
IEEE Transactions on Power Systems, Vol. 5, No. 1, February 1990

A RANK-ORIENTED SETUP FOR THE COMPENSATION ALGORITHM

Robert A.M. van .Amerongen

Delft University of Technology
Faculty of Electrical Engineering

Mekelweg 4, 2628 CD Delft, the Netherlands

283

Abstract - A procedure is given that solves
modified network equations much more efficiently if the
modification description suffers from rank deficiency.
The key to the method lies in the application of a
low-order product factorization to the modification
matrix.
Consequently, the dimension of the reduced system will
be determined by the rank of the modification and,
thus, the computational process can be considerably
speeded up.

nodes. Two algorithms for the low-order product
factorization are summarized in the appendix.

Test results are given for networks up to 944

Keywords: network analysis, network modification,
compensation algorithms.

1. INCRODUCLTON

Many network computations in power system
engineering require the solution of a large set of
sparse linear or linearized equations all of which
differ from a base case in respect of a small
structural or parametrical change. Presuming that the
coefficient matrix of the base case is held in its
factorized form, and as the number of nodes that are
related to this change usually is very small in
comparison with the system size, a full refactorization
of the modified coefficient matrix is wasteful and one
has to choose from either compensation or partial
matrix factor adaptation.

change into additional injections at those nodes that
are involved with the modification. The current
algorithms [2] take .full advantage of the restricted
size of the network modification by using sparse vector
techniques 131. With all these methods, the factorized
coefficient matrix remains unchanged; the network
change is taken into account before, during or after
the substitutions depending on the specific type of
compensation algorithm that is used. Applications of
these techniques can be found in present-day procedures
for fault analysis I4,51 and contingency screening 161.

adaptation [71 directly affects the matrix factors by
selectively refactorizing or updating only those rows
and columns of the factors that undergo changes.
Examples of applications can be found in algorithms
for contingency screening 161 and for adjusted load
flow solutions [81.

A modification setup is usually node oriented: a
small matrix is made of which the dimension is equal
to the number of nodes that are involved with the
modification and which contains the description of
this modification. With the aid of sparse matrices,

Basically, compensation [I] translates the network

On the other hand, partial matrix factor

89 SM 678-4 PWRS
by the IEEE Power System Engineering Committee of the
IEEE Power Engineering Society for presentation at the
IEEE/PES 1989 Summer Meeting, Long Beach, California,
July 9 - 14, 1989. Manuscript submitted January 30, 1989;
made available for printing June 15, 1989.

A paper recommended and approved

consisting of unity vectors, the modification is
connected to the full-sized matrix.

An alternative to this setup is the branch-
oriented one: the modification is made of branch
parameter changes and the connection matrices become
branch-node incidence matrices [9]. Consequently, the
dimension of the basic-modification matrix is now
determined by the number of branches. This setup is
preferred to the node-oriented one if the dimension of
the basic modification is less than the number of
nodes, because it will produce the fastest solution to
the modified set of equations. This phenomenon always
holds if the basic-modification matrix in a node-
oriented setup is rank deficient.

that do suffer from rank deficiency but that are
seemingly inconvertible to a form similar to the
branch-oriented setup. The use of a node-oriented
setup thus is inevitable and, as a consequence,
prospective computational speed-up is relinquished.
This situation can usually be found in structural
network changes that are related to node creation:
bus splits, breaker openings and so on,

of low-order product forms (1.o.p.f.). By 1.o.p.f.
we mean the decomposition of an m-dimensional basic-
modification matrix of rank r into the product of two
mxr matrices and an r-dimensional square (usually
diagonal) matrix. This enables us to make a
modification setup with the lowest possible dimension
i.e. the rank r.

The idea of using 1.o.p.f. is not a new one:
presumably Alvarado was the first one who used it, and
then in the context of a fault-analysis procedure 141.
In this paper we give a procedure that takes full
advantage of its use. It is necessary also to give a
different procedure to handle newly introduced nodes:
current practice seems either to extend the reduced
system in that new nodes can be handled explicitely or
to reactivate dummy nodes in the full system; we give
a procedure where the new nodes are eliminated from
the description of the mcdification. This produces a
modification with the smallest rank possible.

Although the technique is applicable both to
partial matrix factor adaptation and to compensation,
we restrict the treatment of this Setup to the latter
category, because our primary intention was to enhance
current compensation algorithms. The question as to
whether or not this new setup affects the
discriminatory use of compensation and matrix factor
adaptation (the former for simple and temporary
modifications in a network solution that is.solved
only once, the latter for complicated or permanent
changes or those that must be solved repeatedly) will
remain unanswered.

The main part of this paper, therefore, concerns
the introduction of the rank-oriented compensation
algorithm (section 3) and its performance compared
with the node-oriented one (section 41, that, itself,
is summarized in section 2. Because rank deficiency
often stems from structural changes related to node
creation, section 5 uses the example of a bus split to
show how to handle such cases and why the rank-
oriented compensation algorithm is so beneficial in
these cases. (The same. procedure can be applied to
fault-analysis procedures as well, but due to the
complexity surrounding the use of different sequence
networks and the occurrence of solid connections, it

There are, however, certain types of modifications

This paper will fill this gap by using the concept

0885-8950/90/0200-0283/S01.~ 0 1990 IEEE

284

will be the subject of another paper.) Finally, two
algorithms for low-order product factorization are
given in an appendix.

2. NODE-ORIENTED COMPENSATION ALGORITHM 123

Let us assume that the following set of equations
must be solved:

where

M ~ , M ~ m-column connection matrices

A a m%m basic-modification matrix

x, vectors of unknowns and k n m s

A a coefficient matrix that is held in its

-
respectively

factorized form: A = LU

The modification concerns m nodes of the network.
With a node-oriented setup of the modification, each
connection matrix thus consists of m unity-vectors.
The basic-modification matrix is rank deficient. The
symbolical solution of (2.1) is given by the matrix-
inversion lemma:

where

s = (M?p-lM1~ + I)
I a unity matrix

(2.2)

In actual computations the extreme sparsity of
the connection matrices can most effectively be
exploited by using the mid-compensation algorithm. The
solution (2.2) must be rewritten into:

where

L, U the triangular factors of A: A = LU

In the computational procedure to obtain (2.4) we
distinguish four steps that are relevant for the
comparison with the new algorithm. These steps are:

I

I1

the preparatory step. This step mainly involves
the calculation and the factorization of S (2.3)
in the following way:

w1 = L-'M~ (2.5)

W; = M2U (2.6)
T -1

w3 = W)il

s = (w3A + I)

Both the W-matrices (2.5) and (2.6) are obtained
by solving the related sets of linear equations by
fast forward substitutions, followed by the
calculation of their product (2.7). Finally, S is
calculated and is factorized.

the network forward solution. In this step an
intermediate vector is calculated:

111

IV

the compensation step. In this step the
intermediate result (2.9) is modified to reflect
the modification of the coefficient matrix:

- h := 5 - W1AS-'W;& (2.10)

by performing the multiplications and the low-
dimensional substitutions (related to the
factorized S) from the right to the left, and by
using the results of step I.

the network back solution. This step completes the
computation of (2.4) by performing the back
substitution that yields:

- x = U-lh - (2.11)

Those steps that are relevant for a comparison with
other modification setups are the steps I and 111.
Aside from the network size, the computational
effort for the first step is roughly determined by the
number of substitutions to obtain both (2.5) and (2.6)
and by the number of multiplications to obtain (2.7).
The first one depends linearly and the second one
depends quadratically on the number of nodes m. On
average, the effort increases progressively with m.
The computational effort for the compensation step
also depends progressively on m.

3. RANK-ORIENTED COMPENSATION ALGORITHM

With the node-oriented compensation setup as
sketched in the previous section, the number of nodes
that are involved in the modification (m) is the
relevant factor that determines the computational
effort. However, if the modification has a rank r and
if r is less than m, then it is worthwhile remodelling
the modification in that this rank becomes the
determining factor. This conversion can be obtained by
factorizing the basic-modification matrix according
to:

A = QbT (3.1)

where

A the basic-modification matrix of order m
and of rank r

P,Q matrices of order mxr

21 a diagonal matrix of order r

Such a factorization can be obtained with, for
instance, a singular-value decomposition [I O] or with
a modified version of the usual LDU triangular
factorization. In the appendix two algorithms of the
latter type are given.

problem (2.1) the new set of equations that is to be
solved is given by:

If we combine this factorization with the original

(A + %,?i$)X = & (3.2)

where

%, = MIQ

fi: = PTM;

From now on, we
in the previous
is given by:

-1
X = (A - -

(3.3)

(3.4)

can globally use the same procedure as
section. Thus, the symbolic solution

A- 'iil~- lii;~-') (3.5)

with a forward substitution.
where

(3.6) g = (f i y f i + E-1)
2 1

With mid-compensation (3.5) becomes:

-1 - x = u (1 - L-~A,F~-'A;U-')L-'~ (3.7)

Analogous to those used in the previous section,
we give the four steps:

I

I1

I11

IV

the preparatory step. This one now includes and
starts with the 1.o.p.f. (3.1) and the setup of
the connection matrices (3.3) and (3.4), and
continues with the calculation of:

fi = L-'fi

p = fiTu-l
1 1

2 2

by solving the related
forward substitutions;

0, = qtS1
and, finally:

-1 E = (G + E) 3

This matrix is held in

(3.8)

(3.9)

set of equations with fast
their product:

(3.10)

(3.11)

a factorized form.

the network forward solution. This step is the
same as the one in the previous section: a forward
substitution yields an intermediate vector:

(3.12)

the compensation step: the intermediate result is
adapted according to:

(3.13)

the network back solution: this yields the final
result:

- x = U-lh (3.14)

This setup differs from the node-oriented one in
respect to two points: first, the number of columns
(the dimension of the reduced system) is now
determined by the rank of the modification r instead
of the number of nodes m; the lower the rank/node
ratio the larger the computational advantage in
prospect. Second, the basic modification has become of
full-rank: additional (low-dimensional) matrix-matrix
multiplication (see (2.8)) and matrix-vector
multiplication (see (2.10)) are unnecessary. Note that
the modification matrix Eisin diagonal form; its
inverse, therefore, is obtained at no cost.

4. THE PERFORMANCE OF THE NEW ALGORITHM

Many tests to establish the extent of the advantage
of the rank-oriented setup over the node-oriented setup
have been carried out. Each test for both setups
involved the solution of a modified network problem
where both the coefficient matrix and its modification
were symmetric. To simulate rank deficiency, the
modification matrix was artifically created for several
values of the rank and of the size. In particular we
were interested in the influence of these factors and
of the network size on the CPU-time.

The networks that are used are synthetic ones made
out of the 118-node test system. We experimented with a
variety of the set of nodes that constitutes the area
of the modification. Because each set was chosen so
that the nodes are topologically related to each other,

285

in the performances. (With randomly chosen nodes
things are quite different.) This result is in
accordance with the observations reported in [3].

Further, we performed experiments to find the
fastest method to obtain the reduced system (2.7) in
the node-oriented setup. There are two options: in the
first, m separate sets of equations are solved in
order to obtain the W-matrices, each with its own
(conceptual) path, followed by sparse-vector inner-
product calculations. In the second method we
exploited the fact that the factorization p a w of
topologically connected nodes are strongly related in
that they largely coincide. Therefore, the union of
these paths is determined and this is used to perform
all the fast forward substitutions "in parallel".
Consequently, the calculation of (2.7) out of the W-
matrices deteriorates into a simple matrix-matrix
multiplication.

was faster than the first, in spite of the network
size and in spite of the modification size. Therefore,
we will take this second method as the preferential
method for the node-oriented setup.

matrices where each column has an identical sparsity
structure and, therefore, the use of the united path
and "parallel" computations on all these columns
(analogous to the second method above) speaks for
itself. For -the interpretetion of the results that are
given below, it is important to note that both setups
now are identical in respect of the calculation of the
reduced systems (2.7) and (3.10) insofar as the
precise computations and the sparsity pattern of the
connection matrices are concerned, and that they differ
only in the number of columns of the connection
matrices. Therefore, we may expect that for a
modification with a high rank/node ratio no
significant profit can be gained, while modifications
with extremely low rank/node ratios will largely gain.

for the four steps that are distinguished in the
previous sections. A typical example is given in table
1. The network solution requires the same effort in
each setup; differences in computation time are solely
attributable to the preparatory step and to the
compensation step. From this result, we can calculate
two saving ratios:

For all cases that were studied, the second method

The rank setup automatically produces connection

For all the test cases we recorded the CPU-time

- the saving as a percentage of the total CPU-time
that is required for the solution with the node
setup - the saving as a percentage of the CPU-time that
is required for the preparatory and the
compensation steps in the node setup.
For the example of table 1 these percentages are

42% and 58% respectively.

Table 1. Elapsed time (ms) for the calculation of a
modified network solution. Network size:
708 nodes; number of nodes involved in the
modification: 15; rank of the modification: 7
(IBM 3083 mainframe; full optimizing VS-
FORTRAN compiler).

node-oriented rank-oriented
CPU-time % CPU-time %

I preparatory 16.40 61 6.44 24
11 network forward 3.46 13 3.44 13

IV network back 3.78 14 3.77 14

total 26.87 100 15.46 58

I11 compensation 3.23 12 1.81 7

- - - -

We calculated these saving percentages for many
there was hardly any difference networks; the results are given in table 2.

286

Table 2. Savings (in percentages) forrank-oriented modified network solutions for various network sizes
and various values for m (nodes involved) and for r (the rank). Each entry shows xx/yy where xx
is the saving with respect to the total node-oriented CPU-time and yy is the saving with respect
to the time needed for the steps I and 111 in the node-oriented setup.

354-node network I 472-node network I 708-node network
~

m=15

10/12
22/28
38/48
47/59
57/73
65/82
68/86

m=10

8/12
21/32
37/56
47/71
50/77

21/27
37/48
45/59

m=10

6/10
21/34
37/59
44/71
48/76

19/26

m=5

7/17
17/43
22/55

944-node network

19/27

5/14
17/44
22/57

They show a general trend that can be summarized as In these examples symmetry was assumed throughout;
follows:

- for the saving expressed as a percentage of the
total network solution CPU-time:
- for each network size, the greatest savings are
obtained for those cases with a large m and a
small r; these saving percentages decrease as
the network size grows

- even modifications with a nearly full rank can
gain from the rank setup

- modifications that involve many nodes can more
easily gain than modifications that involve only
a small number of nodes

- for the saving expressed as a percentage of the
preparatory step and the compensation step together:
- again, the greatest saving occurs for the cases
with a large m and a small r, the saving
percentages stay mainly constant with growing
network size

is independent of the network size and increases
with growing m.

These global results, stylized, are depicted in

- the saving as a function of the rank/node ratio

the figures la and lb.

note that in the unsynrmetric case the savings will be
even greater.

5. AN EXAMPLE: THE SIMULATION OF A BUS SPLIT

In this section we will give an example of a
typical power system computation that is perfectly
suited to be solved with the rank-oriented
compensation algorithm. It concerns the simulation of
a bus split in a DC load flow context.

Assume a node, node 2 in the example depicted in
figure 2, is split and one wants to know the voltage
angles in this case. The split of this node creates a
new node 1. If we use the subscripts e and n to refer
to the new node and to the original network nodes
respectively, the set of equations that are to be
solved is given by:

where

100

t

0 rank/node r a t i e 1

10 4

0 rank/node ratio 1

Figure la. CPU-time saving of the rank-oriented figure lb. CPU-time saving of the rank-oriented
setup as a percentage of the total
CPU-time for the node-oriented setup.

setup as a percentage of the time for
the preparatory step and the compensation
step in the node-oriented setup.

281

After the reduction, the 4x4 matrix becomes:

[Cb -b3 -b4 -b5 1

I figure 2. Bus-split example.

p

pe
e

Be
A

the injected powers at the nodes of the network

the injected power at the new node

the angles of the network nodes

the angle of the new node

the 5x5 basic-modification matrix, partitioned
into the 1x1 Bee, the 1x4 A-, the 4x1 Ane and
the 4x4 Am submatrices

the factorized DC load flow matrix

-n

-n

M M the 4-column connection matrices

A
1, 2

The solution is found by first eliminating the
voltage angle of the new node 1 from this set. This
causes the set (5.1) to be changed into:

(A + Mi AredMZ)$ = $ + cd (5.2)

where the reduced basic-modification matrix is:

Ared - (5.3) - - AneAiaben
and the distributed power (among the adjacent nodes)
is:

p r d = - ~ A A-lp (5.4)
-e 1 ne ee e

The elimination of the new node causes the problem to
be brought into a standard modification form and it can
be solved with the scheme as given in section 3.
Finally, the angle of the eliminated node 1 can be
found with a back substitution using the results of the
elimination step.

The important point with regard to the core of
this paper is, of course, the rank of the (reduced)
basic-modification matrix (5.3). This rank is 1,
regardless of the number of nodes involved. This can
be seen as follows: the 5x5 (unreduced) modification
matrix is:

A =

where

b3 b4 bs

4 -b 5

b3 -b3 0 0 0

b4 -b4 0 0 0

b5 -b5 0 0 0

-Cb 0

0 Cb -b3 -b

(5.5)

b3, b4, b5 the series susceptances of the lines
connected to the nodes 3, 4 and 5
respectively (resistances ignored)

the sum of these series susceptances. Cb

b3b3 b3b4 b3b5

b4b3 b4b4 b4b5

-b ---
3 Cb Cb Cb Area =

-b ---
4 z b zb zb

The low-order product factorization yields:

In this case it is even possible to obtain the
desired decomposition from branch quantities directly
instead of from numerical factorization.

is 2: the reduction not only reduces the dimension
from 5 to 4, it also reduces the rank from 2 to 1.
This manner of handling new nodes, therefore, is the
best one because it will facilitate a modification
setup with the smallest rank.

We presented th is example in a quite simple way,
because we only wanted to show the relation between a
node split and the very low rank of the modification
that is caused by it. In an actual computation,
however, the elimination (or the partial factorization
followed by a partial forward substitution) and the
back substitution must be applied to the 5x5 basic
modification. Further, for this specific application
it is worthwhile rearranging (5.1) in that the
injected parers and the angles of the network nodes
are not expressed in levels but in differences. This
will permit the replacement of a full forward network
substitution by a fast forward substitution.

It is interesting to note that the rank of (5.5)

6. CONCLUSIONS

In this paper a new variant of the compensation
algorithm is given that is designed to profit from
rank deficiency. The crux of the method is the
factorization of a rank-deficient matrix into a low-
order product form. This facilitates a modification
setup with a reduced system of the smallest possible
dimension.

modification are topologically related, this rank-
oriented setup is nearly always much faster than the
strict node-oriented one. Test results show that for
network sizes ranging from 354 to 944 nodes, the
computation time for a complete, modified, network
solution reduces to a range from 20 to 35%. This
reduction is largely due to a more efficient
calculation of the reduced system.

network modifications and, therefore, the most
appealing application field can be found in procedures
for fault analysis and contingency analysis.

Provided that the nodes that are involved in the

Rank deficiency is usually caused by structural

288

REFERENCES

[I] TiMey, w.F.: "Compensation nethods for Network
solutions by Optimally Ordered Triangular
Factorization", IEEE Transactions on Power
Apparatus and Systems, vol. PAS-91, 1972, pp. 123-
127.

oriented Compensation Methods for Modified Network
Solutions", IEEE Transactions on Power Apparatus
and Systems, Vol. PAS-102, 1983, pp. 1050-1060.

[3] Tinney, W.F., V. Brandwajn, S.M. Chan: "Sparse
Vector Methods", IEEE Transactions on Power
Apparatus and Systems, vol. PAS-104. 1985, pp.

[41 Alvarado, F.L., S.K. Mong, M.K. Enns: "A Fault

121 Alsag, O., B. Stott, W.F. Tinney: "Sparsity-

295-301.

Program with Macro's, Monitors and Direct
Compensation in Mutual Groups", IEEE Transactions
on Power Apparatus and Systems, vol. PAS-104,
1985, pp- 1109-1120.

[5] Brandwajn, V., W.F. Tinney: "Generalized Method of
Fault Analysis", IEEE Transactions on Power
Apparatus and Systems, vol. PAS-104, 1985, pp.
1301-1306.

161 Brandwajn, V., M.G. Lauby: "Complete Bounding
Method for AC Contingency Screening", Paper 88 SM
726-2, presented at the IEEE-PES 1988 Summer
Meeting, Portland, Oregon, July 1988.

171 Chan, S.M., V. Brandwajn: "Partial Matrix
Refactorization", IEEE Transactions on Power
Systems, vol. PWRS-1, 1986, pp. 193-200.

[8] Chang, S.-K., V. Brandwajn: "Adjusted Solutions in
Fast Decoupled Load Flow", IEEE Transactions on
Power Systems, vol. PWRS-3, 1988, pp. 726-733.

[9] Aitchison, P.W., J.L.R. Pereira, A. Brameller:
"Extensions and Singularities in Compensated
Network Solutions Applicable to Security
Monitoring", Proc. IEE, vol. 134, prt. C, 1987,

1101 Wilkinson, J.H.: "Singular-value Decomposition-
pp. 123-129.

Basic Aspects", in: Jacobs, D.: Numerical
Software-Needs and Availability, London, Academic
Press, 1978.

APPENDIX

In this appendix two algorithms are presented for
the determination of a low-order product form.
Basically, they follow the well-known LDU
factorization: at each step a new column of the lower
triangular matrix and a new row of the upper
triangular matrix is calculated. At the same time, the
relevant right-lower part of the original matrix is
modified accordingly (outer-product factorization).
With the 1.o.p.f. the procedure terminates if the
remaining right-lower part of the matrix consists of
zero elements (r<m) or if this matrix is empty (m).
A permutation is carried out in order that the largest
absolute diagonal element becomes the pivot element;
this step could be restricted to the case where the
current pivot element is too small.

the unsymmetric one (algorithm 1) in that only the
lower triangular part of the matrix needs to be set.
After termination of the algorithm, r holds the rank
of the matrix. The first r columns of Q (and P) and
the first r diagonal elements of D contain the
required decomposition.

Algorithm I. Unsymmetric factorization A=QDP~

The symmetric version (algorithm 2) differs from

initialize:
iperm(i) := i i=l ,m

P:= 0
D:= A
eps:= termination tolerance (f.i. 1.0d-05)

Q:= 0

do for l=l,m
search for the largest absolute diagonal entry
d(i,i) for i=l,m; let d(k,k) be this entry;
if (ld(k,k)I < eps) then

r=l-1
terminate

end if
if (k.ne.1) then

interchange:
iperm(k) <-> iperm(1)
d(i,l) <-> d(i,k) i=l,m
d(1,j) <-> d(k,j) j=l,m

end if
set columns 1 of Q and P:
q(iperm(i) ,l) :=d(i,l)/d(l,l) i=l,m
p(iperm(j),l) :=d(l, j)/d(l,l) j=l,m
eliminate node 1:
d(i, j) :=d(i, j)-d(i,l)*d(l, j)/d(l,l) i=l+l,m;

j=l+l ,m
end do
r=m
terminate

Algorithm 2. Symmetric factorization A=QDQT

initialize:
iperm(i) := i i=l ,m
Q:= 0
D:= A (only lower triangular part need to be set)
eps:= termination tolerance (f.i. 1.Od-05)

do for l=l,m
search for the largest absolute diagonal entry
d(i,i) for i=l,m; let d(k,k) be this entry;
if (ld(k,k) I < eps) then

r=l-1
terminate

end if
if (k.ne.1) then

interchange :
iperm(k) <-> iperm(1)
d(i,l) <-> d(k,i) i=l+l,k-1

d(i,l) <-> d(i,k) i=k+l,m
d(1,l) <-> d(k,k)

end if
set column 1 of Q:
q(iperm(i) , 1) :=d (i, 1) /d (1,l)
eliminate node 1:
d (i, j) :=d(i, j) -d(i, 1) *d (j ,l) /d (1,l)

i=l,m

i=l+l ,m;
j=l+l , i

end do

terminate
r=m

Robert A.M. van Amerongen was born
in Heemstede (the Netherlands) on
May 3, 1950. He studied electrical
engineering at the Delft
University of Technology, and
economics at the Erasmus
University Rotterdam and the
University of Amsterdam. He
received his Msc. Electrical
Engineering in 1978 and his
Master's in Economics in 1987.

In 1978 he entered the power system laboratory Of
the TH Delft as a research assistent. Nowadays he is
responsible for education and research. His main areas
of interest are electric power-system analysis, in-
cluding network calculation and its applications,
optimization and estimation.

