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Abstract - A procedure is given that solves 
modified network equations much more efficiently if the 
modification description suffers from rank deficiency. 
The key to the method lies in the application of a 
low-order product factorization to the modification 
matrix. 
Consequently, the dimension of the reduced system will 
be determined by the rank of the modification and, 
thus, the computational process can be considerably 
speeded up. 

nodes. Two algorithms for the low-order product 
factorization are summarized in the appendix. 

Test results are given for networks up to 944 

Keywords: network analysis, network modification, 
compensation algorithms. 

1. INCRODUCLTON 

Many network computations in power system 
engineering require the solution of a large set of 
sparse linear or linearized equations all of which 
differ from a base case in respect of a small 
structural or parametrical change. Presuming that the 
coefficient matrix of the base case is held in its 
factorized form, and as the number of nodes that are 
related to this change usually is very small in 
comparison with the system size, a full refactorization 
of the modified coefficient matrix is wasteful and one 
has to choose from either compensation or partial 
matrix factor adaptation. 

change into additional injections at those nodes that 
are involved with the modification. The current 
algorithms [2]  take .full advantage of the restricted 
size of the network modification by using sparse vector 
techniques 131. With all these methods, the factorized 
coefficient matrix remains unchanged; the network 
change is taken into account before, during or after 
the substitutions depending on the specific type of 
compensation algorithm that is used. Applications of 
these techniques can be found in present-day procedures 
for fault analysis I4,51 and contingency screening 161. 

adaptation [71 directly affects the matrix factors by 
selectively refactorizing or updating only those rows 
and columns of the factors that undergo changes. 
Examples of applications can be found in algorithms 
for contingency screening 161 and for adjusted load 
flow solutions [81. 

A modification setup is usually node oriented: a 
small matrix is made of which the dimension is equal 
to the number of nodes that are involved with the 
modification and which contains the description of 
this modification. With the aid of sparse matrices, 

Basically, compensation [I] translates the network 

On the other hand, partial matrix factor 
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consisting of unity vectors, the modification is 
connected to the full-sized matrix. 

An alternative to this setup is the branch- 
oriented one: the modification is made of branch 
parameter changes and the connection matrices become 
branch-node incidence matrices [9]. Consequently, the 
dimension of the basic-modification matrix is now 
determined by the number of branches. This setup is 
preferred to the node-oriented one if the dimension of 
the basic modification is less than the number of 
nodes, because it will produce the fastest solution to 
the modified set of equations. This phenomenon always 
holds if the basic-modification matrix in a node- 
oriented setup is rank deficient. 

that do suffer from rank deficiency but that are 
seemingly inconvertible to a form similar to the 
branch-oriented setup. The use of a node-oriented 
setup thus is inevitable and, as a consequence, 
prospective computational speed-up is relinquished. 
This situation can usually be found in structural 
network changes that are related to node creation: 
bus splits, breaker openings and so on, 

of low-order product forms (1.o.p.f.). By 1.o.p.f. 
we mean the decomposition of an m-dimensional basic- 
modification matrix of rank r into the product of two 
mxr matrices and an r-dimensional square (usually 
diagonal) matrix. This enables us to make a 
modification setup with the lowest possible dimension 
i.e. the rank r. 

The idea of using 1.o.p.f. is not a new one: 
presumably Alvarado was the first one who used it, and 
then in the context of a fault-analysis procedure 141. 
In this paper we give a procedure that takes full 
advantage of its use. It is necessary also to give a 
different procedure to handle newly introduced nodes: 
current practice seems either to extend the reduced 
system in that new nodes can be handled explicitely or 
to reactivate dummy nodes in the full system; we give 
a procedure where the new nodes are eliminated from 
the description of the mcdification. This produces a 
modification with the smallest rank possible. 

Although the technique is applicable both to 
partial matrix factor adaptation and to compensation, 
we restrict the treatment of this Setup to the latter 
category, because our primary intention was to enhance 
current compensation algorithms. The question as to 
whether or not this new setup affects the 
discriminatory use of compensation and matrix factor 
adaptation (the former for simple and temporary 
modifications in a network solution that is.solved 
only once, the latter for complicated or permanent 
changes or those that must be solved repeatedly) will 
remain unanswered. 

The main part of this paper, therefore, concerns 
the introduction of the rank-oriented compensation 
algorithm (section 3 )  and its performance compared 
with the node-oriented one (section 41, that, itself, 
is summarized in section 2. Because rank deficiency 
often stems from structural changes related to node 
creation, section 5 uses the example of a bus split to 
show how to handle such cases and why the rank- 
oriented compensation algorithm is so beneficial in 
these cases. (The same. procedure can be applied to 
fault-analysis procedures as well, but due to the 
complexity surrounding the use of different sequence 
networks and the occurrence of solid connections, it 

There are, however, certain types of modifications 

This paper will fill this gap by using the concept 
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will be the subject of another paper.) Finally, two 
algorithms for low-order product factorization are 
given in an appendix. 

2. NODE-ORIENTED COMPENSATION ALGORITHM 123 

Let us assume that the following set of equations 
must be solved: 

where 

M ~ , M ~  m-column connection matrices 

A a m%m basic-modification matrix 

x, vectors of unknowns and k n m s  

A a coefficient matrix that is held in its 

- 
respectively 

factorized form: A = LU 

The modification concerns m nodes of the network. 
With a node-oriented setup of the modification, each 
connection matrix thus consists of m unity-vectors. 
The basic-modification matrix is rank deficient. The 
symbolical solution of (2.1) is given by the matrix- 
inversion lemma: 

where 

s = (M?p-lM1~ + I) 
I a unity matrix 

(2.2) 

In actual computations the extreme sparsity of 
the connection matrices can most effectively be 
exploited by using the mid-compensation algorithm. The 
solution (2.2) must be rewritten into: 

where 

L, U the triangular factors of A: A = LU 

In the computational procedure to obtain (2.4) we 
distinguish four steps that are relevant for the 
comparison with the new algorithm. These steps are: 

I 

I1 

the preparatory step. This step mainly involves 
the calculation and the factorization of S (2.3) 
in the following way: 

w1 = L-'M~ (2.5) 

W; = M2U (2.6) 
T -1 

w3 = W)il 

s = (w3A + I) 

Both the W-matrices (2.5) and (2.6) are obtained 
by solving the related sets of linear equations by 
fast forward substitutions, followed by the 
calculation of their product (2.7). Finally, S is 
calculated and is factorized. 

the network forward solution. In this step an 
intermediate vector is calculated: 

111 

IV 

the compensation step. In this step the 
intermediate result (2.9) is modified to reflect 
the modification of the coefficient matrix: 

- h := 5 - W1AS-'W;& (2.10) 

by performing the multiplications and the low- 
dimensional substitutions (related to the 
factorized S) from the right to the left, and by 
using the results of step I. 

the network back solution. This step completes the 
computation of (2.4) by performing the back 
substitution that yields: 

- x = U-lh - (2.11) 

Those steps that are relevant for a comparison with 
other modification setups are the steps I and 111. 
Aside from the network size, the computational 
effort for the first step is roughly determined by the 
number of substitutions to obtain both (2.5) and (2.6) 
and by the number of multiplications to obtain (2.7). 
The first one depends linearly and the second one 
depends quadratically on the number of nodes m. On 
average, the effort increases progressively with m. 
The computational effort for the compensation step 
also depends progressively on m. 

3. RANK-ORIENTED COMPENSATION ALGORITHM 

With the node-oriented compensation setup as 
sketched in the previous section, the number of nodes 
that are involved in the modification (m) is the 
relevant factor that determines the computational 
effort. However, if the modification has a rank r and 
if r is less than m, then it is worthwhile remodelling 
the modification in that this rank becomes the 
determining factor. This conversion can be obtained by 
factorizing the basic-modification matrix according 
to: 

A = QbT (3.1) 

where 

A the basic-modification matrix of order m 
and of rank r 

P,Q matrices of order mxr 

21 a diagonal matrix of order r 

Such a factorization can be obtained with, for 
instance, a singular-value decomposition [ I O ]  or with 
a modified version of the usual LDU triangular 
factorization. In the appendix two algorithms of the 
latter type are given. 

problem (2.1) the new set of equations that is to be 
solved is given by: 

If we combine this factorization with the original 

(A + %,?i$)X = & (3.2) 

where 

%, = MIQ 

fi: = PTM; 

From now on, we 
in the previous 
is given by: 

-1 
X = ( A  - - 

(3.3) 

(3.4) 

can globally use the same procedure as 
section. Thus, the symbolic solution 

A- 'iil~- lii;~-' ) (3.5) 

with a forward substitution. 
where 



(3.6) g = ( f i y f i  + E-1) 
2 1  

With mid-compensation (3.5) becomes: 

-1 - x = u (1 - L-~A,F~-'A;U-')L-'~ (3.7) 

Analogous to those used in the previous section, 
we give the four steps: 

I 

I1 

I11 

IV 

the preparatory step. This one now includes and 
starts with the 1.o.p.f. (3.1) and the setup of 
the connection matrices (3.3) and (3.4), and 
continues with the calculation of: 

fi = L-'fi 

p = fiTu-l 
1 1 

2 2  

by solving the related 
forward substitutions; 

0, = qtS1 
and, finally: 

-1 E = ( G  + E  ) 3 

This matrix is held in 

(3.8) 

(3.9) 

set of equations with fast 
their product: 

(3.10) 

(3.11) 

a factorized form. 

the network forward solution. This step is the 
same as the one in the previous section: a forward 
substitution yields an intermediate vector: 

(3.12) 

the compensation step: the intermediate result is 
adapted according to: 

(3.13) 

the network back solution: this yields the final 
result: 

- x = U-lh (3.14) 

This setup differs from the node-oriented one in 
respect to two points: first, the number of columns 
(the dimension of the reduced system) is now 
determined by the rank of the modification r instead 
of the number of nodes m; the lower the rank/node 
ratio the larger the computational advantage in 
prospect. Second, the basic modification has become of 
full-rank: additional (low-dimensional) matrix-matrix 
multiplication (see (2.8)) and matrix-vector 
multiplication (see (2.10)) are unnecessary. Note that 
the modification matrix Eisin diagonal form; its 
inverse, therefore, is obtained at no cost. 

4. THE PERFORMANCE OF THE NEW ALGORITHM 

Many tests to establish the extent of the advantage 
of the rank-oriented setup over the node-oriented setup 
have been carried out. Each test for both setups 
involved the solution of a modified network problem 
where both the coefficient matrix and its modification 
were symmetric. To simulate rank deficiency, the 
modification matrix was artifically created for several 
values of the rank and of the size. In particular we 
were interested in the influence of these factors and 
of the network size on the CPU-time. 

The networks that are used are synthetic ones made 
out of the 118-node test system. We experimented with a 
variety of the set of nodes that constitutes the area 
of the modification. Because each set was chosen so 
that the nodes are topologically related to each other, 
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in the performances. (With randomly chosen nodes 
things are quite different.) This result is in 
accordance with the observations reported in [3]. 

Further, we performed experiments to find the 
fastest method to obtain the reduced system (2.7) in 
the node-oriented setup. There are two options: in the 
first, m separate sets of equations are solved in 
order to obtain the W-matrices, each with its own 
(conceptual) path, followed by sparse-vector inner- 
product calculations. In the second method we 
exploited the fact that the factorization p a w  of 
topologically connected nodes are strongly related in 
that they largely coincide. Therefore, the union of 
these paths is determined and this is used to perform 
all the fast forward substitutions "in parallel". 
Consequently, the calculation of (2.7) out of the W- 
matrices deteriorates into a simple matrix-matrix 
multiplication. 

was faster than the first, in spite of the network 
size and in spite of the modification size. Therefore, 
we will take this second method as the preferential 
method for the node-oriented setup. 

matrices where each column has an identical sparsity 
structure and, therefore, the use of the united path 
and "parallel" computations on all these columns 
(analogous to the second method above) speaks for 
itself. For -the interpretetion of the results that are 
given below, it is important to note that both setups 
now are identical in respect of the calculation of the 
reduced systems (2.7) and (3.10) insofar as the 
precise computations and the sparsity pattern of the 
connection matrices are concerned, and that they differ 
only in the number of columns of the connection 
matrices. Therefore, we may expect that for a 
modification with a high rank/node ratio no 
significant profit can be gained, while modifications 
with extremely low rank/node ratios will largely gain. 

for the four steps that are distinguished in the 
previous sections. A typical example is given in table 
1. The network solution requires the same effort in 
each setup; differences in computation time are solely 
attributable to the preparatory step and to the 
compensation step. From this result, we can calculate 
two saving ratios: 

For all cases that were studied, the second method 

The rank setup automatically produces connection 

For all the test cases we recorded the CPU-time 

- the saving as a percentage of the total CPU-time 
that is required for the solution with the node 
setup - the saving as a percentage of the CPU-time that 
is required for the preparatory and the 
compensation steps in the node setup. 
For the example of table 1 these percentages are 

42% and 58% respectively. 

Table 1. Elapsed time (ms) for the calculation of a 
modified network solution. Network size: 
708 nodes; number of nodes involved in the 
modification: 15; rank of the modification: 7 
(IBM 3083 mainframe; full optimizing VS- 
FORTRAN compiler). 

node-oriented rank-oriented 
CPU-time % CPU-time % 

I preparatory 16.40 61 6.44 24 
11 network forward 3.46 13 3.44 13 

IV network back 3.78 14 3.77 14 

total 26.87 100 15.46 58 

I11 compensation 3.23 12 1.81 7 

- - - -  

We calculated these saving percentages for many 
there was hardly any difference networks; the results are given in table 2. 
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Table 2. Savings (in percentages) forrank-oriented modified network solutions for various network sizes 
and various values for m (nodes involved) and for r (the rank). Each entry shows xx/yy where xx 
is the saving with respect to the total node-oriented CPU-time and yy is the saving with respect 
to the time needed for the steps I and 111 in the node-oriented setup. 

354-node network I 472-node network I 708-node network 
~ 

m=15 

10/12 
22/28 
38/48 
47/59 
57/73 
65/82 
68/86 

m=10 

8/12 
21/32 
37/56 
47/71 
50/77 

21/27 
37/48 
45/59 

m=10 

6/10 
21/34 
37/59 
44/71 
48/76 

19/26 

m=5 

7/17 
17/43 
22/55 

944-node network 

19/27 

5/14 
17/44 
22/57 

They show a general trend that can be summarized as In these examples symmetry was assumed throughout; 
follows: 

- for the saving expressed as a percentage of the 
total network solution CPU-time: 
- for each network size, the greatest savings are 
obtained for those cases with a large m and a 
small r; these saving percentages decrease as 
the network size grows 

- even modifications with a nearly full rank can 
gain from the rank setup 

- modifications that involve many nodes can more 
easily gain than modifications that involve only 
a small number of nodes 

- for the saving expressed as a percentage of the 
preparatory step and the compensation step together: 
- again, the greatest saving occurs for the cases 
with a large m and a small r, the saving 
percentages stay mainly constant with growing 
network size 

is independent of the network size and increases 
with growing m. 

These global results, stylized, are depicted in 

- the saving as a function of the rank/node ratio 

the figures la and lb. 

note that in the unsynrmetric case the savings will be 
even greater. 

5. AN EXAMPLE: THE SIMULATION OF A BUS SPLIT 

In this section we will give an example of a 
typical power system computation that is perfectly 
suited to be solved with the rank-oriented 
compensation algorithm. It concerns the simulation of 
a bus split in a DC load flow context. 

Assume a node, node 2 in the example depicted in 
figure 2, is split and one wants to know the voltage 
angles in this case. The split of this node creates a 
new node 1. If we use the subscripts e and n to refer 
to the new node and to the original network nodes 
respectively, the set of equations that are to be 
solved is given by: 

where 

100 

t 

0 rank/node r a t i e  1 

10 4 

0 rank/node ratio 1 

Figure la. CPU-time saving of the rank-oriented figure lb. CPU-time saving of the rank-oriented 
setup as a percentage of the total 
CPU-time for the node-oriented setup. 

setup as a percentage of the time for 
the preparatory step and the compensation 
step in the node-oriented setup. 
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After the reduction, the 4x4 matrix becomes: 

[ Cb -b3 -b4 -b5 1 

I figure 2. Bus-split example. 

p 

pe 
e 

Be 
A 

the injected powers at the nodes of the network 

the injected power at the new node 

the angles of the network nodes 

the angle of the new node 

the 5x5 basic-modification matrix, partitioned 
into the 1x1 Bee, the 1x4 A-, the 4x1 Ane and 
the 4x4 Am submatrices 

the factorized DC load flow matrix 

-n 

-n 

M M the 4-column connection matrices 

A 
1, 2 

The solution is found by first eliminating the 
voltage angle of the new node 1 from this set. This 
causes the set (5.1) to be changed into: 

(A + Mi AredMZ)$ = $ + cd (5.2) 

where the reduced basic-modification matrix is: 

Ared - (5.3) - - AneAiaben 
and the distributed power (among the adjacent nodes) 
is: 

p r d = - ~  A A-lp (5.4) 
-e 1 ne ee e 

The elimination of the new node causes the problem to 
be brought into a standard modification form and it can 
be solved with the scheme as given in section 3. 
Finally, the angle of the eliminated node 1 can be 
found with a back substitution using the results of the 
elimination step. 

The important point with regard to the core of 
this paper is, of course, the rank of the (reduced) 
basic-modification matrix (5.3). This rank is 1, 
regardless of the number of nodes involved. This can 
be seen as follows: the 5x5 (unreduced) modification 
matrix is: 

A =  

where 

b3 b4 bs 

4 -b 5 

b3 -b3 0 0 0 

b4 -b4 0 0 0 

b5 -b5 0 0 0 

-Cb 0 

0 Cb -b3 -b 

(5.5) 

b3, b4, b5 the series susceptances of the lines 
connected to the nodes 3, 4 and 5 
respectively (resistances ignored) 

the sum of these series susceptances. Cb 

b3b3 b3b4 b3b5 

b4b3 b4b4 b4b5 

-b --- 
3 Cb Cb Cb Area = 

-b --- 
4 z b  zb zb 

The low-order product factorization yields: 

In this case it is even possible to obtain the 
desired decomposition from branch quantities directly 
instead of from numerical factorization. 

is 2: the reduction not only reduces the dimension 
from 5 to 4, it also reduces the rank from 2 to 1. 
This manner of handling new nodes, therefore, is the 
best one because it will facilitate a modification 
setup with the smallest rank. 

We presented th is  example in a quite simple way, 
because we only wanted to show the relation between a 
node split and the very low rank of the modification 
that is caused by it. In an actual computation, 
however, the elimination (or the partial factorization 
followed by a partial forward substitution) and the 
back substitution must be applied to the 5x5 basic 
modification. Further, for this specific application 
it is worthwhile rearranging (5.1) in that the 
injected parers and the angles of the network nodes 
are not expressed in levels but in differences. This 
will permit the replacement of a full forward network 
substitution by a fast forward substitution. 

It is interesting to note that the rank of (5.5) 

6. CONCLUSIONS 

In this paper a new variant of the compensation 
algorithm is given that is designed to profit from 
rank deficiency. The crux of the method is the 
factorization of a rank-deficient matrix into a low- 
order product form. This facilitates a modification 
setup with a reduced system of the smallest possible 
dimension. 

modification are topologically related, this rank- 
oriented setup is nearly always much faster than the 
strict node-oriented one. Test results show that for 
network sizes ranging from 354 to 944 nodes, the 
computation time for a complete, modified, network 
solution reduces to a range from 20 to 35%. This 
reduction is largely due to a more efficient 
calculation of the reduced system. 

network modifications and, therefore, the most 
appealing application field can be found in procedures 
for fault analysis and contingency analysis. 

Provided that the nodes that are involved in the 

Rank deficiency is usually caused by structural 
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APPENDIX 

In this appendix two algorithms are presented for 
the determination of a low-order product form. 
Basically, they follow the well-known LDU 
factorization: at each step a new column of the lower 
triangular matrix and a new row of the upper 
triangular matrix is calculated. At the same time, the 
relevant right-lower part of the original matrix is 
modified accordingly (outer-product factorization). 
With the 1.o.p.f. the procedure terminates if the 
remaining right-lower part of the matrix consists of 
zero elements (r<m) or if this matrix is empty (m). 
A permutation is carried out in order that the largest 
absolute diagonal element becomes the pivot element; 
this step could be restricted to the case where the 
current pivot element is too small. 

the unsymmetric one (algorithm 1) in that only the 
lower triangular part of the matrix needs to be set. 
After termination of the algorithm, r holds the rank 
of the matrix. The first r columns of Q (and P) and 
the first r diagonal elements of D contain the 
required decomposition. 

Algorithm I. Unsymmetric factorization A=QDP~ 

The symmetric version (algorithm 2) differs from 

initialize: 
iperm(i) := i i=l ,m 

P:= 0 
D:= A 
eps:= termination tolerance (f.i. 1.0d-05) 

Q:= 0 

do for l=l,m 
search for the largest absolute diagonal entry 
d(i,i) for i=l,m; let d(k,k) be this entry; 
if (ld(k,k)I < eps) then 

r=l-1 
terminate 

end if 
if (k.ne.1) then 

interchange: 
iperm(k) <-> iperm(1) 
d(i,l) <-> d(i,k) i=l,m 
d(1,j) <-> d(k,j) j=l,m 

end if 
set columns 1 of Q and P: 
q(iperm(i) ,l) :=d(i,l)/d(l,l) i=l,m 
p(iperm(j),l) :=d(l, j)/d(l,l) j=l,m 
eliminate node 1: 
d(i, j) :=d(i, j)-d(i,l)*d(l, j)/d(l,l) i=l+l,m; 

j=l+l ,m 
end do 
r=m 
terminate 

Algorithm 2. Symmetric factorization A=QDQT 

initialize: 
iperm(i) := i i=l ,m 
Q:= 0 
D:= A (only lower triangular part need to be set) 
eps:= termination tolerance (f.i. 1.Od-05) 

do for l=l,m 
search for the largest absolute diagonal entry 
d(i,i) for i=l,m; let d(k,k) be this entry; 
if (ld(k,k) I < eps) then 

r=l-1 
terminate 

end if 
if (k.ne.1) then 

interchange : 
iperm(k) <-> iperm(1) 
d(i,l) <-> d(k,i) i=l+l,k-1 

d(i,l) <-> d(i,k) i=k+l,m 
d(1,l) <-> d(k,k) 

end if 
set column 1 of Q: 
q( iperm( i) , 1) :=d (i, 1) /d (1,l) 
eliminate node 1: 
d (i, j ) :=d(i, j) -d( i, 1) *d ( j ,l) /d (1,l) 

i=l,m 

i=l+l ,m; 
j=l+l , i 

end do 

terminate 
r=m 
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