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Abstract

Flutter-induced vibrations can easily cause large structures like airplanes and bridges to fail,
which even today makes flutter prediction an important topic of research. To predict flutter,
recursive system identification can be used to capture the time-varying behavior using time-
invariant techniques combined with the forgetting of old data. However, forgetting older data
takes time, which introduces a delay in the predictions.

In order to circumvent this prediction delay the use of Linear Parameter-Varying (LPV)
model identification from pre-flutter data is proposed, as this directly identifies a time-varying
model. This thesis will compare recently published global, local, and glocal LPV identifica-
tion algorithms and assess their flutter prediction capabilities both in simulation and using
experiments.

The simulation results show that using LPV model identification the flutter speed could be
predicted to within 10 % even in the presence of significant noise. Furthermore, guidelines
are given on how these methods can be used and what their limitations are. Regarding the
experiments, flutter-induced vibrations could not be reproduced due to fundamental problems
in the experimental setup for which recommendations are made.
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Chapter 1

Introduction

1-1 Motivation

The interaction between a structure and the airflow passing it not only enables us to fly a
276,800 kg airplane, see Figure 1-1a, but also resulted in the catastrophic failure of a 1.6 km
long bridge only four months after the construction was completed, see Figure 1-1b.

(a) British Airways Airbus A380, 2013 (b) Tacoma Narrows bridge just before collapse, 1940

Figure 1-1: Examples of aeroelastically coupled structures.

This interaction of structures, like airplanes and bridges, with the aerodynamic forces is
described by the field of aeroelasticity of which the failure of the Tacoma Narrows bridge in
1940, see Figure 1-1b, is perhaps the best known example. Today this event is still frequently
mentioned in for example undergraduate physics textbooks as a good example of an aeroelastic
instability. However, while this failure is often presented as an example of forced resonance,
the evidence actually suggests that it is the result of the phenomenon of flutter (Billah and
Scanlan, 1991).

On these catastrophic flutter-induced vibrations, Von Kármán once noted that “Some fear
flutter because they do not understand it. And some fear it because they do.” (Mukhopad-
hyay, 2003), which aptly describes their devastating consequences and the difficulty to prevent
these vibrations.
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2 Introduction

When looking more closely at the phenomenon of flutter it occurs when the wind speed
exceeds the flutter speed and can be described as a “self-excited vibration in which the struc-
ture extracts energy from the air stream which often results in catastrophic structural failure”
(Wright and Cooper, 2008). This unstable nature is also illustrated in Figure 1-2, where the
pole locations and damping of a two degree of freedom flutter model (Wingerden, 2008) for a
range of wind speeds are shown. Clearly, for wind speeds exceeding the flutter speed (V > 12.4
(m/s)) a pole moves into the right half plane which results in a negative damping.
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(a) Pole location

0 5 10−0.1
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D
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)

(b) Damping ratio ζ

Figure 1-2: Pole location and damping for a two degree of freedom flutter model.

Structures like bridges and airplanes have a long history in coping with flutter (Mukhopad-
hyay, 2003). A more recent example are wind turbines, where due to the increasing rotor size,
future designs are quickly approaching the flutter speed (Griffith and Ashwill, 2011; Resor
et al., 2012; Owens et al., 2013).

Clearly then, flutter is still a current issue and the ability to predict the flutter speed is
of the utmost importance to prevent or suppress the self-excited vibrations, for example by
adding control surfaces to the structure to actively change the airflow (Karpel, 1981).

Naturally, predicting the behavior of a system requires the engineer to have a certain
amount of knowledge about the system, which is often captured in dynamic models. While
these models have been derived in the process of designing the structure, the final system
will always deviate from the original model, which requires the engineers to tune their models
using measurements from the real system.

Alternatively, one could identify a model entirely from measurements, such that only the
dynamics which are present in the data are modeled, which is often referred to as system
identification (Ljung, 1999). Given that the data is persistently exciting and contains few
noise, such that all the relevant dynamics are present in the data, this will result in more
accurate models within the frequency band of interest and therefore better predictions. Fur-
thermore, system identification is a well-established methodology for Linear Time-Invariant
(LTI) systems and various suitable algorithms are available in literature, see for example the
overview given by Van der Veen et al. (2013).
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1-2 Problem statement 3

Unfortunately, as shown in Figure 1-2, a flutter model does not satisfy the LTI assumption
and the dynamics are clearly changing as a function of the (time-varying) wind speed. As a
solution to this problem recursive system identification has been proposed, which introduces
forgetting of older data to track slowly varying dynamics (Houtzager, 2011). However, as
forgetting old data takes time these methods show a delay in their predictions, which was
found to be between 50 and 100 s by Houtzager et al. (2012).

Alternatively, instead of using LTI methods to identify Linear Time-Varying (LTV) sys-
tems, non-linear system identification methods could be used. More specifically, the class
of Linear Parameter-Varying (LPV) models has been shown to be very well suited to model
flutter, see for example Lau and Krener (1999); Barker and Balas (2000); Wingerden (2008).
Furthermore, apart from flutter prediction, the identified LPV models could also directly be
used to design controllers for flutter suppression (Prime et al., 2010; Seiler et al., 2012).

Therefore, it is interesting to investigate how LPV system identification can be used in the
application of flutter prediction.

1-2 Problem statement

The aeroelastic phenomenon of flutter has a clear time-varying nature, as the dynamics are a
function of the wind speed. Recursive methods have been proposed to track such time-varying
dynamics in real-time using LTI system identification techniques, but by their nature the
predictions are always delayed. On the other hand, the use of batch LPV system identification
directly results in time-varying dynamic models.

However, the batch identification scheme uses pre-flutter data only, after which the LPV
model is evaluated at higher wind speeds to predict the point of instability, that is the flutter
speed.

Furthermore, in recent years multiple LPV identification algorithms have been proposed
in literature, see for example Van Wingerden and Verhaegen (2009); Petersson (2013); Vizer
et al. (2013); De Caigny et al. (2014), but often validation takes place by looking at the results
inside the domain of the scheduling sequence. In the case of flutter prediction, the scheduling
sequence only contains wind speeds smaller than the flutter speed, while the actual validation
takes place by evaluating the LPV model outside of this region.

Therefore, the main emphasis of this MSc thesis is to compare LPV batch identification
methods and assess their potential in flutter prediction using pre-flutter data.

1-3 Methodology

The comparison of LPV batch identification methods will be divided into two main parts,
namely a theoretical and experimental part.

The theoretical part will first describe the phenomenon of flutter and present an aeroelastic
LPV flutter model which will also be used to generate data to validate the identification
algorithms, as flutter prediction is the main motivation for this work. Secondly, the topic of
LPV identification will be introduced and a division is made between global, local and glocal

Master of Science Thesis M. Visser



4 Introduction

methods (Lovera et al., 2013). Next, a representative set of algorithms is selected from these
three groups and the estimation accuracy is assessed in simulation.

In the experimental part, an experimental setup consisting of a morphing airfoil located
inside a wind tunnel is used to generate the data for the LPV batch identification algorithms.
In this way, the applicability of batch LPV identification when using experimental data will
be validated.

1-4 Contributions
The contents of Chapter 3, which involves the comparison of LPV identification algorithms
for flutter prediction using simulation data, have also been included in a conference paper
(Visser et al., 2015):

Visser, M., Navalkar, S., and van Wingerden, J.-W. (2015). LPV model identifi-
cation for flutter prediction: A comparison of methods. In Proceedings of the 1st
IFAC Workshop on Linear Parameter Varying Systems

1-5 Structure of MSc thesis
This MSc thesis is organized as follows:

Chapter 2: First principles flutter modeling In this chapter the topic of aeroelasticity
is discussed and an LPV flutter model is presented.

Chapter 3: LPV identification methods This chapter introduces the field of LPV sys-
tem identification and divides the available algorithms into global, local, and glocal meth-
ods. Next, these methods are validated using simulation data obtained from the LPV
flutter model which was presented in Chapter 2.

Chapter 4: Experimental setup validation Before performing LPV identification on the
experimental data, the morphing airfoil setup is presented and problems are highlighted
and design improvements are proposed.

Chapter 5: Experimental identification Measurements are performed on the experimen-
tal setup and the performance of the LPV identification algorithms is assessed using
this data.

Chapter 6: Conclusions and recommendations This MSc thesis concludes the report
with a set of conclusions and suggestions for future work.
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Chapter 2

First principles flutter modeling

Flutter has been introduced in Section 1-1 very briefly, so as to give a concise motivation for
this research. This chapter discusses the topic of flutter more in depth, before continuing to
the actual identification step in the next chapter.

The chapter will start with an introduction to the field of aeroelasticity along with an
explanation of the two most common instabilities, namely divergence and flutter. Once
these aeroelastic phenomenon are explained, an LPV model is presented which describes
the dynamics of an airfoil as a function of the wind speed and the influence of the model
parameters on the occurrence of flutter is considered.

2-1 Aeroelasticity

The combination of the field of aerodynamics and structural dynamics is also referred to as
aeroelasticity (Bisplinghoff et al., 1996) and can further be divided into static and dynamic
aeroelasticity.

Static aeroelasticity is “the study of the deflection of flexible aircraft structures under
aerodynamic loads, where the forces and motions are considered to be independent of time”
(Wright and Cooper, 2008). An important static aeroelastic instability is divergence, where
the moments due to aerodynamic forces overcome the restoring moments due to structural
stiffness. While divergence causes structural failure, it is often of minor importance, as the
speed at which divergence occurs is usually higher than the flutter speed for modern aircraft
(Fung, 1993). Which brings us to the second type of aeroelastic instabilities.

Dynamic aeroelasticity is concerned with the oscillatory effects of the aeroelastic interac-
tions (Wright and Cooper, 2008) of which the phenomenon of flutter is the most important
example.

Both the static aeroelastic phenomenon of divergence and the dynamic aeroelastic phe-
nomenon of flutter will be discussed in the next section and the characteristics of these
aeroelastic instabilities are presented.

Master of Science Thesis M. Visser



6 First principles flutter modeling

2-1-1 Divergence

As stated, divergence occurs when the moments due to aerodynamic forces overcome the
restoring moments due to structural stiffness. In order to see how this phenomenon translates
in the pole frequency, damping, and location for a range of wind speeds V ∈ [0, 9] m/s, a
simple two degree of freedom binary flutter model (Wingerden, 2008) is used. The parameters
as given by Lee and Singh (2007) are used, but the elastic axis is moved closer to the trailing
edge, such that divergence occurs before flutter takes place. The results are shown in Figure
2-1.
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Figure 2-1: Pole frequency, damping, and location for V ∈ [0, 9] m/s in the case of divergence.

When looking at the eigenvalues, Bergami (2008) characterizes divergence by one mode
with negative damping (Re(λ) > 0) and an imaginary part that equals zero (Im(λ) = 0). In
other words, because divergence is a static aeroelastic phenomenon, the poles are located on
the real axis when the system becomes unstable, see Figure 2-1c.
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2-1 Aeroelasticity 7

2-1-2 Flutter

When discussing flutter in this thesis it is important to note that classical flutter is considered,
as opposed to stall flutter, which is a different topic. Furthermore, three variables should be
considered for wing flutter: flexure, torsion, and control surface rotation (Fung, 1993). When
all variables are considered a ternary flutter mode is considered. On the other hand binary
flutter describes the flutter mode when only two of the three variables which were stated
predominate, which will be the case in this thesis.

Binary flutter “occurs when the aerodynamic forces associated with motion in two modes of
vibration cause the modes to couple in an unfavourable manner” (Wright and Cooper, 2008).
To illustrate this coupling the pole location, frequency, and damping is plotted in Figure 2-2
for a range of wind speeds V ∈ [0, 16] m/s, for a simple two degree of freedom binary flutter
model (Wingerden, 2008) using the parameters as given by Lee and Singh (2007). Note that
only two pole trajectories are plotted, those with a positive imaginary part, as the other two
are simply complex conjugates.
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Figure 2-2: Pole frequency, damping, and location for V ∈ [0, 16] m/s in the case of flutter.
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8 First principles flutter modeling

When looking at the frequency of the two modes, see Figure 2-2a, it is observed that for
increasing wind speeds the two modes approach each other, but do not actually coincide. It
is however sufficient that the modes do approach each other, but do not coalesce, for the
coupling to take place. This is confirmed by the fact that the damping becomes negative, see
Figure 2-2b, or that one of the pole pairs crosses the imaginary axis and becomes unstable,
see Figure 2-2c.

As shown by Wright and Cooper (2008) the coalescence of the two modes does occur in
specific situations, for example in the case of zero aerodynamic damping, which is not the
case in this research.

When looking at the eigenvalues or poles, Bergami (2008) states that flutter is characterized
by at least one mode with negative damping (Re(λ) > 0) and a positive imaginary part (Im(λ)
> 0), which corresponds to the pole locations shown in Figure 2-2c.

As shown by Figure 2-2a the coupling of two modes is not always apparent, as the modes
do not have to coalesce and the way in which they approach each other can differ between
situations. Therefore, it might be clearer to state that flutter is an “unstable vibration in
which the structure extracts energy from the air stream and often results in catastrophic
structural failure” (Wright and Cooper, 2008).

2-2 Modeling

The previous section on divergence and flutter described these phenomena and their effect on
the system dynamics using the flutter model as presented by Wingerden (2008). This LPV
flutter model will be described in detail in this section.

Because flutter is an aeroelastic phenomenon, the models show a combination of structural
dynamics and aerodynamics, between which a strong coupling exists.

For the structural dynamics, at least two degrees of freedom should be present, as binary
flutter involves the coupling of two modes. Additionally, one could add the dynamics of the
trailing edge flap to the model, to obtain three degrees of freedom to describe ternary flutter.

When looking at modeling of the aerodynamic forces a division can be made between quasi-
steady and unsteady modeling. In the quasi-steady case, the aerodynamic lift and drag forces
are instantaneous (stateless) functions of flow velocity and angle of attack, which implies that
there are no frequency dependent terms involved. On the other hand, unsteady aerodynamics
does take into account these frequency terms and describes the behavior of the airflow around
the airfoil, such as the influence of wake vortices on the airfoil lift and pitching moment.

Whether unsteady effects should be considered depends on the extent to which frequency
dependent behavior occurs. This can be evaluated using the reduced frequency k = ωb

V , where
ω is the pitch oscillation frequency (rad/s), b the half-chord (m), and V (m/s) the free stream
wind speed. For k → 0 the aerodynamic forces become steady. Therefore, for k � 1 the
quasi-steady assumption is valid and is used to greatly simplify the modeling.
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2-2 Modeling 9

Alternatively, the unsteady effects could be taken into account by using for example the
ternary flutter model as described by Olds (1997). Several corrections have been made to this
model (Mozaffari-Jovin et al., 2013, 2014), resulting in the 8-state model as used by Zhang
and Behal (2014).

When looking at the structural dynamics, this model contains three degrees of freedom,
as the dynamics of the trailing edge flap are no longer neglected, which adds an extra second-
order differential equation to the equations of motion. Furthermore, when looking at the
aerodynamics, two so-called lag states are included to account for unsteady effects.

This more complex model will not be further discussed in this work and the two degree of
freedom binary flutter model discussed earlier will be presented in detail in the next section.

2-2-1 Model description

A schematic overview of the airfoil for which the model will be derived is shown in Figure
2-3, which shows the airfoil suspended by two springs and subject to a wind speed V (m/s).

106 Chapter 4: LPV identification using arbitrary scheduling

2b
b

ab

β

α

V

xαkα
kh

L

M c.g.

h

α

Figure 4.5: Schematical representation of the ‘smart’ airfoil model used in this
simulation example.

α, and the trailing edge flap, β. The trailing edge flap is normally seen as the
control variable and if this control surface is considered to be infinitely stiff the
corresponding dynamics can be ignored. This is also the approach we will follow
in this example. The equations of motion are now given by:

[
mt mwxαb

mwxαb Iα

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]
+

[
kh 0
0 kα

] [
h
α

]
=

[
−L
M

]
,

where mw is the mass of the wing, mt is the total mass, b is the semi-chord of the
wind, Iα is the moment of inertia, xα is the non dimensionalized distance of the
center of mass from the elastic axis, the thicknesses and damping coefficients of
the plunge and pitch degree of freedom are kh, kα, ch, and cα, respectively. The
inputs L and M are the aerodynamic force and moment, respectively. This set
of second-order differential equations can also be written as a set of first-order
differential equations:




ḣ
α̇

ḧ
α̈


 =




0 0 1 0
0 0 0 1

Iα
q1
kh

−mwxαb
q1

kα
Iα
q1
ch

−mwxαb
q1

cα
−mwxαb

q1
kh

mt

q1
kα

−mwxαb
q1

ch
mt

q1
cα







h
α

ḣ
α̇


+

Figure 2-3: Schematic representation of a ‘smart’ airfoil (Wingerden, 2008).

The structural model which describes the rotational (pitch) and translational (plunge)
modes of this airfoil is given by the following equations of motion (Wingerden, 2008):

[
mt mwxαb

mwxαb Iα

] [
ḧ

α̈

]
+
[
ch 0
0 cα

] [
ḣ

α̇

]
+
[
kh 0
0 kα

] [
h

α

]
=
[
−L
M

]
(2-1)

where mw is the mass of the wing, mt is the total mass, b is the semi-chord or half-chord, Iα
is the moment of inertia, xα is the non dimensionalized distance of the center of mass from
the elastic axis, the spring and damping coefficients of the plunge and pitch degree of freedom
are kh, kα, ch, and cα, respectively. The inputs L and M of this model are the aerodynamic
force and moment, respectively. An example of a set of parameter values for this model used
in literature are shown in Table 2-1 (Lee and Singh, 2007).

Note that the control surface at the trailing edge is considered to be infinitely stiff such
that the corresponding dynamics can be ignored.
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10 First principles flutter modeling

Table 2-1: Flutter model parameters (Lee and Singh, 2007)

Name Value Name Value
ρ 1.225 kg/m3 kh 2844.4 N/m
a -0.6847 - kα 2.82 N ·m/rad
b 0.135 m ch 27.43 N · s/m
sp 1.0 m cα 0.036 N · s
mw 2.049 kg clα 6.28 -
mt 12.387 kg clβ 3.358 -
xα

0.0873
b − (1 + a) - cmα (1

2 + a) · clα -
Iα 0.0517 +mwx

2
αb

2 kg ·m2 cmβ -0.635 -

For the quasi-steady aerodynamic forces the following expressions can be derived:

L = ρbsp


clα

[
V 2 V b(1

2 − a)V
]


α

ḣ

α̇


+ clβV

2β




M = ρb2sp


cmα

[
V 2 V b(1

2 − a)V
]


α

ḣ

α̇


+ cmβV

2β




(2-2)

where V is the free stream velocity, ρ the air density, a the nondimensionalized distance from
the midchord to the elastic axis, sp the span of the wing, clα and clβ are the lift coefficients
per angle of attack and flap angle, and cmα and cmβ are the moment coefficients per angle of
attack and flap angle.

2-2-2 LPV model

The set of second-order differential equations (2-1) combined with the derived expressions for
the aerodynamic forces (2-2) can easily be rewritten as a set of four first-order differential
equations (Wingerden, 2008) with wind speed dependence. In other words, an LPV state-
space model of the following form is obtained:

ẋ =
(
A1 +A2V +A3V

2
)
x+B3V

2β

α = C1x
(2-3)
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2-3 Influence of design parameters on flutter 11

where x =
[
h α ḣ α̇

]T
and the state matrices are defined as follows:

A1 =




0 0 1 0
0 0 0 1

Iα
q1
kh

−mwxαb
q1

kα
Iα
q1
ch

−mwxαb
q1

cα
−mwxαb

q1
kh

mt
q1
kα

−mwxαb
q1

ch
mt
q1
cα




A2 =




0 0 0 0
0 0 0 0
0 0 Iα

q1
q2 + mwxαb

q1
q4

Iα
q1
q2q6 + mwxαb

q1
q4q6

0 0 −mwxαb
q1

q2 + −mt
q1
q4

−mwxαb
q1

q2q6 + −mt
q1
q4q6




A3 =




0 0 0 0
0 0 0 0
0 Iα

q1
q2 + mwxαb

q1
q4 0 0

0 −mwxαb
q1

q2 + −mt
q1
q4 0 0




B3 =




0
0

Iα
q1
q3 + mwxαb

q1
q5

−mwxαb
q1

q3 + −mt
q1
q5




C1 =
[
0 1 0 0

]

and the constants q are defined as follows:

q2 = ρbspclα q4 = ρb2spcmα q6 =
[1

2 − a
]
b

q3 = ρbspclβ q5 = ρb2spcmβ

2-3 Influence of design parameters on flutter
The previous sections have presented the mathematical binary flutter model which will be
used for LPV identification for flutter prediction, but the influence of the different parameters
on the flutter speed has not yet been considered. This section will discuss the most important
parameters and show how they influence the occurrence of flutter.

Critical parameters for flutter are discussed in textbooks on aeroelasticity such as Fung
(1993); Wright and Cooper (2008). Furthermore, when looking at the application of wind
turbine rotor blades, investigation into these parameters has also been studied by Lobitz
(2005); Hansen (2007).

This research listed the following fundamental parameters that increase the risk of flutter
(Fung, 1993):

Wind speed The wind speed is the most obvious parameter of interest, as by keeping the
wind speed low, the occurrence of flutter can be prevented.

Master of Science Thesis M. Visser



12 First principles flutter modeling

Stiffness The effect of the individual changes of the torsional and translational stiffness
cannot be stated in such general terms but their influence on the flutter speed is very
important. In general, an increase in the torsional stiffness will result in an increased
flutter speed.

Inertia and aerodynamic couplings The arrangement of the elastic axis and the inertia
axis compared to the aerodynamic center of the wing can significantly influence flutter.
For example, moving the axes close to each other reduces flutter.

As the (maximum) wind speed is frequently determined by the application, the most
important parameters that can be used to influence the flutter speed are the structural stiffness
and center of mass along with the location of the elastic axis.

Now that this chapter presented the required background knowledge on flutter modeling,
the next chapter will continue with the application of LPV identification for flutter prediction.
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Chapter 3

LPV identification methods

The previous chapter introduced the phenomenon of flutter and showed how the dynamics
of such an aeroelastic system depend upon the wind speed, which naturally resulted in the
formulation of an LPV model. Furthermore, as discussed in the introduction, see Chapter 1,
LPV identification will be used to predict flutter. Therefore, this chapter concerns the topic
of batch LPV identification.

First, a division between global, local, and glocal methods is made (Lovera et al., 2013),
after which four algorithms from literature are presented. Next, the chosen simulation scenario
is presented and motivated. Furthermore, the LPV identification methods are tested on
simulation data sets and the results are presented. This chapter is concluded with a short
synopsis.

3-1 Introduction

LPV identification as treated in this thesis concerns the identification of a parameterized LPV
model H(θ) from a measured input signal u, output signal y, and scheduling sequence θ, see
Eq. (3-1).

[
u θ

]
→
[
A(θ) B(θ)
C(θ) D(θ)

]

︸ ︷︷ ︸
H(θ)

→ y (3-1)

Methods to obtain H(θ) are further divided into three main groups by Lovera et al. (2013),
that of the global, local, and glocal methods, which will also be used in this chapter to group
the investigated algorithms from literature. Before looking at these algorithms in detail, the
global, local, and glocal concepts will be introduced and the differences are highlighted.

3-1-1 Global

The global methods obtain H(θ) from u, y, and θ, where θ can be an arbitrary signal varying
within the operating range of the system. In other words, the scheduling sequence is varied
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14 LPV identification methods

during the experiment along with the input signal, after which the LPV model is directly
obtained from u, y, and θ.

The concept is thus simple, as only one experiment needs to be performed to directly
obtain the LPV model. Unfortunately, global methods suffer from the so-called ‘curse of
dimensionality’ (Van Wingerden and Verhaegen, 2009), meaning that for an increasing past
window p the data matrices involved in the calculations grow exponentially, resulting in
numerical problems. The past window p is thus bounded from above by these numerical
problems, while on the other hand, it should be increased to reduce the effect of noise and to
capture significant variance in the parameter θ. Clearly, the conflicting demands on the past
window make for a trade-off between computational complexity and estimate bias.

3-1-2 Local

Alternatively, a local method can be used for whichm ‘local’ experiments for a fixed scheduling
sequence θl are performed to obtain a set of m LTI models Hl, see Eq. (3-2).

[
u θl

]
→
[
Al Bl

Cl Dl

]

︸ ︷︷ ︸
Hl

→ y, for l = 1, ...,m (3-2)

Note that the m identification problems for fixed scheduling sequences θl, as shown in Eq.
(3-2), should be solved using LTI identification methods, as the parameter varying part is
kept constant. For the LTI identification off-the-shelf algorithms can be used, which are for
example discussed in a recent overview of closed-loop LTI subspace identification methods by
Van der Veen et al. (2013).

After the m local models Hl are identified, these models are interpolated to obtain an
LPV model. Important to note here is that this interpolation is only valid for a slowly vary-
ing scheduling sequence, as only fixed values of θ have been used in the identification and
the rate of change of the scheduling sequence θ is neglected. However, this is not an un-
usual assumption, as it is a common requirement for conventional gain scheduling techniques
(Shamma and Athans, 1992). Furthermore, the scheduling sequence varies at a slow rate for
most applications, which includes the wind speed in the application of flutter identification.

When looking at this interpolation, it takes place between the system matrices of the
parameterized LPV model (A(θl), B(θl), C(θl), and D(θl)) and the local model state matrices
(Al, Bl, Cl, and Dl) for l = 1, ...,m. Unfortunately, LTI identification returns a non-unique
state-space model, as only the input/output behavior can be extracted from the data but the
state is not fixed. In other words, when the state is transformed such that z = Tlx, where Tl
is an arbitrary non-singular matrix, the input/output behavior does not change. However, a
state transformation does change the state matrices, see Eq. (3-3).

ż = TlAT
−1
l z + TlBu

y = CT−1
l z +Du

(3-3)

Therefore, when interpolating the state matrices it is important that all m local LTI
models are represented in the same state basis. Which directly points out the main drawback
of the local methods, that is the requirement of a coherent state basis.
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3-2 Methods 15

Once the local models are all transformed into a coherent state basis, the interpolation
can take place by fitting the state matrices of the parameterized LPV model H(θl) to the
local state matrices Hl. This optimization problem can be written as a linear least squares
problem, which can be solved efficiently (Van den Boom and De Schutter, 2012).

3-1-3 Glocal

Finally, there are the glocal methods, which start with the same set of m local LTI models,
see Eq. (3-2). But unlike the local methods, the combination of these local models into
an LPV model is not obtained by interpolating between system matrices, but by fitting the
parameterized LPV model to the local models in the frequency domain, thus looking only at
the input/output behavior.

By directly looking at the input/output behavior the requirement of a coherent state
basis is circumvented. Unfortunately, this comes at the cost of a more difficult optimiza-
tion problem, for example non-convex and/or non-smooth optimization problem, which takes
significantly more computational time and does not guarantee an optimal solution.

Furthermore, because the optimization problem can get stuck in local minima, the selection
of the initial point significantly influences the final solution. In other words, an initial LPV
model should be provided, which adds another challenge to the glocal methods (Petersson
and Löfberg, 2014).

Now that the general concepts of global, local, and glocal LPV identification have been
discussed, the next section will present four algorithms from literature grouped by their
general concept.

3-2 Methods

3-2-1 Global: PBSIDopt

The PBSIDopt algorithm for LPV systems by Van Wingerden and Verhaegen (2009) is a
global identification method based on the PBSIDopt LTI identification algorithm by Chiuso
(2007) which allows both identification in open-loop and closed-loop operation. Furthermore,
it works in discrete-time and uses an affine parameterization of the state matrices in the N
scheduling variables µ(i), as illustrated for the state matrix A in Eq. (3-4).

Ak =
N∑

i=1
µ

(i)
k A

(i) (3-4)

These scheduling variables µ(i) are also referred to as basis functions f (i)(θ) (De Caigny
et al., 2014), see Eq. (3-5).

H(θ) =
[
A(θ) B(θ)
C(θ) D(θ)

]
=

N∑

i=1
f (i)(θ)

[
Â(i) B̂(i)

Ĉ(i) D̂(i)

]
(3-5)

Where f (i)(θ) equals θi−1 for i = 1, ..., N in the case of an affine dependence of the state
matrices on the wind speed.
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16 LPV identification methods

The main drawback of this algorithm, as also mentioned for global methods in general, is
the ‘curse of dimensionality’ for which Van Wingerden and Verhaegen (2009) introduce the
kernel method to partly solve this problem. The kernel method uses so-called kernel matrices
that have much smaller dimensions than the data matrices used in the original optimization
problem (Verdult and Verhaegen, 2005). However, while the computational complexity is
reduced, the kernel method does introduce a bias in the estimate.

3-2-2 Local: SMILE
De Caigny et al. (2014) introduce the State-space Model Interpolation of Local Estimates
(SMILE) algorithm which works in both continuous- and discrete-time and supports Multiple
Input, Multiple Output (MIMO) systems. As described in the introduction on local methods,
the main challenge lies in finding the right similarity transformations Ti such that all local
models are represented in a coherent state basis. Unlike many other algorithms, the SMILE
algorithm is able to find these similarity transformations without requiring user input, like
manually sorting the poles of the local systems (De Caigny et al., 2011). Therefore, it is
interesting to take a closer look at the way in which the SMILE method is able to represent
all local models in a fixed state basis.

The approach is based on the controllability and observability properties of the local sys-
tems. First, for every local model i = 1, ...,m the maximum condition number κO,i =
maxl κ(O†iOl) is calculated for l = 1, ...,m, where Oi is the observability matrix of local
model i, κ(A) denotes the condition number of the matrix A, and A† denotes the Moore-
Penrose inverse of the matrix A. Next, the local model iref = argmini κO,i is selected as a
reference model and the other local models are transformed into a coherent state basis using
the similarity transformation matrix Tl = O†iref

Ol. The proof that this similarity transforma-
tion based on the observability matrices results in a coherent state basis is given by De Caigny
et al. (2014) along with a similar derivation for the use of the controllability matrix.

Now that the local models are transformed into a coherent state basis, the interpolation
between the state matrices is performed by solving an optimization problem which minimizes
the following cost function (3-6):

E =
m∑

l=1

∥∥∥∥∥
N∑

i=1
f (i)(θl)

[
Â(i) B̂(i)

Ĉ(i) D̂(i)

]

︸ ︷︷ ︸
Ĥi

−
[
A(l) B(l)

C(l) D(l)

]

︸ ︷︷ ︸
Hl

∥∥∥∥∥

2

F

(3-6)

where N is the number of basis functions fi(θl) as defined in the parameterization as given
in Eq. (3-5), and θl the local wind speed for model l. Furthermore, Ĥi are the parameters of
the optimization problem.

The described optimization problem can be rewritten as a Linear Least Squares (LLS)
problem which can be solved efficiently and does not show the numerical problems that are
present in the global and glocal methods.

3-2-3 Glocal: H2 norm
Petersson (2013) presents the H2NL glocal LPV identification algorithm which aims to mini-
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3-2 Methods 17

mize the sum of H2 norms of the local error systems El = H(θl) −Hl, see Eq. (3-7), where
H(θl) is the parameterized LPV model evaluated at the local wind speed θl and Hl is the local
LTI model. Note that El is evaluated using the H2 system norm in the frequency domain,
whereas Eq. (3-6) uses the Frobenius matrix norm.

min
Âi,B̂i,Ĉi,D̂i

m∑

l=1

∥∥∥∥∥H(θl)−Hl

∥∥∥∥∥

2

2

(3-7)

In Eq. (3-7) the optimization parameters are the matrices Âi, B̂i, Ĉi, D̂i for i = 1, ..., N as
defined in Eq. (3-5). In short, the optimization can be seen as fitting the bode plots of the
LPV model evaluated at local points H(θl) to the local LTI models Hl using the H2 norm.

For this non-convex and non-linear optimization problem, see Eq. (3-7), the gradient is
derived by Petersson (2013) to speed up the optimization and allow the use of standard uncon-
strained quasi-Newton solvers. In this comparison the fminunc solver available in MATLAB
will be used. Furthermore, as noted in the introduction on glocal methods, the selection of
the initial point for the optimization problem is very important, which is also pointed out by
Petersson (2013). Initial simulations have shown that when no suitable initial LPV model is
supplied to the H2NL algorithm, the optimization gets stuck in local minima, and the LPV
model is not successfully fitted to the local LTI models. Therefore, in this chapter the H2NL
algorithm will be initialized with the LPV model estimate as obtained by the local SMILE
algorithm, see Section 3-2-2.

Finally, the optimization problem as defined in (3-7) can also be extended to include regu-
larization to reduce the influence of errors in the data (Petersson, 2013, Ch. 4.4.2).

3-2-4 Glocal: H∞ norm

Next, a different glocal method is considered (Vizer et al., 2013), which unlike the H2 norm
used by Petersson (2013), uses the H∞ norm. The use of the H2 or H∞ system norms
results in different behavior in the optimization. This difference is explained by Skogestad and
Postlethwaite (2007), which states that the H2 pushes down the magnitude for all frequencies,
that is all singular values over all frequencies, while the H∞ norm pushes down the peaks in
the magnitude, that is the largest singular values. This difference is also shown in the cost
function, see Eq. (3-8), where compared to the H2 cost function (3-7) the sum operator is
replaced by the max operator.

min
Âi,B̂i,Ĉi,D̂i

max
l∈{1,...,m}

∥∥∥∥Hl −H(θl)
∥∥∥∥
∞

(3-8)

Note that, unlike for the other algorithms, the LPV model H(θ) in Eq. (3-8) does not
use the affine parameterization as given in Eq. (3-5), but a Linear Fractional Representation
(LFR) is used to parameterize the LPV model. Vizer et al. (2013) mentions that the LFR
representation is less restrictive than the affine parameterization as given in Eq. (3-5). This
is also illustrated by Zhou et al. (1996) with several examples, among which an equivalent
LFR is derived for the parameterization as given in Eq. (3-5), which uses the basis functions.
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18 LPV identification methods

The H∞ norm cost function (3-8) results in a non-smooth optimization problem. To solve
this problem the approach by Apkarian and Noll (2006) is used, which is implemented in the
hinfstruct function in MATLAB.

Unfortunately this method has currently only been derived for continuous-time systems,
which is a drawback, because the LTI identification used to obtain the local models frequently
results in discrete-time models. While it is possible to transform these discrete-time models
into continuous-time by for example using a zero-order-hold or Tustin approximation (Åström
and Wittenmark, 2011), this will always introduce an additional source of error.

3-3 Simulation scenario

Before continuing to the results it is important to present the simulation scenario to which
the different methods are subjected. As mentioned in Chapter 2 on first principles flutter
modeling the LPV model as presented in Section 2-2-2 will be used to generate data for the
identification methods to use. This section will discuss the data generation process in more
detail. Furthermore, it will present an LTI identification algorithm to provide the local and
glocal methods with local state-space models.

First, for the local and glocal methods the operating points are selected as θ̄l ∈ {4, 6, 8, 10}
m/s resulting in a total of m = 4 operating points. Furthermore, the identification data is
chosen to contain Np = 1250 data points, where for the local experiments this is divided by
m, such that the local and glocal methods use the same amount of data as the global method.

Recall from Eq. (2-3) that the flutter model uses the flap angle β as an input for which a
zero-mean uniformly distributed pseudo random signal β ∈ [−30◦, 30◦] is selected.

Next, the scheduling sequence for the global identification θ(k) is chosen as follows (3-9):

θ(k) = θ̄ +Aθ sin(2πk
j

) + wθ(k) (3-9)

where θ̄ = 7 m/s is the mean wind speed, Aθ = 1.75 m/s the sine amplitude, j = 12.5 s
the sine period, and wθ(k) a normally distributed zero-mean white noise signal with variance
0.42.

Note that when simulating the true LPV model (2-3) for the identification of local LTI
models, the wind speed is also perturbed by the same noise sequence wθ(k), see Eq. (3-10).

θl(k) = θ̄l + wθ(k) (3-10)

Finally, a measurement noise sequence vα(k) is added to the output pitch angle α to
obtain a specified Signal to Noise Ratio (SNR).

3-3-1 LTI identification

Now that the signals are defined that will be used to generate the data for the identification
algorithms, it remains to shortly discuss the LTI identification algorithm which will be used
to provide the local and glocal methods with a set of local state-space models.
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As mentioned in the introduction to local LPV identification, off-the-shelf LTI identification
algorithms can be used for this application. The overview by Van der Veen et al. (2013)
suggests the use of the PBSIDopt algorithm (Chiuso, 2007), which can be used under both
open-loop and closed-loop conditions.

Alternatively, for open-loop systems the PI-MOESP algorithm (Verhaegen, 1994) could be
used, but in practice the PBSIDopt algorithm was found to be more robust for this application.

3-4 Results

This section will present the results of the comparison between the four LPV identification
algorithms for the application of flutter speed prediction, given the simulation scenario as pre-
sented in the previous section. First, the glocal H∞-based method will be treated separately
as it requires significantly more computational time, but more importantly the continuous-
time requirement makes for an unfair comparison with the discrete-time method, as errors
are introduced in the discrete-to-continuous conversion. Secondly, the flutter prediction capa-
bilities of the three remaining methods are evaluated. Furthermore, the possibility of model
reduction is investigated and the section is concluded with some remarks on the computational
aspects of the different algorithms.

3-4-1 Glocal H∞-based
In this section, the glocal H∞-based method by Vizer et al. (2013) will be discussed separately
from the other methods and this separate treatment will be motivated. As mentioned in
Section 3-2-4 the optimization method used by the H∞-based glocal method is adapted for
continuous-time systems, while the LTI identification returns discrete-time local LTI models.
Therefore, a d2c (discrete-to-continuous) conversion is required, which introduces an error
between the equivalent discrete-time and continuous-time LTI models, which will disappear
as the sampling time Ts tends to zero.

To investigate the estimated model fit, the Variance Accounted For (VAF) is used as a
measure of similarity between the simulation output of the true LPV model and the estimated
LPV model for a specified validation data set, see Section 3-3. Furthermore, the flutter speed
Vf prediction error is defined as V̂f−Vf

Vf
· 100%, where V̂f is the flutter speed of the estimated

LPV model, and Vf the flutter speed of the true LPV model.
To investigate the effect of the sampling time on the estimated LPV model the results are

shown in Table 3-1 for Ts ∈ {0.04, 0.08} s and SNR= 40. Note that for this comparison the
number of samples Np was kept constant, such that the amount of data available for the LTI
model identification is not changed.

Table 3-1: H∞-based glocal method (Vizer et al., 2013) performance for two sampling times Ts
(SNR = 40)

Ts VAF Vf error Time
0.08 s 90.7 % 14.4 % 1:55 h
0.04 s 95.1 % -9.7 % 2:14 h
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It follows from Table 3-1 that the performance improves for a decreasing sampling time Ts
as shown by the increased VAF and lower flutter speed Vf prediction error. Furthermore, to
show that the H∞ norm minimization is successfully performed by the algorithm, the fit of
the estimated LPV model to the local continuous-time LTI models is evaluated for a sampling
time Ts = 0.08 s, see Figure 3-1.
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Figure 3-1: H∞-based glocal LPV estimate fits the local continuous-time LTI models very well.

Figure 3-1 shows that the estimated LPV model fits the local continuous-time LTI models
very well, which indicates that the cost function of the optimization as given in Eq. (3-8) was
successfully minimized by the algorithm as presented by Vizer et al. (2013).

Therefore, when Figure 3-1 shows no error between the continuous-time LTI and LPV
model, the error must have been introduced by the d2c conversion, which makes a comparison
with the other discrete-time LPV identification methods unfair.

Finally, as shown in Table 3-1, the algorithm requires significantly more computational
time compared to the other methods, which will be discussed in Section 3-4-4.

3-4-2 Flutter prediction

Now that the previous section treated the H∞-based glocal method separately, this section
will present the flutter prediction capabilities of the remaining three algorithms.

When looking at the phenomenon of flutter, the system becomes unstable at the flutter
speed Vf , which for discrete-time systems means that one or more poles move outside of the
unit disk. Furthermore, the poles of the system can be found by calculating the eigenvalues
of the state matrix. In the case of an estimated LPV model, see Eq. (3-5), for a wind speed
θk the stability criterion can be formulated as |λi(A(θk))| < 1 for i = 1, ..., n̂x, where λi(A) is
the i’th eigenvalue of the matrix A, and n̂x is the system order or number of states.

In order to calculate the flutter speed of the estimated LPV models, a range of wind
speeds θk ∈ {0, 1, ..., 20} is selected for which the maximum absolute value of the eigenvalues
of the state matrix pmax(θk) = maxi |λi(A(θk))| is calculated. A plot of these maximum pole
amplitudes as a function of the wind speed is given in Figure 3-2.
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22 LPV identification methods

Table 3-2: Flutter speed prediction error for two state dimensions n̂x ∈ {2, 4} (%)

SMILE H2NL PBSIDopt

SNR 40 5 40 5 40 5
n̂x = 4 -7.7 % -16.8 % -2.1 % -13.2 % 0.2 % -6.6 %
n̂x = 2 19.1 % 103.4 % 13.1 % 38.5 % -17.8 % 47.8 %

As shown in Figure 3-2, the wind speed V̂f at which the line pmax(θk) = 1 is crossed can
be calculated by interpolation for each method and the results are summarized in Table 3-2.
Furthermore, the VAF values for n̂x = 4, as shown in Figure 3-3, are included in Table 3-3.

In Figure 3-2 and 3-3 the black dashed vertical lines indicate the region in which local LTI
models have been identified at the operating points θ̄l ∈ {4, 6, 8, 10} m/s as given in Section
3-3, see Eq. (3-10). Furthermore, the red dashed vertical line indicates the flutter speed
Vf = 12.41 m/s of the true LPV model. Finally, the grey markers indicate the results for
different noise realizations, while the colored markers show the results for median VAF.

When looking at the results as given in the Figures 3-2 and 3-3 and Tables 3-2 and 3-3
multiple observations can be made.

Firstly, when only looking at the model fit in terms of the VAF, see Figure 3-3 and Table
3-3, a trade-off is taking place between the bias and variance of the estimates for increasing
noise, see Figure 3-3a and 3-3b. For a SNR = 40, see Figure 3-3a, the PBSIDopt global
method shows the highest VAF and the local SMILE and glocal H2NL algorithms show no
noticeable difference in VAF. On the other hand, when the noise is increased (SNR = 5), see
Figure 3-3b, the local SMILE method outperforms the global PBSIDopt method in terms of
the bias, shown by the higher median VAF, while the variance of the local SMILE method
is larger than for the PBSIDopt method. Furthermore, the glocal H2NL method is able to
improve both the bias and variance of the local SMILE estimate, as shown in Figure 3-3b.

Secondly, for n̂x = 4 Table 3-2 shows that in the case of low noise (SNR = 40) all methods
result in good flutter speed predictions. On the other hand, when the noise is increased
(SNR = 5) the pole prediction for low and high wind speeds significantly deteriorates, while
the point of instability, that is the flutter speed, is still predicted within acceptable bounds.
Overall, the global PBSIDopt shows the best flutter speed predictions both at low and high
noise levels.

3-4-3 Model reduction
In the previous sections the state dimension n̂x = 4 of the parameterized LPV model (3-5)
was chosen equal to the state dimension nx of the true LPV model (2-3). When the data
originates from experiments on physical systems the true state dimension nx is not given a
priori and n̂x should be selected based on information in the data or prior knowledge of the
system. Furthermore, when a high order system is identified it might be beneficial to select
n̂x < nx to obtain a simple model of the system, which allows for faster model-based control.

This brings us to the point of model reduction, where the LPV model order is selected
smaller than the system order nx. For the local SMILE method this is done by selecting
a lower state dimension in the LTI state-space identification algorithm, such that the local
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state dimension equals n̂x, in which case the interpolation step result in a same dimension
LPV estimate. On the other hand, in the case of the glocal methods the local LTI model
dimension does not need to be equal to the parameterized LPV model state dimension as only
the input/output behavior is considered and the state matrices are not directly interpolated.

To investigate the model fit and flutter prediction when model reduction is applied, a state
dimension n̂x = 2 is selected, for which the maximum pole amplitude is given in Figure 3-4
and the model fit and flutter prediction error is shown in Table 3-3 and 3-2, respectively.

0 5 10 15 20

0.8

0.9

1

1.1

1.2

Wind speed (m/s)

M
ax

.
po

le
am

pl
itu

de
(-

) True
SMILE
H2NL
PBSIDopt

Figure 3-4: Flutter prediction deteriorates significantly when a degree of freedom is removed
(n̂x = 2).

Table 3-3: VAF of estimated LPV models for two state dimensions n̂x ∈ {2, 4} (%)

SMILE H2NL PBSIDopt

SNR 40 5 40 5 40 5
n̂x = 4 97.3 % 91.5 % 97.2 % 93.7 % 99.8 % 87.3 %
n̂x = 2 96.4 % 96.4 % 96.4 % 96.2 % 89.5 % 89.0 %

Table 3-3 shows a relatively good VAF for the reduced order estimated LPV model. On the
other hand, Figure 3-4 shows very poor prediction of the maximum pole amplitude and flutter
speed, as also shown in Table 3-2. In other words, while the behavior of the system is still
relatively well explained by the reduced order model as shown in the good VAF values, the
pole locations no longer represent the phenomenon of flutter. Note that this is no surprise as
flutter requires two degrees of freedom, see the explanation in Section 2-1-2, while the reduced
order model only has a single degree of freedom as n̂x = 2.

3-4-4 Computational aspects

The previous sections have discussed various aspects of the four LPV identification algorithms,
including the model fit of the estimates, the pole prediction capabilities and the possibility of
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model reduction. Finally, this section will consider the computational aspects of the different
algorithms, as this significantly influences the practicality of an algorithm. It should however
be noted that the computational aspects are influenced by the implementation in code and
the used hardware, which makes it hard to give definitive conclusions. However, it is the aim
to provide the reader with an initial indication as to whether the presented algorithms could
be used for a specific application.

Regarding the presented simulation times, all calculations were performed using an Intel
i7 860 processor and 4 GB of RAM running MATLAB 2014a under Windows 8.1 Pro. Fur-
thermore, for the glocal methods it should be noted that the initial point of the optimization
significantly influences the computational time.

As this chapter only concerned the LPV model identification from data generated according
to a single simulation scenario, see Section 3-3, it is interesting to first consult literature to
see if expressions exist which relate the computational complexity to important parameters,
such as the model order or number of local models.

In the case of the H2NL method by Petersson (2013) the computational complexity per
iteration is given as O (m [n2

xn̂x + nxn̂
2
x

])
, where m is the number of local LTI models, nx is

the state dimension of the local LTI models, and n̂x is the state dimension of the parameterized
LPV model (3-5).

For the local SMILE method no derivation on the computational complexity is given by
the authors (De Caigny et al., 2014), but for the simulations performed in this chapter no
noticeable difference was observed in the computational time when the number of basis func-
tions N of the parameterized LPV model (3-6) or the model order n̂x were increased. On
average, a computational time for the SMILE method of tSMILE ≈ 0.1 s was observed.

In the case of the global PBSIDopt method the most important parameters are the past
window p and the number of basis functions N . For p = 5 and N = 3, as used in this chapter,
an average computational time of tPBSID ≈ 0.6 s was observed.

Finally, when looking at the observed computational time of the H2NL method for the
simulation scenario as described in Section 3-3 (N = 3, n̂x = 4, and m = 4), a much larger
variance is present on the set of observed computational times, resulting in tH2NL ∈ [4, 20] s.

3-5 Synopsis
From the presented results in Section 3-4 multiple short conclusions are drawn in this synopsis
along with some possible future research directions.

First, the algorithms have shown the ability to predict the flutter speed to within around
10 % even in the presence of significant noise, see Table 3-2, which shows the potential of
LPV identification for flutter prediction. For increasing noise the pole prediction at low and
high wind speeds quickly deteriorates, while the point of instability is still predicted within
reasonable bounds. When looking at the difference between the four algorithms in terms of
flutter prediction, the global PBSIDopt algorithm overall shows the smallest error.
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Table 3-4: Comparison of LPV identification algorithms

SMILE H2NL Glocal H∞ PBSIDopt

De Caigny et al.
(2014)

Petersson (2013) Vizer et al. (2013) Van Wingerden and
Verhaegen (2009)

Optimization Linear Least
Squares
(convex)

quasi-Newton
(non-convex)

Descent
directions +
line search

(non-smooth)

Linear Least
Squares
(convex)

Parameterization Basis functions
fi(θ)

Basis functions
fi(θ)

LFR Basis functions
fi(θ)

Cost-function form ∑
l ‖El‖2F

∑
l ‖El(jω)‖22 maxl ‖El(jω)‖∞ ‖E‖2F

Requirements Slowly varying
θ

Slowly varying
θ, local
stability

Slowly varying
θ, local
stability,
continuous

time

-

Bias / variance low / high low / medium - medium / low
Initialization - Crucial Less crucial -
Computational t ≈ 0.1 s t ≈ 10 s t ≈ 2 h t ≈ 0.6 s
Case of Sec. 3-4-4

Furthermore, a trade-off between the bias and variance was observed for an increasing noise
level, where for significant noise (SNR = 5) the local method outperforms the global method.
Moreover, the glocal H2-based method is able to further improve both the bias and variance
of the local estimate. This both shows the capability of the glocal method to outperform the
local method, but also shows the requirement of a good initial LPV model for the non-convex
optimization problem as also pointed out by Petersson (2013).

The different aspects of the four LPV identification algorithms presented in this chapter
are also summarized in Table 3-4.

From the presented results in this chapter two interesting future research directions have
emerged.

Firstly, the H∞-based glocal algorithm was able to fit the parameterized LPV model
to the local continuous-time LTI models very well, see Figure 3-1, but the restriction of
continuous-time LTI models makes it less suitable to be combined with common discrete-
time LTI identification methods.

Secondly, as the global and local methods both allow for closed-loop identification of
unstable systems using a stabilizing controller, it would be interesting to investigate how
the glocal methods can include the stabilizing controller in the algorithm and compare the
different methods for a closed-loop LPV identification application.

Master of Science Thesis M. Visser



26 LPV identification methods

M. Visser Master of Science Thesis



Chapter 4

Experimental setup validation

In the previous chapter simulation data was used to validate the concept of LPV model iden-
tification for flutter prediction. The next step is to validate the LPV identification methods
on experimental data, for which an experimental setup has been provided to perform flutter
experiments. However, because it is the first time that this setup is used, this chapter will
answer the question whether the behavior of the setup corresponds to aeroelastic flutter.

To answer this question, the setup is first divided into two individual parts, namely a
morphing airfoil and an elastic suspension, like we also saw in the LPV model from Section
2-2-1. These two parts will be presented separately and the observed shortcomings will be
discussed. Next, the combined system is considered inside the wind tunnel and the frequency
spectrum is estimated to check if the system dynamics resemble those of aeroelastic flutter.

4-1 Morphing airfoil
A morphing airfoil allows for a smooth change in camber of the trailing edge, as opposed
to the frequently used hinged flaps, which results in a higher aerodynamic efficiency (Bilgen
et al., 2013). The front of the airfoil is shaped like a NACA 0015 airfoil out of which a thin
stainless steel plate extends to which piezoelectric benders are bonded on both sides, resulting
in a triple layer bender. When the piezoelectric elements on top are supplied with a voltage U
and the bottom elements are supplied with the opposite voltage −U the stainless steel plate
will start to bend as shown in Figure 4-1.

Figure 4-1: Morphing airfoil with a deformable trailing edge.

The deformation of the trailing edge tip from rest is denoted by δ for which Wang and
Cross (1999) derived the relation with the actuation voltage U as given in Eq. (4-1):

δ = 3sm11d33(tm + tp)L2

2sm11(3t2mtp + 6tmt2p + 4t3p) + sp11t
3
m

U (4-1)
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where sm11 is the compliance of the elastic material, sp11 the compliance of the piezoelectric
material, d33 the piezoelectric coefficient, tm the elastic material thickness, tp the piezoelectric
material thickness, L the active length of the piezoelectric element, and U the applied voltage
over the piezoelectric elements.

The piezoelectric elements are M8557-P1 Macro Fiber Composites (MFCs) (Smart Mate-
rial Corp., 2015) and the stainless steel plate was measured to be 0.3 mm thick. Furthermore,
a TREK Model PZD700A piezo driver (TREK, Inc., 2015) is used which supplies a maximum
voltage of 700 V.

If we now calculate the maximum tip deformation for this configuration using Eq. (4-1),
δ = 4.8 mm is obtained. However, we should take into account that only 63 % of the stainless
steel plate is covered by the MFCs. When measuring the displacements using a Micro-Epsilon
optoNCDT 1302 laser sensor (Micro-Epsilon, 2015) a value of δ = 2.7 mm was observed, which
is slightly smaller than calculated.

The fabrication of the morphing airfoil, see Figure 4-2, consisted of several main steps.

(a) Individual parts (b) Assembly of the steel and piezoelectric parts

(c) Attachment of the foam (d) Inside the wind tunnel

Figure 4-2: Photographs of the morphing airfoil used in the experiments.

First, the steel components were laser cut to size and the NACA 0015 shaped front was
CNC cut out of polystyrene foam, see Figure 4-2a. The steel parts were then glued together
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using a metal epoxy glue and the piezoelectric elements were bonded to the trailing edge
using Loctite E-120HP epoxy adhesive, see Figure 4-2b, which is recommended by the MFC
manufacturer (Smart Material Corp., 2015). Next, the polystyrene foam is attached to the
steel body using double sided adhesive tape, see Figure 4-2c, and finally the foam part is
coated in fiberglass to provide structural rigidity to the leading edge of the morphing airfoil,
see Figure 4-2d.

4-1-1 Wind tunnel
The morphing airfoil will be suspended inside a wind tunnel to generate the airflow required for
the experiments and to control the wind speed, see Figure 4-3. A Smart Blade Visualization
Wind Tunnel (Smart Blade, 2015) is used, which allows the wind speed to be controlled
between 0 and 10 m/s. Furthermore, while the wind tunnel is equipped with flow visualization
this will not be used in this thesis.

(a) Overview (b) Test section

Figure 4-3: Small visualization wind tunnel inside the lab.

4-2 Electronically controlled suspension
The second part of the experimental setup is the elastic suspension, which uses two torque
controlled Robotis Dynamixel MX-106R (Robotis, 2015) servo motors to control the stiffness
electronically. This section will first present the concept and control scheme, after which some
of the problems encountered are discussed.

4-2-1 Concept
The concept which is used is illustrated in Figure 4-4, where the two torque controlled servo
motors are fixed to the blue linkages and the morphing airfoil is fixed to the center of the red
linkage. To prevent horizontal motion of the airfoil, the center of the red linkage has been
guided using vertical profile guide rails.

The position is measured using encoders inside the MX-106R servo motors, which provide
the motor shaft angles φ1 and φ2 which can be related to the rotation angle α and the
vertical displacement h of the center of the red linkage, see Figure 4-4a. Furthermore, the

Master of Science Thesis M. Visser



30 Experimental setup validation

servos are supplied with a torque signal T = T̄ ± T∆, which consists of a common value T̄
and a differential value T∆.

h

α

φ1 φ2

T∆ = 0
T̄ = 0

(a)

T∆ > 0
T̄ = 0

(b)

T∆ = 0
T̄ > 0

(c)

T∆ > 0
T̄ > 0

(d)

Figure 4-4: Adaptive springs concept based on torque feedback control.

In order to explain this electronically controlled suspension concept, first the effect of the
servos on the airfoil rotation α and translation h is illustrated using the four illustrations
given in Figure 4-4:

T∆ = 0, T̄ = 0 Figure 4-4a shows the system at rest, where the center of the red linkage,
to which the airfoil is connected, shows no rotation α = 0 and translation h = 0.

T∆ > 0, T̄ = 0 Figure 4-4b shows that when the blue linkages are supplied with a differ-
ential torque T∆ > 0, this results in a rotation α > 0 around the center of rotation of
the airfoil.

T∆ = 0, T̄ > 0 Alternatively, when the two motors are supplied with a collective torque
T̄ > 0, see Figure 4-4c, the center of the airfoil translates vertically h > 0.

T∆ > 0, T̄ > 0 When we combine the differential and collective torque signals, see Figure
4-4d, we obtain an arbitrary translation h > 0 and rotation α > 0 of the airfoil.

Note that while the examples use positive values of T∆ and T̄ , the concept works the
same for negative values, only then it will result in a negative rotation α < 0 and/or negative
translation h < 0.

In order to make this concept behave as if it were a rotational and translational spring
and damper the differential torque signal T∆ is used to control the pitching moment on the
airfoil and the common torque signal T̄ is used to control the vertical force on the airfoil. The
relation between these signals will be treated in the next section on the control scheme.

M. Visser Master of Science Thesis



4-2 Electronically controlled suspension 31

Figure 4-5 shows the suspension setup which was provided for the experiments and the
concept as illustrated in Figure 4-4 containing the different linkages can easily be recognized.
Furthermore, Figure 4-5c shows how the morphing airfoil is attached to the suspension and
Figure 4-5d shows the suspension setup attached to the back of the wind tunnel.

(a) Overview (b) Close-up

(c) Morphing airfoil fixed to suspension (d) Attached to the back of the wind tunnel

Figure 4-5: Electronically controlled suspension setup.

4-2-2 Control scheme

The imaginary springs should supply a force Fs and torque Ts as a function of the vertical
displacement h and angular displacement α, respectively. Furthermore, to incorporate damp-
ing it should also supply a force Fd and torque Td as a function of the vertical velocity ḣ
and angular velocity α̇, respectively. These spring and damper forces and torque values are
defined in Eq. (4-2) as follows:

Fs = kh · h Fd = ch · ḣ
Ts = kα · α Td = cα · α̇

(4-2)

These force and torque values should then be supplied using the T∆ and T̄ signals of the
servo motors, which is shown in Figure 4-6.
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Figure 4-6: Control scheme of the electronically controlled suspension.

4-2-3 Encountered problems
Now that the required background knowledge on the setup has been presented the encountered
problems during the use of the experimental setup will be discussed in this section.

Vibrations introduced by the controller

The first problem is the fact that the controller of the suspension subsystem introduces
vibrations in the airfoil even when no lift force caused by the wind is present. These vibrations
show up when the rotational spring constant kα passes above a certain threshold and increase
when the kα is further increased.

In order to detail the origin of this problem it is important to first look into how the
Dynamixel MX-106R servos are controlled.

As mentioned in the previous section presenting the concept, the servos should deliver a
specified torque at the motor shaft. However, the servos are in practice current controlled,
which is equivalent as torque is directly proportional to the current. Important to note here is
that the output signals of the Dynamixel have a finite resolution, which in case of the current
signal means that the range I ∈ {−9.2115 A, 9.2115 A} is divided into 4095 steps, resulting
in a resolution of 4.5 mA per step (Robotis, 2015). However, because the morphing airfoil
and the suspension setup are lightweight components, a current of 4.5 mA already rotates the
airfoil noticeably.

In other words, the MX-106R servos are significantly overpowered for this application,
which comes at the cost of a very coarse signal resolution. Therefore, because the reference
current signal is rounded off to the nearest multiple of 4.5 mA it makes quite a difference
when for example the signal changes from 2.2 to 2.3 mA, which results in a relatively large
current change in the servo of 0 to 4.5 mA.

If we now investigate the measured signals on the setup, it was found that the current I2 to
the second servo motor is approximately equal to zero around the equilibrium point, depicted
in Figure 4-4a, as the required torque T̄ to keep the airfoil at height h = 0 approximately
equals the torque T∆ to keep the airfoil at angle α = 0, such that they cancel out T2 =
T̄ − T∆ ≈ 0.
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When we now return to the problem at hand, we see that for increasing kα the reference
current in the second servo I2 increases up to the point where it passes 2.25 mA and the servo
rounds this value to 4.5 mA. Unfortunately, around the current I = 0 the servos often show
an overshoot in the current when the first nonzero reference value is supplied and the motors
start moving. This unfavorable start up behavior of the servo in turn results in a slightly
lower reference current I2 to compensate for the overshoot of the airfoil angle α, see Figure
4-7. This process repeats itself and the airfoil starts to vibrate.
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Figure 4-7: A coarse signal resolution in combination with an overshoot around I2 = 0 causes
vibrations.

In practice this is confirmed by the fact that the vibrations stop when a small (positive
or negative) torque is supplied by hand to the airfoil, such that the current I2 is no longer
oscillating around I2 = 2.25 mA and the switching stops.

Friction

A second problem is friction, which is present both in the servo motors and the profile rail
guides which guide the vertical motion. Both sources of friction will shortly be discussed and
the consequences are highlighted.

Because the Dynamixel MX-106R servo motors have a very large gear reduction ratio of
255:1 (Robotis, 2015) the motor requires only little torque to turn the output shaft. On the
other hand, when we turn the output shaft the opposite is true and a small friction force of
the motor is amplified such that a large torque is required to move the shaft.

For most applications this is preferable as only the position of the output shaft is of
interest. However, in this application it is a problem because the springs react to changes in
rotation α and translation h and for these changes to be observed the motor shafts should
move. The external forces, for example the lift force caused by the wind passing the airfoil,
should first overcome this friction in the motors before a change in angle α or height h is
observed by the position encoders. And only when a change in α or h is observed will the
torque signals T∆ and T̄ be changed by the controller, see Figure 4-6.
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Another source of friction are the profile rail guides which guide the vertical motion and
prevent the airfoil from moving in the horizontal direction, see Figure 4-5a and 4-5b. This
is clearly visible when the stiffness kh is increased but the guides do not move. However, if
I apply a force normal to the guides it starts to move, because these type of rail guides are
built to operate under larger loads and the presence of friction has been optimized for such
larger normal forces. Unfortunately, in this application the guides are only subjected to very
small loads which results in relatively high friction.

4-3 System dynamics
Now that the individual components of the experimental setup have been presented and some
of their experienced shortcomings have been discussed, it remains to validate whether the
dynamics of the combined setup correspond to aeroelastic flutter. The measurements are
performed using a dedicated laser distance sensor, see Figure 4-8, as opposed to the position
encoders in the servo motors. This is to make sure that the actual position is measured, which
might deviate from the motor shaft angles due to for example airfoil bending.

Figure 4-8: A laser distance sensor is used to measure the position of the airfoil which rotates
around the elastic axis indicated by the black dot.

4-3-1 Airfoil bending
Initial observations for V = 0 m/s quickly showed that the airfoil is bending noticeably, while
the model as described in Chapter 2 only considers the pitch and plunge degrees of freedom.
By exciting the system by hand and measuring the response it was found that the bending
mode has a frequency of 8.2 Hz, see Figure 4-9.

In order to check whether this is a problem for the flutter experiments, measurements are
conducted with the suspension controller enabled for different rotational spring stiffness values
kα. In this way it can be evaluated to which extend the bending mode affects the suspension
controller.
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Figure 4-9: The bending mode of the airfoil is located at 8.2 Hz.

These measurements are performed in the configuration as shown in Figure 4-8 where
the input to the system is the scaled voltage Up ∈ [−10, 10] V, which is supplied to the
piezoelectric patches, indicated in blue in Figure 4-8, and the output of the system is the
height hl in mm, which is obtained using the laser distance sensor.

To sufficiently excite the dynamics in the system the piezoelectric patches are actuated
with a filtered white noise signal. The filter is designed as a second order Butterworth low
pass filter with a cut-off frequency of 40 Hz and the signal amplitude is scaled such that the
signal spans the entire range Up ∈ [−10, 10] V.

Finally, spectral analysis with frequency averaging will be applied to the measured data
to estimate the frequency response of the system and evaluate the observed dynamics.

The measurements have been performed for a wind speed V = 5 m/s and the spring stiffness
values kα ∈ {2, 3, 3.5, 4}, see Figure 4-10. Note that the spring stiffness kα has a unit A/rad
because torque has been replace by current in the suspension controller. Furthermore, due
to the problems detailed in Section 4-2-3, it was not possible to calibrate the spring stiffness
such that kα could have the unit Nm/rad.

When looking at Figure 4-10 it is observed that for the values kα < 4 the bending mode
at 8.2 Hz, see Figure 4-9b, is dominant. However, for kα = 4 the bending mode no longer has
a significant influence and a new dominant peak at 6.2 Hz appears along with a second peak
at 12.4 Hz, which is exactly twice the dominant frequency. When looking at the differences
in the time domain it is observed that the system starts to oscillate significantly for kα = 4
resulting in an increase in the Root Mean Square (RMS) value from 0.42 for kα = 3.5 to 4.15
for kα = 4. The low RMS values for kα ≤ 3.5 show that the system is exciting the bending
mode by small angle changes, like discussed in Section 4-2-3.

In short, for kα = 4 the system shows more violent pitch oscillations than for lower spring
stiffness values and the oscillation frequency is different to the bending mode frequency of 8.2
Hz. Furthermore, the oscillations are introduced by the suspension controller as they are also
observed when no external forces are present.
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Figure 4-10: Output spectra for a wind speed V = 5 m/s and different spring stiffness values
kα.

4-3-2 Influence of the wind
The previous section showed that the suspension controller introduces vibrations in the system
which increase for larger values of kα even when no wind is present. This already shows
that the observed vibrations cannot be interpreted as being caused by aeroelastic flutter,
which is a wind speed dependent phenomenon. However, the influence of the wind on the
system dynamics is still of interest, as the main need for LPV system identification lies in
the identification of time-varying dynamics, like the wind speed dependent dynamics in this
case. Therefore, this section will investigate whether the dynamics change as a function of
the wind speed.

When performing these experiments at different wind speeds, first the stiffness and damping
values for the suspension controller should be selected. As discussed in Section 2-3, the
suspension parameters are of great importance for the occurrence of flutter. However, in
this case the vibrations are not flutter-induced and the electronically controlled suspension
was shown to have some serious flaws. Therefore, the parameters will be selected based on
experiments, as they cannot be calculated by simulation of the LPV flutter model of Chapter
2.

The choice of the parameters is shortly motivated as follows:

ch = 0 Measurements for different values of ch showed no effect on the estimated frequency
spectrum, therefore it was selected equal to zero.

cα = 0.01 For a range of values for cα it was observed that values lower than cα = 0.01 had
no noticeable influence on the estimated spectrum. Furthermore, higher values of cα
result in more violent oscillations but a similar frequency response in terms of the peak
locations.

kh = 1000 The value of kh mainly influences the equilibrium height h0 but does not show
a significant influence on the estimated frequency spectrum. Therefore, the value kh =
1000 was selected such that the airfoil remains reasonably close to h = 0.
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kα = 4.2 The previous section showed that choosing kα ≥ 4 at V = 5 m/s results in pitch
oscillations, whereas for lower values only the bending mode is excited. Additional
experiments showed that for the pitch oscillations to be sustained for the entire wind
speed range V ∈ [0, 10], a value of kα = 4.2 should be selected.

Furthermore, a non-zero angle of attack α0 results in larger lift forces and therefore a larger
changes in the dynamics. This becomes visible when we compare the estimated frequency
spectra for α0 = 2.5◦ and α0 = 5◦, as shown in Figure 4-11 and 4-12, respectively.
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Figure 4-11: Output spectra for different wind speed values and kα = 4.2, kh = 1000, cα = 0.01,
ch = 0, and α0 = 2.5◦.
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Figure 4-12: Output spectra for different wind speed values and kα = 4.2, kh = 1000, cα = 0.01,
ch = 0, and α0 = 5◦.

The estimated output spectra as shown in Figure 4-11 and 4-12 show a decreasing oscillation
frequency for increasing wind speed both for α0 = 2.5 and α0 = 5. Furthermore, when we
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look more closely at the frequency of the multiple peaks which show up in the spectra they are
all an integer multiple of the first dominant frequency (around 7 Hz). This suggests that the
system actually has a single resonance frequency and the remaining resonances are so-called
superharmonics which occur in non-linear systems (Rao and Fah, 2011).

Clearly then, the estimated frequency spectra shows a single mode along with multiple
superharmonics instead of a separate pitch and plunge mode like expected. When looking at
the torque signals T∆ and T̄ which control the stiffness and damping of the pitch and plunge
modes, respectively, it shows that T∆ has a significantly larger contribution to the combined
torque than T̄ . In other words, the single observed mode is mainly excited by the rotational
spring and damper.

The goal of this section was to investigate whether the dynamics are wind speed dependent,
which has been shown to be the case, see Figure 4-11 and 4-12. Furthermore, the measure-
ments showed that a single mode is observed which is mainly excited by the rotational spring
and damper controller Cα, see Figure 4-6.

4-4 Recommendations
For future use of the experimental setup this section will present some recommendations
regarding the encountered problems which were described in the preceding sections.

Morphing airfoil

Firstly, while the morphing airfoil works well and the piezoelectric patches have successfully
been used to excite the system by deforming the trailing edge, the obtained deformations are
quite small, which limits the change in aerodynamic lift which can be obtained. Therefore,
the deformations could be magnified by using a thinner stainless steel plate for future designs.

Next, the elastic axis of the available airfoil was moved significantly to the trailing edge of
the airfoil, see Figure 4-5c and 4-8, which resulted in significant airfoil bending. If the elastic
axis would be located closer to the leading edge of the airfoil, the steel part connecting the
elastic axis to the frame of the airfoil would be shorter which in turn decreases the bending.

Suspension

Regarding the electronically controlled suspension, its vibration problems could be solved by
using servos with a finer signal resolution, which in practice would mean using less powerful
motors. Furthermore, by adding some weight to the system the equilibrium or steady-state
current could be increased or decreased such that the start up behavior around I2 = 0 is
circumvented.

Furthermore, there is the problem of friction in the motors and guides. The motor friction
is inherent to the concept of a servo and therefore could only be changed by using a different
type of actuator. Alternatively, one could try to compensate for this behavior, which requires
additional sensors to measure the actual torque on the shaft.
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For the vertical rail guides a different setup should be considered to reduce the friction.
Like for the motor friction, one could also try to compensate for it using additional control
strategies.

4-5 Synopsis
In order to validate the LPV identification algorithms on experimental data an experimental
setup was provided to perform flutter experiments. This chapter presented this setup and
showed that, due to friction and controller related problems, the behavior of the setup does
not resemble aeroelastic flutter. However, vibrations are induced by the controller and the
dynamics of this system were observed to be wind speed dependent, which still allows for the
use of LPV identification.

This process of using the LPV identification algorithms from Chapter 3 with experimental
data will be the topic of the next chapter.
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Chapter 5

Experimental identification

Chapter 3 discussed four LPV model identification algorithms and showed their performance
in simulation. Furthermore, to show the applicability of these algorithms on experimental
data a physical setup was provided consisting of a morphing airfoil and an elastic suspension.
Unfortunately, this setup was found to be unable to demonstrate the phenomenon of flutter
as shown in the previous chapter. However, the measurements also showed that the dynamics
are wind speed dependent and therefore time-varying, which still justifies the use of the LPV
identification methods.

Therefore, this chapter will apply the LPV identification methods on experimental data
and discuss the performance and highlight the encountered problems. First, the way in which
the data is processed will be treated along with the application of LTI identification methods
on the data to obtain local models for the local and glocal LPV identification methods. Next,
the individual LPV identification algorithms are shortly discussed and important parameter
choices are motivated. Finally, the results will be presented and discussed.

5-1 Data processing

Before we turn to the topic of data processing it is important to explain how the data is
obtained, which has already partly been discussed in Section 4-3-1. In short, the system is
excited using a frequency limited white noise signal Up (V), which is supplied to the voltage
amplifier which in turn drives the piezoelectric patches. Furthermore, a laser distance sensor
is used to measure the position hl in mm of the airfoil, as depicted in Figure 4-8.

Because we are dealing with LPV identification the scheduling sequence should also be
measured, which is the wind speed V (m/s) in this case. The wind speed inside the wind
tunnel is regulated between 0 and 10 m/s using a potentiometer on the outside of the casing
and the setup uses this voltage Uw over the potentiometer, which ranges from 0 to 5 V, to
calculate the wind speed as V = 2Uw in m/s. The wind tunnel can thus not track a predefined
wind speed signal, but requires the user to control the wind speed by hand, after which the
measured signal can be used for the LPV identification.
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When looking at the frequencies of interest for the experimental setup, the estimated fre-
quency spectrum as shown in Figure 4-11 showed that the dominant frequency occurs around
7 Hz and all other peaks are superharmonics located at multiples of this dominant frequency.
Furthermore, because a fourth order model will be identified like in Chapter 3 only two of
these (second-order) resonance peaks can be fitted, which are the peaks which occur around
7 and 14 Hz.

If we now want to re-sample the data to fit these frequencies we should keep in mind that
the new sampling frequency should be lowered with an integer multiple. Therefore, given
that the measurement data is currently sampled at 2 kHz an integer multiple n = 50 was
selected, such that the new Nyquist frequency equals 20 Hz and the peaks at 7 and 14 Hz are
contained in this range.

Furthermore, the experiment duration was selected equal to 300 s which, given the sam-
pling frequency of 40 Hz, results in 12, 000 data points in each data set. Unlike in Chapter 3,
this chapter uses the same number of 12, 000 data points for the local (constant wind speed)
and global (varying wind speed) measurements.

Next, an 8th order Butterworth band pass filter is used to reject frequencies outside the
range f ∈ [0.2, 18] Hz. The low frequency (f < 0.2 Hz) content from the signal is ignored
because, due to friction in the vertical rail guides, the vertical movement often gets stuck at
different constant offset values. Furthermore, the top of the range was selected at f = 18
Hz to prevent the peak located around 21 Hz to interfere, which is a superharmonic of the
dominant frequency at 7 Hz.

5-2 LTI identification
Now that the data has been processed, like discussed in the previous section, it will now be
used for LTI identification. This is a crucial step in the process, because the local and glocal
LPV identification methods will fit their LPV model to these local LTI models. In other
words, they will only be as good as the set of LTI models they are provided with, which
explains why this step will be discussed in more detail in this section.

As explained in Section 3-3-1, the PBSIDopt algorithm (Chiuso, 2007) will be used to
identify local LTI models of order n̂x = 4. When using this algorithm, the value of two
important parameters should be selected, that is the past window p and the future window
f ≥ n̂x.

Regarding the past window p, in theory p → ∞ should result in an unbiased model.
However, in practice there is a risk of over-fitting, due to the use of finite-length data sequences
(Van der Veen et al., 2013). By comparing the the LTI models to the estimated frequency
spectra from the previous chapter for different values of p it was found that for values higher
than p = 30 the fit did not improve. On the other hand, lower values of p decrease the fit for
lower frequencies. Therefore, the past window was selected as p = 30.

The next parameter to select is the future window f ≥ n̂x. The experiments showed
that the choice of f has a significant influence on the pole locations of the local LTI models.
This is illustrated by Figure 5-1, where the discrete-time pole locations are shown for V ∈
{0, 2.5, 5, 7.5, 10} m/s and f ∈ {4, 5}. Note that the markers, which indicate a pole, turn
darker for an increasing wind speed.
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(a) f = 4 (b) f = 5

Figure 5-1: Effect of the future window f on the (discrete-time) pole locations for a range of
wind speeds V ∈ {0, 2.5, 5, 7.5, 10} m/s.

When comparing Figure 5-1a and 5-1b, it is clear that the mode located close to the
edge of the unit disk shows no noticeable changes for f = 4 and f = 5, while the other
mode does show larger differences. If we now look at the frequency corresponding to this
mode, it concerns the superharmonic at 14 Hz, as shown in Figure 4-11b. By comparing the
LTI models to the estimated frequency spectra as presented in the previous chapter, f = 5
resulted in the best fit.

In order to further improve the results, Tikhonov regularization with generalized cross
validation regularization parameter selection is used as a part of the PBSIDopt method
(Van Wingerden and Verhaegen, 2009). Furthermore, the input and output signals are scaled
to have a variance equal to one when they are used in the identification algorithm and af-
terwards the identified model is re-scaled to the original units to obtain the required LTI
model.

Finally, if we compare the measured data with the simulation results of the local LTI
models, we observe a VAF equal to zero for the first four operating points and a slightly
larger value for the last operating point. When looking at the measured response, see Figure
5-2, it shows little to no damping and a behavior which seems to correspond to limit cycle
oscillations, which is a non-linear phenomenon. The simulated response of the LTI model on
the other hand does show damping. Note that the oscillations will not completely be damped,
because the trailing edge flap is exciting the system.

Therefore, it appears that even when the wind speed is kept constant, other phenomenon
make for a clearly non-linear system of which its behavior cannot be captured by an LTI
model. However, it is still interesting to see whether the local and glocal methods are able to
fit an LPV model to these local LTI models and see how these models relate to a global LPV
model, which does not use the LTI models. Therefore, the next section will try to answer
these questions.
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Figure 5-2: Comparison of the measured response for V = 5 m/s with the simulated response
of the corresponding local LTI model.

5-3 LPV identification

Now that the previous sections processed the data and identified a set of local LTI models,
this section will concern the process of obtaining an LPV model using the global, local, and
glocal LPV identification algorithms which were treated in Chapter 3.

First, the individual algorithms are treated to show which potential advantages and short-
comings have been encountered when used with experimental data and thereafter the section
will be concluded with a comparison of the three algorithms.

5-3-1 Global: PBSIDopt

Like with the LTI PBSIDopt algorithm, the global LPV PBSIDopt algorithm (Van Wingerden
and Verhaegen, 2009) requires the user to set the future and past window fg and pg. Section
5-2 showed that f = 5 was selected for the LTI case and this is also adopted for the LPV
case, such that fg = 5.

When looking at the past window pg it is not possible to use p = 30 like in the LTI case,
because for values pg > 8 the computer already runs out of memory. These numerical problems
which quickly occur when pg is increased are also referred to as the ‘curse of dimensionality’,
see Section 3-2-1. This problem is illustrated in Figure 5-3, where the required time to run
the algorithm was measured for several past window values pg and an exponential function
was fitted to the data.

The ‘curse of dimensionality’ thus quickly appeared and is already a serious drawback
when only a 4th-order LPV is identified.

Another aspect of a global method is the dependence on the scheduling signal which is used;
in this case the wind speed signal. To illustrate this issue, Figure 5-4 shows the pole locations
of the global LPV model evaluated at different wind speeds, where for Figure 5-4a and 5-4b
two data sets with a different wind speed signal V ∈ [0, 10] m/s were used.

Clearly, the pole locations differ between the two data sets and when we compare it with
the LTI model pole locations, see Figure 5-1b, we see that it closely corresponds to Figure
5-4a. Therefore, it appears that something went wrong for the second data set, which is
confirmed by looking at the wind speed signal, which spends much less time at lower wind
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Figure 5-3: Exponential increase in computational time for increasing past window pg.
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Figure 5-4: The way in which the wind speed signal varies has a significant effect on the identified
LPV model.

speed values, compared to the first data set. This explains why the poles in Figure 5-4 mainly
differ in location for the lower wind speed values and why Figure 5-4b even shows an unstable
pole for V = 0 m/s.

Now that the two main drawbacks have been discussed, which was the ‘curse of dimen-
sionality’ and the influence of the scheduling sequence on the results, it remains to compare
the obtained global LPV model pole locations to the only available benchmark, the local LTI
models. This comparison is shown in Figure 5-5, where the pole locations, frequencies, and
damping are plotted for a wind speed V ∈ {0, 2.5, 5, 7.5, 10} m/s. Note that the LTI model
poles are indicated with dots and the poles of the global LPV model are indicated using circles.

Clearly, the global LPV model fits the local LTI models very well and both models show
a complex pole at a frequency of 7 Hz and 14 Hz, which corresponds to the measurements
which were discussed in Section 4-3.
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Figure 5-5: Comparison of the identified global LPV model poles, shown as circles, with the
local LTI model poles, shown as dots.

5-3-2 Local: SMILE

The next LPV identification algorithm to discuss is the local SMILE algorithm (De Caigny
et al., 2014), which interpolates the local LTI models to obtain an LPV model. This method
requires no specific parameters to be set, apart from the model dimensions which are also
used by the other algorithms.

Regarding the encountered problems, the only problem which sometimes occurs is an LPV
model which is not stable at all local points. However, this is often the result of fitting the
measured dynamics into a too restrictive model description, which is unable to successfully
describe the system. Furthermore, this is a problem for most LPV identification methods,
unless a certain constraint is introduced which enforces stability for a specified scheduling
sequence. This is also illustrated in Figure 5-4b, where for low wind speeds an unstable pole
was identified by the global LPV identification algorithm.

A comparison of the local LPV model with the LTI models for constant wind speed values
is shown in Figure 5-6.

The pole locations shown in Figure 5-6a correspond to the LTI models very well and
are also similar to the results shown in Figure 5-5a for the global LPV model. Only slight
differences are observed for the damping, see Figure 5-6c, while the frequencies fit almost
perfectly, see Figure 5-6b.
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Figure 5-6: Comparison of the identified local LPV model poles, shown as circles, with the local
LTI model poles, shown as dots.

5-3-3 Glocal: H2 norm

Now that the global and local methods have been treated, it remains to discuss the glocal H2-
norm based H2NL method by Petersson (2013). Regarding this method, Section 3-2-3 already
showed that, due to the non-convexity of the optimization problem, a good (stable) initial
LPV model should be supplied, for which the LPV model obtained using the local SMILE
method is used. However, the previous section showed that when the model parameterization
is too restrictive, the obtained LPV model can be unstable at some of the local operating
points.

The requirement of a stable LPV model to initialize the optimization problem which is
used in a glocal method could thus be a drawback, given that this stable model should also be
relatively close to the optimal model to prevent the optimization to get stuck in local minima.

This brings us directly to the main drawback of this glocal method, which is the non-convex
optimization and the resulting problem of getting stuck in local minima.

In order to validate the glocal LPV model, the pole locations are compared to the LTI
model pole locations in Figure 5-7.

Figure 5-7a shows that the the pole locations fit the local LTI models very well, as also
shown by the pole frequency and damping in Figure 5-7b and 5-7c, respectively. When
comparing the results with the local LPV model, see Figure 5-6, slight differences are visible,
but overall the results are very similar. This can be explained by the fact that the local LPV
model was used as an initial point, which already fitted the local LTI models very well.
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Figure 5-7: Comparison of the identified glocal LPV model poles, shown as circles, with the
local LTI model poles, shown as dots.

5-3-4 Comparison

Now that the previous sections have discussed the individual LPV identification algorithms
and compared them to the LTI models, this section will compare the different algorithms and
try to relate the results to the theoretical results discussed in Chapter 3. Therefore, we will
look at the same two aspects which were treated in Chapter 3, namely pole prediction and
model fit, which is evaluated using the VAF.

Pole prediction

The discussion on the individual algorithms showed that the pole locations are fitted very well
by all algorithms, which shows the ability of the LPV identification methods to successfully
capture the time-varying behavior of the system. However, predicting poles outside the
operating regime of the wind speed V ∈ [0, 10] m/s was not considered.

The maximum pole amplitude, which was also used in Chapter 3, is shown in Figure 5-8
for V ∈ [0, 15] m/s.

Clearly, the three methods predict very different pole locations, as the glocal H2NL method
shows unstable poles for V > 10 m/s, while the global and local method do not predict
instability for this wind speed range.

Unfortunately, no measurement data is available to validate these predictions. Further-
more, it should be noted that because the behavior of the experimental setup was shown to
not correspond to aeroelastic flutter, see Chapter 4, no conclusions can be drawn on the topic
of flutter prediction based on the predictions shown in Figure 5-8.
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Figure 5-8: Pole prediction differences among LPV identification algorithms.

Model fit

Another aspect of the identified LPV models which was evaluated in Chapter 3 was the model
fit to the measured data. In other words, where the pole fit looks at the identified dynamical
models, the model fit can also be evaluated by comparing the output signals obtained in
simulation or measurement in the time domain, as was shown in Figure 3-3.

In the case of Chapter 3, the reference signal was obtained by simulation of the true
LPV model, while in this case the reference signal is obtained from measurements on the
experimental setup.

When we compute the VAF for the simulated output of the global, local, and glocal LPV
model, it was found that it is approximately equal to zero, which indicates that the fit is very
bad. To further investigate this low fit, the time domain signals of the measured response
and the simulated response for the global LPV model are shown in Figure 5-9.
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Figure 5-9: Comparison of the global LPV simulation output with the measured response.

At the start, the signals coincide very well, but the simulated output quickly decreases in
amplitude and shows a slightly different oscillation frequency resulting in a very bad fit very
quickly. Note that the response does not dampen out completely as the system is excited by
the trailing edge flap. It thus appears that the physical system is too complex to be described
by the four state LPV model parameterization which is used in this chapter. This corresponds
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to the model fit of the local LTI models, as described in Section 5-2, which showed a similar
response and bad fit.

It thus appears that the significant problems in the setup, which were detailed in the
previous chapter, result in non-linear dynamics which are not a function of the wind speed
and can therefore not be adequately modeled by the selected LPV model structure.

5-4 Synopsis
Although the experimental setup was shown to be unsuitable to model the dynamics of flutter,
it did show time-varying dynamics and the process of identifying an LPV model has been
discussed in this chapter.

This process of identification starts with data processing and it was shown that in order to
successfully capture the relevant dynamics the data should be sampled at the right frequency
and a band pass filter can be used to specify a frequency band of interest.

Once the data has successfully been re-sampled and filtered, LTI identification should be
applied to obtain a set of local models which describe the system for a fixed wind speed value.
These models were identified using the PBSIDopt LTI algorithm (Chiuso, 2007) for which the
selection of the future and past window was shown to require special attention, as it has a
significant influence on the identified LTI models.

Next, the LPV identification algorithms were applied on the prepared data and LTI models,
after which several important drawbacks were highlighted.

For the PBSIDopt global LPV identification algorithm the two main drawbacks are the
computational burden, or ‘curse of dimensionality’, and the dependence on the scheduling
sequence content. The ‘curse of dimensionality’ turned out to become a problem very quickly
due to the exponential increase in computational time as a function of the past window.

On the other hand, the SMILE local LPV identification algorithm shows no significant
practical problems, given that the model parameterization is not too restrictive to fit the
dynamics present in the data.

Finally, the H2NL glocal LPV identification algorithm its main drawback is the non-
convexity of the optimization problem, which often results in sub-optimal results, due to
the optimization algorithm getting stuck in local minima. This is partly circumvented by
supplying a good initial LPV model, given that this model is stable for each local operating
point.

Overall, all three identified LPV models show a very good fit within the operating regime,
that is the range of fixed wind speeds for which the LTI models have been identified. Regarding
the ability to predict the flutter speed by looking at the poles outside this range of wind
speeds, no conclusions can be drawn, given that the practical setup does not represent the
phenomenon of flutter. Furthermore, due to non-linearities in the setup the time-domain
signals could not be successfully compared between measurement and simulation.

M. Visser Master of Science Thesis



Chapter 6

Conclusions and recommendations

Flutter is an aeroelastic phenomenon resulting in catastrophic vibrations and failure of struc-
tures such as aircraft and bridges (Mukhopadhyay, 2003). Another recent example of such
structures are wind turbines, which will become more prone to flutter in the near future,
due to the increasing rotor diameters (Griffith and Ashwill, 2011; Resor et al., 2012; Owens
et al., 2013). Therefore, the topic of flutter prediction is still relevant today and the ability
to predict the flutter speed is of the utmost importance.

When predicting the behavior of a dynamic system, often LTI models are used. However,
flutter is a time-varying phenomenon as it depends on the wind speed. Recursive methods
use LTI methods to capture LTV dynamics by forgetting older data, this forgetting however
takes time and introduces a delay in the prediction. Therefore, the use of batch LPV system
identification was proposed to predict the flutter speed using pre-flutter data.

Before diving into the identification topic, the phenomenon of flutter was explained in
detail and an LPV flutter model was presented, which will be used for the flutter prediction
simulations.

First, LPV identification methods were divided into global, local, and glocal methods (Lovera
et al., 2013). The global methods identify the LPV model from a single experiment, during
which the scheduling sequence is varied. The local and glocal methods on the other hand
use multiple experiments where the scheduling sequence is kept constant and afterwards
interpolate these local results to obtain an LPV model.

From these different groups of methods one global, one local, and two glocal methods were
selected from literature to validate the concept of flutter prediction.

However, it was observed that the H∞-norm based glocal method (Vizer et al., 2013) is
currently only implemented in continuous-time, while the other methods all work in discrete-
time. Further investigation showed that this made for an unfair comparison, because an error
is introduced by transforming the local discrete-time LTI models into continuous-time for
the H∞-norm based glocal method. Therefore, this method was not further included in the
comparison for flutter prediction.

The remaining three methods were used to identify an LPV flutter model from pre-flutter
data for a SNR equal to 5 and 40. Using these LPV models the flutter speed was predicted
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and it was shown that it could be predicted to within 10 % even in the presence of signif-
icant noise (SNR = 5), which showed the potential of LPV model identification to predict
the flutter speed. For increasing noise the pole prediction deteriorates quickly at low and
high wind speeds, while the point of instability is still predicted within reasonable bounds.
When comparing the results between the different methods it shows that the global PBSIDopt
algorithm overall shows the smallest prediction error.

Furthermore, a trade-off between the bias and variance was observed for an increasing
noise level, where for significant noise (SNR = 5) the local method outperforms the global
method. Moreover, the glocal H2-based method is able to further improve both the bias
and variance of the local estimate. This both shows the capability of the glocal method to
outperform the local method, but also shows the requirement of a good initial LPV model for
the non-convex optimization problem as also pointed out by Petersson (2013).

These different aspects of the four LPV identification algorithms used in the comparison
were also summarized in Table 3-4.

In order to validate the results obtained in simulation on an experimental setup, a setup
was provided to perform flutter experiments. However, as it was the first time that this setup
would be used, the behavior of the setup should be described in order to check whether it
corresponds to aeroelastic flutter.

The setup consists of a morphing airfoil and an electronically controlled elastic suspension.
While the morphing airfoil was shown to function properly, albeit the deformations of the
trailing edge were relatively small, significant problems were encountered in the suspension
system.

First it was shown that the suspension controller excites the system in such a way that
it is constantly vibrating, even when it is not externally excited. The origin of the problem
was found to lie in the coarse signal resolution of the servo motors in combination with a
unfavorable friction around the equilibrium point of the motors. Furthermore, due to the
large gear reduction of the servos it requires a significant torque on the output shaft to
move the motor, which is problematic, because the lift force acting on the airfoil should first
overcome this friction before the suspension can counteract this movement like a conventional
spring would.

Another source of friction was showed to be the vertical rail guides, which are designed
to work under large loads and for a small load, like the case in this setup, show a relatively
large friction.

After the individual components of the setup were discussed, the response of the combined
system was measured for different constant wind speed values, which showed that the system
vibrates in a single mode and higher frequency peaks in the spectrum correspond to so-called
superharmonics, which occur in non-linear systems (Rao and Fah, 2011). Furthermore, the
frequency of the dominant mode, along with the superharmonics, vary as a function of the
wind speed. Therefore, LPV model identification can still be used to capture this time-varying
behavior.

Before the actual LPV identification was applied on the experimental data, the need for
re-sampling and filtering was shown to select the frequency band of interest for the model.
Furthermore, the importance of selecting the right past and future window parameters in
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the LTI PBSIDopt algorithm was stressed, as it directly changes the pole locations of the
identified models.

Unfortunately, a comparison between the measured data and the simulated response of the
identified LTI models showed a very bad fit, which was ascribed to the non-linear behavior of
the setup, which could not be captured by the LTI models. Nevertheless, it is still interesting
to see whether the local and glocal methods are able to fit an LPV model to these local LTI
models and see how these models relate to a global LPV model, which does not use the LTI
models.

Regarding the use of the LPV identification methods on experimental data several of the
main drawbacks of these methods were highlighted.

First, the global method suffers from the ‘curse of dimensionality’, which in practice puts
an upper bound on the past window because the algorithm runs out of memory. In this
thesis an upper bound of p = 8 was found, which shows that the PBSIDopt global method
(Van Wingerden and Verhaegen, 2009) is only suitable to identify low order LPV models.
Furthermore, the variation of the scheduling sequence was shown to influence the results,
which shows that special attention should be paid to the scheduling signal such that the
entire operating regime is sufficiently visited during the experiment.

The local SMILE method (De Caigny et al., 2014) on the other hand showed little practical
problems, as long as the LPV model parameterization is not too restrictive to describe the
measured dynamics.

Finally, the glocal H2NL method (Petersson, 2013) requires a stable initial LPV model
which is relatively close to the optimal model, such that the optimization does not get stuck
in local minima. This greatly limits the potential of this method to be used stand-alone, but
this can be solved by using it in combination with for example the local SMILE method to
provide a suitable initial model.

Regarding the validation of the concept of flutter prediction by using experimental data,
no conclusions can be drawn at this point, because the behavior of the experimental setup
was shown to not correspond to flutter.

6-1 Recommendations for future research
Regarding the LPV identification algorithms and their use for flutter prediction several rec-
ommendations are made:

• The H∞-norm based glocal method showed good results in continuous-time, which
makes it interesting to adapt this method for use with discrete-time systems.

• While the global and local methods presented in this chapter work well with unstable
systems, because the PBSIDopt identification can take place in closed-loop with a sta-
bilizing controller, this is currently not the case for the glocal methods, because the
H2 and H∞ norm are not defined for unstable systems. Note that while the norms
are defined on the error system El = ‖Hl − H(θl)‖, for an unstable local LTI model
Hl, the error system is also unstable, because the summation of two systems combines
the individual state matrices A in a block diagonal matrix of which the eigenvalues are
simply a combination of the eigenvalues of the individual state matrices A. It might

Master of Science Thesis M. Visser



54 Conclusions and recommendations

therefore be interesting to include the stabilizing controller in the optimization problem
to allow the glocal methods to identify unstable systems in closed-loop.

• Because the experimental setup was shown to be unsuitable to validate the flutter pre-
dictions, new experiments are required to validate the conclusions on flutter prediction
in simulation in practice.

Furthermore, regarding the experimental setup the following recommendations are made:

• The morphing airfoil could use a thinner stainless steel plate to which the piezoelectric
patches are bonded, in order to obtain larger deformations and larger changes in the
lift force.

• Furthermore, the elastic axis of the airfoil is currently moved far to the trailing edge
using a thin steel component, which introduces significant airfoil bending. By moving
the elastic axis closer to the leading edge, this steel component is shortened and the
influence of airfoil bending is attenuated.

• The suspension setup could be improved by using smaller motors with a finer signal
resolution. Furthermore, some counterweights could be added to keep the current to
the second motor away from I2 = 0 and circumvent the friction occurring at this point.

• Friction in the servos could perhaps be compensated for using control when additional
sensors are included to measure the actual torque at the elastic axis, instead of using
the current in the motors to estimate the torque. Alternatively, the friction could be
removed or attenuated by changing the servos for a different type of actuator which
exhibits less friction.

• As the vertical rail guides show significant friction they should be replaced or altered
to reduce the damping which is introduced in the vertical movement.
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Glossary

List of Acronyms
3mE Mechanical, Maritime and Materials Engineering.

DCSC Delft Center for Systems and Control.

LFR Linear Fractional Representation.

LLS Linear Least Squares.

LPV Linear Parameter-Varying.

LTI Linear Time-Invariant.

LTV Linear Time-Varying.

MFC Macro Fiber Composite.

MIMO Multiple Input, Multiple Output.

RMS Root Mean Square.

SMILE State-space Model Interpolation of Local Estimates.

SNR Signal to Noise Ratio.

VAF Variance Accounted For.
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