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Abstract 12 

Smartphones, wearables, and internet-connected devices are constantly with us. They generate an enormous 13 

amount of information with different formats and unrelated meanings. A human would be able to find links 14 

between the information and conclude if an emergency is going on. Nevertheless, the human capacity to process 15 

information is limited to small sets of data. This chapter introduces the role of Machine Learning (ML) in 16 

Resilience Engineering and discusses actual cases of emergencies where ML contributed positively. Different 17 

examples of emergency scenarios, from natural to manmade hazards, are presented and the contribution of ML 18 

is highlighted. The limitation of ML due to data scarcity is equally important and also discussed.  19 

This chapter encourages practitioners to integrate ML techniques and Artificial Intelligence (AI) into their 20 

emergency plans. It invites them to organize programs that aim at training their researchers and employees to 21 

use AI to deliver their job. One key aspect that the chapter stresses is that machines can never act on their own 22 

without a modicum of human involvement. 23 
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1. Introduction 25 

Of all the dreams of humankind, the most popular one is certainly the ability to predict the future. By staring at 26 

a crystal ball or the stars, different people in the past have developed different techniques to fight the scariest of 27 

all potential demons - uncertainty. They may have done this for one simple reason which is knowing in advance 28 

what is going to happen. Unfortunately, that is not always the case in practice. Take an example of the slopes 29 

of Vesuvius which currently host the homes of 3 million inhabitants. Even though science has been very clear 30 

that a new explosive eruption will occur sooner or later (Barnes 2011), people still live there. A similar situation 31 

exists at the Campi Flegrei caldera. (Kilburn et al. 2017). 32 

1.1 Resilience Definition 33 

In the context of this chapter, resilience is the ability to withstand stresses caused by external events and recover 34 

quickly to the functional state (Kammouh et al. 2018). Resilience ensures a reliable and affordable continuity 35 

of the service supply in normal operation as well as during (and after) disaster events. Several methods to 36 

quantify the resilience of communities exist in the literature (Cimellaro et al. 2016; Kammouh et al. 2017; 37 

Kammouh et al. 2018; Kammouh et al. 2019). However, none has considered the role of Machine Learning 38 

(ML) in their respective assessments of resilience.  39 

According to Bruneau et al. (2003), the resilience of a system depends on its functionality performance. The 40 

functionality of a system is the ability to use it at an impaired level. The conceptual approach of resilience 41 

described in (Bruneau et al. 2003) is illustrated in Figure 1. The functionality performance (Q) ranges from 0 % 42 

to 100 %, where 100% and 0% imply full availability and non-availability of services, respectively. The 43 

occurrence of a disaster at time t0 causes damage to the system and this produces an instant drop in the system’s 44 

functionality (ΔQ). Afterward, the system is restored to its initial state over the recovery period (t1-t0). The loss 45 

in resilience is considered equivalent to the quality degradation of the system over the recovery period. 46 

Mathematically, it is defined by Eq. (1): 47 
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 49 

Figure 1: The concept of Disaster Resilience 50 

where LOR is the loss-in-resilience measure, t0 is the time at which a disastrous event occurs, t1 is the time at 51 

which the system recovers to 100% of its initial functionality, Q(t) is the functionality of the system at a given 52 

time t. 53 

1.2 Machine Learning and Artificial Intelligence 54 

Artificial Intelligence (AI), and its subset Machine Learning, have the potential to offer valuable solutions to 55 

achieve resilient communities. ML is employed in a range of computing tasks where designing and 56 

programming explicit algorithms with good performance are difficult or infeasible. To understand its benefits 57 

within the resilience-relevant aspects (social, economic, infrastructural, institutional, environmental, and 58 

community-wise), the role of ML in the different disaster management applications is discussed: 59 

1. Model identification: ML can learn patterns and provide indicators for future predictions. This is what 60 

researchers are constantly trying to do with natural and human disasters. In fact, ML is much better than 61 

humans at learning from mistakes, literally. 62 

2. Emergency detection: in emergencies, choosing one alternative over another can cost lives and money. 63 

Questions like "Which building needs to be addressed first?" or "Is it safe to send the civil defense in this 64 

area?" need precise and quick answers. ML can detect if something unusual is happening, trigger intelligent 65 

alerts, and suggest the optimal ways to deal with the emergency. 66 

3. Solution generation: expecting constraints and requirements as input, AI techniques explore the entire 67 

solution space, then investigate every solution that may solve the problem. 68 
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1.3 Semantic Representation of Emergency 69 

Thanks to the internet, we are all connected. We are given an easy way to share multimedia content in real-time, 70 

making it available not just to our chosen emergency contact but to a whole audience. Smartphones, wearables, 71 

and the Internet of Things (IoT) devices are constantly with us: they save our location, our pictures, our voices. 72 

All this generates an enormous amount of information, in very different formats, with very different and 73 

unrelated meanings. While humans are capable of understanding and using this information to figure out if there 74 

is an emergency going on, machines are much more efficient in performing such a task considering that several 75 

emergencies are taking place at the same time. Nonetheless, a machine would struggle more to find meaning in 76 

the data. 77 

Hence, at the heart of any ML approach to emergencies is the representation of the real-world data, in a language 78 

that is comprehensible to the machines. The Semantic Web (SW) is a set of technologies that provide 79 

standardized formats for the representation of both data and ontological background knowledge (Tresp et al. 80 

2006). Here, by ontology, we mean the domain-specific background information organized in logical 81 

statements. An ontology describes object classes, predicate classes, and their interdependencies. Using this 82 

common vocabulary, machines communicate and understand. This is exactly what is happening in the 83 

background when we type on Google "Brad Pitt’s mother". First of all, it understands our question. Then, it 84 

starts exploring the Google Knowledge Graph, a graph where every edge is a relationship between two entities 85 

(in this case, Brad Pitt, and his mother), to extract the answer to our question. Google is not just listing top 86 

articles containing the same words we have inserted in our query: it is instead producing an intelligent answer 87 

because it has really understood our question. 88 

Ontologies are built on top of two standards: RDF and RDFS. RDF is a resource description framework which 89 

represents information about resources using basic triplets: subject, predicate, object. Each resource is 90 

associated with one or several concepts (i.e., classes) via the type-property. Concepts are defined in the RDF 91 

Vocabulary Description Language, also called RDF-Schema or RDFS. The web ontology language is OWL, 92 

which allows stating that classes are equivalent or disjointed and that properties and instances are identical or 93 

different. Properties can be symmetric, transitive, functional, or inverse functional. In RDFS concepts are simply 94 

named, while OWL allows the user to construct classes by enumerating their content (explicitly stating its 95 



 

5 

members) or by forming intersections, unions, and complements of other classes. An ontology formulates 96 

logical statements, which can be used for analyzing data consistency and for deriving new implicit statements 97 

concerning instances and concepts. 98 

So, what does ML have to do with all this? ML comes into play with ontology evaluation, refinement, evolution, 99 

as well as the merging and alignment of ontologies (Tresp et al. 2006). One possible scenario is the following: 100 

we build an ontology, a representation of the world which becomes our baseline. Using ML, we can apply 101 

learning algorithms to our axioms and instances, which in turn allows us to understand more about our world. 102 

We can extract new subject-predicate-object triplets, that will then be added to our ontology to generate more 103 

knowledge. ML would then need to create samples of the population existing in the ontology and extract the 104 

latent features (the fundamental characteristics) introduced in a cluster analysis or a principal component 105 

analysis (PCA), with the support of SQL (declarative querying language) or SPARK (big data framework). 106 

Finally, ML would generate new statements which would be weighted depending on their likelihood: after all, 107 

ML still lives in the dimension of the uncertain. This likelihood can be established by ensemble methods: 108 

different algorithms with different characteristics and different results that are merged to form a more likely 109 

result. 110 

ML can also be employed in ontology learning. This includes the identification of concepts, concept hierarchies, 111 

properties, property hierarchies, domain, and class definitions. One way to do this is by applying hierarchical 112 

clustering techniques like single-link, complete-link or average-link clustering to leverage the semantic and 113 

syntactic context of words to understand new concepts previously absent from the ontology (Tresp et al. 2008). 114 

This idea has been applied to build a crowdsourcing-based knowledge base, that is extracted from social media 115 

keywords and patterns (Xu et al. 2016). 116 

To sum up, ML is fundamental in times of crisis and emergency management because it provides an underlying 117 

dictionary that allows us to understand what is happening, how to react, how to communicate with different 118 

systems to dispatch alerts. It is also a way to incorporate the new knowledge from the data and represent it in a 119 

formal way that makes it available not just to a single script but to entire systems. Starting from a baseline that 120 

comes from theory (a theoretical, physical model created by earthquake experts), it can then add more 121 

knowledge extracted from the data. 122 
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2. Model Identification  123 

"All models are wrong, some are useful" - G. Box 124 

In 2014, it was estimated that natural and man-made catastrophes took 7700 lives and caused approximately 125 

$ 110 (US) billion in damages. The need (and the market potential) for predictive tools is extremely clear. 126 

2.1 The Problem of Data Integration 127 

In data science, a simple algorithm with a lot of data is considered to be better than a complex algorithm with 128 

far less data. Very often in ML and data science, the fundamental problem is the lack of data. And by data, we 129 

don’t mean just any kind of data, but rather meaningful, labeled, organized data that can be used consistently 130 

by any algorithm. As mentioned earlier, our world is becoming more and more connected. The internet of things 131 

is the term used in the tech community to describe the existence and communication of different sensors and 132 

devices through the internet. One example that leverages this task force of measuring sensors is the Quake-133 

Catcher Network (QCN), a joint seismic initiative that has provided traditional seismic stations with innovative 134 

data sources, bringing together information from the accelerometers in mobile phones and cloud computing and 135 

guaranteeing faster detection of earthquakes. This stems from a very democratic, crowd-sourcing idea: 136 

everybody can contribute to providing better-performing emergency response systems at a low cost (Cochran 137 

et al. 2009). 138 

A key to more data and more accurate results is often the integration of multiple sources. One model was able 139 

to detect landslides using a Bayesian approach using social and physical sensors, such as USGS seismometers 140 

and TRMM satellites (Musaev et al. 2014). The system periodically downloads data from multiple social and 141 

physical sensors, extracts information from social sensors like Twitter, YouTube, and Instagram, then performs 142 

multiple filtering steps, of exclusive or inclusive type. These filters were related to the specific type of the 143 

emergency: based on sentinel words or phrases, geo-tags, an ML classification component, a blacklist of URLs. 144 

The result of this filtering is merged with the one coming from physical sensors, such as seismic activity or 145 

rainfall levels measurements. These steps are included in Figure 2 for further clarity. 146 
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 147 

Figure 2: Overview of the data flow for a landslide’s detection application 148 

Big Data-enabled integration was also the fosterer of a flood-detection system. Researchers combined 149 

information from Twitter and from Satellite observations, to build a learning and real-time map of floods. The 150 

problem of integration is also behind Digital Delta, a research program involving IBM, the Rijkswaterstaat, the 151 

University of Delft, and the Deltares Water Institute (Byrne). It has proven that by listening to what the data 152 

have to say, it is possible to build better infrastructure, understand the weakest points of the current 153 

infrastructure, and achieve better target maintenance and investments. However, this is not just a matter of data 154 

integration, it is also a matter of response integration amongst the many districts and communities. 155 

2.2 Predicting Natural and Man-made Hazards 156 

We have been supported by AI in various fields. Now, researchers have found that AI can be used for natural 157 

disaster prediction. AI can forecast the occurrence of multiple natural disasters given large good-quality 158 

datasets. Examples of the natural hazards predictable for AI are earthquakes, volcanic eruptions, and hurricanes.  159 

Many seismic scholars and scientists believe that predicting earthquakes is nearly impossible. But thanks to new 160 

model identification and ML techniques, a lot of interesting insights are being extracted from seismic data. 161 

Researchers are using deep learning systems to gather large quantities of seismic data for analysis (Zhang et al. 162 

2018). AI may use seismic data to evaluate earthquake magnitude and frequency. These data can be useful in 163 
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forecasting the occurrence of earthquakes. Some attempts have shown that AI-based algorithms can predict 164 

aftershock positions more precisely than other approaches. 165 

Volcanos eruptions prediction has always been a challenge. Recent attempts could find ways of accurately 166 

forecasting volcanic eruptions by training an AI system to recognize tiny volcanic ash particles. The ash particle 167 

shape can be used to classify the volcano’s type. These advances can help to predict eruptions and to establish 168 

strategies for minimizing volcanic hazards. 169 

Hurricanes are one of the most damaging natural hazards. NASA recently employed a system that combined 170 

satellite images and ML to monitor Hurricane Harvey. The system proved to be six times better than the 171 

conventional monitoring systems: the hurricane can be monitored every hour instead of every six hours as in 172 

the case of traditional systems. Therefore, technical advances are helping to track hurricanes and forecast the 173 

course of hurricanes which can aid in mitigation efforts. 174 

For man-made hazards such as terrorism, it is reasonable to express doubt with a question such as: is there really 175 

nothing we can do to prevent, if not predict, terrorism? In the aftermath of a terror attack, much controversy is 176 

sparked when it turns out that the terrorist organizations were very well "known" to authorities. But what seems 177 

to be the key issue is that it is extremely difficult for governing entities to track every single individual who has 178 

demonstrated a weird or dangerous behavior that would lead to terroist-like behavior. This is where ML could 179 

be of use: it is not only a matter of automating and repeating a task (that of monitoring an individual), which is 180 

something machines can do very well. What is needed is continuous monitoring of a number of different sources 181 

and combining them into one, meaningful output. Again, as mentioned earlier in this chapter, it is always a 182 

matter of humans and machines: human intervention will always be required in the end to extract a decision 183 

from all this information. But this will be an informed decision, an educated and science-backed guess. 184 

Some researchers have already tried to experiment with the potential that lies in the application of ML 185 

techniques for emergency detection (Tutun et al. 2017). The researchers attempted to identify patterns in suicide 186 

attacks using ESALLOR, a new Evolution Stimulating Annealing Lasso Logistic Regression. The system 187 

identified the most important features of terror attacks, while also proposing a new similarity function to 188 

estimate the relationship among similar events. 189 
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Machine-learning classifiers are in general very good at discovering trends, clusters, and stereotypes. They are 190 

statistical approaches, not individualistic. While it is ok for a recommender system like Spotify to suggest a 191 

song you don’t really like just because other users, that have proven in general to have a musical taste similar 192 

to yours, enjoyed them before, it is less okay for the government to increase surveillance on you, intercept your 193 

communications, monitor what you do (a violation of constitutional rights and a waste of law enforcement 194 

resources). 195 

ML could also recognize faces via ordinary monitoring systems (CCTV). The FBI, for instance, has access to 196 

nearly 412 million photos in its facial recognition system (Orcutt 2016), which constitutes a great training set 197 

for learning algorithms. State-of-the-art face matching systems can be nearly 95 percent accurate on mugshot 198 

databases which sounds extremely promising, but these pictures are very clear and taken in controlled 199 

environmental conditions and of cooperative subjects. Adding blurred, dark pictures may be characterized by 200 

unusual facial expressions or poses, which would worsen the accuracy. Moreover, any gender, age group, or 201 

race that is under-represented in the training data will be reflected in the algorithm performance. This is probably 202 

the reason why some organizations that are using MorphoTrus’s facial and iris recognition are still uncertain 203 

the accuracy of the system. 204 

In the absence of faces, ML could also identify terrorists from their victory sign, using hand shape biometrics 205 

(hand silhouette, finger widths, lengths, angles, etc.). Image segmentation is an important processing step in 206 

many images, video, and computer vision applications, and it was the key to the victory sign analysis. In this 207 

chapter, we mention four approaches to segment the hand: Otsu’s method of histogram shape-based image 208 

thresholding (Xu et al. 2011); K Nearest Neighbors classifiers that distinguish between "hand" and "not hand" 209 

using Euclidean (Laaksonen and Oja 1996); Manhattan and Hassanat distance (Alkasassbeh et al. 2015), and 210 
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Artificial Neural Network (ANN) based on RGB information (Ramil et al. 2018). The training architecture is 211 

shown in Figure 3. 212 

 213 

Figure 3: A typical hand shape biometric system 214 

Given the above, ML has clear advantages: it easily identifies trends and patterns, no human intervention is 215 

needed, etc. However, it also has disadvantages due to data acquisition issues, time and resource requirements , 216 

data interpretation difficulties, etc. 217 

3. Emergency Detection 218 

3.1 Detecting and Managing the Emergency 219 

During emergencies, it is of utmost importance to be able to understand where the emergency is and what has 220 

been damaged the most. In the case of particularly big emergencies, it is even harder to be able to organize the 221 

available human and financial resources. Many advancements in recent technologies have been useful to 222 

partially tackle this problem. 223 

One of the first studies on this topic developed an ML tool predicting the damage expected on a network based 224 

on the weather forecast (Angalakudati et al. 2014). In particular, it had in mind what today we would call 225 

"Industry 4.0", where many sensors work together creating a robust monitoring system that helps prevent a 226 

million-dollars-system’s failure. If we think of an electrical network, weather-related damage might result in a 227 

huge economic loss where several days are needed to restore the situation back to normal conditions. 228 
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It is reasonable to imagine a feature where drones fly above a critical location in real-time, or where heat-229 

detecting robots are able to locate survivors and perform rescue operations more quickly and efficiently than a 230 

team of humans are capable of doing. Embedded systems and IoT applications are going to be our eyes and ears 231 

across the world, providing more and more accurate information concerning people and buildings. This allows 232 

better planning from the rescuers part, which can have a clear idea about the topography of the landscape and 233 

the extent of damage to a building. 234 

When an emergency occurs, two approaches can be utilized to gain further information. First, it can be detected 235 

from the real world itself, thanks to the ubiquitous presence of sensors throughout the world. Second, we can 236 

rely on the immediacy of social networks and news agency reporting.  Both are these approaches are discussed 237 

below.  238 

3.2 Emergency Detection: Real World 239 

Traditional warning systems operate in a broadcast fashion (Cipolla et al. 2016). Sirens, text messages, or emails 240 

are meant to alert almost everyone, in every place, and every situation. Cellular phone or radio broadcast 241 

networks make it hard for these systems to reach individuals who are located inside buildings. Moreover, 242 

networks such as Ethernet and WiFi tend to fail in times of extremely high demand (like emergencies). In these 243 

situations, deep learning can be used to trigger emergency warning systems via existing infrastructure such as 244 

closed-circuit television (Kang and Choo 2016). This approach is to start from a real-time video analysis: CCTV 245 

modules store the captured video data locally and periodically monitor the footage received performing object 246 

detection and image classification. When an emergency is detected, an alert is forwarded directly to the police 247 

station. This way, emergency detection is autonomous, and civil protection receives more and more accurate 248 

information about the emergency (e.g., type, location, time, images, etc.) The two types of emergencies 249 

aforementioned are generated via a Poisson process, progressively increasing the level of strength (weak, 250 

normal, strong) and the lambda value. This deep learning approach makes the overall system more scalable and 251 

faster, as it can be directly deployed in embedded devices (such as CCTV) and respond extremely quickly (in 252 

milliseconds). Deep learning also guarantees that no features need to be hardcoded by experts as they will be 253 

learned by the network. 254 
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There have been several attempts to use ML is early warning systems to predict natural disasters and processes. 255 

For instance, Asnaning and Putra (2018) introduced the automatic water level recorder (AWLR) in conducting 256 

water level monitoring at the water-gate dam. The function of AWLR sensor is for monitoring and recording in 257 

a database with real-time sensing. The results show that the low-cost AWLR sensor has reduced processing 258 

time by 92.7% compared to conventional data processing. Another is applying ML to an early warning system 259 

for very short-term heavy rainfall (Moon et al. 2019). The authors introduced a method for an effective early 260 

warning system for very short-term heavy rainfall with ML techniques. Results showed a better predicting 261 

pattern than other methods (Moon et al. 2019). 262 

3.3 Emergency Detection: Virtual World 263 

Social networks and internet platforms, in general, have been hosting people’s messages and thoughts for quite 264 

some time now. Often, these messages have been frequently analyzed using simple techniques, such as 265 

measuring the frequency of emergency related words as the emergency is approaching. These messages are 266 

real-time, can be location-based, and ultimately provide precious information about disease outbreaks 267 

(Brownstein et al. 2007), conflicts and terror-related situations, and natural catastrophes. We can see this very 268 

clearly from the Boston Marathon terrorist incident (Cassa et al. 2013).  269 

Twitter, among others, is a very valuable source of information. From one side, it carries precious and real-time 270 

insight into events as they evolve. On the other side, care must be taken to avoid false-positive reports with 271 

negative effects. For this reason, it is necessary to compare the cost of unnecessary investigation and the 272 

opportunity cost of not reacting early enough (Corvey et al. 2010).  273 

A traditional approach in natural language processing is the Bag Of Words model (Araque et al. 2017), where 274 

a document is mapped to a feature vector, and then classified by ML techniques. This is a very simple approach, 275 

and it destroys information like word order and syntactic structures. Another kind of feature that can be used is 276 

Part Of Speech (POS) tagging, which is commonly used during a syntactic analysis process. Some authors refer 277 

to this kind of feature as surface forms, as they consist of lexical and syntactical information that relies on the 278 

pattern of the text, rather than on its semantic aspect. These low-level classifiers can be used in rule-based 279 

approaches, meaning that the low-level predictions are treated by rules such as majority voting, or in meta-280 

learning, where they constitute features (parameters) for higher-level models. 281 
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Combining classifiers usually achieves greater accuracy and single classifiers alone. This integration can happen 282 

concurrently (divide the original dataset into several subsets from which multiple classifiers learn in a parallel 283 

fashion) as it happens in bagging, or sequentially, such as boosting. In Natural Language Processing, deep 284 

learning has been used to learn word vector representations using neural language models such as word2vec 285 

(Collobert et al. 2011). This approach models words as vectors, allowing them to retain a huge amount of 286 

syntactic and semantic regularities. 287 

Unsupervised learning has also been employed, for example via autoencoder, which allows extracting a new, 288 

more concise (or de-noised) representation of the input. In general, there is a growing tendency that tries to 289 

incorporate additional information to the word embeddings created by deep learning networks. Augmenting 290 

knowledge in the embedding vectors with other sources of information can also be useful, for example using a 291 

previous related topic or sentiment related information. 292 

A very recent work proposes the Recursive Neural Tensor Network (RNTN) model (Araque et al. 2017), which 293 

represents a phrase using word vectors obtained in an unsupervised manner and a parse tree, computing vectors 294 

for higher nodes in the tree using a tensor-based composition function. On top of this, there is the ensemble 295 

model which combines classifiers trained with deep and surface features. This model combines several base 296 

classifiers into one ensemble that makes predictions from the same input data. This model is proposed to 297 

combine several types of features into a unified feature set and, consequently, combine the information these 298 

features give. In this way, a learning model that learns from this unified set could achieve better performance 299 

scores that one that learns from a feature subset. 300 

The Qatar Computing Research Institute (QCRI) has developed a free, open-source, ML-based framework to 301 

improve efficiency and management in the aftermath of crises: AI for Disaster Response (AIDR) (Imran et al. 302 

2014). Its objective is to help create a comprehensive picture of an emergency, helping the organization of the 303 

emergency operation centers. According to tweet analysis, the system can identify and categorize needs based 304 

on urgency, infrastructure damage, and resource deployment. The rescuers can reduce the time spent on 305 

planning and organization and can focus instead on helping those who need help. Organized reaction and 306 

targeted alerting (contacting the people in the identified places) can help evacuate people quickly from the 307 

identified danger zones. 308 
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3.4 Managing the Emergency 309 

Once the emergency is detected, then a planned intervention is to be deployed. Several companies are already 310 

involved in this field, experimenting with several learning-based solutions. One example is IBM, which has 311 

developed a predictive tool, the "Intelligent Operations Center for Emergency Management", in partnership 312 

with the Weather Channel. The system integrates multiple data sources in real-time to create "multifaceted 313 

situational awareness of city resources & events and create a collaborative environment for planning, monitoring 314 

& sharing information”. 315 

The information retrieved from this kind of analysis can be very useful in the planning of the evacuation or 316 

rescue activities after an emergency or crisis. It could be for example included in models such as a dynamic 317 

Bayesian network (DBN) (Radianti et al. 2015), supporting distinct kinds of crowd evacuation behavior, both 318 

descriptive and normative (optimal). Descriptive modeling is based on studies of physical fire models, crowd 319 

psychology models, and corresponding flow models, while we identify optimal behavior using Ant-Based 320 

Colony Optimization (ACO). Simulation results demonstrate that the DNB model allows us to track and forecast 321 

the movement of people until they escape, as the hazard develops from time step to time step. Furthermore, the 322 

ACO provides safe paths, dynamically responding to current threats, such as cyber threats (Kammouh and 323 

Cimellaro 2018). This kind of model integrates concepts from graph theory and probability theory, capturing 324 

conditional independencies between a set of random variables by means of a directed acyclic graph (DAG), 325 

each edge of which typically represents a cause-effect relationship. 326 

A similar path is being followed by One Concern, a machine-learning-based startup that provides emergency 327 

operations centers (EOCs) with critical situation awareness; for instance, instant information on response 328 

priorities and other insights to allocate all the limited resources effectively. The platform sends automatic alerts 329 

when an earthquake seems to have affected a certain county, including key information like "the elderly 330 

population in a particular block that is badly damaged, or the number of kids in a school which could be hit" 331 

(Shueh 2016). The system can also ease the creation of the Initial Damage Estimate (IDE), being able to identify 332 

and quantify the extent of damage to his jurisdiction with a significant amount of accuracy in minutes, thus 333 

saving a lot of time, and promising high precision. The system puts special care in redundancy and distributed 334 
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servers, allowing the platform to be up and running even when phone networks are usually down (indeed, during 335 

crises). 336 

Concerning the technology used, very little is known because it is proprietary. What is known is that the same 337 

technology used for real-time estimation is also included in an AI-based training module that will allow 338 

emergency operations centers to train on scenarios based on actual simulations to get a real sense of the situation, 339 

helping personnel readiness and plan development, thereby making a community more resilient. 340 

4. Solution Generation and Decision Making 341 

4.1 An Excursus on AI 342 

The key aspect of every disaster management situation is what happens after the moment of solution generation. 343 

That is the moment when the emergency has gone, we have counted the injuries and the victims, we have 344 

calculated losses and damages and it is now time to build again (De Iuliis et al. 2019; Kammouh et al. 2018). 345 

History has shown that sometimes this second chance is not well-used. This field has great potential for AI and 346 

ML applications.  The history of computer science leads us to imagine enormous supercomputers producing the 347 

result of very complex, yet mechanical calculations. Amongst all its qualities, we would certainly not define a 348 

machine innovative (Perez. 2016). Surprisingly enough, a new branch of AI research is producing generative 349 

design tools, algorithms that ask for four ingredients: goals, constraints, computing power, and time. In return, 350 

they produce solutions that humans could have never come up with. How? They simply start from scratch and 351 

then, very methodically, search the entire solution space and explore every single possibility that fulfills the 352 

initial requirements (Conti 2017). The three structural elements shown in Figure 4 are all designed to carry the 353 

same structural loads and forces. As we move from left to right, we shift from a traditional design to the most 354 

recent computer optimization. 355 
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 356 

Figure 4: Evolution of a structural element using ML and computer optimization. Modified from (Carlos 357 

2016) 358 

 359 

With respect to the traditional production methods, generative solutions offer a height reduction of 50 %, weight 360 

reduction per node is 75%, and an overall weight reduction (on a construction project) of more than 40% (Carlos 361 

2016). In this case, the strength of the machine over the human is that it is not biased: when the search algorithm 362 

starts, it is still a kid. It has no ideas about what has been studied for centuries, what is already working well, 363 

what has already been tested useless. It analyses every single possibility, without prejudice. 364 

This problem cannot be tackled by "ordinary" Machine Learning. As we have seen so far, ML is the art of 365 

extracting the most important features from the data since it was designed to operate on known objects, not to 366 

invent them. Independently from the specific algorithm, learning problems usually look for a function that is a 367 

good representation of the mapping between objects and their corresponding classes. Learning models are not 368 

designed to hypothesize about the creation of new objects, they simply assume that by applying a series of 369 

operations we can learn new knowledge from that world by generalizing upon existing objects or relationships. 370 

These algorithms thus neglect the fact that sometimes it is simply more important to decide what to look for 371 

then finding what is already there. By contrast to decision and learning paradigms, the design is the creation of 372 

new objects. Designers generate multiple novel object definitions that might be explored next. The true value 373 

of a designer lies in their judgment. It is not a matter of choosing the best among existing objects, but to explore 374 

among a set of novel definitions. This is a decision theory specific to design processes, that is yet to be 375 

formulated (Kazakci 2014). 376 



 

17 

4.2 Resilience and the Role of Machine Learning 377 

The impact of ML on the aftermath of an emergency is extremely relevant also from another point of view: we 378 

can image a central ML engine that considers all the most relevant variables like weather/geologic conditions, 379 

human exploitation, civil use of the building, history (what emergencies happened there, what went wrong), and 380 

builds an eternal knowledge base out of them. It is not hard to envision how the PEOPLES framework 381 

(Cimellaro et al. 2016) could contribute to this, and take strong advance from such knowledge. This knowledge 382 

would not get lost with time, politics, or just a change in the team or the company that is in charge of the 383 

reconstruction. ML is a form of intelligence that continues to grow and becomes more accurate and 384 

comprehensive as time (and data available) accumulates. Once more, a semantic way of dealing with Big Data 385 

is fundamental. 386 

Moving on to the act of reconstruction itself, an intelligent machine could coordinate the workers, incorporate 387 

vision and change the path and the project as it goes on and as new impediments arise, as new data becomes 388 

available. Machines would be thus greatly contributing to the resilience of our new cities and buildings, in their 389 

capability to "sustain a level of functionality or performance for a given building, bridge, lifeline networks, or 390 

community, over a period defined as the control time" (Cimellaro et al. 2010). 391 

5. Discussion and Conclusions 392 

This chapter introduced the role of Machine Learning (ML) in different applications and scenarios of Resilience 393 

Engineering, such as during natural and manmade disasters. Three main applications for ML in disaster 394 

management are discussed: Model-identification, Emergency detection, and Solution generation. 395 

In the model identification, the problem of data scarcity is presented. Data needs to be complete before any 396 

meaningful results can be drawn. The solution to this is by improving the data type and increasing the data 397 

channels. In Emergency detection, the application of ML in different fields (e.g., physical, virtual) is 398 

highlighted. The role and objective of ML in every field can be very different. Finally, in the Solution generation 399 

section, the effectiveness of ML in supporting human with decision making is discussed. This was also 400 

supported by real examples where the machines could generate better solutions than the human. 401 
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5.1 On Human-Computer Interaction 402 

There is one very famous scene in the movie, “I, Robot” 2004, one of the most famous modern movies about 403 

robots coming to life. That is when Will Smith finally unveils to the audience the origin of his long-living hatred 404 

towards machines. This dates back to his past when as a result of a severe car crash, two cars (including his) 405 

fell into a river. Together with the others, a little girl fell into the water with him. A robot came to rescue, but 406 

soon understood that a) he couldn’t save everyone and b) Will had a much higher chance at survival than the 407 

little girl. As a result, Will was saved, the child was not. 408 

This brief but relevant scene leaves a lot of us wondering: is this the kind of world we are about the make come 409 

true? A world where the law of the jungle is going to prevail, and logic and formal rules are going to take the 410 

place of the emotions, comprehension, altruism? While it is very hard at this point to predict the course of 411 

research in AI, especially in emergency management, we would argue that for the time being, machines are 412 

given a goal to reach, they do not find their own. It is then a matter of the human beings behind them, the very 413 

ones that set the goals and the parameters to evaluate the success of an algorithm. Ultimately, it is a matter of 414 

those who write the basic rules the machines will have to respect. 415 

Finally, if we think of an autonomous driving scenario, many people argue that they would rather be completely 416 

in charge of their vehicle. Think of an emergency: would you like to be in control of what’s going on, or would 417 

you trust an algorithm that somebody else has written? For us, humans, the most powerful beings on earth, it is 418 

hard to devolve authority to somebody else, giving up on our very own right to decide for ourselves. But if we 419 

think of it, for just one second, we will soon realize that we are not really in control of emergency conditions. 420 

Most likely, we act guided by fear, irrationalism, or anxiety. And we can make very, very stupid decisions. This 421 

is because at the very moment when we think it’s most important to be in control, we are not. Our decisions are 422 

the result of a random mixture of chance, the mood of the day, and past (biased) experience. Wouldn’t it be 423 

better if we could be guided instead by a machine that is not a victim of those evil antagonists but is instead able 424 

to remain vigilant in every situation and act for the best? Wouldn’t it be better if the world could come together 425 

and decide what are the rules the machines should obey and what are the success criteria every human should 426 

be satisfied with? It is of utmost importance to find an answer before we even forget we had a question. 427 
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Ultimately, it is a problem of understanding the deepest rules governing the human-computer interaction, which 428 

roles are going to become machine-based and which ones are going to be more and more human-based in the 429 

future. None of the approaches mentioned in this work could ever take place with only machines, nor only 430 

humans: all of them require the cooperation of the two parts, leveraging what each can do better. In emergencies, 431 

humans and machines have equally important roles. 432 

5.2 Complex Decision Making Under Emergency Conditions 433 

The key to better emergency management is better coordination between human and machine intelligence. ML 434 

can intervene and eventually free the human decision-maker from all the low-level analytical tasks and unleash 435 

their imagination and creativity to a level that machines themselves could never reach. 436 

The power of ML lies in its ability to provide extremely valuable and meaningful information to the humans, 437 

and ultimately make a difference in the decision process. This information is extremely important, especially in 438 

emergency conditions, when life-or-death decisions are due in a matter of minutes. Provided that algorithms 439 

will continue to improve, and models will be more and more accurate, are humans ready to accept this power? 440 

Are they ready to include the results of ML into their decision-making processes, allowing them the same 441 

credibility they would allow to a trusted human advisor? Are humans ready to accept the inexorable, scientific 442 

results, and the huge transformations they would trigger on our society? 443 

Thanks to our augmented capabilities, our world is going to change dramatically. We’re going to have a world 444 

with more variety, more connectedness, more dynamism, more complexity, more adaptability, and, of course, 445 

more beauty. The shape of things to come will be unlike anything we’ve ever seen before. Why? Because what 446 

will be shaping those things is this new partnership between technology, nature, and humanity (Conti 2017). 447 

6. Recommendations 448 

• Good monitoring systems and meaningful data are the basis of effective machine learning systems. 449 

Thus, practitioners should first invest in building reliable monitoring systems. 450 

• Training programs on Machine Learning should be arranged for the researchers in research institutes 451 

and IT employees in professional industries.  452 

• Create programs that aim at coordinating human and machine intelligence for better results. 453 
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• Test the emergency system independently from Machine Learning to see the efficiency of employing 454 

machine intelligence.  455 

 456 
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