A model of car-following behavior at sags

B. Goñi Ros, V.L. Knoop, W.J. Schakel, B. van Arem, S.P. Hoogendoorn

25th September 2013

Jülich Supercomputing Centre Traffic and Granular Flow '13

Outline

- 1. Background
- 2. Car-following model
- 3. Empirical data
- 4. Simulation study
- 5. Conclusions

What is a sag?

• **Sag**: freeway section along which the gradient changes significantly from downwards to upwards

What is car-following behavior?

Car-following behavior at sags

Sags become freeway bottlenecks

- Those changes in car-following behavior have a negative influence on freeway capacity
 - Capacity is 10-20% lower at sags than at flat sections
- In conditions of high demand, traffic breaks down at sags → capacity drop

Car-following model

Influence of gradient: principles

- 1. Drivers perceive the change in gradient at sags
- 2. Drivers are not able to fully compensate for the increase in resistance force at the beginning of the uphill section
 - Limiting effect on vehicle acceleration
- 3. Along the uphill section, drivers are able to gradually compensate for the increase in resistance force
 - The limiting effect on vehicle acceleration decreases over time/space

Car-following model

Formulation

- Acceleration: $\dot{v}(t) = f_1(t) + f_2(t)$
- First term: influence of speed, gap and relative speed (≈ IDM)

$$f_1(t) = a \cdot \left[1 - \left(\frac{v(t)}{v_{des}(t)} \right)^4 - \left(\frac{s^*(t)}{s(t) - l} \right)^2 \right]$$

where:
$$s^*(t) = s_0 + v(t) \cdot T(t) + \frac{v(t) \cdot \Delta v(t)}{2 \cdot \sqrt{ab}}$$

Safe time gap (s)
$$T(t) = \begin{cases} T_0 & \text{if } v(t) \geq v_{crit} \\ \gamma \cdot T_0 & \text{if } v(t) < v_{crit} \end{cases} \qquad \gamma \cdot T_0$$

... to model the capacity drop

Car-following model

Formulation

- Acceleration: $\dot{v}(t) = f_1(t) + f_2(t)$
- Second term: influence of gradient

$$f_2(t) = -g \cdot [G(t) - G_c(t)]$$

where:
$$G_c(t) = \begin{cases} G(t) & \text{if } G(t) \leq G(t_c) + c \cdot (t - t_c) \\ G(t_c) + c \cdot (t - t_c) & \text{if } G(t) > G(t_c) + c \cdot (t - t_c) \end{cases}$$

if
$$G(t) \leq G(t_c) + c \cdot (t - t_c)$$

if
$$G(t) > G(t_c) + c \cdot (t - t_c)$$

$$t_c = \max(t \mid G_c(t) = G(t))$$

Maximum gradient compensation rate (s-1)

Empirical data

Study site

- Yamato sag, Tomei Expressway (Japan)
- 3 lanes

Empirical data

Speed and flow data

- Bottleneck location (head of the queue):
 - > $x \approx 22.5$ km, 500 m downstream of the bottleneck (camera 8)

x = 22.5 km (bottleneck)

Simulation study

Results

x = 3200 m (bottleneck)

Conclusions

- New car-following model that takes into account the influence of gradient on vehicle acceleration
- Formulation: IDM + 1 additional parameter
- Key phenomena reproduced by our model:
 - ✓ Vehicle acceleration limitation
 - Reduced capacity
 - ✓ Bottleneck location
 - Capacity drop in congestion
- Use of the model to test the effectiveness of control measures to mitigate congestion at sags

Any questions?

b.goniros@tudelft.nl

Parameters

Vehicle type	Car	Car	Car	Truck
Driver type	Car driver 1	Car driver 2	Car driver 3	Truck driver
<i>l</i> (m)	4	4	4	15
$a_0 (\text{m/s}^2)$	1.25	1.25	1.25	0.50
$b_0 (\text{m/s}^2)$	1.80	1.80	1.80	1.50
T_0 (s)	1.45	1.20	1.15	1.50
s_0 (m)	3	3	3	3
v_{lim} (km/h)	100	100	100	85
v_{max} (km/h)	150	150	150	100
v_{crit} (km/h)	60	60	60	60
$c_0 (\mathrm{s}^{-1})$	0.00042	0.00042	0.00042	0.00042
γ (-)	1.15	1.15	1.15	1.15
$\bar{\delta}$ (-)	0.92	0.97	1.03	1.00
σ_{δ} (-)	0.03	0.10	0.10	0.00
$\overline{v}_{des,t}$ (km/h)				85
$\sigma_{v_{des,t}}$ (-)				2.5
$T_{min,0}$ (s)	0.56	0.56	0.56	0.56
τ (s)	25	25	25	25
x_0 (m)	200	200	200	200
v_{gain} (km/h)	70	50	50	70
d_{free}^{ij} (-)	0.365	0.365	0.365	0.365
d_{sync}^{ij} (-)	0.577	0.577	0.577	0.577
d_{coop}^{ij} (-)	0.788	0.788	0.788	0.788

