Chapter
6 will wrap up the most important findings and will hand out some recommendations for
future research.
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“Windmills, which are used in the great plains of Hol-
land and North Germany to supply the want of falling
water, afford another instance of the action of velocity.
The sails are driven by air in motion – by wind.”

— HERMANN VON HELMHOLTZ, 1847

THE WIND is, of course, where it all starts. This first core chapter deals with
wind and gusts in a more general sense. Its purpose is to make certain

concepts tangible before diving into the hard mathematics of Chapter 3. The
discussion will be somewhat limited to our current understanding of gusts, but
will also address some of the areas where it falls short. By doing to, it will open
a direction that the rest of this thesis work will follow.

First, Section 2.1 takes off with a general introduction of the wind climate
in the atmospheric boundary layer. Then, Section 2.2 focuses on the question
“what is a gust?” by approaching it from several perspectives. These different
ways of looking at gusts has also led to the development of different gust models
for engineering problems, of which a couple of examples are discussed in
Section 2.3. Finally, Section 2.4 will treat the statistics of real-life gusts measured
offshore.

2.1 The atmospheric boundary layer
Wind is one of nature’s ways to restore balance. On a global scale, an imbalance exists
because the Equator receives more solar energy than the areas around the poles, while
the Earth rotates and only one side is heated at a time. The result is that quantities such
as heat, momentum, and moisture are carried by the wind and redistributed over the
Earth’s surface, steered by our planet’s rotation and the high and low pressure systems.
Close to the ground lies the atmospheric boundary layer, which is the lowest part—say,
the first 100 to 3,000 m (Stull, 1988, p. 4)—of the troposphere that is directly influenced
by the presence of the Earth’s surface. It is also the realm where almost all of human life
is situated (except for the people in airplanes and a handful of astronauts). Buildings,
wind turbines, and ground vehicles all have to be engineered to withstand anything that
can happen inside this layer. This includes storms, but also years of being exposed to the
everyday conditions.
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Offshore boundary layer Onshore boundary layer Urban boundary layer

Wave sublayer

Geostrophic wind

Figure 2.1: Sketch of the atmospheric boundary layer.

The wind speed in the atmospheric boundary layer varies from approximately zero,
very close to the ground, to that of the geostrophic wind.1 The way in which it varies with
height is called wind shear. Naturally, a rough surface with a lot of obstacles slows the
wind down more than a clean, flat surface (see Figure 2.1). This can get very complex
when moving offshore. There, pressure differences surrounding the waves give rise to a
sublayer extending up to five times the wave height (Emeis, 2011). Stronger winds produce
higher waves that, in turn, increase the roughness of the sea surface.

Wind shear also depends greatly on the atmospheric stability, which is the tendency
for air parcels to rise and mix with their surroundings. For example, during a hot summer’s
day with lots of evaporation, air at the surface wants to leave its position and rise to
higher altitudes. This is an unstable atmosphere, in which the boundary layer is well-
mixed with a full velocity profile (i.e., weak wind shear). On the other hand, stable
conditions are found during periods with almost no vertical transport (e.g., at night).
In such cases, the boundary layer is characterized by weak mixing and a strong shear
profile. A situation where vertical motions are neither encouraged or discouraged is called
a neutral atmosphere.

The conditions over offshore sites are again somewhat different from what is found
onshore. Partly, this is due to the large thermal capacity of water compared to the land
surface. The ocean temperature hardly knows a diurnal cycle and, compared to the air
temperature, lags behind the annual cycle by one or two months. In addition, the wind
over seas is influenced by a strong upward flux of humidity that forms a significant part
of the total buoyancy flux (Emeis, 2011). As a result, the offshore wind shear profiles can
look very different from onshore profiles (Holtslag, 2016). Likewise, the wind conditions
also vary from urban to rural areas. Flow that is separated from buildings and channeled
through streets leads to a very complex and unpredictable wind climate. The effects on
the atmospheric stability can be noticeable even at higher altitudes, owing to the heat
that is contained and released by buildings.

1 The geostrophic wind is the (theoretical) wind that would exist when the pressure and Coriolis forces are in
perfect balance.
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Locally, the flow is dominated by turbulence. Turbulence is characterized by a highly
chaotic flow where vortex-like structures, called eddies,2 move in seemingly random3

patterns while they mix the fluid properties at the smallest scales. As they are transported
(advected) by the mean wind, eddies will interact with other eddies, causing them to
stretch and tilt until they finally break down and become part of new eddies. The result is
that the wind speed fluctuates heavily, both in space and time, and over a wide range of
scales.

2.2 What is a gust?
Wind gusts, although being a familiar concept to many, are remarkably complex phenom-
ena. Not necessarily because it is hard to grasp how and why the wind speed can change
abruptly, but because a gust is more of a symptom that can be related to many different
mechanisms.

A gust is commonly described as a brief increase in wind speed. Many English
dictionaries, for instance, define it similar to

“A sudden brief rush of wind”

(Merriam-Webster Online, 2016)

Alternatively, the same phenomenon could be called a blast of wind, a flurry, a whiff,
or a puff. All these words more or less match the common perception of a gust – being
something of a jet, much like the air exiting one’s mouth when blowing out a candle.

2.2.1 From a statistical perspective
The way that gusts are commonly described has to do with how the wind speed is mea-
sured, namely by small anemometers. These output a fluctuating signal that behaves
like any other random process for which statistical tools are readily available. From the
viewpoint of such a point observer—only able to perceive the velocity in a very small part
of the total flow field—a gust is reduced to a perturbation from the mean wind speed.

The mean wind speed is traditionally determined over an interval of ten minutes,4

corresponding to the spectral gap in the Van der Hoven spectrum (after Van der Hoven,
1957), sketched in Figure 2.2. This spectrum shows how much kinetic energy is stored in
wind speed variations of a certain frequency. Obvious periodical effects are due to the
seasons, the day-night cycle, and the movement of high and low pressure systems. On
an hourly scale, though, there is often not that much variation during regular conditions.
Therefore, the period of ten minutes up to several hours is commonly labeled the spectral
gap. All the scales of motion that are lower in frequency are then assumed to shape the

2 Although the terms eddy and vortex are often used interchangeably to denote a swirling motion of fluid,
they are not always equal. In this work, a vortex is said to be a rather stable structure where the vorticity
is concentrated along one single axis, whereas an eddy can have distributed properties within any closed
streamline. Moreover, eddies have a viscous origin and are considered to be an integral part of the turbulent
cascade (see Subsection 3.2.1). An idealized vortex, on the other hand, can exist in inviscid flow.

3 “Random” is the word readily used for processes that are too intricate to fully grasp.
4 Averages over longer time intervals—e.g., an hour or a day—are also common in climatology, for instance. In

aviation, on the other hand, shorter intervals are often used in order to correctly represent the conditions
during take-off and landing maneuvers.
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mean wind speed, which tends to follow a Weibull distribution with varying shape and
scale factors throughout the year.

On the smallest scales, on the other side of the spectral gap, is turbulence. This is a
locally generated process and is often treated as something that is simply superimposed
on the bulk wind speed. Separating turbulence from the mean flow is called the Reynolds
decomposition, after Osborne Reynolds (1842–1912).5 Mathematically, it is stated as

u(x, t )︸ ︷︷ ︸
Total velocity

=
Mean flow︷︸︸︷

ū(x) + u′(x, t )︸ ︷︷ ︸
Unsteady

component

. (2.1)

where u = [u, v, w]ᵀ is the wind speed vector, with u pointing in the streamwise direction,
w pointing vertically upwards to the zenith, and v given by the right-hand rule. The bar,
�̄, is used to denote the mean (time-averaged) component and the prime, �′, is used for
the unsteady component. Moreover, x = [

x, y, z
]ᵀ is the position vector (where x matches

the direction of u, etc.) and t is the time.
When turbulence is seen as a random process with countless eddies of different

sizes moving in chaotic patterns, the central limit theorem is often used to argue that
turbulent velocity fluctuations are normally (Gaussian) distributed. Each unsteady velocity
component is then described by a zero mean and a variance, σ2, which can be derived
from a time series such as the one shown in Figure 2.3. The variances of the three velocity
components added together yield the turbulence kinetic energy (TKE):

k ≡ 1
2

(
σ2

u +σ2
v +σ2

w

)
. (2.2)

The turbulence kinetic energy is a quantity that—as the name might imply—describes
how much kinetic energy is carried by the turbulent eddies. Its definition states that
energetic field of turbulence is described by a wide probability distribution where high
velocities are common.
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Figure 2.2: Van der Hoven spectrum (1957) as drawn by Alan Davenport (Isyumov, 2012).

5 Though, the same concept was already mentioned by Leonardo da Vinci (1452–1519), who recognized that
turbulent structures are carried by the bulk flow.
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Figure 2.3: Different from the physical approach, statistics is not necessarily interested in how
gusts are exactly formed. Strong gusts appear naturally as the extremes of a random process,
which can be predicted as long as the statistical parameters of the process are known (e.g., see
Kristensen et al., 1991). In meteorology, gusts are commonly recorded from a 3-second running
average (Beljaars, 1987a,b). The bulk of these velocity fluctuations are Gaussian and can be
fitted to a normal distribution (a). The mean (expected) number of peaks that pass a certain
threshold level, A, during a time period, T , is predicted by Rice’s formula (b). Given that mean,
the probability of N of such peaks actually occurring is given by the Poisson distribution (c).

The same variance is also contained under the turbulent part of the spectrum and
can be found by integrating the spectral density, S( f ), over that frequency range.6 Specifi-
cally for the u-component, this is expressed as:

σ2
u =

∫
Suu( f )d f , (2.3)

which is the zeroth-order spectral moment. In addition, the spectrum also contains higher-
order statistics. The second-order spectral moment, in particular, describes the frequency
(or the steepness) with which the wind speed moves up and down.7 This can be expressed
as the variance of the first derivative and is obtained from the spectral density by

σ2
u̇ =

∫
(2π f )2Suu( f )d f , (2.4)

where the single dot is used to denote the first time derivative. Together, the zeroth-
and second-order spectral moments completely define the gustiness of the wind by
setting both the amplitudes and frequencies of the velocity fluctuations. Under the strict

6 Here, S( f ) is used to specifically denote the spectral density as a function of temporal frequency. In the
following chapters, the focus is more the wave number spectra, E(κ) and Φ(κ).

7 For example, think of a low- and a high-frequency sine wave of the same amplitude. The variance of the two
signals is the same, but the amount of level crossings is not. This difference is described by the second-order
spectal moment.
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assumption that turbulence is Gaussian, Rice’s formula (1944) expresses the expected
number of isolated events where the velocity amplitude exceeds a certain level:

E[#ZA] = T

2π

√
σu̇

σu
e
− A2

2σ2
u , (2.5)

where T is a given time period, A the threshold level, and where ZA is used to denote the
set of threshold exceedances.

These high amplitudes are called gusts, which usually last for a couple of seconds
before they drop back below the threshold level. In meteorology in particular, gusts are
usually defined as peaks of the “instantaneous” wind speed, which is a running three-
second average:

“WIND GUST is the maximum 3-second wind speed (in knots) forecast to occur
within a 2-minute interval at a height of 10 meters. Wind gust forecasts are
valid at the top of the indicated hour.”

(National Weather Service, 2016)

This three-second average is used to negate the effects of the anemometer’s response time
and the rest of the (digital) measurement chain, but also to restrict gusts to events that
are relevant for large structures (Beljaars, 1987a,b).

Peaks where the velocity exceeds very high amplitudes (e.g., several standard devia-
tions above the mean) are extreme gusts. The expected number of such events can be used
to formulate the probability of finding N gusts in the same time period. This requires the
Poisson distribution, expressed as

P(#ZA = N ) = (E[#ZA])N

N !
e−E[#ZA ]. (2.6)

It leads to the perhaps somewhat confusing result that, if an event occurs once every
hour on average, it is not guaranteed to happen every hour. In fact, the probability of it
occurring in any hour-long period is about 37% and the probability of it not occurring at
all is also 37%. Still, the Poisson distribution is successful in modeling all kinds of events,
ranging from the amount of callers waiting in line at a helpdesk to the number of Prussian
army men accidentally kicked to death by horses (Von Bortkewitsch, 1898, pp. 23–25). An
example of the Poisson distribution for E[#ZA] = 3 can be found in Figure 2.3.

2.2.2 From a physical perspective
Clearly, looking at Figure 2.3, the statistical perspective is limited to the information that
wind speed sensors can offer. These sensors are generally close to single-point observers
that fail to grasp the spatial structure of the flow. In fact, several flow structures in the
atmospheric boundary layer can leave a velocity signature that qualifies as a gust. Figure
2.4, for example, shows an overview of the scales of motion found within the Earth’s
atmosphere. This diagram appears in different forms in many textbooks on meteorology,
but always shows that the length scale of flow structures is roughly proportional to the
time scale at which they pass the observer. Gust events, with a time scale in the order
of several to tens of seconds, would therefore classify as micro-scale structures that fit



2.2 WHAT IS A GUST? 23

B
ru

n
t-

V
äi

sä
lä

fr
eq

u
en

cy

C
or

io
li

s
fr

eq
u

en
cy

(m
id

la
ti

tu
d

es
)

Atmospheric boundary layer

Earth’s circumference

`
/τ

2 = g

`
2 /τ= ν

L

H

Surface-layer
plumes

mechanical
turbulence

Isotropic
turbulence

Dust devils
Thermals

Wakes

Tornadoes
Cumulus clouds

Short gravity waves

Thunderstorms
Urban effects

Internal gravity waves

Low-level jets
Squall lines

Geographical
disturbances

Hurricanes
Tropical storms

Fronts

Rossby waves

Global circulation

Climate variations

100 101 102 103 104 105 106 107 108
10−3

10−2

10−1

100

101

102

103

104

105

106

107

108

Time scale, τ [s]

Le
n

gt
h

sc
al

e,
`

[m
]

m
ic

ro
-δ

m
ic

ro
-γ

m
ic

ro
-β

m
ic

ro
-α

m
es

o
-γ

m
es

o
-β

m
es

o
-α

m
ac

ro
-β

m
ac

-α

1 s 1 min 1 hr 1 d 1 w 1 m 1 yr

2 m

20 m

200 m

2 km

20 km

200 km

2,000 km

20,000 km

Figure 2.4: Meteorological scales of motion, compiled from the works of Orlanski (1975), Steyn
et al. (1981), and Stull (2011). Here, ν and g are used to denote the kinematic viscosity and the
acceleration due to gravity, respectively.

within the atmospheric boundary layer. Indeed, although different definitions for gusts
exist for different fields of study, they are most commonly linked to turbulent eddies and
the outflow of downbursts.

Looking at turbulence specifically, a gust is an air parcel that moves around as the
flow is being rearranged (see Figure 2.5a). The more violent this rearrangement process
is (i.e., the higher the turbulence kinetic energy), the stronger are the gusts. This means
that gusty wind can be expected close to the ground and in the wake of objects. When
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ū(z)

(a): An air parcel moving around in locally
generated turbulence.

(b): An air parcel dropping from a higher al-
titude after overcoming the buoyancy flux.

Figure 2.5: Gusts can spawn from locally generated turbulence or, as hypothesized by Brasseur
(2001), from turbulence at higher altitudes.

Cool air

Precipitation Outflow front

Figure 2.6: Sketch of a downburst.

buoyancy effects are taken into account, gusts can also be linked to vertical displacements
of air. A popular method for gust forecasting, for instance, is the method of Brasseur
(2001). It predicts that gusts can originate from turbulence at higher altitudes and drop
down to ground level when their kinetic energy content is high enough to overcome the
buoyancy flux (see Figure 2.5b). This could lead to events that cannot be predicted from
local conditions, as they are spawned from a different TKE budget.

In addition, there are events on the gust time scale that are spawned outside the
regular turbulence process. Downdrafts, for example, are caused by air that is being
dragged down during a thunderstorm by the combination of precipitation and local
cooling (see Figure 2.6). After this air column hits the ground, it spreads out radially from
the point of impact and covers the area with high wind speeds and high turbulence levels.
Downbursts are an example of straight-line winds, which are called that way to distinguish
them from tornadoes.
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However, the velocity signature from these events are no longer called gusts but
squalls:

“A sudden increase of wind speed of at least eight metres per second (16 knots),
the speed rising to 11 metres per second (22 knots) or more and lasting for at
least one minute;”

(WMO, 1995, p. I.1-A–13)

These cases are also where the usual statistical approach fails. During a thunderstorm,
the driving low pressure system can be very unstationary and can overlap the spectral gap
in the Van der Hoven spectrum (Beljaars, 1987b, pp. 10–11). Turbulence is then no longer
only generated locally, but is also strongly influenced by what happens on the mesoscale.
This means that the turbulent scales of motion can no longer be separated correctly from
the mean flow using simple ten-minute averages.

2.2.3 Extreme events
A particular case where the statistical and physical perspectives meet is the explanation of
the Draupner rogue wave. This was a freak event that occurred on 1 January 1995 where a
26-m high ocean wave (crest to trough) hit the Draupner platform, located 160 km off the
coast of Norway (see Figure 2.7a). Although the wave height on its own was, with a return
period of 100 years, nothing extraordinary (Haver, 2004), it was very rare for the sea state
at that time with a significant wave height8 of 12 m (see Figure 2.7b).

Rogue waves have been a part of seafaring history for quite some time, but have
usually been dismissed as tall tales. However, with the current modern ships, more and
more people actually live to tell about their encounter with rogue waves. And especially
with the coming of camera-equipped phones, video evidence is starting to pile up. Also,
actual scientific evidence in the form of wave records is now becoming available—of
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Figure 2.7: The Draupner rogue wave was an almost mythical event that occurred on 1 January
1995 in the North Sea.

8 The significant wave height is defined as the average wave height of the one-third highest waves. It also acts
as the scale parameter for the Rayleigh distribution, which describes the probability density of the wave
heights.
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Figure 2.8: Principle of the NewWave and NewGust methods. Extreme events are synthesized
through a summation of waves, each with a variance that covers part of the spectrum. The phases
of the waves, however, are constrained in order to yield a prescribed amplitude.

which the Draupner wave was the first—which have shown that rogue waves are actually
more common than previously thought (Smith, 2007).

There are multiple explanations for the existence of rogue waves. Arguments based
on physics often point to nonlinear effects such as the Benjamin-Feir instability, where
small waves travel slower than large waves and get swallowed up into one big front (Adcock
and Taylor, 2014). Other authors point to sharp changes in water depth (Janssen and
Herbers, 2009), special wind-wave interactions (Onorato and Proment, 2012), or crossing
sea states (Ruban, 2010).

On the other hand, the statistical argument is that waves like this can simply be
expected from regular conditions. A very high wave can arise from the interference of
wave modes, where the crests of several waves of different lengths coincide to produce a
peak. In fact, based on the theory of Lindgren (1970), rogue waves can be reproduced from
the wave spectrum and synthesized through a Fourier series. This design practice, which
is sketched in Figure 2.8a, is known as NewWave (Tromans, Anaturk and Hagemeijer,
1991).

The same principle can also be applied to gusts, since, as discussed earlier, many
statistical properties of turbulence can be covered by a spectrum (see Figure 2.8b). Indeed,
a similar process exists to recreate the shape of extreme gusts, aptly named NewGust
(Bierbooms, Cheng et al., 2001). Although it is debatable whether sinusoids are a good
representation of turbulent fluctuations, the gust shapes produced by this method come
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very close to the actual measurements (Bierbooms, Dragt and Cleijne, 1999). Moreover,
the NewGust method has been successfully implemented in wind turbine design exercises
(Bierbooms, 2009) to replace brute force calculation methods.9

It is likely that these extreme waves and extreme gusts will become more common,
simply because the worldwide data coverage is increasing. Considering the number of
offshore platforms and scientific instruments in the North Sea, the Draupner wave was
bound to happen somewhere sooner or later. This is a consequence of the law of truly
large numbers:

“The Law of Truly Large Numbers. Succinctly put, the law of truly large numbers
states: With a large enough sample, any outrageous thing is likely to happen.
The point is that truly rare events, say events that occur only once in a million
[as the mathematician Littlewood (1953) required for an event to be surprising]
are bound to be plentiful in a population of 250 million people. If a coincidence
occurs to one person in a million each day, then we expect 250 occurrences a
day and close to 100,000 such occurrences a year.”

(Diaconis and Mosteller, 1989)

A nice practical example of this is the maximum gust velocity measured at the data stations
of the Royal Dutch Meteorological Institute (KNMI), plotted in Figure 2.9. Since the 1950’s,
the number of active stations in the Netherlands recording gusts has increased from 1 to
48. This has resulted into more extremes being logged, which might give the impression

De Bilt
15 stations

32 stations

47 stations

1950 1960 1970 1980 1990 2000 2010 2020
15

20

25

30

35

40

45

50

55

Year

G
u

st
am

p
lit

u
d

e,
ū
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Figure 2.9: Annual extreme wind gusts measured at KNMI data stations from 1951 to 2015. The
more data is being logged, the more common high-amplitude gusts appear to be.

9 Though, with the growth in turbine diameter, the issue of extreme gusts becomes a three-dimensional
problem. This will be the primary focus of Chapter 3.
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that the wind climate is shifting towards stronger gusts.10 However, although this gives
some food for sensational news articles, this is not necessarily what happens in real life.11

2.2.4 From the perspective of a moving observer
How exactly wind gusts are experienced depends strongly on the observer’s perspective.
Traditionally, wind gusts have always been defined from the Eulerian perspective, which is
the way a fluid is observed from an Earth-fixed reference frame. This should not come as
a surprise, seeing as most wind speed sensors (anemometers) are mounted on towers or
masts. From the Eulerian perspective, any stationary observer slices through the wind
field much like a rock in a flowing river. If an approaching wind field, u(x), is imagined as
a wave front that is being advected by a mean velocity ū (see Figure 2.10a), the turbulent
eddies contained within that field approach the observer at fixed rate. The observed
(sampled) wind speed at a point xobs is then

uobs(t ) = u(xobs, t ), (2.7)

where x = [
x, y, z

]ᵀ is a position vector, u = [u, v, w]ᵀ a velocity vector, and t the time. In
this case, an observer would experience a mean wind speed of ū, and all the velocities
that deviate are perceived as gusts.

Another way to observe the wind is from a Lagrangian perspective that moves along
with the fluid’s advection velocity, much like a leaf being carried by the wind. If an
observer is released in the flow at a position xobs(0) at t = 0, it would experience a velocity
of

uobs(t ) = u(xobs(0)+ ūt , t ). (2.8)

Consequently, a Lagrangian observer does not sample the eddies along a forced path.
What can possibly be perceived as gusts is merely caused by the turbulent mixing within
the wave front itself. In fact, if the wave front is completely frozen in time, it would
experience no gusts at all.

Gusts can also be measured from the perspective of a moving observer. For example,
a cyclist riding at 10 km/h in the direction of a 15-km/h wind will experience a 5-km/h
tailwind. Though, if the cyclist would accelerate to, say, 20 km/h, this changes to a
5-km/h headwind and the cyclist would no longer feel to be pushed by the wind, but
would experience drag from it instead. Logically, this also changes the way turbulence is
perceived:

uobs(t ) = u(xobs(t ), t )− ẋobs. (2.9)

As drawn in Figures 2.10b and c, a moving observer can experience the same flow in
different ways. A cyclist riding towards the wind will experience shorter and steeper
bursts,12 superimposed on a higher mean wind speed. A cyclist riding in the direction of

10 Following the same train of thought, the growth of installed wind power capacity should also lead to more
encounters with extreme gusts. In addition, the probability for a single machine to encounter an extreme
gust increases with its swept area, since a larger volume of air is sampled.

11 So far, there is no definite proof whether climate change is causing stronger gusts. There is some speculation
that higher levels of moisture in the atmosphere can cause downbursts to occur more frequently(KNMI, 2009,
p. 22). On the other hand, the mean wind speed has been gradually decreasing over the Netherlands, mainly
due to an increase in building density (KNMI, 2015, p. 16).

12 An observer moving towards the wind will sample more eddies than a stationary observer, which increases
the chance of encountering stronger gusts.
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(a): For an Eulerian observer, the rate at which eddies are sampled is determined by the advection
velocity, ū. A Lagrangian observer, moving with the wind field, would only perceive the velocity
gradients that result from turbulent mixing within the wave front.
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(b): An observer moving upwind will experience a higher mean wind speed with shorter, steeper
gusts.
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(c): An observer moving downwind will experience a lower mean wind speed with longer, more
gradual gusts.

Figure 2.10: A cyclist sampling turbulent eddies transported by a wave front.

the wind, on the other hand, will perceive a much calmer wind climate where the gusts
are stretched out over time, maybe even up to the point where they are no longer relevant.

The interplay between an observer and a wind field can be very complicated, and
what is exactly perceived as a gust is very situation-dependent. For example, a kite flying
crosswind will sample eddies along a certain flight path in a plane perpendicular to the
wind, rather than only in the streamwise direction (see Figure 2.11a). In addition, it already
experiences changing velocities that result from turning and diving. Another example
is a rocket flying through a steady stream, as drawn in Figure 2.11b. Even though the
wind speed is constant in time, the rocket will experience a sudden burst in crosswind
that results in something best described as gust loading. Similar situations arise when
ground vehicles pass through the wake of their surroundings, such as a car driving past
an opening in a sound barrier.
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2.2.5 From the perspective of a large structure
Up until now, gusts have been loosely defined as fluctuations of wind speed, which is also
how they are measured in practice. The Royal Dutch Meteorological Instutute (KNMI), for
instance, will give out a warning for very severe gusts if their velocities are expected to
exceed 100 km/h. Other synonyms for a gust, such as wind blast or the Dutch “windstoot”
(thrust of wind), also give the impression that they can be treated as one-dimensional.
This more or less matches our own perception of a gust, being something that is much
larger than the average person, and how large exactly is not really relevant.

(a): A kite flying crosswind samples turbu-
lent eddies in the plane perpendicular to
the wind.

(b): A rocket flying through a steady
stream will perceive gust loading, even
though the stream itself is generally not
classified as a gust.

Figure 2.11: Moving observers perceive a turbulent wind field very differently from an Eulerian
(stationary) observer.

z

u′

y

Area of effect

Figure 2.12: For very large structures, it can no longer be assumed that gusts extend infinitely in
space. Instead, they have to be treated as volumes.
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However, there are plenty of cases imaginable where just a velocity is not enough
information. Take a bridge spanning a river, for example (see Figure 2.12). Hopefully,
the engineers who designed the bridge have made sure it can withstand any wind gust
it could encounter within its lifetime. At the same time, they cannot reasonably expect
a 100-km/h gust ever being able to engulf an entire bridge, maybe spanning hundreds
of meters. Clearly, for such a bridge, and for many other types of structures, a designer
needs to know much more than just a velocity amplitude.

Gusts are relevant for many branches of engineering because they push and pull
objects; that is, they apply a force, F . From basic aerodynamics, it is known that

F ∝ 1
2ρu2S, (2.10)

where ρ is the air density and S the object’s frontal surface. The first parameters grouped
together make the dynamic pressure, 1

2ρu2. In aerospace engineering, most notably in
rocketry, the point in a flight trajectory where a vehicle experiences the maximum dynamic
pressure is called “max Q”. Passing max Q is a critical point for the launch of spacecraft,
since it is the moment at which the structure is expected to undergo the highest loads.

This concept works for rockets, at least, since the majority of the incoming velocity,
u, is made up from their own forward motion and is relatively uniform over S. In the case
of the bridge, however, the maximum dynamic pressure might be stored in a localized
peak that is much smaller than the bridge itself. Integrated over the volume of this peak,
V , it yields the kinetic energy:

K = 1
2ρ

∫
V

‖u(x)‖2 dx. (2.11)

The amount of kinetic energy stored in a gust determines the damage it can potentially
inflict by deforming and ultimately breaking a structure (see Figure 2.13). However, for a
designer, energy is not a convenient measure for the strength of a gust. This is because it
has no direction and does not separate well from the mean wind.

Instead, when a designer is interested in impulse loads and stress levels, the quantity
that is directly relevant is momentum. Momentum is defined as mass multiplied by

Stress
∝ F

Strain

Yield strength

Ultimate strength

Fracture

Energy transferred

Figure 2.13: A generic stress-strain curve. While under the yield strength, a material deforms
elastically. Above it, a material enters the plastic region, where the material undergoes permanent
deformation until it fractures. The total energy that is transferred to the structure is given by the
area under the curve.



32 CHAPTER 2: THE NATURE OF WIND GUSTS

p(t0)

p(t0 +∆t )
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ū∆t

Ω

t
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p(t0 +∆t )

F(t )

Figure 2.14: An air parcel interacting with a cup anemometer over an effective surface, S, and a
sampling period, ∆t . The parcel loses momentum as the anemometer pushes back on the flow
with a force, F.

velocity and can be found by integrating the velocity over the gust’s volume, V :13

p = ρ
∫
V

u(x)dx. (2.12)

When a gust interacts with an object, it can transfer some of its momentum through the
impulse-momentum relation. The force, F, transmitted to an object equals the change in
momentum, p, of a gust:

F(t ) =− dp

dt
. (2.13)

In reaction, the object pushes back on the flow. Over a time period ∆t , this weakens the
gust according to

p(t0)−p(t0 +∆t ) =
t0+∆t∫
t0

F(t )dt . (2.14)

Even in the case of a cup anemometer—which is close to a single-point observer—
the rate at which it speeds up is determined by the amount of momentum a gust can
transfer during its time of passing.14 To a large extent, this is determined by the size of the
device. Like a horizontal-axis wind turbine, a cup anemometer has a certain frontal area,
which means that it “sees” the flow through a small streamtube rather than over a line.
Therefore, as sketched in Figure 2.14, the information that an anemometer can provide is
limited to what happens in this streamtube. Gusts much smaller than S may pass through
unnoticed, but gusts much larger than S are not fully appreciated.15

13 The notation
∫

dx is used to denote the volume integral
Ð

dx dy dz.
14 For a cup anemometer, the number of revolutions it makes during a sample period is what is translated into

a wind speed measurement.
15 This also raises the question how relevant such gust measurements are for the structural loads on bridges or

wind turbines.
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Over the course of one sampling period, ∆t , the anemometer comes into contact with
a total momentum content, p(t0). Part of it will be converted into the angular momentum
that makes the rotor spin and the remaining momentum, p(t0 +∆t), is left in the wake.
The difference between the two is the rotor thrust, F, which is a force that is transferred
through the bearings and, ultimately, to the structure on which it is mounted. Severe
gusts are those that can transfer a lot of momentum in a very short time period, thereby
producing a high peak force. The dynamics of this interaction can be very complicated
and is not something that can be answered in this section (this will be the focus on
Chapter 4). Still, based on Figure 2.14, it is possible to identify the severity as the gust’s
initial momentum, p(t0).

2.2.6 A general definition of a gust
This section will conclude by answering the question in its title to provide a gust definition
for the remaining chapters. A good definition should

• include cases where the observer is either steady or moving;

• be representative of the driving physical mechanisms;

• allow a proper statistical treatment;

• relate to how gusts are experienced (i.e., forces or loads).

Something that seems fitting is

The projection of a turbulent momentum concentration onto an observer.

It restricts gusts to events that are generated locally by turbulence. Events such as down-
bursts are assumed to be fundamentally different processes and are placed outside of the
scope of this thesis. Moreover, the focus lies on momentum, since velocity amplitudes
alone are not enough to assess the impact that gusts have on a design. As will become clear
in the next chapter, this also enables the full statistical treatment of three-dimensional
gusts.

2.3 Gusts in design problems
Although statistical descriptions for gusts have been around for quite some time, deter-
ministic models are still widely used in many branches of engineering.

2.3.1 Deterministic gust models
Structures that spend their lifetime in a turbulent wind field have to withstand encounters
with severe gusts. Therefore, for a designer to make something “gust-proof”, he or she will
have to rely on an appropriate gust model. Many of such gust models can be classified as
“engineering models” – models that sacrifice accuracy for speed and simplicity. These are
valued because they provide a clear design objective, which is why they have often found
their way into engineering standards.

In the past, many deterministic gust shapes have been used to assess wind loading on
aircraft. Many of these classical problems are posed by employing certain wave functions
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of which the response, in some cases, could be solved analytically. Some famous examples
are given in the works of Wagner (1925), Theodorsen (1935), and Von Kármán (1938).
Küssner’s problem (1936), shown in Figure 2.15a, describes how an airfoil section travels
through a step in vertical wind speed:

w ′(x) =
 A, for x ≤ ūt/c,

0, for x > ūt/c,
(2.15)

where A is the gust amplitude and c the airfoil’s chord length. The response function, later
obtained by Von Kármán (1938) through thin airfoil theory, shows how the lift coefficient
reacts:

Cl (t ) = 2π
A

ū
K (s), (2.16)

where K (s) is known as Küssner’s function, with s = x/(c/2) being the number of semi-
chords traveled. Another common example of a deterministic gust is the 1–cos gust,
sketched in Figure 2.15b, which is part of the Federal Aviation Administration (FAA)
regulations (see Code of Federal Regulations, 2006; title 14, sec. 23.333):

w ′(x) =


A

2

[
1−cos

(
2πx

25c

)]
, for 0 ≤ x ≤ c,

0, otherwise,
(2.17)

where c is the mean geometric chord length.
Step functions are, of course, highly idealized, but could be appropriate in cases

where a vehicle is covering a large distance in a short time. During the Apollo and Space
Shuttle programs, for example, NASA employed a 9-m/s quasi square-wave gust with
wavelengths ranging from 60 to 300 m (see Figure 2.15c) to assess the performance of
launch vehicles (NASA, 2000, p. 2-84–89). In addition, a simple sine wave model was used
to model turbulent fluctuations over the flight path. This had to be added to a mean wind
speed profile, for which seasonal variations were taken into account.

Ground vehicles, such as trains, buses, and cars, suffer from wind loads as well.
Though, what is often being modeled are not gusts per se, but variations in crosswind
caused by the wakes of obstacles next to the road. These leave gradients in the mean
wind speed that, when picked up by a moving vehicle, are experienced as gusts. Such
velocity changes have been modeled as sinusoids (Theissen, 2012) or as steps (Hucho and
Emmelmann, 1973), as sketched in Figure 2.15d.

Other waveforms can be thought of that specifically trigger some kind of structural
response for certification purposes. The International Electrotechnical Commission (IEC),
for example, prescribes that wind turbines have to withstand a fully coherent extreme
operating gust (often called the “Mexican hat”) that is notoriously difficult for control
systems to handle (IEC, 2005a):

u′(t ) =


−0.37A sin

(
3πt

τ

)[
1−cos

(
2πt

τ

)]
, for 0 ≤ t ≤ τ,

0, otherwise,
(2.18)
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(a): Küssner’s problem (1936).
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(b): The 1–cos gust from the FAA regulations 2006; title 14, sec. 23.333).
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(c): NASA used a simple quasi square-wave to model gusts during the launch of the Apollo and
Space Shuttle programs (NASA, 2000, p. 2-84–85).
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(d): Gust models are also used to model the effects of crosswind on ground vehicles. This
example shows a step function with a smooth ramp (Hucho and Emmelmann, 1973).
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(e): The IEC extreme operating gust prescribed used for wind turbine certification is based on a
common wavelet function and is completely coherent over the rotor disk (IEC, 2005a).

Figure 2.15: Examples of deterministic gust models used in engineering.
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where the time scale, τ, is taken as 10.5 seconds. However, this model has become less
and less physical as turbine diameters have grown in size over the past decades. Although
the amplitude, A, decreases with increasing rotor diameter, D , the velocity profile is still
completely uniform over the y z-plane. This means that it behaves more like a shockwave
(i.e., without conservation of mass) than a realistic turbulent structure.

2.3.2 Extreme events and extreme loads
The pitfall with many of these engineering models is that they are sometimes directly
linked to the long-term design loads. They can give the illusion that “if a structure can
withstand the most extreme event happening in its design lifetime, it should also be able
to survive its design lifetime without failing.” However, this mixes up extreme events and
extreme loads, which are not always related. The term “extreme” merely implies that an
event is rare, but not necessarily harmful.

A good example to distinguish the two is of a wind turbine operating in a steady
mean wind speed. Depending on its distribution, the highest mean wind speed to occur
in a twenty-year design lifetime might be well over 40 m/s. However, most turbines are
put in a parked state beyond 25 m/s (e.g., see Figure 4.3), since it is not economically
viable to operate in those conditions. The blades are then pitched to feather in order to
generate zero lift, which leads to considerably lower loads than when the turbine would
be operating at maximum thrust. Instead, the highest loads in the design lifetime are
often found at and around a turbine’s rated wind speed, which it encounters regularly.

The same argument holds for gust events. Especially in the design of wind turbine
controllers, a lot of attention is sometimes given to the Mexican hat gust because it plays
such a major role in certification. This is also because estimating the long-term extreme
loads during normal operation is a tedious process with plenty of room for error, therefore
hard to integrate in a design loop. However, by doing so, one easily overlooks the many
everyday gusts that have a high probability of someday landing on a very vulnerable spot
in the rotor.

ū

F
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tT

P(X ≤ ū)

P(X ≤ F )

ū

F

. . .

. . .

Extreme
events

Extreme
loads

Figure 2.16: Sketch of a load series derived from a set of wind speeds. It shows that the long-term
extreme loads do not always follow from the extreme events, which are by definition rare but not
necessarily harmful.
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2.4 Gusts measured offshore
Finally, this chapter is concluded with a look at real-life gust events and the conditions
from which they are spawned.

2.4.1 The OWEZ met mast
The Netherlands’ first offshore wind farm was built between 2005 and 2007, 10–18 km off
the coast of Egmond aan Zee. It consists of 36 turbines, each with a rated power of 3 MW,
spaced out over an area of 27 km2.

Prior to construction, a 116-m high met mast was installed at 52◦ 36’ 22.9” N, 4◦
23’ 22.7” E (see Figure 2.17). Meteorological data in the form of 10-min mean values,
spanning from July 2005 to December 2010, is publicly available online from the website
of NoordzeeWind.16 In addition, high-frequency (4 Hz) time series are available from May
2007 to December 2008.

The mast is a triangular lattice tower mounted on a monopile foundation in a 20-m
deep seabed. As drawn in Figure 2.18, it has three measurement stations at 21 m, 70 m,
and 116 m. Each of them has three booms equipped with a cup anemometer and a wind
vane. Furthermore, each of the northwest booms has a sonic anemometer installed and
each of the south booms has a thermometer and a humidity sensor. A pressure sensor
is found at 20 m and two accelerometers (north-south and east-west) are located on
the tower top. Finally, another thermometer is located at –3.8 m to measure seawater
temperature and a Doppler profiler is positioned at –17 m to measure the current speed.

Met
mast

0 2.5 km

0 100 km

N

5◦W 0◦ 5◦E 10◦E

51◦N

52◦N

53◦N

54◦N

55◦N

56◦N

Figure 2.17: The Offshore Windpark Egmond aan Zee (OWEZ) is located in the Dutch North
Sea, between 10 and 18 km off the coast.

16 See www.noordzeewind.nl/kennis/rapporten-data/.

www.noordzeewind.nl/kennis/rapporten-data/
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Figure 2.18: Geometry of the OWEZ met mast with the measurement stations at 21, 70, and 116
m (Kouwenhoven, 2007). The instrument layout is the same at every station.
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Figure 2.19: Distributions of the 10-min mean wind direction and mean wind speed from July
2005 to December 2010.
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2.4.2 Data coverage
Unfortunately, data is not always available and, when it is, not always of good quality.
Since the park was already operating during the measurement campaign, the met mast is
located in the wake of the neighboring turbines for the wind directions between 315 and
135◦(Kouwenhoven, 2007). In practice, however, already significantly higher turbulence
intensities were noted for 295 to 155◦(Wagenaar and Eecen, 2010, pp. 11–15) and it is
recommended to filter the data for those sectors. The data set can be further reduced by
only limiting the conditions to what is representative for far offshore. In that case, only
including the wind directions between 205 to 25◦ensures that the fetch is at least 200 km.
This means that the undisturbed wind directions range from 205 to 295◦(see Figure 2.19).

For the sonic anemometer, in particular, there are mast effects. Being only installed
on the northwest boom, the sonic measurements are distorted by the tower wake for wind
directions between 90 to 150◦(Wagenaar and Eecen, 2010, p. 11). This does not apply to
the vanes and the cup anemometers, since there is always one of the three measuring
an undisturbed flow. For these sensors, the data source can be chosen according to the
method of Eecen (2008), who divided the wind directions into six 60◦sections. The “true”
wind direction is found iteratively, by taking averages of two vanes, until the boom is
found that is approximately perpendicular to the incoming wind. The cup anemometer
mounted on that boom is then assumed to be undisturbed.

Still, for turbulence measurements, the sonic anemometer is generally superior to
the cup anemometer. This is because it is able to measure each of the three velocity
components and because it does not suffer from inertia. Its drawback is that it has a lower
technical availability, which leaves gaps in the data. Especially at the 116-m station, the
availability is merely 67.2% (see Figure 2.20). When only the wind directions between 205
and 295◦are included, just 25.7% of the data remains.
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Figure 2.20: Availability of the sonic anemometers from July 2005 to December 2010. Indicated
with light bars are the amount of existing ten-minute records per month. The darker bars represent
the entries limited to 205≤ψ≤ 295◦.
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2.4.3 Turbulence levels
In general, there are two main mechanisms responsible for the generation of turbulence.
One is the mechanical friction generated by the sea surface, the other is the vertical
transport of heat; both have an effect on the longitudinal turbulence intensity:

Iu = σu

ū
, (2.19)

where σu is the standard deviation of the longitudinal (i.e., along-wind) velocity compo-
nent.

First, Figure 2.21 shows how the turbulence intensity varies with mean wind speed.
It starts off relatively high at low wind speeds. On the one hand, this is simply because
the denominator in Equation (2.19) is smaller. On the other hand, the low wind speeds
also contain periods of fair weather with lots of evaporation and high turbulence. Another
characteristic property of offshore turbulence is that it tends to become more intense
at higher wind speeds. Stronger winds cause waves to grow, leading to a higher surface
friction and an increasing mechanical production of turbulence. Of course, this effect
is stronger close to the sea surface, which is clearly shown by the differences between
Figures 2.21a and 2.21b.

The second aspect is the vertical transport of heat, which is linked to the stability
of the atmosphere. Here, atmospheric stability is determined—as in Holtslag (2016)—
through the bulk Richardson number:

Ri =
g
∆Θ̄v

∆z

Θ̄v

(
∆ū

∆z

)2 , (2.20)

where g is the acceleration due to gravity and Θ̄v the virtual potential temperature, which
is derived by following the work of Hutschemaekers (2014). The gradients ∆Θ̄v/∆z and
∆ū/∆z are determined between z = 0 and z = 21 m, assuming ū = 0 m/s and a 100%
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(a): At z = 21 m.
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(b): At z = 116 m.
Figure 2.21: Dependency of the turbulence intensity on mean wind speed (filtered for the wind
directions 205≤ψ≤ 295◦). The thick line in the box plot represents the median; the edges of the
box are located at the first and third quartile; and the ends of the whiskers mark the 2.5th and
97.5th percentiles (i.e., the 95% range).
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Table 2.1: Atmospheric stability classes defined by Gryning et al. (2007).

Stability class Obukhov length

Very stable (vs) 10 ≤ LO ≤ 50 m

Stable (s) 50 ≤ LO ≤ 200 m

Near-neutral stable (nns) 200 ≤ LO ≤ 500 m

Neutral (n)
∣∣LO

∣∣≥ 500 m

Near-neutral unstable (nnu) −500 ≤ LO ≤−200 m

Unstable (u) −200 ≤ LO ≤−100 m

Very unstable (vu) −100 ≤ LO ≤−50 m

relative humidity at the sea surface, and assuming that the seawater temperature at a
depth of –3.8 m is representative of the sea surface temperature. The atmospheric stability
is then classified using the Obukhov length, LO, obtained from the empirical relationship
from Grachev and Fairall (1997):

z

LO
≈


10Ri, for Ri ≤ 0,

10Ri

1−5Ri
, for Ri > 0.

(2.21)

The stability classes are listed in Table 2.1.
Figure 2.22a shows that the turbulence intensity is generally higher in unstable con-

ditions (strong buoyant production) than in stable conditions (weak buoyant production).
This has a pronounced seasonal variation at offshore sites (see Figure 2.22c). Water takes
longer to heat up and cool down than air, causing it to lag behind the air temperature over
the seasonal cycle. In autumn, for example, the sea is still warm while the air is starting
to cool down. The air that is heated up by the warmer sea surface is tempted to convect,
resulting in an unstable atmosphere with high turbulence levels. Vice versa, a colder sea
surface has the tendency to stabilize the atmosphere, which is what may happen in early
spring.

Another thing to look at is the vertical homogeneity of the boundary layer, which
is heavily relied upon in the next chapters. It implies that the statistical properties of
turbulence are the same in every direction. Figure 2.23 shows this a rough assumption
at best, especially for large vertical separations. Partly, this is because much of the tur-
bulence production takes place near the surface. When the boundary layer is poorly
mixed—for example, during stable atmospheric conditions—differences in turbulence
intensities are not well evened out. This might also explain why turbulence seems to be
more homogeneous at lower wind speeds, which is where a lot of periods with unstable
atmospheric conditions are binned (see Figure 2.22b). Comparing Figure 2.23a to Figure
2.23b, the standard deviation of the longitudinal wind speed is more uniform at higher
altitudes. Though, whether this is still the case for future 10–20 MW turbines is hard to
tell with the OWEZ met mast.
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2.4.4 Gust measurements
Spanning a total of 20 months, the high-frequency data set contains tens of thousands
of gusts. These one-dimensional events can be analyzed with the available statistical
tools, explained in Subsection 2.2.1. Figure 2.24 shows the number of velocity peaks
exceeding a normalized level, A/

p
Λ0, where Λ0 is the zeroth-order spectral moment

(i.e., the variance). In the theorical case, for homogeneous Gaussian turbulence, this
should approach Rice’s formula. However, real-life gusts start to deviate from Gaussian
behavior already for amplitudes of 3 to 4 times the standard deviation. It results in
heavy distribution tails, a property called kurtosis. The underlying reason is that kinetic
energy is not evenly distributed throughout a turbulent velocity field. Instead, it may be
concentrated in the eddy centers, causing the statistics to vary locally (Castaing, Gagne
and Hopfinger, 1990). This is reflected in the tails of Figure 2.24a, where non-Gaussian
behavior exists especially at the smallest scales.
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Figure 2.22: Stability effects at z = 21 m.
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Yet, when the mean wind speed increases, the curves start to converge back Rice’s
formula. One reason for this could be that, when eddies are advected at a higher rate,
measurement points logged at a fixed sampling frequency are spaced further apart:

∆x ≈ ū∆t . (2.22)

Consequently, this affects the smallest measurable length scales. It does not mean that
non-Gaussian behavior simply disappears at higher wind speeds, but only that it can no
longer be picked up by the anemometer.

A similar effect is achieved when the velocity peaks are smoothed out over a short
time period, τ, as is common practice in meteorology:

A = max
[
u′(t )∗ g (τ)

]
, (2.23)

where u′(t )∗ g (τ) denotes convolution with a three-second window. In that case, the non-
Gaussian fluctuations are lumped together with neighboring data points and averaged.
This is shown in Figures 2.24c and e for time periods of τ= 3 and 10 s. The process of
averaging is a low-pass filtering operation that eliminates the small scales. As a result,
such smoothed velocity peaks seem to obey Gaussian statistics.

Moreover, Figures 2.24b, d, and f show the return level plots for the ten-minute veloc-
ity maxima, which are constructed by sorting and assigning a probability (see Section 5.1).
Here, a similar thing happens: data from the higher wind speed bins and longer averaging
periods show a more consistent extreme value behavior. Of course, it is merely speculation
whether the same holds in three-dimensional space, but it has all the appearances.17

Looking at each gust individually, they appear to be completely random. However,
gather enough of them together and they start to show a similar velocity signature. As
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(a): Ratio of 21 to 70 m.
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(b): Ratio of 70 to 116 m.
Figure 2.23: Ratio of the standard deviations of the longitudinal wind speed at two heights, as
a function of the mean wind speed at z = 70 m (filtered for the wind directions 205≤ψ≤ 295◦),
where homogeneous turbulence has a value equal to 1. The thick line in the box plot represents
the median; the edges of the box are located at the first and third quartile; and the ends of the
whiskers mark the 2.5th and 97.5th percentiles (i.e., the 95% range).

17 The effect that non-Gaussian turbulence has on wind turbine loads has been studied by Berg et al. (2016),
who modified velocity fields generated by a Large Eddy Simulation (LES) in order to match Gaussian statistics.
When these ten-minute wind fields, together with the original fields, were fed to a wind turbine model, no
significant differences in fatigue or extreme loads were found among 240 realizations. Though, the question
remains if this is still true after, say, one million realizations.
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(d): Return level plot for the (normalized)
ten-minute extremes (τ= 3 s).
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(e): Excursion frequency (τ= 10 s).
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(f): Return level plot for the (normalized)
ten-minute extremes (τ= 10 s).

Figure 2.24: Statistics of velocity peaks, measured by the sonic anemometer at z = 116 m
(filtered for the wind directions 205≤ψ≤ 295◦). The peaks are extracted after smoothening over
a window of τ= 0, 3, and 10 s. The parameter Λ0 is the zeroth-order spectral moment (i.e., the
variance) after smoothening.
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ū
≥

25
m

/s

−30 0 30

Time, t − t0 [s]

Figure 2.25: Time series around velocity peaks, measured by the sonic anemometer at z = 116
m (filtered for the wind directions 205≤ψ≤ 295◦). Gusts are selected by amplitude, A, smoothed
over a window of τ= 0, 3, and 10 s. The black line is the (smoothed) autocorrelation function.
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shown by Bierbooms, Dragt and Cleijne (1999), this mean gust shape is given by the
autocorrelation function:

E[û(t )] = E
[
u(t ′)u(t ′+ t )

]
, (2.24)

which can be obtained through an inverse Fourier transform of the turbulence spectrum,
Su( f ). To illustrate, Figure 2.25 shows up to 1,000 time series of individual velocity peaks
at once, each centered around the amplitude. Before selection, each velocity time se-
ries was treated with a band-stop filter to remove a dominant 0.4-Hz harmonic, which
could be linked to the met mast’s eigenfrequency (Eecen and Branlard, 2008). Overlaying
data points are then colored, such that a common shape becomes visible. Clearly, the
resemblance to the theoretical mean gust shape is very close. It is only slightly off for
the low wind speed bins, likely due to large mutual differences in advection velocity and
spectrum shape. In addition, the theory still holds up when the peaks are selected by their
smoothed amplitudes, in which case they also look like the smoothed autocorrelation
function.

2.4.5 Tower top accelerations
Unfortunately, because the sonic anemometer returns a point measurement, it does not
provide much useful information about how damaging the gusts actually are. One possible
way to still get some data on the severity of the wind conditions is to rely on the tower itself.
As drawn in Figure 2.18, two accelerometers (north-south and east-west) are mounted
on the tower top, of which the standard deviations and ten-minute maxima are available.
The magnitude of the two component standard deviations should be representative of the
forces acting on the tower (i.e., the violence with which it is rocked back and forth):18

σẍ =
√
σ2

ẍ,N-S
+σ2

ẍ,E-W
. (2.25)

Although the available data does not allow a direct comparison between the gusts
and the tower motions, it is possible to take a look in which conditions the tower experi-
ences the highest fluctuating loads. First, Figure 2.26a gives an overview of the seasonal
variations. It shows that the highest values for σẍ are found during severe storms that
occur primarily from late autumn to early spring. The heaviest one on record is “Kyrill”,
which was one of the heaviest storms in the last few decades that wreaked havoc ac-
cross Europe in January 2007. Such storms often bring southwesterly winds with high
turbulence levels as they travel over the North Sea (see Figure 2.26b).

The data can also be binned by the Richardson number and the atmospheric pressure
(see Figure 2.26c). It shows that the highest fluctuating loads are often found near neutral
atmospheric conditions. Unsurprisingly, this is also where the highest wind speeds and
strongest gusts are found (Suomi et al., 2015a).

Finally, zooming in on a five-day period surrounding the maximum σẍ , some inter-
esting things are happening (see Figure 2.27). The highest fluctuating loads occurred in
the period 14:10–14:20, when the atmospheric pressure was at its lowest point. The same
time period also contains the highest velocity peak. Recorded at 21-m height, it reached
an amplitude of 38.4 m/s (≈ 4.0σu).

18 Ideally, the maximum tower top accelerations should be compared to the velocity time series at all three
measurement stations. However, this was too much work to incorporate in the present study.
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The storm also brought a flurry of even more extreme peaks, sometimes exceeding
5σu . Like with the physical explanations of rogue waves (see Subsection 2.2.3), one
explanation is that extreme gusts are generated by some nonlinear mechanism. However,
these events, together with those occurring over the next three days, can also be linked to
rapidly changing mean wind speeds. A more plausible explanation is therefore that it was
wrong to apply the Reynolds decomposition on the basis of a ten-minute spectral gap.
This makes it hard to define a mean wind speed and also complicates the definition of
gusts.

The following chapters will not deal with storm conditions. Instead, the discussion is
limited to extreme gusts spawned from stationary, homogeneous turbulence, which lends
itself to a proper statistical treatment. The modeling of turbulence and gusts in storms is
a possible next step, as part of future research.
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“It is clear that if the initial conditions of the turbu-
lent motion are known in probability only, we cannot
hope to do more than determine the velocity field at
later instants in the same way; nor, of course, should
we wish to do so, any more than we should wish to
determine the instantaneous positions and velocities
of the molecules of a gas.”

— GEORGE BATCHELOR, 1953

WIND GUSTS are a symptom of turbulent momentum transport and can
come in different shapes, sizes, and amplitudes. The goal of this chapter

is to derive a mathematical formulation of such events that takes into account
all possible manifestations in a probabilistic fashion. The focus is mainly on
homogeneous Gaussian turbulence in three-dimensional domains.

First, the discussion starts in Section 3.1 from the physical perspective.
After that, Section 3.2 will switch to the statistical perspective by explaining
the principles of stochastic turbulence modeling. Then follows the heart of
this chapter and of the entire thesis: the derivation of the three-dimensional
velocity fields around gusts in Section 3.3 and their statistics in Section 3.4.
Finally, Section 3.5 concludes this chapter with a bit of speculation about how
gusts could evolve in time.

3.1 Causes of unsteadiness
In order to understand gusts, one needs to understand turbulence. Although the equations
of fluid motion cannot be solved directly (or at least not yet), they do tell which processes
play a role on the gust time scale.

3.1.1 The Navier-Stokes equations
The physics of turbulence is governed by the Navier-Stokes equations. For an incom-
pressible fluid with a constant density and viscosity (i.e., ∇·u = 0), a momentum balance
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dictates that

Du

Dt︸︷︷︸
Inertia

=

Pressure
gradient︷ ︸︸ ︷
− 1

ρ
∇P + ν∇2u︸ ︷︷ ︸

Shear stress

+

(External)
body forces︷ ︸︸ ︷

1

ρ

∑
f, (3.1)

where ρ is the (air) density, P is the pressure, ν is the kinematic viscosity, and
∑

f is the
collection of body forces. For atmospheric flows in particular, this can be extended as

∂u

∂t︸︷︷︸
Eulerian

acceleration

=
Advection︷ ︸︸ ︷
−u ·∇u − 1

ρ
∇P︸ ︷︷ ︸

Atmospheric
pressure gradient

+
Shear stress︷ ︸︸ ︷
ν∇2u − ∇(

g z
)︸ ︷︷ ︸

Gravity

−
Coriolis effect︷ ︸︸ ︷

2ΩE ×u, (3.2)

where the centrifugal force due to the Earth’s rotation has been included in the total
scalar gravity field, −∇(g z). Furthermore, g is the acceleration due to gravity and ‖ΩE‖ =
7.29 ·10−5 rad/s is the angular velocity of Earth’s rotation.

A gust is commonly seen as a deviation from the mean flow, following from the
Reynolds decomposition:

u(x, t )︸ ︷︷ ︸
Total velocity

=
Mean flow︷︸︸︷

ū(x) + u′(x, t )︸ ︷︷ ︸
Unsteady

component

. (3.3)

The mean flow is defined such that it is constant in time and the unsteady component is
completely stationary:

ū(x) ≡ lim
T→∞

1

T

T∫
0

u(x, t )dt , (3.4)

where T is the averaging period. An interesting result now follows from the principle
of continuity. Since it must hold that ∇ ·u = 0 and ∇·u = 0, it can be shown that the
continuity equation applies to both the steady and unsteady component of the velocity:

∇·u =∇· (ū+u′) ,

=∇· ū+∇·u′; (3.5a)

∇·u =∇· ū+∇·u′,
=∇· ū; (3.5b)

which implies that ∇ · ū = 0 and ∇ · u′ = 0. Applying the Reynolds decomposition to
Equation (3.2) then yields

∂

∂t

(
ū+u′)=−(

ū+u′)·∇(
ū+u′)− 1

ρ
∇(P̄+P ′)+ν∇2 (

ū+u′)−∇(
g z

)−2ΩE×
(
ū+u′) . (3.6)

Now, even though the fluid is formally considered as incompressible, density varia-
tions due to temperature are usually allowed to exist in the buoyancy term (e.g., see Stull,
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1988, p. 84). This is the Boussinesq approximation, which leads to

ρ̄+ρ′ ≈ ρ̄, (3.7a)(
ρ̄+ρ′)g ≈ ρ̄g − Θ′

v

Θ̄v
ρ̄g , (3.7b)

where Θv is the virtual potential temperature. Moreover, it is convenient to split the mean
pressure term into a horizontal and vertical component:

1

ρ̄
∇P̄ = 1

ρ̄
∇P̄x y + 1

ρ̄
∇P̄z . (3.8)

Under the assumption of a hydrostatic balance, the vertical component then cancels out
with gravity:

1

ρ̄
∇P̄z +∇(g z) = 0. (3.9)

After expanding the advection term, the final result is:

∂u′

∂t︸︷︷︸
Eulerian

acceleration

= −

Mean
transport︷ ︸︸ ︷

ū ·∇ū − ū ·∇u′︸ ︷︷ ︸
Turbulence

advection by
mean flow

−
Shear distortion︷ ︸︸ ︷

u′ ·∇ū − u′ ·∇u′︸ ︷︷ ︸
Turbulent
transport

−

Horizontal pressure
gradient︷ ︸︸ ︷
1

ρ̄
∇P̄x y − 1

ρ̄
∇P ′

︸ ︷︷ ︸
Pressure fluctuations

+
Viscous dissipation︷ ︸︸ ︷
ν∇2(ū+u′)

· · · + ∇
(

g z
Θ′

v

Θ̄v

)
︸ ︷︷ ︸

Atmospheric stability

−
Coriolis effect︷ ︸︸ ︷

2ΩE × (ū+u′) . (3.10)

For the remainder of this chapter, the overbar will be left out from the density term (ρ = ρ̄).

3.1.2 Scale analysis
In order to recognize the relevant terms in Equation (3.10), it is convenient to do a scale
analysis. Each term is then compared to the advection term, u ·∇u in terms of a length
scale, `, and a velocity scale U . Nondimensionalizing the Navier-Stokes equations yields
the following dimensionless quantities:∥∥∥ 1

ρ∇P̄x y

∥∥∥
‖u ·∇u‖ ∝ ∆P̄x y

ρU 2 = Eu

is the Euler number, representing the ratio of the pressure forces to the inertial
forces. The Euler number can be used to characterize how fluid is put into
motion as response to a certain pressure field. When the flow field is assumed
to be influenced solely by local pressure gradients, one speaks of Eulerian wind.
It is also used to typify the pressure drop in pipe flows, where Eu = 1 indicates
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an ideal frictionless flow. ∥∥∥∥∇(
g z

Θ′
v

Θ̄v

)∥∥∥∥
‖u ·∇u‖ ∝ g`

U 2

Θ′
v

Θ̄v
= Ri

is the Richardson number and is the ratio of potential to kinetic energy. Values
of Ri > 0 and Ri < 0 represent a stable and unstable atmosphere, respectively.
For Ri = 0, the atmosphere is said to be neutral. When the Richardson number
is above a certain critical value (often taken as 0.25), the stabilizing buoyancy
force dominates over the inertial force and the flow tends to be laminar.∥∥ν∇2u

∥∥
‖u ·∇u‖ ∝ ν

U`
= 1

Re

reveals the Reynolds number. The Reynolds number represents the ratio of the
inertial and viscous forces and can be an indicator for the degree of turbulence.
The term u · ∇u can be said to generate turbulence, while ν∇2u destroys it
through viscous dissipation. For Re ¿ 1, turbulence is highly damped and the
flow is completely laminar, leading to Stokes flow or creeping flow.

‖2ΩE ×u‖
‖u ·∇u‖ ∝ fC`

U
= 1

Ro

where Ro is the Rossby number. Here, fC = 2‖ΩE‖sinϕ is the Coriolis frequency
with ϕ denoting latitude. The Rossby number represents the ratio of inertial
forces and Coriolis forces. Low values indicate that a system is strongly governed
by Coriolis forces, while high values would suggest that a system is primarily
controlled by inertial and centrifugal forces. The Rossby and Reynolds numbers
together form the Ekman number, Ek =p

Ro/Re, which shows to what extend
disturbances at the top of the atmospheric boundary layer are propagated to
the surface and also defines the height of the Ekman layer.

The magnitude of these parameters at moderate latitudes can be found rather straightfor-
wardly (e.g., see Holton, 2004) by noting that

• ρ ∼ 100 kg/m3,

• dP̄x y /dx ∼ 10−3 Pa/m,

• g ∼ 101 m/s2,

• Θ′
v/Θ̄v ∼ 10−2,

• ν∼ 10−5 m2/s,

• fC ∼ 10−4 rad/s.

Drawing the dimensionless numbers as a function of a length and a velocity scale
then results in Figure 3.1. A term is considered insignificant if it is more than one order
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Figure 3.1: Length and velocity scales where the different Navier-Stokes terms become significant
compared to the inertial term. The shaded area bounds the region where the Lagrangian time
scale matches that of a gust; i.e., between 1 and 30 seconds.

of magnitude smaller than the inertial term. Based on this, it can be said that the atmo-
spheric pressure gradient and the Coriolis force (Eu and Ro−1, respectively) both operate
on a too large scale for them to have a significant impact on gusts. On the other end of
the spectrum, viscosity (Re−1) is clearly negligble unless for very small length scales. The
only term that remains is buoyancy (Ri). However, the role of buoyancy diminishes for
U > 10, which implies neutral atmospheric conditions.1

What would be left of the Navier-Stokes equations are then the advection terms and
the pressure fluctuations. However, if v̄ = w̄ = 0, the mean transport term can also be
eliminated, because the longitudinal mean wind speed gradient is, according to Equation
(3.4), non-existing. This would reduce Equation (3.10) to

∂u′

∂t
=−ū ·∇u′−u′ ·∇ū−u′ ·∇u′− 1

ρ
∇P ′. (3.11)

3.1.3 Taylor’s hypothesis
As discussed in Section 2.2, the way gusts are perceived are a consequence of the observer’s
perspective. A stationary observer will describe a velocity, u = [u, v, w]ᵀ, at each fixed
point in space and time (e.g., see Figure 3.2). This yields a relation in the shape of

u = f (x, t ), (3.12)

where x = [
x, y, z

]ᵀ is the position vector and t denotes the time. In this case, the fluid
motion is said to be viewed from an Eulerian perspective. On the other hand, one could

1 Indeed, the strongest wind speeds and gusts are often found at neutral and near-neutral conditions (e.g., see
Suomi et al., 2015b).
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Figure 3.2: An air parcel traveling past a stationary observer.

follow an individual air parcel as it moves with the fluid:

x0 = f (t ), (3.13)

where x0 usually is taken as the parcel’s center of mass. This is the Lagrangian perspective,
which is more concerned with the transport of properties such as mass, temperature, and
vorticity. The two frames of reference are connected by the material derivative:

D

Dt︸︷︷︸
Lagrangian
acceleration

=

Eulerian acceleration︷︸︸︷
∂

∂t
+u ·∇︸︷︷︸
Advection

.

A popular shortcut between the two perspectives is Taylor’s hypothesis, which as-
sumes that the eddies are “frozen” in time. In his 1938 paper, Taylor proposed the follow-
ing:

“If the velocity of the air stream which carries the eddies is very much greater
than the turbulent velocity, one may assume that the sequence of changes in u
at the fixed point are simply due to the passage of an unchanging pattern of
turbulent motion over the point, i.e. one may assume that

u =φ(t ) =φ
( x

ū

)
,

where x is measured upstream at time t = 0 from the fixed point where u is
measured.”

(Taylor, 1938)

Formally, it implies that the material derivative is zero (D/Dt ≈ 0) and that the Eulerian
acceleration is solely driven by (bulk) advection. The major assumption is that, in be-
tween two measurements at t = t1 and t = t2, an eddy retains its shape, velocity, and
direction. This is often the case for large turbulent structures, since those are known to be
particularly long lived (e.g., see Higgins et al., 2012).

Under Taylor’s hypothesis, a stationary observer would be able to deduce the spatial
structure of turbulence along a certain path. An eddy measured over a time period, τ, is
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then straightforwardly connected to a length scale, `, by

`≈ ūτ, (3.14)

where ū is the speed of advection. Vice versa, an eddy with a length scale ` can be
expected to pass by in a time τ = `/ū. Adopting Taylor’s hypothesis simplifies matters
considerably; Equation (3.11) would lose all of its terms apart from the advection by the
mean wind:

∂u′

∂t
=−ū ·∇u′. (3.15)

This is the linear advection equation, which has solutions in the form of

u′(x, t ) = u′(x− ū(t − t0), t0), (3.16)

which implies that an initial velocity field, u′(x, t0), is simply shifted towards the direction
of the mean wind speed at a rate ū. Section 3.5 will continue with this, but in wave
number space.

3.2 Stochastic turbulence modeling
The full Navier-Stokes equations—and even the reduced ones—are unwieldy for practical
load calculations. Therefore, statistical methods have been proposed that do not necessar-
ily deal with how velocity fields look like in any moment of time, but rather try to capture
the statistics. What follows in this section is a continuation of Subsection 2.2.1.

3.2.1 The energy cascade
Turbulence can be viewed as a process where the energy of some disturbance in the flow is
eventually converted into heat. This energy is supplied by the largest scales (the injective
range) and is transported through the intermediate scales (the inertial range), down to the
molecular level (the dissipative range). An energy spectrum, E (κ), describes quantitatively
how energy is distributed over each wave number, κ, where the wave number is used to
represent the scales of motion (see Figures 3.3a and b):

κ≈ 2π

`
. (3.17)

A Fourier transform is then used to switch between physical space and wave number
space.2

The eddies in the injective range draw their energy directly from the mean flow, and
their size is set by the scale of the problem. In a wind tunnel, for example, the largest
possible length scales are determined by the tunnel diameter. For atmospheric boundary
layer flows, the largest eddies are generally limited by the height of the boundary layer
(∼ 103 m).3

2 Though, turbulence is composed of eddies, which are discrete coherent structures with finite dimensions
and energy. This sort of goes against the nature of the Fourier transform, which turns a single wave number
into an infinitely long wave. Instead, it may be appealing to think of a single eddy as more of a wave packet.

3 In complicated situations like a storm, a downburst, or a squall, the largest structures can well exceed the
boundary layer height. This makes the definition a little fuzzy as there may not even be a real distinction
between turbulence and the mean flow.
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x

`≈ 2π

κ

(a): In physical space.

E(κ)

κ

(b): In wave number space.
Figure 3.3: An eddy with a length scale ` ≈ 2π/κ represented as a wave number κ (after
Tennekes and Lumley, 1972, p. 259).

Under Richardson’s view of turbulence (1922), the inertial range is fully comprised
of a hierarchy of eddies. Stretching and tilting cause the larger eddies to break up into
smaller eddies, which in turn are broken up into even smaller ones (see Figure 3.4).
In 1941, Kolmogorov deduced that, under an average rate of dissipation ε, the energy
spectrum should scale according to

E(κ) ∝ ε2/3κ−5/3, (3.18)

classifying turbulence at high wave numbers as pink noise. It means that a high degree of
self-similarity can be found across the inertial range—if the length scales are halved, the
motion would still look the same statistically—which shows some resemblance to fractals
(e.g., see Mandelbrot, 1975). This subject is continued in Section 3.4.

In reality, however, this fractal behavior does not continue ad infinitum. The smallest
possible scales are defined by the Kolmogorov microscales, which Kolmogorov (1941a,b)
derived through dimensional analysis:

`µ =
(
ν3

ε

)1/4

, (3.19a)

τµ =
(ν
ε

)1/2
, (3.19b)

Uµ = (νε)1/4 , (3.19c)

where `µ, τµ, and Uµ are a length, time, and velocity scale, respectively. These scales are
usually irrelevant for any practical applications and most analytical turbulence spectra
will anyway fall to the − 5

3 law at high wave numbers.

3.2.2 Statistical properties of turbulent flows
Stochastic turbulence models usually assume that the flow shows one or several types of
symmetries:

• Homogeneity implies that the flow properties are constant throughout the flow
field and remain constant under spatial translations: u (x, t ) ↔ u (x+∆x, t ).

• Isotropy means that the statistics are unchanged under rotations and reflections:
u (x, t ) ↔ u

(
xeiθ, t

)
.
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Figure 3.4: Sketch of a turbulence spectrum with the three (sub)ranges, showing how kinetic
energy is transported from the largest scales down to the Kolmogorov microscales (∼ `µ) where
it is dissipated into heat. The scale of the turbulent flow is set by the turbulence length scale, L.

• Reflective turbulence is symmetric with respect to a certain plane: u (x, t ) ↔
u (−x, t ).

• Stationarity implies that properties remain invariant in time: u (x, t ) ↔ u (x, t +∆t ).

• Galilean invariance states that the properties of turbulence remain the same
for all inertial frames of reference: u ↔ u (x, t )+∆u (x, t ).

• Self-similarity means that turbulent structures look the same on all scales.

All of these properties are violated in real life up to a certain extent. The effects of buoyancy
and shear, for example, quickly destroy isotropy and homogeneity since they contain a
directional preference. Also, stationarity can never be fully guaranteed in practice, since
many large-scale features exist that can significantly affect what is defined as the mean
flow. Furthermore, Galilean invariance is formally violated for large-scale atmospheric
flows, because Coriolis forces will start to play a role. And finally, self-similarity can only
be preserved in the absence of scale-dependent production and dissipation terms.

3.2.3 Fundamentals of spectral models
The basis of spectral turbulence models lies with the stochastic Fourier-Stieltjes integral,
which represents a homogeneous velocity field as a stochastic process dZ(κ, t ):

u(x, t ) = ū(x)+
∫
κ

eiκ·x dZ(κ, t ), (3.20)
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where κ = [
κx , κy , κz

]ᵀ is the wave number vector, of which the direction and inverse
magnitude can be seen as a representation of the orientation and the size of turbulent
eddies, respectively. The orthogonal process dZ(κ, t) is related to the spectral tensor,
Φ(κ, t ), by

dZ(κ; t )dZ∗(κ′; t ) =
Φ(κ, t )dκ, for κ=κ′,

0, for κ 6=κ′,
(3.21)

with �∗ denoting a conjugate transpose and � an average.4 The spectral tensor is the
Fourier transform of the covariance tensor:

Φ(κ, t ) = 1

(2π)3

∫
R3

R(r, t )e−iκ·r dr, (3.22)

where the covariance tensor is defined as

R(r, t ) = u′(x; t )u′ᵀ(x+ r; t ). (3.23)

From (3.22) and (3.23) it follows that

u′u′ᵀ(t ) =
∫
κ

Φ(κ, t )dκ, (3.24)

where

u′u′ᵀ =


u′2 u′v ′ u′w ′

u′v ′ v ′2 v ′w ′

u′w ′ v ′w ′ w ′2

 . (3.25)

Equation (3.24) is Parseval’s theorem in three dimensions, stating that the energy content
in the physical space is completely translated in wave number space. The spectral tensor
then describes how this energy is distributed over the wave numbers or eddy scales. The
kinetic energy that is carried by turbulence, the turbulence kinetic energy (TKE), is defined
as the matrix trace of (3.25):

k ≡ 1
2 tr

[
u′u′ᵀ

]
, (3.26)

or
k ≡ 1

2

(
u′2 + v ′2 +w ′2

)
, (3.27)

where tr[�] denotes the matrix trace.5 This is then linked to the spectral tensor by

k(t ) = 1
2 tr

∫
κ

Φ(κ, t )dκ

 . (3.28)

4 In the left-hand side, t is treated as a parameter rather than a variable to emphasize that the averaging is
only applied to κ.

5 Here, u′2, v ′2, and w ′2 are different ways of writing σ2
u , σ2

v , and σ2
w , which is used in the previous chapter in

Equation (2.2).
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Under the condition of isotropy (i.e., u′2 = v ′2 = w ′2), an energy spectrum follows
from the spectral tensor according to

E(κ, t ) = 2πκ2 tr [Φ(κ, t )] , (3.29)

such that

k(t ) =
∫
κ

E(κ, t )dκ, (3.30)

where the integration is carried out over a sphere in wave number space with radius

κ= ‖κ‖ =
√
κ2

x +κ2
y +κ2

z . Vice versa, an isotropic spectral tensor can be constructed from

the energy spectrum as given by Batchelor (1953, p. 49):

Φ(κ, t ) = E(κ, t )

4πκ2

(
I− κκᵀ

‖κ‖2

)
, (3.31)

with I denoting the (in this case 3×3) identity matrix. A common spectrum, used for the
remaining of this chapter, is the isotropic energy spectrum by Von Kármán (1948):

E(κ) = 4Γ
( 17

6

)
p

πΓ
( 1

3

) σ2
isoκ

4L5(
1+κ2L2

)17/6
, (3.32)

where Γ(�) is the Gamma function, σ2
iso the isotropic variance,6 and L is the turbulence

length scale. Alternatively, the above is sometimes expressed as

E(κ) =αε2/3L5/3 κ4L4(
1+κ2L2

)17/6
, (3.33)

where α= 1.7 is the Kolmogorov constant and ε is the average rate of dissipation.

3.2.4 Effects of shear
Isotropy, however, is a bold assumption to make in the atmospheric boundary layer.
A spectral model that also takes the effects of shear into account is the uniform shear
model, commonly known as the Mann model (after Mann, 1994). It is based on rapid
distortion theory, which models the statistics of turbulence after a sudden change (e.g.,
see Subsection 3.5.2). When applied to an initial state dZ(κ(t0), t0), the distorted field
follows from a linear transformation:

dZ(κ(t ), t ) = T
(
κ(t ), t ;

dū

dz

)
dZ(κ(t0), t0), (3.34)

where T is a transformation matrix based on a uniform mean wind speed gradient, dū/dz.
Naturally, as time progresses, the field produced by Equation (3.34) grows more

anisotropic, even beyond the point at which eddies are expected to break up under too
much stretching. To solve this problem, Mann introduced an eddy lifetime, τ(κ), to arrive
at a stationary field dZ(κ,τ) ≈ dZ(κ). The assumption is that eddies of a size κ−1 are

6 The isotropic variance follows from σ2
iso =σ2

u =σ2
v =σ2

w .
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primarily destroyed by smaller structures with a characteristic velocity of [
∫ ∞
κ E (κ′)dκ′]1/2.

Then, based on dimensional grounds, it is deduced that

τ(κ) ∝ κ−1

 ∞∫
κ

E(κ′)dκ′
−1/2

,

∝ κ−2/3 [
2F1

( 1
3 , 17

6 , 4
3 ,−(κL)−2)]−1/2

,

where 2F1(�) is the hypergeometric function. The full expression is then given by

τ(κ) = Γ
(
∂ū

∂z

)−1

(κL)−2/3 [
2F1

( 1
3 , 17

6 , 4
3 ,−(κL)−2)]−1/2

, (3.35)

where Γ is a shear parameter and L is again the turbulence length scale. This results in a
spectral tensor with the components

Φuu(κ) = E(κ0)

4πκ4
0

[
κ2

0 −κ2
x −2κxκz,0ζ1 +

(
κ2

x +κ2
y

)
ζ2

1

]
, (3.36a)

Φv v (κ) = E(κ0)

4πκ4
0

[
κ2

0 −κ2
y −2κyκz,0ζ2 +

(
κ2

x +κ2
y

)
ζ2

2

]
, (3.36b)

Φw w (κ) = E(κ0)

4πκ4

[
κ2

x +κ2
y

]
, (3.36c)

Φuv (κ) = E(κ0)

4πκ4
0

[
−κxκy −κxκz,0ζ2 −κyκz,0ζ1 +

(
κ2

x +κ2
y

)
ζ1ζ2

]
, (3.36d)

Φuw (κ) = E(κ0)

4πκ2
0κ

2

[
−κxκz,0 +

(
κ2

x +κ2
y

)
ζ1

]
, (3.36e)

Φv w (κ) = E(κ0)

4πκ2
0κ

2

[
−κyκz,0 +

(
κ2

x +κ2
y

)
ζ2

]
, (3.36f)

and the remaining ones given by Hermitian symmetry (Φi j = Φ∗
j i ). The wave number

κ0 = κ(t0) = [
κx , κy , κz,0

]ᵀ with κz,0 = κz (t0) = κz +βκx is used to describe the initial,
unsheared velocity field with

β= ∂ū

∂z
τ (3.37)

as a non-dimensional distortion time. Moreover, the parameters ζ1 and ζ2 are given by

ζ1 =
(
C1 −

κy

κx
C2

)
, (3.38a)

ζ2 =
(
C2 +

κy

κx
C1

)
, (3.38b)

with

C1 =
βκ2

x

(
κ2

0 −2κ2
z,0 +βκxκz,0

)
κ2

(
κ2

x +κ2
y
) , (3.39a)

C2 =
κyκ

2
0(

κ2
x +κ2

y
)3/2

arctan

βκx

√
κ2

x +κ2
y

κ2
0 −κz,0κxβ

 . (3.39b)
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In total, the Mann model describes the statistics of sheared turbulence with 3 parameters:
a length scale, L, a viscous dissipation rate, αε2/3 (or σiso, depending on whether Equation
(3.32) or (3.33) is used for the isotropic energy spectrum), and a shear parameter, Γ.

3.2.5 Synthesis of Gaussian random fields
In practice, velocity fields are generated by computers on a discretized space. Usually, this
is a rectangular box with size Lx ×Ly ×Lz containing a Nx ×Ny ×Nz grid (see Figure 3.5),
where the positions are equally spaced according to

x = i∆x, for i = 0, . . . , Nx −1, (3.40a)

y = j∆y, for j = 0, . . . , Ny −1, (3.40b)

z = k∆z, for k = 0, . . . , Nz −1, (3.40c)

with a step size ∆x = Lx /Nx . Instead of a continuous Fourier transform, a spectrum is
then translated to the physical space using a discrete Fourier transform (DFT). This means
Equation (3.20) is approximated by

∫
κ

eiκ·x dZ(κ, t ) ≈∑
κ

eiκ·x∆Z(κ, t ), (3.41)

with

∆Z(κ; t )∆Z∗(κ; t ) =
∫
∆κ

Φ(κ−κ′, t )dκ′, (3.42)

where the integral is carried out over the volume ∆κ=∆κx∆κy∆κz . Based on a rectangular
box with dimensions Lx ×Ly ×Lz , the wave numbers for a two-sided spectrum7 can be

F {�(x)}

F −1 {�(κ)}Lx

Ly

Lz

x0

xN−1 y0

yN−1

z0

zN−1

κx,−N /2

κx,0

κx,N /2−1

κy,−N /2

κy,0

κy,N /2−1

κz,−N /2

κz,0

κz,N /2−1

Figure 3.5: The discrete Fourier transform (DFT) is used to translate a Nx ×Ny ×Nz physical
domain (left) to the wave number domain (right).

7 In a two-sided spectrum, the variance is equally divided between the positive and negative wave numbers.
Since the spectral tensor is Hermitian, it follows that Φ(κ) =Φ∗(−κ).
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Figure 3.6: In a discretized spectrum, part of the variance is lost below the fundamental frequency
(
∣∣ j

∣∣< 1) and above the Nyquist frequency (
∣∣ j

∣∣> N /2).

discretized according to

κx = i∆κx , for i =−Nx /2, . . . , Nx /2−1, (3.43a)

κy = j∆κy , for j =−Ny /2, . . . , Ny /2−1, (3.43b)

κz = k∆κz , for k =−Nz /2, . . . , Nz /2−1, (3.43c)

with ∆κx = 2π/Lx . Therefore, the length scales that are covered range from the first
nonzero wave number, 2π/Lx (i.e., the fundamental frequency), up to the Nyquist fre-
quency, Nx π/Lx . This has an effect on the variance that can be translated from and to the
wave number space. Parseval’s theorem, given by Equation (3.24), now states that

1

Nx Ny Nz

Nx−1∑
i=0

Ny−1∑
j=0

Nz−1∑
k=0

u′(xi , y j , zk , t )u′ᵀ(xi , y j , zk , t )

=
Nx /2−1∑

i=−Nx /2

Ny /2−1∑
j=−Ny /2

Nz /2−1∑
k=−Nz /2

Φ(κx,i ,κy, j ,κz,k , t )∆κx∆κy∆κz . (3.44)

As sketched in Figure 3.6, the variance below the fundamental frequency and above the
Nyquist frequency is lost in the discrete spectrum. This loss can be minimized by, on the
one hand, making the domain large enough and, on the other hand, decreasing the grid
spacing.

With spectral models, the randomness is often generated using white noise. The
stochastic process, ∆Z, is then represented as a matrix of coefficients, C, multiplied with a
complex white noise vector, n:

∆Z(κ, t ) = C(κ, t )n(κ, t ). (3.45)

The matrix C follows from the spectral tensor according to Equation (3.45):

C(κ, t )C∗(κ, t ) =
∫
∆κ

Φ(κ−κ′, t )dκ′, (3.46)
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Figure 3.7: The circularly symmetric complex normal distribution for the j th element of the white
noise vector n. The complex magnitude, |n j |, is Rayleigh-distributed, whereas the complex
argument, arg[n j ], is uniformly distributed on [0, 2π].

which, under the assumption that the domain is much larger than the turbulence length
scale, L (Mann, 1998), can be approximated by

C(κ, t )C∗(κ, t ) ≈Φ(κ, t )∆κx∆κy∆κz . (3.47)

The role of the white noise vector, n, is to randomize the harmonics. It is distributed
according to a circularly symmetric complex normal distribution, CN (0,I), which implies
that Re(n)

Im(n)

∼ N

0

0

 , 1
2

I 0

0 I

 , (3.48)

where I is the 3×3 identity matrix (e.g., see Figure 3.7). Multiplying with n causes each
of the Fourier coefficients to get a random amplitude and a uniformly distributed phase
shift. Based on Equation (3.41), a velocity field is then constructed from

u(x, t ) ≈ ū(x)+∑
κ

C(κ, t )n(κ, t )eiκ·x, (3.49)

where
∑
κ is used to denote the triple sum:

∑
κ

(κ) =
Nx /2−1∑

i=−Nx /2

Ny /2−1∑
j=−Ny /2

Nz /2−1∑
k=−Nz /2

(κx,i ,κy, j ,κz,k ). (3.50)
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The zero mode is, in fact, the constant mean wind speed. It is usually not covered by the
spectrum, but added separately as ū(x). The random vector, n, has an important role,
since it ensures that each realization of Equation (3.49) produces a fully randomized, but
statistically similar, turbulent velocity field.

As an alternative to using a summation, the Fourier series can also be represented as
a linear combination:

u(x, t ) = ū(x)+Ψ(x, t )n(t ), (3.51)

where

Ψ(x, t )n(t ) = [
. . . , C(κ j , t )eiκ j ·x, C(κ j+1, t )eiκ j+1·x, . . .

]


...

n(κ j , t )

n(κ j+1, t )
...


. (3.52)

The matrix Ψ has three rows, corresponding to the three velocity components:

Ψu(x, t ) =
[

. . . ,
[
Cuu(κ j , t ), Cuv (κ j , t ), Cuw (κ j , t )

]
eiκ j ·x, . . .

]
, (3.53a)

Ψv (x, t ) =
[

. . . ,
[
Cvu(κ j , t ), Cv v (κ j , t ), Cv w (κ j , t )

]
eiκ j ·x, . . .

]
, (3.53b)

Ψw (x, t ) =
[

. . . ,
[
Cwu(κ j , t ),Cw v (κ j , t ),Cw w (κ j , t )

]
eiκ j ·x, . . .

]
. (3.53c)

The linear combination (3.51) is sometimes a more convenient way of formulating the
Fourier series, since a lot of operations involving summations reduce to matrix algebra.

3.3 The spatial structure of wind gusts
In essence, Equation (3.49) describes the set of all possible velocity fields that adhere to
the statistics of the spectral tensor. This also includes extreme gusts, although with a very
low probability of occurrence.

3.3.1 A wind gust as a momentum concentration
As covered by Subsection 2.2.5, an effective measure of the severity of a gust is its momen-
tum. Just as throwing five billiard balls is potentially more harmful than just throwing one,
a gust can be considered more severe if more air particles are involved. For example, the
momentum of the collection of air particles sketched in Figure 3.8 is

p(x0, t ;V ) = m
∑
i∈V

u(x0 + ri , t ), (3.54)

where m is the mass of each particle and V is the volume enclosing them. It shows that,
as long as they are heading in the same direction, more particles means that the gust has
a higher momentum.

The same can be applied to a continuous velocity field. When the volume, V , is
represented as a kernel, g , centered around a position, x0, the momentum follows from a
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V

x0(t )

ri

mu(x0 + ri , t )

p (x0, t ;V )

Figure 3.8: A gust represented as a collection of air particles within a volume V , centered around
x0, having a total momentum p.

convolution integral, u(x0, t )∗ g :

p(x0, t ;V ) = ρvol(V )
∫
R3

u(x0 + r, t )g (r)dr, (3.55)

where ρ is the air density, vol(V ) is the volume of V , and where the kernel function is

g (r) =


1

vol(V )
, for r ∈V ,

0, for r ∉V.
(3.56)

Basically, a gust’s momentum is equal to the air mass within the volume, V , times the
average velocity of that volume. For a severe gust, this velocity should be significantly
higher than what is found in the surrounding air (e.g., see Figure 3.9). Therefore, it is often
more intuitive to apply the Reynolds decomposition:

p(x0, t ;V ) = ρvol(V )
∫
R3

[
ū(x0 + r)+u′(x0 + r, t )

]
g (r)dr,

= ρvol(V )

∫
R3

ū(x0 + r)g (r)dr +
∫
R3

u′(x0 + r, t )g (r)dr

 ,

= p̄(x0;V )+p′(x0, t ;V ). (3.57)

The momentum of a gust is then simply added to the momentum resulting from advection,
much like the case of a ball being thrown from a moving car.

If V is symmetric with respect to the x y-plane and the mean wind speed gradient is
relatively linear over the volume, a reasonable assumption is that ū(x0)∗ g ≈ ū(x0), which
leads to

p̄(x0;V ) = ρvol(V )ū(x0). (3.58)
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u′(x, t )

ū(z)

u′(x, t )∗ g (V )

A V

x0 `

Figure 3.9: A streamwise gust with a length scale, `, having an average velocity of A within the
volume, V . Shown are the mean wind speed, ū(z), the unsteady wind speed, u′(x, t ), and the
unsteady wind speed convoluted with the gust volume, u′(x, t )∗ g (V ).

Moreover, by relying on the convolution theorem, the gust momentum is easily translated
to wave number space:

p′(x0, t ;V ) = ρvol(V )
∫
κ

G(κ)eiκ·x0 dZ(κ, t ), (3.59)

where G(κ) = F
{

g (r)
}

is now a low-pass filter. This states that a momentum field can be
directly obtained from the turbulent velocity spectrum by eliminating the higher wave
numbers.

3.3.2 The velocity field around a concentration of momentum
From now on, a gust will be treated as a concentration of momentum in the streamwise
direction, denoted by p ′. This means that gusts are spawned from the scalar field u′(x, t ),
which is assumed to be homogeneous to allow it to be represented by the Fourier series
(3.49). Furthermore, the turbulence field is considered at a fixed time t0, far upstream of
any obstacle.

If the gust’s (streamwise) velocity amplitude is denoted by A (see Figure 3.9), its
momentum is given by

p ′(x0, t0;V ) = ρvol(V )A. (3.60a)

Moreover, if the gust is of any significance, its momentum should at least be a local
maximum (or a local mininum):

∇p ′(x0, t0;V ) = [0, 0, 0]ᵀ , (3.60b)∣∣Hp ′ (x0)
∣∣< 0, (3.60c)
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where
∣∣Hp ′ (x0)

∣∣ is the determinant of the Hessian matrix, evaluated at x0. However, since
the interest is in high amplitudes, the point x0 is most likely not a saddle point anyway,
allowing requirement (3.60c) to be dropped. This leads to the following conditional
velocity field surrounding a gust:

û′(x, t0;V ) = {
u′(x, t0) | p ′(x0; t0,V ) = ρvol(V )A, ∇p ′(x0, t0;V ) = 0

}
. (3.61)

The two requirements can be expressed as a set of linear constraints. From Equation
(3.59) it follows that the streamwise momentum can be obtained from filtering the first
row of the Fourier transform matrix, Ψ (3.53a): p ′(x0, t0;V )

∇p ′(x0, t0;V )

= ρvol(V )Yn, (3.62)

with

Yn =



. . . , G(κ j )
[
Cuu(κ j ), Cuv (κ j ), Cuw (κ j )

]
eiκ j ·x0 , . . .

. . . , iκx, j G(κ j )
[
Cuu(κ j ), Cuv (κ j ), Cuw (κ j )

]
eiκ j ·x0 , . . .

. . . , iκy, j G(κ j )
[
Cuu(κ j ), Cuv (κ j ), Cuw (κ j )

]
eiκ j ·x0 , . . .

. . . , iκz, j G(κ j )
[
Cuu(κ j ), Cuv (κ j ), Cuw (κ j )

]
eiκ j ·x0 , . . .




...

n(κ j )
...

 . (3.63)

The conditional field (3.10) can then be expressed as

û′(x, t0;V ) =Ψ {n |Yn = b} , (3.64)

where

b =


A
0
0
0

 (3.65)

is a vector of constraints. The random vector obeying the constraints n |Yn = b can be
found through conditional sampling:

n̂ = n+Y∗ (
YY∗)−1

(b−Yn) , (3.66)

where n̂ is the conditional white noise vector. The turbulent velocity field, û′(x), is then
obtained from the Fourier series (3.49).

Equation (3.66), in combination with Equations (3.63) and (3.70), is probably the
most practically significant result of this thesis. It allows one to directly sample from a
collection of severe gusts, while adhering to the statistics of the turbulence spectrum. In
other words: it allows designers to produce wind fields that are embedded with gusts,
which would otherwise occur naturally in very long time series. How this can be used to
the designer’s advantage will be demonstrated in the next chapters.
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The rest of this section will be used to dive somewhat deeper into this result. For-
mally, Equation (3.64) describes the set of all possible velocity fields surrounding a stream-
wise gust. The statistics of this set follow from the joint distribution n

Yn

∼ N

 E[n]

E[Yn]

 ,

 E[nn∗] E[n(Yn)∗]

E[(Yn)n∗] E[(Yn)(Yn)∗]

 , (3.67)

which leads to
n|Yn = b ∼ N

(
Y∗ (

YY∗)−1 b, I−Y∗ (
YY∗)−1 Y

)
, (3.68)

implying that

E[n |Yn = b] = Y∗ (
YY∗)−1 b, (3.69a)

var[n |Yn = b] = I−Y∗ (
YY∗)−1 Y. (3.69b)

From this, it can be said that the velocity field in general is built up from a mean gust,
ΨE[n |Yn = b], and a Gaussian residual process, ∆(x):

û′(x) =ΨE[n |Yn = b]+∆(x), (3.70)

with var[∆(x)] =Ψvar[n |Yn = b]Ψ∗.
The mean gust shape is deterministic in nature and has an analytical expression.

First, writing out the term YY∗ yields

YY∗ =∑
κ



1 −iκx −iκy −iκz

iκx κ2
x κxκy κxκz

iκy κxκy κ2
y κyκz

iκz κxκz κyκz κ2
z

G2(κ)
(
Cuu(κ)C∗

uu(κ)

· · · +Cuv (κ)C∗
uv (κ)+Cuw (κ)C∗

uw (κ)
)
. (3.71)

Following equation (3.47), the uu-component of the spectral tensor can be written as

Φuu(κ)∆κx∆κy∆κz ≈Cuu(κ)C∗
uu(κ)+Cuv (κ)C∗

uv (κ)+Cuw (κ)C∗
uw (κ). (3.72)

which leads to

YY∗ =∑
κ



1 −iκx −iκy −iκz

iκx κ2
x κxκy κxκz

iκy κxκy κ2
y κyκz

iκz κxκz κyκz κ2
z

G2(κ)Φuu(κ)∆κx∆κy∆κz . (3.73)

Moreover, since Φuu(κ) =Φuu(−κ) and G2(κ) =G2(−κ), it follows that∑
κ

iκxG2(κ)Φuu(κ) = 0, (3.74)
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which gets rid of the complex entries in the matrix. In the limit of ∆κx∆κy∆κz → 0, this
then results in

YY∗ =
Λ0 0

0 Λ2

 , (3.75)

where Λ0 and Λ2 are the zeroth- and second-order spectral moments of the filtered
spectrum:

Λ0 =
∫
κ

G2(κ)Φuu(κ)dκ, (3.76)

Λ2 =
∫
κ

κκᵀG2(κ)Φuu(κ)dκ. (3.77)

Fortunately, being a block matrix makes YY∗ easily invertible:

(
YY∗)−1 =

Λ−1
0 0

0 Λ−1
2

 . (3.78)

The next part is writing out the matrix product ΨY∗:

ΨY∗ =

. . . ,


Cuu(κ j ) Cuv (κ j ) Cuw (κ j )

Cvu(κ j ) Cv v (κ j ) Cv w (κ j )

Cwu(κ j ) Cw v (κ j ) Cw w (κ j )

eiκ j ·x, . . .



· · ·



...
C∗

uu(κ j ) −iκxC∗
uu(κ j ) −iκyC∗

uu(κ j ) −iκzC∗
uu(κ j )

C∗
uv (κ j ) −iκxC∗

uv (κ j ) −iκyC∗
uv (κ j ) −iκzC∗

uv (κ j )

C∗
uw (κ j ) −iκxC∗

uw (κ j ) −iκyC∗
uw (κ j ) −iκzC∗

uw (κ j )

G(κ j )e−iκ j ·x0

...


,

leading to

ΨY∗ =∑
κ


Cuu(κ)C∗

uu(κ)+Cuv (κ)C∗
uv (κ)+Cuw (κ)C∗

uw (κ)

Cvu(κ)C∗
uu(κ)+Cv v (κ)C∗

uv (κ)+Cv w (κ)C∗
uw (κ)

Cwu(κ)C∗
uu(κ)+Cw v (κ)C∗

uv (κ)+Cw w (κ)C∗
uw (κ)

[
1, −∇ᵀ]

G(κ)eiκ·(x−x0),

=∑
κ


Φuu(κ)

Φvu(κ)

Φwu(κ)

[
1, −∇ᵀ]

G(κ)eiκ·(x−x0)∆κx∆κy∆κz . (3.79)
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As ∆κx∆κy∆κz → 0, the sum
∑
κ can again be replaced by an integral:

ΨY∗ =


∫
κ


Φuu(κ)

Φvu(κ)

Φwu(κ)

G(κ)eiκ·(x−x0) dκ


[
1, −∇ᵀ]

,

=


Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g

[
1, −∇ᵀ]

,

=




Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g

 , −∇


Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g


 , (3.80)

where Ri j ∗ g are the elements of the covariance tensor, given by Equation (3.23), convo-
luted with the gust volume; i.e.,

Ri j (x)∗ g =
∫
R3

Ri j (x+ r)g (r)dr. (3.81)

Substitituting Equations (3.65), (3.78), and (3.80) in Equation (3.69a) gives the expression
for the mean gust in wave number space:

E
[
û′(x)

]=ΨE[n |Yn = b] ,

=ΨY∗ (
YY∗)−1 b,

= A

Λ0

∫
κ


Φuu(κ)

Φvu(κ)

Φwu(κ)

G(κ)eiκ·(x−x0) dκ, (3.82)

and in physical space:

E
[
û′(x)

]= A

Λ0


Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g

 . (3.83)

Additionally, the variance of the residual process, ∆(x), is given by
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var[∆(x)] =Ψvar[n |Yn = b]Ψ∗,

=ΨΨ∗−ΨY∗ (
YY∗)−1 YΨ∗,

= R(0)− 1

Λ0


Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g




Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g


ᵀ

· · · −

∇


Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g


Λ−1

2

∇


Ruu(x−x0)∗ g

Rvu(x−x0)∗ g

Rwu(x−x0)∗ g



ᵀ

. (3.84)

Finally, Equations (3.70) and (3.83) together give the full expression for the velocity
field around a wind gust:

û′(x, t0;V ) = A

Λ0


Ruu(x−x0; t0)∗ g

Rvu(x−x0; t0)∗ g

Rwu(x−x0; t0)∗ g


︸ ︷︷ ︸

Deterministic part
(i.e., the “mean gust”)

+ ∆(x, t0)︸ ︷︷ ︸
Stochastic

part

. (3.85)

This separates the velocity field into a deterministic and a stochastic part (see Figure 3.10).
The deterministic part contains all the momentum inside the volume, V , and describes at
the same time the most likely, or expected, velocity field around A. Any wave numbers
higher than what is cut off by the low-pass filter, G(κ), do not add any momentum and
should therefore have no impact on the overall severity of the gust. If the momentum is

A

`x E
[
û′]

û′±
√

var
[
û′]

−4 −3 −2 −1 0 1 2 3 4
−5

0

5

(x −x0)/L [–]

u
′ /σ

u
[–

]

Figure 3.10: The deterministic and stochastic components of a gust, generated from one-
dimensional isotropic turbulence with A = 3σu and where V is a window with a width of `x = L.
The field û′(x) is just one of countless realizations containing the same magnitude event.
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spread out over a larger volume, the cut-off wave number decreases and the velocity peak
becomes blunter. Another interesting aspect is that the higher the amplitude, the more
the deterministic part will start to dominate over the stochastic part. Extreme gusts thus
have the tendency to look like the (smoothed) covariance tensor, a result that was also
found experimentally in Subsection 2.4.4.

The same holds for three-dimensional domains. For example, consider an ellipsoidal
volume given by

g (r) =


6

π`x`y`z
, for

4x2

`2
x

+ 4y2

`2
y
+ 4z2

`2
z

≤ 1;

0, for
4x2

`2
x

+ 4y2

`2
y
+ 4z2

`2
z

> 1;
(3.86)

where `x , `y , and `z denote the length, width, and height of the ellipsoid. The corre-
sponding filter is given by its Fourier transformation (e.g., see Koay, Sarlls and Özarslan,
2007):

G(κ) = 3

κ′3
[
sin(κ′)−κ′ cos(κ′)

]
, (3.87)

with

κ′ = 1
2

√
(κx`x )2 + (κy`y )2 + (κz`z )2. (3.88)

For simplicity, it is assumed that turbulence is homogeneous and isotropic, with the
spectral tensor and energy spectrum given by equations (3.31) and (3.32).

Figure 3.11 shows three cases evaluated with Equations (3.83) and (3.85) for spherical
volumes (`x = `y = `z = `). Evidently, the velocity fields are shaped much like circular
vortex rings. This is perhaps not surprising, since the flow has to reciruculate to preserve
continuity within the domain. In fact, it can be shown analytically that the continuity
equation is satisfied (i.e., the velocity field is divergence-free) for any shape of V by
substituting the isotropic spectral tensor (3.31) in equation (3.82):

∇·E
[
û′(x)

]= A

Λ0

∫
κ

(
iκxΦuu(κ)+ iκyΦvu(κ)+ iκxΦwu(κ)

)
G(κ)eiκ·(x−x0) dκ,

= A

Λ0

∫
κ

E(κ)

4πκ4

(
iκx (κ2

y +κ2
z )− iκxκ

2
y − iκxκ

2
z

)
G(κ)eiκ·(x−x0) dκ,

= 0,

where κ= ‖κ‖.
Furthermore, as may be expected from Equation (3.83), doubling the amplitude

has no effect on the mean streamlines. However, it will cause the deterministic part to
start dominating over the stochastic part, which can be seen when comparing Figures
3.11c and d to Figures 3.11a and b. Enlarging the volume, but keeping the amplitude,
A, constant, causes the streamlines to spread out. This is due to the low-pass filter that
excludes the wave numbers higher than κ= 2π/` from adding to the total momentum
content. Instead, the mean shape of the gust is made up from the lower wave numbers,
producing a blunter velocity peak.

The size of these gusts is somewhat limited by how much energy is available in the
spectrum at the lowest wave numbers, which is prescribed by the turbulent length scale, L.



3.3 THE SPATIAL STRUCTURE OF WIND GUSTS 75

0.0 0.5 1.0 1.5

√
u′2 + v ′2 +w ′2/A [–]

0.0 0.5 1.0 1.5

√
u′2 + v ′2 +w ′2/A [–]

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(x −x0)/L [–]

(z
−z

0
)/

L
[–

]

(a): A = 3σiso, `= L.
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(e): A = 3σiso, `= 2L.
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(f): A = 3σiso, `= 2L.
Figure 3.11: Velocity fields at y = y0 around spherical concentrations of horizontal momentum
(`x = `y = `z = `) in homogeneous, isotropic turbulence with a domain size of [0, 8L]3. Shown
in the left column are the expectations, E

[
û′(x)

]
, with the theoretical streamlines. Shown in the

right column are realizations of complete turbulent velocity fields, û′(x).
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Figure 3.12: Streamlines around a spherical concentration of horizontal momentum (`= L) in
homogeneous, isotropic turbulence, but generated in different domain sizes.

However, when generating gusts through a Fourier transform, the domain has to be large
enough for these wave numbers to exist at all. This is why Mann (1998) recommends a
minimum box size of 8L in each direction to ensure that the variance under the spectrum
is correctly translated to the spatial domain. The effect this has on the gust shape is
illustrated in Figure 3.12. Clearly, the gust in this example has trouble fitting in a [0, 4L]3

domain. The variance that should have been provided by wave numbers lower than
2π/(4L) is now compensated by the higher wave numbers, causing the velocity field to be
deformed. On the other hand, a domain that is twice as large in every direction as the
[0, 8L]3 minimum still produces roughly the same shape.

In addition, it is interesting to speculate how gusts would look under different atmo-
spheric conditions. The expected velocity fields are obtained from the Mann’s spectral
tensor (see Section 3.2.4) with the parameter fits from Sathe et al. (2013).8 The conditions
range from stable to unstable at a mean wind speed of 10 m/s and the volume V is taken
as a 25-m diameter sphere. The results, shown in Figure 3.13, indicate that gusts become
larger and overall more severe as the atmosphere grows unstable. This should come as no
surprise, seeing as how the vertical momentum fluxes in unstable conditions promote
turbulence and large-scale structures.

Although not visible in Figure 3.13, the shear parameter, Γ, has a pronounced effect
on the vertical (w) velocity component as well. This is probably best illustrated in a
three-dimensional streamline plot, as shown in Figure 3.14). The dominant features
found in the expected velocity field are two counter-rotating vortices that serve to retain
the continuity within the domain. These are deformed under shear, which induces an
additional downward velocity component in addition to the streamwise amplitude.9

8 Formally, the Mann model only applies to a neutral atmosphere since buoyancy effects are neglected in the
rapid distortion equations.

9 However, it should be noted that this shape is only valid under very idealized conditions (perfect homogeneity
and linear shear), which are unlikely to be found in real life for large turbulent structures.
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Figure 3.13: Velocity fields at y = y0 around spherical concentrations of horizontal momentum
(`= 25 m) in various atmospheric conditions, based on fits of the Mann model by Sathe et al.
(2013) at a mean wind speed of 10 m/s. Shown are 50-year extreme gusts through a 100 × 100
square in a stable (αε2/3 = 0.041 m4/3/s2, L = 16 m, Γ= 2.7), near-neutral stable (αε2/3 = 0.056
m4/3/s2, L = 33 m, Γ= 3.1), neutral (αε2/3 = 0.055 m4/3/s2, L = 49 m, Γ= 3.1), near-neutral
unstable (αε2/3 = 0.043 m4/3/s2, L = 89 m, Γ= 2.8), and very unstable atmosphere (αε2/3 =
0.040 m4/3/s2, L = 107 m, Γ= 2.3). See Table 2.1 for the definition of the stability classes.
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Figure 3.14: Streamlines of the dominant features found in the expected velocity field around a
gust (`= 25 m) in neutral atmospheric conditions (αε2/3 = 0.055 m4/3/s2, L = 49 m, Γ= 3.1).
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3.4 The probability of gusts in a 3D domain
In order to have any idea about the rarity of a gust, its amplitude needs to be coupled to a
probability of occurrence. However, this is not so straightforward as turbulence is strongly
self-similar at high wave numbers.

3.4.1 The fractal nature of turbulence
This self-similarity, expressed by E(κ) ∝ κ−5/3, is found across the inertial range and is
often assumed to extend up to κ=∞ (see Subsection 3.2.1). It brings up the same issue
raised by Richardson already in 1926. In the inertial range, the variance of the fluctuations
(e.g., u′(x)), given by the zeroth-order spectral moment, is finite:10

u′u′ =
∫

E(κ)dκ,

∝
∫
κ−5/3 dκ<∞. (3.89)

However, the variance of the first derivatives, given by the second-order spectral moment,
is infinite:

du′

dx

du′

dx
=

∫
κ2E(κ)dκ,

∝
∫
κ1/3 dκ=∞. (3.90)

The diverging integral means that velocity fluctuations become more abundant when
moving to smaller scales. Consequently, towards infinitely small scales, a velocity field
would also contain an infinite number of gusts.

A nice way of visualizing this is through a wavelet transform, which results from a
convolution of a signal, u(t ), with a certain wavelet function, ψ(t ):

W [u(t )] = 1p|s|

∞∫
−∞

u(t ′)ψ∗
(

t − t ′

s

)
dt ′, (3.91)
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Figure 3.15: The Mexican hat wavelet.

10 In his example, Richardson describes the motion of an air particle with the Weierstrass function, but the
same reasoning works with Kolmogorov’s 1941 theory too.
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(a): Wind speed measured at 116-m height during the passing of a storm over the offshore wind
farm Egmond aan Zee in the Dutch North Sea on 12 March 2008.
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(b): Wavelet scalogram of the unsteady wind speed,
∥∥u′(t )

∥∥, using the Mexican hat wavelet.
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(c): The local minima and maxima in the scalogram show the approximate locations and scales of
passing eddies.
Figure 3.16: A wavelet transform can be a nice way to visualize the fractal nature of turbulence.
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with �∗ denoting a complex conjugate. The wavelet transform is done for various scales
by expanding or contracting the wavelet by a scale factor, s. This results in a scalogram,
which indicates at which time and scale the signal correlates best with the function ψ(t ).
In this context, it makes sense to choose a wavelet that resembles a simple gust, for
instance a Mexican hat (or Ricker wavelet):

ψ(t ) = 1p
2π

e−t 2/2 (
1− t 2) , (3.92)

plotted in Figure 3.15. Figure 3.16b then shows the scalogram resulting from a wavelet
transform of the time series in Figure 3.16a. If each eddy emits a velocity signature ψ(t/s),
the local minima and maxima in the scalogram can be used to decompose the time series
into eddies of different scales (see Figure 3.16c). This again shows that, when moving to
the smallest scales, gusts are numerous.

An interesting analogy exists between wind gusts and a later research by Richardson
(1961), where he studied the length of coastlines. Coastlines, also being fractal in nature,
have no well-defined length. In theory, one could wrap a measurement tape around all
the infinitesimally small features, leading to an infinite length. However, in practice, one
would rather use a ruler or walk a pair of divider calipers. This coastline paradox was later
picked up by Mandelbrot (1967), who expanded on the idea that the length of a coastline
depends on the length of the ruler used to measure it. The practical solution is therefore
to settle for a minimum feature size to define what scales are relevant.

The same idea can also be applied to wind gusts, considering that, in Section 3.3,
Mandelbrot’s ruler has already appeared in the form of a low-pass filter, G(κ). Therefore,
scales smaller than a cut-off wave number are automatically neglected. This also imposes
an upper limit on the integral in Equation (3.90), leading to finite second-order spectral
moments. In meteorology, for example, it is common to use a three-second averaging
period when dealing with wind gusts in time series. This corresponds to a wind run—the
gust duration multiplied with the average velocity—in the order of 100 m (Beljaars, 1987b).

3.4.2 The Euler characteristic as the number of gusts
The statistics of gusts are complicated because they are spawned from a continuous
velocity field instead of being truly discrete events. However, for high enough amplitudes,
the events inside a domain, B , that match the requirements (3.60a), (3.60b), and (3.60c)
closely match the members of the excursion set, ZA :

ZA = {
x ∈ B : p ′(x, t0;V ) ≥ ρvol(V )A

}
. (3.93)

The excursion set is the collection of regions that remains in the field p ′ after subtracting
a threshold ρvol(V )A. The number of gusts with a streamwise momentum of at least
ρvol(V )A is then equal to the cardinality of the excursion set, denoted as #ZA .

Visualizing a level excursion is quite straightforward as long as the domain is one- or
two-dimensional. Everything that remains above a certain level is a discrete number of
isolated regions that is easily counted, similar to how islands appear in a landscape when
the sea level is raised (see Figure 3.17).

However, when the domain is three-dimensional, these regions are much harder
to define. For negative threshold values, first the negative gusts would disappear from
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Figure 3.17: Level excursions are still easy to define and visualize when dealing with just one or
two dimensions.

(a): Bubble topology. (b): Sponge topology. (c): Meatball topology.
Figure 3.18: In a three-dimensional domain, the boundaries of the level excursions can look
very complicated, making it hard to distinguish between individual structures. Depending on the
threshold level, the excursion set will tend to a bubble, sponge, or meatball topology.

the excursion set. This leaves a volume with a lot of holes, called a bubble topology (see
Figure 3.18a), which looks similar to a Swiss cheese.11 For threshold levels around zero,
individual gusts are still not clearly distuingishable, since high amplitude regions are
connected by a network of bridges or handles. This is often called a sponge topology
(see Figure 3.18b). Finally, if the threshold level is high enough, what is left are mainly
disconnected regions with a small number of holes, called a meatball topology (see Figure
3.18c).

Although there are no analyical expressions to derive the number of isolated high-
amplitude regions directly, the Euler characteristic of the excursion set is a good approxi-
mation (Adler, 1976). The Euler characteristic is a number that describes a topological
space and is loosely defined as the number of connected components in ZA , minus the
number of handles, plus the number of holes. As an example, Figure 3.19 shows three
topologically distinct objects. First, the ball (a) is a solid object and therefore has an Euler
characteristic of χ= 1. A torus (b) is a single connected component minus a handle: χ= 0.
Finally, a hollow sphere (c) has a shell plus a cavity: χ= 2.

11 Yes, the color scheme in Figure 3.18 was on purpose.
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For high enough threshold levels, the holes and handles disappear from the excursion
set, ZA , leaving only the connected components (i.e., the gusts). This is the basis for the
Euler characteristic heuristic, which states that

E[#ZA] ≈ E
[
χ(ZA)

]
, (3.94)

of which an example is shown in Figure 3.20. A generalized expression for E
[
χ(ZA)

]
that

applies to N -dimensional domains has been derived by Adler and Taylor (2007):

E
[
χ(ZA)

]= e
− A2

2Λ0

N∑
k=0

∑
J∈Ok

vol(J )
p|Λ2(J )|

(2π)(k+1)/2Λk/2
0

Hk−1

(
Ap
Λ0

)
, (3.95)

where

Hn(x) =


n!

bn/2c∑
j=0

(−1) j xn−2 j

j !(n −2 j )!2 j
, n ≥ 0,

p
2πΨ(x)ex2/2, n =−1,

(3.96)

(a): A ball (χ= 1). (b): A solid torus (χ= 0). (c): A hollow sphere (χ= 2).
Figure 3.19: Euler characteristics of various objects.
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(b): For several diameters.
Figure 3.20: Level excursions (dots) averaged over 10,000 velocity fields with homogeneous,
isotropic turbulence (σiso = 1 m/s, L = 25 m), generated in a cubic domain of 100×100×100 m
(unpadded: Lx = Ly = Lz = 200 m, Nx = Ny = Nz = 28), compared to the Euler characteristic
(lines). The velocity field was filtered using a spherical kernel with a diameter, `.
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Figure 3.21: The sets Ok consist of the k-dimensional faces of the domain B that contain the
origin.

is the nth Hermite polynomial and Ψ(x) represents the tail of the Gaussian distribution:12

Ψ(x) = 1− 1p
2π

x∫
−∞

e−ν
2/2 dν. (3.97)

The variance, or zeroth-order spectral moment, of the filtered velocity field is obtained
from Equation (3.76). Moreover,

∑
J∈Ok

denotes summing over the
(N

k

)
k-dimensional faces

of B that contain the origin; vol(J) is the N -dimensional volume (or Lebesgue measure)
of J ; and |Λ2(J )| is the determinant of the matrix of second-order spectral moments
belonging to J .

When the domain, B , is a three-dimensional rectangular box with sides Lx ×Ly ×Lz ,
O0 contains the single vertex at the origin; O1 the three ribs along the x-, y-, and z-axes;
O2 the x yO-, O y z-, and xOz-planes; and O3 the volume of the box B (see Figure 3.21).
Then, Equation (3.95) can be written as

E
[
χ(ZA)

]=Ψ(
Ap
Λ0

)
+e

− A2
2Λ0

[
c1 + c2

Ap
Λ0

+ c3

(
A2

Λ0
−1

)]
, (3.98)

with the coefficients

c1 = 1

2π
p
Λ0

(
Lx

√
Λ2,xx +Ly

√
Λ2,y y +Lz

√
Λ2,zz

)
, (3.99a)

c2 = 1

(2π)3/2Λ0

Lx Ly

√√√√√
∣∣∣∣∣∣ Λ2,xx Λ2,x y

Λ2,y x Λ2,y y

∣∣∣∣∣∣ + Lx Lz

√√√√√
∣∣∣∣∣∣ Λ2,xx Λ2,xz

Λ2,zx Λ2,zz

∣∣∣∣∣∣
· · · + Ly Lz

√√√√√
∣∣∣∣∣∣ Λ2,y y Λ2,y z

Λ2,z y Λ2,zz

∣∣∣∣∣∣
 , (3.99b)

c3 =
Lx Ly Lz

(2π)2Λ3/2
0

√√√√√√√√√
∣∣∣∣∣∣∣∣∣
Λ2,xx Λ2,x y Λ2,xz

Λ2,y x Λ2,y y Λ2,y z

Λ2,zx Λ2,z y Λ2,zz

∣∣∣∣∣∣∣∣∣, (3.99c)

12 The role of Ψ(A/
√
Λ0) is clear in the limit A →−∞; the point where the entire field is connected and forms

a single maximum.
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where Λ2,i j are the components of the matrix of second-order spectral moments (ob-
tained from Equation (3.77)). In the limit case where Ly ,Lz → 0 (i.e., B becomes one-
dimensional), the above naturally returns to Rice’s formula (Rice, 1944)—which has been
treated in Subsection 2.2.1—and the expected Euler characteristic is exactly the number
of level crossings:

E
[
χ(ZA)

]= Lx

2π

√
Λ2,xx

Λ0
e
− A2

2Λ0 . (3.100)

3.4.3 The probability of extreme wind gusts
With the result of the previous subsection, it is now possible to express a probability
of a gust event happening in a certain domain. By using the Euler characteristic as a
measure for the number of local maxima, the occurrence probability of extreme gusts can
be derived through the Poisson limit. For high amplitudes, a binomial distribution with N
successes can be approximated by

P(#ZA = N ) = (E[#ZA])N

N !
e−E[#ZA ], (3.101)

which gives the probability that there are N independent gusts in a domain B—or equiva-
lently, there are N elements in the excursion set ZA—where p ′(x, t0;V ) ≥ ρvol(V )A. The
expected number of events in the domain, E[#ZA], functions as the Poisson parameter
that defines the shape of the distribution.

More appropriate, perhaps, is to represent the problem as a Poisson point process
where gusts are treated as independent points that originate from the stochastic turbu-
lence process. The Poisson parameter, λA , then denotes the average number of gusts per
unit volume:

λA = E[#ZA]

vol(B)
. (3.102)

The domain B would span at least several minutes and it often holds that Lx À Ly ,Lz . For
large enough amplitudes, this allows Equation (3.98) to be simplified to

E
[
χ(ZA)

]≈ Lx Ly Lz

p|Λ2|
4π2Λ3/2

0

e
− A2

2Λ0

(
A2

Λ0
−1

)
. (3.103)

resulting in an earlier expression given by Adler (1976). In essence, this neglects the edges
of the domain, which perhaps agrees more with intuition; a domain that is twice as large
contains twice as many gusts. Based on the Euler characteristic heuristic, the Poisson
parameter is then given by

λA ≈
p|Λ2|

4π2Λ3/2
0

e
− A2

2Λ0

(
A2

Λ0
−1

)
, (3.104)

and the Poisson distribution becomes

P(#ZA = N ) = (λA vol(B))N

N !
e−λA vol(B). (3.105)
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Figure 3.22: Expected number of gusts in a ten-minute period, defined as spherical momentum
concentrations (`= L) in homogeneous, isotropic turbulence (σiso = 1 m/s, L = 25 m), advecting
though a 100×100 m plane with a constant mean wind speed of ū = 10 m/s.

Concerning extreme gusts, the question is often what kind of amplitude matches
a certain return period (i.e., the average time period for an event to repeat itself). The
return period entails that the probability of encountering an event with a return period, T ,
is 1/T and the expected number of these events over a time period T is, of course, exactly
1. The definition of this T -gust requires a reference surface perpendicular to the flow, S,
to provide finite values for Ly and Lz . Under Taylor’s hypothesis, the domain length and
time period are then connected through

Lx ≈ ūT, (3.106)

where ū is the advection velocity, often taken as equal to the mean wind speed. The
T -gust can be found in several ways. First, the rarest or most extreme deviation relative to
the local conditions is found by finding the amplitude, A, for which the “local” Poisson
parameter, λA , matches a 1/T probability (e.g., see Figure 3.22). If the conditions depend
on a number of variables, θ= [ū, L, . . . ]ᵀ, the return period simply follows from

T = 1

Ly Lz ūλA(θ)
, (3.107)

where Ly Lz ūλA(θ) can be identified as a mean gust rate through a rectangular surface
with sides Ly ×Lz . Though, this does not lead to a single well-defined event, but instead
implies that the T -gust can manifest itself in numerous ways—at different mean wind
speeds and from various turbulence spectra, if applicable.

A second way is by finding the amplitude that, considering the entire range of
conditions, matches the required return period. The number of gusts that have traveled
through S during a time period, T , is then found by a weighted average:

E[#ZA] = Ly Lz T
∫

ūλA(θ) f (θ)dθ, (3.108)

where f (θ) is the probability density function of θ. One way of visualizing this is by
dividing the time period, T , into N domains, as sketched in Figure 3.23. Each of these
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ūN∆T ūN−1∆T ūN−2∆T Lx,i = ūi∆T ū3∆T ū2∆T ū1∆T

B

S

Figure 3.23: A series of domains with an equal time period, ∆T , advecting through a square
surface, S, with a mean wind speed ū. Sketched inside the domains are the members of the
excursion set ZA = {

x ∈ B : p ′(x, t0;V ) ≥ ρvol(V )A
}
.

domains spans a fixed time length, ∆T , and has local conditions governed by f (θ). Then,
marking every region above a certain threshold level gives the total number of gust events:

N∑
i=1

#ZA,i =
N∑

i=1
Ly Lz ūi∆T λA(θi ), (3.109)

The mean number of gusts found in a time period, T , is thus given by

1

N

N∑
i=1

#ZA,i =
Ly Lz T

N

N∑
i=1

ūiλA(θi ), (3.110)

which is the same as saying that

E[#ZA] = Ly Lz T E[ūλA] . (3.111)

In that case, the return period is the reciprocal of the mean gust rate:

T = 1

Ly Lz E[ūλA]
. (3.112)

However, this yields a rather inconvenient result when the amplitude is added to the
mean wind speed: the T -gust may be a ridiculously severe event at low ū and a negligible
one at high ū.

Therefore, a third way is by considering the total amplitude; i.e., the turbulent velocity
deviation added to the mean wind speed. The number of gusts then has to be found by
modifying Equation (3.104) for the excursion set

ZA∗=ū+A = {
x ∈ B : p(x, t0;V ) ≥ ρvol(V )(ū + A)

}
, (3.113)

where ū is a stochastic mean wind speed with a probability density function, f (ū). After
making the substitution A∗ = ū + A, it follows that

E[ūλA∗ ] ≈
∫

ū

p|Λ2|
4π2Λ3/2

0

e
− (A∗−ū)2

2Λ0

(
(A∗− ū)2

Λ0
−1

)
f (ū)dū, (3.114)
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and the return period follows as before from Equation (3.112). The result is a single event
that is undeniably the T -gust.13 Nevertheless, when dealing with practical problems,
keeping the event relative to local conditions might be much wiser. The reason is that the
response to such events can be very dependent on the surrounding conditions. This is
especially the case for wind turbines, which operate under different control regimes for
different mean wind speeds.

3.5 Time evolution of wind gusts
The gusts derived in Section 3.3 are spawned from free-stream turbulence, far upstream
of any disturbance. However, the spatial structure changes in time due to dissipation,
turbulent advection, and external forces acting on the flow. This is an important issue
for lidar-assisted control systems used in wind turbines—a subject that will be revisited
in Section 4.4—which can measure a gust up to several hundred meters upwind. Such
applications require a quick model that can provide a good estimate of how the wind
evolves over a period in the order of ten seconds.

3.5.1 Fourier-transformed Navier-Stokes equations
The Navier-Stokes equations, discussed in Subsection 3.1.1, can also be solved in wave
number space, where the focus is on the evolution of the Fourier modes. When writing a

Re

Im u′

x

Aeiκx
(A+∆A)eiκx

∆A

(a): A higher amplitude increases the energy contained by the wave.

Re

Im u′

x

φ/κ

Aei(κx+φ)

Aeiκxeiφ

(b): A positive (counterclockwise) phase shift will displace the wave in the negative direction
without affecting the variance.
Figure 3.24: Each Fourier mode has two degrees of freedom: amplitude and phase, here
sketched for a single dimension.

13 However, even more complicated expressions will have to be used when the mean wind speed is not uniform,
but varies with height.
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scalar process, dZ , in polar form,

dZ (κ) = A(κ)eiφ(κ), (3.115)

each mode has two degrees of freedom: the amplitude, A, and the phase, φ (see Figures
3.24a and b). The energy is completely determined by the amplitude:

dZ dZ∗ = (
Aeiφ

)(
Ae−iφ

)= A2.

The phases, on the other hand, more or less determine the shape of the velocity field in
the spatial domain. This is clearly demonstrated by the simple advection equation:

∂dZ

∂t
=−iκx ū dZ, (3.116)

with the solution
dZ(κ, t ) = dZ(κ, t0)e−iκx ū(t−t0). (3.117)

Unsurprisingly, it implies that the wave front is being displaced in the streamwise direction
by a distance ū every second (the same result found in Subsection 3.1.3).

For the remainder of this section, a gust is assumed to behave as a locally homoge-
neous group of waves, centered around x0 and traveling with the mean wind speed:

ẋ0 = ū(x0). (3.118)

On a time scale in the order of ten seconds, the evolution is governed by Equation (3.11),
which was obtained after eliminating the irrelevant terms from the Navier-Stokes equa-
tions. The evolution of the process dZ is then described by a Fourier transform:14

∂dZ

∂t
= − (∇ū) dZ︸ ︷︷ ︸

Shear distortion

−
Turbulent transport︷ ︸︸ ︷

i
∑

κ1+κ2=κ
[dZ(κ1) ·κ2] dZ(κ2) − 1

ρ
iκdW︸ ︷︷ ︸

Pressure fluctuations

(3.119)

where

u′(x, t ) =
∫
κ

eiκ·(x0(t )+r) dZ(κ, t ), (3.120a)

P ′(x, t ) =
∫
κ

eiκ·(x0(t )+r) dW (κ, t ), (3.120b)

are the Fourier-Stieltjes representations of the unsteady velocity and pressure, respectively.
Additionally, the distortion of the wave numbers is described by

∂κ

∂t
=−κ ·∇ū, (3.121)

14 At this point, it is convenient to switch to a Lagrangian perspective where the observer moves with the
advection speed. This means the term ū ·∇u′ also drops out of Equation (3.11).
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with the solution

κ(t ) = e−(t−t0)∇ūκ(t0), (3.122)

where

e−(t−t0)∇ū =
∞∑

n=0
[−(t − t0)∇ū]n (3.123)

is the matrix exponential. In wave number space, the pressure fluctuations can be written
as a function of the unsteady velocity through the Poisson equation and the principle of
continuity:

1

ρ
‖κ‖2 dW = 2iκ · (∇ū) dZ−κ ·∑

κ1+κ2=κ
[dZ(κ1) ·κ2] dZ(κ2). (3.124)

After substituting this back into Equation (3.119), it can be grouped with the turbulent
transport term, yielding

∂dZ

∂t
= −

(
I−2

κκᵀ

‖κ‖2

)
(∇ū) dZ − i

(
I− κκᵀ

‖κ‖2

) ∑
κ1+κ2=κ

[dZ(κ1) ·κ2] dZ(κ2). (3.125)

3.5.2 Dealing with the nonlinear term
Equation (3.125) contains a nonlinear term that describes how kinetic energy is passed
on from the wave number pair κ1 and κ2 to a higher wave number κ=κ1 +κ2 in a triad
interaction (e.g., see Figure 3.25). This process does not affect the total energy contained
by a group of waves, but rather redistributes it internally. However, modeling these wave
number interactions is unfeasible in practice. That is why most analyical approaches to
the Navier-Stokes equations start with either modifying or neglecting the nonlinear term
completely.

One such approach is rapid distortion theory (Batchelor and Proudman, 1954), which
is based on the assumption that the velocity field is distorted so quickly that the slower
inertial terms have no effect. Dropping the nonlinear terms from Equation (3.125) then

κ1

κ2

κ3

κ1 +κ2

κ1 +κ3

κ2 +κ3

Figure 3.25: In wave number space, kinetic energy is passed on to smaller scales through triad
interactions.
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Φ

t
Figure 3.26: Due to viscosity, the variance contained by a wave number is expected to dissipate
exponentially, where high wave numbers decay faster than low wave numbers.

leads to
∂dZ

∂t
= −

(
I−2

κκᵀ

‖κ‖2

)
(∇ū) dZ, (3.126)

which, together with Equation (3.121), are the rapid distortion equations. Since all the
remaining terms are linear, the solution takes the shape of a linear transformation:

dZ(κ, t ) = T(κ)dZ(κ0, t0), (3.127)

where T is a transformation matrix and κ0 =κ(t0) is the initial, undisturbed wave number
vector. Rapid distortion theory can be applied to flows that undergo a sudden shearing,
stretching, or rotation, or any combination thereof (Townsend, 1980).

One way to deal with distortions that are rapid, but not rapid enough, is to rely on
an eddy viscosity, νT (Pearson, 1959; Townsend, 1970). The underlying assumption for
this is that the transfer process, sketched in Figure 3.25, is approximately uniform for the
large eddies and can be taken into account by adding a term −νT ‖κ‖2 dZ. The effect of
viscosity can be shown through the linear diffusion equation:

∂dZ

∂t
=−νT ‖κ‖2 dZ. (3.128)

The solution is an exponential decay function:

dZ(κ, t ) = dZ(κ, t0)e−νT‖κ‖2(t−t0), (3.129)

which is the same as found by Batchelor (1953, p. 93). From this, it also follows that

Φ(κ, t ) =Φ(κ, t0)e−2νT‖κ‖2(t−t0), (3.130)

implying that the variance is lost faster by the high wave numbers than by the low wave
numbers (see Figure 3.26).

Another possible solution is to use a wave number-dependent eddy lifetime or eddy
turnover time, τ(κ), originally proposed by Ropelewski, Tennekes and Panofsky (1973).
This can be used to express the probability of an eddy not decaying in a time period ∆t
(Kristensen, 1979):

P ∼ e−∆t/τ(κ). (3.131)

Such an approach has been used by Bossanyi (2012) in a very simple but effective way:
by letting one wind field evolve into another. Bossanyi applies this to the phase of the
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x0(t0) x0(t )

`x (t0)

`z (t0)

Actuator
surface

Figure 3.27: Sketch of a gust evolving from a time t0 to a time t as it travels towards a rotor, here
represented as an actuator disk applying a uniform pressure on the flow.

Fourier modes only, but it can easily be extended by writing ∆Z = Cn (see Equation (3.45))
and having it affect the entire white noise vector:

n(t ) = e−
t−t0
τ(κ) n1 +

(
1−e−

t−t0
τ(κ)

)
n2, (3.132)

where the initial state n1 evolves into another random vector n2.

3.5.3 A turbulent gust approaching an actuator disk
The special case treated here is that of an actuator disk, which is an imaginary surface
normal to the flow that applies a uniform pressure. As a consequence, the mean wind
speed drops and the streamlines expand (see Figure 3.27). By conservation of mass, an air
parcel with dimensions `x ×`y ×`z , traveling at a speed ẋ0 = ū(x0), would therefore be
distorted according to

`x (t ) =α`x (t0), (3.133a)

`y (t ) =α−1/2`y (t0), (3.133b)

`z (t ) =α−1/2`z (t0), (3.133c)

where α is used to denote the streamwise deceleration of the mean flow:

α= ū(x0(t ))

ū(x0(t0))
. (3.134)

This means the wave numbers are distorted according to

κ=


α−1 0 0

0 α1/2 0

0 0 α1/2

κ0. (3.135)
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Following Townsend (1980), the transformation matrix from rapid distortion theory is:

Tt0→t = 1

‖κ‖2


‖κ0‖2 0(

α−3/2 −1
)
κx,0κy,0 ‖κ0‖2 + (

1−α−3/2
)
κ2

x,0 +
(
1−α3/2

)
κ2

z,0(
α−3/2 −1

)
κx,0κz,0

(
α3/2 −1

)
κy,0κz,0

. . . 0

. . .
(
α3/2 −1

)
κy,0κz,0

. . . ‖κ0‖2 + (
1−α−3/2

)
κ2

x,0 +
(
1−α3/2

)
κ2

y,0

 . (3.136)

Expanding or contracting the flow has an effect on the turbulence kinetic energy (see
Figure 3.28). Generally, the streamwise variance increases when the flow is expanded, and
vice versa when contracted. A similar plot can be found in Batchelor (1953, p. 74), but
only for large contraction ratios relevant for wind tunnels.

However, the contraction ratios in Figure 3.28 are not nearly as large enough for
rapid distortion theory to hold on its own. Therefore, since the nonlinear term cannot
be neglected entirely, Equation (3.132) is used to account for the transfer between the
wave numbers inside the air parcel. After some rearranging, this leads to the following
expression:

∆Z(κ, t ) = Tt0→t C (κ0)︸ ︷︷ ︸
Expansion/
contraction

{
exp

[
− t − t0

τ(κ)

](
n0 −n′)+n′︸ ︷︷ ︸

Diffusion

}
, (3.137)

where n′ ∼ CN (0,I) is an arbitrary white noise vector that represents some later state. It
models a diffusion process where the wave numbers in n0 lose energy at a rate determined
by the eddy lifetime, τ, while at the same time, it is replenished by n′ in order to keep the
total kinetic energy constant during the transfer process.15

TKE
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Figure 3.28: Change in variance due to a sudden contraction or expansion of isotropic turbulence.

15 In other works, the second white noise vector is often included as a body force to sustain the turbulence
process.
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∆Z(κ0, t0)
∆Z(κ, t )Tti−1→ti

Tti→ti+1

t0 ti−1 ti ti+1 t

Figure 3.29: A complex distortion can be represented as a combination of moderate transforma-
tions.

The downside of using the above expression is that it only works for sharp, uniform
distortions. However, Townsend (1980) argues that gradual distortions can be applied in
steps to deal with more complex situations (see Figure 3.29):

Tt0→t =
ti<t∏
ti=t0

Tti→ti+1 , (3.138)

where the individual transformation matrices Tti→ti+1 are determined as in Equation
(3.136):

Tti→ti+1 =
1

‖κi+1‖2


‖κi‖2 0(

α−3/2 −1
)
κx,iκy,i ‖κ(ti )‖2 + (

1−α−3/2
)
κ2

x,i +
(
1−α3/2

)
κ2

z,i(
α−3/2 −1

)
κx,iκz,i

(
α3/2 −1

)
κy,iκz,i

. . . 0

. . .
(
α3/2 −1

)
κy,iκz,i

. . . ‖κi‖2 + (
1−α−3/2

)
κ2

x,i +
(
1−α3/2

)
κ2

y,i

 , (3.139)

with

α= ū(x0(ti+1))

ū(x0(ti ))
. (3.140)

Doing the transformation in steps also helps to better account for how the wave number
distortion affects the transfer process (e.g., Fourier modes would decay faster after being
compressed):

exp

[
− t − t0

τ(κ)

]
= exp

[
−

ti<t∑
ti=t0

ti+1 − ti

τ(κi )

]
. (3.141)

Combining the above then leads to

∆Z(κ, t ) =
(

ti<t∏
ti=t0

Tti→ti+1

)
C (κ0)

{
exp

[
−

ti<t∑
ti=t0

ti+1 − ti

τ(κi )

](
n0 −n′)+n′

}
. (3.142)
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Figure 3.30: Plot of exp[−(t − t0)/τ] for L = 25 m. For a value of 1, it holds that n(t ) = n0. For
a value between 0 and 1, the white noise vector is a mixture of its initial state, n0, and a later
state, n′.

Concerning the eddy lifetime, Mann (1994) uses the expression given by Equation
(3.35). However, since it is used only to limit the shear distortion, it is a function of the Γ
parameter and the local wind shear. In isotropic turbulence, there is no need for an eddy
lifetime and it reduces to zero. In the case of evolving turbulence, it is therefore more
appropriate to use

τ(κ) = γ‖κ‖−2/3 [
2F1

( 1
3 , 17

6 , 4
3 ,−(‖κ‖L)−2)]−1/2

, (3.143)

where γ is a scale parameter, which will have to be found experimentally or through large
eddy simulation (LES), for example.16 A plot of the factor exp[−(t − t0)/τ] is added in
Figure 3.30.

The evolution model is demonstrated in Figure 3.31 for arbitrary values of α and γ.
Figure 3.31a highlights the effects of diffusion only—for what is probably an exaggerated
value of γ—causing the gust to die out over the course of ten seconds. The gust could,
in theory, also grow in strength under pure diffusion. However, this would imply that
the state n′ contains an even higher magnitude event, which is very unlikely. Second,
Figure 3.31b shows the effects of expansion only. This distorts the gust, but also results in
new regions of high velocities, in accordance with the increase in variance in Figure 3.28.
Finally, 3.31c shows both effects combined. How this would play out in reality is yet to be
seen once proper values of α and γ are found.

16 Unfortunately, this was not feasible anymore within this thesis work.
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(a): Evolution of a wind gust by diffusion only (γ= 1).
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(b): Evolution of a wind gust by expansion only (α= 0.5).
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(c): Evolution of a wind gust by diffusion and expansion (γ= 1, α= 0.5).
Figure 3.31: Evolution of a velocity field around a spherical concentration of momentum (`x =
`y = `z = 25 m) in isotropic turbulence by diffusion and expansion over a period of ten seconds.
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“With a large enough sample, any outrageous thing is
likely to happen.”

— PERSI DIACONIS & FREDERICK MOSTELLER, 1989

EXTREME GUSTS play an important role in the design of wind turbines as they
are bound to occur sooner or later. The aim of this chapter is to study what

happens during these rare events on a basic level. A simplified rotor model,
together with the velocity fields derived in the previous chapter, shall offer a
first look into the consequences of gusts being bounded in space.

Section 4.1 starts off by introducing a rotor model of a 10 MW wind turbine.
This will be used in Section 4.2 to identify the parts on the blades and, overall,
on the disk that are most vulnerable. Subsequently, Section 4.3 will reflect
back on these results to see how relevant a single extreme event is in the grand
scheme of things. To conclude, Section 4.4 will apply the theory from Chapter 3
to a measurements from a nacelle-mounted lidar in order to see whether gusts
can be identified before they strike the rotor.

4.1 Definition of a 10 MW wind turbine
The DTU 10 MW reference wind turbine is a hypothetical machine designed to serve as a
benchmark for large rotors.

4.1.1 Properties
The machine has a rotor diameter of 178.3 m at a hub height of 119 m. Figure 4.1 shows a
drawing of the geometry. Other relevant properties are listed in Table 4.1.

4.1.2 Coordinate systems
Loads and deflections are described in several coordinate systems, drawn in Figure 4.2.
First, the ground coordinate system is attached to the foundation interface and contains
the tower base side-side, MxG , and fore-aft (or overturning) moments, MyG , respectively
around the xG- and yG-axes. Second, the hub coordinate system houses the in-plane blade
moment, MxH , and the out-of-plane blade moment, MyH . When rotated by a pitch angle,
these translate into the blade edgewise and flapwise moments, MxB,0 and MyB,0 .

For load analyses, the interest is often in the tower base overturning moment, MyG,0 ,
and the blade root flapwise moment, MyB,0 . These are usually the highest moments acting
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Figure 4.1: Drawing of the DTU 10 MW reference wind turbine with the relevant dimensions.

Table 4.1: Properties of the DTU 10 MW reference wind turbine (Bak et al., 2013).

IEC wind regime Class 1A

Rated power 10 MW

Rotor orientation Upwind

Control Variable speed, collective pitch

Drivetrain Medium speed, multiple-stage gearbox

Cut-in, rated, cut-out wind speed 4 m/s, 11.4 m/s, 25 m/s

Cut-in, rated rotor speed 6 rpm, 9.6 rpm

Rotor mass 228 t

Nacelle mass 446 t

Tower mass 628 t
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Figure 4.2: Exploded view of the DTU 10 MW wind turbine (not to scale), showing three coordinate
systems: the ground coordinate system (G), attached to the foundation interface with its x-axis
aligned with the mean wind and its z-axis pointing towards the zenith; the hub coordinate system
(H), with its x-axis aligned with the shaft axis and its z-axis pointing upwards at zero azimuth
angle (ϕ= 0◦); and the blade coordinate system (B), which is equal to the hub coordinate system
but rotated by the pitch angle, β.
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on the tower and blades that, to a large extent, determine the required strength of the
material and connections.

4.1.3 Complete aeroelastic BEM model
The loads and deflections of the DTU 10 MW reference turbine can be calculated with
the Bladed v4.4 aeroelastic code. This is a blade element momentum (BEM)-based model
that runs both steady and time-marching simulations with controller input. Figure 4.3
shows the steady operating curves of the DTU 10 MW. Clearly, the maximum thrust is
found at the rated wind speed of 11.4 m/s. This is where maximum power is extracted
from the wind, while the turbine is still operating at its optimum.1

In general, the highest loads can be expected at the point of maximum thrust. To
illustrate, Figure 4.4 shows the moments along the tower and blades at rated wind speed.
The moment curves follow from

dMx

dz
= Fy (z), (4.1)

dMy

dz
= Fx (z), (4.2)

where Fx (z) and Fy (z) are the forces over the z-axis pointing in the direction of the x- and
y-axes, respectively. As a result, the maxima are clearly found at the tower base and the
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Figure 4.3: Steady operating curves for the DTU 10 MW.

1 Note that peak shaving is not applied here. If it was, the controller would steer the wind turbine away from
its optimum at the rated wind speed in order to reduce the loads.
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149.5
MN·m

Figure 4.4: Moment curves for the tower and blades of the DTU 10 MW, calculated for steady
operation at the rated wind speed of 11.4 m/s.

blade root (i.e., the points of clamping). The tower side-side moment distribution (MxG ) is
roughly constant; there are no forces acting on the tower in the y-direction and only the
moments from the three blades are carried down to the foundation. The tower fore-aft
moments (MyG ) vary approximately linearly, since the rotor thrust can be replaced by a
point force acting on the top of the tower.2 Moreover, the moment distributions over the
blades are roughly parabolic in shape, since a distributed load (i.e., pressure) is integrated
over the length.

4.1.4 Simplified rotor model
The disadvantage of running a complete aeroelastic code is that the output depends
strongly on the control strategy, which makes it difficult to generalize the results. There-
fore, a simplified model is proposed that focuses solely on the blade root flapwise bending
moment (MyB,0 ). It still relies on the steady operating curves and induction factors cal-
culated by the full aeroelastic code, but contains no control actions within a ten-minute
period. Furthermore, structural deflections are ignored when calculating the aerodynamic
forces.

The advantage of having a fully rigid rotor operating under a constant speed and
pitch is that the positions of the blade elements are known beforehand. For a zero shaft

2 The drag forces acting on the tower are very small compared to the rotor thrust.
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Figure 4.5: Cross-section of an arbitrary blade element with the angles and aerodynamic force
coefficients.

tilt, the position of the i th blade element in the ground coordinate system is given by

xG,i = 0, (4.3a)

yG,i =−zB,i sin(ϕ0 +Ωt ), (4.3b)

zG,i = zG,hub + zB,i cos(ϕ0 +Ωt ), (4.3c)

where zG,hub is the hub height, ϕ0 is the initial blade azimuth angle, and Ω is the rotor
speed. After interpolating the wind vector, the velocities can be derived for the hub
coordinate system (see Figure 4.5):

VxH,i = ui (1−ai ), (4.4a)

VyH,i =
(
ΩzH,i + vi cosϕ+wi sinϕ

)
(1+a′

i ), (4.4b)

where a and a′ are the axial and tangential induction factors, respectively. Then, the
apparent velocity and angle of attack for each blade element are given by:

Vi =
√

V 2
xH,i +V 2

yH,i , (4.5)

φi = arctan

(
VxH,i

VyH,i

)
, (4.6)

after which the angle of attack follows from

αi =φi −ϑi −β. (4.7)
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The angle of attack is used to find the steady lift and drag coefficients per airfoil in a
look-up table. With those, the steady tangential3 and normal force coefficients are:

C (s)
t ,i =C (s)

d ,i cosα−C (s)
l ,i sinα, (4.8a)

C (s)
n,i =C (s)

d ,i sinα+C (s)
l ,i cosα. (4.8b)

The Beddoes-Leishman dynamic stall model is used to translate the steady force coeffi-
cients into dynamic force coefficients. This is a semi-empirical model that accounts for
unsteady effects on the attached and separated flow regimes, as well as on the vortex-
induced lift after leading-edge separation. The code itself was authored and kindly sup-
plied by Ricardo Santos Pereira, tuned according to his 2013 paper for it to be appropriate
for a horizontal-axis wind turbine. The details of the model can be found in literature
(Leishman and Beddoes, 1989); but, in short, it returns the dynamic tangential and normal
force coefficients from:

C (dyn)
t ,i , C (dyn)

n,i = f

(
αi ,

dαi

dt
,

d2αi

dt 2 , d t , ci , Vi , C (s)
d ,i , C (s)

d ,i ,
dC (s)

n,i

dα

)
, (4.9)

where c is the (local) chord length.
With the aerodynamic force coefficients known, the forces along the blade can be

calculated from

Ft ,i = 1
2C (dyn)

t ,i (ci∆zB ,i )ρV 2
i , (4.10a)

Fn,i = 1
2C (dyn)

n,i (ci∆zB ,i )ρV 2
i , (4.10b)

with ρ being the air density and ∆zB ,i the spanwise length of the blade element. Then,
the forces along the axes of the blade coordinate system are

FxB,i = Fn,i cosϑ−Ft ,i sinϑ+mi g sinϕsinβ, (4.11a)

FyB,i = Fn,i sinϑ+Ft ,i cosϑ+mi g sinϕcosβ, (4.11b)

where mi is the mass of the blade element and g the acceleration due to gravity. Finally,
the edgewise and flapwise blade root moments are respectively

MxB,0 =
N∑

i=1
FyB,i

(
zB,i − zB,0

)
, (4.12a)

MyB,0 =
N∑

i=1
FxB,i

(
zB,i − zB,0

)
, (4.12b)

For a large part, these calculations can be vectorized, which speeds up the calculation
by a factor 150 when compared to the full aeroelastic code. Figure 4.6 shows that the
simplified model performs reasonably well in a statistical sense. As can be expected, the
largest differences are found around the rated wind speed where the pitch controller is the
most active (e.g., see Figure 4.3d). Moreover, the overall maximum loads in the simplified
model are found closer to the cut-out wind speed, where the turbulence levels are highest.

3 By convention, the tangential force coefficient is defined positive pointing towards the airfoil trailing edge.
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Figure 4.6: Comparison of the blade root flapwise moments of the DTU 10 MW reference turbine
calculated by Bladed v4.4 (black) and the simplified rotor model (red) for an IEC class 1A site
(see IEC, 2005b). Shown are the means, standard deviations, and minimum and maximum loads
based on operation in six ten-minute turbulent wind fields per wind speed step.
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Figure 4.7: Sketch of a rectangular wind field, embedded with a gust at a position, x0, which is
being advected with a steady mean wind speed, ū = ū(zG,hub), over a time period, ∆T .

4.1.5 The wind field
The simulations are set up as sketched in Figure 4.7. The velocities experienced by the
rotor originate from a rectangular box of frozen turbulence that is pushed through the
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rotor disk with a steady hub-height mean wind speed, ū.4 Each wind field is embedded
with a gust at a position, x0, based on the theory of Section 3.3.

4.2 Response to spatial gusts
With wind turbines the size of the DTU 10 MW, extreme gusts cover but a small part of
the rotor plane. Compared to a fully coherent gust, this considerably complicates the load
analysis, since spatial gusts can take on various length scales and can land at any position.
The purpose of this section is to take a closer look at these effects, starting from the basic
mean gust shape and expanding the scope step by step to include anisotropy, wind shear,
and stochastic turbulence.

4.2.1 Wind climate and definition of a 50-year gust event
Among other things, wind turbines are designed to withstand an extreme load with a
50-year return period in what is regarded “normal” turbulence. This requirement is set by
the IEC 61400-1 standards (2005). It prescribes that the hub-height wind speed follows a
Rayleigh distribution according to

f (ūhub) = πū

2ū2
ave

exp

(
− πū2

4ū2
avg

)
, (4.13)

where ūave is a class-specific average wind speed. The rest of the wind profile is assumed
to follow a simple power law:

ū(zG) = ū(zG,hub)

(
zG

zG,hub

)α
, (4.14)

where α= 0.2 is the shear exponent. Moreover, for a normal turbulence model (NTM), the
standard deviation of the streamwise velocity component varies linearly with wind speed:

σu = Iref (0.75ū +5.6) , (4.15)

where Iref is a reference turbulence intensity. The DTU 10 MW machine is designed for a
class 1A regime, which implies that ūavg = 10 m/s and Iref = 0.16.

The same set of standards also requires the designer to evaluate a gust with a 50-year
return period. This 50-year gust is an interesting study topic, since it should represent one
of the worst-case scenarios. However, instead of trying to define a single 50-year event,
the focus is instead on an amplitude that corresponds to a once-in-50-years probability
that can manifest itself over the entire range of operating conditions. In particular, the
focus is on the rated wind speed of 11.4 m/s. This is when the rotor is set for maximum
momentum transfer (i.e., maximum thrust) and is the most vulnerable to gusts.

Throughout this section, gusts are generated from Mann’s spectral model (Mann,
1994). They are defined as spheroidal momentum concentrations with a Lagrangian time
scale of 2 s (i.e., τ= `x /ū = 2 s)5 and a lateral length scale of 25 m (i.e., `y = `z = 25 m),
chosen such to reflect the scale of the problem.6 The gusts are generated in a rectangular

4 Unless stated otherwise, ū is used to denote the mean wind speed at hub height.
5 This should favor events with a high dpdt , as discussed in Subsection 2.2.5.
6 The choice of size may look somewhat arbitrary at this point. Apart from its role to act as a yardstick in order

to compute the probability, a well-chosen size will reduce the influence of the stochastic gust component
and provide a better correlation with the loads. This will be discussed in Subsection 4.2.4.
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Figure 4.8: Properties of gusts where a velocity amplitude, A, is averaged over a spheroidal
volume with a Lagrangian time scale of τ= 2 s and a lateral length scale `y = `z = 25 m.

box with a size of 1 min×8L×8L (≈ 720×270×270 m), where L = 33.6 m is the turbulence
length scale prescribed by the IEC for a rotor with a hub height higher than 60 m. The
simulation time step was taken as ∆t = 0.25 s and the y z-plane comprised of 64×64 grid
points.

Equation (3.104) is then used to find the range of amplitudes that fit the description
of a 50-year gust (see Figure 4.8a). A 50-year gust in these conditions has an amplitude of
11.0 m/s and has a streamwise velocity profile along the z-axis as plotted in Figure 4.8b.

4.2.2 Local gust loading
Following Subsection 4.1.4, the blade root moments are largely determined by

• the mean wind speed and the corresponding control mode of the turbine;

• the amplitude of the velocity excursion;

• the local angle of attack changes;

• the affected blade surface area;

• the distance from the blade root to the affected area.

Gust loading is triggered locally by rotational sampling. Although the wind turbine in its
entirety is a stationary object, the blades are, in fact, moving observers that slice through
the wind field with the rotor speed (see Figures 4.9 and 4.10). A gust’s longitudinal length
scale is therefore not fully appreciated by the blade, but instead sampled at an interval
of T1P = 2π/Ω (where 1P stands for once per revolution). As a result, the actual velocity
peaks as seen by the blades are much narrower than the actual Lagrangian time scale of
the gust. This is shown by Figure 4.11, in which a blade element crosses the mean gust
shape7 at radial positions r /R = 0.25 and r /R = 0.85 when the blade is at zero azimuth
(i.e., at twelve o’clock). At this point, the mean wind speed profile is neglected to keep
the maximum velocity at both blade elements the same. However, there are still some

7 The mean gust shape is the deterministic part (i.e., the mean velocity field) around a momentum concentra-
tion, given by Equation (3.85).
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Figure 4.9: Rotational sampling of a velocity field surrounding a spherical concentration of
momentum. The forces acting on the i th blade element contribute to the root moments, MxB,0 ,
and MyB,0 .
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Figure 4.10: Velocities sampled by the i th blade element. Adding the turbulent velocities (u′, v ′,
and w ′) leads to an angle of attack change from α1 to α2.
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Figure 4.11: Rotational sampling of the mean gust shape (τ= 2 s, `y = `z = 25 m, A = 11.0
m/s) at ū = 11.4 m/s by a blade element at ϕ= 0◦(neglecting induction and the mean wind speed
profile), where the blade element collides with the gust center at t = t0. The further a gust is
located along the blade, the shorter the sampled velocity peak is.

asymmetries that can be traced back to the anisotropy of sheared turbulence. This causes
the positive amplitude to be accompanied by variations of the v- and w-components as
well.

When a gust with a positive (streamwise) amplitude hits a blade section, it locally
increases the angle of attack for the duration (see Figure 4.10). The normal force coeffi-
cient then rises in a linear fashion according to the dynamic stall behavior of the airfoil
(sketched in Figure 4.12). In fact, a strong angle of attack change may even push the airfoil
beyond the maximum normal force found in the a static case. This is due to a vortex
detaching from the leading edge, which briefly provides some suction until it leaves the
trailing edge.
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(a): The airfoil operates at a
steady wind speed on the static
normal force curve.
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(b): As the airfoil encounters a
gust, the boundary layer begins
to adapt to the changing angle
of attack.
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(c): The boundary layer starts to
separate at the trailing edge and
a leading-edge vortex begins to
form.
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(d): The leading-edge vortex
travels over the chord, providing
additional suction. The airfoil is
fully stalled.
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(e): The vortex detaches from
the trailing edge and the extra
lift is lost. The airfoil is in deep
stall.
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(f): When the angle of attack
decreases again, the boundary
layer starts to reattach from front
to back.

Figure 4.12: Step-by-step visualization of dynamic stall triggered locally on a blade section.
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Figure 4.13: Flapwise bending moments triggered at the blade root by gusts located somewhere
along the blade (neglecting the mean wind speed profile), taken as the maximum over all azimuthal
positions. The lines indicate gusts with a lateral length scale of `y = 10, 25, and 50 m, but with
the same amplitude of A = 11.0 m/s.

Essentially, what a gust does is locally change the pressure distribution. This means
that the larger the affected blade area, the higher the total force. Moreover, the further this
area is located along the blade, the longer the arm and the higher the root moment. This
is shown in Figure 4.13, where the gusts of Figure 4.11 hit the blade of the DTU 10 MW
at different radial positions. Increasing the size of the gust, while keeping the amplitude
constant, simply increases its momentum content and leads to higher moments. However,
regardless of size, the most vulnerable position on the blade seems to be around 2

3 span.
For the rotor model used here, there could be several reasons for this. The most obvious
is that wind turbine blades are normally tapered, meaning that the chord length (and
thus the blade area) decreases towards the tip. Another reason is that the tip region is
dominated by the high induction of the tip vortex (e.g., see Figure 4.14), which would
weaken the gust.8 All this while the high azimuthal velocities found at the tip make it
harder for a gust to push the blade section into stall.

4.2.3 Vulnerable parts of the rotor disk
When expanding the scope from the blade level to the rotor level, it becomes possible to
highlight the parts of the rotor disk that are most vulnerable to high blade root moments.

8 Admittedly, this is based purely on steady-state induction factors. How a tip vortex would react to a gust in
reality is merely guesswork at this point.
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Figure 4.14: Sketch of the induced velocities around a tip vortex.

As illustrated by Figure 4.15d, this is approximately at 2
3 blade span and at a 30◦azimuth

angle.9 Two dominant sources of asymmetry are the cause of this.
First, there is the effect of anisotropic turbulence. This causes positive amplitudes

to be correlated with negative vertical velocities (see Figures 3.14 and 4.11). When a gust
hits a blade during its downstroke, it also reduces the azimuthal velocity component,
increasing the angle of attack and thereby the normal force coefficient. The lateral velocity
component also adds to this, which is the reason why the most vulnerable parts in Figure
4.15b are found near 30 and 150◦azimuth. During a blade’s upstroke, the exact opposite
happens: the azimuthal velocity increases and the angle of attack is kept small.

Second, a sheared mean wind speed profile means that the longitudinal velocities
increase with height. Apart from leading to higher apparent wind speeds, it also means
that the angles of attack are generally larger when the blade nears zero azimuth. This
leaves the upper half of the rotor disk relatively vulnerable to high gust loads.

4.2.4 Effect of size and the stochastic gust component
The only thing that is still missing from the complete picture is the addition of the gust’s
stochastic component. Next to the expected, deterministic gust shape, there are still
countless possible velocity fields that match the same 50-year amplitude. In a spectral
model, where gusts are generated through conditional sampling as in Equation (3.66), this
variation originates from the unconditioned white noise vector, n. In principle, getting
the right response to a 50-year gust involves evaluating an infinite number of realizations
of the same shape (i.e., an infinite number of random seeds):

E
[
MyB,0 (n)

]= lim
N→∞

1

N

N∑
i=1

MyB,0 (ni ). (4.16)

9 Translating these results to another critical load, the tower base overturning moment, is relatively straightfor-
ward. In that case, the moment arm is measured from the foundation interface, which further aggravates the
damage of gusts landing on the upper half of the disk.
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(b): Uniform mean wind speed profile,
sheared turbulence (Γ= 3.9).
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(c): Sheared mean wind speed profile,
isotropic turbulence (Γ= 0).
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(d): Sheared mean wind speed profile,
sheared turbulence (Γ= 3.9).

Figure 4.15: Flapwise bending moments triggered at the blade root by gusts located at a position
x0 = [

x0, y0, z0
]ᵀ in the rotor disk. The longitudinal position is chosen such that it triggers the

maximum load.
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Of course, in practice, one has to settle for a finite number of seeds, where an acceptable
number is determined by how well the gust amplitude and the load are correlated.

Following Subsection 2.2.5, a maximum correlation should be expected when all the
momentum carried by the gust can be transferred to the structure. This is where the gust’s
volume, V , comes in. Effectively, it causes all the momentum in V to be stored in wave
numbers lower than what is cut off by the low-pass filter, G(κ) (see Subsection 3.3.1). The
more relevant V is to the design problem, the more the velocity fields are correlated to
the loads and the fewer realizations are needed to get a good estimate of E

[
MyB,0 (n)

]
.

The choice of an appropriate volume is, to some extent, set by the size of the problem.
The reason for this is that the interaction between gusts and objects shows filter-like
behavior too by being susceptible to certain wave numbers. For example, imagine a flat
traffic sign facing the oncoming wind as sketched in Figure 4.16. The loads acting on the
pole are determined by the pressure difference integrated over the sign’s surface. Any
fluctuations much smaller than the length scale of the sign, `, are cancelled out and do
not contribute to the total force. In the wave number domain, the sign therefore acts as
another low-pass filter that cuts off wave numbers higher than 2π/`.

A wind turbine rotor, although being much more complex, shows similar behavior.
In the streamwise direction, low-pass behavior exists due to the controller response time
and lag effects in the wake, for example. In the radial direction, small fluctuations will
cancel out over the length of the blade, making them irrelevant for the root moment. One
way to illustrate the impact of the smaller scales is by redrawing Figure 4.15d with fully
turbulent velocity fields. Figure 4.17a shows that, over ten random seeds, the picture
hardly changes and the highest loads are still found in the same areas. This can be
explained by the fact that, despite the presence of the small scales, both the deterministic
and the stochastic gusts have exactly the same momentum content and therefore the same
damaging potential. Averaged over ten turbulence seeds, the highest load is about 55.9
MN·m, against 55.5 MN·m in response to the deterministic gusts. The most vulnerable
part of the rotor disk is still at around 2

3 span and at 30◦azimuth.
Only when the 50-year gust arrives outside of vulnerable areas do the stochastic fields

trigger higher loads, because neighboring velocity peaks take over the role of strongest
gust. This is shown in Figure 4.17b, where the root-mean-squared difference between the
two fields are plotted. It shows that, indeed, the stochastic gust component adds relatively
little to the damaging potential of the 50-year gust. The root-mean-squared difference
around the highest load is 1.7 MN·m (≈ 3%) and comparable values can be found over
the entire range of azimuths.

`

2π/`

Figure 4.16: A traffic sign operates similar to a low-pass filter by canceling out fluctuations that
are much smaller than `.
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(a): Flapwise bending moments triggered
by fully turbulent gusts.
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(b): Root-mean-squared difference be-
tween Figure 4.17a and 4.15d.

Figure 4.17: Effect of the stochastic gust component on the flapwise bending moments.

4.3 How relevant is the 50-year gust?
Evidently, the instantaneous gust loading depends on where exactly a blade is hit and,
to some extent, how the surrounding velocity field looks. On the one hand, a relatively
weak gust might hit the rotor disk at a very vulnerable spot. On the other hand, a very
severe gust entering the domain can trigger an insignicant load or may even go unnoticed
by completely missing the rotor. In the end, it is all a matter of probability or, more
specifically, risk.

Following the definition employed in Subsection 4.2.1, a 50-year deviation from the
mean can manifest itself over a range of wind speeds and at any location in the domain.
In homogeneous turbulence, for example, a gust has an equal chance of landing anywhere
on the y z-plane. If an event is spawned in a rectangular domain, B , with sides Lx ×Ly ×Lz ,
the position of its center is uniformly distributed:

f (x0) =


1

vol(B)
, for x0 ∈ B ,

0, for x0 ∉ B ,
(4.17)

The probability of it landing on the rotor annulus bounded by the (i −1)th and i th blade
nodes is then

P
(
r0 ∈

[
zB,i−1, zB,i

])= πz2
B,i −πz2

B,i−1

Ly Lz
, (4.18)

where r0 is the gust’s radial position. In addition, the blades rotate, which means the
gust has a chance to partially or completely miss the target (i.e., not sampling the whole
amplitude as in Figure 4.11). For a three-bladed rotor, the probability of encountering any
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of the blades within a time period ∆t is given by

P(t0 ∈ [t , t +∆t ]) = 3Ω

2π
∆t , (4.19)

where 3Ω/(2π) is the blade passing frequency.
This brings up an important point with respect to spatial gusts. Even if the wind

field would spawn an extreme 50-year gust event, the chances of it hitting a blade exactly
at the right spot are very slim. When a gust is described by a combination of variables,
θ= [ū, x0, . . . ]ᵀ, the risk associated with it is given by

E
[
MyB,0

]= ∫
MyB,0 (θ) f (θ)dθ. (4.20)

To put matters into perspective: the expected flapwise moment triggered in the situation
depicted in Figure 4.13d is a mere 40.1 MN·m, which is way lower than the 50-year load
and even lower than the ten-minute extreme. Just exactly how insigificant the 50-year gust
seems to be, is perhaps even better illustrated with a cumulative distribution function,
conditional on the mean wind speed of 11.4 m/s and the amplitude of 11.0 m/s (see
Figure 4.18). It shows that there is just a one-in-five probability of triggering a blade root
moment higher than the ten-minute extreme, owing to all the ways the gust can miss the
rotor. Surely, this means that the 50-year gust cannot solely be responsible for the 50-year
load.

But even though the deterministic and the stochastic gusts have the same damaging
potential, clearly the risk associated with the latter is much higher (42.6 MN·m). This is
because, if the 50-year gust is not hitting anything, one of the neighboring gusts will. And
considering that a turbine is continuously being bombarded with gusts, it is not hard to
imagine that the highest load over a 50-year period is ultimately triggered by one of these
weaker amplitudes.10

E
[
MyB,0

]

E
[
MyB,0 (n)

]Deterministic gusts

Stochastic gusts

10-min extreme

35 40 45 50 55
0.0
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Figure 4.18: Probability of non-exceedance for 50-year gust events at ū = 11.4 m/s (A = 11.0
m/s), where the distribution of the stochastic gusts is constructed from ten turbulence seeds. The
ten-minute extreme load is obtained from Figure 4.6.

10 The gust ultimately responsible for this might as well just be a monthly event. Due to how rapidly the
probability for high amplitudes decreases, the monthly extreme at ū = 11.4 m/s is still A = 9.4 m/s (see Figure
4.8a), but is exceeded 600 times more frequent than the 50-year extreme.
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Therefore, instead of focusing on the 50-year gust, finding the design loads is a
matter of going through all the possible gust events:

F
(
MyB,0

)= ∫
F

(
MyB,0 |θ

)
f (θ) dθ, (4.21)

and finding the case where the probability of exceedance, 1−F
(
MyB,0

)
, matches the 50-

year level. By doing so, every gust event is put into perspective by weighting it with its
probability of occurrence. However, the problem is that the above integral is computation-
ally very expensive—if not impossible—to determine for even a handful of parameters. In
order to get around this, one should rather rely on stochastic simulation methods, which
is the subject of the next chapter.

4.4 Tracking severe gusts with lidar
High gust loads are not completely unavoidable. Proper control schemes with the aid of
lidar systems can anticipate oncoming gusts and help to alleviate loads.

4.4.1 Lidar basics
Lidar, short for LIght Detection And Ranging,11 is a remote sensing technique that uses a
laser to measure distances and velocities. Particularly in wind energy, it is used to replace
expensive met masts for resource assessment, but can also be coupled to controllers for
load alleviation.

The two main types used for wind speed measurements are the continuous wave and
pulsed lidars. Continuous wave lidars operate by sending out an uninterrupted laser beam,
focused on a certain upstream distance. When the light is scattered back from natural
aerosols, the Doppler shift can be used to calculate the velocity at which the particle is
traveling with respect to the direction of the beam. Following a certain scanning pattern
then allows the system to gather information of the oncoming y z-plane. A pulsed lidar
works in a similar fashion, but—as the name might suggest—sends out pulses instead
of a continuous beam (see Figure 4.19). The time it takes for a pulse to arrive back at
the detector is then used to determine the distance to the particle. This can be done for
several range gates, providing a set of point measurements over several upwind distances.

What the lidar receives are line-of-sight velocities along the beam angle, ψ, which
can be used to get an estimate of the longitudinal wind speed. However, there is no way
of telling how the line-of-sight velocity is influenced by the lateral and vertical velocity
components. This is often referred to as the cyclops dilemma. The error (or directional
bias) worsens as the beam angle increases (Simley et al., 2014):

εû = tanψ
(
v sinϕ−w cosϕ

)
, (4.22)

where ϕ is the lidar azimuth angle. This makes it hard to get a good and accurate coverage
of a larger plane, especially during unstable and low-wind-speed conditions. In addition,
the pulse that is sent out has a duration in the order of 10−7 s that, after multiplying with
the speed of light, means that the velocity is integrated over several tens of meters. When
assuming that the streamwise component is large enough (i.e., u À v, w), the line-of-sight

11 Like radar, the word “lidar” is often written lower case.
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Figure 4.19: Working principle of a pulsed lidar system.

velocity follows from

uLOS(x, t ) ≈ cosψ
∫

u(x + r, y, z, t )g (r )dr, (4.23)

which essentially implies low-pass filtering with a weighting function, g (r ). For a pulsed
lidar, this is usually represented as a Gaussian pulse shape (Frehlich et al., 2006):

g (r ) = 1

2∆R

[
erf

(
R − r + 1

2∆R

∆Z

)
−erf

(
R − r − 1

2∆R

∆Z

)]
, (4.24)

where R is the distance to a range gate, ∆R is the spacing between range gates, rp is the
e−1 radius of the pulse, and erf(�) is the error function. The e−1 radius of the pulse is
derived from the full-width-at-half-maximum pulse width (FWHM):

rp = FWHM

2
p

ln2
. (4.25)

4.4.2 Velocity field reconstruction
To study the integration of lidar technology in wind energy, an Avent-Lidar five-beam
prototype pulsed lidar system was installed on top of the nacelle of a Darwind XD115-
5MW wind turbine. This machine, with a rotor diameter of 115 m and a hub height of 100
m, is located at the test field of the Energy Research Centre of the Netherlands (ECN) in
the Wieringermeer polder.

The lidar is pointed upwind and measures the incoming velocity at ten range gates
simultaneously, from 50 to 185 m in steps of 15 m (see Figure 4.20). The laser beam
cycles over five positions in a 1.25-s period by changing its azimuth every 0.25 s. A center
position (0) is aligned with the incoming wind speed and four positions (1–4) make an
angle of 15◦.

By doing so, the lidar collects a series of scattered measurement points that are each
advected downstream by a local mean velocity, ū(x j ). After a certain time, the velocity is



120 CHAPTER 4: GUST LOADS ON ROTOR BLADES

x

z

y

z

0

1

2

3

4

−185 m −170 m −155 m −140 m −125 m −110 m −95 m −80 m −65 m −50 m

ψ= 15◦

Figure 4.20: A pulsed lidar system mounted on the nacelle of a Darwind XD115-5MW wind
turbine.
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Figure 4.21: Line-of-sight velocities measured within a certain time period at range gates spaced
by ∆R = 15 m. Every time step, the points are expected to advect downstream with a mean
velocity ū(x j ).

known at n points in space, making the surrounding field a conditional field given by

û(x, t ) =
{

u(x, t ) |
∫

u(x1 + r, y1, z1, t )g (r )dr = uLOS,1

cosψ1
, . . . ,∫

u(xn + r, yn , zn , t )g (r )dr = uLOS,n

cosψn

}
. (4.26)

Based on the theory of Section 3.3, the set of all homogeneous Gaussian velocity fields
matching those measurements is described by

E[û(x, t )] = E[ū(x)]+ΨE[n |Yn = b] ,

= ū(x)+ΨY∗ (
YY∗)−1 b; (4.27a)

var[û(x, t )] = var[ū(x)]+Ψvar[n |Yn = b]Ψ∗,

=ΨΨ∗−ΨY∗ (
YY∗)−1 YΨ∗; (4.27b)
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where n |Yn = b is a conditional white noise vector and Ψ follows from Equation (3.52).
Moreover, the matrix Y is given by

Y =



. . . , G(κx, j )
[
Cuu(κ j ), Cuv (κ j ), Cuw (κ j )

]
eiκ j ·x1 , . . .

. . . , G(κx, j )
[
Cuu(κ j ), Cuv (κ j ), Cuw (κ j )

]
eiκ j ·x2 , . . .

...

. . . , G(κx, j )
[
Cuu(κ j ), Cuv (κ j ), Cuw (κ j )

]
eiκ j ·xn , . . .

 , (4.28)

where G(κx ) is the Fourier transform of the range-weighting function, g (r ), with FWHM =
30 m for the experimental set-up. The constraint vector, b, now contains the set of all
velocity measurements of the positions x1, x2, . . . , xn :

b =



uLOS,1/cosψ1 − ū(x1)

uLOS,2/cosψ2 − ū(x2)
...

uLOS,n/cosψn − ū(xn)

 . (4.29)

Equations (4.27a) and (4.27b) can be used to compute the most probable velocity fields
matching the lidar measurements, together with the analytical uncertainty.

To illustrate, consider a severe gust picked up by the experimental set-up on 22
December 2013. During this time, the XD115-5MW machine was operating in a ten-
minute mean wind speed of 13.3 m/s and a longitudinal turbulence intensity of 5.9%,12

outside of the wakes of neighboring turbines or met masts. Based on time-averaged
data from the beam positions 0, 1, and 3, a neutral wind shear profile was fitted to the
measurements:

ū(z) = ū(zref)
ln(z/z0)

ln(zref/z0)
, (4.30)

corresponding to a roughness length of z0 ≈ 0.55 m that is representative of the site (e.g.,
see de Jong, de Vries and Klaasen, 1999).

Measurements of the unsteady velocity component were then used to estimate
the parameters for the spectral model of Mann (1994), Φ(κ; L, αε2/3, Γ). The two hours
preceding the gust were used to construct the longitudinal velocity spectrum, yielding
L ≈ 25 m. The dissipation rate was found by matching the longitudinal component of the
spectral tensor by the variance measured by the center beam; i.e.,∫

G2(κx )Φuu(κ)dκ=σ2
u,LOS, (4.31)

where G takes the effect of range-weighting into account. This led to a value of αε2/3 ≈ 0.16
m4/3/s2. Furthermore, the shear parameter was set to Γ= 3, which should be appropriate
for conditions that are approximately neutral (following Sathe et al., 2013).

12 This value was taken directly from the lidar measurements (i.e., σu,LOS/uLOS), which underestimates the true
value since part of the variance stored in the high frequencies is missing.



122 CHAPTER 4: GUST LOADS ON ROTOR BLADES

−75 −50 −25 0 25 50 75
−75

−50

−25

0

25

50

75

y [m]

z
[m

]

−200 −150 −100 −50 0

x [m]

8

10

12

14

16

18

E
[û
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(a): Expected streamwise velocities (u-component) in the y z-plane at r = –140 m and in the
xz-plane at y = 0 m.
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(b): Variances, normalized by the longitudinal variance, in the y z-plane at r = –140 m and in the
xz-plane at y = 0 m.
Figure 4.22: Streamwise velocity fields around a severe gust, reconstructed from one full cycle of
lidar measurements (n = 50) that was recorded on 22 December 2013. Dots mark the locations
x1, x2, . . . , xn , including the distance they are expected to have advected during the 1.25 s cycle
(see Figure 4.21).

The reconstructed velocity field then looks like Figure 4.22a, showing that the large-
scale features of the gust are well-captured by the lidar. In addition, Figure 4.22b indicates
how much variation is present between all the possible fields that contain the veloci-
ties uLOS,1, uLOS,2, . . . , uLOS,n at positions x1, x2, . . . , xn . Essentially, this is the uncertainty
present in the lidar forecast. The variance in the reconstructed field ranges from zero,
meaning the velocity is known for certain, to σ2

u , meaning that there is no knowledge but
the ten-minute statistics. Of course, the uncertainty grows as one moves further away
from the beam locations, depending on the turbulent length scale (the larger the scales
present in the flow, the more the measurements are correlated to their surroundings). Still,
the uncertainty never reaches absolute zero due to range-weighting.
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4.4.3 Turning lidar measurements into useful control input
Yet, a big set of measurement points or even a full three-dimensional field is far too
much information for a controller to make an easy decision. Therefore, a lidar-assisted
control scheme requires a procedure to interpret these velocities and assess the severity
of an oncoming threat. One way is to rely on the rate at which momentum is transferred
through the y z-plane. This is represented by an along-wind force, F , pushing on a surface,
S, perpendicular to the flow at a location r upwind.

For a gust that is carried by the mean wind speed, following Taylor’s hypothesis,13 a
momentum balance in streamwise direction dictates that

ρū
∂u

∂x
=−∂P

∂x
, (4.32)

where ∂P/∂x is the streamwise pressure gradient. This can be written as

∂

∂x

(
ρūu +P

)= 0, (4.33)

leading to Bernoulli’s principle:
P +ρūu = const, (4.34)

with the constant being the total (stagnation) pressure. Integrating this dynamic pressure
term, ρūu, then gives

F (t ;r ) = ρ
Ï
S

ū(r, y, z)u(r, y, z, t )dy dz. (4.35)

The along-wind force represents the potential of triggering damaging loads (see Subsection
2.2.5) and can be used to issue a gust warning. Owing to the Gaussian nature of û(x), the
statistics of F̂ are also Gaussian and can be computed analytically:

E
[
F̂ (t ;r )

]= ρÏ
S

ū(r, y, z)E
[
û(r, y, z, t )

]
dy dz, (4.36)

var
[
F̂ (t ;r )

]= ρ2S
Ï
S

ū2(r, y, z)var
[
û(r, y, z, t )

]
dy dz. (4.37)

A designer can use this to set up a control logic based on avoiding risk. For the
situation depicted in Figure 4.22, this results in the time series shown in Figure 4.23.
That F̂ is Gaussian means that, for example, E

[
F̂

]+3σF̂ (i.e., the expectation plus three
standard deviations) can be used as a signal to tell the controller that a threat will stay
under a certain level with 99.9% certainty. Including the uncertainty in the forecast in
this way is very convenient, because it will adjust to the amount of available data points.
This gives an indication of what the prediction is worth during periods of low technical
availability (or simply when the rotor blades are passing in front of the lidar’s eye).

13 This appears to hold for at least the low wave numbers, which contain most of the momentum (Schlipf et al.,
2010).
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Figure 4.23: Along-wind force and its variance, constructed from five individual velocity signals,
u0, . . . , u4, recorded at 22 December 2014 at the r = –140 m range gate (where 0–4 are the
beam positions). The time series are centered around a gust event.
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Figure 4.24: The along-wind force forecasted with lidar (in red, including a 10.5-s delay to account
for the advection from r = –140 m to r = 0 m with ū = 13.3 m/s), compared to the rotor-effective
wind speed (blue) derived directly from the turbine shaft torque (downsampled to 1 Hz for clarity).

For conventional feedback controllers, similar input signals exist. One in particular
is the rotor-effective wind speed, which is a pseudo signal derived directly from the shaft
torque, Q, and has been demonstrated to improve turbine behavior under gust loading
(see Van der Hooft, 2003, 2004). The rotor-effective wind speed, Ueff, follows from

Q = 1
16ρCQ (β,λ)πD3U 2

eff, (4.38)

where D is the rotor diameter and CQ is a (precalculated) dimensionless torque coefficient
that depends on the blade pitch angle, β, and tip speed ratio, λ. ECN has supplied this
signal from the XD115-5MW machine for the time period of Figure 4.23. Compared to
the along-wind force (see Figure 4.24), it clearly shows similar behavior—at least the
important low-frequency up- and downcrossings—despite it being disturbed by control
actions and noise coming from structural vibrations.
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“(...) if the difference between N and N −1 ever matters
to you, then you are probably up to no good anyway.”

— WILLIAM PRESS et al., 2007

WIND TURBINES are designed to withstand a load with a 50-year return
period, plus safety factors (IEC, 2005b). Yet, determining this load is a

challenging task, as it requires the designer to evaluate models with tens of
thousands—and preferably millions—of wind fields. This is especially difficult
during a conceptual design phase, when the computational resources are scarce
and load predictions are often clouded by uncertainty. However, this chapter
will show that knowledge of the extreme events present in turbulent wind fields
can be used to a designer’s advantage.

Section 5.1 discusses some of the fundamentals behind extreme value
predictions. Then, Section 5.2 presents two simulation cases that will be used
to validate several prediction methods. These methods, the crude Monte Carlo
method, importance sampling, and a genetic algorithm, will be explained in
Sections 5.3, 5.4, and 5.5, respectively. Section 5.6 compares their accuracy and
precision, taking the computational burden into account. Finally, Section 5.7
treats a simple design exercise to show what these results mean in practice.

5.1 Extreme value theory
Extreme value theory focuses on the statistical behaviour of extremes. An extreme value
may be defined as the maximum value of a sequence or time series:

Xn = max{Ξ1,Ξ2, . . . ,Ξn} ,

where Ξ1,Ξ2, . . . ,Ξn is a set of n independent random variables having a common distri-
bution function F (x). The distribution of the maximum, Xn , can be estimated by finding
the parent distribution:

P(Xn ≤ x) = P(Ξ1 ≤ x ∩ Ξ2 ≤ x ∩ . . . ∩ Ξn ≤ x),

= P(Ξ1 ≤ x)P(Ξ2 ≤ x) · · · P(Ξn ≤ x),

= [F (x)]n . (5.1)

However, this has the disadvantage that the distribution fit is sensitive to small variations
in the data, which can quickly lead to large errors in F n .
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5.1.1 Extreme value distributions
Instead of using the bulk of the data, the preferred approach is to focus on the extremes
and directly look for families of F n . This makes use of the centered normalized maximum,
(Xn −bn)/an , with the constants an > 0 and bn . The possible limit distributions then
follow the extremal types theorem, Fisher-Tippett theorem or Fisher-Tippett-Gnedenko
theorem (after Fisher and Tippett, 1928; Gnedenko, 1943):

If a sequence of constants an > 0, bn exists such that

P

(
Xn −bn

an
≤ x

)
→ F (x) as n →∞,

for some non-degenerate distribution function F , then F is a member of one of
the following families of extreme value distributions:

I: F (x) = exp

[
−exp

(
−x −bn

an

)]
, for x ∈R;

II: F (x) =


0,

exp

[
−

(
x −bn

an

)−α]
,

for x ≤ bn ,

for x > bn ;

III: F (x) =


exp

[
−

(
−x −bn

an

)α]
,

1,

for x ≤ bn ,

for x > bn .

The three types of distributions—I, II, and III—are the Gumbel, Fréchet and (reversed)1

Weibull families, respectively. It was shown by Von Mises (1936) and Jenkinson (1955)
that these families can be derived from one single distribution function, dubbed the
generalized extreme value distribution (GEV):

F (x) = exp

[
−

(
1+ξx −µ

σ

)−1/ξ
]

, (5.2)

with a density function of

f (x) = 1

σ

(
1+ξx −µ

σ

)−1/ξ−1
exp

[
−

(
1+ξx −µ

σ

)−1/ξ
]

, (5.3)

for 1+ ξ(x −µ)/σ > 0. This model relies on three parameters: a location parameter, µ,
a scale parameter, σ, and a shape parameter, ξ. The three families of extreme value

1 The type III distribution is actually a mirror image of the ordinary Weibull family, which can be obtained by
substituting x′ =µ−x.
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Figure 5.1: Families of extreme value distributions (µ= 0, σ= 1).

distributions can then be derived according to

Gumbel (ξ→ 0): F (x) = exp
[
−exp

(
−x −µ

σ

)]
, for x ∈R; (5.4a)

Fréchet (ξ> 0): F (x) =


0,

exp

[
−

( x −µ
σ

)−1/ξ
]

,

for x ≤µ,

for x >µ;
(5.4b)

Weibull (ξ< 0): F (x) =


exp

[
−

(
−x −µ

σ

)1/ξ
]

,

1,

for x ≤µ,

for x >µ.
(5.4c)

Figures 5.1a and b show the differences in shape between the three families. The Gumbel
(type I) family is unlimited and is generally used to model the extremes of distributions
that have exponentially decreasing tails (e.g., the normal distribution). The Fréchet (type
II) family has a lower limit and corresponds to (heavy-tailed) distributions whose tails
decrease according to a polynomial (e.g., the t distribution). The reversed Weibull (type
III) family has an upper limit and can be used to represent data of a bounded distribution
(e.g., the beta distribution).

A way to squeeze more information out of the same data set is to select more than
one maximum per block. Say that X (k)

n is the kth largest value of a sequence Ξ1, . . . ,Ξn .
Then, the above theorem can be extended as follows:

If a sequence of constants an > 0, bn exists such that

P

(
Xn −bn

an
≤ x

)
→ F (x) as n →∞,

for some non-degenerate distribution function F ; then, for some k, the limiting
distribution of

X(k)
n =

[
X (1)

n −bn

an
, . . . ,

X (k)
n −bn

an

]ᵀ
,
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has the shape of the joint density function

f
(
x(1), . . . , x(k)

)
=



exp

[
−

(
1+ξx(k) −µ

σ

)−1/ξ]
· · ·

· · ·
k∏

i=1

1

σ

(
1+ξx(i ) −µ

σ

)−1/ξ−1

, for ξ 6= 0,

exp

[
−exp

(
−x(k) −µ

σ

)]
· · ·

· · ·
k∏

i=1

1

σ
exp

(
−x(i ) −µ

σ

)
, for ξ= 0,

(5.5)

for µ ∈ R; σ > 0; ξ ∈ R; x(k) ≤ x(k−1) ≤ ·· · ≤ x(1) and 1+ ξ(
x(i ) −µ)

/σ > 0 for
i = 1, . . . ,k.

Taking k = 1 will then, of course, cause Equation (5.5) to revert back the ordinary general-
ized extreme value distribution, given by Equation (5.3).

The difficulty with this method is the trade-off between bias and variance. In prin-
ciple, selecting multiple maxima from a block of data should provide more information
to establish the right distribution (i.e., decreasing the uncertainty or variance). However,
extremes have the tendency to cluster around a certain event (e.g., a storm), which vi-
olates the independence requirement. Therefore, each extreme has to be checked for
independence, which is a process that is hard to automate (Lott and Cheng, 2016).

5.1.2 Peak-over-threshold method
Another way of selecting more than one maximum is to only consider values that exceed
a certain threshold, A. If Ξ1, . . . ,Ξn is a series of n independent random variables with an
underlying distribution function F (x), then there exists a conditional distribution function
FA(x) of the excess value over the threshold A:

FA(x ′) = P
(
x ≤ x ′+ A |x > A

)
,

= 1−F (A+x ′)
1−F (A)

, for x ′ > 0. (5.6)

When dealing with extremes, one is of course interested in finding situations where a high
threshold value is exceeded. As A increases, the above converges to a limiting distribution
according to the Pickands-Balkema-de Haan theorem (after Balkema and de Haan, 1974;
Pickands, 1975).

Let Ξ1, . . . ,Ξn be a set of n independent random variables having a common
distribution function F (x). Then, for some large threshold value, A, the dis-
tribution function of x ′ = x − A, conditional on x > A, can be approximated
according to

FA(x ′) → H(x ′), as A →∞,
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where H is the generalized Pareto family:

H(x ′) =


1−

(
1+ ξx ′

σ̃

)−1/ξ

, for ξ 6= 0,

1−exp

(
−x ′

σ̃

)
, for ξ= 0,

(5.7)

provided that x ′ ≥ 0 and σ̃> 0 when ξ≥ 0, and 0 ≤ x ′ ≤−σ̃/ξ when ξ< 0.a

a The parameter ξ is shared by both the generalized extreme value distribution and the generalized
Pareto families.

The peak-over-threshold method is naturally dependent on the threshold value. Low
values of A will result in many exceedences—which have to be checked for independence—
but will also invalidate the limit of A →∞ on which the theorem is based. On the other
hand, high values of A have the drawback of leaving only few extremes to fit a model to.

5.1.3 Return levels
When studying extremes, one often is interested in finding an extreme with a certain
return period, T . This value, called the return level, zT , is expected to be exceeded once in
a period of T and can be found by solving equation (5.2) for the variable x:

zT =


µ− σ

ξ

{
1−

[
− ln

(
1− 1

T

)]−ξ}
, for ξ 6= 0,

µ−σ ln

[
− ln

(
1− 1

T

)]
, for ξ= 0,

(5.8)

with

F (zT ) = 1− 1

T
. (5.9)

For example, if annual extremes are recorded, the value that is exceeded once every
100 years (on average)2 is called the 100-year return level and corresponds to a yearly
probability of non-exceedance of F = 0.99.

Traditionally, extreme value distributions are plotted on a double logarithmic scale
where the probability level is expressed as a reduced variate; i.e.,

y =− ln[− ln(F )]. (5.10)

The reason for this is that it reduces the Gumbel distribution to a linear function, which
can be drawn by hand on graph paper. However, plotting on a logarithmic or double-
logarithmic scale still has other advantages, even with the availability of modern plotting
tools. It is a natural way of aggregating the abundant events at the base of the plot and
magnifying the tail of the distribution where the high return periods reside (e.g., see Figure
5.2).

2 It does not guarantee that this value is exceeded every 100 years. Such exceedance probabilities can be
calculated with the Poisson distribution, given by Equation (2.6).
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Figure 5.2: Return level plots for families of extreme value distributions (µ= 0, σ= 1).

Similar to Equation (5.8), the return level for the generalized Pareto families can be
expressed as

zT =


A+ σ̃

ξ

[
(λAT )ξ−1

]
, for ξ 6= 0,

A+ σ̃ ln(λAT ) , for ξ= 0,
(5.11)

where λA is the expected number of threshold exceedances per unit of time.

5.1.4 The empirical distribution
In practice, extremes are extracted from N time series of a fixed length, leading to a set of
block maxima: X1, X2, . . . , XN . An empirical distribution function can then be constructed
by ranking its members from low to high (see Figure 5.3):

Z1 ≤ Z2 ≤ . . . ≤ Zi . . . ≤ ZN ,

and assigning a sample estimate for the non-exceedance probability, F̂ , to each value: the
plotting position.

Perhaps the most straightforward non-exceedence probability would be to use the
natural estimator:

F̂ (Zi ) = i

N
. (5.12)

However, this makes it impossible to extrapolate, since F̂ = 1 is already reserved for the
highest value. The alternative is to correct the probability values, and there are several
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X1 X2 . . . Xi . . . XN Z1 Z2 . . . Zi . . . ZN

sorting

Figure 5.3: A sequence of values X1, X2, . . . , XN is sorted as Z1, Z2, . . . , ZN .

ways of doing that. One of the most accepted plotting positions (and the one that will be
used throughout this chapter) is the one proposed by Weibull (1939):

F̂ (Zi ) = i

N +1
. (5.13)

Although it has the appearance of being a primitive solution, it does have a theoretical
basis (see Appendix A).

5.1.5 Extrapolation
When the data span a time shorter than the return period, the target return level has to be
obtained from extrapolation. The empirical distribution is then matched to an extreme
value distribution (e.g., by a least-squares fit) and extended to low probabilities.

The problem with extrapolating is that it magnifies the sampling error inherently
present in the data; there is always variation between random samples that lead to dif-
ferent predictions. A way to show this is by repeatedly sampling sets of N values from a
standard Gumbel distribution (µ= 0, σ= 1, ξ= 0). The distribution of the predicted return
levels then follows from the extrapolated values of k sets:

rank →

←
se

t

Z1,1 ≤ Z2,1 ≤ . . . ≤ ZN ,1 → ẑT,1

Z1,2 ≤ Z2,2 ≤ . . . ≤ ZN ,2 → ẑT,2

...
...

...

Z1, j ≤ Z2, j ≤ . . . ≤ ZN , j → ẑT, j

...
...

...

Z1,k ≤ Z2,k ≤ . . . ≤ ZN ,k → ẑT,k

↓
f (ẑT )

The normalized error with respect to the true return level is then

ε= ẑT − zT

zT
, (5.14)

and its expectation, E[ε], describes the bias.
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Figure 5.4: Uncertainty surrounding the prediction of the T = 10,000 return level—here shown
by the bias, median, and confidence intervals (CI)—found by sampling from the standard Gumbel
distribution (µ= 0, σ= 1, ξ= 0).

To illustrate, Figure 5.4 shows the T = 10,000, which were extrapolated by fitting a
straight line with a least-squares method. The uncertainty is considerable for small N and
is still considerable when the full return period is covered, owing to the sampling error.
In addition, there is an upward bias for small sample sizes that is caused by the fitting
method.3 Also, there are other plotting positions that yield better results for the specific
case of Gumbel-distributed extremes.4 A more extensive discussion of the uncertainty
surrounding extrapolation can be found in Van Eijk (2016).

5.2 Wind turbine extremes
Although extreme value theory is a useful tool to predict rare events, it is formally only
valid for an isolated process with a single parent distribution. Extreme load distributions
of practical applications are, more often than not, mixtures that originate from many
different processes. Wind turbines are no exception, as they are subjected to a wide range
of atmospheric conditions and adapt their control strategy to the mean wind speed.

5.2.1 Two simulation cases
Extreme loads or extreme deflections of wind turbine components are often obtained by
repeatedly simulating time series of a length, ∆T , which is usually ten minutes (see Figure
5.5). The output signals yield a set of N independent maxima that can be sorted and fitted
to an extreme value distribution.

Because of the difficulty of finding the 50-year load, Barone et al. (2012) conducted
an extensive simulation campaign of which the full dataset was published. This study

3 A least-squares method has a tendency to overpredict, whereas a maximum likelihood method has a tendency
to underpredict. That is why engineers are more in favor of using least-squares fitting (Van Gelder, 2000, pp.
82–84).

4 This does not necessarily mean that Weibull’s plotting position is inappropriate. In the past, linearity was
often used as a measure for the goodness of fit (Makkonen, 2008), because that made it easier to draw
Gumbel diagrams by hand on graph paper. Attempts to improve linearity have lead to the use of modified
expressions for F̂ that produce better fits under the specific assumption that the data is Gumbel-distributed.
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Figure 5.5: A series of extremes, X1, X2, . . . , XN , extracted from time series with length ∆T .

Table 5.1: Most important differences between two sets of extreme load simulations, generated
with the NREL 5 MW (Jonkman, Butterfield et al., 2009) and DTU 10 MW reference turbines (Bak
et al., 2013).

NREL 5 MW DTU 10 MW

IEC wind regime 1B (ūave = 10 m/s, Iref = 0.14) 1A (ūave = 10 m/s, Iref = 0.16)

Rated power 5 MW 10 MW

Rotor diameter 126 m 178 m

Controller Baseline NREL Steady speed and pitch

Software used FAST v7 As described in 4.1.4

Total simulated time 103 years 7.5 years

Number of extremes 5.4 ·106 3.9 ·105

Operating wind speeds 3 ≤ ū ≤ 25 m/s 4 ≤ ū ≤ 25 m/s

Turbulence spectrum Kaimal et al. (1972) Mann (1994)

Frontal grid size 137×137 m (20×20) 269×269 m (64×64)

Time step 0.05 s (20 Hz) 0.25 s (4 Hz)
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used the onshore version of the NREL 5 MW reference turbine as a study object, simulated
in the FAST v7 aeroelastic code (Jonkman and Buhl, Jr., 2005). The data set contains over 5
million extremes extracted from ten-minute time series for wind speeds between 3 and 25
m/s, totalling about 96 years. For this study, the data set was completed with zero loads
to represent idling (ū < 3 m/s) and parked conditions (ū > 25 m/s), increasing the length
to 103 years.

As a complementary test case, another 7.5 years of extreme loads were generated
for the DTU 10 MW machine using the simplified model explained in Subsection 4.1.4
and the wind climate discussed in Subsection 4.2.1. Compared to the test case of Barone
et al. (2012), this simulation set uses a larger rotor with a finer turbulence grid that can
incorporate severe wind gusts with more detail. No control action is taken within a ten-
minute period to make the results independent of particular controller settings. The two
test cases are listed side by side in Table 5.1.

5.2.2 Distribution of the extreme blade root flapwise moment
As in Chapter 4, the remainder of this chapter will focus on the blade root flapwise bending
moment, which is characteristic for the loads acting on the rotor blades. The simulated
extremes, taken as the maximum over three blades,5 are shown in Figure 5.6e and f. The
clear difference between the two sets is that the extremes of the NREL 5 MW show more
scatter. This has partly to do with the number of data points (5.4 ·106 vs 3.9 ·105), but also
with how they are distributed over the mean wind speed.

The extremes of the DTU 10 MW are more tightly packed around the mean, while
showing a clear peak at the rated wind speed that can be linked to the point of maximum
thrust (see Figure 4.3b). This is because the simplified model of the DTU 10 MW does not
allow any control actions within the ten minute period. Therefore, the extremes belonging
to wind speeds below the rated wind speed (ū < 11.4 m/s) all correspond to the partial
load, variable speed regime, while extremes belonging to ū > 11.4 m/s correspond to the
full load, pitch-regulated regime (see Figure 4.3d).

The NREL 5 MW does not show such a clear distinction between control regions,
because the controller can react to changing wind speeds within the ten-minute period.
For example, when the turbine is operating in a ten-minute mean wind speed of 10 m/s,
gusts may push the machine into the pitch-operated control regime, but any extreme
load that occurs during a pitch action will still be indexed ū = 10 m/s. Another difference
between the two sets is that the active controller of the NREL 5 MW is able to reduce the
loads at higher wind speeds, whereas the DTU 10 MW with a steady control experiences
increasingly higher loads beyond 16 m/s (also visible in Figure 4.6).

The extreme load distributions in Figures 5.6a and b show a clear bend at a prob-
ability level of approximately F̂ = 0.5. This is different from what is shown in Figure 5.2
and indicates that they are, in fact, mixtures of several distributions. Somewhere in the
operating regime, certain processes reside that dominate the extreme load behavior and
shape the tail of the distribution. The origin of these processes can be made visible by
dividing the extremes into three categories (zero loads, F̂ ≤ 0.5, and F̂ > 0.5) and tracing

5 Using the maximum over three blades yields the probability of any of the three blades failing. Alternatively,
one can decide to do the analysis per blade, but then a different target failure probability would have to be
chosen. If each of the blades is designed to fail once every 50 years, then a three-bladed rotor would, on
average, fail every 1

1−(1−1/50)3 = 17 years.
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(a): Return level plot of the blade root flap-
wise bending moment (NREL 5 MW), yield-
ing a 50-year extreme of 17.8 MN·m.
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(b): Return level plot of the blade root flap-
wise bending moment (DTU 10 MW), yield-
ing a 50-year extreme of ≈ 63 MN·m.
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(c): Wind speeds belonging to different
parts of the return level plot (NREL 5 MW).
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(d): Wind speeds belonging to different
parts of the return level plot (DTU 10 MW).
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(e): Simulated extremes (NREL 5 MW).
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(f): Simulated extremes (DTU 10 MW).
Figure 5.6: Extreme loads and return levels for the blade root flapwise bending moment of the
NREL 5 MW and DTU 10 MW reference turbines. The 50-year extreme loads are chosen as the
median return level obtained by resampling the data set and fitting an extreme value distribution
to the tail, as explained in Subsection 5.3.2. For the box plots, the boxes mark the 25th and 75th
percentiles, the whiskers mark the 2.5th and 97.5th percentiles, and the bar is the median.
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back the wind speeds, which results in Figures 5.6c and d. In both cases, this reveals
that the high return levels originate from certain events occurring in the pitch-regulated
control regime.

Fitting an extreme load distribution to the total data set is called “aggregation-before-
fitting”. The alternative is to fit a separate distribution to a number of wind speed bins,
called “fitting-before-aggregation”, which is briefly treated in Appendix B.

5.3 Monte Carlo simulation of extreme loads
The return levels in the previous section were obtained by a Monte Carlo method, where
the extreme load behavior is found by repeatedly sampling ten-minute time series.

5.3.1 Basics
One approach is to directly sample the parameters from their parent distribution, f (θ).
The crude Monte Carlo method relies on brute force and the load distribution follows
naturally from ranking the extremes and assigning an appropriate plotting position (see
Subsection 5.1.4):

F̂ (x) = 1

N +1

N∑
i=1

1(Xi ≤ x), (5.15)

where

1(x ∈ S) =
 1, if x ∈ S,

0, if x ∉ S,
(5.16)

is the indicator function. In essence, the crude Monte Carlo method directly mimics real
life. In order to obtain a set of N ten-minute extreme loads, N randomized ten-minute
wind fields have to be generated and fed to an aeroelastic code. The general workflow is
sketched in Figure 5.7.

f (ū)

f (n)
N

N

10 min

MyB,0

 Xi

ẑ50 yrs

1− F̂

x

Figure 5.7: Workflow of a crude Monte Carlo method, where N ten-minute extreme loads are
calculated by brute force. Randomized turbulent wind fields are generated from the parent mean
wind speed distribution, f (ū), and fed to an aeroelastic code to yield the bending moments. The
resulting loads are sorted and translated to an extreme load distribution, from where the 50-year
return level can be derived.
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(a): For the NREL 5 MW machine.
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(b): For the DTU 10 MW machine.
Figure 5.8: Examples of distribution fits to the tails of the empirical extreme load distribution,
resulting from a sample size of N = 1,000 ten-minute wind fields (∼ 1 week). The means, medians,
and confidence intervals (CI) were obtained as explained in Subsection 5.1.5. The dashed lines
indicate the complete, 103- and 7.5-year data sets. The dot markers belong to an abitrary sample.

5.3.2 Uncertainty induced by extrapolation
Perhaps not surprising when judging by its name, the crude Monte Carlo method is not
very efficient; about 2.6 ·106 maxima have to be extracted from ten-minute time series to
reach the 50-year return level (i.e., 1−F = 3.8 ·10−7). That is why, more often than not, a
designer has to resort to extrapolation.

Following the shape of the extreme load distribution (see Figures 5.6a and b), ex-
trapolation is best done by fitting an extreme value distribution to the relevant upper
percentiles of the data. This produces a model of the dominant process that is responsible
for the high return levels. However, fitting the tail of the extreme load distribution is
not completely straightforward. Because of the plotting position formula, the start of
the tail depends on the sample size. Moreover, the bend in the distribution can be very
gradual for large sample sizes, which makes it difficult to completely separate the different
extreme load processes.

The quality of the fit can be improved by varying the assumed starting position of
the tail with sample size or by using a weighted fitting method; however, both solutions
add a degree of subjectivity. A simple empirical solution that seems to work for most
sample sizes is to assume that the tail covers the second half of the distribution when
drawn on Gumbel paper:

− ln[− ln(F̂ )] >− 1
2 ln

[
− ln

(
1

N +1

)]
− 1

2 ln

[
− ln

(
N

N +1

)]
. (5.17)

Some examples of fits applied to the NREL 5 MW and DTU 10 MW data sets are shown in
Figures 5.8a and b.

Extrapolating crude Monte Carlo results produces unreliable predictions, mainly
because of the sampling error associated with the ten-minute extremes (see Figures 5.6e
and f). In addition, the extrapolation process itself produces more uncertainty than
straightforward sampling from a Gumbel distribution would (comparing Figure 5.9 to
Figure 5.4). This is due to the sheer distance to the 50-year probability level, but also
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Figure 5.9: Uncertainty surrounding the 50-year blade root flapwise bending moment of the NREL
5 MW reference turbine, found by resampling.

due to the additional shape parameter, ξ, which turns the GEV distribution function to
either a Gumbel, Fréchet, or a reversed Weibull distribution. For the case of the NREL 5
MW, the tail has a downward slope that fits a GEV distribution with a slightly negative ξ.
However, this parameter is often overestimated for small sample sizes and large positive
values of ξ can sometimes lead to severe overpredictions. This is also why the median is a
much better measure of the accuracy of a method than the mean. For very small sample
sizes (N < 100), something peculiar happens: the tail has so few data points that it often
matches best with a straight line (ξ≈ 0), which is a safer estimate that results in a lower
bias and a lower overall uncertainty.

5.3.3 The curse of dimensionality
The wind turbine design problem may be kept relatively confined by assuming that the
extreme loads are influenced by only a few variables. This is definitely the case with the
IEC (2005b) design standard, which only prescribes a conservative wind climate with
little variation in operational conditions.6 In a real-life situation, however, more factors
affect the 50-year load; for example, variations in wind direction, turbulence intensity, and
atmospheric stability (not to mention the sea state when designing offshore foundations).

Neglecting atmospheric stability has already been shown to have an impact on fa-
tigue loads. In a study by Holtslag (2016, pp. 96–97), following the IEC standards led to a
27.6% overestimation of the equivalent tower base fore-aft moment compared to actual
offshore conditions. With the introduction of only one new stability parameter, how-
ever, the problem gained a dimension in complexity, which increased the computational
burden by a factor 34.

This effect is referred to as the curse of dimensionality. If a design problem requires
10 function evaluations for one variable, then adding a second variable will require 102

points, a third variable 103 points, a fourth variable 104 points, etc. Although Monte Carlo
methods are often regarded as the solution to this, they cannot fully escape it. The search
for extreme loads is already very expensive in one dimension because of the sampling

6 Some would say being conservative is the purpose of a design standard. However, the question is when this
starts to harm the economic viability of wind energy.
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error associated with ten-minute extremes. Increasing the number of variables inevitably
means that the computational resources will have to be divided over an exponentially
growing parameter space, causing high uncertainty. The only way to cope with this is to
devise a way to limit the sampling space or by using a smart way to search for extreme
loads. For the latter, two methods will be presented in the following sections.

5.4 Importance sampling
When simply drawing from the parent distribution, there is a danger that much compu-
tational effort is wasted in evaluating uninteresting events. A simulation budget can be
used more efficiently by putting weight on situations where extreme loads of a certain
return period are more likely to occur. Such an approach is called importance sampling.

F (x)

x

F̂ (Xi )

F̂ (Xi−1)

Xi−1 Xi

f (θi )

g (θi )

(a): Role of the likelihood ratio.

F (x)

x

1−
∫

supp(g )

f (θ)dθ

(b): Fraction of the load distribution that
has to be corrected when the support of
the sampling distribution does not match
that of the parent distribution.

Figure 5.10: Construction of an empirical load distribution, F̂ (x), by importance sampling.
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1− F̂

x

Figure 5.11: Workflow of an importance sampling method. Instead of being completely random,
each wind field contains a severe gust, following the method explained in Section 3.3. These
gusts are defined by a set of k parameters (e.g., amplitude, A, position, x0, etc.), drawn from
sampling distributions that are set up in such a way that they have a high probability of triggering
high loads. The 50-year load can be derived from a weighted distribution, where each extreme
load is weighted by the likelihood ratio, f (θ)/g (θ).
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5.4.1 Basics
With some prior knowledge, a designer can sample the parameters from a sampling
distribution, g (θ), such that a load distribution follows from

F̂ (x) =

N∑
i=1

1(Xi ≤ x)
f (θi )

g (θi )
N∑

i=1

f (θi )

g (θi )

, (5.18)

where each point is weighted by a likelihood ratio, f (θ)/g (θ). The likelihood ratio rep-
resents the contribution that each point has to the load distribution. When a sampling
distribution is focused on rare events, the common events are weighted relatively more to
make up for the part of F̂ (x) that they are supposed to cover (see Figure 5.10a).

In principle, the sampling distribution, g (θ), can be any function, but it needs to
have at least the same support as f (θ). If this is not the case, part of the parameter space
is missing and the results will be biased. In some cases, however, a designer may already
know for certain that some parts of the parameter space are of no interest (e.g., below the
cut-in wind speed). The bias can then be avoided by correcting the load distribution:

F̂ (x) = 1−

1−

N∑
i=1

1(Xi ≤ x)
f (θi )

g (θi )
N∑

i=1

f (θi )

g (θi )


∫

supp(g )

f (θ)dθ, (5.19)

where supp(g ) denotes the support of g (θ). The effect is sketched in Figure 5.10b.
Importance sampling can be very effective if a designer has some information on

what conditions are associated with the 50-year load. One can imagine that, apart from
high wind speeds, extreme loads often follow from unusual events within the wind field
(i.e., severe gusts). With the method set up in Section 3.3, it is possible for a designer to
generate such events within very short time series (e.g., ∼ 1 min). Since the sampling dis-
tributions represent the effort that go into running certain load cases, a good setup means
that computational resources can be spent more efficiently. This significantly reduces
the uncertainty in the 50-year load, or equivalently means that far fewer simulations are
required for the same quality result. The workflow of importance sampling is sketched in
Figure 5.11.

5.4.2 Sampling operating wind speeds
A simple example that demonstrates the power of importance sampling is to resample the
data from the NREL 5 MW machine with four different sampling distributions:

1. A uniform distribution, g1(ū), which assigns equal probability to every wind speed
between ū = 3 and 25 m/s (i.e., the cut-in and cut-out wind speeds).

2. A cut-off version of the parent distribution, g2(ū), with the idea that wind speeds
under ū = 8 and above 25 m/s are irrelevant (see Figure 5.6c).

3. A normal distribution, g3(ū), centered on ū = 20 m/s and with a standard deviation
of 2 m/s.
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4. A distribution, g4(ū), obtained from exactly tracing back the wind speeds belonging
to return periods higher than 1 year. This was done by using the full data set and
finding the data points associated with 1−F ≤ 1.9 ·10−5.

The first three distributions have analytical expressions given by

g1(ū) =


1
22 , for ū ∈ [3, 25] m/s, ,

0, otherwise;
(5.20a)

g2(ū) =



πū

2ū2
ave

exp

(
− πū2

4ū2
ave

)
exp

(
− π ·82

4ū2
ave

)
−exp

(
−π ·252

4ū2
ave

) , for ū ∈ [8, 25] m/s, ,

0, otherwise;

(5.20b)

g3(ū) = 1

2
p

2π
exp

[
− (ū −20)2

2 ·22

]
. (5.20c)

The resulting extreme load distributions are shown in Figure 5.12. Return levels that lie in
between the samples are obtained by interpolation. The ones beyond are extrapolated
with a least-squares-fit extreme value distribution.

In most cases, importance sampling offers an improvement over the crude Monte
Carlo method with less uncertainty around the 50-year load. Although the sampling
distributions g3 and g4 are the most sophisticated ones, they perform worse than g1 and
g2, because they do not fit the lower tail region well enough. The most extreme loads are
clearly found at these wind speeds, when judging from Figure 5.9e, but a sample size of
N = 1,000 is not enough to capture the right extreme load behavior. This can be remedied
by increasing the sample size (and the computational burden), or by finding another way
to sample loads more effectively.

5.4.3 Sampling point gusts
When looking at the large spread in Figures 5.6e and f, it becomes clear that the extreme
loads cannot be solely dependent on the mean wind speed. In most cases, peak loads can
be traced to certain events happening inside the wind field. For the case of the NREL 5
MW turbine, the extreme loads can be connected to instances where the wind speed takes
a suddden drop and then quickly recovers, tricking the pitch controller into increasing
the thrust (see Figure 5.13).7

Similar events can be recreated by generating conditionally random wind fields, con-
taining a strong local velocity minimum (or maximum), as explained in Section 3.3. The
probability associated with such events can be approximated with the Euler characteristic
heuristic (see Subsection 3.4.2):

P
(
p ′(x; t0,V ) = ρvol(V )A

)≈− d

dA
E

[
χ

(
x ∈ B : p ′(x; t0,V ) ≥ ρvol(V )A

)]
, (5.21)

where the expected Euler characteristic, E
[
χ
]
, is given by Equation (3.95).

7 This type of behavior is normally prevented by a nonlinear gust controller, but this was missing in the
baseline NREL controller used by Barone et al. (2012).
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(b): Sampling distribution, g2.
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(c): Sampling distribution, g3.
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(d): Sampling distribution, g4.
Figure 5.12: Extreme load predictions for the NREL 5 MW turbine, constructed by importance
sampling of mean wind speeds, based on N = 1,000 ten-minute wind fields (∼ 1 week). The
dashed line indicates the complete, 103-year data set. The dot markers belong to an abitrary
sample.

In this first example, the events are limited to point gusts (i.e., vol(V ) = 0, which
excite a single grid point) that are placed randomly in the y z-plane.8 Figure 5.14 shows the
extreme flapwise bending moments above a 14 MN·m threshold, obtained from uniformly
sampling N = 50,000 events from the two-dimensional parameter space bounded by
ū ∈ [0, 30] m/s, A/

p
Λ0 ∈ [−10, 10]. The results confirm that the highest loads are found

well above the rated wind speed and for strongly negative gust amplitudes. This also
explains the shape of the scatter plot in Figure 5.6e.

With the location of the highest loads inside the parameter space, a sampling dis-
tribution is set up: a bivariate normal distribution, centered on a normalized amplitude
of A/

p
Λ0 =−7 and a mean wind speed of 20 m/s. In addition, a uniform distribution is

8 With the grid spacing used for the NREL 5 MW, the gusts are actually generated based on a size of `y = `z =
∆y ≈ 7 m, τ=∆t = 0.05 s.



5.4 IMPORTANCE SAMPLING 147

−10 −8 −6 −4 −2 0 2 4 6 8 10

Streamwise (turbulent) wind speed, u′ [m/s]

50

100

150

z
[m

]

(a): The streamwise component of the fluctuating wind speed in the plane through y = 0 m.

0

10

20

M
y B

,0
[M

N
·m

]

(b): The blade root flapwise bending moments of all three blades.
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(d): The rotor speed.
Figure 5.13: Example of a sudden drop in wind speed that triggers an extreme blade root flapwise
bending moment for the NREL 5 MW turbine (operating at ū = 19 m/s).

added for reference:

g5(ū, A) =


1
440 , for ū ∈ [3, 25] m/s, A/

p
Λ0 ∈ [−10, 10] ,

0, otherwise;
(5.22a)

g6(ū, A) = 1

2π ·2 ·0.5
exp

[
− (ū −20)2

2 ·22 − (A/
p
Λ0 +7)2

2 ·0.52

]
. (5.22b)

The resulting distributions are shown in Figures 5.15a and b. As in the previous exercise,
wind fields sampled from the uniform distribution do not trigger the relevant loads.
Moreover, the 50-year load is now also underpredicted. This is because each gust is
embedded into a short, one-minute wind field. Therefore, if a gust is not able to trigger a
relevant load, all the wind field can produce is a one-minute extreme load.
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Figure 5.14: Extreme blade root flapwise bending moments triggered by 50,000 point gusts for
the NREL 5 MW (where, for zero volume, Λ0 =σ2

u ).
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(a): Sampling distribution, g5.
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(b): Sampling distribution, g6.
Figure 5.15: Extreme load predictions for the NREL 5 MW turbine constructed by importance
sampling of point gusts, embedded in N = 10,000 one-minute wind fields (∼ 1 week). The dashed
line indicates the complete, 103-year data set. The dot markers belong to an abitrary sample.
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(a): Sampling distribution, g7.
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(b): Sampling distribution, g8.
Figure 5.16: Extreme load predictions for the NREL 5 MW turbine constructed by importance
sampling of spheroidal gusts, embedded in N = 10,000 one-minute wind fields (∼ 1 week). The
dashed line indicates the complete, 103-year data set. The dot markers belong to an abitrary
sample.
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G
u

st
am

p
lit

u
d

e,
A

/p Λ
0

35

40

45

50

55

60

B
la

d
e,

M
y B

,0
[M

N
·m

]

Figure 5.17: Extreme blade root flapwise bending moments triggered by 50,000 spheroidal gusts
for the DTU 10 MW (`y = `z = 25 m, τ= 2 s).

The sampling distribution g6 yields more accurate results. Compared to the uniform
distribution, the data points are placed further towards low probabilities, which is also
visible by the way the uncertainty decreases halfway the tail of the distribution. The
distribution g6 is able to reduce the 95% confidence interval around the 50-year load
considerably—from [15.6, 35.4] to [16.4, 18.6] MN·m—when compared to the crude Monte
Carlo method.

5.4.4 Sampling of volumetric gusts
One way of improving the results of the importance sampling method is to increase the
volume of the generated gusts. This increases their momentum content, which should
make it easier to trigger higher loads. In this subsection, the same gusts are used as in
Chapter 4, having a spheroidal volume with lateral length scales of `y = `z = 25 m and a
Lagrangian time scale of τ= 2 s.

Figures 5.16a and b show the return level plots constructed with a uniform and a
normal sampling distribution:

g7(ū, A) =


1
440 , for ū ∈ [3, 25] m/s, A/

p
Λ0 ∈ [−10, 10] ,

0, otherwise;
(5.23a)

g8(ū, A) = 1

2π ·2 ·0.5
exp

[
− (ū −20)2

2 ·22 − (A/
p
Λ0 +6)2

2 ·0.52

]
; (5.23b)

where the normal distribution is now centered on A/
p
Λ0 =−6 to account for the smaller

spectral moments caused by filtering. Compared to Figures 5.15a and b, the loads from
each gust now end up slightly higher in the tail of the extreme load distribution. As a result,
the uncertainty reduces closer to the 50-year probability. For the sampling distribution g8,
the 95% confidence interval around the 50-year load is now [17.0, 18.8] MN·m, which is a
significant reduction compared to when point gusts are used.

With the DTU 10 MW data set, which was generated with wind fields on a 64×64
grid, it is possible to look into gusts in more detail. Figure 5.17 shows the extreme blade
root flapwise bending moments for this turbine above a 35-MN·m threshold. Clearly, the
absence of a controller leads to a totally different response than found in Figure 5.14.
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Local maxima are found all along the rated wind speed. However, the highest loads are
found at higher wind speeds, due to the prescribed increase in turbulence intensity (see
Equation (4.15)) and because the simplified turbine model does not have a controller.

The previous exercise can be repeated with similar sampling distributions. In Figure
5.18, the following six distributions are used:

g 9(ū) =


1
21 , for ū ∈ [4, 25] m/s,

0, otherwise;
(5.24a)

g10(ū) = 1

2
p

2π
exp

[
− (ū −20)2

2 ·22

]
; (5.24b)

g11(ū, A) =


1
420 , for ū ∈ [4, 25] m/s, A/

p
Λ0 ∈ [−10, 10] ,

0, otherwise;
(5.24c)

g12(ū, A) = 1

2π ·2 ·0.5
exp

[
− (ū −20)2

2 ·22 − (A/
p
Λ0 +6)2

2 ·0.52

]
; (5.24d)

g13(ū, A, y0, z0) =


g8(ū, A)

8L ·4L
, for z0 > H ,

0, otherwise;
(5.24e)

g14(ū, A, y0, z0) =


g8(ū, A)

1
2 π

[
R2 − (0.4R)2

] , for 0.4R ≤ r0 ≤ R, z0 > H ,

0, otherwise;

(5.24f)

where r0 =
√

y2
0 + (z0 −H)2 is the gust’s radial position with respect to the rotor. The first

sampling distribution, g9, is a simple uniform distribution where the mean wind speed
is confined to the operating range of the DTU 10 MW machine. This is further refined
with g10, which is a normal distribution centered on the high-load region in Figure 5.6f.
The sampling distribution g11 is a copy of g9, but includes gusts with amplitudes up to
|A|/pΛ0 = 10. Then, g12 is a joint normal distribution that focuses the computational
effort on the area around ū = 20 m/s and gusts that have a return period of approximately 1
year. Another distribution, g13, introduces a constraint on the gust position. It follows the
same shape as g12, but limits the vertical gust position to above the hub. The distribution
g14 refines this further and positions the gusts between 40 and 100% blade span, the area
that according to Figure 4.17a should be where the highest loads are found.

The results are shown in Figure 5.18. Overall, the quality of the predictions improves
as more variables are involved and as the sampling distributions narrow down to the
region of interest. Compared to the volumetric gusts that were used with the NREL
5 MW machine, the uncertainty levels are comparable when the gust position is left
unconstrained (i.e., comparing Figures 5.16b and 5.18d). In that case, the 95% confidence
interval around the 50-year extreme load is reduced from [48.2, 125.8] to [57.8, 62.4] MN·m
when compared to the crude Monte Carlo. The best results are obtained when the gust
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position is narrowed to the arc of g14, producing a narrow 95% confidence interval of
[60.8, 63.7] MN·m.

Evidently, importance sampling is able to achieve significant improvements in accu-
racy. The further the sampling distribution is narrowed down to the region of interest, the
lower the uncertainty. Though, this is assuming that the designer knows where this region
of interest lies.
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(a): Sampling distribution, g9.
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(b): Sampling distribution, g10.
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(c): Sampling distribution, g11.
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(d): Sampling distribution, g12.
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(e): Sampling distribution, g13.
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(f): Sampling distribution, g14.
Figure 5.18: Extreme load predictions for the DTU 10 MW turbine, constructed by importance
sampling of mean wind speeds (a, b) and spheroidal gusts (c–f), based on N = 1,000 ten-minute
and N = 10,000 one-minute wind fields, respectively (∼ 1 week). The dashed line indicates the
complete, 7.5-year data set. The dot markers belong to an abitrary sample.
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5.5 Genetic algorithm
The disadvantage of importance sampling is that a designer needs to know beforehand
what kind of events trigger extreme loads. Setting up proper sampling distributions can be
a tedious process—especially if a controller shows unexpected behavior—and sometimes
requires an expensive survey over all the operating conditions. In order to work around
this, a genetic algorithm may be used to automate the search inside the parameter space.

5.5.1 Basics
The idea is to turn the search for a good sampling distribution into an optimization
problem and to have a genetic algorithm search for the best solution. First, an initial
population is seeded with m gusts, each defined by a genotype (i.e., θ1, θ2, . . . , θm). These
gusts are fed to an aeroelastic model to determine the loads, after which an extreme
load distribution can be set up. Based on a certain fitness function, the most successful
genotypes are selected and used to spawn a new generation with mutations and crossovers.
This process, sketched in Figure 5.19, is repeated for n generations or until the 50-year
load is found with sufficient accuracy.

The likelihood ratio, used to construct a weighted extreme load distribution with
Equation (5.18), is somewhat harder to set up since no clear sampling distributions are
defined. A Delaunay tessellation to divide a k-dimensional sample space up into k-
simplices (i.e., triangles in 2D, tetrahedra in 3D, etc.). The probability mass assigned to a
point θi is then given by the integrated probability density of all neighboring simplices
(see Figure 5.20):

f (θi )

g (θi )
≈ 1

k +1

∑
S∈θi

∫
S

f (θ)dθ, (5.25)

ū

A

x0

f (n)

m

m

∼ 1 min

MyB,0

 Xi

f (θi )
g (θi )

ẑ50 yrs

1− F̂

x

Figure 5.19: Workflow of a genetic algorithm. Combinations of k parameters are stored in a gene
pool with a certain population size, m. Each generation, wind fields are generated and fed to an
aeroelastic model to determine the loads. Successful genotypes are selected based on a fitness
functions (e.g., the distance to the 50-year probability) and are used to spawn a new generation
with slight mutations. This is repeated for n generations until the target return level is found.
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Figure 5.20: Delaunay tessellation of a two-dimensional sample space with scattered points.
The sampling probability mass assigned to the point θi is made up from the contributions of the
neighboring simplices, S j , S j+1, . . . , S j+4 (i.e., the contiguous Voronoi cell).

where S ∈ θi denotes the collection of the simplices that share θi as a vertex. Summed
together, they form a contiguous Voronoi cell, which provides a better estimate of density
than a regular Voronoi tessellation (Schaap, 2007, pp. 64–71). The integral over the
k-simplex can be computed with the method of Stoyanova (2006), for example.

The factor 1/(k+1) is a normalization constant to take into account that every vertex
is counted k +1 times in a k-dimensional space. To visualize, Figure 5.20 shows a two-
dimensional case where the summation adds up the areas enclosed by the medians of
S j , S j+1, . . . , S j+4. It can be shown with simple geometry that this is exactly one-third of
the combined area of the triangles. For higher dimensions, the integral has to be divided
by k +1, since each k-simplex can be divided by k +1 medians. In the case where the
parent distribution, f (θ), is uniform, Equation (5.25) simply returns the space surrounding
the point θi . What in Equation (5.18) was defined as the sampling probability, g (θi ), can
now be related to the density of the points:

g (θi ) ∝
 1

k +1

∑
S∈θi

∫
S

dθ

−1

. (5.26)

Therefore, the closer the points lie together, the higher the density assigned to them.

5.5.2 Set-up
The genetic algorithm is applied to the NREL 5 MW and the DTU 10 MW machines, using
volumetric gusts with `= 25 m. For both cases, the genotypes describe gusts with four
parameters: mean wind speed, ū, normalized amplitude, A/

p
Λ0, lateral position, y0, and

vertical position, z0. The time stamp of the gust is randomized. At the start of every run, an
initial population with a size of m = 50 is seeded from a uniform distribution,9 limited to
ū ∈ [0, 30] m/s, A/

p
Λ0 ∈ [−10, 10], y0 ∈ [− 1

2 Ly , 1
2 Ly

]
, and z0 ∈

[
H − 1

2 Lz , H + 1
2 Lz

]
, where

Ly and Lz are the lateral and vertical dimensions of the domain, respectively.

9 Alternatively, one can choose to seed the first population with successful genotypes of a previous run or by
drawing a sample from a good sampling distribution. This is not done in this section, however, since the goal
is to avoid needing any prior knowledge of the extreme load behavior.
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Since the goal is to determine a certain return level, perhaps the most straightforward
fitness function is the distance to that probability on Gumbel graph paper:

C (θi ) =
∣∣∣∣ln[− ln

(
F̂ (Xi )

)]− ln

[
− ln

(
1− 1

T

)]∣∣∣∣ , (5.27)

where the empirical distribution, F̂ (Xi ), is obtained from the entire gene pool together
with the past generations. Based on this, the five best performing genotypes from every
generation are selected as the elite and are guaranteed to produce offspring. The algorithm
halts when a fixed number of generations, n, is exceeded, or when the average change in
fitness over the last ten generations is smaller than 0.0001%.

5.5.3 Performance
The genetic algorithm yields some interesting results, shown in Figures 5.21 and 5.22. As
seen already in Section 5.4, the NREL 5 MW and DTU 10 MW machines have very different
extreme load behaviors, caused by the pitch control and the lack of one. For the NREL 5
MW case, the genetic algorithm starts to converge to negative amplitudes after a couple of
generations to trigger the behavior shown in Figure 5.13. High bending moments are the
result of briefly decreasing the generator torque, which tricks the controller into pitching
to full thrust in above-rated wind speeds. Therefore, they are not generated locally by
the gusts’ amplitudes, but by the recovering wind speed. Although this makes the gust
position somewhat less relevant, it does seem to favor the blades’ upstroke and the lower
half of the rotor disk—exactly the opposite of what is found in Figure 4.17.

For the DTU 10 MW case, the gusts’ positions are clearly more important and the
algorithm converges nicely to the vulnerable areas of the rotor disk (see Figure 4.17). Fur-
thermore, positive amplitudes are favored as they directly affect the blade loads. However,
with considerably larger confidence intervals around the 50-year load, the overall perfor-
mance is worse than in the previous case. This is probably because the algorithm needs
more time to search in a four-dimensional parameter space. Even after 40 generations,
optimal values for y0 and z0 are still not found, whereas with the NREL 5 MW it was
already sufficient to be approximately in the right rotor quadrant.

After about 10 generations, the genotypes start to develop extreme amplitudes, often
in excess of 7 to 8

p
Λ0. The most obvious reason for this is that it is much easier to

construct damaging gusts with optimal values of ū and A and non-optimal values of y0

and z0 than it is the other way around. Therefore, the genotypes are favored to develop
strong gusts before the start to narrow down on a position. In future work, several other
cost functions will have to be tried to see if they can produce better results.

5.6 A comparison between methods
A way to compare the three methods is by checking how accurate and precise they are in
predicting the 50-year load, where the normalized error is calculated by Equation (5.14).
The uncertainty for the methods that rely on ten-minute time series (i.e., g1, g3, g9, and
g10) is estimated by resampling the crude Monte Carlo sets (N = 5.4 ·106 and N = 3.9 ·105).
For the methods that rely on embedded gusts (i.e., g6, g8, g12, and g14), this is done by
resampling from sets of N = 5 ·104 one-minute time series. The uncertainty for the genetic
algorithm is estimated by comparing 50 different runs, each halted after 40 generations.
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(b): Evolution of the genotypes over n generations.
Figure 5.21: Performance of the genetic algorithm when predicting the 50-year blade flapwise
bending moment of the NREL 5 MW machine.
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Figure 5.22: Performance of the genetic algorithm when predicting the 50-year blade flapwise
bending moment of the DTU 10 MW machine.
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By following the process explained in Subsection 5.1.5, the confidence intervals are then
compared for various sample sizes. These sample sizes are multiplied with the length of
the time series to give a total simulated time period, which acts as a direct measure of the
computational burden.

Apart from the confidence intervals, the prediction quality can be expressed in terms
of the median absolute deviation (MAD) from the true 50-year level:

MAD = median(|ẑT − zT |) . (5.28)

In this case, the MAD is preferred over the root-mean-squared error, which may be
distorted by a single bad distribution fit. Nevertheless, it should be noted that the true
50-year level for the DTU 10 MW was established on the basis of 7.5 years of data (see
Figure 5.6b) and therefore still contains some uncertainty itself.10

Figures 5.23 and 5.24 show a direct comparison of the best performing methods of
this chapter with the crude Monte Carlo method as the benchmark. An additional error
bar is added in Figure 5.23 for N = 1,000 ten-minute wind fields (∼ 1 week), which was
the sample size used for most of the return level plots in this chapter.

Probably the most commonly used alternative is to uniformly sample wind speeds
between the cut-in and cut-out points, as done with the sampling distributions g1 and g9.
Assigning equal weight to every wind speed means that more load cases are run in the
pitch-regulated control regime, which is where the 50-year extreme loads are expected
to be. Compared to the crude Monte Carlo method, the prediction quality is better,
although it suffers from the occasional bad distribution fit (which ends up above the 75th
percentile). Narrowing the sampling distributions with a normal distribution, as done
with g3 and g10, is a strategy that seems to work out better for the DTU 10 MW machine.
Together with the uniform g1, the MAD for g3 is always smaller than that of the crude
Monte Carlo. For the NREL 5 MW, a much larger sample size is required to trigger the
right kind of pitching behavior (i.e., ending up in the upper percentiles of Figure 5.6e).
The MAD of the sampling distributions g1 and g3 becomes smaller than that of the crude
Monte Carlo method after N = 104 and N = 105, respectively.

The results from the gust methods are notably better, and not only because the
sample size can be ten times larger for the same computational burden. Compared to
the crude Monte Carlo method, the bias is significantly reduced and also the confidence
intervals are narrower around the true 50-year level. Moving towards larger gust volumes
was definitely successful for the NREL 5 MW, since it increased the chance of finding high
loads in a time series. Therefore, the predictions made by g8 (`y = `z = 25 m, τ = 2 s)
have a smaller negative bias than those by g6 (`y = `z =∆y ≈ 7 m, τ=∆t = 0.05 s). Again,
compared to the crude Monte Carlo method, the distribution g8 reduces the median
absolute deviation to the 50-year level by a factor 3 to 8, which is roughly a factor 100
increase in computational efficiency.

For the DTU 10 MW, limiting the gust positions to the area between 40 and 100% (g14)
blade span also yields more consistent high loads than when they are left unconstrained
(g12). This is especially noticeable at small sample sizes, which is where the sampling
distribution g12 has problems triggering the right loads. The distribution g14 is able to

10 Still, considering that all the methods are converging to roughly the same 50-year level gives some confidence
in the results.
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(b): For the DTU 10 MW.
Figure 5.23: Performance of various methods to predict the 50-year blade root flapwise bending
moment. For the box plots, the boxes mark the 25th and 75th percentiles, the whiskers mark the
2.5th and 97.5th percentiles, and the bar is the median.
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Figure 5.24: Median absolute deviation (MAD) from the true 50-year blade root flapwise bending
moment, resulting from a crude Monte Carlo method (CMC), importance sampling (IS), and a
genetic algorithm (GA).

reduce the deviation to the 50-year level by a factor 10 to 100, the equivalent of roughly a
factor 1,000 in computational efficiency.

The performance of the genetic algorithm is not very clear from Figure 5.23, since 40
generations were not enough to converge.11 Judging from Figure 5.24, however, it does
seem to outperform some of the manual methods in terms of the MAD. Nonetheless, the
genetic algorithm has a distinct advantage when controllers are involved. In retrospect,
settling on a sampling distribution with negative gust amplitudes for the NREL 5 MW
machine took some effort when done manually. Much unnecessary work would have
been avoided when a genetic algorithm had immediately pointed to the right area of the
parameter space.

5.7 Implications for design
So far, the results of this chapter have been presented as return level plots and narrowing
confidence intervals, which is somewhat abstract. In order to make the results more
tangible, this chapter is concluded with a fictive redesign of the blade root section of the
DTU 10 MW machine, based on a similar exercise performed by Van Eijk (2016).

5.7.1 A simple redesign
The goal is to find a new shell thickness to reduce the 50-year extreme stress caused by
the flapwise bending moment:

σz =
MyB,0 · 1

2 c

Iy y
, (5.29)

where σz is the normal stress in the material, c the chord length (or diameter) of the root
section, and Iy y the second moment of area. When the blade root is approximated by a

11 More generations were not attempted because every run had to be redone 50 times at minimum to establish
the 95% confidence interval.
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thin-walled cylinder, the latter is given by

Iy y ≈ 1
8 πc3ts, (5.30)

with ts as the shell thickness. A new design is then considered better than the old one if

σz,new <σz,old, (5.31)

or
M̂yB,0,new

ts,new
< MyB,0,old

ts,old
. (5.32)

At first glance, this seems straightforward; simply increasing the shell thickness
would already achieve lower stresses. However, the difficulty lies in estimating the extreme
flapwise bending moment for the new design.12 Whereas the original design already has
been through a full detailed structural analysis, the computational budget for a freshly
new concept is limited. This means that the old stress levels are known, but the new ones
are going to be clouded by uncertainty.

Figure 5.25a shows how often a new design is favored over the old one when a crude
Monte Carlo method is used. In the ideal case, every design that is more than a 100% thick,
compared to the old design, should be favored in 100% of the cases. Clearly, this is not the
case. On the basis of 100 ten-minute wind fields, even a design that is 50% thicker will be
discarded in 17% of the cases due to higher stress levels. It is even worse when considering
that, in reality, the changes are usually not in the order of 50%, but much smaller. In fact,
for changes in the order of ±5%, the gains in strength by a new design are outweighed
by the uncertainty. The new design is favored in 60% of the cases—almost irrespective of
positive or negative changes to thickness—due to the biased extrapolation method (see
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(b): With an importance sampling method,
using the sampling distribution g14.

Figure 5.25: Relative number of times a root section with a new shell thickness, ts,new, is favored
over the old design, ts,old. The sample size, N , denotes the equivalent number of ten-minute
intervals.

12 This is, of course, assuming that the root section is part of a whole new blade design for which a full
aeroelastic analysis has to be carried out.
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Figure 5.8). The same problem could arise in the design of a new gust controller, which
could, purely by chance, be wrongly accepted or wrongly rejected.

With a crude Monte Carlo method, it is almost impossible to prove that a new
design is able to reduce the long-term extreme loads when computational resources are
limited. This is where importance sampling methods come in. Figure 5.25b shows that,
on the basis of the sampling distribution g14, the probability for a false acception or false
rejection is much smaller.

5.7.2 Comparing several concepts
Conceptual design studies often look at more than one configuration. For example, say
that there are five concepts that are copies of the DTU 10 MW but with a different blade
root design. Based on their 50-year stress levels, they are then ranked according to

σz,1 ≤σz,2 ≤σz,3 ≤σz,4 ≤σz,5. (5.33)

Again, in the ideal case, the thickest design should always end up on rank 1 and the
thinnest design in rank 5. However, as shown in Figures 5.26a and c, this is certainly not
always the case when a crude Monte Carlo method is used. With N = 100 ten-minute
wind fields, the thickest design is ranked the best only 55% of the time. Investing more
computational resources does improve the quality of the predictions, but even when the
sample size is increased to N = 10,000, the order is often wrong.

On the other hand, with the importance sampling method and an equally expensive
simulation campaign, the concepts are always ranked in the right order. Such a method,
together with the others presented in Section 5.6, removes much of the uncertainty from
a design process. This allows designers to investigate new solutions for extreme load
reductions more effectively.
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Figure 5.26: Average rank in a series of 5 concepts, with 1 being the best performing and 5 the
worst. The sample size, N , denotes the equivalent number of ten-minute intervals.
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“Remember kids, the only difference between screwing
around and science is writing it down”

— ADAM SAVAGE, 2012

THIS RESEARCH was motivated by three main objectives; namely, (1) to gain a
better overall understanding of wind gusts, (2) to study the effects of finite

gust volumes on large rotor blades, and (3) to obtain a better picture of the
extreme load behavior of the major structural components of wind turbines. To
conclude, this sixth and final chapter serves as a reflection on these objectives.
Moreover, some recommendations for future research are given.

6.1 Summary of the most important findings
Most of the results of this thesis are based on the mathematical description of wind gusts
in three-dimensional space, derived in Chapter 3. It covers the mean and stochastic
velocity fields around concentrations of momentum and subsequently connects them
to a probability of occurrence. The numerical results of Chapters 4 and 5 were based
largely on this, but it also led to some insights into the nature of gusts, which formed the
groundwork of Chapter 2.

6.1.1 On the overall understanding of gusts
• Wind gusts are symptoms of turbulent momentum transport (Section 2.2). As such,

their intensity scales with that of the forcing term (e.g., mechanical shear, heat flux,
the movement of the observer, etc.).

• Volume is an essential parameter in the treatment of gusts (Sections 2.2 and 3.4).
From a mathematical standpoint, single-point gusts contain zero momentum and
zero energy, and—while infinitely abundant by their fractal nature—are impercepti-
ble by any observer.

• As dictated by the principle of continuity, the fluid displaced in a wind gust has to
recirculate in order to conserve the amount of mass in the domain (Section 3.3).
Therefore, unless when dealing with a compressible flow, uniform velocity fronts
cannot exist in reality. This renders many deterministic gust models unrealistic.

• The Euler characteristic heuristic, attributed to Adler and Hasofer (1976), is successful
in modelling the statistics of gusts in three-dimensional homogeneous Gaussian
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velocity fields (Section 3.4). Based on conventional one-dimensional measurements,
there is some evidence that this can be extended to real-life turbulence as well, since
gusts are found to lean towards Gaussian behavior when their velocity is averaged
over increasingly larger volumes (Section 2.4).

6.1.2 On the effect of finite gust volumes on rotor blades
• For the DTU 10 MW reference wind turbine, the rotor blades appear to be most

vulnerable to high gust loads when hit around two-thirds of the blade span (Section
4.2). A positive wind shear profile (i.e., the mean wind speed increases with height)
amplifies the impact of gusts landing on the top half of the rotor plane. Furthermore,
the anisotropy induced by shear tends to make the blades more vulnerable during
their downstroke.

• With all of the gust’s momentum stored in its deterministic part (as defined by
Equation (3.85)), its stochastic component adds little to the damaging potential
(Section 4.2).

• The contribution of a single 50-year gust to the 50-year load is close to insignificant
(Section 4.3). The probability of such an event occurring, combined with the proba-
bility of it actually hitting something, is very low. Moreover, the 50-year gust loses its
meaning in a three-dimensional space, since its definition relies on the domain size,
which can be arbitrarily chosen.

• Since the majority of a gust’s momentum is stored in the large scales of motion,
a lidar-assisted control system would be able to track damaging events and take
preventive action (Section 4.4).

6.1.3 On the prediction of extreme loads
• The extreme loads that follow from long periods of operation in homogeneous

Gaussian velocity fields can be predicted by weighting the response to a set of
extreme gusts (Sections 5.4 and 5.6). This can greatly reduce the computational
burden or, equivalently, decrease the uncertainty surrounding these loads.

• A genetic algorithm can take over the role of choosing a proper sampling distribution
for importance sampling methods (Section 5.5).

• A simple exercise on designing with high uncertainty has shown that importance
sampling methods are invaluable for early conceptual design (Section 5.7). The
uncertainty that surrounds crude Monte Carlo predictions will often far outweigh
any potential benefits of a new design.

6.2 Recommendations
Like any other research, there are still many open issues and topics that this work was not
able to cover. The most pressing ones are listed below:

• With the further growth in rotor diameters, it becomes increasingly difficult to defend
the assumption of vertical homogeneity. Extending this work to inhomogeneous
fields of turbulence would therefore be a logical next step.
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• The majority of a gust’s momentum is carried by the low wave numbers that, unfortu-
nately, are notoriously difficult to capture by experiments. Now that more advanced
measurement techniques such as lidar are becoming available, it would be interest-
ing to see how the low-wave-number behavior of commonly used turbulence spectra
compares to real life.

• The work on the time evolution of gusts (Section 3.5) is, so far, purely theoretical
and still relies on two unknown parameters to account for diffusion and expansion.
There was the intention of finding values for these parameters by doing large eddy
simulations (LES) of velocity fields embedded with gusts. However, this had to be
put off as this research started to focus more on extreme load prediction.

• How well the along-wind force performs as control input (Section 4.4), will have to
be evaluated more thoroughly. This can be done through aeroelastic simulations
(i.e., in FAST, Bladed, etc.), preferably with inhomogenous wind fields (such as those
obtained from LES) to test the assumptions of the method.

• For the genetic algorithm, various other fitness functions can be investigated to find
out whether the performance can be improved.

• Lastly, it would not hurt to test the accuracy and robustness of the importance
sampling schemes with a cluster. Larger sample sizes can then be tested that are
more representative for later design phases.

6.3 Some final thoughts
This research has resulted in some very effective methods to reduce the uncertainty of
extreme load predictions in conceptual design phases. The emphasis here is on concep-
tual design phases, since most designers will anyway resort to clusters for a full detailed
analysis, if possible. Nevertheless, the computational resources that are spared by an im-
portance sampling method can also be spent on increasing the parameter space. Although
not included in current wind turbine design standards, some obvious variables that ought
to be included in an exteme load analysis are the variation in turbulence kinetic energy
and the atmospheric stability.

In any case, this work has hopefully led to some useful insights into extreme gusts
and extreme loads. A better understanding of these things will help to get rid of some
of the conservatism in wind turbine design. Especially the commonly used gust models
that assume uniform inflow (e.g., the IEC extreme operating gust) are in dire need of
replacement. Relying instead on stochastic gusts will help designers to tailor structures for
the actual operating environments. This means less overdimensioning; therefore lighter
structures, and, ultimately, cheaper wind energy.
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Appendix A

Plotting positions

The problem of using the natural estimator (i.e., F̂ (zi ) = i /N ) as a plotting position is that
it does not allow for extrapolation. A simple fix is to move the position to the center of the
element (Hazen, 1914):

F̂ (zi ) = i − 1
2

N
. (A.1)

Many similar expressions have been formulated throughout the years (e.g., see Harter,
1984). In an attempt to clarify on the subject, Gumbel (1958) posed five requirements that
a good plotting formula should fulfill:

“1. The plotting position should be such that all observations can be plotted.

2. The plotting position should lie between the observed frequencies (i −1)/N
and i /N and should be universally applicable, i.e., it should be distribution-free.
This excludes the probabilities of the mean, median, and modal i th value which
differ for different distributions.

3. The return period of a value equal to or larger than the largest observation,
and the return period of a value smaller than the smallest observation, should
approach N , the number of observations. This condition need not be fulfilled
by the choice of the mean and median i th value.

4. The observations should be equally spaced on the frequency scale, i.e., the
difference between the plotting positions of the (i +1)th and the i th observation
should be a function of n only, and independent of i . This condition need not
be fulfilled for the probabilities at the mean, median, or modal i th values.

5. The plotting position should have an intuitive meaning, and ought to be analyt-
ically simple. The probabilities at the mean, modal, or median mth value have
an intuitive meaning. However, the numerical work involved is prohibitive.”

(Gumbel, 1958, pp. 32–35)

One such candidate is the function proposed by Weibull (1939) in his work on
predicting the strength of materials:

F̂ (zi ) = i

N +1
. (A.2)
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The derivation of Equation (A.2) starts from order statistics (e.g., see Folland and Anderson,
2002). Suppose there is a collection of independent random variables X1, X2, . . . , XN with
a common density f (x) and distribution function F (x). Then, ordering the entries from
low to high yields a sequence

Z1 ≤ Z2 ≤ . . . ≤ Zi . . . ≤ ZN .

Instead of a single ordered sequence, say there are k sets of data with a size N . In that
case, k individual i th-ranked values will exist that will make up the density of the i th
order statistic:

rank →

←
se

t

Z1,1 ≤ Z2,1 ≤ . . . ≤ Zi ,1 ≤ . . . ≤ ZN ,1

Z1,2 ≤ Z2,2 ≤ . . . ≤ Zi ,2 ≤ . . . ≤ ZN ,2

...
...

...
...

Z1, j ≤ Z2, j ≤ . . . ≤ Zi , j ≤ . . . ≤ ZN , j

...
...

...
...

Z1,k ≤ Z2,k ≤ . . . ≤ Zi ,k ≤ . . . ≤ ZN ,k

↓
fi (zi )

This density function will describe how zi can vary among repeated samples. An expres-
sion for fi (zi ) can be found by finding and grouping all the i th order statistics for all sets
of data. For any particular value Zi , j to be the i th order statistic, i −1 elements need to
have a value lower than Zi , j and N − i elements need to have a value higher than Zi , j .
Basically, any member of a set Z1, j , Z2, j , . . . , ZN , j would fall into one of three categories:

Z1, j , . . . , , Zi−1, j︸ ︷︷ ︸
i−1

Zi , j Zi+1, j , . . . , ZN , j︸ ︷︷ ︸
N−i

A situation like this is described by a multinomial distribution, of which the probability
mass function1 is given by

f
(
n1, . . . ,nq ; N , p1, . . . , pq

)= N !

n1! · · · nq !
pn1

1 · · · p
nq
q , (A.3)

1 A probability mass function is different from a probability density function in the sense that it deals with
discrete variables, rather than continuous variables.
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where nq is the size of a subset of Z1, j , Z2, j , . . . , ZN , j belonging to an event with a proba-

bility of p
nq
q . Then, for this example, Equation (A.3) can be written as

fi (zi ) = N !

(i −1)! (1)! (N − i )!
P

(
Z1, j ≤ zi ∩·· ·∩Zi−1, j ≤ zi

)
· · ·P(

Zi , j = zi
)

P
(
Zi+1, j ≥ zi ∩·· ·∩ZN , j ≥ zi

)
,

= i

(
N

i

)
F (zi )i−1 [1−F (zi )]N−i f (zi ). (A.4)

This is where the derivation of Makkonen, Pajari and Tikanmäki (2013) takes off. The
probability assigned to the i th order statistic is the probability of a variable x not to exceed
zi :

F̂ (zi ) = P (x ≤ zi ),

=
∞∫

−∞

zi∫
−∞

fi (zi ) f (x)dx dzi ,

=
∞∫

−∞

 zi∫
−∞

f (x)dx

 fi (zi )dzi ,

=
∞∫

−∞
F (zi ) fi (zi )dzi ,

=
∞∫

−∞
F (zi )i

(
N

i

)
F (zi )i−1 [1−F (zi )]N−i f (zi )dzi ,

= i

(
N

i

) ∞∫
−∞

F (zi )i [1−F (zi )]N−i f (zi )dzi .

When making the substitution ν = F (zi ), dν = f (zi )dzi , one arrives at a beta function
B(i +1, N − i +1):2

F̂ (zi ) = i

(
N

i

) 1∫
0

νi (1−ν)n−i dν,

= i

(
N

i

)
i ! (N − i )!

(N +1)!
,

= i
N !

i ! (N − i )!

i ! (N − i )!

N ! (N +1)
,

= i

N +1
,

which should hold for any parent distribution function, f (x).

2 B(x, y) =
1∫

0
t x−1(1− t )y−1 dt .
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Figure A.1: Assigned probabilities according to the natural estimator and the plotting positions of
Hazen (1914), Benard and Bos-Levenbach (1953), and Weibull (1939).

The above derivation clings to the idea that the expected value, E[F (zi )], provides
an unbiased estimate for the plotting position F̂ (zi ). However, another approach would
be to use the median or mode instead, resulting in a different expression. In fact, many
formulas have been proposed in the past, most of which are in the form of

F̂ (zi ) = i −a

N +1−2a
, (A.5)

where a is some constant. When a = 0, Equation (A.5) yields the mean position i /(N +1),
whereas for a = 1 it reduces to the modal position (i −1)/(N −1). Moreover, a ≈ 0.3 is a
good representation of the median (Harter, 1984). Disagreement about which position to
use has led to a variety of different functions, of which some examples are listed in Table
6.1. As shown in Figure A.1, the differences in plotting positions are most pronounced
when the sample size, N , is small or at the tail of the distribution (F̂ → 0 or F̂ → 1).
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Table 6.1: Examples of plotting positions from literature.

Author(s) F̂ a

Beard (1943) (i −0.31)/(N +0.38) 0.31

Benard and Bos-Levenbach (1953) (i −0.3)/(N +0.4) 0.3

Blom (1958) (i − 3
8 )/(N + 1

4 ) 3
8

Cunnane (1978) (i −0.4)/(N +0.2) 0.4

Filliben (1975) (i −1)/(N −1) 1

Gringorten (1963) (i −0.44)/(N +0.12) 0.44

Hazen (1914)
(
i − 1

2

)
/N 1

2

Landwehr, Matalas and Wallis (1979) (i −0.35)/N n/a

McClung and Mears (1991) (i −0.4)/N n/a

Tukey (1962) (3i −1)/(3N +1) 1
3

Weibull (1939) i /(N +1) 0

Yu and Huang (2001) (i −0.326)/(N +0.348) n/a
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Appendix B

IEC 61400-1 extrapolation procedure

The IEC 61400-1 design standards (IEC, 2005a) also contain guidelines for obtaining the
50-year extreme loads. The goal of this appendix is to compare the performance of this
extrapolation method against the crude Monte Carlo method used in Chapter 5, based on
the blade root flapwise bending moment of the NREL 5 MW machine.

The method demonstrated in Appendix F of the IEC (2005a) guidelines is a peak-
over-threshold method (see Subsection 5.1.2). It specifies a threshold level that is 1.4 times
the standard deviation of the load process above the mean. In this work, the extremes
are selected through an automated procedure in which they are required to be at least 30
seconds apart from neighboring peaks in order to ensure independence. In addition to
the peak-over-threshold method, block maxima are also collected for comparison.

Instead of the approach used in Chapter 5, where all the data is collected in one big
pile (i.e., “aggregation before fitting”), the IEC guidelines promote the use of discrete bins
(i.e., “fitting before aggregation”). Extreme load distributions are constructed per wind
speed bin and are weighted according to

F̂ (x) = 1−
ūm+ 1

2∆ū∫
ū1− 1

2∆ū

f (ū)dū +
m∑

i=1
F (x|ūi )

ūi+ 1
2∆ū∫

ūi− 1
2∆ū

f (ū)dū, (B.1)

where the integrals are taken from the cut-in wind speed of ū1 = 3 m/s to the cut-out
wind speed of ūm = 25 m/s. The IEC guidelines do not specify the required bin width nor
a recommended sample size per bin, only a bare minimum of 300 minutes. Therefore,
several values are used:

• ∆ū = 2 m/s (m = 11): ū = 4, 6, . . . , 24 m/s;

• ∆ū = 1 m/s (m = 22): ū = 3.5, 4.5, . . . , 24.5 m/s;

• ∆ū = 0.5 m/s (m = 44): ū = 3.25, 3.75, . . . , 24.75 m/s.

Every bin contains a sample size, n, leading to a total number of N = m ·n time series.
For each case, a total of 4,400 ten-minute wind fields were evaluated and resampled to
establish the confidence intervals.

Figure B.1 shows the return level plots with several distribution fits, based on a
combined sample size of 1 week. In a fitting-before-aggregation extrapolation scheme,
the computational budget has to be shared over several bins. Because of the difficulty to
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(f): Peak-over-threshold, ∆ū = 0.5 m/s.
Figure B.1: Extreme load predictions for the NREL 5 MW turbine, following the guidelines in
Appendix F of the IEC 61400-1 standards (IEC, 2005a), based on N ∼ 1,000 ten-minute wind
fields (∼ 1 week). The dashed line indicates the complete, 106-year data set.

estimate the shape factor, ξ, the generalized extreme value distribution (GEV) tends to
produce a positive bias (as seen throughout Chapter 5). A straight3 Gumbel distribution
(ξ = 0), however, cannot solve this and also produces a positive bias. The generalized
Pareto distribution tends to have negative values of ξ and a negative bias, which is an
advantage in this case. It results in an upper bound and therefore the predictions stay

3 Straight in the sense that every wind speed bin has a linear fit on a double logarithmic scale.
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Figure B.2: The decrease of uncertainty with increasing sample size.

closer to the true 50-year load. For ∆ū = 0.5 m/s, the 95% confidence interval around the
50-year load is estimated to be [16.3, 19.3] MN·m.

As a result of fitting-before-aggregation, the final load distribution is often a weighted
average of many bad fits and much of the error ends up in the tail. Wide bins—having
more data points per bin—are more likely to produce better estimates at small N . It also
explains why the peak-over-threshold method gives consistently better results than when
block maxima are used, since it collects multiple peaks per ten-minute time series.

Figure B.2 shows the 50% and 95% confidence intervals for several sample sizes,
starting at N = 6m (i.e., 6 ten-minute wind fields per bin). Because of the large bias
in every bin, the GEV distribution performs better with aggregation-before-fitting (see
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Figure 5.9a) instead of fitting-before-aggregation. At the same time, whereas a Gumbel is
usually a good estimate with aggregation-before-fitting at small N , here it does not seem
to converge to the right level at all. The peak-over-threshold method, extrapolated with
the generalized Pareto distribution, clearly performs the best. It converges to a 50-year
load that is several percent below the true value, depending on the bin width.
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