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1 Introduction

Semantic segmentation can be described as the process in which every pixel of an image is
associated with a class label. This process allows for the division of an image into meaningful,
non-overlapping parts (Zhu et al., 2016). Automatic semantic segmentation of aerial imagery
can be useful for many different types of applications that currently require extensive manual
work by experts, which is time-consuming and costly. Applications are present in fields as
mapping of land cover, object detection, land-use analysis and change detection (Saito et al.,
2016; Kampffmeyer et al., 2016).

In example, ensuring high quality for topographic maps, such as the large scale dataset Ba-
sisregistratie Grootschalige Topografie (BGT) 1 of The Netherlands, requires regular updating
of mutations. Current change detection techniques are often based on visual comparison of
aerial images by experts. Automatic semantic segmentation can automate part of this process
by semantically segmenting images of the same location of two different years. The segmen-
tation results can be subject to simple overlay operations in order to detect mutations.

Even though semantic segmentation is researched by many, the topic remains challenging.
The constantly increasing spatial and spectral resolution of remotely sensed imagery can be
considered as one of the main difficulties. This high resolution has the benefit of being able to
capture small details such as small objects. However, it also complicates the semantic segmen-
tation process by introducing higher imbalances in class-distributions, large variance between
classes and small differences within each class (Wang et al., 2016; Yuan et al., 2016).

In the last couple of years, the deep learning revolution has stimulated the use of deep ar-
chitectures, usually Convolutional Neural Networks (CNNs), to successfully tackle general
semantic segmentation problems (i.e. Long et al. (2014); Hariharan et al. (2014); Feng Ning
et al. (2005)), including remote sensing related ones (i.e. Kampffmeyer et al. (2016); Paisitkri-
angkrai et al. (2015); Saito et al. (2016). When well trained, these algorithms act as non-linear
functions that have the ability to take an image as an input, and provide a segmented version
of this image as an output. CNNs have shown to outperform traditional computer vision and
machine learning approaches in terms of accuracy and in some cases efficiency (Garcia-Garcia
et al., 2017).

The focus in semantic segmentation in the last couple of years has been on two-dimensional
imagery. However, the fast growing technological development in acquiring and analyzing
2.5D or 3D data, allows for the introduction of a new dimension next to RGB information
(Garcia-Garcia et al., 2017; Qin et al., 2016). It is believed that the added 2.5D or 3D informa-
tion, often in the form of depth maps, digital elevation model (DEM) or point cloud, has the
ability to improve semantic segmentation results (Qi et al., 2017; Qin et al., 2016). Even though
inclusion of three dimensional information in semantic segmentation problems has been re-
searched for regular imagery (i.e. Qi et al. (2017); Gupta et al. (2014); Couprie et al. (2013)), the
inclusion of pixel level height information to improve the quality of semantic segmentation is
less represented in the current literature. Therefore, this proposed research aims to examine
the added value of height information, Z, to semantic segmentation of aerial imagery. The
following research question is addressed; to what extent can Convolutional Neural Networks
be used for automatic semantic segmentation of RGB-Z aerial imagery?

1https://www.pdok.nl/introductie/-/article/basisregistratie-grootschalige-topografie-bgt-
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For this research true ortho imagery with a resolution of 10 cm will be used, which is devel-
oped by the company READAR 2. True ortho imagery is aerial imagery that is corrected for
relief displacement (Sheng et al., 2003). Furthermore, the fourth input band provided to the
networks, containing height information, will be derived from a digital surface model (DSM)
which is also generated by READAR.

This proposal is structured as follows; first, a short discussion on related research will be
provided. Hereafter, the research questions will be given, followed by the methodology, pre-
liminary results and a time planning for the project. Finally, an overview will be provided on
the to be used tools and datasets.

2 Related work

Due to the high amount of successful initiatives of the use of CNNs for semantic segmentation,
together with the far from matured state of these techniques, this field of research is growing
rapidly (Garcia-Garcia et al., 2017). This multitude of newly produced literature makes the
task of keeping up with the most recent developments challenging. Nevertheless, after giving
a brief description on deep learning and CNNs in general, this section aims to provide a short
overview of relevant related studies to this research proposal.

2.1 Deep learning

Deep learning comprises a class of techniques in the field of machine learning in which com-
putational models, called neural networks, consisting of multiple processing layers, learn to
represent data with different levels of abstraction (LeCun et al., 2015). A neural network con-
sist of an input layer, an output layer and one to many hidden layers. Each layer of a neural
network consists of multiple neurons (figures 1 and 2). Each neuron can be seen as a feature,
and is a mathematical operation which has its own learnable weights and biases. Input is
provided to each neuron, which is multiplied by it’s corresponding weight and then summed.
Hereafter, the function corresponding to the neuron, called the activation function, is applied
to the result. The output of this function is passed on to neurons in consecutive layers (Hush
and Horne, 1993). Key to deep learning is that these layers of features used in the network
are not provided, but are decided on by the network itself, using general-purpose learning
(LeCun et al., 2015).

At each layer in the network, the input data is transformed to a higher level of abstraction.
Very complex functions can be learned when enough of these transformations are executed.
In the case of classification, representations of higher levels of abstraction allow for the elimi-
nation of unimportant variations and amplification of parts of the input that are important for
distinction (LeCun et al., 2015).

2.2 CNNs

CNNs are a specific type of neural networks that are often used for semantic segmentation
problems. When compared to ordinary neural networks, CNNs contain special types of lay-
ers allowing for specific functionality related to the computation of convolution, up-sampling

2https://readar.com/
3Image retrieved from: https://www.rsipvision.com/exploring-deep-learning/
4Image retrieved from: https://summer-story.tistory.com/6
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Figure 1: A diagram of a simple (shallow) neural network, containing only one hidden layer3.

Figure 2: A diagram of a deep neural network, containing several hidden layers4.

and down-sampling (Liu et al., 2017). This allows the algorithms to generate useful low-
dimensional representations, while preserving spatial properties (Shorten and Khoshgoftaar,
2019).

When the input is an RGB image, the input data to a CNN is provided as three 2D arrays,
giving pixel intensities of the three channels (LeCun et al., 2015). In semantic segmentation,
one is not only interested in classification, but also in the projection of the classification onto
pixel space. A general network architecture for semantic segmentation consists of an encoder
network, connected to a decoder network. The encoder fulfills the role of classification, while
the decoder ensures dense classification by projecting the classification onto pixel space (Shah,
2017). Four basic types of layers can be distinguished that are used in CNNs for semantic
segmentation, namely;
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• Convolutional Layer: Exists of simple filters which contain learnable parameters. Each
neuron in the layer searches for a specific pattern. As the aim is to search for the same
patterns throughout the whole input, the learnable weights and biases of the neurons of
the output are shared (Liu et al., 2017).

• Transposed Convolutional Layer: Also referred to as deconvolution layer. These lay-
ers allow for upsampling of the input: the dimensions of the input are increased. The
parameters can be based on simple bilinear interpolation or they can be learned (Long
et al., 2014).

• Non-linear Function Layer: Often present after a convolutional layer. This type of layer
adds non-linearity to the network, by introducing in example the Sigmoid function or
the rectified linear unit (ReLU) (Glorot et al., 2011).

• Spatial Pooling Layer: Uses a filter to reduces the size of the input. Functions commonly
used are max, sum and mean (Saxe et al., 2011).

Two types of approaches are distinguishable in current researches on semantic segmenta-
tion; patch-based methods and pixel-based methods. Patch-based methods use a small win-
dow to construct a label for each pixel independently. Consequently, the labels assigned to
each pixel are only based on its near surrounding pixels (Sermanet et al., 2013). Pixel-based
methods have a different approach by inferring the labels for all of the pixels at the same
time. When semantically segmenting remote sensing imagery, this type of methods have out-
performed patch-based methods (see Kampffmeyer et al. (2016) and Volpi and Tuia (2016)).
Different CNNs differ in their architecture. Figure 3 displays the architecture of three well-
known pixel-based methods.

2.3 Semantic segmentation of aerial imagery using CNNs

In their research, Saito et al. (2016) used a five-layered CNN to automatically detect objects
from aerial imagery. Their goal was to generate a multi-channel label output from the input
image, with one channel per class. This research showed that predicting classes simultane-
ously can lead to a higher accuracy than when each class is predicted separately. In addition,
they proposed a new output function called ’channel-wise inhibited softmax’ (CIS) which fur-
ther improved the results. The recall, which can be described as the ratio of the detected pixels
to the true pixels, were for the building class 0.9418, 0.9539 and 0.9686 for the single-channel
model, the multi-channel model and the multi-channel model with CIS respectively. For the
road class these values were 0.8507, 0.8701 and 0.9020. Even though promising results were
obtained, only the classes roads and buildings were included, the ground truth pixel size dif-
fered from the dimensions of the input imagery, and no height information was incorporated.

Kampffmeyer et al. (2016) and Liu et al. (2017) did include height information in their re-
searches on semantic segmentation of aerial imagery. In their research, Kampffmeyer and his
colleagues used six classes, namely ’impervious surfaces’, ’building’, ’low vegetation’, ’tree’,
’car’, ’clutter/ background’. Kampffmeyer showed that their implementation in which three
architectures were combined (PB, FCN and FCN-MFB), performed best when compared to
the individual architecture performances, when considering accuracy for small objects while
still maintaining a high overall accuracy. This implementation gave an overall accuracy of
87.03% (with 93.92% accuracy for the class building). For assessing the quality, ground truth
data for which the class boundaries were eroded to lower the effect of class boundaries, was
used. Liu and his colleagues also designed their own network architecture which integrates
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Figure 3: The design of the fully-convolutional network (FCN)(Kampffmeyer et al., 2016),
SegNet (Badrinarayanan et al., 2017) and full patch labeling (FPL) (Volpi and Tuia, 2016).

A, B, C and D are convolutional layers; E is a pooling layer; F is a transposed convolutional
layer or unpooling layer (in SegNet); G is a loss layer. Figure extracted from Liu et al.

(2017).

an ’inception’ and ’residual’ module in the conventional encoder-decoder paradigm. The in-
ception module comprises the collection of filters of different sizes into one layer, enabling the
gathering of information from receptive areas of different scales. The residual module allows
to directly feed forward information from the encoder to the decoder. Using the same dataset
and classes as in the research of Kampffmeyer, Liu and his colleagues retrieved an overall ac-
curacy of 88.82% (with 94.67% accuracy for the building class). When using the non-eroded
ground truth data, the overall accuracy was 85.39% (92.34% accuracy for the building class).

Both these researches did not examine the added value of the included height informa-
tion, they solely focused on optimizing the semantic segmentation while using the extra band.
Even though the objects of interests in both these researches did not completely overlap with
the objects of interests in this proposed research, examination of their implementation, or even
using it as a starting point would be interesting. Unfortunately, the corresponding codes of
the implementations could not be discovered. However, findings of these papers will be taken
into consideration while executing this research. In example, one of the conclusions from
Kampffmeyer and his colleagues that pixel-based approaches outperformed patch-based ap-
proached for semantic segmentation of aerial imagery, will be taken into account when select-
ing architectures for this research.

Even though deviating classes are used, achieved accuracies for RGB-Z imagery in the re-
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search corresponding to this proposal are expected to be similar to the ones achieved in the
researches described in this section. Furthermore, when considering the conclusion of Qi et al.
(2017) that 3D information has the ability to improve semantic segmentation results for reg-
ular imagery, it is expected that the accuracy retrieved when height information is included
to the aerial imagery, will be higher than the accuracy gained when height information is not
included.

3 Research questions

The proposed research aims at answering the following question;

To what extent can convolutional neural networks be used for automatic semantic segmentation of
RGB-Z aerial imagery?

In order to answer this question, the following sub-questions are specified;

• Which neural network is a suitable starting point for semantic segmentation of aerial
RGB-Z imagery?

• To what extent does the addition of the Z dimension improve semantic segmentation
results?

• How does resolution influence the quality of the semantic segmentation?

• For which classes is the segmentation most successful; for ’building’, ’road’, ’water’ or
’other’?

4 Methodology

Figure 4 displays the methodology proposed for this research. In the following paragraphs,
the steps will be described in more detail.

Figure 4: Overview of methodology.
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4.1 Selection and adjustment of CNNs

Firstly, a selection is made of existing neural networks that are considered to be suitable for this
research. This will be done by examining code implementations corresponding to promising
research papers. Encountered networks are considered to be suitable when adherent to the
following criteria;

• Shown successful performance of semantic segmentation of any type of imagery (per-
formance mostly based on research papers: promising values for performance measures
when compared to other researches)

• Source code available online, without any license restrictions

• Implementation not too complex; adjustments in network structure are (easily) imple-
mentable

• Implementation is done in python

As a high number of networks exists, it is aimed to select a few most promising ones. These
will be adjusted to fit to the RGB imagery of this research. Depending on the used network this
could mean in example incorporating spatial reference information in the segmented output,
or allowing to feed multiple images to a trained network instead of only one.

4.2 Training and test data generation

In order to train a network, example data is needed. For this research, data of the city of Haar-
lem in The Netherlands is used. Each training example is a combination of an RGB-(Z) image
plus a mask layer. The mask layer shows the ground truth; the correct semantic segmentation
of the images. In order to retrieve this information a cleaned version of the Dutch national
topographic dataset Basisregistratie Grootschalige Topografie (BGT) is used. In this cleaned
version, terminated objects are removed and no overlapping objects are present by keeping
only objects visible from the air. In example, at locations where a bridge is going over water,
the bridge is kept and the water is removed. This cleaned version of the BGT is provided by a
colleague from READAR. This cleaned BGT is reclassified into ‘building’, ‘road’, ‘water’ and
‘other’ (table 1 & table 2). Vegetation is not considered as a separate class as after exploring
the BGT dataset it was concluded that both the classes ‘begroeidterreindeel’ as ‘onbegroeidter-
reindeel’ contained areas with vegetation and areas without vegetation. It is believed that this
inconsistency strongly limits the ability of networks to properly learn to distinct vegetation
from non-vegetation.

For the training/validation data an area of 4km2 (2X2 km) is selected, containing both urban
and more rural areas. This area was split into 25000 images, each containing 400X400 pixels.
Every pixel is 10X10 cm. The mask images are of the same dimensions and contain one class
label per pixel (figure 5). The test data is a different location of Haarlem of 4km2, also contain-
ing both urban and more rural areas and showing a similar frequency of the classes as the test
data (figure 6).
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Class code Class name
0 Other
1 Building
2 Road
3 Water

Table 1: Segmentation classes

Class code Class BGT
0 BegroeidTerreindeel
0 GebouwInstallatie
0 Kunstwerkdeel
0 OnbegroeidTerreindeel
0 OndersteunendWaterdeel
0 OndersteunendWegdeel
0 OpenbareRuimte
2 Overbruggingsdeel
0 OverigBouwwerk
1 Pand
- Tunneldeel
3 Waterdeel
2 Wegdeel

Table 2: Mapping of BGT classes to segmentation classes.

Figure 5: A training image with its mask layer. Orange = Building, Green = Road, Red =
Other.

The DSM has the exact same resolution and pixel locations as the true ortho imagery, and
will be cut in the exact same pieces as the training and test data. Consequently, when the
networks are trained with the additional height information, every pixel contains one value
for the red band, one for the green band, one for the green band, one for the absolute height
relative to NAP and one class label derived from the BGT.

After generation of the training data, data augmentation will be applied. Data augmenta-
tion comprises different techniques that augment the size and the quality of the training data
to allow for the generation of deep learning models of a higher quality (Shorten and Khoshgof-
taar, 2019). Examples of image augmentation techniques are geometric transformations such
as rotation, zooming and flipping but also adjustment of brightness and hue. Research will be
done to decide on the most suitable augmentation techniques. In example, for this research
rotation is an unsuitable augmentation technique as it will result in unrealistic shadows which
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Figure 6: The frequency of the different classes occurring in the training area and in the test
area.

can provide a limitation on successful training of the network.

4.3 Training of CNNs

Due to a limited availability of computational power and storage on an ordinary laptop, a
server is used for training and testing of the neural networks. The selected and adjusted net-
works will first be trained and tested using only the true ortho imagery, without the height
information. It is aimed to first achieve the highest possible performance of the network on
the aerial images before including the height information, in order to ensure a valid assess-
ment of the added value of the height information to the segmentation results. Models can
be either pre-trained on a different dataset, or not pre-trained. Working with a pre-trained
model, also when trained on an unrelated dataset, can save training time (Azizpour et al.,
2015). However, a problem occurs when working with RGB-Z data as these pre-trained net-
works generally lack the support of an extra band next to RGB (Kampffmeyer et al., 2016).

An important part of the training process comprises the tweaking of the hyperparameters
such as the learning-rate, number of iterations, the cost-function and the optimizer. Models
will be assessed based on the performance measure (mean) intersection over union (IoU),
which is a standard performance measure in segmentation. In contrast to normal accuracy
measures, this measure can overcome the problem of class imbalance. IoU represents the
resemblance between the ground-truth and the predicted segmentation. It is calculated for an
objects in an image by dividing the size of the intersection by the union of the ground-truth
region with the predicted region (Rahman and Wang, 2016). IoU is computed for each class
and then averaged, providing the Mean IoU (MIoU) (figure 7) (Garcia-Garcia et al., 2017). The
model delivering the best Mean IoU is selected to execute the rest of the research. Even though
it is considered as a very simple metric and it contains the problem of class imbalance, some
related researches use overall accuracy as performance measure. This performance measure
gives the total number of correctly-classified pixels divided by the total number of all pixels
(Liu et al., 2017). In order to allow for comparison of achieved results with these researches,
this performance measure will also be calculated.
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Figure 7: Formula for calculation MIoU. k = number of classes, i = actual class of pixel , j =
predicted class of pixel, pii = number of true positives, pij = number of false positives, pji =

number of false negatives
(Garcia-Garcia et al., 2017).

4.4 Height information, class differences and resolution

The best performing network will be adjusted to support an extra band containing the height
information per pixel. The rest of the network’s architecture, such as the amount of layers and
the number of nodes in each layer, is kept exactly the same. The segmentation results and
the corresponding IoUs derived when height information is included, will be compared to the
results without the inclusion of height information. In addition, to further assess the value
of the height information, the difference in segmentation results per class will be examined
and compared to the results without inclusion of height information. This comparison can
be made by examining the IoU per class. Furthermore, several tests will be executed with
the goal to assess the influence of resolution, by altering the pixel size of the training and test
images. A comparison will then again be made between results retrieved from the 3-band
network and the 4-band network.

5 Preliminary results

5.1 Analysis of the BGT

The BGT is regulated by law and freely available for any user. The BGT is developed through
a collaboration between municipalities, provinces, waterboards, the Ministry of Economic Af-
fairs, the Ministry of Defence, Rijkswaterstaat and ProRail. Every so called ’bronhouder’ is
responsible for delivering a specific piece of the dataset. Rules are set on the minimal required
quality that should be delivered, as an attempt to guarantee high quality topographic infor-
mation 5. To ensure that the quality of the dataset is sufficient for this research and to assess
the suitability of the dataset for being a mask layer, the BGT was assessed manually before
preparing the training data. The metadata of the BGT was examined and the data covering
Haarlem was visually compared to corresponding aerial imagery. The following paragraphs
summarise the most important findings.

The BGT covers many different classes, which suggests that this dataset has the potential
to train a network to distinguish a broad amount of objects. In addition, the large size and
extent of the dataset ensures a high number of instances per class, leading to a high amount of
training data when combined with aerial imagery. Furthermore, the borders of the geometries
of the objects in the BGT generally match with the borders of the objects visible in the aerial
imagery. Nevertheless, in some rare occasions the boundaries of the polygons show some de-
viation from the true ortho imagery (figure 8). However, it is believed that this will not have
a large impact on the quality of the results as the amount of detected occurrences of this prob-
lem is small and the algorithms take surrounding pixels into account during classification.

5https://zakelijk.kadaster.nl/bgt
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Figure 8: In some situations the boundaries of the BGT show some deviation from the true
ortho imagery.

A limitation detected is the content of the classes ’begroeid terreindeel’ and ’onbegroeid
terreindeel’ which indicate continuous vegetation and terrain without continuous vegetation
respectively. It was discovered that in practice both these classes have polygons containing
vegetation and no vegetation. In addition, the classification was incomplete and inconsistent.
In example, patches containing a dense forest were classifies as ’onbegroeid terreindeel’ and
patches full of garden sheds were classified as ’begroeid terreindeel’ (figure 9 and 10). Con-
sequently, when no manual pre-selection is executed of the used training data, the BGT is
considered as unsuitable for training a network to classify vegetation. Therefore, this class is
not included in this research.

Figure 9: Incomplete and incorrect classification of the BGT. Orange is ’begroeid terreindeel’.
The grass field should also be ‘begroeid terreindeel’ or both the grass fields should be

‘onbegroeid terreindeel’. In addition, the tree block at the top left is classified as
‘onbegroeid terreindeel’ while it should be ‘begroeid terreindeel’.

Overall it can be concluded that both the quantity and quality of the BGT are sufficient for
the dataset to serve as a mask layer for the classes in this research, namely, ’building’, ’road’,
’water’ and ’other’.
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Figure 10: Green is ‘begroeidterreindeel’ and purple is ’ongebroeid terreindeel’. The terrain
contains many garden sheds which will negatively influence the training of a network in

detecting vegetation.

5.2 Preliminary tests

The Pytorch-Semseg repository on github aims at mirroring successful and popular seman-
tic segmentation architectures in the open source machine learning framework PyTorch 6. In
this repository currently 11 different architectures are implemented and it is used as a starting
point for this research. It is selected as it is well documented, relatively easily modifiable to
your own needs and models are directly linked to the corresponding research papers. The
repository was set up in 2017, but it is still maintained and most of the models are less than
one year old.

As the architectures have not been developed with spatial data in mind, some adjustments
had to be made in order to execute preliminary tests, such as the inclusion of a coordinate ref-
erence system (CRS) to the output imagery. In addition, a dataloader needed to be created to
allow for the architecture to use this specific training data. Two tests were executed. The goal
of these first tests was to see if the pipeline worked, and especially if the data loader gener-
ated passed on the training data correctly. In addition, it was aimed to compare segmentation
results on regular ortho imagery and true ortho imagery. The first tests were executed using
the FCN-8s architecture, which was pre-trained (Long et al., 2014). This architecture can be
considered as a baseline architecture on which improved architectures have been built (Shah,
2017). The architecture consists of an encoder that lowers the resolution of the image and a
decoder that is responsible for generating pixel-wise predictions out of the low resolution rep-
resentations. A test is executed on both the regular ortho imagery and the true ortho imagery.
The regular ortho imagery is retrieved from Beeldmateriaal7. Height information was not in-
cluded as the architectures did not yet allow for the addition of an extra band. For both the
regular ortho imagery and the true ortho imagery the data corresponding to the training area
was randomly subdivided into three parts, a training set (70%), validation set (15%) and a test
set (15%). The hyperparameters used were based on default settings and on the capacity of
the server used (table 3).

The MIoUs and the overall accuracies achieved on the validation set for both the model
based on regular ortho imagery and the one based on true ortho imagery are presented in
table 4. These results show that using true ortho imagery delivered better semantic segmenta-
tion results than when regular ortho imagery was used. Four results of applying the trained

6https://github.com/meetshah1995/pytorch-semseg
7https://www.beeldmateriaal.nl/
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networks are presented in figure 11 and 12. In these tests, the number of iterations was fixed,
instead of based on the performance on the validation data, height information was not in-
cluded and augmentation of the training data was not yet applied.

Hyperparameter Value
Training iterations 20 000
Loss function Cross entropy
Optimizer Adam
Learning rate 1.0 e-3
Number of workers 5
Batch size 5

Table 3: Hyperparameters used with the FCN8s architecture and both the regular ortho
imagery and the true ortho imagery.

MIoU OAcc
FCN-8s
(Ortho) 68.51 80.14

FCN-8s
(True ortho) 75.74 84.89

Table 4: Performance of the two models. Mean intersection over union (MIoU) and overall
accuracy (OAcc) are provided in percentages.

Figure 11: Example results of preliminary tests using the FCN-8s architecture and regular
ortho imagery.

It can be noted that predicted boundaries resulting from the regular ortho imagery test are
more fuzzy when compared to the boundaries predicted using the true ortho imagery. This
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Figure 12: Example results of preliminary tests using the FCN-8s architecture and true ortho
imagery.

was expected as the true ortho imagery is corrected for relief displacement. These results sup-
port the decision of this proposed research to use true ortho imagery rather than regular ortho
imagery.

Furthermore, the achieved overall accuracy on the true ortho imagery of 84.89% is already
similar to the achieved overall accuracy described in the related research section of 85.39%
from Liu et al. (2017) on non-eroded ground truth data. The accuracy of the preliminary results
for the building class is 88.35%, which is a bit lower than the 92.23% achieved by Liu and his
colleagues. Even though the used classes were not identical and the overall accuracy is not the
most inclusive performance measure, the similar value in overall accuracy is promising. This
statement can be made as, in contrast to these preliminary results, Liu and his colleagues did
already include height information and the specific architecture used and the hyperparameters
selected for these preliminary tests, where somewhat arbitrary.

6 Time planning

An overview of the time planning for this research is presented in figure 13. Writing of the
thesis will be done parallel to the research. From February onwards, one day a week will be
dedicated to writing.
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7 Tools and datasets used

7.1 Tools

In order to prepare the training and test data, QGIS software including the ‘GridSplitter’ tool
is used 8. The existing neural networks which will be tested and adjusted are mostly stored
on github and coded in python, using the open source machine learning framework PyTorch9.
This package uses tensors which are similar to NumPy’s ndarrays. These tensors can use
the power of GPUs to allow for fast computations. In addition, as the computational power
of used laptops are not sufficient, Docker is used to generate containers10. These containers
allow for training and testing of the networks on an external server.

7.2 Datasets

The aerial imagery used as input for the neural networks will be true ortho imagery gener-
ated by the company READAR. As described before, this is RGB aerial imagery with a 10
cm resolution and which is corrected for relief displacement. Relief displacement comprises
the problem that due to deviating distances from the central perspective and vertical relief,
too much information can be visible on one side of objects, while occlusions occur on other
sides of the objects in images (Sheng et al., 2003; Lemmens, 2011). The true ortho imagery
is generated using READAR’s dense matching software based on deep learning techniques.
In order to create this imagery, the software uses point clouds, which are obtained from the
national high resolution stereo imagery, captured during spring 2018, from Beeldmateriaal
Nederland11. In addition, interpolation techniques are used for estimating values where oc-
clusion has occurred. The resulting true ortho imagery contains an extra band providing in-
formation on whether or not the present pixel values were interpolated. The obtained point
clouds represent the absolute height relative to NAP per pixel and are converted to a digital
surface model (DSM). This DSM fulfils the role of the fourth band, the Z-band, in this research.

Furthermore, the dataset Basisregistratie Grootschalige Topografie (BGT) is used as a mask
layer for the training examples. This dataset has an accuracy of 20 centimeters and provides
detailed topographic information of The Netherlands. It can be accessed from the PDOK por-
tal12, which is the national open dataset portal for geo-information of the Dutch government.

8https://plugins.qgis.org/plugins/gridSplitter/
9 https://pytorch.org/

10https://www.docker.com/
11https://www.beeldmateriaal.nl/luchtfotografie-hoge-resolutie/
12http://pdok.nl
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B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous Detection and Segmenta-
tion. July 2014. URL https://arxiv.org/abs/1407.1808v1.

D. R. Hush and B. G. Horne. Progress in supervised neural networks. IEEE signal processing
magazine, 10(1):8–39, 1993.

M. Kampffmeyer, A.-B. Salberg, and R. Jenssen. Semantic Segmentation of Small Objects
and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional
Neural Networks. pages 1–9, 2016. URL https://www.cv-foundation.org/openaccess/

content_cvpr_2016_workshops/w19/html/Kampffmeyer_Semantic_Segmentation_of_

CVPR_2016_paper.html.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, May 2015. ISSN
0028-0836, 1476-4687. doi: 10.1038/nature14539. URL http://www.nature.com/articles/

nature14539.

M. Lemmens. Geo-information: technologies, applications and the environment, volume 5. Springer
Science & Business Media, 2011.

18

http://ieeexplore.ieee.org/document/1495508/
http://ieeexplore.ieee.org/document/1495508/
https://arxiv.org/abs/1704.06857v1
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://link.springer.com/10.1007/978-3-319-10584-0_23
http://link.springer.com/10.1007/978-3-319-10584-0_23
https://arxiv.org/abs/1407.1808v1
https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w19/html/Kampffmeyer_Semantic_Segmentation_of_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w19/html/Kampffmeyer_Semantic_Segmentation_of_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w19/html/Kampffmeyer_Semantic_Segmentation_of_CVPR_2016_paper.html
http://www.nature.com/articles/nature14539
http://www.nature.com/articles/nature14539


Y. Liu, D. Minh Nguyen, N. Deligiannis, W. Ding, and A. Munteanu. Hourglass-
ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery. Re-
mote Sensing, 9(6):522, May 2017. ISSN 2072-4292. doi: 10.3390/rs9060522. URL http:

//www.mdpi.com/2072-4292/9/6/522.

J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmenta-
tion. Nov. 2014. URL https://arxiv.org/abs/1411.4038v2.

S. Paisitkriangkrai, J. Sherrah, P. Janney, and A. Van-Den Hengel. Effective semantic pixel
labelling with convolutional networks and Conditional Random Fields. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 36–43, Boston,
MA, USA, June 2015. IEEE. ISBN 978-1-4673-6759-2. doi: 10.1109/CVPRW.2015.7301381.
URL http://ieeexplore.ieee.org/document/7301381/.

X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun. 3d Graph Neural Networks for RGBD Semantic
Segmentation. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 5209–
5218, Oct. 2017. doi: 10.1109/ICCV.2017.556.

R. Qin, J. Tian, and P. Reinartz. 3d change detection – Approaches and applications. ISPRS
Journal of Photogrammetry and Remote Sensing, 122:41–56, Dec. 2016. ISSN 09242716. doi:
10.1016/j.isprsjprs.2016.09.013. URL https://linkinghub.elsevier.com/retrieve/pii/

S0924271616304026.

M. A. Rahman and Y. Wang. Optimizing Intersection-Over-Union in Deep Neural Networks
for Image Segmentation. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, F. Porikli, S. Skaff,
A. Entezari, J. Min, D. Iwai, A. Sadagic, C. Scheidegger, and T. Isenberg, editors, Advances in
Visual Computing, volume 10072, pages 234–244. Springer International Publishing, Cham,
2016. ISBN 978-3-319-50834-4 978-3-319-50835-1. doi: 10.1007/978-3-319-50835-1 22. URL
http://link.springer.com/10.1007/978-3-319-50835-1_22.

S. Saito, T. Yamashita, and Y. Aoki. Multiple Object Extraction from Aerial Imagery with Con-
volutional Neural Networks. Electronic Imaging, 2016(10):1–9, Feb. 2016. ISSN 2470-1173.
doi: 10.2352/ISSN.2470-1173.2016.10.ROBVIS-392. URL http://www.ingentaconnect.

com/content/10.2352/ISSN.2470-1173.2016.10.ROBVIS-392.

A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng. On random weights and
unsupervised feature learning. In ICML, volume 2, page 6, 2011.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Inte-
grated recognition, localization and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

M. P. Shah. Semantic Segmentation Architectures Implemented in PyTorch.
https://github.com/meetshah1995/pytorch-semseg, 2017.

Y. Sheng, P. Gong, and G. S. Biging. True Orthoimage Production for Forested Areas from
Large-Scale Aerial Photographs. Photogrammetric Engineering & Remote Sensing, 69(3):
259–266, 2003. ISSN 0099-1112. doi: doi:10.14358/PERS.69.3.259. URL https://www.

ingentaconnect.com/content/asprs/pers/2003/00000069/00000003/art00002.

C. Shorten and T. M. Khoshgoftaar. A survey on Image Data Augmentation for Deep
Learning. Journal of Big Data, 6(1):60, Dec. 2019. ISSN 2196-1115. doi: 10.1186/
s40537-019-0197-0. URL https://journalofbigdata.springeropen.com/articles/10.

1186/s40537-019-0197-0.

19

http://www.mdpi.com/2072-4292/9/6/522
http://www.mdpi.com/2072-4292/9/6/522
https://arxiv.org/abs/1411.4038v2
http://ieeexplore.ieee.org/document/7301381/
https://linkinghub.elsevier.com/retrieve/pii/S0924271616304026
https://linkinghub.elsevier.com/retrieve/pii/S0924271616304026
http://link.springer.com/10.1007/978-3-319-50835-1_22
http://www.ingentaconnect.com/content/10.2352/ISSN.2470-1173.2016.10.ROBVIS-392
http://www.ingentaconnect.com/content/10.2352/ISSN.2470-1173.2016.10.ROBVIS-392
https://www.ingentaconnect.com/content/asprs/pers/2003/00000069/00000003/art00002
https://www.ingentaconnect.com/content/asprs/pers/2003/00000069/00000003/art00002
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0


M. Volpi and D. Tuia. Dense semantic labeling of subdecimeter resolution images with convo-
lutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 55(2):881–893,
2016.

Q. Wang, J. Lin, and Y. Yuan. Salient Band Selection for Hyperspectral Image Classification
via Manifold Ranking. IEEE Transactions on Neural Networks and Learning Systems, 27(6):
1279–1289, June 2016. ISSN 2162-2388. doi: 10.1109/TNNLS.2015.2477537.

Y. Yuan, D. Ma, and Q. Wang. Hyperspectral Anomaly Detection by Graph Pixel Selection.
IEEE Transactions on Cybernetics, 46(12):3123–3134, Dec. 2016. ISSN 2168-2275. doi: 10.1109/
TCYB.2015.2497711.

H. Zhu, F. Meng, J. Cai, and S. Lu. Beyond pixels: A comprehensive survey from bottom-up
to semantic image segmentation and cosegmentation. Journal of Visual Communication and
Image Representation, 34:12–27, Jan. 2016. ISSN 10473203. doi: 10.1016/j.jvcir.2015.10.012.
URL https://linkinghub.elsevier.com/retrieve/pii/S1047320315002035.

20

https://linkinghub.elsevier.com/retrieve/pii/S1047320315002035

	Introduction
	Related work
	Deep learning
	CNNs
	Semantic segmentation of aerial imagery using CNNs

	Research questions
	Methodology
	Selection and adjustment of CNNs
	Training and test data generation
	Training of CNNs
	Height information, class differences and resolution

	Preliminary results
	Analysis of the BGT
	Preliminary tests

	Time planning
	Tools and datasets used
	Tools
	Datasets


