
 

 

 

 

 

 

 

 

 

 

  

MSc Thesis 

An Explainable Network-wide Metro 

Passenger Delay Prediction Model 
Yuxing Cheng 

 
 



 

 

 

An Explainable Network-wide Metro 

Passenger Delay Prediction Model 

 

By 

 

Yuxing Cheng 

in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

in Civil Engineering 

 

at the Delft University of Technology, 

to be defended publicly on Monday, August 28, 2023. 

 

 

 

Thesis committee: Prof. Dr. ir. Oded Cats (Committee Chair) 

 Dr. ir. Panchamy Krishnakumari (Daily Supervisor) 

 Dr. Guopeng Li 

Department: Transport and planning 

Student number: 5612233 

 

 

 

 



Preface 
 

This thesis stands as the culmination of my journey as a student in the Transport & Planning 

master's program at TU Delft. My passion for transportation studies has driven my continuous 

learning over the past six years, leading me to delve into my master's dissertation on this subject. 

Reflecting on my journey within the master's program, I'm grateful to realize that the last two years 

have marked the most significant progress in my academic career so far. Within these pages, I've 

compiled most of my recent research accomplishments, aimed at investigating the potential of 

explainable AI in enhancing insights for public transport performance analysis. 

 

Please let me express my deep gratitude to my committee members. Firstly, I would like to 

appreciate my committee chair, Prof. Oded Cats, for offering me much guidance on this dissertation. 

Your dedication as a front-line researcher in public transportation has left a profound impression 

on me. Your expertise and research insights have inspired me to channel my interest into 

meaningful outcomes. Your assistance also greatly supported my PhD application, and our fruitful 

collaboration remains a cherished memory. Then, I express my sincere thanks to Dr. Guopeng Li for 

his constructive feedback and insightful perspectives on my work. Engagements with you have 

consistently aided me in pinpointing areas for improvement and in focusing my efforts on 

enhancing my present and future endeavors. You are always the model for my journey to follow as 

a PhD student and future researcher. Next, I would express my heartfelt gratitude to my daily 

supervisor Dr. Panchamy Krishnakumari. I greatly enjoy working together with you. Your 

mentorship always helps me overcome obstacles and challenges I met. As the mentor I've 

collaborated with most closely in the past year, your unwavering support during my first conference 

paper and dissertation has played a crucial role. These modest achievements have laid the 

foundation for both my forthcoming research pursuits and my PhD position application. Without 

your dedicated guidance, my progress over the past year, which is so significant to me in my just-

started research journey, would not have been possible. In closing, I extend my appreciation to my 

friends and family for their continued encouragement and support, and for always believing in me. 

 

The insights gleaned from the papers are always shallow only if exploring them by hand. Through 

this dissertation, I've come to realize that the path ahead might be tortuous, yet the prospect is 

bright. There will be a long way to go for an incoming PhD student to an independent researcher. I 

am fortunate to have invested two transformative years in the Department of Transport and 

Planning at TU Delft, conducting research on my dedicated topic under the guidance of my 

committee. With this culmination, I hold my belief that a promising tomorrow awaits. 

 

Yuxing Cheng 

Delft, August 2023 

   



Executive Summary 
 

 

Background and research objectives 

 

In response to the need for reliable service planning, efficient schedule adjustments, and more 

effective operational strategies, recent years have witnessed a notable emphasis on offering 

operators and passengers more accurate delay prediction. To achieve improved accuracy in 

predicting transit delays and ensure consistent service reliability, various prediction methods have 

been developed, prominently among them being data-driven approaches such as Deep Neural 

Networks (DNNs). These data-driven models have showcased superior predictive precision 

compared to conventional methods. However, the lack of explainability in these models poses 

challenges for transit providers, hindering their ability to comprehend predictions and make 

informed decisions. 

 

Understanding prediction mechanisms is vital to identify delay causes and take proactive measures. 

By analyzing delay-contributing factors, providers can optimize operations and enhance service 

reliability. The inscrutability of DNNs and similar models undermines trust, impacting decision-

making support. While event-based models offer easier-to-interpret delay predictions, they fall 

short in capturing intricate spatial-temporal interactions. 

 

Explainable AI (XAI) has arisen as a solution to this issue. XAI aims to clarify complex models' 

predictions by providing insights into their decision processes, potentially aided by domain 

expertise. Previous studies have sought to uncover reasons for metro delays, encompassing 

exogenous (external events) and endogenous (internal factors) causes. Yet, these studies rely on 

diverse input datasets, limiting universal insights into delay prediction. 

 

This study focuses on achieving comprehensive short-term metro passenger delay prediction using 

a deep graph neural network, which only requires passenger origin-destination data, metro 

schedule, and network topologic information as input. It centers on the Washington DC metro 

network, aiming to explain prediction outcomes, understand spatial-temporal delay patterns, and 

assess the dynamic correlations of delay occurrence. The main research question delves into 

extracting spatial-temporal explanations from data-driven black-box models based on historical 

passenger travel data. To answer this question, this research subdivides into investigating spatial-

temporal explanatory variables for network passenger delay, gauging the impact of historical delay 

data's spatial-temporal features on predictions, and scrutinizing spatial-temporal correlations 

across different metro network segments throughout the day. 

 

Research approach 

 

The research approach involves three steps: Data processing, Delay prediction, and Prediction 

explanation. Firstly, the Washington DC metro network's topological information and passenger 



data drive the estimation of delay occurrence and its mapping onto the network structure. This 

informs the construction of spatial-temporal graphs of delay occurrences. A Spatial-temporal 

Graph Neural Network (STGCN) is then utilized to provide delay prediction. After that, post-hoc 

analysis on the black box STGCN model provides explanatory variables of the model, which reveal 

the significance of spatial-temporal features in historical delay data. Finally, based on the 

explanatory variables, we applied pattern recognition techniques and purposed a series of data 

processing to explore the dynamic spatial-temporal correlation of delay across various locations. 

 

The process of transferring the explanatory variables to the explanation of delay occurrence 

dependencies is the essence of the purposed approach, which is depicted in Figure 1. First, the 

black box STGCN model provides the prediction result of each node as time series data. Each time 

step has a corresponding predicted delay value of that node. Secondly, we select the prediction 

outcome of one node at a specific time step as the target. The post-hoc analysis is implemented to 

reflect how the input time-series delay data of each node in the graph contribute to the target 

prediction result we are interested in. Thus, each node has a time-series importance score that 

reflects each node’s contribution dynamics on time scope. These contribution scores reflect the 

node-to-node dependency at a specific time step. Finally, we pile the importance score data of all 

the nodes to form the explanatory variable matrix of the target prediction result, which is the base 

for spatial-temporal dependencies analysis. 

 

Figure 1 Mechanism of GNN Explainer explains predict the result of a specific node 𝑽𝒊  at a 

particular timestep t 

 

Case study 

 

The dataset employed for the case study was sourced from WMATA and provides a comprehensive 

perspective of the metro network. It encompasses rail trip data, detailing journeys between origin 

and destination stations as well as intermediate movements. This dataset spans 277 days, 

commencing from August 19, 2017, to May 22, 2018. Additionally, passenger journey information 

from smart card records was integrated, revealing passenger origins and destinations. By 

combining these details with rail movements, individual passenger routes were inferred. To 

facilitate analysis, the dataset underwent pre-processing steps previously defined, transforming 

disaggregated raw data into a network-wide perspective. 

 

Upon the completion of data preprocessing, a refined dataset spanning 260 days is derived. This 



dataset comprises two distinct facets: the topological details of 6 lines, 91 stations, 184 links, and 

9 transfer stations, coupled with the estimated average delay experienced by passengers at various 

travel stages, encompassing waiting delay, track delay, transfer delay, and their linear sum. This 

data is meticulously charted onto a link graph that mirrors the directional pathways within the 

metro network.  

 

The explanatory variables derived from the purposed post-hoc explanation approach reveal how 

the model makes specific predictions based on input time-series data. We further explore how 

these variables could uncover the spatial-temporal correlation of delay occurrence among different 

segments in the metro network. 

 

Conclusion 

 

By dissecting the explanatory variables extracted from the delay prediction of a specific day (May 

18th, 2018), discernible patterns emerged in terms of the spatial-temporal significance of features 

and the interconnections between delay occurrences across different sections of the metro 

network. These revelations unveiled three notable temporal significance patterns: "Recent 

Dominance," "Partial Long Lasting," and "Temporal Global Relevant”. Similarly, the analysis 

identified three distinctive spatial significance patterns named "Key Nodes Dominate," "Spatial 

Imbalance," and "Spatial Global Relevant”. These insights showcase the varying contributions and 

impacts of different segments within the network. Notably, the network segments with significant 

contributions to the delay prediction are usually located near the transfer station and the terminal 

station. An exploration of the temporal distribution of these patterns highlights their close 

correlation with peak and non-peak hours, offering valuable insights into how these patterns are 

intertwined with the network's operational dynamics. 

 

Furthermore, spatial-temporal correlations among delay occurrence are revealed by the following 

findings: 

• Spatial-temporal correlation matrix analysis highlights imbalances in delay influence 

among nodes. 

• Spatial-temporal correlations appear fluctuating strengths, with long-lasting patterns 

related to key nodes and peak periods. 

• Different clusters exhibit significant interdependencies during peak hours, revealing tidal 

patterns. 

• Nodes near terminal and transfer stations demonstrate stronger correlations and 

interdependencies. 

 

Furthermore, our findings align with prior research and demonstrate the presence of spatial-

temporal correlation patterns in delay occurrence, consistent with similar phenomena observed in 

traffic networks. The dynamic correlation underscores the significance of core node clusters, 

influencing neighboring nodes and contributing to delay propagation throughout the network. 

 

The insights derived from this study hold considerable potential to assist metro operators to better 

understand the intricate dynamics of delay occurrences in the metro network. Operators can gain 



a comprehensive view of how delays propagate and impact various parts of the system. This 

understanding enables more informed decision-making, allowing operators to pinpoint critical 

nodes that exert significant influence on delay propagation. With this knowledge, operators can 

proactively implement measures to manage congestion, isolate bottleneck nodes, and optimize 

schedules during peak periods. Moreover, the identified patterns provide valuable guidance for 

developing targeted strategies to mitigate delays and enhance overall network reliability. 

Incorporating these insights into operational planning and decision-making processes can lead to 

more efficient and effective management of the metro system, ultimately improving the passenger 

experience and system performance. 

 

This study's advantage lies in its ability to capture complex delay dynamics using basic passenger 

travel and schedule data through a data-driven model. However, the model's simplicity may limit 

its capacity to comprehensively capture delay occurrences, especially due to imbalanced data 

distributions. Future research could address this limitation by improving the model's performance 

with more balanced datasets. 

 

In the future, comparing these phenomena across different metro networks and investigating the 

relationship between node cluster correlations and cluster size could provide valuable insights. 

Incorporating additional data, such as passenger counts, into the model might enhance its accuracy 

as well. These insights hold the potential for advancing delay recovery and scheduling management 

strategies. 
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1. Introduction 
1.1 Background 

In recent years, the demand for enhanced service reliability from transit users has grown 

substantially, significantly influencing transit performance, ridership numbers, and overall user 

satisfaction (Bešinović, 2020.; Krishnakumari et al., 2020). The comprehension of delay 

occurrences within the transport system provides valuable insights that can facilitate improved 

service planning, efficient schedule adjustments, and more effective operational strategies. When 

future delays are anticipated, the proactive management of delays and optimized resource 

allocation becomes achievable. To ensure operational accuracy and service reliability, numerous 

prediction approaches have emerged in the realm of public transport delay prediction. Data-driven 

approaches, such as Deep Neural Networks (DNNs), have been shown to achieve higher prediction 

accuracy than traditional methods (Spanninger et al., 2022; Tang et al., 2022; Tiong et al., 2023). 

However, the lack of explainability in these models is a significant challenge for transit providers. 

How the model arrived at its predictions and makes informed decisions based on input information 

is covered. This would limit their ability to understand the underlying dynamic of delay occurrence 

and propagation, and make well-informed decisions such as rescheduling and delay noticing based 

on this crucial information.  

 

Understanding how the model makes its predictions is crucial for identifying the dynamics of delay 

occurrence and taking proactive measures to mitigate them. By analyzing the patterns of factors 

that contribute to delays, transit providers can make informed decisions about how to optimize 

their operations, allocate resources, and improve service reliability. Moreover, the lack of 

explainability in data-driven forecasting models, such as DNNs, is a significant concern for transit 

providers, as it hinders their ability to explain the model's predictions to stakeholders. This 

limitation can erode trust in the model and make it less reliable for supporting decision-making. 

Furthermore, although traditional approaches like event-based modeling that explicitly capture 

dependencies of train events (departure, arrival, and pass-through) can provide easier-to-interpret 

predictions for train delays, data-driven approaches can capture complex nonlinear spatial-

temporal variable interactions that are difficult to achieve with event-based approaches 

(Spanninger et al., 2022; Heglund et al., 2020). Therefore, it is essential to understand how these 

black box models make their predictions and gain insights into the factors contributing to them.  

 

In recent years, the concept of Explainable AI (XAI) has emerged as a potential solution to this 

problem. XAI aims to make complex machine learning models more interpretable and transparent 

by providing insights into how they arrive at their predictions (Adadi and Berrada, 2018; Arrieta et 

al., 2019). Thus, XAI companies with domain knowledge and expertise in the dynamics of the 

railway system have the potential to interpret the black-box model’s prediction results with 

explanatory variables. 

 

Previous studies have attempted to identify various exogenous and endogenous causes of metro 



2 
 

delay occurrences based on black-box prediction results. The factors contributing to delays can 

vary depending on the data attributes analyzed. Exogenous factors refer to external events or 

circumstances that may impact the metro system's performance, such as weather conditions, 

accidents, or public events. Endogenous factors, on the other hand, are internal factors within the 

metro system, such as the frequency and reliability of trains, the capacity of stations, the cascading 

effect of delays, and the maintenance schedule (Cats and Hijner, 2021; Louie et al., 2017; Yap and 

Cats, 2021). However, existing research on influential factors of delay occurrence mostly relies on 

multiple data sources with various data attributes involved, resulting in limited and case-specific 

knowledge gained from delay prediction (Spanninger et al., 2022; Tiong et al., 2023; Zhang et al., 

2023). This limitation highlights the need for research focused on extracting delay prediction 

explanations based on attributes existing in metro networks with only topological information, 

scheduling data and elementary passenger travel origin-destination data. By understanding how 

the model makes specific delay predictions, we can gain knowledge of delay occurrence 

characteristics, spatial-temporal interrelationships between delays occurring on different 

segments of the entire network, and the spatial-temporal importance of specific historical data 

that contributes to the delay prediction result. This knowledge can enhance the reliance on 

operators' decision-making to increase the overall service quality of the metro system in the long 

term. 

 

The objective of this study is to provide a comprehensive understanding of the short-term metro 

passenger delay prediction of deep graph neural network, based on the topological information of 

metro network and passenger travel data. The study will focus on conducting a detailed case study 

of the Washington DC metro network, to explain the prediction results and identify the spatial-

temporal characteristics and importance of delay occurrence prediction in this specific metro 

network. 

 

1.2 Objective and research questions 

The overall objective of this study is to explore the spatial-temporal correlation of short-term 

networkwide metro passenger delay prediction by an explainable AI approach. To achieve this 

objective, the main research question is needed to be solved: 

• What insights on spatial-temporal correlation could be acquired from the data-driven 

black-box prediction model for network passenger delay predictions based on historical 

passenger travel data?   

 

To answer the main research question, the follow sub-questions should be answered:   

• What are the spatial-temporal explanatory variables of network passenger delay 

occurrence prediction?  

 

• How does the spatial-temporal feature of historical delay contribute to the model 

prediction? 

 

• How does the spatial-temporal correlation of different metro network segments vary 

throughout the day? 
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1.3 Approach 

The overview of the research approach is as Figure 1 shown, which is divided into three steps: Data 

processing, Delay prediction, and Prediction explanation. In this research, the case study will be 

based on the metro network in Washington DC, USA, and its data will be described in section 4.1. 

In the first step, the input dataset includes the metro network's topological information and smart 

card data of metro passengers, which are used to estimate the delay occurrence and map it on the 

network structure. Based on the estimated delay value, spatial-temporal graphs of metro network 

delay occurrence are constructed. In the second step, a specific GNN model called STGCN (Spatial-

temporal graph neural network) will be used to make delay explainable predictions of three 

categories (waiting time delay, transfer time delay, and track delay) based on a post-hoc 

explanation approach. This will extract the spatial-temporal feature importance as explanatory 

variables of historical delay data. Finally, in the third step, we explore the pattern of spatial-

temporal feature importance of historical delay with pattern recognition technique, and derive the 

dynamic of spatial-temporal correlations of delay occurring at different locations. These results 

provide insights into the internal correlation characteristic of delay in the metro network. 

 

Figure 1 Overview of research methodology  
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1.4 Thesis structure 

The thesis is organized as follows: In Section 2, an extensive review of relevant literature is 

presented to establish the research context. Section 3 outlines the methodology employed, 

encompassing the mapping of passenger delay onto network links, passenger delay prediction 

using a black-box model, and post-hoc explanation extraction methods. Section 5 presents the 

results of the model prediction explanation analyzed from different angles, including the 

identification of spatial-temporal feature importance of historical delay data and the exploratory 

analysis of network topological structure. Finally, in Section 6, the study's findings and results are 

discussed, including their alignment with prior research, the study's contributions and limitations, 

and recommendations for future research directions. 
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2. Literature review 
To explain the black box model’s output of metro delay prediction, it is essential to review the 

existing research on how Deep Neural Networks (DNN) achieve accurate prediction, what 

approaches are available to explain their output, and what potential explanations for delay 

correlations can be expected. 

 

The scope of the literature review covers the research that proposes approaches that can be 

utilized for transport network-wide forecasting, including but not limited to the metro network. 

Despite the nuanced differences between metro and railway service in geographical scale of the 

system and service frequency, there is a great deal of similarity between these transportation 

systems. Both metro and railway systems rely on similar data sources, such as passenger counts, 

train schedules, and real-time tracking data, to make predictions about potential delays. Besides, 

the techniques used for delay prediction in both metro and railway systems are based on machine 

learning and statistical modeling approaches, such as artificial neural networks and decision trees 

(Spanninger et al., 2022; Tiong et al., 2023). These techniques can be applied to both 

transportation systems with little modification, as the underlying principles for prediction are the 

same. Therefore, the insights and methodologies from the literature on railway or similar transport 

network delay prediction (road traffic network) can be applied to metro delay prediction.  

 

2.1 Data-driven approach for spatiotemporal traffic delay 

forecasting. 

Tiong et al. summarize previous studies on train delay modeling into two major categories: event-

driven approach and data-driven approach. It is argued that the data-driven method is anticipated 

to deliver state-of-the-art results in terms of prediction accuracy, as compared to the event-driven 

approach. The two most widely used data-driven methods for train delay prediction are decision 

trees and deep neural networks (DNN) (Tiong et al., 2023). The main advantages of DNNs are their 

ability to automatically learn complex, non-linear relationships between input features and the 

output variable, without relying on hand-engineered features. This makes DNNs more flexible to 

different datasets with varying attributes, as they can adapt to the data and capture intricate 

patterns that may not be easily identifiable using traditional machine learning models such as 

decision trees or supervised regression. In addition, DNNs have shown superior performance in 

the task of railway delay prediction (Spanninger et al., 2022). On the other hand, decision trees 

and other machine learning models are limited in their ability to handle complex relationships and 

may require careful selection and engineering of input features. 

 

Recent studies have shown that graph neural networks (GNN), specifically spatial-temporal graph 

convolutional networks (STGCN) first purposed by (Yu et al., 2018), are particularly effective for 

predicting delays in metro network systems. This is because metro networks can be modeled as 

spatial-temporal graphs, where the nodes represent stations, and the edges represent connections 
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between stations. The time series data of metro network delays can be represented as signals on 

the graph nodes. STGCN achieves the prediction by using graph convolutions, which can learn the 

spatial relationships between the nodes in a graph, and temporal convolutions, which can capture 

the time-dependent patterns in the data. This approach enables STGCN to model the complex 

interactions between different nodes in the graph over time, leading to more accurate and reliable 

node predictions(Dai et al., 2020; Yu et al., 2018). Such a model has been proved well-suit for traffic 

forecasting. For instance, (Heglund et al., 2020) applied STCGN on the British railway network and 

outperforms other statistical models which do not explicitly account for interactions on the rail 

network. Besides, a series of research purposed various novel network architectures based on 

STGCN, and update the performance of the traffic forecasting on baseline road traffic condition 

datasets including PEMS, METR-LA, and UVDS (Bui et al., 2021; Li and Zhu, 2021; Shao et al., 2022). 

Among these STGCN-based model improvements, some of the approaches may require multi-

source data with more advanced attributes beyond elementary attributes in the mentioned 

baseline datasets, including GPS trajectory data, weather data, and multimedia data (Li and Zhu, 

2021). 

 

However, some studies have pointed out that a major drawback of data-driven models is their 

black-box nature. These GNN models with stronger predictive capabilities usually provide 

unexplainable outcomes, leaving researchers and practitioners unsure of the actual reasoning 

behind a prediction(Arrieta et al., 2019; Tiong et al., 2023). Although some research may offer 

partial explainability for GNN-based prediction results, such explanations are often specific to a 

particular dataset and may not apply to other networks with different input data attributes (Zhang 

et al., 2023). To gain insights and explanations from these models, extra efforts are required to 

interpret and analyze their results, and additional domain knowledge is required to interpret and 

analyze the output generated by the model(Menno Yap and Oded Cats, 2021).  

 

2.2 Explainable Artificial intelligence (XAI) in public transport 

delay prediction 

The lack of explainability in deep learning models is a growing concern for developers and 

engineers across various fields. This is particularly true for black-box DL models that are utilized to 

make critical predictions. As a result, stakeholders in the field of artificial intelligence (AI) are calling 

for greater explainability in these models (Adadi and Berrada, 2018; Arrieta et al., 2019). This has 

led to the development of Explainable AI (XAI) to address this challenge. To tackle this challenge, 

Explainable AI (XAI) has been developed. The primary objective of XAI, though varying based on 

the intended audience, is to create data-driven techniques that yield more explainable models 

while maintaining high learning performance. This approach enables human users to understand, 

appropriately trust, and effectively manage the emerging generation of AI partners (Arrieta et al., 

2019).  

 

In the context of predicting public transport delays, such as those in metro or railway systems, the 

explainability of the delay prediction result is vital to the metro operator and passengers(Dalmau 

et al., 2021; Rößler et al., 2021). By answering how specific features of input data contribute to the 
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prediction result, XAI can guide the operator in designing and operating the public transport system 

more efficiently. Moreover, an explainable model can help verify whether the model behavior is as 

expected and establish a trusting relationship with the model user (metro operator). Therefore, 

developing explainable AI models for predicting public transport delays can be highly beneficial for 

both the operator and the passengers. 

 

In the field of XAI, two types of models are widely recognized in terms of explainability: self-

explainable models, which are inherently explainable by design (e.g., decision trees or linear 

models), and post-hoc explainability models, which require external XAI techniques for explanation 

(Adadi and Berrada, 2018; Arrieta et al., 2019). Self-explainable models have transparent structures 

that are easily understood and interpreted by humans. Conversely, post-hoc explanation methods 

do not modify the underlying model but instead scrutinize the model's behavior to identify the 

most crucial features that influence the predictions. Complex models like neural networks or deep 

learning models are frequently regarded as black boxes because their internal operations are not 

transparent to human understanding. As a result, post-hoc explanation methods are employed to 

decipher these models' reasoning behind their predictions. 

 

Among the post-hoc explanation methods, LIME (Local Interpretable Model-Agnostic Explanations) 

and SHAP (SHapley Additive exPlanations) are the two classic methods for feature relevance 

explanation that are widely implemented in the previous research (Fontoura et al., 2020; Lundberg 

et al., 2019). Both LIME and SHAP generate feature importance weights that help understand the 

impact of different input features on a model's predictions. LIME provides local, interpretable 

explanations for individual predictions, while SHAP computes the contribution of each feature to 

the prediction across the entire dataset. Both methods are model agnostic, meaning they can be 

used with any type of machine learning model. However, they do have certain limitations. Firstly, 

LIME and SHAP can only explain predictions in terms of the input dataset features that the model 

was trained on, which may not capture all the relevant factors in the real world that affect the 

outcome. In the context of explainable train/metro delay prediction, the explanations provided by 

these methods are restricted to the attributes included in the input dataset. Consequently, the key 

factors that lead to delay occurrences may differ depending on the particular input dataset being 

used for analysis (Rößler et al., 2021; Taleongpong et al., 2022, 2022; Tiong et al., 2023; Wales and 

Marinov, 2015). Additionally, it is challenging to include all the possible external or internal factors 

in the input dataset, which may have a potential impact on the outcome distribution characteristics. 

Those unexpected factors may not be captured by the input features and therefore may not be 

explainable by LIME and SHAP (Kumar et al., 2020).  

 

Previous studies on delay prediction have primarily focused on identifying the causes of delays 

from various aspects, such as weather or unexpected disruption events (Lee et al., 2016; Yap and 

Cats, 2021; Wei et al., 2015). However, such explanations for forecasting may not necessarily imply 

the causation of delay occurrence, which may not be sufficient to provide clear and direct insights 

for operators to prevent delay occurrence. To address this limitation, the focus should shift to the 

internal correlation and dependencies of delay distribution itself, rather than explore delay 

causation by analyzing exogenous variables. Some previous research has touched upon this idea. 

For instance, Zhang et al. proposed an end-to-end spatial-temporal deep learning model for 
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multistep prediction without relying on exogenous variables like weather or feature engineering, 

which could capture the temporal heterogeneity of traffic patterns. However, previous similar 

studies sparsely provide a further post-hoc explanation of the model that could reveal the relative 

spatial-temporal feature importance of different segments of the network or different traffic 

variables. 

 

2.3 Spatial-temporal correlation of transport networks delay 

occurrence  

In recent years, the spatial-temporal correlation of metro delay occurrence has emerged as a 

subject of significant research interest, complementing the multitude of latent reasons for delay 

occurrence revealed by previous studies. While this type of explanation does not necessarily imply 

causation, it can still provide valuable insights for improving the reliability of the metro system 

(Cats and Hijner, 2021). By integrating information about the spatial-temporal inter-correlation of 

delays into delay prediction models, metro operators can gain a deeper understanding of the 

relationships between different system components' reliability. This understanding enables them 

to proactively take measures to prevent delays from happening. Studies exploring the mechanism 

of spatial-temporal correlation within rail/metro networks have investigated various angles, such 

as delay cascading effects, network resilience, and delay mitigation (Krishnakumari et al., 2020; 

Menno Yap and Oded Cats, 2021; Wales and Marinov, 2015). 

 

Moreover, similar correlation patterns likely exist in passenger transport networks across multiple 

modes, including road traffic networks and metro networks, as partially revealed by existing 

research (Faroqi et al., 2017; Su et al., 2017; Sun et al., 2011; Yang et al., 2017). For example, studies 

in road networks have identified positive or negative spatial-temporal correlations of traffic links, 

depending on traffic regimes (Ermagun et al., 2017). Other research has highlighted the impact of 

jammed cores in traffic networks, which can trigger cascading effects and congest neighboring 

nodes (Petri et al., 2009). The result of this study was derived via a minimal network flow model. 

And it suggested from the theoretical point of view that, quarantining the congested node in the 

network will help diminish the congestion propagation. An urban congestion pattern recognition 

approach has also been proposed, synthesizing the road network of a city into a few consensual 

3D speed maps, revealing intercorrelation patterns across different network segments on different 

days (Lopez et al., 2017).  

 

While extensive efforts, particularly those focused on road traffic data, have been devoted to 

exploring spatial-temporal correlation patterns to improve traffic status forecasting, there remains 

a gap in investigating the specific contribution of spatial-temporal correlation in individual network 

segments to overall traffic status, such as delays, congestion, or passenger flow (Lu and Lin, 2019). 

Additionally, little attention has been given to understanding how delays at different stages of an 

individual's metro travel collectively contribute to the overall delay experienced by passengers. 

 

This gap may be attributed to previous research primarily focusing on enhancing prediction 

accuracy rather than gaining insights into network vulnerabilities. Furthermore, the data available 
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for these studies often consist of limited attributes, resembling initial data obtained from sensor 

methods, such as flow counts or smart card data. Incorporating data inference approaches like 

those proposed by Krishnakumari et al. (2020), which map estimated passenger delays onto 

network edges, could greatly enrich our understanding of passenger travel delay experiences and 

network delay correlations. Addressing these research gaps will be instrumental in developing 

more robust and efficient strategies for delay prevention and management in metro systems. 
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3. Methodology 
In this section, the applied method is described. Section 3.1 introduces how the passenger 

trajectory delay is estimated. Section 3.2 conceptually stated the mechanism of a black-box graph 

neural network for graph time-series data prediction. These two sections cover the method for 

producing the input of this study. After that, the post-hoc explanation approach that led to model 

explanatory variables is described in Section 3.3, and the pattern recognition and classification 

approach for exploring spatial-temporal patterns of delay occurrence is described in Section 3.4. 

 

3.1 Metro passenger delay estimation 

The metro passenger delay estimation method proposed by Krishnakumari et al. is capable of 

mapping passenger delay into network elements. This approach decomposes the delay along a 

passenger trajectory into its corresponding track segment delay, initial waiting time, and transfer 

delay, as Figure 2 indicated. The data required for the delay estimation is the Passenger-to-Train-

Assignment (Zhu et al., 2017) result derived from the ODX method described in (Sánchez-Martínez, 

2017). Therefore, the initial data required for metro passenger delay estimation is the smart card 

data, which has been reviewed by Gordon et al. (2013). The work introduced in section 3.1 is 

processed by Krishnakumari et al. (2020). 

 

Figure 2 Schematic picture of scheduled and observed travel time between station 𝒔𝟐 and 𝒔𝟓 

(Krishnakumari et al., 2020). 

 

Without losing the generality, the metro network can be modeled as a directed graph 𝐺 =

(𝑆, 𝐸, 𝑋(𝑡)) , where the node set 𝑆  contains interconnected stations 𝑠1 … 𝑠𝑛 , the edge set  𝐸 

represents the track segments between stations, and 𝑋 = 𝑥1 … 𝑥𝑇 is the set of attributes of the 

whole network in time scale. Any train that runs on the network has a specific route consisting of 

multiple stations. The link set for the same journey is defined as 𝑙1 … 𝑙𝑛. Besides, the smart card 

dataset includes the trip origin and destination information of passengers 𝑛 ∈ 1 … 𝑁, where 𝑁 is 

the total number of passengers. The passenger 𝑛 ∈ 1 … 𝑁  experienced travel trajectory from 

origin station 𝑆𝑜 to destination station 𝑆𝑑 is denoted by 𝑟𝑆𝑜,𝑆𝑑,𝑛. 

 

The initial steps in passenger delay estimation involved determining the passengers who 

experienced delays during their trips and the extent of the delay incurred. This was achieved by 
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comparing the scheduled travel times to the observed travel times as Equation 1 descript: 

𝒅𝑺𝒐,𝑺𝒅,𝒌
𝒏 = {

𝒕𝑺𝒐,𝑺𝒅,𝒌
𝒏 − 𝒕̃𝑺𝒐,𝑺𝒅,𝒌

𝒏      𝒊𝒇 𝒕𝑺𝒐,𝑺𝒅,𝒌
𝒏 >  𝒕̃𝑺𝒐,𝑺𝒅,𝒌

𝒏  

𝟎               𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (1) 

Where 𝑑𝑆𝑜,𝑆𝑑,𝑘
𝑛  refers to the delay of passenger 𝑛 experienced during the trip from origin station 

𝑆𝑜  to destination station 𝑆𝑑  at the time period 𝑘 , in which the passenger checked in at 𝑆𝑜 ; 

𝑡𝑆𝑜,𝑆𝑑,𝑘
𝑛  refers to the observed travel time for passenger 𝑛 departing at time period 𝑘 and can 

be obtained by finding the difference between the tap-in and tap-out time of that passenger; 

𝑡̃𝑆𝑜,𝑆𝑑,𝑘
𝑛   is the summation of in-vehicle time of the estimated route, the transfer time if a transfer 

is included, and the headway of each line traversed. A positive value of 𝑑𝑆𝑜,𝑆𝑑,𝑘
𝑛  indicates that the 

passenger was delayed, while a negative value would be set to 0, as it indicates the passenger 

arrived earlier than scheduled. Incorporating the headway was deemed necessary to account for 

the randomness in the arrival of passengers concerning the schedule, which is a plausible 

assumption for metro networks with short headways. 

 

The aim is to estimate the delay that occurred at each link and station in a directed metro network. 

Specifically, the delay incurred at the origin station and transfer station of a passenger was 

distinguished. To accomplish this, Equation 2 is formulated that incorporated the delay 

experienced at the initial station, transfer stations, and links. The result should be equal to the 

overall delay at the passenger's destination for a single journey.    

𝒅𝑺𝒐,𝑺𝒅,𝒌
𝒏 = 𝒅𝑺𝒐

𝒘𝒂𝒊𝒕 + ∑ 𝒃𝑺𝒙,𝑺𝒙+𝟏

𝑬

𝑺𝒙,𝑺𝒙+𝟏

⋅ 𝒅(𝑺𝒙,𝑺𝒙+𝟏),𝒌
𝒐𝒏−𝒃𝒐𝒂𝒓𝒅 + ∑ 𝒃𝑺𝒊

𝑰

𝑺𝒊

⋅ 𝒅𝑺𝒊,𝒌
𝒕𝒓𝒂𝒏𝒔 (𝟐) 

𝑑𝑆𝑜,𝑆𝑑,𝑘
𝑛   is the total estimated delay of passenger 𝑛  traveling between origin station 𝑆𝑜  and 

destination station 𝑆𝑑, departed at period 𝑘; 𝑑𝑆𝑜

𝑤𝑎𝑖𝑡 is the passenger initial waiting time at origin 

station 𝑆𝑜; 𝑏𝑆𝑥,𝑆𝑥+1
 is a binary value indicating whether the track between stations 𝑆𝑥 and 𝑆𝑥+1; 

𝑑(𝑆𝑥,𝑆𝑥+1),𝑘
𝑜𝑛−𝑏𝑜𝑎𝑟𝑑  is the on-board delay on the track between stations 𝑆𝑥  and 𝑆𝑥+1 ; 𝑏𝑆𝑖

  is a binary 

value indicating whether transfer station 𝑆𝑖  is path of the path; and 𝑑𝑆𝑖,𝑘
𝑡𝑟𝑎𝑛𝑠 is the delay at transfer 

station 𝑆𝑖. The definition of passenger delay may vary depending on the fare validation scheme 

employed. For instance, in a surface bus system, the initial waiting time delay cannot be discerned 

from the AFC data. Therefore, in such cases, the waiting delay component will be excluded from 

equation (1). Besides, the passenger delays estimated for each network element are assumed to 

be common or average for all individuals.  

 

The process of delay estimation involved creating a set of equations to account for each passenger. 

However, solving this set of equations continuously proved impossible. To overcome this challenge, 

the data was discretized over time, with 30-minute time slices being used. This decision was based 

on the fact that all headways (gaps between consecutive vehicles) on all lines are shorter than 30 

minutes, ensuring that a transportation service is always available within each time slice. Further 

details on solving the equations for delay estimation were done by Krishnakumari et al. (2019). 

Passenger data was allocated to the corresponding time slice based on their check-in time. It is 

important to note that passengers may cross into the next time slice during their journey, 

introducing dependencies between information in adjacent time slices. These dependencies 

should be taken into consideration when analyzing or utilizing this data (Krishnakumari et al., 2019). 
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3.2 Delay prediction model 

3.2.1  GNN prediction model 

The directed graph 𝐺 = (𝑆, 𝐸, 𝑋(𝑡)) representation mentioned in section 3.1 allows for input the 

metro network information into the graph neural networks (GNNs). The delay prediction on the 

metro network can be formulated as a time-series regression task, in which observed the delays 

on 𝐸, during the previous 𝑇𝑝𝑎𝑠𝑡 time step, are used to predict the most likely delay at 𝑡 + 𝑇𝑝𝑎𝑠𝑡 

time step. Based on the definition, the regression task can be represented as Equation 3. 

𝑣𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑡
𝑙𝑜𝑔 𝑃 ( 𝑣𝑡 ∣∣ 𝑣𝑡−𝑇past 

, … , 𝑣𝑙 ) (3) 

 

Where 𝑣𝑡 ∈ 𝑅𝑁×𝐹 is the tensor of 𝐹 delay features on N links of the metro network at time 𝑡. 

In this study, 𝑣𝑡  is equal to 𝑑𝑆𝑜,𝑆𝑑,𝑡
𝑛  , which represents the sum of three component delay: the 

waiting delay 𝑑𝑡
𝑤𝑎𝑖𝑡 , the on-board delay 𝑑𝑡

𝑜𝑛−𝑏𝑜𝑎𝑟𝑑  and the transfer delay 𝑑𝑡
𝑡𝑟𝑎𝑛𝑠 . Thus, each 

delay can be regarded as a data attribute, leading to 𝐹 = 3. 

 

The aforementioned graph formulation considers the delays that have been mapped onto links in 

the metro network as edgewise features of 𝐺, via the delay estimated approach introduced in 

section 3.1. At the same time, no node feature of 𝐺 is involved. Thus, the nodes and edges of 𝐺 

can be inverted to the link graph 𝐿𝐺 = (𝑉, 𝐸, 𝑋)  enable the use of architectures with only 

nodewise features. Where 𝑉 is the node in 𝐿𝐺 which represents track links in the metro network, 

𝐸 is the edge in  𝐿𝐺 which represent station in the metro network and without attributes, 𝑋 is 

the node attributes set of 𝐿𝐺, which storage estimated historical delay data. This link graph then 

has an adjacency matrix 𝐴𝐿 , defined as a binary variable. 𝐴𝐿  equals t if track 𝑖  and 𝑗  are 

connected by a station, and equal to 0 and vice versa. Based on the link graph formulation, the 

historical delay data could be put in the ST-GCN model to predict node attributes. The L2 loss 

function is used to train the model, which is defined as Equation 4. 

𝐿(𝑦̂; 𝜃) = ∑ ‖𝑓 (𝑣𝑡−𝑁past 
, … , 𝑣𝑡; 𝜃) − 𝑣𝑡+𝑁future 

‖
2

𝑡

(4) 

 

Where 𝜃 denotes the trainable parameters, 𝑣𝑡+𝑁future 
denotes the ground truth delay value, and 

𝑓(∙) denotes the model prediction based on the historical data in past 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 period. 

 

Specifically, the spatial-temporal graph convolutional network (STGCN) realized the spatial and 

temporal convolution via the structure indicated in Figure 3. The overall model includes 2 spatial-

temporal blocks and an output layer. STGCN is first purposed by Yu et al., (2018). 
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Figure 3 The STGCN model architecture developed by Yu et al., (2018). From left to right are the 

overall model structure, ST-Conv block, and Temporal Gated Conv block, respectively. 

 

For spatial convolution blocks, it captures the spatial relationships in the data by utilizing graph 

convolutions. Spectral graph theory offers a method, known as the graph Fourier transform, to 

generalize the convolution operation for graph-structured data. The key aspect of this approach is 

the analysis of the eigenvalues of the normalized graph Laplacian matrix, which is defined as 

follows: 

𝐿 = 𝐼𝑁 − 𝐷−1/2𝐴𝐿𝐷−1/2 (5) 

 

Where 𝐼𝑁 denotes the identity matrix; 𝐷 is the diagonal degree matrix of the adjacency matrix 

𝐴𝐿 such that 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 . The standard convolution for regular grids is not applicable to general 

graphs. In GNN based model, the essence is the graph convolution operator “∗𝐺”, which is based 

on the conception of spectral graph convolution, to generalize CNNs to structured data forms. The 

graph convolution” ∗𝐺” is defined as the multiplication of the graph signal 𝑥 with kernel Θ, as 

Equation 6 denotes. 

Θ ∗𝐺 𝑥 = Θ(𝐿)𝑥 = Θ(𝑈Λ𝑈𝑇)𝑥 = 𝑈Θ(Λ)𝑈𝑇𝑥 (6) 

 

Where the graph Fourier basis 𝑈 ∈ 𝑅(𝑁×𝑁) is the matrix of eigenvectors of the normalized graph 

Laplacian, Λ ∈ 𝑅(𝑁×𝑁)  is the diagonal matrix of eigenvalues of 𝐿 , and kernel Θ(Λ) is a 

diagonal matrix. All the convolution operations are on the link graph 𝐿𝐺. 

 

The computation of Θ involves 𝑂(𝑛2)  operations, which limits its practical use for large-scale 

graphs. To address this issue, an approximation method was introduced by Hammond et al. (2011). 

that restricts the graph kernel Θ to the set of Chebyshev Polynomials. Additionally, (Kipf and 

Welling, 2017) introduced a first-order approximation for the graph kernel. Both of these 

approximations have been incorporated into the STGCN architecture, after being generalized for 

use with multidimensional tensors. For brevity, the details of these approximations and the 

generalization of graph convolution have not been included in this paper, but can be found in 

Defferrard et al., (2017). 

 

The temporal convolution block, it aims to capture temporal relationships in the data. Recurrent 

Neural Networks (RNNs) are often used for this purpose; however, these networks can be difficult 

to train due to the” vanishing gradient” problem. Additionally, Oord et al., (2016) have shown that 
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a 1D convolution along the temporal dimension of data can be more effective than an RNN on 

shorter sequences, while at the same time being quicker to train. As shown in Figure 2 (right part), 

the temporal convolutional layer of each ST-Conv block contains a 1D causal convolution with a 

kernel of size kt and a gated-linear unit (GLU) nonlinear activation. Like the gating present in RNN 

models, namely LSTM and GRU, the nonlinear activation provides a gating that determines the 

importance of past inputs on future predictions. The resulting temporal convolution is defined in 

Equation 8. 

Γ ∗𝑇 𝑌 = 𝑃 ⊙ 𝜎(𝑄) (8) 

 

Where the input is split along the "channels" dimension to obtain P and Q. More information about 

temporal convolution and its generalization to 3D tensors can be found in (Yu et al., 2018). 

 

Accordingly, the output of block 𝑙 is as Equation 9 defined. 

𝑣𝑙+1 = Γ
1

𝑙
∗𝑇 𝑅𝑒𝐿𝑈 (Θ

𝑙
∗𝐺 (Γ

0

𝑙
∗𝑇 𝑣𝑙)) (9) 

 

Where Θ
𝑙
 is the spectral kernel of the graph convolution, and Γ

0

𝑙
  , Γ

1

𝑙
  are the temporal 

kernels within block 𝑙. 𝑅𝑒𝐿𝑈 denotes a rectified linear unit activation. After stacking two ST-Conv 

blocks, we attach an extra temporal convolution layer with a fully connected layer as the output 

layer in the end, as the left of Figure 3 indicates. The temporal convolution layer maps outputs of 

the last ST-Conv block to a single-step prediction. 

 

In summary, the STGCN model is a universal framework that can be used for structured time series 

analysis, including transport network modeling and spatial-temporal sequence learning(Yu et al., 

2018). Its spatial-temporal block combines graph convolutions and gated temporal convolutions to 

extract useful spatial and essential temporal features. The model is entirely composed of 

convolutional structures, making it faster and more efficient in handling large-scale networks with 

fewer parameters. 

3.2.2 Benchmark prediction model 

To ensure that the STGCN model gives a relatively more accurate forecasting explanation than 

other simpler or self-explainable models, the performance of STGCN should be compared with the 

benchmark models. Different from the GNN model that considers network topologic information, 

the benchmark model should make predictions only based on historical delay data as an input 

feature. Two benchmark models particularly well-suited for tabular data prediction are selected 

for assessing the prediction performance of the STGCN model, which are XGBoost and LSTM 

regression. 

 

XGBoost is a popular machine learning algorithm that has gained significant attention in recent 

years due to its high accuracy and efficiency in handling large-scale datasets. XGBoost stands for 

"Extreme Gradient Boosting," and it is an ensemble learning method that combines multiple 

decision trees to improve prediction performance. XGBoost is a boosting algorithm, which means 
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that it trains a sequence of models that build upon the weaknesses of the previous models. In 

XGBoost, each model is a decision tree, and each tree is built using a gradient boosting technique 

that minimizes the loss function of the previous tree. This process continues until a certain stopping 

criterion is met, such as reaching a specified number of trees or achieving a certain level of accuracy. 

 

One of the key advantages of XGBoost is its scalability, which allows it to handle high-dimensional 

data with sparse features. This is accomplished through a regularization term in the objective 

function, which penalizes large model coefficients and helps prevent overfitting. Additionally, 

XGBoost supports multiple loss functions, including regression, classification, and ranking, making 

it versatile for a wide range of applications. Another advantage of XGBoost is its explainability. The 

algorithm provides feature important scores, which indicate the contribution of each input feature 

to the model's overall prediction. This can be useful for understanding the underlying factors that 

influence the outcome and can help with feature selection and interpretation. 

 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) that has been widely 

used in sequence modeling tasks due to its ability to effectively capture long-term dependencies 

in sequential data. The key difference between LSTMs and traditional RNNs is the addition of 

memory cells, which allow LSTMs to selectively forget or retain information over time. This makes 

LSTMs particularly effective in modeling sequences with long-term dependencies or sequences 

with multiple layers of temporal dependencies. 

 

One of the key advantages of LSTMs is their interpretability, which allows for a better 

understanding and analysis of the model's predictions. This is because LSTMs can visualize the 

activations and memory states of each cell, making it easier to identify the specific features or 

patterns that the model is using to make predictions. LSTMs are often chosen as benchmark 

models in sequence modeling tasks due to their strong performance and interpretability. They have 

been shown to outperform traditional RNNs and other sequence modeling approaches in many 

applications, and their interpretability makes them a valuable tool for understanding the 

underlying patterns and features in sequential data. 

 

3.3 GNN post-hoc explanation approach  

To extract information on how the model makes predictions based on the input time-series data, 

it is essential to acquire the explanatory variables that unveil the significance of each input data 

point’s contribution to the prediction outcome. This process enables us to identify the most 

influential nodes in the input graph and explore explanations for the GNN model's specific 

predictions. By doing so, we gain valuable insights into the model's decision-making process and 

understand the dependencies among time-series data in the graph. 

 

Post-hoc explanations are techniques used after a model has made predictions, enabling us to gain 

insights into its internal workings without modifying the model itself. The primary benefit of using 

a post-hoc approach is that it provides model explanations that are model-agnostic. In other words, 

these explanations are not tied to a specific model architecture and can be applied to different 

types of models. This flexibility is especially valuable when working with complex models like GNNs, 
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as it allows us to interpret their predictions without the need for intricate model-specific 

interpretation techniques.  

 

The Graph Neural Network (GNN) explainer(Ying et al., 2019) is a post-hoc explanation approach 

for GNNs, which aims to provide insights into how GNNs make predictions on graph-structured 

data. The approach is based on a novel graph perturbation technique that systematically removes 

nodes from the graph and measures the resulting change in the GNN's output. This process allows 

the GNN explainer to identify the most influential nodes in the input graph and provide 

explanations for the GNN's predictions. 

 

Same as the previous section, the link graph 𝐿𝐺 = (𝑉, 𝐸, 𝑋) is the spatial-temporal graph which 

represents the metro network with delay data as node attributes, and act as input of STGCN model. 

For the sake of simplicity and aligning with the mainstream of research, in the following statements, 

𝐺 is used to represent the link graph 𝐿𝐺, and the input of STGCN can be represented as 𝐺 =

(𝑉, 𝐸, 𝑋). 

 

The primary objective for GNN Explainer is to generate a minimal graph that explains the decision 

for a node or a graph. To achieve this goal, the problem can be defined as finding a subgraph in the 

computation graph, that minimizes the difference in the prediction scores using the whole 

computation graph and the minimal graph. Specifically, for each node 𝑣,  𝑣’s computation graph 

𝐺𝑐(𝑣) is defined as the neighborhood-based aggregation that fully determines all the information 

the GNN used to make the prediction 𝑦̂  at node 𝑣 . For 𝐺𝑐(𝑣) , there is associated binary 

adjacency matrix 𝐴𝑐(𝑣) ∈ 0,1𝑛×𝑛 , and associated feature set 𝑋𝑐(𝑣) = 𝑥𝑗|𝑣𝑗 ∈ 𝐺𝑐(𝑣) . Thus, 

prediction result of GNN is 𝑦̂ = 𝑓(𝐺𝑐(𝑣), 𝑋𝑐(𝑣)) . Formally, GNN Explainer explain the model 

prediction 𝑦̂ as (𝐺𝑆,   𝑋𝑆
𝐹), where 𝐺𝑆 is the minimal graph of the computational graph 𝐺𝑐(𝑣), 

and 𝑋𝑆 is the feature of 𝐺𝑆, and 𝑋𝑆
𝐹 a small subset of node features, masked out by the mask 𝐹 

that indicate the importance of node features in 𝑋𝑆.  

 

The objective of explaining a graph is to identify the critical features or structures that influence 

the decisions of a neural network. In detail, the notion of feature importance can be denoted by 

mutual information 𝑀𝐼, and the explanation process can be formulated as following optimization 

framework: 

max
𝐺𝑆

𝑀 𝐼(𝑌, (𝐺𝑆, 𝑋𝑆)) = 𝐻(𝑌) − 𝐻( 𝑌 ∣∣ 𝐺 = 𝐺𝑆, 𝑋 = 𝑋𝑆 ) 

A feature is considered important if its removal or replacement significantly changes the prediction 

outcome. Conversely, if removing or altering a feature does not affect the prediction, the feature 

is deemed non-essential and should not be included in the explanation of the graph. For node 𝑣, 

𝑀𝐼  quantifies the change in the probability of prediction 𝑦̂ = 𝑓(𝐺𝑐(𝑣), 𝑋𝑐(𝑣)) , given the 

computation graph is limited to explanation subgraph 𝐺𝑆 and corresponding node features 𝑋𝑆. 

For brevity, the details of the optimization framework have not been included in this paper, but 

can be found in (Ying et al., 2019). 
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Figure 4 Mechanism of GNN Explainer explains predict result of a specific node 𝑽𝒊 at a particular 

timestep 𝒕. The node feature importance matrix reflect how the historical estimated delay of all 

the node contributes to the delay prediction. 

The proposed process is depicted in Figure 4 with an example of network prediction. Assuming 

that we are interested in how the model makes predictions of node 𝑉𝑖  at timestep 𝑡 , we 

implement the above-mentioned approach and acquire the node feature importance vector of 

each node, which reflect how the time-series historical data of different node in the past time 

window  𝑇  contribute to the target node 𝑉𝑖  at timestep 𝑡 . The color blocks in the feature 

importance vectors shown in Figure 4 denote 𝑀𝐼 , which can reflect the importance of the 

corresponding data point of the historical data step (from t-T-1 to t-1) to the prediction outcome. 

At the same time, data of some nodes may be over trivial (for example, node 𝑉1 in white) and can 

be excluded from the minimal subgraph 𝐺𝑆. Finally, all the vectors of all the 𝑛 nodes are piled 

along y-axis of the matrix mask 𝐹 as the colored matrix in Figure 4, which reflect the node features 

importance of 𝐺𝑆. The x-axis of matrix mask 𝐹 is the time scale of input data which covers 𝑇 

timesteps, and the y-axis indicates the number of nodes. 

 

3.4 Pattern recognition and classification 

For the prediction result of a specific node at a specific timestep, we calculated the importance 

values of input node feature 𝑋𝑆 as explanatory variables using the post-hoc explanation method 

purposed in section 3.3. The distribution pattern of the input feature importance values may vary 

across different node predictions, resulting in a feature importance matrix image with diverse 

patterns. 

 

To address this variability and classify the correlation patterns into distinct types with discernible 

characteristics, we introduce an image pattern recognition technique to classify images with similar 

patterns. By leveraging this method, we aim to classify the feature importance distribution patterns 

into elementary representative types that possess unique attributes. The obtained clustering 

results offer a comprehensive overview of the diverse correlation patterns present in different 

delay predict outcomes. 

 

By gaining insights into these feature importance distribution patterns, researchers can develop a 

deeper understanding of the relationships between input features and prediction outcomes. The 

clustering results serve as valuable prior knowledge for further exploration and analysis of these 
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correlations. This knowledge can inform and guide subsequent investigations, allowing for a more 

informed exploration of the correlation patterns within the context of delay prediction for nodes. 

 

For many image clustering or classification problems, replacing raw image data with features 

extracted by a pre-trained convolutional neural network (CNN) leads to better clustering 

performance(Guérin and Boots, 2018). Previous research compared multiple neural network 

architectures and proved that the ResNet50 could perform relatively better than other prevailing 

architectures. Residual Network is a classic neural network used as a backbone for many computer 

vision tasks, which was first proposed by (He et al., 2016). ResNet-50 is a convolutional neural 

network with 50 layers. The pre-trained Resnet-50 deep neural network architecture could 

effectively recognize the features of the images and has been widely used in computer vision, 

including image classification and detection applications. The process of implementing the 

ResNet50 can be done by the PyTorch deep learning framework. 
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4. Case study 
In this section we present a case study involving the Washington DC metro network to demonstrate 

the application of the proposed methodology outlined in the preceding sections. Section 4.1 

describes the input data utilized for the case study. Section 4.2 describe how the data are 

preprocessed before being used in the model. Section 4.3 introduces the parameters setting of the 

prediction model and GNN Explainer in detail. 

4.1 Data description  

This study utilized a comprehensive dataset obtained from WMATA, encompassing various aspects 

of the metro network. The dataset included information on rail trips, providing details of journeys 

from the origin station to the destination station, as well as intermediate movements between 

adjacent stations. The data covered a period starting from August 19, 2017, to May 22, 2018, 

spanning a total of 277 days. 

 

In addition to rail trip data, passenger journey information was also incorporated into the analysis. 

This data, derived from smart card records, offered insights into the origins and destinations of 

passengers. By combining the known origin and destination with the rail movements, it was 

possible to infer the specific route traveled by each passenger. 

 

Figure 5 Washington metro network(Krishnakumari et al., 2020) 
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Figure 6 Link graph of Washington metro network.  

Krishnakumari et al.(2020) pre-processed the dataset before its utilization in the current study. 

Specifically, they implemented the steps outlined in section 3.1, which involved transforming the 

disaggregated raw data of passenger and rail trajectories into a network-wide aggregation 

perspective. The estimated delay outcomes are mapped in each network link as mentioned in 

section 3.1. Accordingly, the dataset available for this research includes two parts: the topology 

information of 6 lines, 91 stations, 184 links and 9 transfer stations as Figure 5 indicates, and the 

estimated average delay experienced by per passenger experienced (estimated delay dataset in 

the below. The estimated delay data cover every stage of travel, including estimated waiting delay 

at the initial station (“waiting delay”), delay during the vehicle running on the track (“track delay”), 

delay at the transfer station (“transfer delay”), and their linear sum (“total delay”). These data are 

mapped in 193 nodes in the link graph, as Figure 6 denotes. The nodes in the Link graph Figure 6 

represent the directional track in the metro network depicted in Figure 5 

 

4.2 Data preprocessing 

The occurrence of irregular delay occurrence patterns in transport systems can be attributed to 

various reasons, including national holidays, maintenance work, or check-in system failures. For 

instance, days with passenger counts that are ten times lower than average and without a 

discernible morning and evening peak pattern can be attributed to irregular events like holidays. 

Additionally, days with over half of the data showing zero passengers in the system can be 

discounted as special holidays, maintenance work, check-in system, or data processing failures. It 

is difficult to determine when the earlier data on such days is still relevant or may have been 

influenced, making it necessary to discount these days as well. Since a complete dataset spanning 

277 days is available, the removal of data under irregular conditions still leaves a substantial 

amount of data for robust analysis. Consequently, the study disregards data from dates featuring 

any of the aforementioned irregular conditions, as illustrated in  

Table 1. This refinement results in a dataset of 260 days, which serves as the foundation for the 

study's analysis. 
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Table 1  The dates that were excluded and the corresponding reason.  

 

To train the delay prediction model, we separate the whole dataset of 260 days into a train set, 

validation set, and test set, with the ratio of 60%, 20%, and 20%. Correspondingly, the train set 

covers 156 days, the date from August 19th, 2017, to January 22, 2018; the validation set covers 52 

days, beginning from January 23, 2018, to March 16, 2018; the test set covers 52 days, beginning 

from March 17, 2018, to May 22, 2018. 

 

Furthermore, we find that the outliers in the dataset are extremely large which is unreasonable, 

these 0.1% extreme data are deleted from the dataset. The finally used datasets distributions are 

depicted in Figure 7. The x-axis refers to the delay value in seconds. The y-axis refers to the 

cumulative distribution function (CDF) of each dataset. The figure illustrates that more than nearly 

80% of delays occur on individual network segments that last no more than 50 seconds. 

 

 

Figure 7 Data distribution of estimated delay dataset. The label denotes the distribution of track, 

transfer, and waiting delay distribution respectively. 



22 
 

4.3 Model parameters setting 

4.3.1 Prediction model parameter 

In the ST-GCN model, we use the historical estimated delay data of the preceding 24 time steps, 

which is the delay in the past 12 hours, to predict the delay of the next time step, which is the delay 

in the next half an hour. The number of features of input spatial-temporal time series delay data is 

3, which includes the data of estimated waiting time delay, transfer delay and track delay. The 

output feature is one of the estimated waiting time delays, transfer delays, track delays, or overall 

delays on each link, which has 1 channel every run. For the STGCN model, the size of the spatial 

kernel 𝑘𝑠 = 5  and the size of the temporal kernel𝑘𝑡 = 5 . In this study, the graph Laplacian is 

approximated using Chebyshev polynomials. The ST-Conv block contains bottleneck-shaped 

channels, with Block 1 consisting of (1, 32, 64) channels, Block 2 consisting of (64, 32, 128) channels, 

and the Output Block consisting of (128, 1) channels. The model is trained for 100 epochs with a 

batch size of 32 using ADAMW optimizer, and L2 loss with the initial learning rate r=0.001 while 

implementing a learning rate decay r=0.1r every 10 epochs. As the baseline models for comparison, 

the XGBoost and LSTM regression are also implemented based on the same time-series dataset of 

estimated delay, without any additional feature engineering or topologic information. These two 

models use the same input and output time window as the ST-GCN model. In this way, the 

comparison may highlight the advantage of the STGCN model in extracting spatial-temporal 

features based on graph convolution.  

4.3.2 GNN Explainer parameter 

The explanatory variables of prediction results are obtained using the Python library package 

PyTorch Geometric (PyG) library, which is a powerful tool built upon PyTorch for developing and 

training Graph Neural Networks (GNNs) to handle a wide range of applications dealing with 

structured data. PyG consists of various methods for deep learning on graphs and other irregular 

structures, also known as geometric deep learning. Specifically, in our approach, we leverage the 

torch_geometric.explain module, which provides a set of essential tools to interpret the 

predictions of a PyG model and comprehend the underlying phenomenon of a dataset (Fey and 

Lenssen, 2019). 

 

To achieve this, we employ an explainer with the following parameters: 

• model: The PyG model we want to explain the predictions for. 

• algorithm: The explainer algorithm we use to interpret the model's behavior. In this case, 

we use GNNExplainer, which undergoes 200 epochs during the explanation process. The 

principle of GNNExplainer is introduced in section 3.3 

• explanation_type: We set this to 'phenomenon' to focus on explaining the underlying 

phenomenon of the dataset, although the alternative option is 'model'. 

• node_mask_type: The type of mask used for nodes during explanation. We set it to 

'attributes', indicating that we use attribute-based masks. Alternatively, we could use 

https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html#torch_geometric.explain.Explainer
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'object'. 

• edge_mask_type: The type of mask used for edges during explanation. In this case, we set 

it to 'object', which highlights the importance of edges in the explanation. Alternatively, 

we can set it to 'None' to exclude edges from the explanation. 

• model_config: A dictionary containing various configuration settings related to our PyG 

model. We specify that our model is used for 'regression' tasks, and we focus our 

explanations at the 'node' level. The 'return_type' is set to 'raw', indicating that our model 

returns raw values rather than log probabilities. 

 

By configuring the explainer with these parameters, we gain valuable insights into the inner 

workings of our PyG model and understand how it arrives at its predictions. This level of 

interpretability is crucial for building trust and understanding in complex machine learning models, 

especially in applications involving structured data. 

 

 

 

 

 

.  
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5. Results 
This chapter presents the findings of the case study, along with the corresponding analysis. Section 

5.1 includes an overview of the delay prediction results for the Washington DC metro network. 

Section 5.2 focuses on the explanatory variables derived from the model prediction using the post-

hoc approach. This section includes a detailed analysis of the spatial and temporal feature 

importance distribution patterns of input historical data, as well as the spatial-temporal 

correlations among nodes in the metro network's link graph. The combination of these analyses 

allows us to gain a deeper understanding of the dynamics and dependencies within the metro 

network, shedding light on the factors influencing delay occurrences and providing valuable 

insights for network management and optimization. 

5.1 Delay prediction 

As mentioned in the previous chapter, the output of the ST-GCN model consists of the delay 

prediction for 193 links within the metro network at intervals of 30 minutes. The dataset 

encompasses data for three distinct attributes: waiting delay, transfer delay, and track delay. 

Consequently, from the ST-GCN model, we obtain the respective delay predictions for these three 

attributes, as well as the total delay prediction. The total delay prediction is derived by summing 

the individual predictions for waiting for delays, transfer delays, and track delays for all 193 links 

within the metro network. Figure 8 illustrates the result of the delay prediction of a sample node 

in the graph, which corresponds to the network segment starting from station Metro Center to 

Gallery Pl-Chinatown. 

  

a) Total delay b) waiting delay 

  

c) track delay d) transfer delay 

Figure 8 Delay prediction result of a sample node (network segment from Metro Center to Gallery 

Pl-Chinatown) in the link graph. The label indicates the estimated and predicted delay.  
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Based on the prediction results, we can observe that the model effectively captures the major 

trends in delay occurrences, especially for longer-lasting delays. However, as the estimated delay 

increases, there is a tendency for larger discrepancies between the estimated delays and the 

model's predictions. This limitation becomes evident during highly severe or prolonged delay 

scenarios, where the model struggles to precisely estimate the extent of delays. 

 

For instance, on the 12th day of the test set (timestep range from 576 to 624), there were 

significant delays in the metro network. The model correctly predicts the occurrence of serious 

delays during this period, but the exact extent of the delays is not accurately forecasted. This 

highlights the need for further enhancements to improve the model's performance in such 

extreme delay situations. 

 

Besides, for most cases, both the estimated delay and predicted delay during waiting, on the track, 

and transferring delays fall below 10 seconds. Analyzing the values depicted in the four subfigures 

of Figure 8, we can ascertain that the total delay is predominantly influenced by the waiting time 

delay in a passenger's travel trajectory, followed by the transfer delay. On the other hand, the track 

delay appears to occur less frequently and has a lesser impact compared to other types of delays. 

Thus, for simplicity, we will analyze the prediction result of total delay data with more significant 

and stable delay phenomenon prediction. 

 

To evaluate the model's performance, we compared it with baseline models XGBoost and LSTM 

using MAE and RMSE metrics. The results in Table 2 demonstrate that the ST-GCN model 

outperforms the baseline models in terms of prediction accuracy. This indicates that the ST-GCN 

model provides more accurate delay predictions compared to XGBoost and LSTM. A relatively 

accurate prediction model implies that the prior knowledge model learned from the real-world 

data is more reliable and accurate, which enhances our ability to provide compelling explanations 

for delay forecasts. 

 

Table 2 Performance of different models on different attribute data  

Model Total delay Waiting delay Track delay Transfer delay 

Metrics MAE (s) RMSE(s) MAE(s) RMSE(s) MAE(s) RMSE(s) MAE(s) RMSE(s) 

ST-GCN 0.388 0.651 0.281 0.504 0.118  0.265 0.206 0.458 

XGBoost 1.560 4.547 0.890 2.919 0.334 2.087 0.595 2.629 

LSTM 1.301  4.496 0.781 2.879 0.394 1.225 0.540 2.619 

 

Consequently, we implemented post-hoc explanation techniques based on the prediction results 

of the ST-GCN network, enabling us to gain further insights and interpretability into the key data 

points influencing the delay predictions. 

 

5.2 Explanatory variable of the prediction result 

In this section, we present the explanatory variables of the black-box ST-GCN model, which were 

obtained through a post-hoc explainability approach. These explanatory variables represent the 

importance of historical data, specifically the spatial-temporal features of the input historical delay 
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data. These variables interiorly contain the information on delay severity, so extra weighting on 

these variables by the value of delay occurrence is not required. By examining these explanatory 

variables, we can explore how the spatial-temporal feature of historical delay data contributes to 

the model prediction and uncover the spatial-temporal correlations among the historical delay 

values of the links.  

 

As described in Section 3.3, we can determine the importance of each input data to the prediction 

result for every node and time step. In our case study, the spatial-temporal graph consists of 193 

nodes, and the historical data is collected over a time window of 24 timesteps. Consequently, the 

size of each feature importance matrix is 193 * 24, reflecting the relevance of each feature to the 

prediction at each time step. For each time step, we can generate 193 feature importance matrices 

that belong to corresponding 193 nodes. Furthermore, for a single day, we can obtain a total of 

193 * 48 feature importance matrices.  

 

Figure 9 is the image of a sample feature importance matrix, corresponding to the prediction result 

of node 0 at timestep t. The colors of each cell in the matrix from deep to light depict the relative 

importance score of historical data to the prediction result. The importance scores are linearly 

normalized to span 0 to 1 across the matrix, ensuring a consistent scale for comparison. The x-axis 

is the time scale of input data which range covers preceding T timesteps. The historical data of 193 

nodes are piled up along the y-axis. The arrangement of these colored pixels reflects the 

importance distribution of input historical data to the prediction result. The pattern of the image 

could provide us the potential insight into the spatial-temporal feature importance of estimated 

historical delay data. 

 

To facilitate interpretation, auxiliary lines are incorporated into the figure. The blue and green 

auxiliary lines indicate their significant spatial and temporal features of input historical data 

respectively. The blue dash line highlights when certain historical data points play a pivotal role in 

shaping the present prediction. Similarly, the green dash lines illuminate nodes that exhibit a 

lasting impact on the prediction outcome over a more extended duration. These insights on the 

spatial-temporal feature of input data indicate that the present delay prediction of node 0 exhibits 

relatively higher dependency on the key segments’ delay status, and the particular historical period 

delay still has an influence on current delay prediction. Thus, in the following subsection, the result 

spatial-temporal feature is recognized and evaluated in depth based on the image shown in Figure 

9. 
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Figure 9 A sample of feature importance matrix image. The green and blue dash lines show the 

pixels that represent significant contributive data points.  

 

However, it's important to note that the 2-dimensional form of the feature importance matrix 

solely reflects the temporal importance distribution of input data, disregarding the spatial 

importance distribution. Unlike temporal features, which can be easily organized sequentially 

along the horizontal axis, the current form of Figure 9 does not adequately convey the spatial 

distribution of the nodes. Thus, we will analyze the temporal and spatial feature importance 

separately in sections 5.2.1 and 5.2.2, with a similar methodology for pattern recognition but 

different forms of processing data. In section 5.2.3, based on the explanatory variables, we will 

explore the spatial-temporal delay correlation of the nodes in the link graph. 

5.2.1 Pattern of temporal feature importance 

The temporal feature importance is reflected by the distribution of importance values along the 

horizontal axis in the importance matrix. As there are prediction results of 193 nodes on 48 

timesteps, and for each prediction result there is a corresponding feature importance matrix image 

reflecting different temporal feature patterns.  

 

Thus, we implemented image pattern recognition as mentioned in section 3.4 to cluster the images 

with similar patterns to explore the representative patterns of temporal feature importance among 

prediction results. By implementing PCA (principal components analysis), the high-dimension 

feature of images is reduced to a limited number of principal dimensions, which aims to reduce 

the dimension of the image feature while mostly remain the image feature for clustering. Figure 

10 shows the cumulative explained variance ratio by principal components. To mostly retain the 

feature of images, we choose 20 components of an image feature, which leads to more than 90% 

variance among the data covered.    

 

The crucial step of clustering is to decide the number of clusters, or the value of K. Different K 
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values for clustering are tested to calculate corresponding silhouette score and SSE (sum of squared 

errors). The result is shown in Figure 11. A clearer elbow point of the SSE curve in Figure 11a and 

a larger silhouette score in Figure 11b refer to a K value with better clustering performance. Thus, 

the best K value is 3. In Figure 12, the image clustering result is mapped into 3D space. The images 

with similar pattern are clustered and in the same color. Three axes reflect the value of the three 

most significant principal components (PC), which could mostly reflect the unitless relative 

distance among data points. The top 80% of data points in terms of their distance from the centroid 

are visualize.  

 

Figure 10 Cumulative explained variance ratio by principal components. After dimensional 

reduced to 20 principal components, more than 90% of variances among data are retained. 

 

 
 

Figure 11 SSE and silhouette score of different K values. These figures show the optimum cluster 

number is 3. 
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Figure 12  Clustering result of feature importance matrix. The red stars represent the centroid of 

each cluster. 

 

The images within each cluster exhibit similarities in terms of their features, aligning with the 

corresponding temporal distribution patterns observed in the feature importance matrix. The 

proximity of a data point to the cluster centroid indicates the degree to which its image pattern 

represents the cluster as a whole. Consequently, for analysis and representation of the temporal 

feature importance pattern, we select the image that is closest to the centroid. In Figure 13, we 

showcase the most representative image for each cluster, accompanied by a 3D metro network 

mapping of the feature importance matrix values. 

 

In Figure 13, each feature importance matrix corresponds to the prediction result of a specific node 

at a particular timestep. The color gradient, ranging from light to deep red, represents the linearly 

normalized importance value assigned to the input historical data. The latitude and longitude axes 

visualize the topological distribution of the network, while the time axis reflects the sequential 

arrangement of the input data's time steps. Vertically higher positions within the network image 

indicate data points that are closer in time to the predicted timestep. The green dash lines in each 

image denote the node that the prediction belongs to. To describe these patterns, we have 

assigned names to each of them based on their major features. 

 

Notably, a remarkable observation emerges from Figure 13: each cluster exhibits a distinctive and 

significant pattern in terms of the distribution of temporal feature importance. The variations in 

color and positioning within the network image highlight the unique characteristics and specific 

contributions of different nodes and timesteps within each cluster. This analysis provides valuable 

insights into the temporal dynamics of input data contribution. To analyze the temporal feature 

importance, we only focus on the importance distribution along the time axis in Figure 13.  
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a) Pattern 0: “Recent Dominance” 

 

 

 

 

b) Pattern 1: “Partial Long Lasting” 

 

 

 

 

c) Pattern 2: “Temporal Global Relevant” 

Figure 13 Identified three patterns according to temporal feature importance clustering 

outcomes. 
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In Figure 13 a) the pattern “Recent Dominance” is depicted. The midpoint image illustrates a 

unique trend where the most recent historical data to the prediction time holds a considerable 

diminish over the predicted outcome. Impactful influence is observed in the historical data of only 

a few nodes, with this influence dissipating within a span of two timesteps and rapidly diminishing 

thereafter. Besides, a large proportion of nodes show no contribution to the prediction. This 

pattern signifies that, within this specific context, primarily the latest recent delays of specific 

nodes, usually in the past 30 minutes, substantially affect the present delay prediction of the select 

node.  

 

In Figure 13 b), the pattern “Recent Dominance” is depicted. In the context of this pattern, the 

historical delay data associated with certain nodes have a longer-lasting impact on the prediction 

outcomes. To these certain nodes, delays in the past 1 or more hours still appear correlation to the 

current delay. At the same time, other nodes show the impact that extends no more than a single 

timestep, which is less than 30 minutes. This implies that the delay on specific key nodes in the 

metro network graph shows a longer-lasting contribution to the predicted result, than other nodes. 

As time moves backward, the effect diminishes eventually, and the significant continuous effect 

usually not surpass nearly 4 hours. 

 

For Figure 13 c), a notable shift is observed where a larger number of inputs datapoints make 

contributions to the prediction result with similar significance. While the diminishing temporal 

impact trend seen in pattern 1 and 2 persists but is less obvious. To some of the nodes, their 

historical delay shows equivalent impacts spanning many hours. This phenomenon reveals that the 

present delay demonstrates balanced dependence on historical delay within the past 24 hours 

across key nodes. As a result, cluster 2 reflects the pattern which can be named “Temporal Global 

Relevant”. 

 

 

Figure 14 Temporal distribution of three feature patterns 
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Furthermore, we delve into the temporal distribution of these three patterns over 24 hours, which 

suggest a potential interplay between the different patterns over time. Figure 14 depicts the 

proportion of feature importance matrices corresponding to each pattern. The horizontal axis 

corresponds to the hours of the day, while the vertical axis reflects the percentage of each pattern 

at various times. This figure effectively highlights the temporal distribution disparities among the 

distinct patterns within a single day. 

 

Figure 14 shows that the “Recent Dominance” pattern tends to occur more frequently before the 

morning peak. The count of this pattern decreases significantly during the morning and evening 

peaks. In contrast, pattern 1, referred to as "Partial Long Lasting," demonstrates an opposite and 

complementary trend. The count of pattern 1 reaches its peak during the morning and evening 

peaks, while the lowest point coincides with the peak of pattern 0. This observation indicates a 

complementary relationship between the two patterns, where one pattern's occurrence tends to 

be at its highest when the other pattern is at its lowest. Meanwhile, the "Temporal Global Impact" 

pattern (pattern 2) appears a more evenly distributed occurrence, with greater frequency during 

daylight hours. This pattern emerges when patterns 0 and 1 are spontaneously less prominent. 

 

Thus, through an investigation into the unique temporal dependency patterns found in the 

historical data of delay predictions, we discern a common trend in how temporal features influence 

delay predictions throughout the day. We uncover three distinct patterns of temporal feature 

significance, primarily differing in the duration and spread of delay impact over time. And 

considering the distribution of these three patterns across the day, we can infer that delays during 

morning and evening peaks are often linked to historical delays at specific critical nodes over an 

extended period.  
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5.2.2 Pattern of spatial feature importance 

To uncover the distribution of spatial feature importance, we condense the feature importance 

matrix along the temporal axis and project the aggregated importance values onto the metro 

network, as illustrated in Figure 15. This network significance graph pertains to the specific target 

node Vi. The color gradient assigned to each network segment corresponds to the cumulative of 

its importance score over the past T time, which indicates the time aggregate contribution 

importance of the segment’s delay on the present prediction outcome of the target node Vi. The 

sum of each segment’s importance score is linearly normalized across the entire graph, ranging 

from 0 to 1. 

 

Figure 15 Compress the feature importance matrix for analyzing spatial feature importance of 

input data. 

Thus, all the feature importance matrices are transferred to the form of 2D mapping. A similar 

approach as used in 5.2.1 for clustering is implemented based on the dataset of spatial importance 

graph depicted in Figure 15. Although each feature image indicates the feature importance of 

different prediction results, the pattern of the images reflects the relationship on how the historical 

data make a significant contribution to the result.  

 

The most representative network images of each cluster are shown in Figure 16, showcasing the 

distinct identified patterns in the spatial feature importance distribution. The selected image is the 

one closest to the centroid within the corresponding cluster. The color gradient in the figures 

represents the contribution value of each link in the metro network, with contribution values being 

globally linearly normalized. The green dot on each image indicates the station for which the spatial 

feature distribution is associated to delay prediction. Each pattern reflects a unique distribution of 

input data contributions across different locations within the network. To aid in describing these 

patterns, we have assigned names to each of them based on their major features. By analyzing and 

comparing these different patterns observed in clusters 0, 1, and 2, we gain a deeper 

understanding of the spatial characteristics and the significance of the distribution among nodes 

within the metro network. 
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a) Pattern 0: “Key Nodes Dominate” 

 

b) Pattern 1: “Spatial Imbalance” 

 
c) Pattern 2: “Spatial global relevant” 

Figure 16 Identified three patterns according to spatial feature importance clustering outcomes. 
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In Figure 16 a), the pattern of "Key Nodes Dominate" is depicted. In the context of this pattern, 

only a few key nodes make a significant contribution to the prediction results. Interestingly, these 

key nodes with significant contributions are evenly distributed across different lines and branches 

of the metro network. It is important to note that these key nodes tend to appear in proximity to 

the terminal stations, and near the transfer stations. 

 

Figure 16 b) illustrates the pattern of "Spatial Imbalance." In this pattern, the segments with 

significant contributions are unevenly distributed among the lines and branches of the network. 

They tend to be more concentrated on specific lines or branches, leading to an imbalance in their 

spatial distribution. However, similar to the pattern "Key Nodes Dominate" depicted in Figure 16 

a), key nodes near the terminal and transfer stations still appear relatively significant impact on 

delay prediction as appeared in pattern "Spatial Imbalance", although their contributions may 

exhibit an imbalance in extension within the cluster.  

 

Figure 16 c) illustrates the pattern of "Spatial Global Relevant". In this pattern, most of the nodes 

show a higher contribution to the prediction result than other patterns appear. At the same time, 

certain key nodes at similar locations continue to play a crucial role in contributing to the predicted 

outcomes. However, the distinction between these significant nodes and other nodes is less 

pronounced compared to patterns "Key Nodes Dominate" and "Spatial Imbalance". This implies 

that the influence of individual nodes within the pattern "Spatial Global Relevant" is more evenly 

distributed, leading to a reduced gap in their impact on the prediction results. 

 

Accordingly, by analyzing the spatial feature importance pattern, we identified three patterns with 

distinctive features, including "Key Nodes Dominate", "Spatial Imbalance" and "Spatial Global 

Relevant". However, a common regulation is revealed from these patterns: the key nodes with 

significant contributions to the delay prediction are usually located near the transfer station and 

the terminal station. 

 

5.2.3 Spatial-temporal correlation of delay occurrence 

In previous sections, we focused on feature importance matrices that depicted the contribution of 

historical data to the prediction results of individual edges within the metro network graph. This 

represents a many-to-one mapping, as it assesses the impact of historical data on a single node. 

However, to comprehensively explore the spatial-temporal correlation of delay occurrences, we 

extend our analysis to a many-to-many (or one-to-one) mapping. By considering how each node 

contributes to the prediction outcomes of every other node, we can effectively depict the spatial-

temporal correlation of delay occurrences within the network. 

 

To accomplish this, we aggregate all the feature importance matrices over a single day, resulting in 

a spatial-temporal correlation matrix. This matrix is shaped as 193 nodes by 193 nodes by 48 

timesteps, encapsulating the spatial relationships and temporal dynamics of delay occurrences. 

Figure 17 presents the time-aggregated correlation matrix, where each value represents the sum 

of the correlation values at the corresponding position in the matrix. The color gradient ranging 
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from light to deep represents the dependent extension from low to high. The red lines serve as 

auxiliary lines along the diagonal. The vertical and horizontal axes represent the source and target 

of dependencies, and the label on the axes indicate the index of nodes. 

Figure 17 Time aggregated correlation matrix among nodes  

 

It’s worth clarification that the distinction between the terms "feature importance value" and 

"contribution value." The former is utilized to describe the many-to-one mapping as previously 

mentioned, specifically referring to the significance of historical data in relation to a specific 

prediction outcome. The historical data distributed in time and space represent the feature of 

prediction input. To differentiate from this concept, we introduce the term "contribution value" in 

the following context to characterize how a particular node influences the delay prediction of other 

nodes, thereby reflecting the one-to-one relationship among all nodes in the graph. 

 

Figure 17 provides a visual representation of the notable imbalance observed in the daily 

aggregated correlation values among nodes. For instance, the orange dashed frames labeled as 1 

and 2 demonstrate that the node with an index close to 178 is more likely to be influenced by a 

majority of the nodes in the network (frame 2) while having less impact on other nodes (frame 1). 

This discrepancy highlights the varying degrees of influence and interconnections among nodes 

within the network, shedding light on the asymmetric relationships and potential dependencies 

that exist in the spatial-temporal correlation of delay occurrences. 

 

To investigate the dynamics of correlation within a single day, we analyze the correlation matrix 

across different time steps. Figure 18 illustrates the distribution of linearly normalized contribution 

value in a whole day, presented through a historical plot and cumulative distribution function curve. 

To mitigate the influence of varying data quantities, the vertical axis of the histogram represents 

relative frequency or relative probability density, rather than absolute sample counts.  

 

We visualize the correlation dynamics by mapping all the normalized contribution values of 

different times to the network graph. Figure 19 depicts the major significant correlation among 

nodes during the morning and evening peak hours on a sample day March 17th. Additionally, it is 



37 
 

worth noting that more than 80 percent of the contribution values are lower than 0.6, as Figure 18 

indicates. Given the complexity that would arise if all correlation values were directly depicted in 

the graph, we simplify the visualization and highlight stronger correlations by establishing a 

threshold of 0.6 for visualization. Only correlation values surpassing this threshold are depicted as 

directional edges in the graph. 

 

Figure 18 Distribution of normalized contribution value 

 

In Figure 19, the label of lines, terminal stations and transfer stations are indicated based on the 

link graph previously mentioned in 4.1. Each node in the link graph represents the track segment 

of the metro network. The black directional lines represent the connection between nodes.  

 

The directional edges represented in red symbolize the dependencies from the source node to the 

target node, surpassing the threshold value previously mentioned. These red directional edges 

indicate directional dependence between nodes, signifying the influence from source nodes to 

target nodes. In cases where a node is impacted by another, the dependency is designated as an 

inflow with a positive weight on the impacted node, and vice versa. The color gradient assigned to 

each node is determined by its node weight, reflecting its corresponding net flow. Nodes depicted 

in a red color gradient signify a positive net flow, and their node weight is positive. Conversely, 

nodes displayed in a blue color gradient indicate a negative net flow, with a negative node weight. 

Nodes without any red directional edges connected imply that they have no significant 

contribution to or are not impacted by other nodes, and they are depicted in light blue color. 

 

Figure 19 provides insights into the flow dynamics and interdependencies among different nodes 

within the metro network. By analyzing the contribution values and net flows, we can identify 

clusters of nodes with significant impacts and observe the dynamics of nodes' delay 

interdependency. 
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Figure 19 The correlations among nodes during the morning peak hours 
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Figure 19 includes the subfigures of node correlations at different time periods (7:00-10:00, 17:00-

20:00) during the morning peak hours. First, a notable feature is the varying amount of selected 

significant correlations. During the morning hours, the number of red directional edges first 

increases to its peak at 9:00 am and then gradually decreases. During the evening hours, the 

number of red directional edges first increases to its peak at 9:00 am and then gradually decreases. 

This phenomenon indicates that the strength of correlation among nodes may fluctuate 

significantly with time passing. Remarkably, this corresponds with the peak occurrence of the 

temporal feature pattern labeled as "Partial Long Lasting," as depicted in Figure 14 b). This suggests 

a plausible inference that the significant interdependencies often stem from the historical data of 

key nodes with long-lasting impacts on future delays. 

 

Moreover, by examining the color distribution of nodes with red directional edges connected, we 

observe that most of these nodes have a negative weight, while fewer nodes have a positive weight. 

The peak amount of node weight distribution is below zero, revealing that most nodes are in blue 

and have a slight net outflow or impact on other nodes. Simultaneously, some nodes (such as 

nodes near East Falls Church during the evening peak hours) are significantly impacted by others, 

leading to high positive net inflow nodes in deep red color.  

 

Furthermore, nodes with the same colors (in red or blue) often form clusters located at specific 

locations within the metro network, notably near transfer stations (e.g., nodes near Stadium-

Armory, Metro Center, and Rosslyn with net outflow) and terminal stations (e.g., nodes near Branch 

Ave and East Fall Church). This phenomenon suggests that tracks near terminals and transfer 

stations tend to exhibit stronger homogeneous dependencies on other nodes within the network. 

And the homogeneity within the clusters possibly reflects the local delay propagation (e.g., nodes 

near Stadium-Armory, East Fall Church, and between Shady Grove and Metro center). Moreover, 

the direction (positive or negative) of these clusters' net flows remains consistent during the entire 

morning peak but may vary in magnitude. For instance, nodes around Stadium-Armory consistently 

show a net outflow throughout the morning peak, but at 9:00 am, more nodes near Stadium-

Armory exhibit a deep blue color, indicating a peak in their contribution values at that specific time.  

 

Additionally, some of the red directional edges show an accumulatively unified direction, 

representing strong interdependencies among nodes. Some interdependencies can last for the 

entire morning peak, while others demonstrate clear dynamic changes during specific periods. For 

example, the transfer node Rosslyn shows a consistent extension of impact on nodes near King St-

Old Town. At the same time, nodes near Stadium-Armory may exhibit a significant increase in 

impact on nodes near L'Enfant Plaza, Gallery Palace, and East Fall Church before 9:00 am, with the 

impact diminishing considerably after that time. 

 

Figure 19 also shows that most of the phenomena that appear during morning peak hours still 

apply to evening peak hours. For instance, the trends of aggregated homogeneous dependencies 

among nodes near terminal and transfer stations persist. However, the trends of 

interdependencies among specific pairs of clusters changed. For instance, during the evening peak, 

nodes near Stadium-Armory are more likely to be represented in red, indicating a significant impact 

on the delay occurrence of other node clusters, such as East Fall Church, Rosslyn, and Branch Ave. 
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This phenomenon is opposite to what was observed during the morning peak hours, as mentioned 

earlier. 

 

Moreover, some correlation trends that appear in the morning peak hours may also become less 

significant or disappear during the evening peak hours. For example, nodes on the red line between 

the terminal Shady Grove and the transfer station Metro center show a much less significant impact 

on the other nodes than they appear during the morning peak hours. This implies a clear tidal 

dynamic phenomenon in node delay correlations. 

 

Summarizing the observations derived from the link graph in Figure 19, we can draw some general 

regulations regarding the delay interdependencies among network segments within the context of 

the Washington Metro network: 

- Nodes in clusters between or near terminal and transfer stations exhibit homogenous, 

stronger, and longer-lasting dependencies on other nodes, especially those located in the 

clusters also between terminal and transfer stations. This indicates that the node clusters at 

the specific locations tend to appear the similar vulnerability spontaneously. 

- The notable correlation between node clusters might indicate distinct tidal dynamics or 

persistent trends during morning and evening peaks. This refers that the vulnerability and 

delay propagation among nodes at various locations show the different dynamic shift over 

time. 

- While most nodes located in the corridors connecting transfer stations tend to exert a 

relatively lesser impact on other nodes, there exists a smaller subset among them that is 

susceptible to significant influence from other nodes, displaying vulnerability. 
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6. Conclusion 
In this paper, we employed a post-hoc explainability method to probe a data-driven black box 

model, aiming to uncover the correlation of delay occurrences in the metro network. Through this 

approach, we significantly improved the explainability of the data-driven model, allowing us to 

extract and solidify the domain knowledge on delay occurrence interdependencies dynamics 

acquired by the model.  

 

The case study on the Washington metro network allows the implementation of the purposed 

methodology. By analyzing the explanation variables obtained through the post-hoc method, we 

uncovered distinct and significant patterns in the spatial-temporal features of the input data. 

Moreover, we unveiled the interdependency among different segments in the metro network's 

delay predictions. The mappings observed were "many-to-one," representing the relationship 

between input historical data and prediction results for individual nodes, and "many-to-many," 

revealing the interdependencies among various tracks within the network. 

 

6.1 Key findings 

We identified representative patterns that shed light on how historical delay data impacts current 

delay occurrences at different locations. Additionally, we observed consistent regulations in these 

dependencies over varying periods. By unearthing these findings, we gained valuable insights into 

the complex interactions and dependencies within the metro network. This knowledge contributes 

to a better understanding of delay occurrences and facilitates the development of effective 

strategies for managing and mitigating delays within the system. To be specific, the main research 

question is solved by answering the following sub-questions. 

 

• What are the spatial-temporal explanatory variables of network passenger delay 

occurrence prediction?  

The spatial-temporal explanatory variables for each delay prediction outcome are represented as 

a matrix, which serves as a mask to assess historical estimated delays’ importance using quantified 

unitless scores. Within the input time window range at a particular location, the importance score 

in the matrix corresponds to the significance of an individual estimated delay on historical time in 

shaping predictions made by the STGCN model. Each prediction outcome is associated with an 

explanatory variables matrix, offering insights into the contribution of delays with varying spatial-

temporal characteristics. 

 

• How does the spatial-temporal feature of historical delay data contribute to the model 

prediction? 

This study uncovered three distinct patterns that elucidate the influence of historical estimated 

delay data across different spatial locations and temporal features on the prediction outcome. 

Notably, these patterns exhibit significant imbalances in their distribution across both time and 

space scales within the network. With regard to temporal features, it was observed that delays 
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during the morning and evening peaks tend to exhibit dependencies on the historical delays of key 

nodes from a comparatively distant past than most of the other nodes’ historical delays. During 

the hours that have lower passenger demand, a larger percentage of delay occurrences is only 

relative to the most recent delay. To describe the underlying universal patterns in the temporal 

correlation between the historical estimated delay and delay prediction outcomes, we have labeled 

these identified patterns as "Recent Dominance," "Partial Long Lasting," and "Temporal Global 

Relevant," based on their predominant characteristics. In the context of spatial feature importance, 

three patterns are revealed that reflect the dependencies between the prediction outcome of 

specific nodes and historical delay in different locations. According to their significant spatial 

distribution features of importance scores, these patterns are named “Key Nodes Dominate”, 

“Spatial Imbalance”, and “Spatial Global Relevant” respectively. Among these patterns with 

distinctive features, we found the common regulation that the terminal section and the segment 

near the transfer stations always show significant contributions to most of the delay prediction 

outcomes. 

 

• How does the spatial-temporal correlation of different metro network segments vary 

throughout the day? 

The importance scores within the explanatory variable matrix are transformed into unitless 

contribution values, providing insights into the directional dependencies among different 

segments within the network. More precisely, these explanatory variables, initially representing a 

"many-to-one" relationship between input historical data and individual prediction outcomes, are 

then transformed into a "many-to-many" mapping, reflecting correlations among various segments. 

This investigation has yielded two significant findings. Firstly, distinct tidal trends emerge in certain 

pairs of dependencies, and their significant contributions vary. The direction of these dependencies 

can appear, dismiss, or even reverse during morning and evening peak hours within a day. 

Moreover, the number of significant correlations changes over time, usually peaking during the 

hours of highest demand. The second finding pertains to the potential regulations of delay 

propagation. By exploring into the dynamics of delay dependencies, a clustering effect among 

network segments becomes evident during specific time intervals. Notably, node clusters 

proximate to terminals and transfer stations exhibit coherent dependencies among similar clusters 

in other branches of metro lines. Concurrently, directional delay propagation is observed along 

particular corridors, particularly during peak hours between the terminal stations and transfer 

stations. 

 

The insights obtained from the results of this study can be validated and aligned with previous 

research. This study provides compelling evidence of the existence of spatial-temporal correlation 

patterns in delay occurrence among metro links. Similar phenomena have been demonstrated in 

other traffic networks as well (Ermagun et al., 2017; Lopez et al., 2017), supporting the validity and 

generalizability of the findings. Moreover, the dynamic correlation of delay occurrence points to 

the significance of node clusters at the core of the metro network, which can exert substantial 

influence on neighboring nodes, leading to delays that eventually spread throughout the network. 

This finding aligns with the rationale put forth in previous research that employed a minimal 

network flow model (Petri et al., 2009). Building on the insights from the work of Petri et al., a 

compelling approach to mitigating delay propagation would involve isolating and quarantining 
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congested nodes within the network. Such proactive measures can effectively curtail the spread of 

delays, enhancing the overall reliability and efficiency of the metro system.  

 

6.2 Contributions 

Compared with existing research on explainable metro delay prediction, the significant advantage 

of this study is that it only requires basic passenger travel data and schedule information, while 

effectively capturing the complex dynamics of delay occurrences and dependencies among 

network segments through the data-driven model. By deciphering the model, we explored the 

underlying delay occurrence dependencies in metro operation and passenger travel data, which 

might be obscured due to unexpected events, external factors, and fluctuations in passenger 

demand. Although the correlations we uncovered do not imply causation of delay occurrences, 

these insights into the spatial-temporal correlations and dependencies enhance our understanding 

of the metro network's behavior and guide improved network performance and management. The 

methodology proposed in this study, along with the corresponding results, can assist operators in 

comprehending the interior dependencies of delay occurrences. The identified correlations should 

be supplemented with analytical and simulation models for metro operations to examine the 

relations between the (un)reliability of system components. 

 

The insights gained from this study offer valuable support to metro operators in comprehending 

the intricate dynamics of delay occurrences within the network. This understanding provides a 

holistic perspective on how delays propagate and affect different parts of the system, enabling 

more informed decision-making. Operators can identify crucial nodes that play a significant role in 

delay propagation and proactively implement congestion management measures, schedule 

optimizations, and bottleneck node isolation during peak periods. Furthermore, these findings on 

delay correlations can aid in providing passengers with timely updates about possible delays and 

alternative routes, as well as assessing the effectiveness of new delay mitigation strategies. The 

identified patterns also serve as valuable guidance for developing targeted approaches to minimize 

delays and enhance network reliability. By integrating these insights into operational planning, 

operators can efficiently manage the metro system, leading to improved passenger satisfaction and 

system-wide performance.  

 

The scientific contribution of this study lies in its innovative use of an XAI approach to uncover the 

dynamics of network segment correlations and phenomena, delve into the mechanics of delay 

propagation, and assess network vulnerability, surpassing the scope of existing research. Given the 

accurate prediction outcome of the data-driven model, the obtained insight not only increase the 

model’s explainability but also demonstrate applicability for decision-making support. This 

approach could be used to validate other studies on network analysis. Besides, the revealed 

insights like the clustering effect of homogeneous dependencies among nodes uncover 

mechanisms of delay propagation from a novel aspect. With additional data sources, further 

exploration could delve into the underlying reasons behind correlations appearing during specific 

periods and at specific locations.  

 

Furthermore, the potential applications offer benefits not solely to present network operators but 
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also extend to other transportation systems equipped with the necessary input data. The 

methodology, as showcased in this study, is versatile and can be easily tailored to a wide range of 

datasets, aiming to investigate correlations among diverse attributes of network segments, 

including but not limited to delay occurrences, passenger counts, and real-time status. Its 

applicability extends beyond metro and public transportation networks, encompassing multiple 

transport systems like road networks and shipping networks. 

 

6.3 Limitations & Future research 

 

This study's advantage lies in its ability to capture complex delay dynamics only using passenger 

travel and vehicle scheduling data through a data-driven model. However, the simplicity of the 

model training and parameter tuning for the black-box prediction model restricts its ability to 

capture delay occurrences with a step higher accuracy, even with the use of deeper neural network 

layers and primarily data transformation techniques, although the trend of delay occurrence is 

captured. The trustfulness of the explanatory variable comes from the prediction performance. 

The higher accuracy of prediction refers to the more reliable explanation in most cases. (Faber et 

al., 2021). This limitation arises due to the data distribution in the estimated delay dataset. Most 

nodes in the network graph experience delays lower than 5 seconds, while heavy delays are rare 

in some nodes. Such an imbalanced distribution can negatively impact the neural network's 

performance, which might otherwise perform well with datasets having a more even distribution. 

Addressing this issue in future research is crucial, as considering the input data distribution can 

enhance the performance of the black-box prediction model. This enhancement would result in 

more reliable and convincing explanations extracted from the black-box model. 

 

Moreover, when the image pattern recognition technique is implemented to cluster the feature 

importance matrix image, we select the image that is closest to the midpoint to represent the 

pattern of all the other images in the same cluster. This is efficient but also may neglect the 

distinction among these images, which means some of the potential correlation patterns of 

historical data importance might be overlooked and represented by the identified dominant 

patterns. 

 

There are several directions for future research based on this study. Conducting cross-comparisons 

across different metro networks would offer valuable insights into the consistency and 

generalizability of the identified phenomena across diverse systems. Exploring the intricate 

interplay between correlations among node clusters within the metro network graph and the size 

of each cluster could provide a deeper understanding of how network structure influences delay 

propagation dynamics. Delving into temporal variations, such as tidal trends, over extended 

periods would uncover deeper insights into the evolution of delay correlations and their 

relationship to time-dependent factors. 

 

Besides, when analyzing the dynamic correlation among nodes in the link graph, only the 

significant correlations that surpass a threshold level are visualized in the figure, and the analysis 

is conducted qualitatively rather than quantitatively. This approach could limit the potential to 
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compare the dynamic of correlation among various metro networks, or to accurately quantify the 

variations in correlations within a specific network. As a result, there is a need for a more 

quantitative method to characterize the dynamic correlations among nodes based on the derived 

explanatory variables in this study. Expanding the scope of input data could also yield valuable 

improvements. Incorporating additional datasets that are widely available to most of the 

circumstances, such as passenger count data from smart cards, into the black-box model as input 

variables could significantly enhance its accuracy and provide more compelling explanations. This 

augmentation could contribute to refining the model's predictive capabilities, ultimately leading to 

more reliable and informative insights. Finally, beyond the overarching understanding of delay 

propagation as conducted in this study, there's potential for future research to offer more direct 

and actionable recommendations for scheduling management and operator decision-making. 

Future research can explore how to improve the network robustness according to the identified 

delay occurrence characteristic, and to what extent the identified correlation among network 

segment could help with public transport delay recovery. Such research could provide a bridge 

between the identified delay propagation phenomena and their translation into concrete 

strategies for real-world application, enhancing the practical impact of this study's findings. 
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Tang, R., De Donato, L., Besĭnović, N., Flammini, F., Goverde, R.M.P., Lin, Z., Liu, R., Tang, T., Vittorini, 

V., Wang, Z., 2022. A literature review of Artificial Intelligence applications in railway 

systems. Transportation Research Part C: Emerging Technologies 140, 103679. 

https://doi.org/10.1016/j.trc.2022.103679 

Tiong, K.Y., Ma, Z., Palmqvist, C.-W., 2023. A review of data-driven approaches to predict train 

delays. Transportation Research Part C: Emerging Technologies 148, 104027. 

https://doi.org/10.1016/j.trc.2023.104027 

van Oort, N., n.d. Service Reliability and Urban Public Transport Design. 

Wales, J., Marinov, M., 2015. Analysis of delays and delay mitigation on a metropolitan rail network 

using event based simulation. Simulation Modelling Practice and Theory 52, 52–77. 

https://doi.org/10.1016/j.simpat.2015.01.002 

Wei, D., Liu, H., Qin, Y., 2015. Modeling cascade dynamics of railway networks under inclement 

weather. Transportation Research Part E: Logistics and Transportation Review 80, 95–122. 



49 
 

https://doi.org/10.1016/j.tre.2015.05.009 

Yang, Y., Jia, L., Qin, Y., Han, S., Dong, H., 2017. Understanding structure of urban traffic network 

based on spatial-temporal correlation analysis. Modern Physics Letters B 31, 1750230–364. 

https://doi.org/10.1142/S021798491750230X 

Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J., 2019. GNNExplainer: Generating Explanations 

for Graph Neural Networks. 

Yu, B., Yin, H., Zhu, Z., 2018. Spatio-Temporal Graph Convolutional Networks: A Deep Learning 

Framework for Traffic Forecasting, in: Proceedings of the Twenty-Seventh International 

Joint Conference on Artificial Intelligence. pp. 3634–3640. 

https://doi.org/10.24963/ijcai.2018/505 

Zhang, D., Xu, Y., Peng, Y., Du, C., Wang, N., Tang, M., Lu, L., Liu, J., 2023. An Interpretable Station 

Delay Prediction Model Based on Graph Community Neural Network and Time-Series 

Fuzzy Decision Tree. IEEE Transactions on Fuzzy Systems 31, 421–433. 

https://doi.org/10.1109/TFUZZ.2022.3181453 

Zhang, Z., Li, M., Lin, X., Wang, Y., He, F., 2019. Multistep speed prediction on traffic networks: A 

deep learning approach considering spatio-temporal dependencies. Transportation 

Research Part C: Emerging Technologies 105, 297–322. 

https://doi.org/10.1016/j.trc.2019.05.039 

Zhu, Y., Koutsopoulos, H.N., Wilson, N.H.M., 2017. A probabilistic Passenger-to-Train Assignment 

Model based on automated data. Transportation Research Part B: Methodological 104, 

522–542. https://doi.org/10.1016/j.trb.2017.04.012 

 


