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The Buddha taught that the three basic realities of the universe are that everything is
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SUMMARY

Maritime structures, including offshore support vessels and floating wind turbines, are
exposed to loads varying in time because of environmental factors (wind, waves) and
operational conditions (machinery). Fatigue, a progressive crack growth mechanism ap-
pearing when loading is cyclic, a damage process, is a critical issue.

Fatigue cracks typically initiate at stress concentration areas. At materials level, stress
concentrations appear at microscopic and mesoscopic scale as a result of defects, for ex-
ample. At macro scale, stress concentrations typically develop at structures level. Con-
nections like arc-welded joints as commonly used in steel structures to connect the
members – plates and beams – are particularly fatigue sensitive.

The structural response in a maritime environment can be multiaxial, dependent on
loading, geometry, and material properties. Simultaneously occurring external loads
from wind, waves, heavy lifting operations and rotating turbine blades, amongst others,
provide an important contribution. Geometry or material anisotropy induced variations
in stiffness can introduce multiple load transfer mechanisms along dissimilar paths. The
internal mode-I, mode-II and mode-III loading components can be in-phase; propor-
tional (P), or out-of-phase; non-proportional (NP), respectively synchronous and asyn-
chronous.

In plates and beams, the thickness is typically small relative to other dimensions, mean-
ing internal mode-I loading components: normal forces and bending moments, are
dominant. Mode-II in-plane shear forces are generally negligible. However, out-of-plane
shear forces and torsion moments, mode-III components, can affect the primary mode-I
response, meaning multiaxiality has to be considered for accurate fatigue life time esti-
mates of arc-welded joints.

Fatigue damage modeling uses both intact and cracked geometry parameters to as-
sess respectively the initiation and growth contributions. Fatigue life time N is pre-
dominantly spent in the notch-affected region, suggesting a notch characteristic intact
geometry parameter can be used as the fatigue strength parameter S. However, for
welded joints N is typically crack-growth defined, meaning a cracked geometry parame-
ter makes sense as well. In steel maritime structures, the response is predominantly lin-
ear elastic, meaning S is typically stress-based, especially for mid- and high-cycle fatigue.
The relationship between S and N often shows a log-log linear dependency according to
Basquin’s equation: log(N ) = log(C )−m · log(S).

The intercept log(C ) and slope m represent strength and mechanism contributions,
different for mode-I and mode-III. Fatigue tests show that mode interaction, especially
in NP cases, can be detrimental and a straightforward superposition is insufficient.

IX



X SUMMARY

Focus of the research as presented in this thesis is on multiaxial fatigue of arc-welded
joints in steel maritime structures. Subdivided into an introduction (Chapter 1), a fun-
damental scope (Chapters 2 to 4) and an experimental part (Chapter 5), aim is to provide
an accurate, reliable, yet simple methodology.

Multiaxial fatigue modeling aspects in the fundamental scope are about the type of
criterion, taking similarities between static and fatigue strength into account, as well the
differences between finite and infinite life criteria. To handle random multiaxial loading
conditions, the assessment includes selection of the damage plane and cycle counting to
address the challenges related to non-proportionality. Last but not least, fatigue damage
accumulation model considerations are essential to be able to provide accurate life time
estimates.

Since the topology of maritime structures is responsible for a predominant mode-I re-
sponse contribution and at the same time the fatigue life time is crack growth defined
(rather than initiation, a shear controlled process) because of welding induced defects,
the choice of a normal stress based von Mises failure criterion is – no matter if S is a an
intact or cracked geometry parameter – straightforward. However, a response level de-
pendent shear strength coefficient β(N (S)) has been introduced, rather than a constant
one. Based on fatigue test data from literature, the strength and mechanism contribu-
tions have been established using mode-specific coefficients. Cracks typically develop
first in the plate thickness direction, identifying the fracture plane as the critical one
for damage evaluation. Cycle counting is performed in the von Mises plane to account
for non-proportionality cycle-by-cycle. A linear damage accumulation model has been
adopted, since good performance with advanced fatigue strength criteria was already
obtained before. For mid-cycle fatigue, a resistance related non-linearity is not required.

Strength and mechanism contributions are already available for mode-I fatigue of arc-
welded joints, either based on intact or cracked geometry parameters, but still had to
be obtained for mode-III. Starting with the effective notch stress Se as intact geome-
try parameter, mode-III characteristics are investigated using test data from literature.
Novel, semi-analytical, through-thickness weld toe notch stress distribution formula-
tions along the critical fracture plane for mode-III loading in plates and beams with cir-
cular cross-section are established first as input for Se . Most likely material characteristic
length ρ∗ and mean stress coefficient γ estimates, mode-specific strength and mecha-
nism contributions, have been determined. Evaluation of the mode-III arc-welded joint
fatigue resistance data shows an improved accuracy of the fatigue life time estimates for
Se in comparison to results obtained using parameters from literature.

Analysis of mode-{I, III} multiaxial fatigue resistance data from literature using Se with
the uniaxial mode-I and mode-III coefficients shows superior performance in compari-
son to results obtained using other existing methodologies as available in codes, guide-
lines and literature. The impressive performance confirms the necessity of involving
mode-specific strength and mechanism contributions. However, mode interaction ap-
pears to be the next step to further improve life time estimates in case of multiaxial re-
sponse conditions and can be addressed in future research.
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Since notches contain welding induced defects, the initiation contribution to the fa-
tigue life is negligible, meaning crack growth is the governing factor.

The semi-analytical weld notch stress distribution formulations for intact geometries
are converted to a cracked geometry equivalent, introducing the weld notch stress in-
tensity factor (SIF) K . New mode-III formulations are established for plates and beams
with a circular cross-section. For cyclic loading conditions, K turns into a crack growth
driving force ∆K , potentially developing defects into cracks. The Paris relation is modi-
fied to incorporate both the elastoplasticity affected notch stress intensity as well as the
elastic far field contribution, introducing a two-stage crack growth model as used to es-
tablish the total stress parameter ST . Uniaxial mode-I estimates for the elastoplasticity
coefficient n and mean stress coefficient γ, a strength and mechanism contribution, are
already available, but mode-III estimates are established using fatigue test data from lit-
erature.

The life time estimate performance for ST and Se is comparable, both for uniaxial
mode-III and multiaxial mode-{I, III} fatigue. Like for Se , mode interaction is observed
for ST as well. With respect to Se , the scatter in multiaxial proportional fatigue data is
relatively small for ST and can be attributed to the elastoplasticity coefficient. While n
appears to be a more explicit measure affecting one-to-one crack growth behavior, ρ∗
is rather an averaging implicit measure reflecting the material characteristic length for
(mixed) mode-{I, III} response conditions. In this respect, ST can be considered as one
step closer to the actual physics of the fatigue damage process. At the same time, the av-
eraging mechanism of Se seems superior in accommodating a large variety of data sets.
In general, ST provides slightly more accurate lifetime estimates, but in view of increased
parameter complexity and computational efforts, Se might be preferred to use for mul-
tiaxial fatigue assessment.

The fatigue data available in literature has been used to establish a single S−N design
curve for general applications based on average weld quality, where both S = Se or S = ST

can be used. Depending on weld quality, a specific data set may be closer to either the
lower or upper bound of the data scatter band.

However, the amount of available data in literature is limited because of the challenges
to generate a multiaxial stress state, especially in case of non-proportionality. In order to
be able to do multiaxial fatigue tests for a wide range of application and flexibility with
respect to specimen size and material strength, a multiaxial test rig with high loading ca-
pacity in six degrees of freedom, a hexapod (Stewart platform), has been developed. The
hexapod offers unparalleled performance in terms of loading combinations, accuracy,
and system stability.

In the experimental scope, uniaxial and multiaxial mode-{I, III} fatigue tests of offshore-
quality welds have been conducted using the hexapod, revealing a very high fatigue re-
sistance. Life time estimates based on the S −N design curves for average weld quality
are, however, too conservative. A dedicated curve for high-quality welds has been estab-
lished based on both Se or ST with representative coefficients. Despite the lower coeffi-
cient confidence because of limited data size, the lifetime estimates are more accurate,
justifying a dedicated design curve.





SAMENVATTING

Maritieme constructies, zoals schepen voor offshore dienstverlening en drijvende wind-
turbines, worden blootgesteld aan wisselende belastingen die een gevolg zijn van omge-
vingsfactoren (wind, golven) en operationele omstandigheden (machines). Vermoeiing,
een progressief scheurgroei mechanisme dat optreedt bij wisselende belastingen, is der-
halve een groot probleem.

Vermoeiingsscheuren ontstaan meestal op hoogbelaste locaties, zoals gebieden met
spanningsconcentraties. Op materiaal niveau betreft het concentraties op micro- en me-
soschaal die o.a. het resultaat zijn van defecten. Op macroschaal zijn de concentraties
die ontstaan op constructie niveau bij het veelal toegepaste booglassen om de elemen-
ten – platen en dunwandige balken – te verbinden, het meest kritisch.

De constructie respons in een maritieme omgeving kan multiaxiaal zijn. De mate
waarin is afhankelijk van de belasting, de geometrie en de materiaaleigenschappen. Het
gelijktijdig optreden van verschillende externe belastingen ten gevolge van bijvoorbeeld
wind, golven, zware hijswerkzaamheden en draaiende windturbine bladen, draagt hier-
aan bij. Variaties in stijfheid door geometrie of materiaalanisotropie zorgen voor meer-
dere mechanismen waarbij de interne belasting vanuit verschillende richtingen wordt
overgedragen. De mode-I, mode-II en mode-III componenten kunnen zowel in-fase
(proportioneel) als uit-fase (niet-proportioneel) optreden, respectievelijk synchroon en
asynchroon.

Van platen en dunwandige balken is de dikte afmeting klein ten opzichte van de an-
dere dimensies, waardoor de interne mode-I belastingscomponenten: normaalkrach-
ten en buigend momenten, dominant zijn. De mode-II schuifkrachten in het vlak zijn
doorgaans verwaarloosbaar. Echter, schuifkrachten uit het vlak en torsiemomenten,
mode-III componenten, kunnen de mode-I gedomineerde respons beïnvloeden, waar-
door multiaxialiteit niet buiten beschouwing kan worden gelaten voor het nauwkeurig
schatten van de vermoeiingslevensduur van met name lasverbindingen.

Vermoeiingsschademodellen maken gebruik van zowel intacte- als scheur gerelateerde
geometrieparameters om initiatie en groei bijdragen te kunnen beoordelen. Omdat de
vermoeiingslevensduur N zich voornamelijk afspeelt in het spanningsconcentratie ge-
bied, is het gebruik van een intacte geometrieparameter S als vermoeiingssterktepara-
meter gerechtvaardigd. Vanwege defecten is N voor lasverbindingen echter voorname-
lijk scheurgroei bepaald, wat een scheur gerelateerde parameter een gelijkwaardig alter-
natief maakt. In maritieme constructies van staal, waarbij het materiaal zich voorname-
lijk lineair elastisch gedraagt, is S meestal gebaseerd op spanningen, vooral bij vermoei-
ing van midden- en hoogcyclische aard. De relatie tussen S en N laat zich veelal log-log
lineair beschrijven m.b.v. de formulering van Basquin: log(N ) = log(C )−m · log(S).
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XIV SAMENVATTING

Het snijpunt met de horizontale as log(C ) en de helling m vertegenwoordigen respec-
tievelijk een bijdrage in termen van sterkte en mechanisme, die bovendien verschillend
zijn voor mode-I en mode-III. Vermoeiingstesten tonen aan dat mode-interactie, vooral
in het geval van een niet-proportionele respons, nadelig kan zijn en dat een superpositie
niet toereikend is.

Het onderzoek zoals gepresenteerd in dit proefschrift richt zich op het beoordelen van
multiaxiale vermoeiingsschade van gelaste verbindingen in maritieme constructies van
staal. Onderverdeeld in een inleiding (Hoofdstuk 1), een fundamentele scope (Hoofd-
stukken 2-4) en een experimenteel gedeelte (Hoofdstuk 5) is het onderzoek uitgevoerd
met als doel om een nauwkeurige, betrouwbare en toch eenvoudige methode te realise-
ren.

De modelvormingsaspecten van multiaxiale vermoeiing van de fundamentele scope
hebben in eerste instantie betrekking op het type criterium, met inachtname van de
overeenkomsten tussen statische- en vermoeiingssterkte, evenals de verschillen tussen
criteria voor eindige en oneindige levensduur. Om generiek elke multiaxiale respons
conditie te kunnen handelen, zijn selectie van het schadevlak en het tellen van cycli ui-
terst relevant, inclusief manieren om niet-proportionaliteit in rekening te brengen. Ten-
slotte zijn de overwegingen m.b.t. het vermoeiingsschade accumulatie model essentieel.

Omdat de tolopogie van maritieme constructies zodanig is dat in principe de mode-
I respons bijdrage domineert en omdat de vermoeiingslevensduur voornamelijk wordt
bepaald door scheurgroei t.g.v. defecten in de las (en niet door initiatie; een schuifspan-
ning gedomineerd proces), ligt – afgezien van een intacte- of scheur gerelateerde geo-
metrie parameter – de keuze voor een op normaalspanning gebaseerd von Mises faal-
criterium voor de hand. Als schuifsterktecoëfficiënt is echter geen constante, maar een
responsniveau afhankelijkheid geïntroduceerd: β(N (S)). Met behulp van vermoeiings-
testgegevens uit de literatuur zijn hiervoor de bijdragen van sterkte en mechanisme ge-
analyseerd d.m.v. mode specifieke coëfficiënten. Aangezien scheuren zich meestal eerst
ontwikkelen in de richting van de plaatdikte, is het breukvlak als kritisch beschouwd voor
het vaststellen van de vermoeiingsschade. Cycli worden geteld in de von Mises ruimte
en niet-proportionaliteit wordt per wisseling meegenomen. Er is een lineair schade ac-
cumulatiemodel geïmplementeerd, dat reeds eerder goede prestaties heeft laten zien in
combinatie met geavanceerde vermoeiingsparameters. Voor vermoeiing van midden-
cyclische aard is een vermoeiingsweerstand gerelateerde niet-lineariteit overbodig.

De bijdragen van sterkte en mechanisme zijn al eerder bepaald voor mode-I vermoei-
ing van gelaste verbindingen, zowel voor intacte- als voor scheur gerelateerde geome-
trieparameters, maar moest nog worden onderzocht voor mode-III.

Met behulp van de effectieve spanningsparameter Se , een intacte geometrie beschrij-
ving, zijn de mode-III kenmerken bepaald op basis van test data uit de literatuur. Hier-
voor zijn eerst semi-analytische formuleringen van de spanningsverdeling bij de lasteen
langs het kritische breukvlak opgesteld, die zowel kunnen worden gebruikt voor platen
als voor dunwandige balken met een cirkelvormige doorsnede. Vervolgens zijn de meest
waarschijnlijke waarden van de materiaalkarakteristieke lengte ρ∗ en de gemiddelde



XV

spanningscoëfficiënt γ vastgesteld; mode specifieke mechanisme en sterkte aspecten.
Evaluatie van de vermoeiingsweerstand op basis van Se toont aan dat ten opzichte van
andere parameters een nauwkeuriger schatting van de levensduur kan worden verkre-
gen.

Analyse van mode-{I, III} multiaxiale vermoeiingsdata uit de literatuur m.b.v. de uni-
axiale mode-I en mode-III coefficienten voor Se bewijst dat in vergelijking met metho-
den zoals beschikbaar in voorschriften, richtlijnen en literatuur een significante verbe-
tering kan worden behaald. De indrukwekkende resultaten bevestigen de noodzaak van
het in rekening brengen van mode specifieke bijdragen in termen van sterkte en mecha-
nisme. Wat wel opvalt is dat mode interactie een volgende stap lijkt om de schatting van
levensduur in geval van multiaxialiteit nog verder te verbeteren. Hier kan vervolgonder-
zoek in voorzien.

Omdat lassen defecten bevatten is de bijdrage van initiatie aan de vermoeiingslevens-
duur verwaarloosbaar, wat scheurgroei tot de bepalende factor maakt.

De semi-analytische spanningsverdelingen voor de intacte geometrie zijn derhalve
omgezet naar een spanningsintensiteit K . Nieuwe formuleringen voor mode-III zijn
opgesteld voor platen en dunwandige balken met cirkelvormige doorsnede. Voor een
cyclische belasting wordt K de drijvende kracht achter scheurgroei: ∆K , waardoor de-
fecten kunnen uitgroeien tot scheuren. De Paris-relatie is aangepast om zowel de door
elastoplasticiteit beïnvloede bijdrage van de intensiteit in het spanningsconcentratiege-
bied alsook de elastische bijdrage van de verre veldspanning te beschrijven: een twee
fasen scheurgroei model dat is gebruikt om de totale spanning ST te bepalen. De uniaxi-
ale mode-I elastoplasticiteitscoefficient n en de gemiddelde spanningscoëfficiënt γ, een
bijdrage m.b.t. sterkte en mechanisme, waren al beschikbaar voor mode-I, maar voor
mode-III zijn ze m.b.v. test data uit de literatuur vastgesteld.

De prestaties voor het schatten van de levensduur m.b.v. ST zijn vergelijkbaar met die
van Se , voor zowel uniaxiale mode-III als multiaxiale mode-{I, III} vermoeiing. Ook voor
ST blijkt mode interactie een waarneembaar fenomeen. Ten opzichte van Se is de sprei-
ding in multiaxiale proportionele vermoeiingsdata kleiner, wat op conto van de elasto-
plasticiteitscoefficient kan worden geschreven. Terwijl n een maat lijkt te zijn die direct
invloed heeft op scheurgroei gedrag, is ρ∗ een meer indirecte maat die de materiaalka-
rakteristieke lengte voor mode-{I, III} vermoeiing beschrijft. In dat opzicht kan ST als
een stap dichter bij de fysica van het vermoeiingsschadeproces worden beschouwd. Te-
gelijkertijd lijkt het middelingsmechanisme van Se effectief in het accommoderen van
een grote verscheidenheid aan data sets. In het algemeen geeft ST een iets nauwkeuri-
ger schatting van de levensduur, maar afgezet tegen een grotere parameter complexiteit
en meer rekeninspanning kan Se beter worden gebruikt voor een multiaxiale vermoei-
ingsanalyse.

De vermoeiingsdata die beschikbaar is in de literatuur, is gebruikt om op basis van
gemiddelde laskwaliteit een enkele S-N ontwerpcurve voor algemene toepassingen vast
te stellen, waarbij zowel S = Se als S = ST kunnen worden gebruikt. Afhankelijk van de
laskwaliteit kan een specifieke dataset meer tegen de onder- of bovengrens van de data
spreidingsbandbreedte aan zitten.
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De hoeveelheid beschikbare data in de literatuur is bovendien schaars vanwege de
uitdagingen bij het genereren van een multiaxiale spanningstoestand, vooral in het ge-
val van niet-proportionaliteit. Om proefstukken voor een brede toepassingsrange en
flexibel m.b.t. grootte en materiaalsterkte te kunnen testen op multiaxiale vermoeiing
is derhalve een nieuwe opstelling in hexapod configuratie ontwikkeld met een enorme
capaciteit in zes graden van vrijheid. Deze opstelling biedt ongeëvenaarde prestaties
voor wat betreft mogelijke belastingcombinaties, nauwkeurigheid en systeemstabiliteit.

Er zijn in de experimentele scope uniaxiale en multiaxiale mode-{I, III} vermoeiings-
testen van lasverbindingen met offshore kwaliteit uitgevoerd m.b.v. de hexapod die een
zeer goede vermoeiingsweerstand blijken te hebben. Een schatting van de levensduur
op basis van de S-N ontwerpcurves voor gemiddelde laskwaliteit is daarom te conserva-
tief. Derhalve is een specifieke curve voor lassen van hoge kwaliteit bepaald op basis van
zowel Se en ST met representatieve coëfficiënten. Ondanks de lagere betrouwbaarheid
van de coëfficiënten vanwege de beperkte data omvang is de schatting van de levens-
duur meer accuraat, wat een specifieke curve rechtvaardigd.



PREFACE

I knew nothing about fatigue. It was no more than just another limit state. The first time
I might have heard of fatigue was probably in my second or third year of bachelor stud-
ies. There was an aura of complexity mixed with "who cares" around it. And by then,
this seemed enough of an argument to simply park the world of fatigue somewhere in
my brain, quite deeply honestly.

Years later, I find myself writing a PhD thesis about multiaxial fatigue. I should say
that curiosity had driven me, but I must admit that this is not true. What drove me, was
the enthusiasm that I could feel when something new was unveiled; the panic that arise
when you know you are opening another Pandora box, not knowing where it will end up;
the adrenaline that comes from achieving a very good result – at the end. Fatigue needs
up and down, and so you need them in your life to study it.

There have been plenty of different paths to follow, this is the one I chose – or found
– I don’t know anymore. My MSc thesis has been the start and the journey continued
during my years as young researcher first and as PhD candidate later. Whatever is written
hereafter, comes from years of study, research and hard work in the laboratory. I hope
the reader will find it interesting to read my thoughts now that I know a bit more about
fatigue.

Gabriele Bufalari
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NOMENCLATURE

Latin symbols

a crack size

a f final crack size

ai initial crack size

C fatigue resistance curve intercept

Cbw weld load carrying normal stress coefficient

cm material characteristic non-proportionality coefficient

Cnp path characteristic non-proportionality coefficient

Ct w weld load carrying shear stress coefficient

fn line normal force

Fn nodal normal force

fs line shear force

Fs nodal shear force

hw weld leg height

IN notch crack growth integral

Ir irregularity factor of spectrum

K stress intensity factor

lw weld leg length

m fatigue resistance curve slope

mb line bending moment

Mb nodal bending moment

Mkn St related notch factor

mt line torsion moment

Mt nodal torsion moment

n number of counted cycles / elastoplasticity coefficient

N fatigue lifetime in number of cycles

O coordinate system origin

r radial coordinate

XIX



XX NOMENCLATURE

r0 radial distance of coordinate system origin to notch tip

rσs structural normal stress ratio

rτs structural shear stress ratio

R loading & response ratio

Rr response ratio including Sr

Rt tube outer radius

S fatigue strength parameter

Se effective notch stress parameter

Sn nominal stress parameter

Sr (mean) residual stress

St traction equivalent stress parameter

ST total stress parameter

S∞ fatigue strength limit

tb base plate thickness

tc cross plate thickness

tp plate thickness

TσS 10%–90% strength scatter band index

Y f far field factor

Y f b far field factor bending component

Y f m far field factor membrane component

Y f s far field factor shear component

Y f t far field factor torsion component

Yn notch factor

L log-likelihood̂ circumflex indicating parameter MLE

I mode-I index

I I I mode-III index

Greek symbols

α (half) notch angle

β particular stress angle

β(N ) lifetime dependent shear strength coefficient

∆ prefix indicating stress range

ϵ residual



NOMENCLATURE XXI

γ loading & response ratio coefficient

λ eigenvalue

λω width of spectrum

λτ first mode-III eigenvalue

µ mean

µω mean value of spectrum

µτF force equilibrium coefficient

µτM moment equilibrium coefficient

ω frequency component of spectrum

Φ parameter vector

ρ (real) weld notch radius

ρ∗ material characteristic length

ρτ normal to shear stress ratio

ρS∞ mid- to high- cycle fatigue transition curvature parameter

σ standard deviation / normal stress

σe mode-I effective notch stress

σN fatigue lifetime standard deviation

σn (r /tp ) weld toe notch stress distribution

σs (structural) normal stress

σy material yield strength

σ f e mode-I linear structural field stress

σn,max mode-I max. nominal stress after cut off

σsb Mb induced structural stress component

σse mode-I self equilibrium stress

σsm Fn induced structural stress component

τ shear stress

τe mode-III effective notch shear stress

τs (structural) shear stress

τ f e mode-III (equilibrium equivalent) linear structural field stress

τn,max mode-III max. nominal shear stress after cut off

τnom nominal shear stress

τns pure shear force induced τn

τnt pure torsion moment induced τn



XXII NOMENCLATURE

τn (r /tp ) mode-III weld toe notch shear stress distribution

τse mode-III self equilibrium stress

τss Fs induced structural shear stress component

τst Mt induced structural shear stress component

τt w weld load carrying shear stress

θ generic stress angle

{ζσa , ζσs } first mode-I blunt body eigenvalue of (anti-)symmetry part

{χσa , χσs } first mode-I eigenvalue coefficient of (anti-)symmetry part

{λσa , λσs } first mode-I eigenvalue of (anti-)symmetry part

{µσa , µσs } mode-I equilibrium coefficient of (anti-)symmetry part

{ωσa , ωσs } first blunt body eigenvalue coefficient of (anti-)symmetry part

Abbreviations

AW as-welded

BM base material

CA constant amplitude

DoF degrees of freedom

DS double side

FE finite element

FZ fusion zone

HAZ heat affected zone

MLE maximum likelihood estimate

NP non-proportional

P proportional

SIF stress intensity factor

SR stress-relieved

SS single side

VA variable amplitude

VAR variance



1
INTRODUCTION

The beginning is the most important part of the work.

Plato, philosopher

1.1. BACKGROUND
Maritime structures like offshore support vessels and floating offshore wind turbines
(Fig. 1.1a) are exposed to environment (wind, waves) and service (machinery)
induced loading conditions, varying over time. Fatigue: a local, progressive, crack
evolution induced structural damage process [1] in cyclic response conditions, is
often a governing limit state [2–5].

(a) (b)

Figure 1.1.: Maritime structures (a) and fatigue crack at an arc-welded joint
connecting structural members (b).

Turning an intact geometry into a cracked one typically initiates at locations
showing an increased response level, like at stress concentrations. Fatigue
sensitive locations for plane geometries are the microscopic and mesoscopic stress
concentrations at material scale. For notched geometries, the macroscopic stress
concentrations at structural scale; hot spots, facilitating microscopic and mesoscopic
ones [6], are identified as fatigue sensitive, either as part of structural members

1
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(e.g. cut-outs) or at structural member connections (e.g. joints). The arc-welded
joints typically connecting the planar or tubular structural members (Fig. 1.1b) for
commonly applied metals like steel are the weakest links in that respect [7–9].

In general, maritime structural response conditions can be multiaxial with
potential contributions from loading, geometry and/or even material sources.
External environment and service loading components, like wind and waves
from different directions, as well as heavy lifting operations and rotating turbine
blades (Fig. 1.1a), can occur simultaneously. Stiffness variations because of
changing geometry or material anisotropy enable multiple – internal – load transfer
mechanisms along dissimilar paths. Normal mode-I, in-plane shear mode-II
and/or out-of-plane mode-III shear components (Fig. 1.2) can be involved, either
proportional (P); i.e. in-phase (predominantly geometry and material source related),
or non-proportional (NP); i.e. out-of-phase (often related to the loading source)
because of asynchronous behaviour and/or different frequencies [10].
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Figure 1.2.: Arc-welded T-joint connecting tubular structural members with internal
load components..

Since the (curved) plate thickness is often relatively small in comparison to
the other structural member dimensions and the external loading is typically a
distributed one, the internal mode-I loading components: normal force Fn as well
as the in-plane and out-of-plane bending moments Mb,i p and Mb,op , are typically
governing. Any in-plane shear force fs,i p mode-II component is in general negligibly
small. At the same time, the out-of-plane shear force Fs,op and torsion moment
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Mt mode-III components affect in specific cases [11, 12] the predominant mode-I
response and multiaxiality has to be taken into account for accurate fatigue strength
and life time estimates [e.g. 10].

Adopting respectively intact and cracked geometry parameters [6], the initiation
and growth contributions to the fatigue damage process can be modelled [1].
The fatigue life time N is predominantly spent in the notch affected region [13],
meaning a notch characteristic intact geometry parameter can be adopted as fatigue
strength parameter S rather than a cracked geometry one, even if N for welded
joints is typically crack growth defined. Since far field response spectra of welded
joints in steel maritime structures reflect predominantly linear elastic behaviour,
S is typically of the stress – rather than strain or energy – type, in particular
for mid- and high-cycle fatigue [14]. Correlation of S and N typically reveals a
log–log linear dependency and a Basquin type of resistance relation is naturally
adopted: log(N ) = log(C )−m · log(S). Intercept log(C ) and slope m reflect respectively
a strength and mechanism contribution, suggesting the mode-I and mode-III values
are different. Available fatigue test data showed that mode interaction effects,
in particular for NP cases, can be detrimental [e.g. 15] and a straight forward
superposition turned out to be insufficient.

1.2. MOTIVATION
Different fatigue strength parameters and corresponding resistance curves have been
developed and reviewed over time, aiming to obtain more accurate fatigue lifetime
estimates, balanced with parameter complexity and computational efforts [16]. A
classification has been proposed [17] based on:

1. information level; i.e. global or local,

2. geometry type; i.e. intact or cracked,

3. response measure; i.e. stress (intensity), strain (intensity) or energy (density)
based,

4. process zone; i.e. point, line, area or volume.

Modelling developments and trends towards complete strength, multi-scale and
total life parameters have been identified. Incorporating all four (interacting) fatigue
resistance dimensions: material, geometry, loading & response and environment,
a complete strength fatigue parameter appears. Considering macro-, meso- and
micro-scale information provides a multi-scale fatigue parameter. Correlation of
crack initiation and growth matches intact and cracked geometry contributions,
revealing a total life fatigue parameter [6].

Regression analysis on a large sample of as-welded joint mode-I fatigue resistance
data for steel structures shows the best performance in terms of life time standard
deviation σN and fatigue strength scatter band index TσS [14, 16, 18] using the
effective notch stress and total stress, both local stress based line parameters,
respectively of the intact and cracked geometry type. In comparison to σN and
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TσS values for – different – existing mixed mode-{I, III} multiaxial fatigue strength
parameters (Table 3.4), significant room for improvement can be observed and
consensus about the one providing the best overall performance is still lacking. Mode
and material characteristic strength and mechanism contributions are expected to
play a key-role in that respect, explaining the aim to extend the mode-I Se and
ST parameter formulation to a multiaxial one; a complete strength parameter type
of development. At the same time, availability of multiaxial fatigue test data for
validation purposes is limited.

EFFECTIVE NOTCH STRESS

More generalised S formulations can be obtained if both the notch and far field
contributions are incorporated in order to meet fatigue scaling requirements. The
number of involved fatigue resistance curves reduces accordingly (i.e. ultimately
to one), like for the effective notch stress concept [16, 17, 19–23]. Embedded in
the critical distance theory [24], applications are not limited to welded joints but
extents for example to 3D printed materials and structures [25–28]. Taking advantage
of semi-analytical weld notch stress distribution expressions [16, 29], the effective
notch stress Se can be calculated averaging the notch stress distribution along the
expected crack path over a material characteristic length ρ∗, introducing another
mechanism contribution. Solid finite element (FE) models to estimate Se are not
required anymore.

Uniaxial mode-I investigations for arc-welded joints in steel structures revealed
a dedicated material characteristic length ρ∗

I as well as resistance curve intercept
log(C I ) and slope mI value [14, 16, 29]. Since a response cycle needs two parameters
for a complete spatial description, e.g. range and ratio, a mode-I specific response
ratio coefficients γI containing another strength contribution have been proposed
as well [14, 16, 29]. However, the mode-III equivalent parameters have not been
investigated before, although the resistance curve related strength and mechanism
parameters are expected to be different, as well as the mixed mode-{I, III} Se

performance.

TOTAL STRESS

Since the notches inevitably contain welding induced defects, the actual initiation
(i.e. nucleation) contribution to the total fatigue life time is virtually eliminated and
growth is governing. The intact geometry related semi-analytical weld notch stress
distribution formulations can be turned into cracked geometry ones, introducing the
weld notch stress intensity factor (SIF) K . Cyclic loading & response conditions
turn K into a crack growth driving force ∆K and defects may develop into cracks.
Since the growth rate initially shows elastoplastic wake field affected anomalies [18],
a modified Paris’ equation has been established, including the weld notch- and
far field characteristic contributions: a generalised two-stage crack growth relation.
Applying an integral operator provides a log-log linear resistance relation of the
Basquin type, correlating the fatigue life time N and an equivalent fatigue strength
parameter: the total stress ST [6, 18]. Uniaxial mode-I intercept log(C I ) and
slope mI , as well as response ratio coefficient γI and elastoplasticity coefficient nI
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estimates have already been obtained for welded joints in steel structures [14, 16].
The ST and Se performance in terms of life time scatter σN and strength scatter
band index TσS proved to be similar. Whereas ρ∗ is a mode specific and material
characteristic length defining Se to incorporate the notch stress gradient, ST includes
the stress (intensity) gradient along the full plate thickness tp defined final crack
length a f , suggesting ρ∗ and a f serve the same purpose. However, ST contains an
additional mechanism related parameter n and may increase insight in the mode
specific and material characteristic behaviour. The uniaxial mode-III and multiaxial
mode-{I, III} ST performance have not been established before and a key question
is if the mode coupling is equally important for ST as for Se . At the same time, a
cracked geometry parameter seems one step closer to the actual damage process
than an intact one, hypothesising a fatigue strength parameter ST may outperform
Se for multiaxial fatigue.

FATIGUE TEST DATA

The performance of a fatigue strength parameter S depends on the test data; i.e. the
fatigue life time N depends on the quality of the specimen manufacturing process
as well as of the test rig. Influence factors not explicitly incorporated define the
resistance data scatter band. Using available data sets from different literature
sources, average quality based parameter coefficient estimates can be obtained
using regression analysis in order to obtain one S −N design curve for general
engineering applications. However, depending on the specimen quality, a particular
set may be on the lower or upper bound of the data scatter band. In particular
for high-performance welded joints, the average quality based S −N design curve
may provided over conservative fatigue strength and life time estimates. A dedicated
one with representative parameter coefficient estimates might be a better option,
reflecting the actual quality. Existing multiaxial fatigue test rigs are relatively new,
either equipment in a standard series or custom built for a particular purpose.
Common denominator seems a limited loading capacity – imposing a restriction on
specimen size and material strength – as well as number of degrees of freedom
(DoF) and wide range of application. At the same time, the availability of multiaxial
fatigue test data sets in literature is limited. To be able to test high-performance
welded joints in maritime applications for multiaxial fatigue research, a custom-built
high loading capacity 6 DoF multiaxial fatigue test rig, a hexapod (i.e. a Steward
platform), has been developed (Fig. 1.3).

Both uniaxial and multiaxial, constant and variable amplitude test data is generated
in the 4DFatigue Joint Industry Project and the best performing fatigue strength
parameter available has identified [10, 30–32]. However, the obtained strength and
mechanism properties are in comparison to data from literature significantly better.
If Se and ST would provide a better fit with an average quality based resistance data
scatter band is unknown. A dedicated resistance curve might even be a better option
for the sake of accurate fatigue strength and life time estimates as well as parameter
confidence, but has to be investigated.
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Figure 1.3.: TU Delft hexapod; a high loading capacity 6 DoF fatigue test rig, unique
in the world.

1.3. RESEARCH QUESTIONS

Evaluating the different multiaxial, mixed mode-{I, III} fatigue damage criteria
developed over time, the performance as typically reflected in the life time scatter σN

and strength scatter band index TσS is not even close to the uniaxial reference mode-I
values. However, the ways the mode specific strength and mechanism contributions
as reflected in the resistance curves intercept and slope are incorporated – even if
any – leaves significant room for improvement, raising the research question:

"Will incorporating adequate (mixed) mode-{I, III} strength and damage mechanism
contributions improve the multiaxial fatigue life time estimates for arc-welded joints

in steel (maritime) structures?"

The fatigue life time for arc-welded joints is typically spent in the notch affected
region, characterised using an intact geometry based notch stress parameter.
However, the welding process comes along with defects, virtually eliminating the
crack nucleation contribution to fatigue life time, justifying at the same time a
cracked geometry based notch stress intensity parameter. For mode-I fatigue, the
intact and cracked geometry parameters Se and ST , respectively the effective notch
stress and total stress, already proved excellent performance in comparison to other
fatigue parameters, introducing the sub questions:

1. Do Se and ST show the same level of performance for mode-III fatigue of
arc-welded joints and what are the differences with respect to mode-I?

2. Will mode specific strength and mechanism contributions for Se and ST be
sufficient, or is even a mixed mode contribution; an interaction effect, required
to obtain the best performance for multiaxial fatigue?
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3. Balancing accuracy, complexity and efforts for fatigue assessment of arc-welded
joints, is an intact geometry parameter like Se be preferred, or a cracked
geometry one like ST ?

In case of mixed mode-{I, III} response non-proportionality or amplitude variability,
a cycle counting algorithm and damage accumulation model are required for a
time domain formulation in order to provide fatigue life time estimates, arising the
sub-questions:

4. How to incorporate strength and mechanism contributions for multiaxial cycle
counting?

5. Is a combination of an advanced fatigue strength criterion like Se or ST , a
multiaxial cycle counting algorithm and a linear damage accumulation model
sufficient to obtain fatigue life time estimates with the same accuracy as the
uniaxial, constant amplitude equivalent?

The performance of Se and ST can be assessed using all relevant multiaxial fatigue
data sets available in literature, reflecting at least up to some extent an average weld
quality, representative for a broad range of applications including arc-welded joints
in maritime structures. However, would high-performance welds, or individual data
sets in general, be better off with a dedicated resistance curve and strength and
mechanism parameters in order to improve the fatigue life time estimate accuracy,
introducing the sub-question:

6. Does distinct, e.g. high-performance, weld quality justify dedicated strength
and mechanism parameters with respect to the average for improved fatigue
life estimate accuracy?

Basically it is about up to what extent individual data sets fit within the total data
scatter band, as well as the sample size affected parameter coefficient confidence.

1.4. SCOPE DEFINITION
Because of the expected material characteristic contributions involved, the research
will be limited to steel alloys as commonly used in (maritime) structures. Although
the aim is to develop a fatigue strength parameter applicable for other welded metals
like aluminium and magnesium as well – the damage mechanism are expected to be
similar, dedicated parameter coefficients have to be re-established and findings can
be different. Focus will be on arc-welded joints – still most often used – connecting
the steel structural members. However, joints produced using different type of
techniques, e.g. laser welding, are expected to allow for a similar investigation.
Strength and mechanism contributions will most likely change because of different
weld geometry and heat input affected material properties at micro-scale. Although
the fatigue life time of arc-welded joints is growth dominated, at this stage of
the research multiaxial fatigue resistance (involving the total life time) rather than
crack growth resistance will be considered; mid-cycle fatigue, N = (104...106) cycles,
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in particular. High-cycle fatigue is important because the strength and mechanism
contributions are different from mid-cycle fatigue, as well as from maritime structure
operation conditions perspective, but test data in literature is not available (yet).
Multiaxial fatigue will be investigated in the time domain first, since analysis results
typically serve as a reference for results obtained in the frequency domain. Cycle
counting for non-proportional mode-I and mode-III signals, accounting at the same
time for the distinguished strength and mechanism contributions, is considered to
be non-trivial, as well as the damage accumulation.

1.5. THESIS OUTLINE
Mode-III weld notch stress distribution formulations will be established first in order
to define the intact geometry parameter Se,I I I . Using uniaxial mode-III fatigue test
data from literature, the Se,I I I fatigue strength and mechanism parameters, {C I I I ,
γI I I } and {mI I I , ρ∗

I I I } respectively, will be established, paying particular attention to
the Se,I I I performance in terms of σN and TσS in comparison to the Se,I results
(Chapter 2).

Literature will be reviewed with respect to types of failure criterion, damage
plane selections, cycle counting algorithms, non-proportionality measures and
damage accumulation models, before a generalised mixed mode-{I, III} Se (Se,I ,
Se,I I I ) formulation will be defined, incorporating both strength and mechanism
contributions (Chapter 3).

Using constant and variable amplitude (mixed) mode-{I, III} fatigue test data from
literature the Se (Se,I , Se,I I I ) performance will be compared to existing multiaxial
fatigue strength parameters, highlighting interaction effects. Turning the mode-III
notch stress formulations into notch stress intensity formulations will be the input
for a cracked geometry parameter ST,I I I (Chapter 4).

For the same multiaxial fatigue assessment procedure as for Se , the ST (ST,I , ST,I I I )
performance will be compared to Se (Se,I , Se,I I I ) addressing especially the strength
and mechanism indued mode-coupling effects. Multiaxial fatigue test results for
high-performance welded joints, obtained using the hexapod, will be unveiled and
assessed using Se (Se,I , Se,I I I ) as well as ST (ST,I , ST,I I I ). Fitting of individual data
sets in the total data scatter band will be evaluated with respect to (average) weld
quality and parameter coefficient confidence (Chapter 5).

Last but not least, the gained key insights will be shared and conclusions will be
drawn based on the obtained results (Chapter 6). An outline for future research will
be proposed as well, serving as a roadmap to further explore the frontiers in the
field of multiaxial fatigue.
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MODE-III WELD NOTCH STRESS

DISTRIBUTIONS AND Se BASED

RESISTANCE

(Fatigue) strength lies in differences, not in similarities.

Stephen Covey, educator and author

2.1. INTRODUCTION
The through-thickness weld toe and weld root notch stress distributions along the
expected (2D) crack path are assumed to be a key element in defining an appropriate
fatigue design and detectable repair criterion [16]. Analytical expressions have
already been established for mode-I [14, 16, 18], related to the welded joint far field
stress as typically can be obtained using relatively coarse meshed shell/plate finite
element (FE) models. However, expressions for mode-III are not available yet and
will be established for weld toe notches in double side (DS) welded T-joints and DS
welded cruciform-joints, reflecting respectively non-symmetry and symmetry with
respect to half the plate thickness (Section 2.2).

Different fatigue assessment concepts, relating the fatigue life time N and a fatigue
strength criterion S using a resistance curve, have been developed over time aiming
to obtain more accurate life time estimates, balanced with criterion complexity and
computational efforts [16]. Incorporating local (notch) information provides more
generalised S formulations and the number of involved fatigue resistance curves
reduces accordingly (i.e. ultimately to one), like for the effective notch stress concept

This chapter is based on the journal article:
G. Bufalari, J.H. den Besten and M. L. Kaminski. Mode-III fatigue of welded joints in steel maritime
structures: Weld notch shear stress distributions and effective notch stress based resistance. In:
International Journal of Fatigue Volume 165 (2022) DOI: https://doi.org/10.1016/j.ijfatigue.2022.107210.
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[16, 17, 19–23]. Taking advantage of the weld notch stress distribution expressions,
the effective notch stress Se can be calculated averaging the notch stress distribution
along the expected crack path over a material characteristic length ρ∗, meaning solid
FE models to estimate Se are not required anymore. Following mode-I investigations
[14, 16], a mode-III mid-cycle fatigue Se −N curve will be established for welded
joints in steel structures (Section 2.3), paying particular attention to the material
characteristic length since ρ∗ seems never been investigated before. The conclusions
and outlook (Section 2.4) provide half of the information (i.e. Se related only),
required to answer research sub-question 1 (Section 1.3).

2.2. MODE-III WELD TOE NOTCH SHEAR STRESS

DISTRIBUTIONS
In order to capture the mode-III through-thickness weld toe notch shear stress
distributions τn(r /tp ) along the expected (2D) crack path with plate thickness tp

either the base plate or cross plate value, tb or tc , the welded joint far field response
is assumed to be linear elastic. Adopting a linear superposition principle [18] a far
field related equilibrium equivalent and self-equilibrium part will be distinguished,
τ f e and τse (Fig. 2.1) involving three components: the notch stress (Section 2.2.1),
the weld-load carrying stress (Section 2.2.2) and the far field stress (Section 2.2.3).
Formulations will be derived for both non-symmetry (Section 2.2.4) and symmetry
(Section 2.2.5) with respect to half the plate thickness (tp /2), using respectively a
DS welded T-joint and DS welded cruciform joint for illustration purposes, in case
of both zero and finite notch radius ρ. Please note that the cruciform joint in IIW
standard [33] and Eurocode [34] is referred to as two-sided transverse attachment,
considering both the geometry and loading applied at the continuous member. The
adopted joint annotation is based on geometry only, since the variety in loading
conditions can be large, in particular in case of multiaxiality.

2.2.1. NOTCH STRESS COMPONENT

The singular stress distribution at a V-shaped notch for a fillet weld geometry with
ρ = 0 (Fig. 2.2) can be obtained [35–39] assuming symmetry with respect to the
notch bisector (θ = 0). A tangential component formulation for a particular stress
angle (θ = β) has been established (A), including a relation to the far field stress
parameter τs (Section 2.2.3):

τxθ

(
r

tp

)
= τs

(
r

tp

)λτ−1

µτF cos(λτβ) (2.1)

with

µτF = C ′
1tλτ−1

p

τs
(2.2)

and
λτ = π

2α
. (2.3)
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Figure 2.1.: Linear superposition of an equilibrium equivalent and self-equilibrium
part for the mode-III weld toe notch shear stress distribution of a DS
welded T-joint and DS welded cruciform joint.
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τy zρ

Figure 2.2.: Notch stress components in Cartesian and Polar coordinates for ρ = 0.

Although the real weld notch radius ρ is often virtually zero – justifying the ρ = 0
assumption, in some cases the influence of ρ > 0 (Fig. 2.3) cannot be neglected. The
coordinate system origin will be transformed (O′ →O), keeping the Polar axis parallel
to the original one:

r ′2 = r 2 +2cos
(
β−θ)

r0r + r 2
0 (2.4)



2

12 2. MODE-III WELD NOTCH STRESS DISTRIBUTIONS AND Se BASED RESISTANCE

with
r0 = ρ

(
1− π

2α

)
. (2.5)

x
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y

tp

α

α

β
θ

r
τxθ

τxr

τx y
τxz

τzx

τy z

r0

O r ′
O′

ρ

Figure 2.3.: Notch stress components in Cartesian and Polar coordinates for ρ > 0.

For a particular stress angle θ =β, the tangential component becomes (A):

τxθ

(
r

tp

)
= τs

(
r ′

tp

)λτ−1

µτF cos(λτβ)

{
1+

(
r0

tp

)2λτ (
r ′

tp

)−2λτ }
(2.6)

Comparing τxθ(r /tp ) for zero and finite notch radius (Eqs. (2.1) and (2.6)), the (ρ = 0)
formulation is basically the (ρ > 0) limit case. In contrast to the mode-I formulation
[14, 16, 18], only one singular term is involved rather than two.

2.2.2. WELD LOAD CARRYING STRESS COMPONENT

The weld geometry causes a local change in stiffness, meaning the centre of twist
varies from section to section along the y-axis (Fig. 2.4). Each welded joint section
is basically a rectangle containing two axes of symmetry, meaning the centre of
twist is located at the intersection and coincides at the same time with the centroid.
Connecting the centres of twist of each section introduces the elastic axis (Fig. 2.4)
and coincides with the neutral axis. A torsion moment induced linear shear
stress distribution τt w (r /tp ) appears and the weld becomes load carrying up to
some extent. Considering a weld toe notch as typically encountered in a partial
penetrated DS welded T-joint at the base plate without symmetry with respect to
(tp /2), the torsion moment is counter-clockwise for fs pointing in x-direction and
counter-clockwise mt in the x-z plane and the weld load carrying (shear) stress
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distribution yields:

τt w

(
r

tp

)
= τsCt w

{
2

(
r

tp

)
−1

}
for {0 ≤

(
r

tp

)
≤ 1}. (2.7)

The far field stress (Section 2.2.3) related magnitude τsCt w is geometry and loading
dependent. If symmetry with respect to (tp /2) is detected, like for a DS welded
cruciform joint (Fig. 2.4), the τt w (r /tp ) distribution is based on half the plate
thickness only:

τt w

(
r

tp

)
= τsCt w

{
4

(
r

tp

)
−1

}
for {0 ≤

(
r

tp

)
≤ 1}. (2.8)

FIGURE 3

FIGURE 2

FIGURE 15

FIGURE 9.2
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FIGURE 9
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FIGURE 4
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mt

Figure 2.4.: Weld geometry induced shift of centre of twist for the non-symmetry and
symmetry case.
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2.2.3. FAR FIELD STRESS COMPONENT

The linear structural field stress distribution τ f e (r /tp ) in the cross-section at a weld
toe (Fig. 2.1), in compliance with the fracture mechanics defined far field stress [40,
41], is characterised using the structural shear stress τs and structural shear stress
ratio rτs :

τ f e

(
r

tp

)
= τs

{
1−2rτs

(
r

tp

)}
for {0 ≤

(
r

tp

)
≤ 1}. (2.9)

A relatively coarse meshed shell/plate FE model is typically sufficient to estimate the
far-field stress of welded joints in maritime structures [42, 43], naturally embedding
the constant membrane (mode-I) / shear (mode-III) and linear bending (mode-I) /
torsion (mode-III) components [44]. If the welded joint structural stiffness – either
in planar or tubular structures – does not significantly affect the stress distribution,
like in general for groove welds (e.g. in butt joints), the weld does not need to be
modelled and the far field stress information can be obtained at the intersection line
of the connected structural members [45]. However, if weld modelling is required
– like often for fillet welds (e.g. in T-joints and cruciform joints), several options
are available including inclined shell elements, inclined rigid elements or shell
elements with increased local thickness at the joint location [46]. For the considered
mode-III loading & response conditions, inclined shell element modelling has been
adopted (Fig. 2.5) as it seems to be most convenient in engineering practice [44].
Transforming the nodal shear forces Fs,i and torsion moments Mt ,i along the weld

Fs,1

Mt ,1

Fs,2

Mt ,2

Fs,3

Mt ,3

Fs,4

Mt ,4

Model properties:
• SHELL181 element

• linear elastic material behaviour

• element size = tp

• full integration scheme

Figure 2.5.: Part of a shell FE model of a (non-symmetric) T-joint in a tubular
structure.

seam to line forces and moments fs,i and mt ,i , {Fs } = [T ]{ fs } and {Mt } = [T ]{mt } [41,
47, 48], the shear force and torsion moment induced structural stress components
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τss and τst can be calculated to obtain the structural shear stress:

τs = τss +τst (2.10)

with

τss = fs /tp (2.11a)

τst = 6mt /t 2
p . (2.11b)

The structural shear stress ratio (−∞< rτs ≤ 1) represents the relative contribution of
τst to τs , i.e. the far field stress gradient:

rτs = τst /τs . (2.12)

Rewriting τss and τst in terms of τs (Eq. 2.10) and rτs (Eq. 2.12) yield:

τss = τs (1− rτs ) (2.13a)

τst = rτsτs . (2.13b)

2.2.4. STRESS DISTRIBUTION FOR NON-SYMMETRY WITH RESPECT TO

(tp /2)
Using the notch stress component τxθ (Eq. 2.1), the weld load carrying stress τt w

(Eq. 2.7) and structural field stress formulation τ f e (Eq. 2.9), the mode-III stress
distribution for the non-symmetry case (Fig. 2.6) – along the (2D) crack path – can
be obtained for ρ = 0:

τn

(
r

tp

)
= τs

[(
r

tp

)λτ−1

µτF cos(λτβ)− (Ct w +µτM )

{
2

(
r

tp

)
−1

}
−2rτs

(
r

tp

)]
. (2.14)

The self-equilibrium stress part τse + 1, (r /tp )λτ−1µτF cos(λτβ)−(Ct w+µτM ){2(r /tp )−
1} is scaled and projected – using τs and rτs – onto the structural field stress. For
rτs > 0 the stress distribution will be monotonic; in case rτs ≤ 0 non-monotonic.
Involving τxθ (Eq. 2.6), the distribution for ρ > 0 can be obtained as well:

τn

(
r

tp

)
= τs

[(
r ′

tp

)λτ−1

µτF cos(λτβ)

{
1+

(
r0

tp

)2λτ (
r ′

tp

)−2λτ }
−

(Ct w +µτM )

{
2

(
r ′

tp

)
−1

}
−2rτs

(
r ′

tp

)]
.

(2.15)

Although principally the notch stress component in Cartesian coordinates
is required, a transformation (Eq. A.2) does not affect the formulation:
τxz = τxr cos(θ) − τxθ sin(θ) = τs (r /tp )λτ−1µ′

τF cos(λτβ) for ρ = 0, explaining why τxθ
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(Eq. 2.1) has been used. The involved eigenvalue λτ (Fig. A.1) and the stress angle
β= (α−π/2) are notch angle α dependent. For fillet welds (Fig. 2.6):

α= 1

2

{
π+arctan

(
hw

lw

)}
. (2.16)

FIGURE 4

FIGURE 3FIGURE 3

FIGURE 2

FIGURE 9.2

FIGURE 9 FIGURE 15

FIGURE 6

FIGURE 2
Mt

Rt

tb

hw

tclw

ρ

α
α

β

r

Figure 2.6.: DS welded T-joint showing non-symmetry with respect to (tb/2), either
in a tubular or planar (Rt →∞) structure.

Like for the mode-I formulation [14, 16, 18], two constants are required in order to
satisfy both force and moment equilibrium. Since just one constant µτF is naturally
available – comparable to the symmetric mode-I term – a linear anti-symmetric
term −µτM {2(r /tp )−1} has been introduced to be able to achieve self-equilibrium.
Rather than solving the system of force and moment equilibrium equations for µτF

and µτM , like for mode-I, the two equations can be solved sequentially since force
equilibrium is identically satisfied for the anti-symmetric term. Force equilibrium in
a weak form:

1∫
0

τn

(
r

tp

)
d

(
r

tp

)
=

1∫
0

τs

{
1−2rτs

(
r

tp

)}
d

(
r

tp

)
(2.17)

provides for ρ = 0

µτF = λτ

cos(λτβ)
. (2.18)

For ρ > 0 the coordinate system transformation (Eqs. (2.4) and (2.5)) becomes
involved and force equilibrium in weak form:

1∫
(

r0
tp

) τn

(
r

tp

)
d

(
r

tp

)
=

1∫
0

τs

{
1−2rτs

(
r

tp

)}
d

(
r

tp

)
(2.19)
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with r0

tp
= ρ

tp

(
1− π

2α

)
(2.20)

provides

µτF =−
λτ

{
µτM

[(
r0
tp

)2 −
(

r0
tp

)]
−

(
r0
tp

)2
rτs −1

}
cos(λτβ)

[
1−

(
r0
tp

)2λτ
] . (2.21)

Note that with the obtained µτF formulation τn(r /tp ) turns out to be stress angle β

independent. Moment equilibrium in a weak form for ρ = 0:

1∫
0

τn

(
r

tp

)
·
(

r

tp

)
d

(
r

tp

)
=

1∫
0

τs

{
1−2rτs

(
r

tp

)}(
r

tp

)
d

(
r

tp

)
(2.22)

yields µτM = {3(λτ− 1)+Ct w (λτ+ 1)}/(λτ+ 1). However, substitution in τn(r /tp )
provides a Ct w independent equation, since the introduced anti-symmetric term and
the weld load carrying stress have the same form. Ignoring the weld load carrying
stress contribution denotes:

µτM = 3(λτ−1)

(λτ+1)
. (2.23)

For ρ > 0 the same considerations apply:

1∫
(

r0
tp

) τn

(
r

tp

)
·
(

r

tp

)
d

(
r

tp

)
=

1∫
0

τs

{
1−2rτs

(
r

tp

)}(
r

tp

)
d

(
r

tp

)
(2.24)

providing

µτM =

6λτ(λτ+1)
(

r0
tp

)2λτ+1 −3(λ2
τ−1)

(
r0
tp

)2λτ+2 −12λτ
(

r0
tp

)λτ+2 −3(λτ+1)2
(

r0
tp

)2λτ+
12λτ

(
r0
tp

)λτ+1 +3
[(

r0
tp

)
−1

]
(λτ−1)

{[(
r0
tp

)
−1

]
λτ+

(
r0
tp

)
+1

}
6λτ(λτ+1)

(
r0
tp

)2λτ+1 − (9λ2
τ+6λτ−3)

(
r0
tp

)2λτ+2 −12λτ
(

r0
tp

)λτ+2 − (λ2
τ−1)

(
r0
tp

)2λτ+
12λτ

(
r0
tp

)λτ+3 + (λτ−1)

{[
−4

(
r0
tp

)3 +9
(

r0
tp

)2 +4
(

r0
tp

)2λτ+3 −6
(

r0
tp

)
+1

]
λτ−

4
(

r0
tp

)3 +3
(

r0
tp

)2 +4
(

r0
tp

)2λτ+3 +1

}
.

(2.25)

The µτF and µτM expressions obtained for ρ = 0 are basically ρ > 0 limit values.
Although moment equilibrium is not exactly satisfied since the weld load carrying
stress has been ignored, at least τsCt w

{
2(r /tp )−1

}
is still part of τn(r /tp ) to

take care of the welded joint geometry and loading dependent weld notch stress
contributions.
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Figure 2.7.: Relative base plate shear load for a DS welded T-joint, varying tb , tc , lw

and hw for Rt →∞.

The weld load carrying stress magnitude τsCt w is assumed to be a linear
superposition of a shear force fs and torsion moment mt induced component,
meaning Ct w is rτs dependent. For a tubular structure with attachment involving a
DS welded T-joint and exposed to a torsion moment Mt (Fig. 2.6), the structural
stress ratio rτs changes for varying ratio of tube radius Rt and thickness tp . For
the limit cases, respectively Rt → tb (corresponding to a solid shaft) and Rt →∞
(corresponding to a quasi-planar structure), the pure torsion and pure shear case
appear. However, the pure torsion case introduces geometrical symmetry at the same
time. Investigating the relative load path contributions using a 2D axisymmetric FE
model (Fig. 2.12), the pure shear case will be considered to identify the weld load
carrying mechanism for non-symmetry with respect to (tp /2). If a torsion moment
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Figure 2.8.: Required Ct w value and fit estimate for a DS welded T-joint varying tb ,
tc , lw , hw and Rt .

is applied to the tube with Rt →∞ (Fig. 2.6), the DS welded T-joint contains two
parallel load paths: one through the base plate and one through the weld and
cross plate. The shear stiffness and torsion stiffness of the load paths define how
the loading is divided. The base plate load path related shear stiffness dominates
generally speaking the weld and cross plate load path related torsion stiffness,
explaining the ( fs,tb / fs ) values closer to 1 (Fig. 2.7). For increasing tb , the shear force
through the base plate increases because of increasing base plate load path stiffness.
The weld and cross plate load path torsion stiffness increases for increasing tc , lw ,
and hw , meaning the base plate load path contribution decreases. The considered
range of dimensions is representative for maritime structures consisting of structural
members with relatively small plate thickness in comparison to the width and length.

In order to obtain the required Ct w values, FE solutions and analytical results
(Eq. 2.14) for a range of geometry dimensions have been used to establish a 4th

order polynomial fitting function (Eq. B.1). Geometry contributions – including the
notch angle (lw /hw ) – and two load path parameters: (lw /tb) and the log-ratio
of (tc /2+ lw )/tb are involved, as well as (tb/Rt ) implicitly representing the internal
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Figure 2.9.: Weld toe notch stress distribution for ρ = 0 (a) and ρ > 0 (b) for a DS
welded T-joint; rτs = 0.24.
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Figure 2.10.: Weld toe notch stress distribution for ρ = 0 (a) and ρ > 0 (b) for a DS
welded T-joint; rτs = 0.

loading contribution in terms of rτs (Appendix B). The weld load carrying stress
turns out to be virtually ρ independent for realistic values: (ρ/tb) ≤ 0.2, and has been
neglected in establishing the Ct w fitting function.

Comparing the required Ct w values to the estimates (Fig. 2.8) reflect a good match.
Depending on the joint dimensions, the weld load carrying stress level for the weld
toe notch at the base plate can be up to about 30 [%] of the structural stress τs .
For varying tb , tc , and hw , the trends are the same and opposite to the relative
base plate loads (Fig. 2.7) as expected because of the same physics. Increasing tb

decreases Ct w since the relative stiffness contribution of the weld and cross plate
load path decreases. For increasing tc and hw , the Ct w values increase because the
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Figure 2.11.: Relative stress distribution error for DS welded T-joint, comparing the
FE solutions and the analytical results. The fillet weld angle is in
between 30 and 60 [deg], i.e 210◦ < 2α< 240◦.

Model properties:
• PLANE25 element

tube
(base plate)

• linear elastic material behaviour

• weld element size = tp /40
• full integration scheme

nodal forces

fixed constraint

flange
(cross plate)

weld toe notch

Figure 2.12.: Two-dimensional harmonic axisymmetric FE model for a non-symmetric
T-joint.
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relative weld and cross plate load path stiffness increases. For increasing lw , the
load through the base plate decreases; the load through the weld and cross plate
increases accordingly. However, Ct w decreases for increasing lw , meaning the weld
notch becomes less effective. Asymptotically decreasing Ct w behaviour – related to
the pure shear limit case (rτs = 0) – can be observed for increasing Rt , meaning Ct w

is relatively small in comparison to the pure torsion case (rτs = 1).

A monotonic through-thickness stress distribution at the weld toe notch of
the base plate is shown (Fig. 2.9) for a combined load case (rτs = 0.24); the
torsion moment is applied counter-clockwise. A non-monotonic one is shown
(Fig. 2.10) for a pure shear force (rτs = 0). The joint dimensions are arbitrary,
but realistic for maritime structures. A comparison of the weld toe notch stress-
and far field stress distributions indicate that force and moment equilibrium is
(approximately) satisfied indeed. Converged solid FE model solutions (Fig. 2.12) are
added for comparison (Figs. 2.9 and 2.10), showing that the semi-analytical τn(r /tp )
formulations (Eqs. (2.14) and (2.15)) provide accurate stress distributions. In general,
the relative error (Fig. 2.11) – obtained considering all stress distributions for the full
parameter range – is within 5 [%]. Like for the mode-I formulations, three zones
can be identified: the zone 1 peak stress value, the zone 2 notch-affected stress
gradient and the zone 3 far-field dominated stress gradient, demonstrating stress
field similarity.

2.2.5. STRESS DISTRIBUTION FOR SYMMETRY WITH RESPECT TO (tp /2)

Weld toe notches appear at both sides of a plate/shell if stress distribution
symmetry with respect to (tp /2) is detected, as shown for a DS welded cruciform
joint (Fig. 2.13). The self-equilibrium stress part components, τxθ (Eq. 2.1) and
τt w (Eq. 2.8) are assumed to be important for fatigue crack development at the
considered notch location only and another τse contribution for the symmetry part
will be ignored. The far field stress component is assumed to be dominant for
{1/2 < (r /tp ) < 1}, meaning that no τt w correction is required for this region. For
a pure out-of-plane shear force Fs,op induced load case (τs = τss ), the notch stress
formulation for ρ = 0 becomes:

τns

(
r

tp

)
= τs fρ=0

(
r

tp

)
= τs

[(
r

tp

)λτ−1

µτF cos(λτβ)−µτM

{
2

(
r

tp

)
−1

}
−Ct w

{
4

(
r

tp

)
−1

}] (2.26)
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and for ρ > 0:

τns

(
r

tp

)
= τs fρ>0

(
r

tp

)

= τs

[(
r ′

tp

)λτ−1

µτF cos(λτβ)

{
1+

(
r0

tp

)2λτ (
r ′

tp

)−2λτ }
−

µτM

{
2

(
r ′

tp

)
−1

}
−Ct w

{
4

(
r ′

tp

)
−1

}]
.

(2.27)
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Figure 2.13.: DS welded cruciform joint showing symmetry with respect to (tb/2),
either in a tubular or planar (Rt →∞) structure.

To calculate the coefficients µτF and µτM , half the plate thickness is considered.
Using force and moment equilibrium only is not sufficient and a symmetry condition
has been added as 3rd equation. However, the system of equations has become over
determined, meaning a least squares solution will be obtained. Allowing for some
relaxation, i.e. ignoring moment equilibrium, provides quite accurate results – like
for mode-I [18]. Force equilibrium in a weak form for ρ = 0:

1/2∫
0

τn

(
r

tp

)
d

(
r

tp

)
=

1/2∫
0

τs d

(
r

tp

)
(2.28)

provides

µτF = λτ (Ct w +1)

cos
(
λτβ

)
21−λτ

(
1+ λτ

2 (λτ−1)
) . (2.29)

In case ρ > 0, the coordinate system transformation (Eqs. (2.4) and (2.5)) becomes
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involved and force equilibrium in weak form:

(
2r0+1

2tp

)∫
(

r0
tp

) τn

(
r

tp

)
d

(
r

tp

)
=

1/2∫
0

τs d

(
r
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)
(2.30)

denotes

µτF =
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Imposing symmetry:

dτn

(
r
tp

)
d

(
r
tp

)
∣∣∣∣∣∣(

r
tp

= 1
2

) = 0 (2.32)

yields µτM = (2λτ (λτ−1)−4Ct w )(λ2
τ−λτ+2)−1 for ρ = 0. However, like observed

for moment equilibrium in case of non-symmetry (Section 2.2.4), substitution in
τn(r /tp ) provides a Ct w independent equation, since the introduced anti-symmetric
term and the weld load carrying stress have the same form. Ignoring the weld load
carrying stress contribution yields for ρ = 0:

µτM = 2λτ (λτ−1)

λ2
τ−λτ+2

(2.33)

and for ρ > 0, considering the notch radius induced shift of the coordinate system
origin (Eqs. (2.4) and (2.5)):

µτM =

(
2r0+1

2tp

)2
λτ

{
2λτ

(
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}
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+2λτ

[(
2r0+1

2tp

)λτ − (
r0
tp

)λτ]+ λτ(λτ−1)
2t 2

p

} . (2.34)

In order to acquire the pure torsion moment Mt induced notch stress distribution
in a similar formulation as for non-symmetry (Eq. 2.15), i.e. including a far field
torsion stress projection, τns (r /tp ) needs to be shifted first by {1– f (r /tp = 1/2)} –
with f (r /tp ) = fρ=0(r /tp ) or f (r /tp ) = fρ>0(r /tp ) for respectively ρ = 0 and ρ > 0 – in
order to meet the condition τnt (r /tp = 1/2) = 0. To satisfy anti-symmetry, the τnt
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Figure 2.14.: Relative base plate shear load for a DS welded cruciform joint, varying
tb , tc , lw and hw for both Rt →∞ and Rt → tb .

gradient at (r /tp = 1/2) should be equal to the far field torsion value −2. Subtracting
the shift in terms of a torsion stress gradient −2{1– f (r /tp = 1/2)} from the unit
stress 1, the obtained formulation needs to be scaled using {2 f (r /tp = 1/2)−1} and
becomes for ρ = 0:
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]{
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(
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2
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(
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(2.35)

with

fρ=0

(
r
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= 1

2

)
=

[(
1

2

)λτ−1

µτF cos(λτβ)−Ct w

]
(2.36)
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and for ρ > 0:
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2
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(2.37)
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Figure 2.15.: Required Ct w value and fit estimate for a DS welded cruciform joint,
varying tb , tc , lw , hw and Rt .
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(2.38)

Finally, adopting a linear superposition principle, the mode-III stress distribution
for symmetry can be obtained for ρ = 0 using the τns and τnt formulations
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(Eqs. (2.26) and (2.35)) as well as structural stress relations (Eq. 2.13):
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2
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(
r
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(2.39)

The same formulation applies for ρ > 0, using fρ>0(r /tp = 1/2) rather than
fρ=0(r /tp = 1/2); i.e. (Eq. 2.27) and (Eq. 2.37). Like for non-symmetry (Section 2.2.4),
the ρ = 0 expressions are a ρ > 0 limit case. For a tubular structure with attachment
involving a DS welded cruciform joint and exposed to a torsion moment Mt

(Fig. 2.13), the structural stress ratio rτs changes for varying tube radius Rt . For
the limit cases, respectively Rt → tb (corresponding to a solid shaft) and Rt →∞
(corresponding to a quasi-planar structure), the pure torsion and pure shear case
appear, meaning that for symmetry – in contrast to non-symmetry (Section 2.2.4) –
both extremes can be considered to establish the rτs dependent weld load carrying
stress τsCt w behaviour.

Investigating the relative load path contributions for the DS welded cruciform
joint, three parallel load paths are involved: one through the base plate and two
through the weld and cross plate. The shear forces through the base plate (Fig. 2.14;
Rt →∞) are relatively small in comparison to the DS welded T-joint values (Fig. 2.7)
because of the smaller stiffness contribution of each load path. The trends for fs

(Fig. 2.7 for the T-joint – as well as Fig. 2.14; Rt →∞ for the cruciform joint) and mt

(Fig. 2.14; Rt → tb) are the same. For mt , the radius dependent torsion stiffness is
involved for all load paths and becomes larger towards the outer load path through
the weld and cross plate, clarifying the relatively small (mt ,tb /mt ) values. For
increasing tb , the shear force and torsion moment through the base plate increase
because of increasing base plate load path stiffness. The weld and cross plate load
path torsion stiffness increases for increasing tc , lw , and hw , meaning the base plate
load path contribution decreases. Like for non-symmetry (Section 2.2.4), a 4th order
polynomial fitting function (Eq. B.2) has been established to capture Ct w estimates.
The weld load carrying stress turns out to be virtually ρ independent for realistic
values: (ρ/tb) ≤ 0.2 and has been neglected in establishing the Ct w fitting function.

For DS welded cruciform joints, the weld load carrying stress level does not even
reach 5 [%] of τs (Fig. 2.15). Since Rt = 100 [mm], the far field stress involves both
a (constant) shear force and (linear) torsion moment induced contribution. For
varying tc and lw , the trends (Fig. 2.15) are the same and opposite to the relative
base plate loads (Fig. 2.14) as expected because of the same physics. Although, a
decreasing Ct w might be expected for increasing tb and hw (Fig. 2.14), the increased
radius dependent torsion stiffness for the outer load path through the weld and
cross plate is responsible for counteracting behaviour and provides even a small Ct w

increase. Like for the non-symmetry case (Section 2.2.4), asymptotically decreasing
Ct w behaviour – related to the pure shear limit case (rτs = 0) – can be observed for
increasing Rt , meaning Ct w is relatively small in comparison to the pure torsion
case (rτs = 1).
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Figure 2.16.: Weld toe notch stress distribution for ρ = 0 (a) and ρ > 0 (b) for a DS
welded cruciform joint; rτs = 1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

notch stress  
n
/

s

far field stress  
f
/

s

FE solution

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

notch stress  
n
/

s

far field stress  
f
/

s

FE solution

(b)

Figure 2.17.: Weld toe notch stress distribution for ρ = 0 (a) and ρ > 0 (b) for a DS
welded cruciform joint; rτs = 0.24.

Monotonic through-thickness stress distributions at the weld toe notch of the
base plate are shown (Figs. 2.16 and 2.17) for a pure torsion moment (rτs = 1) and
combined load case (rτs = 0.24); the torsion moment is applied counter-clockwise.
A non-monotonic one is shown (Fig. 2.18) for a pure shear force (rτs = 0). For
{0 ≤ (r /tb) ≤ (1/2)} equilibrium conditions are (approximately) satisfied as imposed.
The (anti-)symmetry condition (Eq. 2.32) ensures a stress gradient close to rτs for
{(1/2) ≤ (r /tb) ≤ 1}. Converged solid FE model solutions are added for comparison,
showing that the semi-analytical τn(r /tp ) formulations (Eq. 2.39) provide accurate
weld notch stress distributions. Like for the non-symmetry case (Section 2.2.4), three
zones can be identified meaning stress field similarity is maintained. In general,
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Figure 2.18.: Weld toe notch stress distribution for ρ = 0 (a) and ρ > 0 (b) for a DS
welded cruciform joint; rτs = 0.
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Figure 2.19.: Relative stress distribution error for DS welded cruciform joint,
comparing the FE solutions and the analytical results. The fillet weld
angle is in between 30 and 60 [deg], i.e 210◦ < 2α< 240◦.

the relative error (Fig. 2.19) – obtained considering all stress distributions for the
full parameter range – is within 5 [%] for {0 ≤ (r /tb) ≤ (1/2)}. Relatively large errors
appear in the far field dominated stress gradient zone since the notch contribution
for the symmetry part in {(1/2) ≤ (r /tb) ≤ 1} has been neglected.
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2.3. MODE-III WELDED JOINT FATIGUE RESISTANCE
Using fatigue resistance data from literature (Section 2.3.1), the mode-III welded
joint mid-cycle fatigue resistance characteristics will be established using the
nominal stress concept (Section 2.3.2), as well as the effective notch stress
concept (Section 2.3.3) employing the semi-analytical weld notch stress formulations
(Section 2.2).

2.3.1. FATIGUE RESISTANCE DATA

Principally, only data series involving steel specimens with circular cross-sections –
typical tubular structural joints – are considered (Fig. 2.20 and table 2.1), in order to
ensure pure mode-III response conditions at the governing fatigue sensitive location;
a DS welded T-joint geometry showing non-symmetry with respect to (tp /2) of the
hot spot type C [16, 18]. Only specimens showing weld toe induced fatigue damage
are included, involving predominantly failures and some run-outs. The sample size
is ∼ 50.

Table 2.1.: Fatigue resistance data from literature

source
tb tc lw hw Rt ρ R no. thermal

[mm] [mm] [mm] [mm] [mm] [mm] [-] specimens condition

[15] Sonsino 10.0 25.0 9.0 9.0 44.45 0.45 -1 4 SR
[49] Yousefi 8.0 25.0 10.0 10.0 42.42 n.a. [0;-1] [9;8] SR
[50] Siljander 9.5 9.5 8.0 8.0 25.40 0.18 [0;-1] [2;6] SR
[51] Witt 8.0 16.0 9.0 9.0 44.45 n.a. -1 11 SR
[52] Seeger 8.0 20.0 6.3 6.3 54.00 1.00 -1 6 SR
[53] Yung 8.0 8.0 7.7 7.7 23.80 n.a. -1 2 AW

The external loading basically involves a torsion moment Mt . For gripping and/or
load application purposes, the specimens typically contain flanges. In case of
non-circular cross-sections, warping constrains will introduce a mode-I response
contribution at the governing hot spot, explaining why the often used square
cross-section data [54, 55] is not included this time.

Specimens involving attachments [56] are not included as well. Although the
external loading involves a torsion moment Mt , the attachment locally affects the
stiffness distribution and the governing hot spot – type A – response involves a
mode-I contribution.

The loading & response ratio R =−1 for most data series, meaning the loading &
response condition is fully reversed and the mean component is zero. For some
data series R = 0, reflecting a repeated (impact) loading & response condition with
non-zero mean. Since the thermal condition for the majority of the specimens
is stress-relieved and for some as-welded – introducing a welding induced mean
component as well, the influence of mean stress will be investigated. Looking
at the life time range of the considered data, N = (104 ∼ 5.106) cycles, meaning
virtually all data reflects mid-cycle fatigue characteristics. Correlating a fatigue
strength criterion S to the fatigue life time N , typically a (n approximately)
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log-log linear dependency is observed and a Basquin type of relation is naturally
adopted [14]: log(N ) = log(C )−mů log(S). One way to estimate the single slope
curve parameters, intercept log(C ) and slope m as respectively the endurance
and damage mechanism coefficient, is using linear regression on fatigue life time:
log(N ) = log(C )−m log(S)+σϵ, introducing the scatter (i.e. performance) parameter
σ. The maximum likelihood approach [18, 57] will be employed to obtain the most
likely parameter vector estimate Φ̂ : max

Φ
{L (Φ; N |S)} with Φ= {

log(C ),m,σ
}
.

t (mode-III)M

=

sτ

n

+

bτ

sτ

τ

+

seτ

sτ

τ

+

bτ

sτ

τm

τ

=

s

+

mt

ß

α

ϑ

r

tc

ρ

y
x

z

xrτ

xϑτ

ß
α

r

yz

α

τ

bt

zx

α

τ

wh

τ

wl

xy

se

xz

τ
τ

ϑ

α

ß

α

n

yzτ

zx

=

τ

m

xy

m

xz

t

τ
τ

y
x

z

τ

r

τxϑ

=

xrτ

x

l

y

z

tc

r tb

t

r tb

b (mode-I)

s (mode-II)

(mode-I)

l

bM

M (mode-III)

α r
α

sF

s (mode-III)

tc

ρ

t (mode-III)

ß

F

bt

wh

(mode-I)

Mb (mode-I)

sF (mode-II) (mode-III)s

(mode-I)b

Mb (mode-I)

F (mode-II)

(mode-I)bM

M (mode-III)

(mode-I)sF

F (mode-III)

Mb (mode-I)

sF (mode-II)

(mode-I)bM

M

s

(mode-III)t

(mode-I)

t

sF

sF (mode-III)

M (mode-III)

s

t

tc

M

sF
b

F

t

Mb (mode-I)

sF (mode-II)

w

(mode-I)bM

s

M (mode-III)t

M

y

(mode-I)

x

sF

z

s

F

F (mode-III)

M

(mode-I)

(mode-III)t

b

t

t r

ct

tc

ρ

F

tc

ß

M

α
rα

c

r

bt

w

tb

h

w

FIGURE 9

FIGURE 22

FIGURE 2

FIGURE 3

FIGURE 2

FIGURE 6

FIGURE 6

FIGURE 4

[50] Siljander
[53] Yung[15] Sonsino

[52] Seeger [51] Witt
[49] Yousefi

Figure 2.20.: Fatigue test specimen geometry, external loading (arrows) and
constraints (thick lines).

2.3.2. NOMINAL STRESS ASSESSMENT

For reference purposes, the nominal stress criterion Sn =∆τnom , a global structural
detail- and linear elastic intact geometry parameter [6], will be used to establish
the mid-cycle fatigue resistance characteristics. The intercept log(C ) defines the
fatigue strength and is typically expressed in terms of FATigue classes and detail
CATegories. The damage mechanism is assumed to be similar for all structural
details, meaning the slope m is invariant. As long as material, geometry, loading &
response, environment as well as failure location and weld quality fit the FAT or
CAT description, computational effort is limited and concept complexity is relatively
low. However, local geometry and loading & response variations are not explicitly
considered, paying off in terms of fatigue resistance accuracy since Sn is processed
as point criterion, as ‘local’ nominal stress, meaning (notch stress gradient induced)
size effects are not taken into account explicitly and have to be corrected for.
Although a spatial description of a loading & response cycle requires two parameters,
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e.g. range and ratio R = (Mt ,min/Mt ,max) = (τmin/τmax), the ratio – reflecting a mean
stress effect – is typically not explicitly considered. However, Walker’s mean stress
model will be adopted, typically providing the best results for welded joints [14, 16,
58] and turning the nominal stress criterion into an effective one:

Sn,eff =∆τn,eff =
∆τnom

(1−R)1−γ ∀ 0 ≤ γ≤ 1. (2.40)

For γ→ 1, the nominal stress range ∆τnom dominates the fatigue resistance; the
mean stress becomes governing for γ→ 0. The loading & response ratio coefficient γ
is a fitting parameter and will be added to the parameter vector: Φ

{
log(C ),m,γ,σ

}
.

Assuming that the fatigue life time N is most likely log(Normal) distributed,
maximum likelihood based regression analysis of the mode-III welded joint fatigue
resistance data confirms the log-log linear behaviour (Fig. 2.21). The parameter
confidence is relatively large (Table 2.2), and in agreement with expectations
considering the sample size (Section 2.3.1).
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Figure 2.21.: Nominal stress based fatigue resistance including mean stress correction.

The fatigue strength as reflected in log(Ĉ ) is for the R95C75 design curve -
reliability level is 95 [%] and confidence level is 75[%] - at N = 2 · 106 cycles
∼ 150 [MPa], meaning that the IIW FAT80 [33] and Eurocode CAT80 [34] seem
conservative. Slope m̂ ∼ 4.7 is close to the typical design value m = 5 [33, 34].
The standard deviation σ̂∼ 0.29 can be used to calculate the strength scatter band
index TσSn = 1 : (Sn,10/Sn,90) = 1 : 1.25, the fatigue strength ratio for 10 [%] and 90 [%]
probability of survival, and turns out to be already small in comparison to a typical
value of 1 : 1.5 [21].
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Table 2.2.: Nominal stress based parameter estimates and 75[%] lower and upper
confidence bounds.

parameter

log(C ) 16.95 [16.06, 17.85]
m 4.71 [4.34, 5.08]
ρ∗ /
γ 1.00 [0.97, 1.00]
σ 0.29 [0.26, 0.33]

Walker’s loading & response ratio coefficient γ̂∼ 1, meaning that the mean stress
does not affect the mode-III fatigue resistance, in contrast to mode-I [14, 16]. The
external loading induced mean shear stress contribution for the considered data
sets with R = {0,−1} is insignificant and at the same time the contribution of the
quasi-constant welding induced residual stress seems negligible as well, since the
stress-relieved and as-welded data match the same scatter band. Whether the
welding induced residual stress would be a mode-I or mode-III component – or even
a mixed one – is unknown, although the mode-I component effect is typically small
in the mid-cycle fatigue region as well [59], but can become more significant when
shifting to the high-cycle fatigue region [1]. The statement that stress-relieve clearly
influences mode-III fatigue resistance [55] seems to be a result of a comparison to
a mode-I fatigue resistance curve. Different mean stress effects have been reported
for various materials and geometries – both plane and notched [60–64]. However,
common denominator seems that for mode-III mean stress effects are less significant
than for mode-I, at least in case more ductile materials like steel are involved. Since
γ ∼ 0.9 for mode-I [14], the same observation applies to the fatigue resistance of
welded joints in steel (maritime) structures.

2.3.3. EFFECTIVE NOTCH STRESS ASSESSMENT

Although for welded joints (short and long) crack growth dominates the damage
process, the fatigue life time N is predominantly spent in the notch affected region
[13], meaning a local notch characteristic intact geometry parameter rather than a
cracked geometry one can be adopted as fatigue strength criterion as well. Since
the (as) weld(ed) notch radius ρ is typically small, a zone 1 peak stress criterion
would be too conservative. Adopting a micro- and meso-structural notch support
hypothesis, an effective notch stress estimate τe can be obtained by averaging the
notch stress distribution along the expected crack path over a material characteristic
micro- and meso-structural length ρ∗, partially incorporating a zone 2 notch stress
gradient – and zone 3 far field stress gradient contribution as well [14, 16, 17, 19–21,
65]:

τe =
tp

ρ∗

ρ∗
tp∫

0

τn

(
r

tp

)
d

(
r

tp

)
. (2.41)
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Typically, a solid FE model solution is required in order to estimate τe . However,
taking advantage of the stress distribution formulations (Eqs. (2.14), (2.15) and (2.39)),
the effective notch stress criterion Se =∆σe in case of non-symmetry becomes for
ρ = 0:

Se = ∆τs

λτ

tp

ρ∗

{
cos(λτβ)µτF

(
ρ∗

tp

)λτ
−λτ

(
ρ∗

tp

)[(
ρ∗

tp

)
(µτM + rτs +Ct w )−µτM −Ct w

]}
(2.42)

and for ρ > 0:

Se = ∆τs

λτ

(
tp

r0 +ρ∗

){
cos(λτβ)µτF

[(
r0 +ρ∗

tp

)λτ
−

(
r0

tp

)λτ ]
−

cos(λτβ)

(
r0

tp

)2λτ
µτF

[(
r0 +ρ∗

tp

)−λτ
−

(
r0

tp

)−λτ ]
−

λτ
ρ∗

tp

[(
2r0 +ρ∗

tp

)(
µτM + rτs +Ct w

)−µτM −Ct w

]}
.

(2.43)

In case of symmetry with respect to (tp /2) and ρ = 0 :

Se = 2∆τs

λτ

tp

ρ∗

{
cos(λτβ)µτF

(
ρ∗
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)λτ {1

2
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[
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−1
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+Ct w −1
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(2.44)

and for ρ > 0:
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Se =2∆τs
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(2.45)

Incorporating Walker’s mean stress model turns the notch stress criterion into an
effective one:

Se,eff =
Se

(1−R)1−γ . (2.46)

In order to obtain a most likely material characteristic length ρ∗ and loading &
response ratio coefficient γ estimate, both parameters will be added to the parameter
vector Φ(logC ,m,γ,ρ∗,σ).

Adopting the Basquin type of relation (Section 2.3.1), maximum likelihood based
regression analysis of the fatigue resistance data confirms the log-log linear behaviour
(Fig. 2.22 and table 2.3). Results are obtained for a most likely log(Normal)
distributed fatigue life time N . Since ρ is typically a stochastic variable along the
weld seam and quite small, ρ = 0 has been assumed.

Table 2.3.: Effective notch stress based parameter estimates and 75[%] lower and
upper parameter confidence bounds.

parameter ρ = 0 ρ > 0

log(C ) 21.67 [20.25, 23.10] 18.80 [18.06, 19.53]
m 4.74 [4.40, 5.09] 5.08 [4.79, 5.35]
ρ∗ 0.00 [0.00, 0.13] 0.12 [0.06, 0.21]
γ 1.00 [0.97, 1.00] 1.00 [0.98, 1.00]
σ 0.27 [0.24, 0.31] 0.21 [0.19, 0.24]

Obviously, the fatigue strength parameter log(Ĉ ) is different from the nominal
stress concept value (Section 2.3.2), since local information is included. As can
be expected for log–log linear mid-cycle fatigue behaviour, the scaled co-variance
matrix (Table 2.4) shows a highly correlated intercept log(C ) and slope m. However,
the introduced log(C )−ρ∗ correlation seems responsible for the decreased parameter
confidence. In comparison to the nominal stress value, slope m has hardly changed.
The most likely material characteristic length ρ̂∗ is virtually zero, suggesting the
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Figure 2.22.: Effective notch stress based fatigue resistance including mean stress
correction for ρ = 0.

Table 2.4.: Se −N normalized co-variance matrix for ρ = 0.

parameter log(C ) m ρ∗ γ σ

log(C ) 1.00 -0.47 -0.33 0.35 -0.56
m 1.00 0.79 -0.61 0.79
ρ∗ 1.00 0.00 0.33
γ 1.00 -0.83
σ 1.00

notch stress gradient hardly affects the fatigue resistance. However, since ρ∗ basically
covers size (i.e. thickness) effects, the limited variation in tb values (Table 2.1)
could be at least partially responsible for the ρ∗ → 0 result, since the notch gradient
induced scaling of all Se values is approximately the same. On the other hand,
the confidence bounds (Table 2.3) indicate that ρ∗ → tb is not likely, since at the
same time the obtained scatter and performance parameter σ has decreased a bit in
comparison to the nominal stress based result, introducing the hypothesis that the
mode-III fatigue damage process might even be a more near-surface phenomenon
than the mode-I process. Experimental results involving tp values in the range of
5, 15 and even 20 [mm] could help to investigate the validity of this hypothesis.
The loading & response ratio coefficient estimate for a local strength criterion like
Se is not different from a global one like Sn : γ̂→ 1, suggesting mean (shear)
stress hardly affects the mode-III fatigue resistance. Performance parameter σ, the
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standard deviation, has slightly improved in comparison to the nominal stress based
result (Table 2.3), suggesting that the notch stress gradient contributes at least up
to some extent to the effective notch stress performance. However, since the ρ = 0
assumption is in conflict with Se (ρ∗ → 0) estimates, results for ρ > 0 needs to be
explored.

Real notch radius values are not available for all data sets (Table 2.1). In order to
establish a reasonable ρ estimate, regression analysis results for a range of real notch
radii provides insight (Fig. 2.23). Note that γ= 1 for all cases. Any 0 ≤ ρ ≤ 2 [mm]
could be realistic based on the available information (Table 2.1). Adopting ρ ∼ 1.3
[mm] seems to provide an optimum, i.e. most likely σ. Using the same ρ value for
all data sets (Fig. 2.24), however, shows that the most likely results are obtained for
ρ→ 0. Since ρ∗ → 0 at the same time, results would not improve and ρ ∼ 1.3 [mm]
has been selected as most likely – average – estimate for the data sets with unknown
real notch radius.
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Figure 2.23.: Most likely parameter estimates as function of adopted real notch radius
for specimens with unknown ρ.

The Se −N and parameter profile likelihood plots (Figs. 2.25 and 2.26) as well
as the normalized co-variance matrix (Table 2.5) show the analysis results. In
comparison to the ρ→ 0 result (Fig. 2.22 and table 2.4), the most likely fatigue
strength parameter estimate log(Ĉ ) has decreased since Se typically gets smaller
for ρ > 0. The confidence has increased, mainly as a result of the ρ∗ confidence
and log(C )−ρ∗ correlation (Table 2.5), confirming that ρ∗ effectively contributes
to the fatigue strength characterisation of welded joints, since ρ∗ affects Se and
log(C ) accordingly. Damage mechanism parameter, slope m̂, virtually equals the
well-known value m ∼ 5.

The most likely ρ̂∗ ∼ 0.12 for welded joint mode-III fatigue resistance in steel
structures is still relatively small and quite different from the obtained mode-I
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Figure 2.24.: Most likely parameter estimates as function of adopted real notch radius
for all specimens.
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Figure 2.25.: Effective notch stress based fatigue resistance including mean stress
correction for ρ > 0.

value: ρ̂∗ ∼ 1.14 [14], meaning ρ∗ would be at least both a material and damage
mechanism (i.e. mode) characteristic parameter. The ρ∗ confidence is quite large
(Table 2.3). Since physically speaking ρ∗ reflects the length in which the majority of
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Figure 2.26.: Effective notch stress based parameter profile likelihood plots including
two-sided 75% and 95% confidence bounds for ρ > 0.

the fatigue life has been spent, a relatively small mode-III value in comparison to
the mode-I ρ∗ supports the hypothesis that the fatigue damage process in mode-III
might even be more a near-surface phenomenon than in mode-I. At the same time,
the slope m for mode-III is larger than the mode-I value (i.e. ∼ 5 > 3), meaning
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Table 2.5.: Se −N normalized co-variance matrix for ρ > 0.

parameter log(C ) m ρ∗ γ σ

log(C ) 1.00 0.88 -0.25 -0.26 0.24
m 1.00 -0.35 -0.68 0.63
ρ∗ 1.00 0.49 -0.47
γ 1.00 -0.94
σ 1.00

the relative contribution of initiation – a (near) surface phenomenon – to the total
fatigue life time seems larger for mode-III. Anyway, if ρ∗ for mode-III is that small
indeed, the real (weld) notch radius stochastics ρ (µ,σ) will be important to capture
accurately the zone 2 notch stress gradient. Although a mean stress contribution
to the fatigue resistance would seriously affect all parameters, as reflected in the
co-variance matrix (Table 2.5) the stress-relieved and as-welded data does not show
any effect, γ̂∼ 1 and the confidence is quite large (Table 2.3). Another local fatigue
strength criterion, the Battelle structural stress [55], provides for the same data
σ∼ 0.32 – rather than σ∼ 0.26 as confirmed by the authors – meaning the effective
notch stress performance is much better, since σ̂∼ 0.21 and the related scatter index
has improved to TσSe = 1 : 1.22.

2.4. CONCLUSIONS AND OUTLOOK

Assuming stress distributions along the expected (2D) crack path are a key element
to obtain accurate mode-III fatigue strength and life time estimates, semi-analytical
expressions related to the far field stress have been developed for weld toe notches
in DS welded T-joints and DS welded cruciform joints, reflecting respectively
non-symmetry and symmetry with respect to half the plate thickness. Results for
wide range of geometry parameters show an excellent match with solid FE model
solutions. For accurate far field stress information, the weld has to be modelled
using inclined shell/plate elements. Like for the mode-I formulations, three zones
can be identified for all weld notch stress distributions: the zone 1 peak stress value,
the zone 2 notch-affected stress gradient and the zone 3 far-field dominated stress
gradient, demonstrating stress field similarity. Taking advantage of the developed
semi-analytical weld notch stress distributions, the effective notch stress has been
adopted as fatigue strength criterion to establish the welded joint mode-III mid-cycle
fatigue resistance characteristics. The involved material characteristic micro- and
meso-structural length for mode-III has not been investigated before and the most
likely estimate ρ∗ ∼ 0.1 turns out to be different from the mode-I value ρ∗ ∼ 1.1
[14] and is relatively small (research sub-question 1a), meaning ρ∗ would be at least
both a material and damage mechanism (i.e. mode) dependent parameter. Since
ρ∗ basically covers size (i.e. thickness) effects, the limited variation in tb values
(Table 2.1) could be at least partially responsible for ρ∗ → 0, since the notch gradient
induced scaling of all Se values is approximately the same. On the other hand, the
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confidence bounds indicate that ρ∗ → tb is not likely, introducing the hypothesis
that the mode-III fatigue damage process might even be a more near-surface
phenomenon than the mode-I process. Physically speaking ρ∗ reflects the length in
which the majority of the fatigue life has been spent, meaning a relatively small
mode-III value in comparison to the mode-I ρ∗ supports the hypothesis. At the
same time, the slope m for mode-III is larger than the mode-I value (i.e. ∼ 5 > 3),
meaning the relative contribution of initiation – a (near) surface phenomenon – to
the total fatigue life time seems larger for mode-III indeed (research sub-question
1a). However, since the available amount and variety of data is limited, conclusive
answers cannot be provided yet. Anyway, if ρ∗ for mode-III is that small indeed, the
real (weld) notch radius stochastics ρ(µ,σ) will be important to capture accurately
the zone 2 notch stress gradient. Walker’s loading & response ratio coefficient γ∼ 1,
implying that mean stress does not affect the mode-III fatigue resistance. The
external loading induced mean shear stress contribution for the considered data
sets with R = {0,−1} is insignificant and at the same time the contribution of the
quasi-constant welding induced residual stress seems negligible as well, since the
stress-relieved and as-welded data match the same scatter band. Different mean
stress effects have been reported and common denominator seems that for mode-III
the mean stress effects are less significant than for mode-I (research sub-question
1a), at least in case more ductile materials like steel are involved. Since γ∼ 0.9 for
mode-I [14, 16], the same observation applies to the fatigue resistance of welded
joints in steel (maritime) structures.
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Se BASED MIXED MODE-{I, III}

MULTIAXIAL FATIGUE RESISTANCE

The whole is (not always) greater than the sum of its parts.

Aristotle, philosopher

3.1. INTRODUCTION
Correlation of a fatigue strength parameter S and the fatigue life time N typically
reveals a log–log linear dependency and a Basquin type of resistance relation is
naturally adopted: log(C ) = log(N )−m · log(S). Intercept log(C ) and slope m reflect
respectively a strength and mechanism contribution, suggesting the mode-I and
mode-III values are different. Adopting the effective notch stress, Se introduces
the material characteristic length ρ∗; another mechanism contribution. Uniaxial
mode-I and mode-III investigations revealed distinguished {ρ∗

I ,ρ∗
I I I } as well as

{log(C I ), log(C I I I )} and {mI ,mI I I } values [14, 16, 29]. Since a response cycle needs
two parameters for a complete spatial description, e.g. range and ratio, mode
specific response ratio coefficients {γI ,γI I I } containing another strength contribution
have been proposed as well [14, 16, 29]. However, consequences for mixed mode-{I,
III} multiaxial fatigue have not been investigated before. Aiming to reduce the still
relatively large multiaxial fatigue resistance scatter [66, 67], dedicated mode-{I, III}
strength and mechanism related contributions, respectively {log(C ),γ} and {m,ρ∗},
will be incorporated in order to obtain improved lifetime estimates. An Se

based multiaxial fatigue strength parameter will be defined considering all relevant
assessment aspects for a time domain approach (Section 3.2) and the performance

This chapter is based on the journal article:
G. Bufalari, J. H. den Besten and M. L. Kaminski. Mode-{I, III} multiaxial fatigue of welded
joints in steel maritime structures: Effective notch stress based resistance incorporating strength
and mechanism contributions. In: International Journal of Fatigue Volume 180 (2024) DOI:
https://doi.org/10.1016/j.ijfatigue.2023.108067.
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will be evaluated using multiaxial fatigue resistance data from literature (Section 3.3).
The conclusions and outlook (Section 3.4) provide answers to research sub-question
4 and provide half of the information (i.e. Se related only) required for sub-questions
2, 3 and 5 (Section 1.3).

3.2. MULTIAXIAL FATIGUE ASPECTS
Based on fatigue damage criteria classification [6], particular attention will be paid
first to modelling aspects for different types of criteria, looking at static and fatigue
strength similarities, as well as differences between infinite and finite life criteria
(Section 3.2.1). In order to be able to deal with random multiaxial response
conditions, damage plane selection (Section 3.2.2) and cycle counting aspects
will be addressed (Section 3.2.3), including ways to deal with non-proportionality
(Section 3.2.4). Last but not least, fatigue damage accumulation model considerations
will be discussed (Section 3.2.5).

3.2.1. FAILURE CRITERION

Classical failure criteria for more ductile isotropic materials, including polycrystalline
metals like steel, already aim to estimate yielding of materials for monotonic —
ultimate strength related -– multiaxial response (i.e. stress) conditions [68].

Any stress tensor can be decomposed into the sum of a hydrostatic (mean)
and deviatoric (shear induced) part. Whereas the hydrostatic part introduces a
volume change only without deformation, the deviatoric one is associated with
shape change, distortion. Polycrystalline metals comprise of grains with different
shape, size and orientation, meaning for any loading condition each grain shows a
different amount of slip; a shear induced response, changing the shape. After failure,
slip bands turn out to be visible at the fracture surface, i.e. experimental evidence
suggesting the Tresca maximum shear stress criterion is decisive [69]. For shell/plate
type of structures only the mode-III component is relevant: S = max(τI I I ) ≤ σy ,
since the mode-II contribution is negligible. At the same time, experimental
evidence shows that ductile materials do not fail in case of a hydrostatic stress
component only (e.g. metals in deep ocean waters), introducing the distortion
based von Mises maximum deviatoric stress criterion [69]. For shell/plate type of
structures principally containing a governing mode-I normal and mode-III shear

component only: S = max
{√

σ2
I +β ·τ2

I I I

}
≤σy . The von Mises criterion is essentially

an equivalent normal stress formulation. Shear strength coefficient β is a material
constant. For steel β= 3 is typically adopted [69].

For cyclic – fatigue strength related – multiaxial response conditions, linear
and non-linear failure criteria have been proposed for the infinite life region [e.g
70–72]. A fatigue resistance limit is naturally introduced, defining the threshold
for an unlimited number of cycles: S∞(N →∞). Based on different modelling
philosophies, the criteria are principally a combination of two parameters: a
primary governing term and a secondary correcting one. The linear criteria:
S = max

{
C1 · f (S1)+C2 ·g (S2)

}≤ S∞(N →∞), seem of the Tresca type; the non-linear
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ones: S = max
{√

C1· f (S1)2 +C2·g (S2)2
} ≤ S∞(N → ∞), of the von Mises type.

Parameters S1 and S2 are for example the deviatoric and (max) hydrostatic stress,
respectively, taking the complete stress state into account. The shear stress –
assuming crack initiation provides the major contribution to the fatigue lifetime –
and (max) hydrostatic stress can be used as well. Alternatively, the shear stress
τI I I and (max) normal stress σI are adopted [e.g. 73], reflecting the multiaxial
mode-I and mode-III contributions. Constants C1 and C2 are (fitted) material
dependent coefficients. Since a response cycle requires two parameters for a
complete definition in space, e.g. the stress range S and the response ratio
R = Smi n/Smax , both may affect the fatigue strength and the criteria may even turn
into: S = max

{
C1· f (S1,R1)+C2·g (S2,R2)

}≤ S∞(N →∞) for an equivalent shear stress

and S = max
{√

C1· f (S1,R1)2 +C2·g (S2,R2)2
}≤ S∞(N →∞) for an equivalent normal

one.
For the finite life region, principally the same type of criteria could be adopted,

although the coefficients will become response level dependent and the fatigue limit
will turn into a lifetime dependent fatigue resistance relation because of the finite
number of response cycles N : S = max

{
C1(S1)· f (S1,R1)+C2(S2)·g (S2,R2)

} ≤ S(N )

and S = max
{√

C1(S1) · f (S1,R1)2 +C2(S2) · g (S2,R2)2
} ≤ S(N ). The governing mode-I

and mode-III log-log linear mid-cycle fatigue resistance relations (Fig. 3.1):
log(N ) = log(C )−m · log(S) → log(S) = {

log(C )− log(N )
}
/m → S(N ) = (N /C )−1/m , have

characteristic intercept and slope parameters {log(C ),m}, respectively reflecting
different fatigue strengths and mechanisms. In case initiation dominates the
fatigue lifetime, the shear stress is in control and a Tresca type of criterion seems
straightforward. If growth provides the major contribution, an equivalent normal
stress based von Mises type of criterion makes sense.
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Figure 3.1.: Lifetime dependent mode-I and mode-III fatigue strength ratio.

Adopting an (equivalent) shear stress S = max[VAR
{
τI I I (t )

}
] based on a primary

governing term only, a response based normal to shear stress ratio has been
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introduced to establish the failure criterion [66, 74–76]: ρτ = ∆σI /∆τI I I =p
[2·VAR{σI (t )}]/

p
[2·VAR{τI I I (t )}]. Incorporating the relative mode-I and mode-III

contributions, a response representative – rather than mode-III equivalent –
resistance curve has been proposed with log{C (ρτ)} = a ·ρτ+b and m(ρτ) = c ·ρτ+d ,

turning the criterion into: S = max[VAR
{
τI I I (t )

}
] ≤ {

N /C (ρτ)
}−1/m(ρτ). Coefficients {a,

b, c, d} are based on the mode-I and mode-III reference resistance curve parameters.
Since both the resistance and response information define [log

{
C (ρτ)

}
,m(ρτ)],

the intercept and slope can become out of (resistance) control. Bounds have
been provided [76, 77], but remain a modelling limitation. Involving the mean
stress as a 2nd parameter to define a cycle in space, the equivalent shear stress

turns into an effective one [75]: S = max[VAR
{
τI I I (t )

}
e f f ] ≤ {

N /C (ρτ)
}−1/m(ρτ). A

similar ratio has been proposed to establish a shear stress fitting coefficient
C2

{
∆τI I I /∆σI

}
, aiming to obtain a mode-III equivalent resistance curve [78]. Explicit

model limitations do not seem to exist, although the multiaxial test data fitted
C2(∆τI I I /∆σI ) formulation implicitly determines up to what extent the criterion:

S = max[S1 +C2
{
∆τI I I /∆σI

} ·S2] ≤ {
N /C I I I

}−1/mI I I with S1 = ∆τI I I and S2 = ∆σI , is
applicable.
For a finite lifetime, the ratio of the mode-I and mode-III fatigue strength depends
on the number of cycles N until failure (Fig. 3.1), meaning that for an equivalent
normal stress criterion the shear strength coefficient has to be response level

dependent rather than constant [e.g. 73]: S = max
[√

σ2
I +β

{
σI (N ),τI I I (N )

} ·τ2
I I I

]
,

with β = ∆σI (N )/∆τI I I (N ) = C ·N M , C = 10
{

mI I I ·log(CI )−mI ·log(CI I I )
}

/
{

mI ·mI I I

}
and M =

(mI − mI I I )/(mI · mI I I ). Both uniaxial and multiaxial mode-{I, III} fatigue
test data should fit in the mode-I resistance data scatter band, reflecting
the same equivalent strength and mechanism, i.e. intercept and slope:

S = max[
√
σ2

I +β
{
σI (N ),τI I I (N )

} ·τ2
I I I ] ≤ {

N /C I
}−1/mI . The S(N ) formulation is fully

resistance defined and β(σI ,τI I I ) bounds, either real or artificial, are not required.
Although the shear strength coefficient should be response level dependent, still a
constant β has been used since the fatigue resistance data scatter would hardly
reduce [79, 80]. However, at least the uniaxial mode-I and mode-III data is not
aligned since the mode-III data is mode-I equivalent at one particular number
of cycles only, rather than over the full finite lifetime range. Hardly observing a
reduction in fatigue resistance scatter seems a consequence of unbalanced uniaxial
mode-I, mode-III and multiaxial mode-{I, III} data in general, or at least ignoring the
resistance characteristics for the particular groups of data. Adopting a constant β,
regression analysis will principally provide biased, i.e. averaged, fatigue strength and
damage mechanism contributions with respect to

{
log(C ),m

}
. In case the mode-I

parameters are simply adopted, the mode-III contribution is not properly taken into
account. A mean stress correction is typically limited to a mode-I contribution,
introducing an effective normal stress σI ,e f f [e.g. 73, 81].
Rather than a resistance based shear strength coefficient, a response dependent one:
β(∆σI ,∆τI I I ) – similar to the normal to shear stress ratio ρτ for the equivalent
shear stress criterion, has been proposed [15, 66, 82, 83]. The uniaxial mode-I and
mode-III reference conditions can be represented, although for a multiaxial response
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β(∆σI ,∆τI I I ) can take unrealistic values since fatigue resistance related limitations
are lacking.

3.2.2. DAMAGE PLANE

Whereas for proportional (i.e. in-phase) multiaxial mode-{I, III} response conditions
in a particular 2D {S1, S2} plane with angle φ only the stress tensor magnitude
is changing (Fig. 3.2), the tensor additionally rotates for non-proportional (i.e.
out-of-phase) ones and the plane angle φ(t ) is varying in time.

Incorporating the damage contribution of all planes explicitly introduces typically
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Figure 3.2.: Temporal evolution of stress in the {S1, S2}- stress plane .

an equivalent fatigue strength parameter: Seq = (1/2π)·∫ S(φ)dφ, representing the
integral plane [e.g. 15, 82, 84]. Alternatively, an enclosing surface like an ellipse can
be established in the von Mises stress plane based on the perimeter p (Fig. 3.2) – an
implicit angle measure, meaning: Seq = (1/p)·∫ S(p)dp [e.g. 85].

Rather than the integral plane, only the governing, i.e. critical plane
can be considered, e.g. based on the maximum value of the adopted
fatigue strength parameter S, either an equivalent shear stress [e.g. 74–
76]: S = max[VAR

{
τI I I (φ

}
], or an equivalent normal one [e.g. 73, 85, 86]:

S = max[
√
σ2

I ,max (φ)+β{
σI (N ),τI I I (N )

} ·∆τ2
I I I (φ)]. Since the stiffness distribution of

(maritime) structures in stiffened panel configuration is predominantly orthotropic
and cracks at the weld notches typically develop first in plate thickness direction,
the fracture plane can be used as well to obtain S [e.g. 79].

The full stress tensor of a volume element consists of 3 normal- and 6 shear stress
components. For (quasi) isotropic materials (like steel) in static equilibrium, element
rotation is prevented for and tensor symmetry appears: τi j = τ j i , reducing the
tensor content to 3 normal- and 3 shear stress components only. Certain symmetric
stress tensor properties are coordinate system rotation (i.e. plane) independent,
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introducing invariants. Both tensor parts (Section 3.2.1) can be incorporated in
terms of invariants to take the complete stress state into account [e.g. 84, 87]. The
hydrostatic part, equal to one third of the first tensor invariant I1, is basically the
average normal stress; a mean value. The square root of the second invariant of the
deviatoric stress

p
J2 represents the other part, often incorporated as a von Mises

type of criterion:
√
β · J2; a stress range, with the shear stress coefficient β either

constant or response level dependent. Both invariants represent up to some extent 2
parameters defining a cycle in space.

3.2.3. CYCLE COUNTING

Although for a mode-I or mode-III uniaxial response cycle counting – i.e.
identification of the number of closed hysteresis loops – is principally required
for variable amplitude (VA) conditions, in case of a mode-{I- III} multiaxial one
cycle counting can already be relevant for constant amplitude (CA) conditions,
in particular when a phase shift is involved and/or the frequencies are different.
However, if multiaxial cycle counting is required, depends on the adopted failure
criterion (Section 3.2.1) and selected damage plane (Section 3.2.2).

For an equivalent fatigue strength parameter Seq (t ) at the integral plane – either
of the Tresca or von Mises type, at each time instant Seq (t ) can be established.
Reducing the time series to a peak-valley sequence, uniaxial (rain flow) counting can
be adopted in order to obtain the equivalent stress spectrum {Seq (n)} [e.g. 15].
In case of a Tresca type of criterion at the critical plane, S(t ) can still be processed
using uniaxial rain flow counting [e.g. 76]. Virtual cycles have been counted based
on zero crossings [88], rather than closed hysteresis loop criteria, but suggest at
least that mean stress effects cannot be incorporated. Adopting a von Mises type of
criterion, several ways of cycle counting have been considered. The uniaxial rain flow
counting algorithm can be straightforward applied to S(t ), but sign information – lost
by definition – should be incorporated [e.g. 89, 90]. However, sign changes may cause
artificial anomalies affecting the von Mises time series and providing unrealistic
counting results. Introducing a primary and secondary channel, multiaxial rain flow
counting has been proposed. In fact, one von Mises stress component is counted
(e.g. the mode-I normal stress) at the primary channel and the corresponding other
one (e.g. the mode-III shear stress) at the secondary channel is a projection at the
primary channel peak-valley location [e.g. 91]. Although at least the mode-I and
mode-III components have been incorporated up to some extent, the established
cycles are not likely multiaxial closed hysteresis loops. However, an algorithm
continuously searching for the maximum range in the time series (segments) at the
von Mises plane (Fig. 3.3) provides cycles reflecting closed hysteresis loops [e.g. 79,
80, 92–94]. In case the structural response is uniaxial, the results are the same as
obtained with rain flow counting.

If in terms of invariants only the damage related tensor component, i.e. the
deviator, is involved, uniaxial rain flow counting is straightforward applied. When
the hydrostatic component is involved as well, multiaxial rain flow counting can be
used adopting a primary and secondary channel [e.g. 87].
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Figure 3.3.: Cycle counting illustration in the von Mises plane, searching for the max.
range [e.g. 79, 80, 92–94].

3.2.4. NON-PROPORTIONALITY

The normal mode-I and shear mode-III stress components are not necessarily
proportional, e.g. because of asynchronous behaviour, different frequencies or time
varying amplitudes. How non-proportionality is incorporated typically depends on
the adopted type of criterion (Section 3.2.1), selected damage plane (Section 3.2.2)
and cycle counting procedure (Section 3.2.3).

Since an equivalent fatigue strength parameter (Section 3.2.2) takes the damage
contribution of all planes into account, any type of non-proportionality is principally
incorporated in the criterion. Adopting for example a von Mises type of criterion;
an equivalent normal stress, non-proportionality is considered introducing a shear
stress variations τ(φ) based correction: Seq = S(φ= 0) · f

{
τ(φ)

}
, assuming τ(φ) to be

the basic requirement to develop fatigue damage [15, 82].
Although for an equivalent shear stress like S = max[VAR

{
τI I I (t )

}
] [76], the normal

stress component is not explicitly considered, the response based normal to

shear stress ratio ρτ = ∆σI /∆τI I I =
√

[2·VAR
{
σI (t )

}
]/

√
[2·VAR

{
τI I I (t )

}
] defining the

characteristic resistance curve incorporates at least an average non-proportionality
measure. Using a similar ratio C2

{
τ(t )/σ(t )

}
, the equivalent shear stress takes the

instantaneous
{
σ(t ),τ(t )

}
contributions into account, meaning non-proportionality

is explicitly considered: S = [S1 +C2
{
τ(t )/σ(t )

}·S2] with S1 = τ(t ) and S2 =σ(t ) [88].
For an equivalent normal stress of the von Mises type at the critical plane,
non-proportionality can be considered in different ways. Using the instantaneous
normal and shear stress contributions

{
σ(t ),τ(t )

}
, non-proportionality is explicitly

incorporated. Even if only a single component has been counted (e.g. the mode-I
normal stress) at the primary channel and the corresponding other one (e.g. the
mode-III shear stress) at the secondary channel is a projection at the primary channel
peak-valley location, meaning the non-proportional time series are basically turned
into quasi-proportional ones, non-proportionality is implicitly included up to some
extent [e.g. 91]. Cycle counting in the von Mises stress (critical) plane (Section 3.2.3)
allows to capture at least the stress range. However, the actual response path or
perimeter has been identified as being crucial (Fig. 3.4). Introducing an effective
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stress range Se f f = S(1+cm ·Cnp ), with Cnp = ∫
S̃ {r · |sin(θ)|}ndp/

∫
S {R · |sin(θ)|}ndp and

n = {
0,1,2

}
for respectively either a 0th order moment (representing length), 1st

order (static) moment or 2nd order moment (of inertia) based path correction factor
incorporating the level of non-proportionality for each cycle relative to the straight
line defined stress range (Fig. 3.4). Any material characteristic non-proportionality
effect is reflected in fitting coefficient cm [79, 80, 93, 94].
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Figure 3.4.: Cycle-by-cycle response path based non-proportionality in the von Mises
plane.

Adopting a failure criterion based on the full stress tensor, multiaxial rain flow
counting of the invariants

p
J2 or

√
β · J2 and the projection of the corresponding

I1 at respectively the primary and secondary channel [87] implicitly includes
non-proportionality up to some extent.

3.2.5. DAMAGE ACCUMULATION

Fatigue damage is progressive and accumulates cycle-by-cycle, meaning history
counts. Both linear and non-linear models have been developed over time [e.g.
95, 96], although typically for uniaxial response conditions. Application extends to
multiaxial ones as well, since the failure criteria are typically of the equivalent stress
type (Section 3.2.1) and even multiaxial rain flow counting (Section 3.2.3) is limited
to the primary channel, meaning a single time series is considered for damage
accumulation.

The linear damage model D = ∑{
ni (Si )/Ni (Si )

} ≤ 1; the sum of the ratios of
the number of response cycles at a particular level ni (Si ) and the corresponding
resistance defined number of cycles to failure Ni (Si ) [97, 98], is the universal
standard for fatigue design, as reflected in applications for criteria defined at the
integral plane [15], the critical plane [76, 78, 79] and the invariant plane [87].

However, numerous test results have shown the deficiency, including possible
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non-conservative D estimates [e.g. 96]. Sequence effects turned out to be an
important one from response perspective and D for example proved to be different
for a single overload in comparison to a single underload and for a low-to-high
sequence different from a high-to-low one [e.g. 99]. Even for random response
conditions as typically observed for a wave loading induced response of maritime
structures, D ̸= 1 is obtained for different types of spectra [e.g. 100–103]. From
resistance perspective, cycles with a stress range below the (random) fatigue limit
affect D as well [e.g. 104]. Still adopting the linear model, the maximum allowed
damage is typically reduced to a value below one, depending on the variable
amplitude response characteristics [e.g. 15].

Most non-linear models [e.g. 95, 96] addressing the response aspects are basically

of the type: D =∑
[Ci ·

{
ni (Si )/Ni (Si )

} f (Si )] ≤ 1, considering the linear one as a special
case for Ci = f (Si ) = 1. Simplifications typically concern a bi-linearisation. Fitting
coefficient Ci and fitting function f (Si ) are meant to incorporate any material
specific contribution as well. So far, applications for multiaxial fatigue seem limited,
although a non-linear model of this type has been adopted for S defined at the
critical plane [73, 91].

Anyway, a generalised, all-encompassing model overall outperforming the linear
one is not available yet [e.g. 96]. At the same time, the damage accumulation
model performance seems related to the adopted fatigue strength criterion. For and
advanced S formulation the linear model still proved to be sufficient since variable
amplitude fatigue resistance data fits the constant amplitude data scatter band [18,
79, 99].

When both mid- and high- cycle fatigue are involved, a resistance induced
damage accumulation non-linearity appears as well, because of the changing
slope (i.e. changing mechanism) as reflected in the 2-slope resistance curve
formulations [e.g. 14]. For a bi-linear one with a finite high-cycle fatigue slope,
still D = ∑{

ni (Si )/Ni (Si )
} ≤ 1, but the resistance part involves different slope

contributions m based on the number of cycles at the mid- to high- cycle
fatigue transition Nt : log

{
Ni (Si )

} = log(C ) − m · log(Si ) with m = mmi d for Ni ≤ Nt

and m = mhi g h for N > Nt [96, 105]. However, D estimates are quite often
observed to be non-conservative [e.g. 106]. In case of an infinite high-cycle fatigue
slope, like for the generalised random fatigue limit formulation [14, 99, 107]:
log Ni (Si ) = log(C ) − m · log(Si ) − ρS∞ · log

{
1−S∞(µ,σ;D)/Si

}
, the fatigue limit S∞

decreases for increasing D , meaning the damage accumulation calculation becomes
an iterative process: D =∑{

ni (Si )/Ni (Si ;D)
}≤ 1.

3.3. EFFECTIVE NOTCH STRESS ASSESSMENT

For mixed mode-{I, III} multiaxial response conditions of planar and tubular maritime
structures, the mode-I contribution is governing (Section 3.1), meaning the normal
stress σI is predominant. At the same time, the fatigue lifetime of arc-welded joints
is growth – rather than shear induced initiation – controlled because of the welding
induced defects, explaining why an equivalent normal stress based von Mises type
of failure criterion will be adopted (Section 3.2.1). Since cracks at weld notches
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typically develop first in plate thickness direction, the fracture plane is identified
as the critical one and will be selected for criterion evaluation (Section 3.2.2).
Cycles will be counted – because of the time domain approach – in the von
Mises plane (Section 3.2.3), in order to be able to incorporate non-proportionality
cycle-by-cycle (Section 3.2.4). The linear damage accumulation model will be used,
since good performance has been shown for advanced fatigue strength criteria.
Including a response related non-linearity may correct for fatigue strength parameter
deficiencies because of the fitting involved, which should be identified first. Starting
with mid-cycle fatigue, the resistance related non-linearity is not required as well
(Section 3.2.5).

Opting for an effective notch stress based fatigue strength parameter, a failure

criterion S = Se =
√{

S2
e,I +β(N ) ·S2

e,I I I

}
will be established first (Section 3.3.1) and

includes a lifetime dependent shear stress coefficient β(N ). Using fatigue test data
from literature (Section 3.3.2) the strength and mechanism contributions, reflected
in respectively mode specific {log(C ),γ} and {m,ρ∗} coefficients, will be investigated
(Section 3.3.3).

3.3.1. FATIGUE STRENGTH PARAMETER FORMULATION
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The through-thickness weld notch stress distributions along the expected (2D)
crack path – defining the fracture plane – are assumed to be a key element for
an appropriate fatigue design and detectable repair criterion [16]. Semi-analytical
formulations

{
σI (r /tp ),τI I I (r /tp )

}
, with plate thickness tp either the base plate

or cross plate value, tb or tc , have been developed for both non-symmetry and
symmetry with respect to half the plate thickness (tp /2), using respectively a double
side (DS) welded T-joint and DS welded cruciform joint for illustration purposes
(Fig. 3.5), in case of both zero and finite notch radius ρ [16, 29]. Adopting
a linear superposition principle [18], far field related equilibrium equivalent and
self-equilibrium parts

{
σ f e ,σse ;τ f e ,τse

}
have been distinguished (Fig. 3.5), involving

three components: the notch stress, the weld-load carrying stress and the far field
stress. Typically three zones can be identified in all distributions: the zone 1 peak
stress value, the zone 2 notch-affected stress gradient and the zone 3 far-field
dominated stress gradient, demonstrating stress field similarity.
Since the (as) weld(ed) notch radius ρ is typically small, a zone 1 peak stress
fatigue strength parameter would be too conservative. Adopting a micro- and
meso-structural notch support hypothesis, an effective notch stress estimate{
σe,I ,τe,I I I

}
has been obtained by averaging the notch stress distribution along the

expected crack path over a material characteristic micro- and meso-structural length
ρ∗ – rather than introducing a fictitious notch radius, partially incorporating a zone
2 notch stress gradient – and zone 3 far field stress gradient contribution as well [33,
79, 87, 108–111]. Physically speaking, ρ∗ reflects the length in which the majority of
the fatigue lifetime has been spent. For mode-I if ρ = 0 [16]:

σe =
tp

ρ∗
I

ρ∗I
tp∫

0

σn

(
r

tp

)
d

(
r

tp

)
. (3.1)

The effective notch stress parameter Se,I =∆σe becomes in case of non-symmetry
with respect to (tp /2) [16, 18]:

Se,I =∆σs

(
tp

ρ∗
I

){
1

λσs

(
ρ∗

I

tp

)λσs

µσsλσs (λσs +1) · [cos{(λσs +1)βa}−χσs cos{(λσs −1)βa}
]+

1

λσa

(
ρ∗

I

tp

)λσa

µσaλσa(λσa +1) · [sin{(λσa +1)βa}−χσa sin{(λσa −1)βa}]+

Cbw

{(
ρ∗

I

tp

)2

−
(
ρ∗

I

tp

)}
− rσs

(
ρ∗

I

tp

)2 }
.

(3.2)
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In case ρ > 0 and non-symmetry with respect to (tp /2) applies [16, 18]:

Se,I =∆σs

(
tp

r0 +ρ∗
I

){
1

λσs

[(
r0 +ρ∗

I

tp

)λσs

−
(

r0

tp

)λσs
]
µσsλσs (λσs +1)·[

cos{(λσs +1)βa}−χσs cos{(λσs −1)βa}
]+

1

ζσs

[(
r0 +ρ∗

I

tp

)ζσs

−
(

r0

tp

)ζσs
](

r0

tp

)λσs−ζσs

λσs

( 2α
π

)
4
{( 2α

π

)−1
} ·[

ωσs1 cos
{
(ζσs +1)βa

}+ωσs2(ζσs +1)cos
{
(ζσs −1)βa

}]+
1

λσa

[(
r0 +ρ∗

I

tp

)λσa

−
(

r0

tp

)λσa
]
µσaλσa(λσa +1)[sin{(λσa +1)βa}−

χσa sin{(λσa −1)βa}]+
1

ζσa

[(
r0 +ρ∗

I

tp

)ζσa

−
(

r0

tp

)ζσa
](

r0

tp

)λσa−ζσa λσa

4(ζσa −1)
·[

ωσa1 sin
{
(ζσa +1)βa

}+ωσa2(ζσa +1)sin
{
(ζσa −1)βa

}]+
Cbw

{(
r0 +ρ∗

I

tp

)2

−
(

r0

tp

)2

−
(

2r0 +ρ∗
I

tp

)}
− rσs

[(
r0 +ρ∗

I

tp

)2

−
(

r0

tp

)2 ]}
.

(3.3)

For mode-III if ρ = 0 [29]:

τe =
tp

ρ∗
I I I

ρ∗I I I
tp∫

0

τs,I I I

(
r

tp

)
d

(
r

tp

)
. (3.4)

The effective notch stress parameter Se,I I I =∆τe becomes in case of non-symmetry
with respect to (tp /2):

Se,I I I = ∆τs

λτ

tp

ρ∗
I I I

{
cos(λτβa)µτF

(
ρ∗

I I I

tp

)λτ
−λτ

(
ρ∗

I I I

tp

)
·[(

ρ∗
I I I

tp

)
(µτM + rτs +Ct w )−µτM −Ct w

]}
.

(3.5)
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In case ρ > 0 and non-symmetry with respect to (tp /2) applies [29]:

Se,I I I = ∆τs

λτ

(
tp

r0 +ρ∗
I I I

){
cos(λτβa)µτF

[(
r0 +ρ∗

I I I

tp

)λτ
−

(
r0

tp

)λτ ]
−

(
r0

tp

)2λτ
cos(λτβa)µτF

[(
r0 +ρ∗

I I I

tp

)−λτ
−

(
r0

tp

)−λτ ]
−

λτ
ρ∗

I I I

tp

[(
2r0 +ρ∗

I I I

tp

)(
µτM + rτs +Ct w

)−µτM −Ct w

]}
.

(3.6)

Mode-{I, III} formulations for symmetry with respect to (tp /2) have been
developed as well, both for ρ = 0 and ρ > 0 (C). The far field stress parameters{
∆σs ,rσs ;∆τs ,rτs

}
can be obtained using nodal force output of relatively coarse

meshed shell/plate FE models [41, 112, 113], naturally providing the constant
membrane and linear bending contribution: σs =σsm +σsb , as well as the constant
shear and linear torsion contribution: τs = τss +τst . The structural normal and
shear stress ratios:

{
rσs =σsb/σs ,rτs = τst /τs

}
reflect the far field stress gradients [16,

29]. Eigenvalues
{
λσs ,λσa ,λτ

}
, eigenvalue coefficients

{
χσs ,χσa

}
and stress angle

βa can be obtained using the notch angle α. Coefficients
{
µσs ,µσa ,µτF ,µτM

}
are

obtained using force and moment equilibrium. The mode-I bending and mode-III
torsion related weld load carrying stress coefficients, respectively Cbw and Ct w , are
loading and geometry dependent. Fitting functions have been established [16, 29].
A complete spatial description of a response cycle requires 2 parameters to be
involved, important for modelling of sequence effects. The ranges

{
Se,I ,Se,I I I

}
and

ratios
{
RI = Se,I ,mi n/Se,I ,max ,RI I I = Se,I I I ,mi n/Se,I I I ,max

}
are selected for this purpose.

Adopting Walker’s mean stress model, typically providing the best results for welded
joints [14, 29], the effective notch stress parameter becomes:

Se,e f f =
Se

(1−R)1−γ (3.7)

with {Se,e f f = Se,e f f ,I , Se = Se,I , R = RI , γ= γI } for the mode-I and {Se,e f f = Se,e f f ,I I I ,
Se = Se,I I I , R = RI I I , γ= γI I I

}
for the mode-III effective notch stress component. The

response ratio coefficient γ is a fitting parameter. For γ→ 1, the range dominates
the fatigue resistance; the mean stress becomes governing for γ→ 0. However,
an environment and service loading induced mean stress component is not the
only one. Arc-welding adds a thermal loading induced – typically high-tensile –
quasi-constant residual (mean) stress, affecting the fatigue strength. An explicit
residual stress measure is typically not included, since for fatigue design in general
only joints in as-welded condition are considered [e.g. 33, 34, 114], meaning any
residual stress affecting the fatigue resistance is just implicitly incorporated in the
most likely fatigue resistance parameter estimates. A stress relieving heat treatment
can be applied, being one way to virtually eliminate residual stress and improve
the fatigue strength. If both as-welded and stress-relieved test data are jointly
considered, an explicit residual stress measure Sr has to be introduced to cover the
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thermal condition, meaning a re-formulation of the response ratio is required:

Rr =
Se,mi n +Sr

Se,max +Sr
= R ·Se +Sr (1−R)

Se +Sr (1−R)
. (3.8)

From fatigue design perspective, the as-welded condition is still adopted to define
the reference resistance, meaning the stress-relieved data – principally without any
residual stress – is expected to provide a compressive Sr estimate. Note that the
extended R formulation most likely affect the mean stress sensitivity coefficient γ as
well.

Because of the arc-welding induced heat input, the material crystallography
changes, introducing a heat affected zone in between the weld and base material
at the fatigue sensitive weld toe notch location. The hardness in the heat affected
zone is typically large in comparison to the base material value. Since the weld
material hardness is in general in between the heat affected zone and base material
value, an M-shaped hardness characteristic appears [115]. Applying a post-welding
heat treatment is principally meant to reduce the hardness – in particular in the
heat affected zone – and the aim is to obtain a more uniform hardness distribution
across the material up to a certain extent, depending on parameters like heat rate,
maximum temperature and treatment duration [115–117]. In general, an increased
hardness reflects a smaller grain size and the other way around, introducing fatigue
resistance consequences; i.e. changing crack initiation and growth behaviour. Since
for a smaller grain size the initiation resistance seems to increase and at the
same time the growth resistance decreases – for a larger grain size the opposite
applies [118], dedicated material characteristic ρ∗ parameters seem required for the
as-welded and the stress-relieved condition.

Because of the mode-I and mode-III finite lifetime specific strength and
mechanism fatigue resistance characteristics, a response level dependent shear
strength coefficient β(N ) is adopted, rather than a constant one (Section 3.2.1). For
a single-slope resistance relation N =C ·Sm

e :

β(N ) = Se,I (N )

Se,I I I (N )
=Cβ ·N Mβ (3.9)

with

Cβ = 10
log(CI )mI I I −log(CI I I )mI

mI ·mI I I (3.10)

and
Mβ =

mI −mI I I

mI ·mI I I
. (3.11)

Since only the uniaxial mode-{I, III} number of cycles {NI , NI I I } are known in
advance, the actual β(N ) value has to be obtained in an iterative cycle counting
process in order to capture N for the equivalent normal stress based von Mises type
of criterion:

Se,e f f =
√{

S2
e,e f f ,I +β(N ) ·S2

e,e f f ,I I I

}
. (3.12)
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Counting iteratively the effective von Mises notch stress (Fig. 3.6) at the
critical fracture plane (Section 3.2.2), the range Se,i including the normal and
equivalent shear stress projections

{
Se,I ,i ,β(N ) ·Se,I I I ,i

}
and corresponding ratios{

RI = Se,I ,mi n,i /Se,I ,max,i ,RI I I = β(N ) ·Se,I I I ,mi n,i /[β(N ) ·Se,I I I ,max,i ]
}

can be obtained
for each cycle i (Section 3.2.3). Adopting a 0th, 1st or 2nd order moment approach
(Section 3.2.4), differences between the actual response path and the (straight) range
have been used to incorporate a non-proportionality effect cycle-by-cycle in terms of
Cnp , including a material characteristic contribution in terms of cm [79, 80, 93, 94]:

Se,e f f ,i = Se,i
(
1+ cm ·Cnp,i

)
(3.13)

with

Cnp,i ,n =
∫

S̃ (r · |sin(θ)|)ndp∫
S (R · |sin(θ)|)ndp

for n = 0,1,2. (3.14)

Although Cnp,i and cm are meant to reflect respectively the path and material
characteristic part, cm may correct for any cycle counting and/or non-proportionality
related model deficiency as well, since data fitting is used to obtain an estimate.
A compromised value may be acquired, meaning interpretation becomes more
difficult. In order to obtain a mid-cycle fatigue related equivalent effective notch
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stress parameter Se,eq for variable amplitude data fitting the constant amplitude data
scatter band; i.e. N (Se ) =C ·S−m

e with Se = Se,eq , the linear damage model is adopted:
D =∑{

ni (Se,i )/Ni (Se,i )
}≤ 1 with Ni (Se,i ) =C ·S−m

e,i . For D = 1, reflecting failure, the
formulation becomes:

Se,eq =
[∑

{ni (Se,i ) ·Sm
e,i }

N

]1/m

. (3.15)

Recall N =∑{
ni (Se,i )

}
, the iteratively obtained total number of effective von Mises
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notch stress cycles.

3.3.2. TEST DATA

Data series containing steel specimens with both tubular and planar structural
joints have been considered (Fig. 3.7 and Tables 3.1 and 3.2), involving respectively
circular/square hollow and plate cross-sections with specified joint dimensions
(Fig. 3.5). Most data is obtained for constant amplitude loading conditions, but
some variable amplitude data is included as well. Uniaxial mode-I, uniaxial
mode-III and multiaxial mode-{I, III} response conditions – both proportional and
non-proportional – have been introduced at the governing fatigue sensitive locations:
SS welded butt joints and DS welded T-joints, as well as DS welded cruciform joints
showing respectively non-symmetry and symmetry with respect to (tp /2) [16, 18, 29].
The governing hot spot is typically of the type C along the weld seam, although
some of the type A at the weld end exist as well. Only specimens showing weld
toe induced fatigue damage are included, involving predominantly failures and some
run-outs. The data size is ∼ 500.
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The external loading consists of a normal force Fn or bending moment Mb for
the mode-I response and a shear force Fs or torsion moment Mt for the mode-III
response. Multiaxiality is often either loading [15, 49–51, 53, 54, 56, 82, 119, 120,
122] or geometry [121, 123–125] induced. In case a mode-I and mode-III response
related external loading component (e.g. Mb and Mt ) are applied and at the same
time the specimen contains a non-circular cross-section and warping constraints,
multiaxiality includes even both a loading and geometry contribution [54, 56]. The
response is proportional by definition if multiaxiality is a result of geometry only.
The response ratio R = 0 for the majority of the data series, reflecting a pulsating
loading induced response condition with non-zero mean. For a significant amount
of data R = −1, meaning the response condition is fully reversed and the mean
component is zero. For the remaining data series, R ̸= {

0;−1
}
. Since data with both

as-welded and stress-relieved thermal conditions are considered, the influence of
(mean) residual stress has to be addressed as well. A von Mises based structural

103 104 105 106 107 108 109
101

102

103

104

Figure 3.8.: Structural stress based fatigue resistance.

stress fatigue assessment (Fig. 3.8) of the involved fatigue test data (Fig. 3.7 and
Tables 3.1 and 3.2) shows the initial data scatter and the clear distinction between
constant amplitude and (maximum range) variable amplitude results. Since no cycle
counting is involved for the multiaxial data, N corresponds to the mode-I lifetime.

3.3.3. STRENGTH AND MECHANISM CONTRIBUTIONS

The life time range of the considered data (Fig. 3.7 and Tables 3.1 and 3.2) virtually
reflects mid-cycle fatigue characteristics only: N = (104 ∼ 5 ·106) cycles. A log-log
linear formulation of the Basquin type typically relates N to a fatigue strength
parameter S [14]: log(N ) = log(C )−m ·log(S). Linear regression on life time is
adopted to estimate the single-slope curve parameters: intercept log(C ) and slope m,
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respectively the endurance and damage mechanism coefficient, introducing the life
time scatter (i.e. performance) parameter σN . For strength performance evaluation
purposes, the strength scatter band index TσS = 1 : (S10/S90) will be used, the fatigue
strength ratio for 10 [%] and 90 [%] probability of survival [111]. Maximum likelihood
based regression [18, 57] will be employed to obtain the most likely parameter vector
estimate Φ : max

Φ
{L (Φ; N |S)} with Φ = {

log(C ),m,σN
}
, assuming fatigue lifetime N

is most likely log(Normal) distributed [16, 29]. For S = Se,e f f (Section 3.3.1), the
response ratio coefficient and material characteristic length as respectively a strength
and mechanism coefficient are introduced, principally extending the parameter
vector to: Φ = {

log(C ),γ,m,ρ∗,σN
}
. Note that ideally the uniaxial mode-I and

mode-III, as well as the multiaxial proportional and non-proportional mode-{I, III}
data (Fig. 3.7 and Tables 3.1 and 3.2) would have been balanced for appropriate Se

performance evaluation, meaning that except the σN and TσS parameters as global
indicators for all data, the individual data groups behaviour have to be carefully
considered as well.

Starting with the uniaxial reference fatigue resistance in terms of Se , the mode
specific strength and mechanism coefficients will be established first (Section 3.3.3)
in order to obtain β(N ). The Se performance for multiaxial fatigue resistance data
will be investigated accordingly (Section 3.3.3). Particular attention will be paid to
the consequences of mode specific strength and mechanism for mixed mode-{I, III}
fatigue and the influence of non-proportionality. Since Se is an equivalent normal
stress von Mises type of parameter, the fitting of the multiaxial data in the mode-I
uniaxial data scatter band will be verified, as well as the fitting of VA data in the
CA data scatter band in order to establish the performance of the adopted linear
damage accumulation model for Se,e f f based fatigue assessment.

UNIAXIAL REFERENCE FATIGUE RESISTANCE

The Se based mode-I mid-cycle fatigue resistance formulation for planar structures
in steel (maritime) structures, involving hot spot types {A, B, C} and various
as-welded joint geometries, has already been established for CA data [126] and
shows an excellent performance as reflected in the lifetime standard deviation:
σN = 0.21. The intercept and slope values are: log(C I ) ∼ 13.28 and slope mI ∼ 3.12.
Note that the slope is close to the typical design value m = 3 [33, 34]. Assuming
ρ = 0, a most likely ρ∗

I ∼ 1.34 has been obtained, suggesting the major part of the
fatigue lifetime is spent in the notch affected region indeed. The response ratio
coefficient γI ,AW ∼ 0.90 implies a predominant contribution of stress range over
mean stress as a consequence of the typically high-tensile welding induced residual
stress. Since the data size of the considered (predominant) tubular and (some)
planar mode-I data (Tables 3.1 and 3.2) is ∼ 140, relatively small in comparison to
the ∼ 2500 assessed before [126], enforcing log(C I ) ∼ 13.28, mI ∼ 3.12, ρ∗

I ∼ 1.34 and
γI ,AW ∼ 0.90 seems straightforward from parameter confidence perspective. For the
stress-relieved joints, γI ,AW ∼ 0.90 is initially still adopted in case R ≥ 0, although
expected to be too large because of eliminated residual stress. Assuming only
the tensile part of the cycle contributes to fatigue damage accumulation, γI ,SR = 0
has been used for R < 0, based on a crack opening mode-I requirement [14].
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[126]
(Tab. 3.1)

(Tab. 3.1)

(Tab. 3.1)

Figure 3.9.: Mode-I data effective notch stress based fatigue resistance, including
mean stress correction.

[126]
(Tab. 3.1)

(Tab. 3.1)

(Tab. 3.1)

Figure 3.10.: Mode-I data effective notch stress based fatigue resistance, including
mean and residual stress correction.

The parameter vector becomes: Φ = {σN }. Regression analysis of all data shows
that the strength and mechanism parameters, intercept log(C ) and slope m, hardly
changed in comparison to the reference data values [126], since the amount of
added data (Fig. 3.7 and Tables 3.1 and 3.2) is relatively small. The as-welded data
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fits the reference data scatter band reasonably well (Fig. 3.9). However, the fatigue
strength and mechanism of stress-relieved data seems different, as reflected in the
scatter and non-fitting behaviour, explaining the increased σN . Introducing for the
stress-relieved data a residual stress Sr and response ratio coefficient γI ,SR , covering
the full R range like for as-welded data (Section 3.3.1), extends the parameter
vector to: Φ= {log(C I ),Sr ,γI ,SR ,mI ,σN }. The SR data fit in the reference AW data
scatter band improved indeed with respect to strength and mechanism: log(C )
and m (Fig. 3.10). The most likely residual stress Sr proved to be compressive
(Section 3.3.1), confirming the (average) residual stress for the AW data is highly
tensile indeed. Mean residual stress coefficient γI ,SR ∼ 0.6 reflects an almost balanced
contribution from stress range and mean residual stress, like for γ= 0.5 [14]. Since
γI ,SR ̸= 0 in case R < 0 for the SR joints and γI ,SR applies for the full R range,
suggests some residual stress is still present. However, the residual stress consists of
an equilibrium equivalent and self-equilibrium part as well [18]. A stress-relieving
heat treatment could very well eliminate the equilibrium equivalent part, but the
self-equilibrium part – highly tensile in the notch affected region, – may still exist.
The lifetime standard deviation σN has reduced, but is still larger than the original
reference data value as the data scatter indicates, suggesting another modelling step
is required. Because of the differences in material crystallography for AW and SR
data (Section 3.3.1), a dedicated material characteristic strength parameter can be
introduced, meaning: Φ= {log(C I ),Sr ,γI ,SR ,mI ,ρ∗

I ,SR ,σN }. The ρ∗
I ,SR ∼ 3.86 estimate

[126]
(Tab. 3.1)

(Tab. 3.1)

(Tab. 3.1)

Figure 3.11.: Mode-I data effective notch stress based fatigue resistance, including
mean and residual stress correction with dedicated ρ∗

I ,AW and ρ∗
I ,SR .

turns out to be larger than the AW value: ρ∗
I ,AW ∼ 1.34 (Fig. 3.11). Since a stress

relieving heat treatment in general decreases the hardness, the initiation resistance
decreases and the growth resistance increases (Section 3.3.1), suggesting a decreased
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fatigue resistance. However, the positive effect of eliminated residual mean stress
consequences exceeds the negative influences of the ρ∗ decrease, still providing
an increased fatigue resistance when a stress relieving heat treatment is applied.
The most likely residual stress estimate Sr changed somewhat, but surprisingly the
residual mean stress coefficient γI ,SR has become about equal to the AW value γI ,AW ,
meaning the stress range contribution dominates anyway. Yet, the most important
result seems the reduced lifetime data scatter σN , principally the same value as
obtained for just the reference data. At the same time, σN ∼ 0.27 for the considered
data (Fig. 3.7 and Tables 3.1 and 3.2) only; at least a matter of data size as reflected
in the parameter confidence (Table 3.3). The corresponding strength scatter band
index TσSe = 1 : 1.67 and turns out to be larger than a typical value of 1 : 1.50 [20].
At first glance, the VA data fits the CA data scatter band for D = 1, supporting the
hypothesis that advanced fatigue damage criteria – including the mean stress as an
important sequence parameter in terms of R and γ – contributes to the (linear)
damage accumulation model performance (Section 3.2.5).

Table 3.3.: Effective notch stress based parameter estimates and 75[%] lower and
upper confidence bounds for mode-I and mode-III.

parameter mode-I mode-III

log(C ) 13.28 [13.20, 13.36] 18.91 [18.17, 19.64]
m 3.12 [3.08, 3.15] 5.12 [4.85, 5.37]
ρ∗ / / 0.12 [0.07, 0.21]
ρ∗AW 1.34 [1.22, 1.45] / /
ρ∗SR 3.85 [3.56 4.16] / /
γ / / 1.00 [0.98, 1.00]
γAW 0.90 [0.88, 0.91] / /
γSR 0.89 [0.87, 0.91] / /
Sr -144 [-144, -143] / /
σN 0.27 [0.25, 0.29] 0.21 [0.18, 0.24]
σN incl.[126] 0.21 [0.19, 0.23] / /

The Se based mode-III mid-cycle fatigue resistance parameter estimates and
confidence (Fig. 3.12 and Table 3.3) for tubular structures in steel (maritime)
structures, principally involving hot spots type C and a DS welded T-joint geometry
only (Fig. 3.7 and Tables 3.1 and 3.2), have already been established for CA data [29].
The data size is ∼ 50. Excellent performance has been obtained, as reflected in the
lifetime standard deviation: σN ,I I I ∼ 0.21; basically the same value as obtained for
the mode-I reference data, but way smaller than the value for the considered data:
σN ,I ∼ 0.27. The difference in lifetime scatter between mode-I and mode-III could
partially be related to the type of loading and the geometry, reflecting a volume (i.e.
weld seam length) effect. For the mode-I data on the one hand, most specimens are
subjected to a bending moment Mb and have a tubular, circular hollow cross-section
(Fig. 3.7). The governing hot spot and most likely fatigue failure position is observed
at one location along the weld seam, principally independent of the fabrication
aspects induced weakest link; a matter of production tolerances and welding induced
defects. On the other hand, for the mode-III data a torsion moment Mt is typically
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applied and for tubular, circular hollow cross-sections all locations along the weld
seam are identified as hot spot. Fatigue failure develops at the position of the
fabrication defined weakest link, like the location of the welding induced extreme
defect. The mode-III fatigue strength scatter band index TσSe = 1 : 1.27 is smaller than
a typical value of 1 : 1.50 [20]. Intercept log(C I I I ) ∼ 18.91 and slope mI I I ∼ 5.12 have
been obtained as most likely values. Note that the slope is close to the typical design
value m = 5 [33, 34]. The real weld notch radius has been required to be included
in order to obtain ρ∗

I I I ∼ 0.12. Since mI I I > mI and ρ∗
I I I < ρ∗

I , the mode-III damage
process seems in comparison to mode-I even more an initiation related near-(notch)
surface phenomenon [29]. The response ratio coefficient γI I I ∼ 1, meaning (residual)
stress hardly affects the mode-III fatigue resistance and distinguishing different
thermal conditions seems not relevant (Fig. 3.12). Like for the uniaxial mode-I
assessment, the linear damage accumulation up to D = 1 shows VA data fitting the
CA data scatter band.

103 104 105 106 107 108 109
101

102

103

104

Figure 3.12.: Mode-III data effective notch stress based fatigue resistance, including
mean stress correction.

A comparison of mode-I and -III data and mean (i.e. 50 [%] reliability) Se −N
curves clearly shows differences in both strength and mechanism (Fig. 3.13), i.e.
in

{
log(C ),γ

}
and

{
m,ρ∗}

, implying a lifetime dependent shear strength coefficient
β(N ) rather than a constant one is required for multiaxial fatigue assessment
(Section 3.3.1).

MULTIAXIAL FATIGUE RESISTANCE

Involving the multiaxial fatigue data (Fig. 3.7 and Tables 3.1 and 3.2), the
normal stress equivalent von Mises type of failure criterion is adopted (Eq. 3.12):

Se =
√[

Se,I ,e f f (γI ,ρ∗
I )2 +β(N ) ·Se,I I I ,e f f (γI I I ,ρ∗

I I I )2
]
. Note that for the single side (SS)
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Figure 3.13.: Uniaxial mode-I and mode-III data effective notch stress based fatigue
resistance.

welded butt joints the Se,I I I related Ct w estimate (Eq. 3.6) is obtained using the
formulation as principally established for DS welded T-joints, assuming tc = 0 [29].
For constant amplitude mixed mode-{I, III} data involving asynchronous behaviour
and/or different frequencies, as well as for VA multiaxial data, cycle counting
in the von Mises plane is initially adopted without any material characteristic
non-proportionality effects: cm = Cnp = 0 (Eq. 3.13). In order to illustrate the
importance of strength and mechanism contributions, reflected in the β(N ) related
{log(C ),m} and the Se based mode-I and material crystallography dependent
{γ,ρ∗} parameters, regression analysis results for β =p

3 as well as for γI = γI I I

and ρ∗
I = ρ∗

I I I are provided for reference purposes (Figs. 3.14 and 3.15). The
parameter vectors have been Φ= {

log(C ),Sr ,γI ,AW ,γI ,SR ,γI I I ,m,ρ∗
I ,AW ,ρ∗

I ,SR ,ρ∗
I I I ,σN

}
and Φ= {

log(C ),Sr ,γ,m,ρ∗,σN
}

respectively.

In comparison to the structural stress based results (Fig. 3.8), it is clear that
adopting the effective notch stress as strength criterion and cycle counting allows to
enclose in the same scatter band CA and VA data. At the same time, the overall
lifetime standard deviation is significantly reduced.

The different strength and mechanism for the uniaxial mode-I and mode-III as
well as the multiaxial P and NP data can clearly be observed in the separate
data scatter bands for β = p

3, reflected in the imaginary intercept and slope
for each data group (Fig. 3.14). The lifetime scatter parameter σN ∼ 0.46 and
corresponding strength index TσSe = 1 : 4.24 illustrate in comparison to the uniaxial
values: σN ,I ∼ 0.27, σN ,I I I ∼ 0.21, TσSe ,I = 1 : 1.67 and TσSe ,I I I = 1 : 1.27 (Section 3.3.3)
a much worse fit. Eliminating in addition the Se related mode and material sensitive
strength and mechanism contributions changes the imaginary intercept and slope
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Figure 3.14.: Effective notch stress based fatigue resistance for uniaxial and multiaxial
data; ρ∗

I ̸= ρ∗
III and β=p

3.
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Figure 3.15.: Effective notch stress based fatigue resistance for uniaxial and multiaxial
data; ρ∗

I = ρ∗
III and β=p

3.

for each data group (Fig. 3.15), but improves the overall performance: σN ∼ 0.40
and TσSe = 1 : 2.77. However, the data scatter of the individual data groups even
increased, suggesting the equivalent shear strength and effective notch stress based
strength and mechanism contributions are important. Overall, the uniaxial mode-I
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and multiaxial mode-{I, III} P data shows a reasonable fit, but the uniaxial mode-III
and mode-{I, III} NP data are way out of range (Figs. 3.14 and 3.15), illustrating
at the same time the consequences of data imbalance (Section 3.3.2). Without
affecting the global performance lifetime and strength parameters σN and TσSe , the
relative position of groups of data can change significantly and may cause wrong
conclusions regarding the importance of strength and mechanism contributions as
observed before [55, 79, 80]. Adopting the mode specific and material characteristic
strength and mechanism contributions; {log(C ),m} in terms of β(N ) – for an
iteratively obtained N value (Section 3.3.1) – and {γ,ρ∗}, significantly improves the
model performance (Fig. 3.16). The lifetime scatter and strength scatter band index
reduced to a value about equal to that of the uniaxial mode-I data: σN ∼ 0.28
(Section 3.3.3) and TσSe = 1 : 1.70. However, the multiaxial NP data group still
shows room for improvement. Adopting a 0th, 1st or 2nd order moment approach
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Figure 3.16.: Effective notch stress based fatigue resistance for uniaxial and multiaxial
data; ρ∗

I ̸= ρ∗
III and β= f (N ).

(Section 3.3.1), differences between the actual response path and the (straight) range
have been used to incorporate non-proportionality cycle-by-cycle in terms of Cnp

(Eq. 3.14), including a material characteristic contribution cm (Eq. 3.13). The cm −σN

sensitivity has been investigated for the Cnp defined 0th, 1st and 2nd order moment
approaches to evaluate the model performance. At the same time, the influence
of ρ∗ has been explored up to some extent, running the sensitivity analysis for
the most likely mode-I and mode-III ρ∗ estimate, as well as a smaller and larger
value (Figs. 3.17 and 3.18). Since data is unbalanced, i.e. the multiaxial NP data
size is relatively small, the performance for the multiaxial NP data only as well as
all data has been considered. Looking at the cm −σN sensitivity for varying ρ∗

I I I
(Fig. 3.18), the trendlines do not change much. However, in contrast to the results
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Figure 3.17.: Most likely σN for a range of cm in case of three different ρ∗
I values

and ρ∗
I I I = 0.12. Path dependent non-proportionality: 0th moment (a),

1st moment (b) and 2nd moment (c).

for varying ρ∗
I , the sensitivity is approximately ρ∗

I I I independent considering all data,
since the governing scatter contribution is mode-I related (Figs. 3.10 and 3.11). An
optimum cm still exists for the 0th, 1st and 2nd order approach. Again, the best
performance is obtained for a 1st order approach and a coinciding optimum for both
the multiaxial NP data only and all data is observed. However, for a smaller ρ∗

I I I an
even better performance – still for cm ∼ 0.65 – is obtained, basically confirming that
cm corrects in addition for any cycle counting and/or non-proportionality related
model deficiency indeed. Assessing all data (Fig. 3.7 and Tables 3.1 and 3.2) using
the most likely mode and material specific strength contributions, {log(C ),m} and
{γ,ρ∗} respectively represented in β(N ) and Se , as well as the 1st order approach
to obtain Cnp cycle by cycle for cm ∼ 0.65 in case of non-proportionality, an even
better performance is obtained. The lifetime scatter has reduced to σN ∼ 0.26 and
the strength scatter band to TσSe = 1 : 1.65. (Figs. 3.16 and 3.19). Principally all data
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Figure 3.18.: Most likely σN for a range of cm in case of three different ρ∗
I I I values

and ρ∗
I ,AW = 1.34 and ρ∗

I ,SR = 3.85. Path dependent non-proportionality:

0th moment (a), 1st moment (b) and 2nd moment (c).

fits the mode-I reference data scatter band, i.e. the interval in between 5 and 95
[%] reliability for 75 [%] confidence (Figs. 3.19 and 3.20). Note that an increased
data size: currently ∼ 500 for the assessed data (Fig. 3.7 and Tables 3.1 and 3.2) and
∼ 2500 for the mode-I reference data, can contribute to another σN reduction.

The multiaxial mode-{I, III} P data appears to show the largest scatter. However,
the uniaxial mode-I and mode-III resistance (material) characteristics have been
explicitly incorporated, as well as multiaxial mode-{I, III} non-proportionality
measures, meaning that only for the multiaxial mode-{I, III} P data no specific
resistance aspects have been considered; an obvious requirement to continue the
improvement of the fatigue resistance formulation. Aside from improved damage
plane selections, cycle counting algorithms and/or non-proportionality measures,
failure criterion aspects could be reconsidered as well. One possible research
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Figure 3.19.: Effective notch stress based fatigue resistance for uniaxial and multiaxial
data; ρ∗

I ̸= ρ∗
III, β(N ), 1st order path dependent non-proportionality with

cm = 0.65.
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Figure 3.20.: Lifetime ratio plot of effective notch stress based fatigue resistance for
uniaxial and multiaxial data; ρ∗

I ̸= ρ∗
III, β(N ), 1st order path dependent

non-proportionality with cm = 0.65.

direction could be to incorporate a shear strength coefficient based on times
series rather than a peak-valley sequence analysis, i.e. instantaneous rather than
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cycle-by-cycle; β(t ) rather than β(N ), implying even the multiaxial P data would
show NP behaviour in the von Mises stress plane. However, a redefinition
of the failure criterion may be required as well, since the Se formulation is
currently based on a cycle characteristic parameter: the (effective) stress range.
Another direction might be the introduction of coupling terms, for example like

Se =
√

C1 ·S2
e,I +C2 ·Se,I ·Se,I I I +C3 ·S2

e,I I I . To illustrate: mean (residual) stress effects

for uniaxial mode-III fatigue might be negligible, but may be relevant if a mode-I
contribution is involved as well [e.g. 127]. Mode and material specific uniaxial
{log(C ),γ,m,ρ∗} parameters have been established to assess multiaxial data, but
missing mode-{I, III} interaction could explain the multiaxial proportional data
scatter. The variable amplitude data fits the constant amplitude data scatter band
for D = 1 (Fig. 3.21), supporting the hypothesis that an advanced fatigue failure
criterion like Se contributes to the (linear) damage accumulation model performance.
However, most variable amplitude data involves a random sequence reflected in a
Normal distributed narrow-band spectrum (Fig. 3.22), meaning the data contains at
maximum an averaged sequence effect. A response based non-linear damage model
(Section 3.2.5) may still be required if data for different types of random sequence
(e.g. broad-band spectra) or even for a determined sequence will be incorporated.
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Figure 3.21.: Effective notch stress based fatigue resistance for uniaxial and multiaxial,
constant and variable amplitude data.

In comparison to the assessment for other combinations of failure criterion,
damage plane, cycle counting algorithm, non-proportionality measure and damage
accumulation model in terms of lifetime and strength scatter; i.e. σN and TσSe ,
the outperformance is impressive (Table 3.4). In principle only the effective notch
stress is considered for the sake of fair judgement, although one mode and material
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Figure 3.22.: Different stress histories in the von Mises stress plane.

invariant fictitious notch radius is adopted to obtain an Se estimate at once, rather
than averaging the stress distribution over a material characteristic length to obtain
the actual Se [33, 87, 109–111, 128, 129]. One exception is the equivalent traction
based structural stress; a cracked rather than intact geometry based parameter,
considered because a similar cycle counting algorithm is involved. Results from
other sources (Table 3.4) do not consider all the data available (Fig. 3.7 and
Tables 3.1 and 3.2), meaning in general a better fit than when all data is involved
and emphasizing at the same time the quality of the obtained performance criteria:
σN ∼ 0.26 and TσSe = 1 : 1.65. Using not the same data sets partially explains the
differences for the multiple IIW and Eurocode results as well. Note that the
lifetime scatter parameter σN is not proportional to the corresponding strength
scatter band index (Table 3.4), since TσSe is slope dependent: TσS = 1 : (Se,10/Se,90)

with Seps =
{

N ·
(
C ·10Φ

−1(1−ps )·σN

)−1 }−1/m and Φ−1(1−ps ) the inverse of the adopted

Normal distributed probability density function for probability of survival ps ,

meaning (Se,10/Se,90) = {
10σN (Φ−1(1−0.10)−Φ−1(1−0.90))}1/m . Anyway, both the lifetime

scatter and strength scatter band index are not yet similar to the reference mode-I
data values [126]: σN = 0.21 and TσSe = 1 : 1.49, suggesting room for improvement of
effective notch stress assessment is still left.
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3.4. CONCLUSIONS AND OUTLOOK

The fatigue lifetime of arc-welded joints is predominantly spent in the notch affected
region, explaining why the effective notch stress Se has been adopted as intact
geometry fatigue strength parameter. A formulation has been established taking
advantage of semi-analytical weld notch stress distribution expressions. Uniaxial
mode-I and mode-III investigations [14, 16, 29] already revealed distinguished
material dependent strength and mechanism contributions in terms of {log(C ), γ}
and {m,ρ∗}, i.e. respectively the resistance curve intercept and mean stress induced
response ratio coefficient, resistance curve slope and material characteristic length.
Since for mixed mode-{I, III} multiaxial response conditions of planar and tubular
maritime structures the mode-I contribution is governing and at the same time
the fatigue lifetime of arc-welded joints is growth defined rather than initiation
controlled (i.e. a shear induced process) because of the welding induced defects,
an equivalent normal stress based von Mises type of failure criterion at the critical
fracture plane has been selected for fatigue assessment purposes. Cycles are counted
in the von Mises plane, incorporating non-proportionality cycle-by-cycle (research
sub-question 4) and accumulating damage using a linear model.

In comparison to the assessment for other combinations of failure criterion,
damage plane, cycle counting algorithm, non-proportionality measure and damage
accumulation model in terms of lifetime and strength scatter; i.e. σN and TσSe ,
the outperformance is impressive. Rather than a constant, a lifetime dependent
shear strength coefficient β(N ) has been introduced to cover the mode specific
and material characteristic {log(C ), m}, whereas Se explicitly contains {γ,ρ∗}. The
cycle-by-cycle non-proportionality measure includes a response path and material
contribution. A 1st order response approach shows the best performance. Judgement
is based on the affected data rather than all data, since balance between the
non-proportional and other data does not exist. If non-proportionality involves a
material aspect indeed seems impossible to prove, as the material fitting coefficient
cm behaves at the same time as a cycle counting and non-proportionality modelling
deficiency correction factor. The multiaxial proportional data appears to show the
largest scatter. However, the uniaxial mode-I and mode-III resistance (material)
characteristics have been explicitly incorporated, as well as multiaxial mode-{I, III}
non-proportionality measures, meaning that only for the multiaxial proportional
data no specific resistance aspects have been considered; an obvious requirement
to continue the improvement of the fatigue resistance formulation, for example
incorporating a shear strength coefficient based on times series rather than a
peak-valley sequence analysis – implying even the multiaxial proportional data would
show non-proportional behaviour in the von Mises stress plane – or introducing
coupling terms to the failure criterion (research sub-questions 2a and 4).

The VA data fits the CA data scatter band for D = 1, supporting the hypothesis that
an advanced fatigue strength parameter like Se contributes to the (linear) damage
accumulation model performance. However, most VA data involves a random
sequence reflected in a Normal distributed narrow-band spectrum, meaning the data
contains at maximum an averaged sequence effect. A response based non-linear
damage model may still be required if data for different types of random sequence
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(e.g. broad-band spectra) or even for a determined sequence will be incorporated.
A resistance induced non-linearity becomes relevant if both mid- and high- cycle
fatigue become involved.

Although the obtained lifetime scatter parameter σN is still relatively large, the
assessed uniaxial and multiaxial mode-{I, III} data fits the uniaxial mode-I reference
data scatter band and a single Se −N resistance curve can be used for fatigue
assessment in engineering applications (research sub-question 5a). However, the aim
for high accuracy may impose high engineer qualifications in order to satisfy the
balance with model complexity and computational (programming) efforts (research
sub-question 3a).





4
ST BASED MIXED MODE-{I, III}

MULTIAXIAL FATIGUE RESISTANCE

There is a crack in everything.

Leonard Cohen, singer

4.1. INTRODUCTION
Despite the impressive outperformance of Se (Chapter 3) in comparison to
other combinations of failure criterion, damage plane, cycle counting algorithm,
non-proportionality measure and damage accumulation model, the P data shows
a relatively large data scatter. Multiaxial mode-{I, III} coupling seems incomplete
and involving the mode specific and material characteristic parameters only is likely
insufficient. Adopting a von Mises type of failure criterion – without mode-{I, III}
coupling by definition – and corresponding cycle counting plane and algorithm
could be an explanation, as well as the involved intact geometry parameter Se rather
than a cracked geometry one. Since the notches inevitably contain welding induced
defects, adopting a notch characteristic cracked geometry parameter like the total
stress ST [6, 14, 16, 18] to establish the fatigue strength seems as justified as an
intact one (Chapter 3). The actual initiation (i.e. nucleation) contribution to the
total fatigue life time is virtually eliminated and growth is governing. The intact
geometry related semi-analytical weld notch stress distribution formulations can be
turned into cracked geometry ones, introducing the weld notch stress intensity factor
(SIF) K . Cyclic loading & response conditions turn K into a crack growth driving
force ∆K and defects may develop into cracks. Since the growth rate initially shows

This chapter is based on the journal article:
G. Bufalari, J. H. den Besten, J. K. Hong and M. L. Kaminski. Mode-{I, III} multiaxial fatigue
of welded joints in steel maritime structures: Total stress based resistance incorporating strength
and mechanism contributions. In: International Journal of Fatigue Volume 188 (2024) DOI:
https://doi.org/10.1016/j.ijfatigue.2024.108499.
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elastoplastic wake field affected anomalies [18], a modified Paris’ equation has been
established, including the weld notch- and far field characteristic contributions: a
generalised two-stage crack growth relation. Applying an integral operator provides a
log-log linear resistance relation of the Basquin type, correlating the fatigue life time
N and an equivalent fatigue strength parameter: the total stress ST [6, 18]. Uniaxial
mode-I intercept log(C I ) and slope mI , as well as response ratio coefficient γI and
elastoplasticity coefficient nI estimates have already been obtained for welded joints
in steel (maritime) structures [14, 16]. The ST and Se performance in terms of life
time scatter σN and strength scatter band index TσS proved to be similar.

Whereas ρ∗ is a mode specific and material characteristic length defining Se to
incorporate the notch stress gradient, ST includes the stress (intensity) gradient
along the full plate thickness tp defined final crack length a f , suggesting ρ∗ and
a f serve the same purpose. However, ST contains an additional mechanism
related parameter n and may increase insight in the mode specific and material
characteristic behaviour. The uniaxial mode-III and multiaxial mode-{I, III} ST

performance have not been established before and a key question is if the mode
coupling is equally important for ST as for Se . At the same time, a cracked geometry
parameter seems one step closer to the actual damage process than an intact one,
hypothesising a fatigue strength parameter ST may outperform Se for multiaxial
fatigue.

The intact geometry related weld notch stress distribution will be translated first to
a cracked geometry equivalent weld notch stress intensity distribution (Section 4.2),
providing input for ST . Considering all relevant assessment aspects for a time
domain approach, including type of criterion, damage plane selection, cycle counting
aspects including ways to deal with non-proportionality and damage accumulation
[130], the ST performance will be evaluated for multiaxial fatigue resistance data
of welded joints in steel maritime structures (Section 4.3). Mode specific and
material characteristic strength and mechanism contributions, {log(C ),γ} and {m,n}
respectively, will be established. A comparison to Se as well as another cracked
geometry parameter: the traction equivalent structural stress St [41, 55, 113, 128,
131], will be provided for reference purposes.

The conclusions and outlook (Section 4.4) provide answers to research sub-
questions 1, 2 and 5 (Section 1.3).

4.2. WELD NOTCH STRESS (INTENSITY ) DISTRIBUTIONS
Although mode-I and mode-III through-thickness weld notch stress distribution
formulations along the expected (2D) crack path {σI (r /tp ), τI I I (r /tp )} – key elements
for a fatigue design criterion – are separately established before [14, 16, 18, 29], a
short recapitulation is provided (Section 4.2.1) in order to discuss the differences,
as well as to present a comparison to bi-linear approximations [132]. At the
same time, the intact geometry related {σI (r /tp ), τI I I (r /tp )} are used to obtain the
cracked geometry equivalent weld notch stress intensity distributions (Section 4.2.2):
{K I (a/tp ), K I I I (a/tp )}. Mode-I formulations for planar structures are already available
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[16, 18], but modifications turned out to be required for tubular ones. Sufficiently
accurate mode-III formulations seem to be still lacking in literature and have been
derived for both planar and tubular structure configurations [29]. Last but not
least, a comparison to the bi-linear approximation based {K I (a/tp ), K I I I (a/tp )}
formulations [132] is provided.

4.2.1. WELD NOTCH STRESS DISTRIBUTIONS

Adopting a linear superposition principle [18], equilibrium equivalent and self-
equilibrium parts {σ f e ,σse ;τ f e ,τse } have been distinguished (Fig. 4.1) in order to
formulate {σI (r /tp ), τI I I (r /tp )}. Three components are involved: the notch stress,
the weld-load carrying stress and the far field stress. Typically three zones can be
identified in all distributions: the zone 1 peak stress value, the zone 2 notch-affected
stress gradient and the zone 3 far-field dominated stress gradient, demonstrating
stress field similarity.
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Figure 4.1.: Linear superposition of an equilibrium equivalent and self-equilibrium
part for the mode-{I, III} weld toe notch stress distributions of a DS
welded T-joint and DS welded cruciform joint in a tubular structure.

The V-shaped notch angle characteristic stress component applies to both groove
and fillet welds and represents the (near) singular contribution defining the hot spot
[16, 18, 29].

Since the weld geometry causes a local change in stiffness, the notch becomes
load carrying up to some extent, depending on the joint dimensions including
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welding penetration level as well as loading conditions. Weld notch load carrying
stress component estimates can be obtained using beam finite element (FE) models,
but polynomial fitting functions turned out to be more useful from engineering
perspective [16, 29].

The equilibrium equivalent far field stress components {σ f e ,τ f e } in the cross-
section at a weld toe (Fig. 4.1) is in compliance with the fracture mechanics definition
[40, 41]. Estimates are naturally obtained using through-thickness linearisation rather
than surface extrapolation [133] adopting a relatively coarse meshed shell/plate FE
model (Figs. 4.2a and 4.2b) [43, 44]. Transforming the nodal normal and shear forces
{Fn,i ,Fs,i } as well as bending and torsion moments {Mb,i , Mt ,i } along the weld seam
to line forces and moments { fn,i , fs,i } and {mb,i ,mt ,i }, four systems of equations have
to be solved for: {Fn} = [T ]{ fn}, {Fs } = [T ]{ fs }, {Mb} = [T ]{mb} and {Mt } = [T ]{mt } [41,
112, 113], the constant membrane and linear bending terms {σsm ,σsb}, as well as the
constant shear and linear torsion ones {τss ,τst } for respectively mode-I and mode-III
[44] can be calculated to acquire the structural stresses {σs =σsm +σsb ,τs = τss +τst }
and structural stress ratios {rσs =σsb/σs ,rτs = τst /τs } as characteristic far field stress
parameters.

MODE-I

Mb,1

Fn,1

Mb,2

Fn,2

Mb,3

Fn,3

Mb,4
Fn,4

Model properties:
• SHELL181 element

• linear elastic material behaviour

• element size = tp• full integration scheme

Mode-I loading

(a)

Fs,1

Mt ,1

Fs,2

Mt ,2

Fs,3

Mt ,3

Fs,4

Mt ,4

Model properties:
• SHELL181 element

• linear elastic material behaviour

• element size = tp• full integration scheme

Mode-III loading

(b)

Figure 4.2.: Part of a shell FE model of a (non-symmetric) T-joint in a tubular
structure for a mode-I (a) and mode-III (b) response.

If the welded joint structural stiffness – either in planar or tubular structures
– does not significantly affect the stress distribution, like in general for groove
welds (e.g. in butt joints), the weld does not need to be modelled and the far
field stress information can be obtained at the intersection line of the connected
structural members [29, 40]. However, fillet weld modelling is typically required
(e.g. in T-joints and cruciform joints) for more accurate far field stress estimates –
although avoided in some guide lines for engineering purposes [34] –, in particular
if a structural response contains superimposed contributions from different levels of
stiffness hierarchy, like often applies to maritime structures. Considering for example
a stiffener-frame connection as a critical fatigue sensitive location in the bottom
structure of a ship sailing in quartering seas, the mode-{I, III} far field stress consists
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Figure 4.3.: Self-equilibrium stress part for a mode-I response applied as unit crack
face traction at weld toe notches for ρ = 0 (a) and ρ > 0 (b).

at least of a local water pressure and shear force induced response at plate-stiffener
level, as well as a bending moment and torsion moment induced one at global hull
girder level [134, 135]. Inclined shell elements have been used (Fig. 4.2), rather
than inclined rigid ones or shell elements with increased local thickness at the joint
location [44, 46].

MODE-I FORMULATION

For non-symmetry with respect to half the plate thickness (tp /2) and notch radius
ρ = 0, the mode-I weld toe notch formulation yields [130]:

σn

(
r

tp

)
=σs

[
σse

(
r

tp

)
−2rσs

(
r

tp

)]
(4.1)

with σse being the self equilibrium stress part (Eq. D.1). Similar formulations are
available for symmetry with respect to (tp /2) as well as for the ρ > 0 cases [18].

A non-monotonic and monotonically increasing weld notch stress distribution at
the weld toe of a double sided (DS) T-joint are shown for illustration purposes
(Fig. 4.4a and 4.4b). Load cases are respectively a normal force Fn (rσs = 0) and a
combined one involving an additional bending moment Mb (rσs = 0.25). Note that at
the same time the geometry has changed from approximately a planar (Rt = 5000) to
a tubular one (Rt = 36), implying that the weld notch stress distribution formulations
hold in general. The joint dimensions are arbitrary, but realistic for steel maritime
structures and the weld notch load carrying level is relatively low: Cbw = {0.16, 0.15}.
Comparing the weld toe notch stress and far field stress distributions indicate that
equilibrium is satisfied indeed. Converged FE solutions show the accuracy of the
formulation.

The bi-linear approximation involves a predefined notch to far field transition
location at 0.1(r /tp ) and is – in contrast to the semi-analytical formulation (Eqs. (4.1)
and (D.1)), reflected in Cbw – only loading dependent [132], meaning any local notch
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geometry information is not explicitly taken into account. Note that for (r /tp ) → 0
the notch stress is finite, even for ρ = 0; the singular case. If the weld notch load
carrying level increases, a notch affected zone size of 0.1(r /tp ) turns out to be too
small [16, 18].

MODE-III FORMULATION

Similar to mode-I, weld toe notch formulations for mode-III are obtained. For
non-symmetry with respect to (tp /2) and ρ = 0 [29]:

τn

(
r

tp

)
= τs

[
τse

(
r

tp

)
−2rτs

(
r

tp

)]
(4.2)

with the self-equilibrium stress part τse (r /tp ):

τse

(
r

tp

)
=

(
r

tp

)λτ−1

µτF cos(λτβa)− (Ct w +µτM )

{
2

(
r

tp

)
−1

}
. (4.3)

Formulations are available for symmetry with respect to (tp /2) as well, including
the ρ > 0 cases (Section 2.2).

A non-monotonic and monotonically increasing weld notch stress distribution at
the weld toe of a DS T-joint (Fig. 4.5a and 4.5b) illustrate the performance of the
developed formulations in comparison to the converged FE solutions. The applied
load is a torsion moment Mt . Changing the geometry from an approximately planar
(Rt = 5000) to a tubular one (Rt = 36) is responsible for the different structural shear
stress ratio, rτs = {0, 0.25}, basically representing an approximately applied shear
force Fs load case and a combined one involving an additional torsion moment Mt .
In comparison to the mode-I results, for the same geometry the weld notch load
carrying level has increased: Ct w = {0.18, 0.19}, as reflected in the increased notch
affected region (Figs. 4.4 and 4.5).

The bi-linear approximation as originally developed for mode-I has been extended
to mode-III applications [79, 128, 136, 137]. Despite the increased notch affected
region, the transition location is still fixed at 0.1(r /tp ) and the fit seems not to be
perfect. Anyway, even for different Ct w values providing a better fit, a predefined
and geometry independent transition location remains a modelling limitation for an
accurate joint specific weld notch stress distribution representation.

4.2.2. WELD NOTCH STRESS INTENSITY DISTRIBUTIONS

Scaling of welded joint fatigue damage requires a total stress parameter taking all
zone {1, 2, 3} contributions into account; a criterion the stress intensity (similarity)
factor K seems to meet. Turning the intact geometry related weld toe notch stress
distributions into crack damaged equivalents, the zone {1, 2} self-equilibrium and
zone 3 equilibrium equivalent stress parts {σ f e (r /tp ),σse (r /tp );τ f e (r /tp ),τse (r /tp )}
have been used to introduce respectively a notch factor Yn(a/tp ) and a far field
factor Y f (a/tp ), defining the weld toe notch stress intensity factor for respectively
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mode-I and mode-III:

K I =σs
√

tp Yn,I (a/tp )Y f ,I (a/tp )
√
π(a/tp ) (4.4)

K I I I = τs
√

tp Yn,I I I (a/tp )Y f ,I I I (a/tp )
√
π(a/tp ) (4.5)

The stress intensity magnitude is characterised using the structural stress {σs ,τs }.
Assuming the crack tip is infinitely sharp explains the square root behaviour√
π(a/tp ) for (a/tp ) → 0.

MODE-I FORMULATION

Aiming for a YnY f rather than (Yn +Y f ) formulation, σse (r /tp ); the self-equilibrium
stress part (Eq. D.1) has been applied as unit crack face traction along the
assumed virtual crack path (Fig. 4.3) using the weight function approach [138]. For
non-symmetry with respect to (tp /2) and ρ = 0 [16, 18] the notch factor yields:

Yn =
(
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}]
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(4.6)

The through-thickness crack coordinate (a/tp ) naturally replaced the corresponding
through-thickness stress coordinate (r /tp ). The primitives introduce Γ(·); the complete
gamma function. Formulations for symmetry with respect to (tp /2) and ρ > 0
have been established as well [16, 18]. The linear far field stress distribution
σ f e (r /tp ) =σs {1−2rσs (r /tp )} in the fracture mechanics context with σs =σsm +σsb

and rσs = σsb/σs is consistent with the one defined for the welded joint. A
superposition of the involved constant membrane and linear bending component
applies to the far field factor as well [16, 18]:

Y f ,I

(
a

tb
,rσs

)
= Y f m − rσs (Y f m −Y f b) (4.7)

For a single edge crack configuration in planar structures, {Y f m ,Y f b} handbook
solutions are available [16, 18]. However, for tubular ones, results proved to be not
sufficiently accurate. Redefining the structural normal stress ratio: rσs = tb/(2Rt ),
new formulations have been established, fitting FE results:
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Y f m = η−1 ·
{

A1

(
a

tb

)4

+ A2

(
a

tb

)3

+ A3

(
a

tb

)2

+ A4

(
a

tb

)
+ A5

}
(4.8)

with

A1 =−0.4102η5 +5.9416η4 −31.2763η3 +74.7289η2 −76.6080η+32.5525

A2 = 0.3159η5 −4.7704η4 +26.4878η3 −66.1652η2 +65.8295η−26.0822

A3 =−0.0914η5 +1.4008η4 − 8.1841η3 +23.0032η2 −24.1433η+10.8140

A4 = 0.0072η5 −0.1105η4 + 0.6432η3 − 1.7606η2 +2.1383η −0.8209

A5 = 1.0122η+0.0157

and

Y f b = η−1 ·
{

B1

(
a

tb

)4

+B2

(
a

tb

)3

+B3

(
a

tb

)2

+B4

(
a

tb

)
+B5

}
(4.9)

with

B1 =−1.2609η5 +18.5324η4 −103.4794η3 +274.5174η2 −341.9945η+167.7979

B2 = 0.9786η5 −14.5248η4 + 82.2228η3 −220.5391η2 +272.6368η−132.8441

B3 =−0.2529η5 + 3.8114η4 − 22.2233η3 + 63.1152η2 − 81.0820η +43.6888

B4 = 0.0255η5 − 0.3747η4 + 2.1096η3 − 5.6774η2 + 7.2997η −3.8365

B5 = 1.0123η+0.0164.

Since the relative membrane and bending contributions are not just loading

dependent, a geometry parameter has been introduced: η = − log
(

tb
2Rt

)
. The

formulations are applicable for {1/2 ≤ (tb/2Rt ) ≤ 1/200} and {0 ≤ (a/tb) ≤ 1}.
Considering the same geometry and loading conditions as for the weld notch stress

distributions (Fig. 4.4a and 4.4b), the weld notch stress intensity weight functions
{Yn,I ,Y f ,I } are obtained (Fig. 4.4c and 4.4d). If the weld notch load carrying level as
reflected in Cbw is relatively small, Yn,I turns to be governing for {0 < (a/tp ) ≤ 0.2};
a zone {1,2} affected (technical) short crack region, divided into a respectively a
notch dominated and a weld load carrying controlled part. Far field factor Y f ,I

controls the zone 3 contribution in a long-crack region {0.2 < (a/tp ) ≤ 1}, meaning all
3 stress components are decisive in a certain crack length region. Depending on
Cbw and rσs , the Yn,I – Y f ,I transition may shift left or right. The FE solutions,
obtained for plane strain conditions, proved to be rather good Yn,I Y f ,I estimates.
Using the bi-linear weld notch stress distribution approximation (Fig. 4.4a and 4.4b)
to obtain a K I estimate is one of the traction equivalent structural stress concept
features [112, 132]; a robust procedure [139]. Although the notch stress intensities
are in agreement with the FE solutions (Fig. 4.4c and 4.4d) for short cracks, MknY f ,I

seems consistently overestimated for {a/(tp /2)} < 0.1. Modifying Y f ,I to incorporate
the notch characteristic behaviour and establish the notch magnification factor Mkn

– a Yn equivalent parameter, rather than adopting the crack face traction definition
(Eq. 4.6), seems the explanation [18, 126]. Differences in the long crack region
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for the tubular structure (Fig. 4.4 d) are a result of a planar geometry based Y f ,I

formulation.

The normalised SIF’s (K I /σs ) for the considered examples perfectly match the FE
solution (Fig. 4.4e and 4.4f) and hold in general (Fig. 4.6). Regardless the non-
monotonic Yn,I Y f ,I behaviour, (K I /σs ) remains monotonically increasing because of√
π(a/tp ) being involved. However, K I (MknY f ,I )/σs shows non-monotonic behaviour

and includes even a singularity for {(a/tp ) → 0}. Despite being explained as an higher
order effect [112, 132], the contribution should be finite at most [114], suggesting
fictitious behaviour.

MODE-III FORMULATION

Applying τse (r /tp ), the self-equilibrium stress part (Eq. 4.3), as unit crack face
traction along the assumed virtual crack path using the weight function approach
[138] provides for non-symmetry with respect to (tp /2) and ρ = 0:
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(4.10)

Note that only half the Ct w value of the stress distribution (Eq. 4.10) is involved
for the sake of fitting both the stress as well as the stress intensity. Formulations
for symmetry with respect to (tp /2) and ρ > 0 have been established as well
(Appendix E). The far field stress distribution τ f e (r /tp ) = τs {1−2rτs (r /tp )} with
τs = τss +τst and rτs = τst /τs involves a superposition of a constant shear force and
linear torsion moment induced component and applies principally to the far field
factor as well:

Y f ,I I I

(
a

tb
,rτs

)
= Y f s − rτs (Y f s −Y f t ) (4.11)

with
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(
a
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)
=

√
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)
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being a handbook solution [140] and
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Figure 4.4.: Mode-I weld toe notch stress distribution (a, b), SIF far field- and notch
distribution (c, d) and K I distribution (e, f) for a DS welded T-joint;
rσs = 0 (a, c, e), rσs = 0.25 (b, d, f).
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including

C1 = 9.6071η4 − 67.0441η3 +197.6515η2 −212.0015η+98.4731

C2 =−15.5960η4 +108.8379η3 −320.8629η2 +344.1559η−131.7393

C3 = 8.8200η4 − 63.3751η3 +196.7602η2 −244.8683η+111.5116

C4 =− 1.6428η4 + 11.0064η3 − 32.5305η2 + 41.1094η −17.5662

C5 = 0.0522η4 − 0.2881η3 + 0.7159η2 − 0.9626η +1.4579

a FE fitted formulation. Structural shear stress ratio rτs = tb/(2Rt ). The Y f ,I I I (a/tp ,rτs )
formulation is applicable for {1/2 ≤ (tb/2Rt ) ≤ 1/200} and {0 ≤ (a/tb) ≤ 1} and hold
asymptotically for planar structures.

For the same geometry and loading conditions, the increased weld notch
stress affected region for mode-III in comparison to mode-I translates (Figs. 4.4
and 4.5a and 4.5b) one-to-one to the Yn,I I I Y f ,I I I distribution (Figs. 4.4 and 4.5c
and 4.5d). The Yn,I I I controlled zone {1,2} short crack region has increased to
{0 < (a/tp ) ≤ 0.3}, meaning the Y f ,I I I defined zone 3 long-crack region has decreased
to {0.3 < (a/tp ) ≤ 1}. Different Ct w and rτs values shift the Yn,I I I – Y f ,I I I transition
left or right. A good agreement with FE solutions is obtained.

Assuming the mode-{I, III} weld notch stress distribution characteristics are similar,
the bi-linear approximation – including the transition location at 0.1(r /tp ) – does not
change and the traction equivalent structural stress concept Mkn(a/tp ) formulation
is pretended to be the same as well. Handbook solutions are used to define the
far field factor Y f ,I I I [128]. However, comparing the mode-{I, III} results (Figs. 4.4
and 4.5c and 4.5d), the notch stress intensity has turned from a small MknY f ,I –
into a significant MknY f ,I I I overestimate. Whereas for the stress distribution the
transition location should change to a larger value, reflecting an enlarged short crack
region, a smaller – contradictory – one seems required to provide a better intensity
estimate; a consequence of the Mkn definition [16, 18, 132]. The overestimates in
the long crack region are a consequence of the solid shaft Y f ,I I I solution, being
insufficient for hollow shafts; tubular structures, or even planar ones. Adopting Y f ,I I I

(Eq. 4.11) improves the far field estimate.
The (K I I I /τs ) solutions for the considered examples perfectly match the FE results

(Fig. 4.5e and 4.5f), and hold in general (Fig. 4.6). Fictitious non-monotonic
K I I I (MknY f ,I I I )/τs behaviour for {(a/tp ) → 0} is observed up to a relatively large
extent in comparison to the mode-I results, in particular for an unchanged transition
location at 0.1(r /tp ).

4.3. TOTAL STRESS ASSESSMENT

For mixed mode-{I, III} multiaxial response conditions of planar and tubular maritime
structures, the mode-I contribution is governing, meaning the normal stress is
predominant (Chapter 1). At the same time, the fatigue lifetime of arc-welded joints
is growth – rather than shear induced initiation – controlled because of the welding
induced defects, explaining why a cracked geometry based fatigue strength parameter



4

90 4. ST BASED MIXED MODE-{I, III} MULTIAXIAL FATIGUE RESISTANCE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

[132]

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

[132]

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.6

0.5

0.4

0.3

0.2

0.1

0.0

[128]
(Eq.4.11)

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.6

0.5

0.4

0.3

0.2

0.1

0.0

[128]
(Eq.4.11)

(d)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
0.6

0.5

0.4

0.3

0.2

0.1

0.0

[128]

(e)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
0.6

0.5

0.4

0.3

0.2

0.1

0.0

[128]

(f)

Figure 4.5.: Mode-III weld toe notch stress distribution (a, b), SIF far field- and notch
distribution (c, d) and K I I I distribution (e, f) for a DS welded T-joint;
rτs = 0 (a, c, e), rτs = 0.25 (b, d, f).
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Figure 4.6.: Relative K I (a) and K I I I (b) error for DS welded T-joint, comparing the
FE solutions and the analytical results for the full parameter application
range.

will be adopted to establish a normal stress equivalent von Mises type of failure
criterion [130]. Involving the stress intensity distributions at the critical fracture

plane (Section 4.2), the total stress parameter S = ST =
√

S2
T,I +β(N )S2

T,I I I will be

established first (Section 4.3.1), including a lifetime dependent shear stress coefficient
β(N ). Cycles will be counted – because of the time domain approach – in the von
Mises plane, in order to be able to incorporate non-proportionality cycle-by-cycle.
The linear damage accumulation model will be used, since good performance has
been shown for advanced fatigue strength criteria [18]. Using mid-cycle fatigue
test data from literature (Section 4.3.2) the strength and mechanism contributions,
reflected in respectively mode specific {log(C ),γ} and {m,n} coefficients, will be
investigated (Section 4.3.3).

4.3.1. FATIGUE STRENGTH PARAMETER

Cyclic loading induced response conditions turn the SIF’s {K I ,K I I I } into crack
growth driving forces {∆K I ,∆K I I I } and defects may develop into cracks. The crack
growth rate (da/dn) of short-cracks emanating at notches show elastoplastic wake
field affected anomalies [18]. Modifying Paris’ equation, a generalised two-stage
model has been established containing a transition; a natural pivot rather than a
mathematical one [141, 142] from a short to a long crack growth region meant
to incorporate all relevant crack growth driving force components [143–145]; i.e.
to include both the weld notch- and far field characteristic mode-I response
contributions: (da/dn)I = C I ·Y nI

n,I · {∆σs,e f f ·Y f ,I ·
p

(πa)}mI . Notch elastoplasticity
coefficient nI is response dependent and defines the level of monotonically
increasing or non-monotonic crack growth behaviour (Fig. 4.7), in contrast to a
fixed value in a similar model: (da/dn)′I = C ·M n

kn · {∆σs,e f f ′ ·Y f ,I ·
p

(πa)}m with
n = 2, assuming response invariant non-monotonic behaviour [6, 132, 146, 147].
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Since welding induced residual stress affects nI , as-welded (AW) joint fatigue
resistance data is typically used to obtain an average estimate, rather than crack
growth data obtained using standard specimens geometries like the compact
tension configuration [14]. Recognising that a spatial description of a loading
induced response cycle requires two parameters, e.g. range ∆σs and ratio
RI = (σs,mi n/σs,max ) reflecting a mean stress effect, Walker’s model has been adopted
[14, 16, 58]. The stress range becomes an effective one: ∆σs,e f f =∆σs /{(1−RI )}1−γ
with 0 ≤ γ ≤ 1. For γ→ 1, the nominal stress range ∆σs dominates the fatigue
resistance; the mean stress becomes governing for γ→ 0. Assuming mean stress
affects predominantly the notch region [146, 147], ∆σs,e f f ′ =∆σs /{(1−RI )}n(1−γ)/m .
Mean stress coefficient γ = 0.5 for Rσ ≤ 0 and reflects an equal contribution
of the stress range ∆σs and max stress σs,max = ∆σs /(1−RI ); γ = 0 for Rσ < 0
meaning only ∆σ+

s is considered to contribute effectively. Incorporating the
welding induced residual (mean) stress distribution as well – if available, a different
interpretation seems to apply and RI turned into a crack length dependent far
field stress intensity contribution: ∆σs,e f f ′ =∆σs /{1−RI r (a/tp )}1−γ with RI r (a/tp ) =
[K I (σs,max , a/tp )+K I {σr (a/tp ), a/tp }]/[K I (σs,mi n , a/tp )+K I {σr (a/tp ), a/tp }] and γ= 0.5
for any RI r (a/tp ) [148].

Crack growth behaviour at notches for a mode-III response as often observed is
monotonically increasing [127, 149–154]. However, some evidence for non-monotonic
crack growth is available as well [155–157], principally justifying a mode-I model
similarity: (da/dn)I I I = C I I I ·Y nI I I

n,I I I · {∆τs,e f f ·Y f ,I I I ·
p

(πa)}mI I I . Non-monotonicity
becomes more pronounced for a small notch radius (ρ→ 0), a large amplitude –
negative ratio characterised response {τs → τy ,RI I I < 0} and a plane stress condition,
supporting large scale yielding [18].

For crack growth in mixed mode-{I, III} conditions an equivalent stress intensity
can be adopted, typically similar to equivalent stress formulations [130], either a
linear one of the Tresca type: ∆Keq = C I ·K I +C I I I ·K I I I or a non-linear one of

the von Mises type: ∆Keq =
√

(C I ·K I )2 + (C I I I ·K I I I )2 [127, 137, 152–154, 157–165].
Even higher order non-linear formulations haven been proposed and some contain
coupling terms to incorporate interaction effects [137, 161, 162]. However, because
of the Seq −∆Keq formulation similarity, an equivalent stress Seq [130] rather than an
equivalent stress intensity ∆Keq will be adopted as fatigue strength parameter, aiming
for a mixed mode-{I, III} Seq −N fatigue resistance – rather than a ∆Keq − (da/dn)
crack growth relation.

Applying an integral operator on the individual mode-{I, III} crack growth
models provides mid-cycle fatigue related resistance relations of the Basquin type:
log(N j ) = log(C j )−m j log(ST, j ) with j ={I, III}, correlating the fatigue life time Ni and
a total stress fatigue strength parameter [6, 14, 16, 18]:

ST, j =
S j(

1−R j
)1−γ · I

1
m j

N , j · t

2−m j
2m j

p

(4.14)
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(
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)
,

S1 = ∆σs and S2 = ∆τs . Scaling parameter t
(2−m j )/2m j
p takes the response gradient

induced size effects into account. Rather than a sufficiently small (ai /tp ) providing a
converged notch crack growth integral solution IN , j , an arc-welding induced most
likely material characteristic defect size estimate has been established; (a f /tp ) = 1 is
based on a through-thickness crack criterion.

An environment and service loading induced mean stress component as reflected
in {RI ,RI I I } is in general not the only one, since arc-welding adds a thermal loading
induced – typically high-tensile – quasi-constant residual (mean) stress, affecting the
fatigue strength. An explicit residual stress measure is typically not included, since
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for fatigue design in general only joints in AW condition are considered [33, 34,
114], meaning any residual stress affecting the fatigue resistance is just implicitly
incorporated in the most likely fatigue resistance parameter estimates. A stress
relieving heat treatment can be applied, being one way to virtually eliminate residual
stress and improve the fatigue strength. If both AW and stress-relieved (SR) test data
are jointly considered, an explicit residual stress measure Sr – an average estimate,
since the actual distribution is typically unknown – will be introduced to represent
the thermal condition, meaning a re-formulation of the response ratio is required:

RI r =
ST,I ,mi n +Sr

ST,I ,max +Sr
= RI ·ST,I +Sr (1−RI )

ST,I +Sr (1−RI )
(4.15)

RI I I r =
ST,I I I ,mi n +Sr

ST,I I I ,max +Sr
= RI I I ·ST,I I I +Sr (1−RI I I )

ST,I I I +Sr (1−RI I I )
. (4.16)

Since a stress relieving heat treatment affects the grain size and local yielding
properties [130], a dedicated elastoplasticity coefficient n will be needed for the AW
and SR conditions.

Because of the mode-I and mode-III finite life time specific strength and
mechanism fatigue resistance characteristics, a response level dependent shear
strength coefficient β(N ) – rather than a constant one – can be defined for a
single-slope resistance relation N =C ·Sm

T in the mid-cycle fatigue region [130]:

β(N ) = ST,I (N )

ST,I I I (N )
=Cβ ·N Mβ (4.17)

with

Cβ = 10
log(CI )mI I I −log(CI I I )mI

mI ·mI I I

and
Mβ =

mI −mI I I

mI ·mI I I
.

Since only the uniaxial mode-{I, III} number of cycles {NI , NI I I } are known in
advance, the actual β(N ) value has to be obtained in an iterative cycle counting
process in order to capture N for the equivalent normal stress based von Mises type
of criterion:

ST =
√{

S2
T,I +β(N ) ·S2

T,I I I

}
. (4.18)

Counting iteratively the effective von Mises notch stress (Fig. 4.8) at the
critical fracture plane (Section 4.2), the range ST,i including the normal and
equivalent shear stress projections {ST,I ,i ,β(N ) ·ST,I I I ,i } and corresponding ratios
{RI = ST,I ,mi n,i /ST,I ,max,i ,RI I I = β(N ) ·ST,I I I ,mi n,i /β(N ) ·ST,I I I ,max,i } can be obtained
for each cycle i . Adopting a 0th , 1st or 2nd order moment approach, differences
between the actual response path and the (straight) range have been used to
incorporate a non-proportionality effect cycle-by-cycle in terms of Cnp , including a
material characteristic contribution in terms of cm [79, 80, 85, 94, 130]:



4.3. TOTAL STRESS ASSESSMENT

4

95

ST,e f f ,i = ST,i
(
1+ cm ·Cnp,i

)
(4.19)

with

Cnp,i =
∫

S̃ (r · |sin(θ)|)ndp∫
S (R · |sin(θ)|)ndp

for n = 0,1 or 2. (4.20)
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Figure 4.8.: Total stress cycle characteristics in the von Mises plane.

Although Cnp,i and cm are meant to reflect respectively the path and material
characteristic part, cm may correct for any cycle counting and/or non-proportionality
related model deficiency as well, since data fitting is used to obtain an estimate. A
compromised value may be acquired, meaning interpretation becomes more difficult.
In order to obtain a mid-cycle fatigue related equivalent total stress parameter ST,eq

for variable amplitude (VA) data fitting the constant amplitude (CA) data scatter
band; i.e. N (ST ) = C ·S−m

T with ST = ST,eq , the linear damage model is adopted:
D =∑

{ni (ST,i )/Ni (ST,i )} ≤ 1 with Ni (ST,i ) =C ·S−m
T,i . For D = 1, reflecting failure, the

formulation becomes:

ST,eq =
[∑

{ni (ST,e f f ,i ) ·Sm
T,e f f ,i }

N

]1/m

. (4.21)

Similarly, applying an integral operator to the (da/dn)I ′ = C · M 2
kn · {∆σs,e f f ′ ·

Y f ,I ·
p

(πa)}m mode-I crack growth relation [132, 146, 147] provides a
master curve formulation: log(NI ) = log(C I )−mI log(St ,I ) with St ,I = ∆σs /{(1−
Rσ)2(1−γ)/m · IN ,I ′ (rσs )1/mI · t (2−mI )/2mI

p }. The crack growth integral IN ,I ′ (rσs )1/mI =[∫
1/M 2

kn(a/tp ) ·Y f ,I (a/tp ,rσs )mI · (a/tp )mI /2d(a/tp )
](1/mI )

is approximated using a

6th order polynomial for engineering purposes [131]. Provided rσs =
|∆σsb |/(|∆σsm | + |∆σsb |) [131, 166, 167], non-monotonic weld notch stress dis-
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tributions [14, 16] are not considered since the formulation provides only rσs ≥ 0
values. Because of the fixed notch governing to far field dominated transition
location, the considered weld notch load carrying level is the same for all. Rather
than an arc-welding induced most likely material characteristic defect size estimate,
(ai /tp ) = 10−3 has been adopted providing a converged In,I ′ (rσs )1/mI solution;
(a f /tp ) = 1 is based on a through-thickness crack criterion. Whereas for SR welded
joints in steel structures ∆σs,e f f ′ is considered, for AW ones mean stress effects are
not taken into account and ∆σs,e f f ′ →∆σs , reducing the mode-I traction equivalent

structural stress to St ,I =∆σs /{IN ,I ′ (rσs )1/m · t (2−m)/2m
p } [131, 137].

Mode-III crack growth at notched geometries seems not investigated. However,
a traction equivalent structural shear stress formulation has been established,
assuming the non-monotonic behaviour as identified for mode-I still holds: St ,I I I =
∆τs /{IN ,I I I ′ (rτs )1/mI I I · t (2−mI I I )/2mI I I

p }. A 4th order polynomial has been established

[128, 136] to approximate the notch crack growth integral IN ,I I I ′ (rτs )1/mI I I =
[
∫

1/{M 2
kn(a/tp ) ·Y f ,I I I (a/tp ,rτs )mI I I · (a/tp )mI I I /2d(a/tp )}]1/mI I I involving the solid

shaft Y f ,I I I solution (Section 4.2.2) [128, 136] and is applicable for monotonic weld
notch shear stress distributions only: rτs = |∆τst |/(|∆τss |+ |∆τst |). Slope mI I I = 5 has
been postulated. Using the improved far field factor Y f ,I I I formulation (Eq. 4.11),
IN ,I I I ′ (rτs )1/mI I I has been re-established and a revised polynomial approximation is
proposed. The notch characteristics (Section 4.2) have not been changed, meaning
the transition size is assumed to be the same as for mode-I.

For mixed mode-{I, III} multiaxial fatigue, a von Mises type of equivalent stress
formulation has been adopted, defined at the critical fracture plane (Section 4.2):

St =
√

(S2
t ,I +β ·S2

t ,I I I ) (4.22)

with

St ,I =∆σs /{(1−Rσ)2(1−γ)/m · IN ,I ′ (rσs )1/mI · tp
(2−mI )/2mI },

IN ,I ′ (rσs )1/mI ≈0.0011 · r 6
σs +0.0767 · r 5

σs −0.0988 · r 4
σs +0.0946 · r 3

σs q +0.0221 · r 2
σs+

0.014 · rσs +1.2223,

St ,I I I =∆τs /IN ,I I I ′ (rτs )1/mI I I · tp
(2−mI I I )/2mI I I ,

IN ,I I I ′ (rτs )1/mI I I ≈1.4131 · r 4
τs −1.0448 · r 3

τs +1.0264 · r 2
τs +0.7087 · rτs +1.4244

and β = 3; a constant rather than a response level dependent one, explaining
why fatigue resistance data analysis for welded joints in steel structures provided
an average slope value m ∼ 4 [79, 128, 168, 169] in between mI ∼ 3 and mI I I ∼ 5.
Another track has been developed as well. Because well-established mode-III short
and long crack growth data is lacking, St =∆σs,v M /{IN ,I ′ (rs,v M )1/mI · t (2−mI )/2mI

p } with

∆σs,v M =
√

(∆σ2
s +β ·∆τ2

s ), rs,v M =
√

(∆σ2
sb +β ·∆τ2

st )/{
√

(∆σ2
sm +β ·∆τ2

ss )+|∆σsb |} and

β= 3 has been proposed, assuming the crack growth behaviour is mode-I dominated
[55, 137]. If mode-III contributions become more important, deviations can be
expected.
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Cycles are counted in the St ,I −βSt ,I I I or σs −βτs plane [55, 79, 128, 137] for
the proposed St formulations – respectively incorporating full- or just partial far
field fatigue strength information and includes cycle-by-cycle non-proportionality
measures [79, 80, 85, 94].

In order to obtain an equivalent stress parameter St ,eq for VA data fitting the CA
data scatter band, the linear damage model is adopted: D =∑

{ni (St ,i ) ·Sm
t ,i /Ni (St ,i )}.

For D = 1, the formulation becomes: St ,eq = [
∑

{ni (St ,i )/N }]1/m with N =∑
{ni (St ,i )}

the total number of counted von Mises cycles.

4.3.2. TEST DATA

Data series containing steel specimens with both tubular and planar structural
joints have been considered (Fig. 3.7 and Tables 3.1 and 3.2) – the same as used
to investigate the effective notch stress performance [130], involving respectively
circular/square hollow and plate cross-sections with specified joint dimensions
(Fig. 4.1). Most data is obtained for CA loading conditions, but some VA data is
included as well. Uniaxial mode-I, uniaxial mode-III and multiaxial mode-{I, III}
response conditions – both P and NP – have been introduced at the governing
fatigue sensitive locations: single sided (SS) welded butt joints and DS welded
T-joints, as well as DS welded cruciform joints showing respectively non-symmetry
and symmetry with respect to (tp /2) [16, 18, 29]. The governing hot spot is typically
of the type C along the weld seam, although some of the type A at the weld end exist
as well. Only specimens showing weld toe induced fatigue damage are included,
involving predominantly failures and some run-outs. The data size is ∼ 500.

The external loading consists of a normal force Fn or bending moment Mb for
the mode-I response and a shear force Fs or torsion moment Mt for the mode-III
response, obtained using FE shell models (Section 4.2.1). Multiaxiality is often either
loading [15, 49–51, 53, 54, 56, 82, 119, 120, 122] or geometry [121, 123–125] induced.
In case a mode-I and mode-III response related external loading component (e.g.
Mb and Mt ) are applied and at the same time the specimen contains a non-circular
cross-section and warping constraints, multiaxiality includes even both a loading
and geometry contribution [54, 56]. The response is proportional by definition if
multiaxiality is a result of geometry only. The response ratio R = 0 for the majority
of the data series, reflecting a pulsating loading induced response condition with
non-zero mean. For a significant amount of data R = −1, meaning the response
condition is fully reversed and the mean component is zero. For the remaining
data series, R ̸= {0;−1}. Since data with both AW and SR thermal conditions are
considered, the influence of (mean) residual stress has to be addressed as well. A
von Mises based structural stress fatigue assessment of the adopted test data (Fig. 3.7
and Tables 3.1 and 3.2) shows the initial data scatter and the clear distinction
between CA and (maximum range) VA results [130].

4.3.3. STRENGTH AND MECHANISM CONTRIBUTIONS

The life time range of the considered data (Fig. 3.7 and Tables 3.1 and 3.2) virtually
reflects mid-cycle fatigue characteristics only: N = (104 ∼ 5 ·106) cycles. A log-log
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linear resistance formulation of the Basquin type typically relates N to a fatigue
strength parameter S [14]: log(N ) = log(C )−m ·log(S). Linear regression on life time is
adopted to estimate the single-slope curve parameters: intercept log(C ) and slope m,
respectively reflecting a strength and mechanism contribution, introducing the life
time scatter (i.e. performance) parameter σN . For strength performance evaluation
purposes, the scatter band index TσS = 1 : (S10/S90) will be used: the fatigue
strength ratio for 10[%] and 90[%] probability of survival [111]. Maximum likelihood
based regression [18, 57] will be employed to obtain the most likely parameter
vector estimate Φ : maxL (Φ; N |S) with Φ= {log(C ),m,σN }, assuming fatigue lifetime
N is most likely log-Normal distributed [16, 29]. For S = ST,e f f (Section 4.3.1),
the response ratio coefficient and material characteristic elastoplasticity coefficient
providing respectively another strength and mechanism contribution are introduced,
principally extending the parameter vector to: Φ = {log(C ),γ,m,n,σN }. Note that
ideally the uniaxial mode-I and mode-III, as well as the multiaxial P and NP mode-{I,
III} data (Fig. 3.7 and Tables 3.1 and 3.2) would have been balanced for appropriate
ST,e f f performance evaluation, meaning that except the σN and TσS parameters
as global indicators for all data, the individual data groups behaviour have to be
carefully considered as well. Starting with the uniaxial reference fatigue resistance
in terms of ST,e f f , the mode specific strength and mechanism coefficients will be
established first (Section 4.3.3) in order to obtain β(N ). The ST,e f f performance for
multiaxial fatigue resistance data will be investigated accordingly (Section 4.3.3), in
comparison to Se,e f f and St . Particular attention will be paid to the consequences
of mode specific strength and mechanism for mixed mode-{I, III} fatigue and the
influence of non-proportionality. Since ST,e f f is an equivalent normal stress von
Mises type of parameter, the fitting of the multiaxial data in the mode-I uniaxial
data scatter band will be verified, as well as the fitting of VA data in the CA data
scatter band in order to establish the performance of the adopted linear damage
accumulation model for a ST,e f f based fatigue assessment.

UNIAXIAL REFERENCE FATIGUE DATA

The ST,e f f based mode-I mid-cycle fatigue resistance formulation for planar
structures in steel (maritime) structures, involving hot spots type {A, B, C} and
various AW joint geometries, has already been established for CA data [126]
and shows excellent performance as reflected in the life time standard deviation:
σN = 0.21. The intercept and slope as strength and mechanism parameters are:
log(C I ) ∼ 13.05 and slope mI ∼ 3.15. Note that the slope is close to the typical
design value m = 3 [33, 34]. Response ratio coefficient γI ,AW ∼ 0.89 for the full RI

range implies a predominant contribution of stress range over mean stress. For an
average most likely initial crack size (ai /tp ) = 0.006 and final crack size (a f /tp ) = 1
– representing a through-thickness crack (Section 4.2) – and real notch radius ρ = 0
(Fig. 4.7), a most likely nI ,AW ∼ 3.48 has been obtained, reflecting notch and/or crack
tip elastoplasticity induced non-monotonic crack growth behaviour (Fig. 4.7). Both
γI ,AW and nI ,AW are welding induced high-tensile residual stress affected. Since
the data size of the considered (predominant) tubular and (some) planar mode-I
data (Fig. 3.7 and Tables 3.1 and 3.2) is ∼ 140, relatively small in comparison to
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Table 4.1.: Total stress based parameter estimates and 75[%] lower and upper
parameter confidence bounds for mode-I and mode-III.

parameter mode-I mode-III
ρ = 0 ρ > 0

log(C ) 13.05 [12.97, 13.13] 17.77 [17.11, 18.43] 16.46 [15.90, 17.02]
m 3.15 [3.11, 3.18] 4.82 [4.46, 5.18] 5.02 [4.67, 5.37]
n / / 9.00 [4.17, 13.83] 3.12 [1.14, 5.09]
nAW 3.48 [3.28, 3.68] / / / /
nSR 0.09 [0.01 0.17] / / / /
γ / / 1.00 [0.98, 1.00] 1.00 [0.98, 1.00]
γAW 0.89 [0.88, 0.91] / / / /
γSR 0.95 [0.93, 0.98] / / / /
Sr -113 [-115, -110] / / / /
σN 0.30 [0.26, 0.33] 0.25 [0.22, 0.28] 0.21 [0.18, 0.24]
σN incl.[126] 0.22 [0.19, 0.24] / / / /

the ∼ 2500 assessed before [126], enforcing log(C I ) ∼ 13.05, mI ∼ 3.15, γI ,AW ∼ 0.89
and nI ,AW ∼ 3.48 seems straightforward from parameter confidence perspective. A
previous fatigue resistance investigation based on the effective notch stress Se [130];
an intact geometry fatigue strength parameter, revealed that distinguished material
dependent strength and mechanism contributions for AW and SR thermal conditions
are required, suggesting dedicated {γI ,SR ,nI ,SR } estimates should be assigned. At
the same time, an explicit residual stress measure Sr is introduced for the SR
data since AW and SR data are jointly considered, meaning the response ratio RI r

rather than RI should be adopted (Section 4.3.1). The parameter vector becomes:
Φ= {Sr,I ,γI ,SR ,nI ,SR ,σN ,I }. Regression analysis shows the AW and SR data (Fig. 3.7
and Tables 3.1 and 3.2) turns out to fit in the reference AW data scatter band
(Fig. 4.9), suggesting strength and mechanism contributions are sufficiently covered.
The most likely residual stress estimate Sr (Fig. 4.9 and Table 4.1) proved to be
compressive (Section 4.3.1), confirming the (average) residual stress for the AW data
is highly tensile indeed. Note Sr,I is a total stress rather than a structural stress value
(Section 4.3.1), meaning a one-to-one comparison to the Se based Sr,I value [130]
is not possible. Surprisingly, the residual mean stress coefficient γI ,SR has become
about equal to the AW value γI ,AW – although for the Se based fatigue resistance
assessment the same behaviour is observed, meaning the stress range contribution
dominates anyway. The nI ,SR ∼ 0.09 estimate (Fig. 4.9 and Table 4.1) turns out to be
smaller than the AW value as expected and reflects soft monotonically increasing
crack growth behaviour (Fig. 4.7) – close to log-log-linear behaviour in the Paris
defined long-crack growth region and correlates to a predominant elastic notch
and/or crack tip response as a consequence of eliminated residual (mean) stress. At
the same time, a stress-relieving heat treatment decreases the hardness and supports
ductile material behaviour, improving the elastic material capacity. However, since
the amount of SR data is just ∼ 3 [%] of the total size, data balance is lost, meaning
nI ,SR is likely compromised up to some extent in order to enforce an AW data fit.
The life time scatter of the considered data (Fig. 3.7 and Tables 3.1 and 3.2) in
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terms of σN ,I is somewhat large and seems at least partially a matter of data size as
reflected in the parameter confidence (Table 4.1). The corresponding strength scatter
band index TσST = 1 : 1.77 and turns out to be larger than a typical value of 1 : 1.50
[20]. In comparison to Se [130], the ST performance is slightly worse.

At first glance, the VA data fits the CA data scatter band for D = 1, supporting
the hypothesis that advanced fatigue damage criteria – including the mean stress as
an important sequence parameter in terms of R and γ – contributes to the (linear)
damage accumulation model performance.

The mode-III mid-cycle fatigue resistance for (predominantly) tubular steel
(maritime) structures principally involves hot spots type C and a DS welded T-joint
geometry only (Fig. 3.7 and Tables 3.1 and 3.2). The data size is ∼ 50. Since the
(as) weld(ed) toe notch radius is a stochastic variable along the weld seam and
quite small [82], ρ = 0 is typically adopted. However, Se based investigations [130]
suggest that the actual ρ value is important, explaining why regression analysis will
be performed for the the ρ > 0 case. For reference purposes, ρ = 0 results will be
provided as well. Since notch radius information is often not available (Tables 3.1
and 3.2), ρ ∼ 1.3 [mm] has been selected as most likely – average – estimate for the
data sets with unknown ρ, following previous investigations [29]. Mean stress effects
are hardly observed [130], implying differences in fatigue resistance for AW and SR
test data is not expected and the parameter vector Φ= {log(C I I I ),mI I I ,nI I I ,σN ,I I I } is
considered to be sufficient.

The obtained most likely intercept and slope, log(C I I I ) ∼ 16.46 and mI I I ∼ 5.02, are
different from the mode-I values (Fig. 4.9 and Table 4.1), proving different strength
and mechanism contributions. Note mI I I is similar for the ρ = 0 and ρ > 0 case
and close to a typical design value of 5 [33, 34]. Elastoplasticity coefficient nI I I for
ρ = 0 is relatively large – even unrealistic – in comparison to the ρ > 0 value since
notch elastoplasticity increases for decreasing ρ. An interesting observation is that
nI I I ∼ 3.12 for ρ > 0; close to the mode-I value for ρ = 0, although the parameter
confidence interval is relatively large (Table 4.1). The parameter confidence bounds
suggest that crack growth behaviour can still range from monotonically increasing
to non-monotonic (Fig. 4.7). Most likely the limited variation in data properties as
well as the data size are the main reasons. Similar to the Se based assessment
[29], the life time scatter parameter values for ρ = 0 and ρ > 0 illustrate why the
actual notch radius (at the surface) should be included: σN ,I I I reduces from ∼ 0.25
to ∼ 0.21, supporting the hypothesis that the mode-III fatigue damage process might
even be more a near-surface phenomenon than for mode-I. Considering the type
of loading and geometry reveals a volume (i.e. weld seam length) effect and could
partially explain why σN ,I I I turns out to be relatively small in comparison to σN ,I

[130]. For the mode-I data on the one hand, most specimens are subjected to a
bending moment Mb and have a tubular, circular hollow cross-section (Fig. 3.7). The
governing hot spot and most likely fatigue failure position is observed at one location
along the weld seam, principally independent of the fabrication aspects induced
weakest link; a matter of production tolerances and welding induced defects. On
the other hand, for the mode-III data a torsion moment Mt is typically applied
and for tubular, circular hollow cross-sections all locations along the weld seam are
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identified as hot spot. Fatigue failure develops at the position of the fabrication
defined weakest link, like the location of the welding induced extreme defect. The
mode-III fatigue strength scatter band index TσST = 1 : 1.28 is smaller than a typical
value of 1 : 1.50 [20].

[126]
Tab.3.1
Tab.3.1
Tab.3.1

(a) (b)

(c) (d)

Figure 4.9.: Uniaxial reference fatigue resistance. Mode-I data total stress based
fatigue resistance, including mean and residual stress correction with
dedicated nI ,AW and nI ,SR (a); Mode-III data total stress based fatigue
resistance; ρ = 0 (b) and ρ > 0 (c). Uniaxial mode-I and mode-III data
total stress based fatigue resistance (d). Note: cm =Cnp,i = 0.

Like for the uniaxial mode-I assessment, the linear damage accumulation up to
D = 1 shows VA data fitting the CA data scatter band. A comparison of mode-I and
-III data and mean (i.e. 50 [%] reliability) ST,e f f −N curves clearly shows differences
in both strength and mechanism (Fig. 4.9), i.e. in {log(C ),γ} and {m,n}, implying
a lifetime dependent shear strength coefficient β(N ) rather than a constant one is
required for multiaxial fatigue assessment (Section 4.3.1).
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MULTIAXIAL FATIGUE RESISTANCE

Involving the multiaxial fatigue data (Fig. 3.7 and Tables 3.1 and 3.2), the
normal stress equivalent von Mises type of failure criterion is adopted (Eq. 4.18):

ST =
√

[ST,I (γI ,nI )2 +ST,I I I (γI I I ,nI I I )2]. Note that for the SS welded butt joints
the ST,I I I related Ct w estimate is obtained using the formulation as principally
established for double sided (DS) welded T-joints, assuming tc = 0 [29]. For CA mixed
mode-{I, III} data involving asynchronous behaviour and/or different frequencies, as
well as for VA multiaxial data, cycle counting in the von Mises plane is initially
adopted without any material characteristic non-proportionality effects: cm =Cnp = 0
(Eq. 4.19). In order to illustrate the importance of strength and mechanism
contributions, reflected in the β(N ) related {log(C ),m} and the mode and material
dependent ST,e f f parameters {γ,n}, regression analysis results for β =p

3 as well
as for nI = nI I I are provided for reference purposes (Fig. 4.10 a and b). The
parameter vectors have been Φ= {log(C ),Sr ,γI ,AW ,γI ,SR ,m,nI ,AW ,nI ,SR ,nI I I ,σN } and
Φ= {log(C ),Sr ,γ,m,n,σN } respectively.

The different strength and mechanism for the uniaxial mode-I and mode-III as
well as the multiaxial mode-{I, III} P and NP data can clearly be observed in the
separate data scatter bands for β =p

3, reflected in the imaginary intercept and
slope for each data group (Fig. 4.10a). The lifetime scatter parameter σN ∼ 0.42 and
corresponding strength index TσST = 1 : 2.72 illustrate in comparison to the uniaxial
values: σN ,I ∼ 0.30, σN ,I I I ∼ 0.21, TσST ,I = 1 : 1.75 and TσST ,I I I = 1 : 1.28 (Section 4.3.3)
a much worse fit. Eliminating in addition the ST,e f f related mode and material
sensitive strength and mechanism contributions changes the imaginary intercept and
slope for each data group (Fig. 4.10b), although the overall performance basically did
not improve: σN ∼ 0.42 and TσST = 1 : 2.52.

However, the scatter of the individual data groups did change. For the uniaxial
mode-I and multiaxial mode-{I, III} P data in particular a significant increase and
decrease are respectively observed, suggesting the equivalent shear strength and total
stress based strength and mechanism contributions are important. The different
consequences for uniaxial and multiaxial response conditions even indicate that
mode-coupling; an interaction effect, might be involved indeed (Chapter 1). Overall,
the uniaxial mode-I and mode-III as well as the multiaxial mode-{I, III} P data shows
a reasonable fit, but the multiaxial mode-{I, III} NP data remains out of range up to
a large extent (Fig. 4.10a and 4.10b), illustrating at the same time the consequences
of data imbalance (Section 4.3.2). Without affecting the global performance lifetime
and strength parameters σN and TσST , the relative position of data groups can
change significantly and may cause wrong conclusions regarding the importance of
strength and mechanism contributions as observed before [55, 79, 80].

Adopting the mode specific and material characteristic strength and mechanism
contributions; {log(C ),m} in terms of β(N ) – for an iteratively obtained N value
(Section 4.3.1) – and {γ,n}, improves the model performance just up to some
extend (Fig. 4.10c). The lifetime scatter and strength scatter band index reduced
a bit: σN ∼ 0.39 and TσST = 1 : 2.09, but are still relatively large in comparison to
the uniaxial mode-I data values (Section 4.3.3). At the same time, the multiaxial
P and NP data groups still show room for improvement. One reason seems that
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(a) (b)

(c) (d)

Figure 4.10.: Total stress based fatigue resistance for uniaxial and multiaxial
data adopting: β = p

3 and {nI,γI} ̸= {nIII,γIII} (a); β = p
3 and

{nI,γI} = {nIII,γIII} (b); β= f (N ) and nI ̸= nIII for 3 n approach (c) and 6
n approach (d). Note: cm =Cnp,i = 0.

β(N ) is not very effective in aligning the scatter bands of the different data groups.
For the mid-cycle fatigue range β(N ) is varying from ∼ 1.2 to ∼ 1.4 and the mean
value is ∼ 1.8; quite close to β=p

3 like used for the reference results (Fig. 4.10a).
A similar observation has been made before [79], but seems no argument for a
general conclusion since β(N ) is varying from ∼ 0.5 to ∼ 1.1 for Se as fatigue strength
parameter [130] and performance parameters similar to the mode-I data values are
already obtained, whereas for ST,e f f a next step is required.

Observing one more time the change in data scatter bands for the ref-
erence results from different to similar elastoplasticity coefficients (Fig. 4.10a
and 4.10b), dedicated ones {nI ,AW,M ,nI ,SR,M ,nI I I ,M } will be introduced for
the mode-{I, III} multiaxial response conditions, reflecting a mechanism in-
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teraction effect. For regression analysis, the parameter vector becomes:
Φ = {γI ,AW ,γI ,SR ,γI I I ,nI ,AW ,nI ,SR ,nI I I ,nI ,AW,M ,nI ,SR,M ,nI I I ,M ,σN }. Although – in
addition to the previously investigated uniaxial mode-I two-stage crack growth
characteristics (Section 4.3.1) – uniaxial mode-III and mixed mode-{I, III} crack
growth testing (e.g. using CT specimens) is required to obtain the short crack growth
related elastoplasticity coefficients n in order to prove interaction effects, still, most
likely n estimates for welded joint fatigue test data are required for verification
purposes. Applying one-to-one crack growth based n estimates for welded joint
fatigue life time estimates would imply similarity, and proof should be provided. A
reversed engineering approach is adopted and most likely n estimates for multiaxial
fatigue test data are obtained first in order to reveal the consequences of ignoring
interaction effects. Mode-I and mixed mode-{I, III} crack growth tests will be
the next step. In case long crack growth mode-{I, III} interaction effects should
be incorporated as well, the SIF has to be reformulated including coupling terms
(Section 4.3.1).

The most likely multiaxial n estimates are quite different from the uniaxial
counterparts and an interpretation of the values seems not straightforward, keeping
in mind that the different data groups are not in balance (Section 4.3.2) and
{nI ,AW,M ,nI ,SR,M ,nI I I ,M } may serve at the same time the purpose of model deficiency
correction factor. For mode-I the crack growth behaviour would change from non-
monotonic to monotonically increasing and the other way around for respectively
the AW and SR data; {nI ,AW = 3.48,nI ,AW,M = 0.07} and {nI ,SR = 0.09,nI ,SR,M = 3.25}.
Multiaxial response conditions would increase the level of elastoplasticity; for
mode-III nI I I ,M > nI I I . The parameters confidence does not look unrealistic
(Table 4.2) and even similar to the uniaxial ones (Table 4.1). A major achievement
is that the life time scatter and strength scatter band index significantly reduced
to σN ∼ 0.30 and TσST = 1 : 1.76, supporting the hypothesis of involved interaction
effects.

Table 4.2.: Total stress and Effective notch stress based {n,ρ∗} parameter estimates
for multiaxial response conditions, including 75[%] parameter confidence
bounds.

parameter estimate 75[%] confidence

ST

nI ,AW,M 0.07 [0.03, 0.19]
nI ,SR,M 3.25 [3.01, 3.59]
nI I I ,M 7.11 [5.07, 9.27]

– – – – – – – – – – – – – – – – – – – – – – – – – –

Se

ρ∗I ,AW,M 1.02 [0.17, 2.29]

ρ∗I ,SR,M 3.95 [2.77, 5.10]

ρ∗I I I ,M 0.09 [0.01, 1.27]

So far, the most likely initial and final crack size values as obtained for the
mode-I fatigue resistance of AW joints in planar steel structures are adopted:
respectively (ai /tp ) ∼ 6 ·10−3 as characteristic defect size and (a f /tp ) = 1 reflecting
a through-thickness crack [14]. However, the majority of the considered fatigue
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resistance data is about welded joints in tubular steel structures (Section 4.3.2) and
welding procedures can be different, explaining why the most likely (ai /tp ) will be
verified with respect to σN . Since ρ∗ and a f for respectively Se,e f f and ST,e f f serve
the same purpose (Chapter 1), (a f /tp ) will be reconsidered as well. The most likely
defect size (ai /tp ) is still ∼ 6 ·10−3 (Fig. 4.11). For the considered fatigue resistance
data (Tables 3.1 and 3.2) tp is in between 3.2 and 12.5 [mm], meaning ai would
range from 0.02 to 0.08 [mm], in agreement with typical defect size measurement
results [170–172]. Varying (a f /tp ) for (ai /tp ) ∼ 6 ·10−3, (a f /tp ) = 1 still provides the
best result, suggesting the stress (intensity) gradient is important for any crack size
up to tp .
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Figure 4.11.: Most likely σN for a range of ai /tp |a f /tp=1 and a f /tp |ai /tp=0.006.

Adopting a 0th , 1st or 2nd order moment approach (Section 4.3.1), differences
between the actual response path and the (straight) range have been used
to incorporate non-proportionality cycle-by-cycle in terms of Cnp (Eq. 4.20),
including a material characteristic contribution cm (Eq. 4.19). The cm −σN

sensitivity has been investigated for the Cnp defined 0th , 1st and 2nd order
moment approaches to evaluate the model performance, using the most
likely {log(C ),Sr,I ,γI ,AW ,γI ,SR ,m,nI ,AW ,nI ,AW,M ,nI ,SR ,nI ,SR,M ,nI I I ,nI I I ,M } estimates
(Fig. 4.10c and 4.10d, Tables 4.1 and 4.2) , (ai /tp ) ∼ 6·10−3 and (a f /tp ) = 1. Since data
is unbalanced, i.e. the multiaxial NP data size is relatively small, the performance
for the multiaxial NP data only as well as for all data has been considered. An
optimum cm exists for all approaches and the 1st order one provides the best
result (Fig. 4.12), like for Se,e f f [130]. Comparing the total stress and effective
notch stress plots, obviously the ST,e f f based optimum cm ∼ 0.40 is different from
the Se,e f f related one: cm ∼ 0.65, because the fatigue strength parameter is not
the same. In contrast to Se,e f f , the ST,e f f optimum for the multiaxial NP data
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only and all data is not aligned, neither for the 1st order approach nor another
one, basically confirming that – like {nI ,AW,M ,nI ,SR,M ,nI I I ,M } – cm corrects in
addition for any cycle counting and/or non-proportionality related model deficiency.
However, cm = 1, suggesting non-proportionality is material invariant, would provide
a deficient formulation. Different from Se,e f f considering the uniaxial mode and
material specific characteristic lengths only (i.e. involving 3 ρ∗ parameters), the
ST,e f f performance for the multiaxial NP data only is even better than for all
data, suggesting the distinct elastoplasticity coefficients for multiaxial mode-{I, III}
response conditions (i.e. 6 n parameters in total) improves the model performance
indeed.
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Figure 4.12.: Most likely σN for a range of cm . Path dependent non-proportionality:
0th moment (a), 1st moment (b) and 2nd moment (c) for the ST,e f f

related 6 n approach and the Se,e f f related 6 ρ∗ approach.

Assessing all data (Fig. 3.7 and Tables 3.1 and 3.2) using the most likely mode
and material specific strength contributions, {log(C ),m} and {γ,n} respectively
represented in β(N ) and ST,e f f , as well as the 1st order approach to obtain Cnp cycle
by cycle for cm ∼ 0.40 in case of non-proportionality, an even better performance is
obtained. The lifetime scatter has reduced to σN ∼ 0.27 and the strength scatter band
to TσST = 1 : 1.66 (Fig. 4.13). Principally all data fits the mode-I reference data scatter
band, i.e. the interval in between 5 and 95 [%] reliability for 75 [%] confidence.
Note that an increased data size: currently ∼ 500 for the assessed data (Fig. 3.7 and
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Tables 3.1 and 3.2) and ∼ 2500 for the mode-I reference data, can contribute to
another σN reduction.

[126]

(a) (b)

Figure 4.13.: Total stress based fatigue resistance (a) and lifetime ratio plot (b) for
uniaxial and multiaxial data; nI ̸= nIII, β(N ), 1st order path dependent
non-proportionality with cm = 0.40.

The scatter of the uniaxial mode-I and multiaxial mode-{I, III} P data is about
the same and relatively large in comparison to the one of the uniaxial mode-III
and multiaxial mode-{I, III} NP data. Although the ST,e f f performance is just
not equal to that of Se,e f f with σN ∼ 0.26 and TσST = 1 : 1.65 [130], the multiaxial
mode-{I, III} P data shows a reduced number of outliers and seems a result of
the introduced elastoplasticity coefficients {nI ,AW,M ,nI ,SR,M ,nI I I ,M } for the multiaxial
response conditions.

Similarly introducing {ρ∗
I ,AW,M ,ρ∗

I ,SR,M ,ρ∗
I I I ,M } to incorporate a mechanism

interaction effect provides a 6 parameter formulation for Se,e f f as well, but
hardly improves the performance (Fig. 4.14a). Whereas {nI ,AW,M ,nI ,SR,M ,nI I I ,M } and
{nI ,AW ,nI ,SR ,nI I I } for ST,e f f are quite different, the multiaxial {ρ∗

I ,AW,M ,ρ∗
I ,SR,M ,ρ∗

I I I ,M }
estimates are approximately equal to the uniaxial counter parts {ρ∗

I ,AW ,ρ∗
I ,SR ,ρ∗

I I I },
implying cm ∼ 0.65 hardly changes either (Fig. 4.12). A part of the explanation of
ρ∗ being less sensitive to mechanism interaction, mode-{I, III} coupling, might be
that ρ∗ seems to be a more implicit measure; an averaged parameter reflecting
a (mixed) mode and material characteristic length in which the majority of the
life time has been spent. The (mixed) mode affected elastoplasticity parameter
n changes the crack growth behaviour directly (Fig. 4.7), suggesting n is a more
explicit mechanism measure able to provide a better representation of the multiaxial
response conditions.

Using St (Eq. 4.22), the improved IN ,I I I ′ (rτs )1/mI I I formulation reduces the life
time scatter σN from 0.36 to 0.32 (Fig. 4.14 b) and scatter band index TσSt

from 1 : 1.63 to 1 : 1.54. In comparison to ST,e f f and Se,e f f , the St performance
is a result of the adopted modelling steps with respect to the stress (intensity)
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distribution (Section 4.2), the crack growth behaviour and the traction equivalent
stress formulation (Section 4.3.1). The performance of the related St based on
predominant mode-I crack growth behaviour (Section 4.3.1), currently σN = 0.36
and TσSt = 1 : 2.03 [55], cannot be improved accordingly, since the mode-III stress
intensity formulation is not involved. Note that only a selection of the resistance
data (Section 4.3.2) is included, i.e. the same ∼ 180 SR data points as used before
[128, 136]. The constant shear strength coefficient β= 3 explains the average slope
value m ∼ 4 in between mI ∼ 3 and mI I I ∼ 5, meaning for uniaxial and multiaxial
fatigue assessment different resistance curves are used. Since the scatter band index
TσS is slope dependent [130], m ∼ 4 explains at the same time the smaller value for
St and the larger ones for the mode-I equivalent ST,e f f and Se,e f f .

[126]

(a) (b)

Figure 4.14.: Effective notch stress based fatigue resistance for uniaxial and multiaxial
data and ρ∗

I ̸= ρ∗
III, β(N ), 1st order path dependent non-proportionality

with cm = 0.65 (a) and traction equivalent structural stress based fatigue
resistance (b).

Overall, the cracked geometry parameter ST,e f f and intact geometry parameter
Se,e f f are able to achieve a similar performance. Looking in particular at the
multiaxial P data scatter, an improved multiaxial fatigue strength parameter ST,e f f

seems still possible, although mode-I formulation advances seems to be a first step
since the uniaxial mode-I data scatter is in control (Fig. 4.9 a). However, ST,e f f is
computationally more expensive because of the IN (a/tp ) calculation (Section 4.3.1),
whereas Se,e f f can be straightforward obtained using an explicit formulation [16, 18,
29, 130].

The VA data fits the CA data scatter band for D = 1 (Fig. 4.15), supporting the
hypothesis that an advanced fatigue failure criterion like ST,e f f contributes to an
improved (linear) damage accumulation model performance [130].
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[126]

Figure 4.15.: Total stress based fatigue resistance for uniaxial and multiaxial, constant
and variable amplitude, as-welded and stress-relieved data.

4.4. CONCLUSIONS AND OUTLOOK
Adopting the total stress ST as SIF based fatigue strength parameter to assess
arc-welded joints, dedicated mode-{I, III} far field factor formulations {Y f ,I ,Y f ,I I I }
have been established for tubular structures, principally holding for planar ones as
an extreme case (Rt →∞). Good agreement with FE solutions have been obtained.

Uniaxial mode-I and mode-III MCF resistance investigations revealed distinguished
material dependent strength and mechanism contributions in terms of {log(C ),γ}
and {m,n}, i.e. respectively the resistance curve intercept and mean stress
induced response ratio coefficient, resistance curve slope and notch and crack
tip elastoplasticity coefficient. For mode-III, the most likely n implicitly suggests
(welding residual stress induced) non-monotonic crack growth behaviour, like for
mode-I, although the parameter confidence bounds reflects quite some uncertainty
and monotonically increasing behaviour could be involved as well. Explicit proof is
not available and dedicated mode-III crack growth testing at notches – in particular
at different mean stress levels – is recommended.

A von Mises type of failure criterion at the critical fracture plane has been adopted,
and a lifetime dependent shear strength coefficient β(N ) has been introduced to
cover the mode specific and material characteristic {log(C ),m}, whereas ST explicitly
contains {γ,n}. To improve the ST performance, except 3 uniaxial n parameters,
3 multiaxial ones are introduced, reflecting mixed mode-{I, III} behaviour; an
interaction mechanism. Although the most likely multiaxial n estimates are not
straightforward to interpret, the significantly reduced data scatter suggests an
interaction effect should be taken into account (research sub-question 2). Long crack
growth mode-{I, III} interaction effects could be incorporated as well and requires
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a SIF reformulation containing coupling terms. However, the short crack growth
contribution seems more important, as reflected in the current ST performance,
because the fatigue life time is predominantly spent in the notch affected region.
Mixed mode-{I, III} crack growth testing is required to investigate the two-stage crack
growth behaviour and corresponding n values, as well as to address crack growth
and fatigue resistance similarity. Embedded in the critical distance theory, the
elastoplasticity coefficients are principally response level dependent. Although for
MCF resistance data only the obtained average estimates already provide a constant
scatter over the full range, this may change when HCF resistance data will be
considered as well. Incorporating a cycle-by-cycle non-proportionality measure with
a response path and material contribution, a 1st order response approach shows the
best result. The VA data fits the CA data scatter band for D = 1.

In comparison to Se , the ST performance is similar (research sub-question 1).
The multiaxial P data scatter turns out to be smaller; a consequence of the
multiaxial n parameters. Introducing multiaxial ρ∗ values for Se , however, hardly
improves the performance, revealing an insensitivity. Whereas n seems to be a more
explicit measure directly affecting the crack growth behaviour, ρ∗ seems a more
implicit measure reflecting the material characteristic length for (mixed) mode and
(multiaxial) response conditions. In this respect, ST can be considered one step
closer to the actual physics of the fatigue damage process. In fact, ST contains
with n one more parameter to characterise multiaxiality, since ρ∗ for Se principally
serves the same purpose as a f for ST . Life time scatter investigations showed that
a f → tp rather than a f → ρ∗ should be used in order to maximise the incorporated
stress (intensity) gradient effects and minimise the resistance data scatter. For Se , a
different way to incorporate mixed mode-{I, III} behaviour has to be provided [130].

In order to continue the improvement of the multiaxial fatigue strength parameters
ST or Se , the mode-I formulation should be re-investigated since the predominantly
tubular joint defined uniaxial mode-I data scatter is in control, significantly exceeding
the planar joint σN value. However, the assessed uniaxial and multiaxial mode-{I,
III} data fits the uniaxial mode-I reference data scatter band and a single ST −N
resistance curve can be used for fatigue assessment in engineering applications
(research sub-question 5).

Aiming to incorporate the mode specific characteristics for the traction equivalent
stress St , the notch to far field transition size should be different for mode-I and
mode-III. Fitting the bi-linearised stress distribution approximations suggests 0.1tp

to be a good one for mode-III; a smaller notch affected region seems to provide a
better fit for mode-I. However, the stress intensity MknY f ,I I I requires the opposite
in order to obtain a good fit with FE results, suggesting the maximum possible is
to incorporate the proposed Y f ,I I I formulation. Improved St performance has been
obtained accordingly.



5
MULTIAXIAL FATIGUE TESTING OF

HIGH-QUALITY WELDS USING A

HEXAPOD

The laws of science do not distinguish between past and future (fatigue test results).

Stephen Hawking, physicist

5.1. INTRODUCTION
In order to validate the performance of multiaxial fatigue strength parameters, test
data is required. However, to introduce multiaxial structural response conditions
into specimens – either loading, geometry and/or even material induced (Chapter 2)
– can be challenging and may explain the limited availability of multiaxial fatigue
data for welded joints [74, 78, 110, 173]. For geometry [121, 123–125] or material
[174] induced multiaxiality, uniaxial test rigs can still be used. In case of ultrasonic
capabilities, testing is not limited to the mid-cycle fatigue range and even high-cycle
fatigue data can be obtained [175, 176]. Non-proportionality, though, cannot
be investigated – at least for metals like steel – and requires loading induced
multiaxiality; i.e. multiple actuators [177] controlling different degrees of freedom
(DoF’s).

Biaxial test rigs, involving either two translational DoF’s or a combination of one
translational and one rotational DoF, are nowadays standardised equipment, allowing
respectively for mixed mode-{I, II} and mixed mode-{I, III} testing [e.g. 178–180]. For

This chapter is based on the journal article:
G. Bufalari, N.C.H. Troost, J.H. den Besten and M.L. Kaminski. Mode-{I, III} multiaxial fatigue testing
of high-performance welds in steel maritime structures using a hexapod. Submitted to: International
Journal of Fatigue
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DoF’s up to six, available test rigs are typically custom built for a particular purpose
[e.g. 181–183].

Aiming for a wide application range and freedom with respect to specimen size
and material strength, a high loading capacity six DoF multiaxial fatigue test rig,
a hexapod (i.e. a Steward platform), has been developed. Whereas the typically
available configurations with six linear actuators provide a combination of large
motions and relatively small forces [e.g. 184, 185], this one offers unparalleled
performance in terms of loading combinations, accuracy, and system stability,
allowing to investigate multiaxial fatigue of maritime structures [e.g. 2, 3, 186].

Available fatigue test data from literature, i.e. fatigue life time information N for a
particular fatigue strength S, can be used to obtain average quality based parameter
coefficient estimates in order to establish one S −N relation for general engineering
applications. Depending on the specimen quality – reflected in strength, geometry
and material aspects; respectively welding induced residual stress, weld dimensions,
as well as material microstructure composition and hardness distribution [e.g.
187–190], a particular data set may be on the scatter band lower or upper bound.
For high-performance welds, the average quality based S −N relation may provide
overconservative fatigue strength and life time estimates. A dedicated one with
representative parameter coefficient estimates might be a better option, reflecting
the actual quality.

In order to assess the multiaxial mid-cycle fatigue resistance of high-performance
welds for maritime applications, test results obtained using the TU Delft hexapod
will be evaluated. Test rig properties as well as specimens information will be
provided first (Section 5.2). Fitting in the average quality data scatter band will be
investigated for both the effective notch stress Se (Chapter 3) and total stress ST

(Chapter 4), including a parameter confidence bound analysis (Section 5.3) in order
to evaluate if quality dependent {Se −N , ST −N } relations would be preferred, rather
than one for all data.

The conclusions and outlook (Section 5.4) provide answers to research sub-
questions 3 and 6 (Section 1.3).

5.2. MULTIAXIAL FATIGUE TESTS
Since the TU Delft hexapod is quite different from existing ones, design requirements
and capabilities will be revealed first (Section 5.2.1). The specimens were developed
for mixed mode-{I, III} fatigue investigations and will be discussed with respect
to geometry aspects, material properties, welding procedure and parameters, as
well as metallurgical analysis results including macro and micro observations and
hardness measurement data in order to verify the high-performance at materials level
(Section 5.2.2). Last but not least, the mid-cycle fatigue test results will be provided,
including (mixed) mode-specific fracture surface characteristics (Section 5.2.3).

5.2.1. HEXAPOD DESCRIPTION

Parallel manipulators offer a high loading capacity, excellent dynamic response
characteristics and accurate positioning capabilities [191]. Using 6 linear actuators



5.2. MULTIAXIAL FATIGUE TESTS

5

113

in pairs; i.e. in parallel, attached to a base and crossing over to a platform
at 3 equidistant positions, introduces a hexapod (Fig. 5.1), able to apply
(coupled, multiaxial) motions and loads in 6 DoF: 3 translations/forces and 3
rotations/moments, varying over time. All 12 connections are principally universal
joints. Depending on the operation requirements the actuators are either electric or
hydraulic controlled, based on inverse kinematics equations.

1
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2 PPPPPPPq•4
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Figure 5.1.: TU Delft Hexapod. 1 = platform; 2 = actuator; 3 = pedestal with 6-DoF
load cell; 4 = specimen grips.

Hexapods used for simulation purposes of ship, car or airplane dynamics typically
involve relatively large motions and smaller loads. However, mechanical testing
comes along with relatively large loads and smaller motions, meaning the system
requirements will be completely different. For ultimate and fatigue limit state as
well as structural dynamics testing at Delft University of Technology, a custom-built
hydraulically controlled hexapod has been developed [32]; one of the largest ever
built (Table 5.1).

Table 5.1.: TU Delft hexapod dimensions and weight.

item value

diameter platform 2550 [mm]
diameter cylinder lower attachment 4070 [mm]
total height (neutral position) 3000 [mm]
pedestal - platform distance (neutral position) 1200 [mm]
pedestal - platform distance (max.) 1700 [mm]
cylinder length (neutral position) 2080 [mm]
cylinder stroke ± 300 [mm]
approximate platform weight 13 [tonnes]
approximate total weight 60 [tonnes]

In order to be able to apply relative large loads (Table 5.2), i.e. forces up to 1
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Table 5.2.: TU Delft hexapod maximum load capacity.

description capacity

shear force ±400 [kN]
shear displacement ±300 [mm]
axial force ±1000 [kN]
axial displacement ±450 [mm]
bending moment ±400 [kNm]
bending rotation ±11 [deg]
torsion moment ±1000 [kNm]
torsion rotation ±20 [deg]
test frequency 0 - 30 [Hz]

[MN] and moments up to 1 [MNm], the system is operated using hydraulics with
a max. oil flow capacity of 1500 [L/min] at 280 [bar]. Cyclic loading conditions
up to 30 [Hz] can be both constant and variable (i.e. random). All DoF’s can
be individually controlled with respect to amplitude, frequency and phase. For
measurement purposes, an advanced load cell in hexapod configuration has been
developed, rather than a box type one. The 6 legs with predominant axial stiffness
contain each an uniaxial load cell and the output is used to reconstruct the 6 DoF
loads: 3 forces and 3 moments. The load cell deck is the pedestal the specimens can
be mounted on. To fix the specimens, custom grips at the pedestal and/or platform
are required.

For specimens in between the pedestal and platform, the maximum volume is
about 1 [m3], allowing for larger sizes than typically fit in biaxial test rigs. Long
slender specimens like pipe sections can be put through the platform and even
through the pedestal, provided dedicated grips are used to enable mounting. Last
but not least, specimens can be mounted on top of the platform, providing the
possibility to investigate structural dynamics experimentally, like sloshing in LNG
tanks or earth quake vibrations of buildings.

5.2.2. SPECIMEN DETAILS

To investigate mode-{I, III} multiaxial fatigue of arc-welded DS T-joints, a tubular
geometry rather than a planar one has been adopted (Fig. 5.2) to ensure the hot
spot type C along the weld seam is governing. The selected base- and cross-plate
thickness of 10 [mm] is representative for maritime structures. Flanges have been
introduced to support bolt connections for specimen mounting purposes. In order
to avoid a fatigue critical flange-tube transition, the curvature is semi-elliptical.

Aiming for fixed boundary conditions, the specimens are fastened at each flange
using 16 M20 double end threaded studs and super nuts with jack bolts for accurate
pre-load control – up to 90 [%] of the yield strength – without hydraulic tensioner.
The stud normal strength and shear strength accommodate respectively the mode-I
and mode-III specimen loading components. A diamond coated friction shim has
been put in between the specimen flanges and the grips in order to prevent for
mode-III torsion induced slip.
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Figure 5.2.: Specimen geometry dimensions in [mm] (a) and weld detail (b).

To make sure fatigue cracks will develop at the weld toe rather than the weld root,
each specimen – consisting of a tube, two flanges and a circumferential attachment
(Fig. 5.2) – is machined in one piece from a round bar of a commonly used alloy
in steel maritime structures: S355J2G3+N (Table 5.3). For reference purposes, the
composition and properties of a similar type of alloy; EH36, are provided as well. The
yield strength for S355 is smaller than the tabular value and is likely a consequence
of the bar manufacturing process, since the sample is taken from the representative
pipe diameter location; i.e. away from the surface of the original round bar.

Table 5.3.: Chemical composition information and mechanical properties of
S355J2G3+N and EH36, obtained using X-ray diffraction, combus-
tion analysis and a tensile test.

material C Si Mn P Cr Mo Ni Al Cu
[%] [%] [%] [%] [%] [%] [%] [%] [%]

S355 0.17 0.33 1.43 0.016 0.06 0.03 0.17 0.05 0.09
EH36 0.12 0.42 1.39 0.011 0.03 - - - -

material yield strength tensile strength Young’s modulus
[MPa] [MPa] [GPa]

S355 340 506 206
EH36 406 548 206

A partially penetrated fillet weld has been added at each side of the attachment
to obtain the DS welded T-joint, with the weld starts ∼ 180 [deg] away one
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from the other to make sure the two start and stop positions are not aligned.
Although no thermal analysis has been performed, this precautionary measure
is expected to prevent for concentration of thermal effects on a single side of
each specimen. Welding a separate attachment to a tube would impose a full
penetration requirement, meaning a significantly increased heat input, welding
induced deformations as well as residual stresses and has been prevented for. The
welds are fabricated using a robot, involving a turning manipulator and a fixed
welding torch (Fig. 5.3).

Figure 5.3.: Specimen welding using a robot with a turning manipulator and a fixed
torch.

The welding procedure has been certified according to offshore quality standards
(EN 10204-2004) and the welds are inspected visually (standard: NEN-EN-ISO 17637,
acceptance criteria: NEN-EN-ISO 5817) as well as using magnetic particle inspection
(standard: NEN-EN-ISO 17638, acceptance criteria: NEN-EN-ISO 23278). A few
specimens have been thermally stress-relieved at 560 – 600 [◦C ] for a minimum of 2
hours to be able to get an impression of welding induced residual stress affecting
the fatigue performance in comparison to the as-welded specimen data.

Optical microscopy at macro and micro scale, as well as hardness measurement
data are compared for the hexapod specimen welds with respect to reference welds
to illustrate the high-performance properties. For both welds, two samples were
extracted from different specimens at different locations along the weld seam. The
samples were cold mounted in a two-part acrylic resin and a range of P180 to P4000
grit sandpaper as well as 3 to 1 [µm] diamond polishing suspensions were used to
prepare the metallurgical investigations. Nital 5% etchant was used for 5 [s] in order
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to reveal the microstructure.
Macro images were taken at 40x magnification using a microscope and stitched
together to an image containing the complete weld. For both the reference and
hexapod welds, the base metal (BM); respectively EH36 and S355J2G3+N, fusion
zone (FZ) and heat affected zone (HAZ) can be distinguished (Fig. 5.4). The weld
dimensions were measured; i.e. weld leg length lw , weld leg height hw and notch
radius ρ, using 10 samples (Table 5.4). The reference weld notch radius turned
out to be similar to previous observations [192–194] and the hexapod one seems
relatively large at a slightly deeper penetration level. The larger notch radius reduces
the stress concentration, whereas the penetration induced small undercut increases
the far field stress up to a minor extent.

(a) (b)

Figure 5.4.: Macro images for the reference (a) and hexapod (b) welds.

Table 5.4.: Measured weld dimensions.

weld dimensions lw hw ρ

µ σ µ σ µ σ

reference weld 4.88 0.49 5.20 0.23 1.27 0.43
hexapod weld 9.16 0.44 9.06 0.44 3.12 0.99

Vickers hardness measurements were conducted using a DuraScan Microhardness
Tester applying 2 [kgf]; HV2, rather than 5 [kgf]; HV5, or 10 [kgf]; HV10, in order
to obtain sufficient spatial resolution (Fig. 5.5). Although in general the material
zones of a perfect welded joint would have an homogeneous hardness distribution
of similar magnitude as the base metal, the actual distribution varies since the
arc-welding induced heat input and cooling down process changes the material
microstructure. Hardness distributions can be used to identify peak locations,
reflecting brittle – weak – spots and to provide information about fatigue influence
factors like residual stress [e.g. 188].

The BM hardness for both welds is similar as expected, in average respectively 159
HV2 and 170 HV2. Increased hardness is observed in the FZ. For the hexapod weld
222±4.0 HV2 left and 226±3.9 HV2 right (Fig. 5.5a), with a relatively low standard



5

118 5. MULTIAXIAL FATIGUE TESTING OF HIGH-QUALITY WELDS USING A HEXAPOD

deviation suggesting a homogenous material structure. However, the reference weld
hardness of 284±14 and 328±15 (Fig. 5.5b) is significantly higher and much more
scattered, implying a rather inhomogeneous one. The HAZ contains the highest
hardness for both the reference and hexapod weld, respectively 413 HV2 (Fig. 5.5a)
and 343 HV2 (Fig. 5.5b). Note that the reference weld value exceeds the allowed
maximum of 380 HV10 (NEN-EN-ISO 9015-1:2011), keeping in mind that a HV2
maximum would be higher.

(a) (b)

Figure 5.5.: Vickers hardness maps for the reference (a) and hexapod (b) welds.

The hexapod weld is more sensitive to the formation of hard brittle phases because
of the relatively large {C, Mn, Si} content [195] of both the filler wire (Table 5.5)
and the BM (Table 5.3). Since the same shielding gas (80%Ar +20%CO2) was used
for both welds as well, the weld dimensions and (welding parameter induced)
penetration level are the most reasonable explanation for the obtained hardness
maps. For a larger weld and deeper penetration level, more thermal energy needs to
dissipate into the surrounding material, suggesting a slower cooling rate and a more
gradual transition from one material zone to another (Figs. 5.4 and 5.5), typically
responsible for reduced residual stress levels as well as smaller welding induced
defects.

Table 5.5.: Chemical composition of filler materials.

filler composition C Mn Si
[%] [%] [%]

reference weld 0.06 1.20 0.40
hexapod weld 0.08 1.47 0.83

Optical microscopy observations at high magnification (Fig. 5.7) and hardness map
interpretations revealed that for the reference weld the BM consists of ferrite (α)
with a grain size of approximately 10 [µm] and pearlite (P) in a banded structure,
typical for rolled plates (Fig. 5.7a), whereas for the hexapod weld ferrite with a grain
size of approximately 20 [µm] and pearlite in a homogeneous structure is identified
(Fig. 5.7b). The larger BM hardness of the hexapod weld with respect to the reference
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one is a result of the increased carbon content (Table 5.3). Characterising the
refence weld FZ, predominantly acicular ferrite (AF) with proeutectoid ferrite (αpr o)
and islands of martensite (M) are observed (Fig. 5.7c), while for the hexapod weld
FZ acicular ferrite, allotriomorphic ferrite (αal lo), Widmanstätten ferrite (WF) and
limited formations of martensite (Fig. 5.7d) are identified. The peak hardness in the
HAZ of the reference weld shows mostly martensite with proeutectoid ferrite grains
(Fig. 5.7e) and the one of the hexapod weld consists of martensite, upper bainite
(UB), acicular ferrite, proeutectoid ferrite and Widmanstätten ferrite forming directly
from the prior austenite grain boundaries (Fig. 5.7f). The near-surface microstructure
at the notch of the reference weld (Fig. 5.7g) is very inhomogeneous as a result of
the sharp FZ to BM transition, whereas for the hexapod weld a more gradual change
in microstructure is observed as a consequence of the thermal history (Fig. 5.7h).
Although the near-surface hardness at the notch of the reference weld is relatively
large in comparison to the one of the hexapod (Fig. 5.5) – suggesting an increased
fatigue crack initiation performance [e.g. 196], crack growth is in charge because
of the welding induced defects and a one-to-one relation between hardness and
a growth dominated fatigue life time for welded joints does not exist. However,
hardness can still provide information about fatigue influence factors like residual
stress.
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5.2.3. TEST PROGRAM INFORMATION AND RESULTS

The 72 available specimens were used to generate uniaxial mode-I and mode-III as
well as mixed mode-{I, III} data for both CA and VA loading in as-welded (AW) and
in stress-relieved (SR) conditions, aiming to investigate multiaxial fatigue resistance
including damage accumulation and mean (residual) stress aspects (Appendix F).

The acquired uniaxial mode-I and mode-III CA data is for reference purposes.
Because of the tubular specimen geometry with a circumferential weld, mode-III
data (15 specimens) were obtained (Fig. 5.9) applying a cyclic (sinusoidal) torsion

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 5.7.: Reference (left column) and hexapod (right column) weld material
microstructure for the BM (a and b), the HAZ (c and d), the FZ (e and f)
and notch detail (g and h), showing ferrite (α), pearlite (P), proeutectoid
ferrite (αpr o), allotriomorphic ferrite (αal lo), Widmanstätten ferrite (WF),
acicular ferrite (AF), upper bainite (UB) and martensite (M).

moment Mt rather than a shear force Fs . Although fatigue induced failure
may appear at the start/stop location, affecting the hot spot type C fatigue
resistance, the actual locations were observed along the weld seam. The
structural stress concentration factor Ks = τs /τn = 1.05. Loading and response
ratio RI I I = Mt ,mi n/Mt ,max = τmi n/τmax = −1 to obtain a sufficiently high far field
response range (below yielding) for life times in the mid-cycle fatigue (MCF) region:
N =O(104...5 ·106) cycles. Mode-I data (22 specimens) is obtained (Fig. 5.9) applying
for the first few specimens a normal force Fn and for the remaining ones a bending
moment Mb . Although Fn was preferred in order to avoid a weld volume effect
[e.g. 8] and allow for a one-to-one comparison to the mode-III data, fatigue induced
failures were obtained at the start/stop location. A Mb type of load with the
start/stop location around the neutral axis turned out to be a solution, accepting
that a possible weld volume effect may have to be taken care of. The structural stress
concentration factor for Fn and Mb : Ks =σs /σn = {1.15,1.20}. Loading and response
ratio RI = Fn,mi n/Fn,max = Mb,mi n/Mb,max =σmi n/σmax = 0.1 to obtain at least a fully
effective far field response cycle as far as the applied {Fn , Mb} is concerned, assuming
that mode-III mean stress effects are typically negligible [29, 130, 197] and a mode-I
to mode-IIII data comparison is still feasible. To indicate any mean (residual) stress
effect, some tests have been conducted with RI = −1, involving both AW and SR
specimens (Fig. 5.9).

Mixed mode-{I, III} CA data is obtained applying {Mb |RI = 0.1, Mt |RI I I = 0.1}
simultaneously, either proportional (i.e. in-phase), non-proportional (i.e. 90 [deg]
out-of-phase) or with a frequency ratio of 1 : 3 (i.e. for 1 cycle in bending, 3 cycles
in torsion are applied at the same time). Based on the von Mises type of criterion
[130, 197], τ =p

3σ has been adopted to ensure equal shear and normal stress
contributions to failure [32].

For both the uniaxial and multiaxial random VA loading and response conditions,
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the generated time traces are based a on Gauss distributed frequency spectrum
(Fig. 5.8): G(ω) = (∆Sn,max /6)2 · exp{−(ω−µω)2/(2 ·λ2

ω)}/{
p

2πλω, with ∆Sn,max a
normal or shear stress range scaling parameter, the spectrum width λω = 1.4 and the
spectrum mean value µω = 5. For the uniaxial mode-{I, III} VA conditions the time
trace global mean {RI ,RI I I } = {0.1, -1}, similar to the CA values. The τ(t ) and σ(t )
time series for the mixed mode-{I, III} VA conditions are the same, except for the
von Mises based scaling of the magnitude and the 90 [deg] phase shift for the NP
conditions. Like for the CA case, the time trace global mean {RI ,RI I I } = {0.1,−1}.

To make sure sufficient statistical variability is accounted for [49], the time trace
length is 5 ·104 cycles. However, the length is relatively large and the time trace may
contain extremes at a very small probability of occurrence exceeding 3 times the time
trace standard deviation, but should be prevented for to avoid yielding. A clipping
ratio corresponding to 3 time the time trace standard deviation has been introduced
to cut off the extremes; both the maxima and the minima (Fig. 5.8). Since the global
mean value of the generated time traces is zero; i.e. R =−1, a shift is applied if
R = 0.1 is required. The time trace irregularity factor Ir , defined as the ratio of
the number of zero up-crossings and the number of peaks, a bandwidth measure,
has been set to Ir = 0.88 and resembles a typical wave irregularity encountered by
maritime structures

A von Mises based structural stress Ss −N plot (Fig. 5.9) of the obtained test
results (Tables F.1 and F.2) shows the initial fatigue resistance data scatter. Distinct
strength and mechanism contributions can be observed comparing uniaxial mode-I
and mode-III results for both CA and (maximum range Ss,max signed) VA loading
conditions. The mode-I Fn and Mb results are not very well aligned and might be a
consequence of volume effects and/or failures at the start/stop location. Even the
different notch stress gradients could provide a contribution. At first glance, the
uniaxial AW and SR mode-{I, III} data does not show a significantly different fatigue
strength, suggesting residual stress might not be involved at all in support of the
hardness distribution maps (Section 5.2.2). The uniaxial mode-I and mixed mode-{I,
III} test data seems to align; similar to literature data [130]. Note that N for the
multiaxial data is based on the mode-I contribution only, since no multiaxial cycle
counting is involved. Mean stress effects are not incorporated and may partially
explain why the mode-III data tested at R = −1 shows a relatively large fatigue
strength in comparison to the other data obtained at R = 0.1. The Ss,max value for
the mode-III VA data exceeds the yield strength. Avoiding far field stress cycles with
an elastoplastic response was preferred, but turned out to be inevitable because of
the aim to obtain failures in the MCF region.

As soon as a through-thickness crack has developed at the position of the
fabrication defined weakest link along the weld seam (Fig. 5.10), the adopted
failure criterion, the fracture surfaces can be observed and distinct patterns can be
distinguished (Fig. 5.11). Some highlights will be addressed.

The fracture surfaces for the mode-I CA and VA data turned out to be relatively
smooth, similar, as well as loading and response level invariant. A semi-elliptical
shape has grown in through-thickness direction (Fig. 5.11a and 5.11b). For the
mode-III CA and VA data, the fracture surface characteristic pattern appeared to be
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(a) (b)

(c)

Figure 5.8.: Description of the Gaussian load sequence for the VA mode-I bending
moment Mb test with ∆σn,max = 320 [MPa]. Gauss distributed frequency
spectrum (a), histogram of counted cycles (b) and time trace (c). Original
and after extreme values cut off.

loading and response level dependent. At higher load level (Fig. 5.11c), the crack
developed straight along the weld seam and looks similar to the mode-I equivalent.
Reducing the load level (Fig. 5.11d), the characteristic V (for RI I I > 0) or X (RI I I < 0)
shapes tend to become more apparent [e.g. 198, 199]. Differences for CA and VA
did not seem significant. Mixed mode-{I, III} P CA and VA loading and response
conditions come along with mixed fracture characteristic contributions. Comparing
the crack surfaces for higher (Fig. 5.11e) and lower (Fig. 5.11f) load levels, a
mode-III induced load level dependency is observed and the V or X shapes can be
distinguished more and more clearly. Although mixed mode-{I, III} characteristic
fracture contributions can still be distinguished for the NP CA and VA loading and
response conditions, including a mode-III induced load level dependency (Fig. 5.11g
and 5.11h), the mode-I contribution is more dominant than observed for the mixed
mode-{I, III} P crack surfaces (Fig. 5.11e and 5.11f). The fracture surfaces for
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Figure 5.9.: Hexapod fatigue test data.

Figure 5.10.: Specimen in hexapod after fatigue failure with through-thickness crack.

the mixed-mode-{I, III} P σ : τ = 1 : 3 ratio shows the mode-III induced load level
dependent characteristics as well (Fig. 5.11i and 5.11j). Note that the extent of the V
or X shaped pattern is observed to be in between the ones of the uniaxial mode-III
and multiaxial mode-{I, III} P conditions (Fig. 5.11d, 5.11f and 5.11i); a frequency
effect.

Last but not least, the life time scatter σN of the individual uniaxial and multiaxial
Ss,max −N data series (Fig. 5.9) correlates roughly speaking to the contribution of
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(f)
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(g)
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Figure 5.11.: Fracture surface characteristics for mode-I (a, b), mode-III (c, d), mixed
mode-{I, III} P (e, f), mixed mode-{I, III} NP (g, h), mixed mode-{I, III}
P with frequency ratio σ : τ= 1 : 3 (i, j).

the mode-III induced X or V shaped characteristic to the fracture surface pattern
(Fig. 5.11); i.e. the more pronounced, the larger σN Table 5.6.

Table 5.6.: σN for individual Ss,max −N data series.

load case σN

mode-I 0.15
mode-III 0.33
mode-{I, III} P 0.32
mode-{I, III} NP – phase 0.13
mode-{I, III} NP – frequency 0.13
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5.3. MULTIAXIAL FATIGUE RESISTANCE

The fatigue damage process involves an initiation and growth contribution [1] and
can be modelled using a fatigue strength parameter S in order to obtain a life
time estimate N [6]. Since far field response spectra of welded joints in steel
maritime structures reflect predominantly linear elastic behaviour, S is typically
of the stress – rather than strain or energy – type, in particular for mid- and
high-cycle fatigue [14]. Correlation of S and N in the mid-cycle fatigue range often
reveals a log–log linear relation and a Basquin type of formulation is naturally
adopted: log(N ) = log(C )−m · log(S); a resistance curve. Intercept log(C ) and slope
m are respectively mode specific and material characteristic strength and damage
mechanism coefficients. Using maximum likelihood based regression on life time,
max{L (Φ; N |S);Φ}, introduces a life time scatter (i.e. performance) parameter σN

[18, 57] and the most likely parameter vector estimate Φ = {log(C ),m,σN } can be
obtained. The lifetime N in the mid-cycle fatigue range is assumed to be log(Normal)
distributed [16, 29]. Scatter band index TσS = 1 : (S10/S90), the fatigue strength
ratio for 10 [%] and 90 [%] probability of survival [200] is adopted for strength
performance evaluation purposes.

A major part of the fatigue life time N is predominantly spent in the weld
notch affected region, suggesting the fatigue strength parameter S could be a notch
characteristic intact geometry parameter like the effective notch stress Se [130]. At
the same time, the notches inevitably contain welding induced defects. The actual
initiation (i.e. nucleation) contribution to the total fatigue life time is virtually
eliminated and growth is governing, suggesting a cracked geometry parameter like
the total stress ST incorporating the notch characteristics seems justified as well
[197].

For mixed mode-{I, III} multiaxial response conditions of planar and tubular
(maritime) structures, the mode-I contribution is governing [130, 197]. The normal
stress is predominant, explaining why a mode-I equivalent normal stress based von
Mises type of failure criterion:

Se =
√

S2
e,I +β(N )S2

e,I I I (5.1)

or
ST =

√
S2

T,I +β(N )S2
T,I I I , (5.2)

is adopted. Rather than a constant shear strength coefficient, a life time dependent
one:

β(N ) =Cβ ·N Mβ (5.3)

with
Cβ = 10[log(CI )·mI I I −log(CI I I )·mI ]/[mI ·mI I I ]

and
Mβ = (mI –mI I I )/(mI ·mI I I ),

has been introduced to cover the mode-{I, III} strength and mechanism contributions
{log(C I ), log(C I I I ),mI ,mI I I } for welded joints in steel structures [130, 197].
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Since cracks at weld notches typically develop first in plate thickness direction,
the fracture plane is identified as the decisive one and is selected for criterion
evaluation. Cycles are counted – adopting a time domain approach – in the von
Mises plane. Using a 1st order moment formulation, differences between the actual
response path and the (straight) range for each cycle i have been used to incorporate
a cycle-by-cycle non-proportionality effect in terms of Cnp , including a material
characteristic contribution cm :

Se,e f f = Se,i (1+ cm ·Cnp,i ) (5.4)

or
ST,e f f = ST,i (1+ cm ·Cnp,i ). (5.5)

In order to obtain an equivalent fatigue strength parameter for VA data fitting the
mode-I CA data scatter band, a linear damage accumulation model is adopted. For
damage D = 1 rather than a smaller value [15, 130, 201], reflecting failure:

Se,eq =
[∑

{ni (Se,e f f ,i ) ·SmI
e,e f f ,i }/N

]1/mI
(5.6)

or

ST,eq =
[∑

{ni (ST,e f f ,i ) ·SmI
T,e f f ,i }/N

]1/mI
. (5.7)

Using Se (Section 5.3.1) and ST (Section 5.3.2), the uniaxial mode-I and mode-III
resistance (Section 5.3.3) will be investigated first for reference purposes, before
the mixed-mode-{I, III} fatigue characteristics will be established (Section 5.3.4).
Particular attention will be paid to the strength and mechanism contributions, as
well as the parameter coefficient confidence [e.g. 202] to be able to evaluate if
quality dependent resistance curves or just one for all data would be preferred.

5.3.1. FATIGUE STRENGTH PARAMETER Se

The through-thickness weld notch stress distributions along the expected (2D) crack
path – defining the fracture plane – are assumed to be a key element for an
appropriate fatigue design and detectable repair criterion [16]. Semi-analytical
mode-{I, III} formulations {σn(r /tp ,σs ),τn(r /tp ,τs )}, with plate thickness tp either the
base plate or cross plate value, tb or tc , have been developed for both non-symmetry
and symmetry with respect to half the plate thickness (tp /2), in case of both zero
and finite notch radius ρ [16, 29]. Adopting a linear superposition principle, far
field related equilibrium equivalent and self-equilibrium parts {σ f e ,σse ;τ f e ,τse } have
been distinguished, involving three components: the notch stress, the weld-load
carrying stress and the far field stress. Typically three zones can be identified in all
distributions: the zone 1 peak stress value, the zone 2 notch-affected stress gradient
and the zone 3 far-field dominated stress gradient. Excellent performance is proven
in comparison to finite element (FE) solutions, like illustrated (Fig. 5.12a and 5.12b,
Fig. 5.13a and 5.13b) for the fatigue specimen geometry (Section 5.2.2), meaning
numerical modelling [e.g. 203] is not required to estimate the effective notch stress
Se .
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Taking advantage of {σn(r /tp ,σs ),τn(r /tp ,τs )}, Se can be calculated averaging
the notch stress distribution along the expected crack path over a material
characteristic length ρ∗; another mechanism parameter. Uniaxial mode-I and
mode-III investigations for welded joints in steel (maritime) structures revealed
distinguished {ρ∗

I ,ρ∗
I I I } as well as {log(C I ), log(C I I I )} and {mI ,mI I I } values [14,

16, 29]. Since a response cycle needs two parameters for a complete spatial
description, e.g. range S = (Smax −Smi n) and ratio R = (Smi n/Smax ), mode specific
response ratio coefficients {γI ,γI I I }; additional strength parameters, have been
discovered as well to obtain an effective formulation [130]: Se,e f f = Se /(1−R)1−γ.
If both AW and SR test data are jointly considered, an explicit residual stress
measure Sr has been introduced to cover the thermal condition, turning the ratio
into: Rr = (Se,mi n +Sr )/(Se,max +Sr ) = {R ·Se +Sr (1−R)}/{Se +Sr (1−R)}. Dedicated
{ρ∗

I ,AW ,ρ∗
I ,SR } and {γI ,AW ,γI ,SR } mode-I contributions are established. The mean

(residual) stress – reflected in Rr – hardly affects the mode-III fatigue resistance [130],
explaining why no ratio contribution is involved. Coefficient γI I I = 1, regardless the
thermal condition. For S = Se , regression analysis provides the most likely extended
parameter vector estimates Φ = {log(C ),Sr ,γI ,AW ,γI ,SR ,mI ,ρ∗

I ,AW ,ρ∗
I ,SR ,ρ∗

I I I ,σN } to
obtain the mode-{I, III} effective notch stress contributions:

Se,I =
Se,I

(1−Rr,I )1−γI
=

∫ ρ∗I
tp

0

σn

(
r
tp

,∆σs

)
(1−Rr,I )1−γI

d

(
r

tp

)
(5.8)

and

Se,I I I =
∫ ρ∗I I I

tp

0
τn

(
r

tp
,∆τs

)
d

(
r

tp

)
. (5.9)

The involved far field stress information {∆σs ,rσs ;∆τs ,rτs } is calculated using nodal
force output of relatively coarse meshed shell/plate FE models [41, 47, 113], providing
the structural normal stress range: a superposition of a constant membrane and
linear bending contribution: ∆σs =∆σsm +∆σsb , as well as the structural shear stress
range: ∆τs =∆τss +∆τst , involving a constant shear and linear torsion contribution.
The structural normal and shear stress ratios: rσs = (∆σsb/∆σs ) and rτs = (∆τst /∆τs )
reflect the far field stress gradients [16, 29].



5.3. MULTIAXIAL FATIGUE RESISTANCE

5

129

(a) (b)

(c) (d)

(e) (f)

Figure 5.12.: Mode-I weld toe notch stress distributions (a, b), SIF far field- and
notch distributions (c, d) and K I distributions (e, f) for the specimen
geometry (Fig. 5.2) with respectively ρ = 0 (a, c, e) in a worst case
scenario and the measured ρ = 3.0 (b, d, f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13.: Mode-III weld toe notch stress distributions (a, b), SIF far field- and
notch distributions (c, d) and K I I I distributions (e,f) for the specimen
geometry (Fig. 5.2) with respectively ρ = 0 (a, c, e) in a worst case
scenario and the measured ρ = 3.0 (b, d, f).
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5.3.2. FATIGUE STRENGTH PARAMETER ST

Converting the intact geometry related weld toe notch stress distribution expressions
into crack damaged equivalents [197], the zone {1, 2} self-equilibrium and
zone 3 equilibrium equivalent stress parts {σ f e (r /tp ),σse (r /tp );τ f e (r /tp ),τse (r /tp )}
have been used to obtain respectively a notch factor Yn(a/tp ) and a far
field factor Y f (a/tp ), defining the weld toe notch stress intensity factor (SIF)
for respectively mode-I and mode-III: K I = σs

√
tp Yn,I (a/tp )Y f ,I (a/tp )

√
π(a/tp )

and K I I I = τs
√

tp Yn,I I I (a/tp )Y f ,I I I (a/tp )
√
π(a/tp ). In comparison to FE solu-

tions, excellent performance is proven for the semi-analytical stress intensity
{Yn,I Y f ,I ,Yn,I I I Y f ,I I I } as well as the SIF {K I ,K I I I } formulations, like illustrated
(Fig. 5.12c and 5.12d, 5.12e and 5.12f; Fig. 5.13c and 5.13d, 5.13e and 5.13f) for the
fatigue specimen geometry (Section 5.2.2). Numerical modelling [164, 204] is not
required.

Cyclic loading induced response conditions turn the SIF’s {K I ,K I I I } into crack
growth driving forces {∆K I ,∆K I I I } and defects may develop into cracks. The crack
growth rate (da/dn) of short-cracks emanating at notches show elastoplastic wake
field affected anomalies [18]. Modifying Paris’ equation, a generalised two-stage
model has been established containing a transition from a short to a long
crack growth region meant to incorporate all relevant crack growth driving force
components [143–145]; i.e. to include both the weld notch- and far field characteristic
mode-{I, III} response contributions: (da/dn)I = C I ·Y n,I

n,I · {∆σs ·Y f ,I ·
p
πa}mI and

(da/dn)I I I = C I ·Y n,I I I
n,I I I · {∆τs ·Y f ,I I I ·

p
πa}mI I I . Notch elastoplasticity coefficients

{nI ,nI I I }; mechanism parameters, are response dependent and define the level of
monotonically increasing or non-monotonic crack growth behaviour. For a complete
spatial description, Rr has been introduced like for Se , adding {γI ,γI I I } as strength
parameters. Applying an integral operator on the individual mode-{I, III} crack
growth models provides mid-cycle fatigue related resistance relations of the Basquin
type: log(NI ) = log(C I )−mI log(ST,I ) and log(NI I I ) = log(C I I I )−mI I I log(ST,I I I ), with
the mode-{I, III} total stress contributions [197]:

ST,I =
ST,I

(1−Rr,I )1−γI
= ∆σs(

1−Rr,I
)1−γI · I

1
mI

N ,I · t
2−mI
2mI

p

(5.10)
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and

ST,I I I =
ST,I I I

(1−Rr,I I I )1−γI I I
= ∆σs(

1−Rr,I I I
)1−γI I I · I

1
mI I I

N ,I I I · t
2−mI I I
2mI I I
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(5.11)
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with

IN ,I I I =

a f
tp∫

ai
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1{
Yn,I I I

(
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)}n

I I I
·
{
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)

Regression analysis provides the most likely extended parameter vector estimates:
Φ = {log(C ),Sr ,γI ,AW ,γI ,SR ,mI ,nI ,AW ,nI ,SR ,nI I I ,σN }. Thermal conditions require
distinguished mode-I elastoplasticity coefficients {nI ,AW ,nI ,SR }. Mode-III mean
(residual) stress effects are insignificant, explaining γI I I = 1. Scaling parameters
{t (2−mI )/(2mI )

p , t (2−mI I I )/(2mI I I )
p } take the response gradient induced size effects into

account. Rather than a sufficiently small welding induced defect size (ai /tp ) providing
a converged notch crack growth integral solutions {IN ,I , IN ,I I I }, an arc-welding
induced most likely material characteristic estimate has been established; (a f /tp ) = 1
is based on a through-thickness crack criterion.

5.3.3. UNIAXIAL REFERENCE RESISTANCE

The Se based uniaxial mode-I mid-cycle fatigue reference resistance for planar and
tubular geometries in steel (maritime) structures, involving hot spot types {A, B, C}
and both AW and SR thermal conditions, has already been established for CA and
VA literature data [16, 130].

In order to fit for tubular geometries the SR literature data in the AW literature data
scatter band, a residual stress component Sr – a strength related quality aspect – has
been introduced. Since the AW thermal condition is considered to be the reference
case for fatigue design, Sr is applied to the SR data explaining the compressive value
[130]. However, in contrast to the literature data, the fatigue strength of the AW and
SR hexapod data is similar (Fig. 5.9), suggesting that no residual stress is involved at
all. To fit the mid-cycle fatigue hexapod data into the literature data scatter band,
Sr should apply for both the AW and SR thermal conditions. Adopting the most
likely reference parameter estimates for regression analysis of both the literature and
hexapod tubular data, though, reduces the Se performance as reflected in the data
touching the lower and upper bound of the literature data scatter band (Fig. 5.14a).
The life time scatter parameter σN increased from 0.27 [130] to 0.29, obtained for
Φ = {σN }. Regression of the hexapod data only provides σN ,I ∼ 0.38; quite worse.
Note that the high-cycle fatigue hexapod data (N > 5 ·106) is not assessed since no
literature data is available for reference purposes. The average weld quality reference
data (Section 5.2.2) is added for convenience and illustrates the fit in the literature
data scatter band.

Using the actual notch radius ρ (Table 5.4) – a geometry related quality aspect,
rather than a conservative lower bound ρ = 0 like adopted for the literature data
[14, 130] affects Se (Eq. 5.1) of the hexapod data just up to a minor extent, since
{ρ∗

I ,AW ,ρ∗
I ,SR } is relatively large. The Se performance did not change (Fig. 5.14a).

An important observation is that the VA and CA hexapod data is not well aligned
– although the data fits in the literature data scatter band – and seems a result of
inaccurate strength and mechanism contributions; i.e. inaccurate intercept log(C I )
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and slope mI . The welding quality of the reference and hexapod data at materials
level as reflected in the micro-structure composition is not significantly different
(Fig. 5.7), explaining why the mode and material characteristic ρ∗ is reasonably
assumed to be similar for both data sets. However, the imaginary slope of the
hexapod data (Fig. 5.9 and 5.14a) seems relatively large in comparison to the
literature data, suggesting another mechanism contribution. Observing the hardness
distributions (Fig. 5.5), smaller values are obtained for the HAZ and FZ in the
hexapod welds – relative to the reference ones, implying a lower cooling rate
being typically responsible for reduced residual stress levels as well as decreased
number and size of welding induced defects. A larger contribution of crack
initiation (i.e. short crack growth) to the total life time as a result of residual
stress not being involved and a smaller welding induced defect size seems a
reasonable explanation, justifying a regression analysis of the hexapod only in order
to establish the Se performance and dedicated most likely parameter estimates.
For Φ = {log(C I ),Sr ,γI ,AW ,γI ,SR ,mI ,ρ∗

I ,AW ,ρ∗
I ,SR ,σN ,I }, slope mI ∼ 7.5, a most likely

estimate in between the typical mI = 3 for arc-welded joints and base material value
mI ∼ 13 [205]. The material characteristic length estimates {ρ∗

I ,AW ,ρ∗
I ,SR } are similar

and comparable to the literature data based values, confirming that heat treatment
did not affect the hexapod data fatigue resistance as well as that based on the
micro-structure composition (Fig. 5.7) the quality of the hexapod and literature data
at materials level is comparable indeed. Intercept log(C I ), reflecting the fatigue
strength, naturally increased because of the log(C )-m correlation for a log-log linear
Se −N MCF Basquin type of relation [14]. The Sr ∼ 0 estimate basically confirms
that residual stress does not affect the hexapod fatigue strength quality. Since the
(mean) residual stress affects {γI ,AW ,γI ,SR }, the most likely estimates are different
from the literature data based values. As the hexapod mode-I data size is relatively
small and the specimen geometry and loading conditions do not contain sufficient
variability, the AW data became the reference for the SR ones. The life time scatter
parameter reduced to σN ,I = 0.21; way below the reference data value, suggesting at
first glance that an exclusive high quality hexapod data resistance curve makes sense
(Fig. 5.14b). The fatigue strength scatter band index Tσe,I = 1 : 1.36. Note that the VA
hexapod data fits the CA data scatter band for the representative log(C I ) and mI .

Because of the relatively small hexapod data size, the parameter confidence
intervals are relatively large in comparison to the ones of the reference data, like
illustrated for the 75 [%] bounds (Table 5.7). Comparing the mode-I R95C75
quantiles reflecting a probability of survival ps = 0.95 (Fig. 5.14a and 5.14b), a
dedicated resistance curve for the high-quality hexapod mode-I data seems to
provide more accurate life time estimates for fatigue design purposes indeed. For
general applicability the reference data curve should still be used in order to obtain
conservative N values.

Principally, the (mean) residual stress quality aspect does not affect the mode-III
welded joint fatigue resistance [29, 130], meaning Sr is not involved nor dedicated
AW and SR γ parameters are distinguished. The actual notch radius (Table 5.4);
a geometry quality aspect, has to be incorporated since the mode-III damage
accumulation is in comparison to mode-I a (near) surface phenomenon to an even
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Table 5.7.: Mode-{I, III} resistance Se parameter likelihood estimates and 75 [%]
lower and upper confidence bounds.

parameter reference data hexapod data

log(CI ) 13.28 [13.20, 13.36] 25.45 [22.59, 28.32]
mI 3.12 [3.08, 3.15] 7.55 [6.47, 8.64]

ρ∗I ,AW 1.34 [1.22, 1.45] / /

ρ∗I ,SR 3.85 [3.56, 4.16] / /

γI ,AW 0.90 [0.88, 0.91] / /
γI ,SR 0.89 [0.87, 0.91] / /

Sr -144 [-144, -143] 0 [-1, 1]
σN ,I 0.21 [0.19, 0.23] 0.21 [0.16, 0.25]

log(CI I I ) 18.91 [18.17, 19.64] 52.00 [46.05, 57.96]
mI I I 5.12 [4.85, 5.37] 17.87 [15.58, 20.15]
ρ∗I I I 0.12 [0.07, 0.21] / /
γI I I 1.00 [0.98, 1.00] / /
σN ,I I I 0.21 [0.19, 0.23] 0.25 [0.20 0.31]

greater extent, as reflected in ρ∗
I I I < ρ∗

I . Using the most likely reference parameter
estimates for regression analysis of both the literature and hexapod tubular data
significantly reduces the Se performance (Fig. 5.14c): σN increased from 0.21 [29]
to 0.31, obtained for Φ = {σN }. Regression of the hexapod data only provides
σN ,I I I ∼ 0.30. Because of similar micro-structure composition for the reference and
hexapod welds (Fig. 5.7), ρ∗

I I I is not expected to be responsible for the reduced
performance. Like for mode-I (Fig. 5.14a), the imaginary slope is relatively large
in comparison to the literature data (Fig. 5.14c). Based on the comparison of
the hardness distributions for the reference and hexapod welds (Fig. 5.5), an
increased contribution of crack initiation to the total life time explains the change
in mechanism, in slope mI I I . Regression analysis for Φ= {log(C I I I ),γI I I ,mI I I ,σN ,I I I }
provides slope mI I I ∼ 17.9, a most likely estimate close to the base material
value mI I I ∼ 18 [205]. Except a similar micro-structure composition, the specimen
geometry and loading conditions variability is insufficient nor different thermal
conditions are involved, explaining why the reference material characteristic length
is adopted: ρ∗

I I I ∼ 0.12. Intercept log(C I I I ), reflecting the fatigue strength, naturally
increased because of the log(C )−m correlation. Mean (residual) stress does not
affect the hexapod fatigue strength quality, as reflected in the γI I I ∼ 1 estimate. The
life time scatter parameter reduced to σN ,I I I = 0.25; an improvement in comparison
to the σN ,I I I ∼ 0.30 estimate as obtained for using the reference parameter values
(Fig. 5.14d). The fatigue strength scatter band index TσSe ,I I I = 1 : 1.14.

Like for mode-I, the parameter confidence intervals are relatively large in
comparison to the ones of the reference data, as illustrated for the 75 [%] bounds
(Table 5.7). Comparing the mode-III R95C75 quantiles (Fig. 5.14c and 5.14d),
a dedicated resistance curve for the high-quality hexapod mode-III data seems
to provide more accurate life time estimates. Non-conservative N values at the
mid-cycle fatigue region lower bound can even be obtained when applying the
reference data curve.
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[126]
[130]
[130]

(a) (b)

[130]

(c) (d)

Figure 5.14.: Mode-I Se resistance with enforced reference strength and mechanism
parameters (a), as well as dedicated strength and mechanism parameters
(b); mode-III Se resistance with enforced (c) and dedicated (d) reference
strength and mechanism parameters.

For the total stress ST as fatigue strength parameter (Eq. 5.2), uniaxial mode-I
mid-cycle fatigue reference resistance for planar and tubular geometries in steel
(maritime) structures has already been established for CA and VA literature data as
well [197]. To fit the mid-cycle fatigue hexapod data into the ST −N literature data
scatter band, Sr will be applied for both the AW and SR thermal conditions, since
no significant residual stress is involved. At the same time, Sr affects the notch and
crack tip elastoplastic behaviour, explaining why nI ,AW has been used for all the
hexapod data. Adopting the most likely reference parameter estimates, regression
analysis of both the literature and hexapod tubular data for Φ= {σN } reduces the ST

performance as reflected in the hexapod data touching the bounds of the literature
data scatter band (Fig. 5.15a), like for Se (Fig. 5.14a): σN increased from 0.30 [197]
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to 0.31. Regression of the mid-cycle fatigue hexapod data only provides σN ,I ∼ 0.39;
quite worse. The average quality reference data (Section 5.2.2) is added for
convenience and illustrates the fit in the literature data scatter band. Using the actual
notch radius ρ (Table 5.4) – a geometry related quality aspect – affects the notch
factor Yn (Eqs. (5.10) and (5.11)) for (a/tp ) → 0, but the square root singularity for
small cracks close to the notch surface (radius) controls the crack growth integral IN

(Eqs. (5.10) and (5.11)); i.e. ST , meaning the performance hardly changed (Fig. 5.15a).
Like observed for Se (Fig. 5.14a), the damage mechanism seems responsible for the
different imaginary slope of the hexapod data in comparison to the literature data.
The hardness distribution; a welding quality measure at materials level, supports
principally the hypothesis of a larger contribution of crack initiation to the total life
time because of no residual stress and a decreased number and size of welding
induced defects. Regression analysis of all the hexapod data only; i.e. uniaxial and
multiaxial, for Φ = {log(C I ),mI ,σN ,I } and varying defect size shows that that with
respect to the life time scatter parameter σN ,I still (ai /tp ) ∼ 6 ·10−3 is the most likely
estimate (Fig. 5.16). An import note, however, is that the parameters affecting (ai /tp )
the most; in particular the mean stress and elastoplasticity coefficients {γ,n}, are the
same as for the literature data, meaning proof of a smaller welding induced defect
size would require additional test data, obtained for different geometry – in particular
wall thickness tp – and different R levels. Slope mI ∼ 7.5 is more than double the
typical mI = 3 value for arc-welded joints, confirming the change in mechanism.
The elastoplasticity coefficients estimates {nI ,AW ,nI ,SR } are similar and comparable
to the literature data based values, confirming that Sr did not affect the hexapod
data fatigue resistance indeed as well as that notch and crack tip elastoplasticity
affected short crack growth behaviour for the AW and SR data is about the same.
Explanations for log(C I ), Sr and {γI ,AW ,γI ,SR } as provided for Se still hold for ST

(Fig. 5.15b): respectively a natural increase because of the log(C )−m correlation, a
confirmation that (mean) residual stress does not affect the hexapod data fatigue
strength and the AW data being reference for the SR ones since the data size is
relatively small and sufficient specimen geometry and loading condition variability
is lacking. The life time scatter parameter reduced to σN ,I = 0.21; way below the
reference data value, suggesting an exclusive hexapod data resistance curve makes
sense (Fig. 5.15b). The fatigue strength scatter band index TσST,I = 1 : 1.36. Dedicated
log(C I ) and mI parameters ensure the VA hexapod data fits the CA data scatter
band. Note that the Se and ST performance is similar, like observed before [197].

The parameter confidence intervals are relatively large in comparison to the ones
of the reference data because of the relatively small hexapod data size, like illustrated
for the 75 [%] bounds (Table 5.8). The mode-I R95C75 quantiles reflect a probability
of survival ps = 0.95 (Fig. 5.15a and 5.15b) and suggest that a dedicated resistance
curve for the high-quality hexapod mode-I data provides more accurate life time
estimates for fatigue design purposes. Applying the reference data curve for general
purposes provides conservative N values.

Since the residual stress hardly affects the mode-III welded joint fatigue resistance
[29, 130], Sr is not involved nor dedicated AW and SR γ parameters are distinguished.
The actual notch radius (Table 5.4) is incorporated since mode-III damage
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Figure 5.15.: Mode-I ST resistance with enforced reference strength and mechanism
parameters (a), as well as dedicated strength and mechanism parameters
(b); mode-III ST resistance with enforced (c) and dedicated (d) reference
strength and mechanism parameters.

accumulation is a (near) surface phenomenon up to a large extent. Using the most
likely reference parameter estimates for regression analysis of both the literature
and hexapod tubular data significantly reduces the ST performance (Fig. 5.15c): σN

increased from 0.21 [197] to 0.32, obtained for Φ= {σN }. Regression of the hexapod
data only provides σN ,I I I ∼ 0.49. Since the microstructure composition for the
reference and hexapod welds are similar (Fig. 5.7) and at the same time Sr – affecting
the notch and crack tip elastoplastic behaviour – does not significantly influence the
mode-III fatigue resistance, nI I I is not expected to be responsible for the reduced
performance. As for mode-I (Fig. 5.15a), the imaginary slope is relatively large in
comparison to the literature data (Fig. 5.15c) and likely a result of an increased
contribution of crack initiation to the total life time, as reflected in the hardness
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Figure 5.16.: Most likely σN for a range of ai /tp |a f /tp=1.

Table 5.8.: Mode-{I, III} resistance ST parameter likelihood estimates and 75 [%]
lower and upper confidence bounds.

parameter reference data hexapod data

log(CI ) 13.05 [12.97, 13.13] 23.56 [21.55, 25.77]
mI 3.15 [3.11, 3.18] 7.51 [6.58, 8.53]

nI ,AW 3.48 [3.28, 3.68] / /
nI ,SR 0.09 [0.01, 0.17] / /
γI ,AW 0.89 [0.88, 0.91] / /
γI ,SR 0.95 [0.93, 0.98] / /

Sr -113 [-115, -110] 0 [-1, 1]
σN ,I 0.22 [0.19, 0.24] 0.21 [0.16, 0.25]

log(CI I I ) 16.46 [15.90, 17.02] 41.42 [36.17, 46.67]
mI I I 5.02 [4.67, 5.37] 17.87 [15.74, 20.11]
nI I I 3.12 [1.14, 5.09] / /
γI I I 1.00 [0.98, 1.00] / /
σN ,I I I 0.21 [0.18, 0.24] 0.25 [0.20, 0.30]

distributions for the reference and hexapod welds (Fig. 5.5). Regression analysis
for Φ= {log(C I I I ),γI I I ,mI I I ,σN ,I I I } provides slope mI I I ∼ 17.9, a most likely estimate
close to the base material value mI I I ∼ 18 [205]. Except a similar micro-structure
composition, the specimen geometry and loading conditions variability is insufficient
nor thermal conditions are involved, explaining why the reference elastoplasticity
coefficient is adopted: nI I I ∼ 3.12. Intercept log(C I I I ), reflecting the fatigue
strength, naturally increased because of the log(C )−m correlation. Mean (residual)
stress does not affect the hexapod fatigue strength quality, as reflected in the
γI I I ∼ 1 estimate. The life time scatter parameter reduced to σN ,I I I = 0.25; an
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improvement in comparison to the σN ,I I I ∼ 0.32 estimate as obtained for using the
reference parameter values (Fig. 5.15d). The fatigue strength scatter band index
TσST,I I I = 1 : 1.14.

Like for mode-I, the parameter confidence intervals are relatively large in
comparison to the ones of the reference data, as illustrated for the 75 [%] bounds
(Table 5.8). Comparing the mode-III R95C75 quantiles (Fig. 5.15c and 5.15d), a
dedicated resistance curve for the high-quality hexapod mode-III data seems to
provide more accurate life time estimates. The literature data curve may provide
non-conservative N estimates.

Comparing the uniaxial mode-{I, III} MCF resistance (Fig. 5.17), σN illustrates a
similar performance for Se and ST ; respectively an intact and cracked geometry
parameter. Linear damage accumulation up to D = 1 shows VA data fitting the CA
data scatter band. The different strength and mechanism as reflected in {log(C ),γ}, as
well as {m,ρ∗} or {m,n} for Se and ST respectively, suggesting a life time dependent
shear strength coefficient β(N ) rather than a constant one β is required for multiaxial
fatigue assessment. Note that the strength and mechanism contributions for the
high-quality hexapod data is quite different from the average-quality literature data
[130, 197], affecting β(N ).

(a) (b)

Figure 5.17.: Uniaxial mode-{I, III} hexapod data fatigue resistance for Se (a) and ST

(b).

5.3.4. MULTIAXIAL RESISTANCE

Adopting the von Mises criterion Se (Eq. 5.1), the reference data uniaxial mode-{I,
III} strength and mechanism parameters {γI ,AW ,ρ∗

I ,AW ,ρ∗
I I I } as well as the optimum

1st order non-proportionality coefficients (Eq. 5.4) Cnp and cm [130], the multiaxial
hexapod data fits the data scatter band (Fig. 5.18a). Conservative design life time
estimates can be obtained, but the data is quite scattered as reflected in σN = 0.38;
relative large with respect to σN = 0.29 of the reference data. For the uniaxial



5

140 5. MULTIAXIAL FATIGUE TESTING OF HIGH-QUALITY WELDS USING A HEXAPOD

mode-{I, III} strength and mechanism estimates of the hexapod data (Fig. 5.17a),
the optimum non-proportionality measure turned out to be still 1st order. The
possibility of cm being a material characteristic holds [130] since the value hardly
changed (Fig. 5.18b) – recalling the similar material micro-structure for the hexapod
and reference welds (Fig. 5.7), but proof is not conclusive. The life time scatter,
however, reduced to σN = 0.29, equal to the reference data value and reflecting a
narrow scatter band (Fig. 5.18b). For the reference data, mode-{I, III} coupling
is introduced in order to explain the multiaxial fatigue resistance characteristics
[197], reflected in the introduced mechanism parameters {ρ∗

I ,AW,M ,ρ∗
I I I ,M }. Dedicated

hexapod data values are obtained as well, but are quite close to the reference ones.
The scatter of the individual multiaxial data groups, P and NP, did change, but the
similar σN may suggest any possible influence of mode-{I, III} coupling might be
limited. However, the hexapod data geometry and loading variations are too limited
to provide a conclusive answer. Only a small Se improvement is gained (Fig. 5.18c
and 5.18d), knowing that the concept of stress averaging implies a relatively small ρ∗
sensitivity anyway. The life time scatter reduced to σN = 0.28 and relatively accurate
life time estimates can be obtained.

Assessment of the hexapod data using the total stress ST (Eq. 5.2) provides similar
results. For the average quality reference data parameters a fit in the scatter band
is obtained (Fig. 5.19a), although the high-quality hexapod data is clearly at the
upper bound. Dedicated hexapod data parameters including the non-proportionality
coefficients {Cnp ,cm} provide a much better fit (Fig. 5.19b): σN reduced from
0.38 to 0.24, even smaller than the Se value (Fig. 5.18b). The optimum material
characteristic cm reduced a bit, but is still similar to the reference data value.
Although mode-{I, III} coupling improved the ST reference data formulation up
to some extent [197], for the hexapod data no obvious differences are observed
(Fig. 5.19c and 5.19d). The elastoplasticity coefficients {nI ,AW,M ,nI I I ,M } are similar
to the uniaxial values, explaining the unaffected σN . Like for Se , the scatter of the
individual multiaxial data groups did change, but geometry and loading limitations
prevent for conclusive evidence of coupling effects. In general, the small crack size
singularity dominates the crack growth integral (Section 5.3.2) and is quite sensitive
to the involved elastoplasticity coefficient n – in contrast to the ρ∗ sensitivity for Se .
Accurate design life time estimates can be obtained.

5.4. CONCLUSIONS AND OUTLOOK

The custom-built TU Delft hexapod for mechanical testing purposes, allowing for
relatively large loads and smaller motions at all 6 individually controlled DoF’s,
turned out to be an excellent test rig for multiaxial CA and VA fatigue testing.

Tubular arc-welded DS T-joints are manufactured according to offshore standards
and proved to be of high-quality in terms of strength, geometry and material
aspects, as respectively reflected in a negligible residual stress, a relatively large
notch radius, a homogeneous micro-structure in the WM and HAZ and a gradual
hardness distribution at a relatively low level. Taking all aspects into account fits the
(mixed) mode-{I, III} hexapod test data in the average quality fatigue literature data
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[130]

(a) (b)

[130]

(c) (d)

Figure 5.18.: Effective notch stress based hexapod multiaxial fatigue resistance for
uniaxial ρ∗ values and reference parameters; cm = 0.40 (a), uniaxial ρ∗
values and dedicated parameters; cm = 0.45 (b), multiaxial ρ∗ values and
reference parameters; cm = 0.50 (c), multiaxial ρ∗ values and dedicated
parameters; cm = 0.45 (d).

scatter band for advanced multiaxial criteria: the effective notch stress Se and the
total stress ST ; an intact and cracked geometry parameter. Support for the residual
Sr = 0 is observed in the hardness distribution as well as the AW and SR fatigue test
data; in particular the mode-I resistance (contribution) is affected for both Se and
ST . Mode-III resistance is hardly (mean) residual stress sensitive. The real notch
radius ρ hardly affects the mode-I fatigue resistance for Se and ST , respectively
because of the relatively large ρ∗

I and the square root singularity for small cracks
close to the notch surface (radius) being governing. However, for mode-III ρ has to
be incorporated considering Se , because of the relatively small ρ∗

I I I reflecting a near
surface phenomenon. For ST , on the other hand, ρ is less important for the same
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[197]

(a) (b)

[197]

(c) (d)

Figure 5.19.: Total stress based hexapod multiaxial fatigue resistance for uniaxial n
values and reference parameters; cm = 0.45 (a), uniaxial n values and
dedicated parameters; cm = 0.40 (b), multiaxial n values and reference
parameters; cm = 0.60 (c), multiaxial n values and dedicated parameters;
cm = 0.45 (d).

reason as mentioned for mode-I. Similar material micro-structure compositions for
the (literature) reference and hexapod weld suggest that the fatigue mechanism
parameters ρ∗ and n for respectively Se and ST are not very different, as confirmed
in the hexapod data likelihood regression results. Although the hardness distribution
supports a smaller welding induced defect size (ai /tp ) for the high quality hexapod
data, the variation in geometry and loading conditions – mean stress in particular
– is insufficient and conclusive proof cannot be provided, since the literature data
based strength and mechanism parameter estimates {γ,n} rather than dedicated
ones had to be adopted for ST ; the same ones as used to obtain the most likely
(ai /tp ) for the average quality literature fatigue test data.
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Since the multiaxial hexapod fatigue test data fits the reference data scatter band,
conservative life time estimates can be obtained adopting Se and ST with the
reference data strength and mechanism parameters. However, dedicated hexapod
data parameters significantly improve the accuracy, distinguishing the high-quality
welded joints from the average ones. Like observed for the reference data, the
performance of ST is better than of Se , as reflected in σN . Whereas the Se related
ρ∗ equivalent for ST is the final crack size (a f /tp ), ST has one more mechanism
parameter in terms of the elastoplasticity coefficient n to model the fatigue (crack
growth) behaviour, providing more accurate life time estimates. Mode-{I, III} coupling
improves the individual multiaxial data set performance with respect to (non-)
proportionality for Se and ST , but hardly affects the overall performance defining
the resistance curve. For particular multiaxial loading and response conditions,
coupling can be important, although conclusive proof for the hexapod data cannot
be provided because of limited geometry and loading variations.

High-quality welded joint fatigue resistance is predominantly reflected in the
larger resistance curve intercept log(C ) and slope m; a strength and a mechanism
parameter, implying a larger initiation (i.e. short crack growth) contribution to the
total life time. Still adopting the average quality related reference curve {log(C ),m} for
high-quality hexapod data means, however, for VA loading and response conditions
that damage equivalence is lost. Despite the smaller parameter confidence for the
high-quality welded joint fatigue resistance because of the smaller hexapod data
size, the design life estimates are more accurate in comparison to the conservative
average quality reference data based estimates (research sub-question 6). In order to
improve the basis for a high quality hexapod data fatigue resistance curve, more
tests are required with different geometry and mean (residual) stress conditions to
obtain dedicated strength and mechanism parameters, i.e. {γ,ρ∗} for Se and {γ,n} as
well as (ai /tp ) for ST .

For general fatigue assessment applications, an average quality based resistance
curve is recommended from design perspective. If high-quality resistance can be
guaranteed, a dedicated curve can be used. For the most accurate life time estimates
ST is preferred as fatigue strength parameter. However, balancing computational
efforts, parameter complexity and accuracy, Se can be adopted as well (research
sub-question 3).





6
EVALUATION AND DISCUSSION

Reasoning draws a conclusion, but does not make the conclusion certain.

Roger Bacon, philosopher

6.1. CONCLUSIONS
Main objective of the research as presented (Chapter 2-5) was to incorporate
adequate (mixed) mode-I, III strength and mechanism contributions to improve
the multiaxial fatigu elife time estimates for arc-welded joints in steel (maritime)
structures.

Based on an excellent mode-I performance, two parameters, the effective notch
stress Se and total stress ST as respectively an intact and cracked geometry parameter
have been adopted, aiming for one resistance curve for uniaxial as well as multiaxial
fatigue. Introducing a von Mises type of criterion, a multiaxial {Se , ST } formulation
has been established and in comparison to other existing parameters an excellent
performance is obtained. An experimental campaign, the first-ever involving a 6
DoF test rig; the TU Delft hexapod, offered insight in the significance of weld quality
affecting the fatigue resistance and data for validation of Se and ST .

The first research step involved the derivation of a novel mode-III weld notch
stress distribution formulation τn(r /tp ) for weld notch geometries, distinguishing
non-symmetry and symmetry with respect to half the plate thickness, as well as a
zero and finite notch radius configuration. Provided a geometry description and far
field stress information is available, τn(r /tp ) can be obtained for structures ranging
from tubular (with finite radius R) to planar (with infinite R) ones. Using τn(r /tp ),
the intact geometry parameter Se,I I I has been established, involving notch and
far field contributions. Assessment of mode-III arc-welded joint fatigue test data
from the literature revealed the superior performance of Se,I I I in comparison to
the nominal stress Sn , showing that incorporating local notch information provides
more accurate fatigue strength and life time estimates. Adopting the real weld notch
radius ρ∗ > 0 statistics improved the accuracy. At the same time the most likely ρ∗

I I I
value of ∼0.1 [mm] is relatively small in comparison to the typical mode-I value: ρ∗

I
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∼1.0 [mm] obtained for ρ = 0. Both observations suggest that the mode-III fatigue
damage process is more initiation than growth related, like reflected in the resistance
curve slopes: mI I I ∼5 > mI ∼3, explaining why the local geometry is important.
Walker’s model has been used to investigate the influence of mean stress, either
mechanical (loading) or thermal (welding residual stress) induced, but the mode-III
fatigue resistance turned out to be rather mean stress insensitive. In contrast to
opening mode-I, sliding mode-III seems to suffer from friction between the fracture
surfaces suppressing any possible mean stress effect. Since mode-III arc-welded joint
fatigue resistance data is relatively scarce, the {log(C I I I ), γI I I , mI I I , ρ∗

I I I } parameter
confidence interval is quite large.

In order to be able to deal with random multiaxial response conditions, failure
criterion options, damage plane selection, cycle counting aspects including ways
to deal with non-proportionality, as well as fatigue damage accumulation model
considerations have been reviewed. Since for mixed mode-I, III multiaxial response
conditions of planar and tubular (maritime) structures the mode-I contribution is
governing and at the same time the fatigue lifetime of arc-welded joints is growth
defined rather than initiation controlled (i.e. a shear induced process) because of
the welding induced defects, an equivalent normal stress based von Mises type of
failure criterion at the critical fracture plane has been selected for fatigue assessment
purposes. In particular, a lifetime dependent shear strength coefficient β(N ) has
been introduced to cover the mode specific and material characteristic log(C ),
m mechanism and strength contributions. Cycles are counted in the equivalent
von Mises plane, incorporating non-proportionality cycle-by-cycle and accumulating
damage using a linear model. Se explicitly involves a mean stress coefficient γ and
material characteristic length ρ∗, reflecting respectively a strength and mechanism
contribution. Fatigue test data assessment showed that γ, ρ∗ are not only mode
specific, but thermal condition – i.e. as-welded or stress-relieved – dependent as
well. The best performing non-proportionality measure is a 1st order formulation
containing a response path and material contribution. In comparison to the
assessment for other combinations of failure criterion, damage plane, cycle counting
algorithm, non-proportionality measure and damage accumulation model in terms
of lifetime and strength scatter, the outperformance is impressive. The VA data
aligns with the CA data scatter band for D = 1. All evaluated uniaxial and multiaxial
mode-I, III data aligns with the uniaxial mode-I reference data scatter band, allowing
for a single Se – N fatigue resistance curve in engineering applications.

Because of the welding induced defects at the governing fatigue sensitive locations;
the notches, a cracked geometry parameter like the total stress ST rather than an
intact one, can be justified as well. The mode-III weld notch stress distribution
formulations have been turned into an equivalent weld notch stress intensity
Yn(a/tp )Y f (a/tp ) applicable for both tubular and planar structures. Introducing
a two-stage crack growth model with a notch and far field dominated region, as
reflected in respectively Yn(a/tp ) and Y f (a/tp ), the equivalent stress parameter ST

has been established. Like Se , ST contains with γ, n a strength and mechanism
parameter as well. Since ρ∗ serves the same purpose as the final crack length
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a f , ST contains with n an additional (short crack) mechanism related parameter,
able to turn crack growth in the notch affected region to either non-monotonic
or monotonically increasing behaviour, different from the far field controlled Paris
region. For ST , the parameter estimates turned out to be mode and welding
condition dependent as well, whereas the confidence interval is relatively large
because available data in literature is limited. As already observed for Se , the
mode-III fatigue resistance seems to be mean stress insensitive. However, for a cyclic
mode-I response with a static mode-III component mean stress can be important.
The currently used (von Mises) failure criterion would require an additional coupling
term to take that into account. Assessment of multiaxial fatigue test data clearly
indicated an interaction effect, explaining why except uniaxial and thermal condition
dependent coefficients n, mixed mode-I, III counterparts have been introduced as
well, significantly improving the ST performance. Interpretation of the n values for
mode-coupling seems not straight forward and mixed-mode crack growth testing is
required, both to validate the involved crack growth model well as to address crack
growth and fatigue resistance similarity. Similar to Se , a 1st order non-proportionality
measure with a response path and material contribution provides the best results.
In comparison to Se , the ST performance is similar. The multiaxial P data scatter
turns out to be smaller; a consequence of the multiaxial n parameters. Introducing
multiaxial ρ∗ values for Se , however, hardly improves the performance, revealing
an insensitivity. Whereas n seems to be a more explicit measure directly affecting
the crack growth behaviour, ρ∗ seems a more implicit one reflecting the material
characteristic length for (mixed) mode and (multiaxial) response conditions. In
this respect, ST can be considered one step closer to the actual physics of the
fatigue damage process. However, balancing life time estimate accuracy, parameter
complexity and computational efforts, Se seems more effective at the moment.

Using the TU Delft hexapod, a 6 DoF test rig, uniaxial mode-I and mode-III as
well as mixed mode-{I,III} fatigue test results have been obtained for arc-welded
joints in steel (maritime) structures in constant and variable amplitude conditions. A
welding procedure certified to offshore quality standards ensured high-performance
welds, as confirmed by metallurgical analysis. Regression analysis shows that the
fatigue strength and mechanism contributions are quite close to base material level,
as reflected in the intercept log(C ) and the slope m, implying a larger initiation
(i.e. short crack growth) contribution to the total life time. Using Se and ST

(Chapter 3 and 4), the hexapod data has been used to verify a fit in the average
quality based literature resistance data scatter in terms of strength, geometry and
material aspects, as respectively reflected in a negligible residual stress, a relatively
large notch radius, a homogeneous micro-structure in the weld material and heat
affected zone and a gradual hardness distribution at a relatively low level. However,
a separate hexapod data analysis – introducing dedicated ρ∗ and n parameter
estimates reflecting different strength and mechanism, significantly reduced the
fatigue strength scatter band and life time standard deviation, allowing for more
accurate estimates. Individual data set performance at the possible cost of losing
general applicability depends on the production quality as well as the individual
data set size, defining the parameter confidence bounds.
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6.2. OUTLOOK
Reflecting on the completed research path with the focus on Se and ST as
respectively the best performing intact and cracked fatigue parameters, as well as
multiaxial fatigue testing using a hexapod, some suggestions for future work will be
provided, meant to provide additional insights and enhanced understanding with
respect to multiaxial fatigue of arc-welded joints.

Assuming a Basquin type of relation: log(N ) = log(C )–m · log(S), distinguished
strength and mechanism coefficients {log(C), m} have been obtained for mode-I and
mode-III. The life time dependent shear strength coefficient β(N ,C I ,C I I I ,mI ,mI I I )
has been introduced to account for mixed mode contributions (Chapter 3). However,
S – either Se or ST , is typically a cycle characteristic; i.e. a (n effective) stress
range, but does not account for the actual time history. In fact, S(t ) is reduced
to a peak-valley sequence S(N ) for the sake of cycle counting. Aim of β is to
translate the mode-III τ component to an equivalent σ mode-I value, meaning that
for τ(t ) and σ(t ), the shear strength coefficient would be time dependent as well;
i.e. β(t ). The stress path would scale non-uniform in the σ−βτ plane (Fig. 6.1) and
even multiaxial proportional loading would generate a non-proportional response.
Since strength and mechanism contributions turned out to be crucial for multiaxial
fatigue assessment, β(t ) reflects another source of non-proportionality, expected to
increase insight and understanding. Whereas β(N ) is obtained as a ratio of resistance
curves related to the cycle characteristic S(N ), S(t ) value should be converted to an
equivalent S(N ), or vice versa.

For both Se and ST , mode-{I, III} coupling improved the correlation for proportional
and non-proportional multiaxial fatigue test data, particularly reflected in dedicated
mechanism parameters, i.e. respectively ρ∗ and n. However, conclusive proof could
not be provided because of limited test data variations with respect to geometry and
multiaxial loading conditions (Chapters 2 to 5) and a dedicated test campaign is
recommended.

The total stress parameter ST is based on a two-stage crack growth model,
incorporating notch affected short crack- and far field dominated long crack
growth contributions. Because of mode-{I, III} interaction effects, mixed-mode
elastoplasticity coefficients n have been introduced, predominantly affecting the
short crack growth characteristics. Most likely n estimates have been obtained
using welded joint fatigue test data in a reversed engineering approach (Chapter 4).
However, mixed mode-{I, III} crack growth testing is highly recommended to prove
the two-stage crack growth behaviour and validate the corresponding n values, as
well as to address crack growth and fatigue resistance similarity. For long crack
mixed-mode characteristics, the adopted von Mises criterion could be extended with
a coupling term, but will complicate the adopted cycle counting algorithm.

The test data in literature as well as the data obtained using the TU Delft
hexapod is related to multiaxial mid-cycle fatigue; i.e. N = O(104...106). Crack
growth typically controls the fatigue damage process. The strength and mechanism
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Figure 6.1.: Time trace of proportional normal and shear stress components with
varying β values (a) and representation in the σ−√

βτ stress plane (b).
The proportional load path S in the σ−√

βτ stress plane is transformed
in the non-proportional load path S’ in the σ−√

βtτ plane.

parameters like ρ∗ for Se and n for ST are mid-cycle fatigue related average
values. In order to improve the parameter confidence – like for mode-I, still more
uniaxial mode-III and mixed mode-{I, III} mid-cycle fatigue test data is required.
For high-cycle fatigue; N >O(106), initiation becomes more dominant, meaning the
fatigue strength and mechanism parameters {log(C ),m} will change and ρ∗ as well n
are expected to become response level dependent, introducing at the same time a
resistance induced damage accumulation non-linearity. Since (maritime) structures
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are typically exposed to (stochastic) variable amplitude loading conditions, both
mid-cycle and high-cycle multiaxial fatigue resistance information is considered to
be important and high-cycle fatigue investigations are considered to be a crucial next
step. Response induced damage accumulation non-linearities may be introduced
– including mixed mode-{I, III} sequence effects – and should be investigated for
different type of spectral distributions.

For more advanced fatigue strength parameters like Se and ST , typically more input
is required. The exact weld geometry dimensions, for example. However, welding
induced residual stress seems to be another important parameter – in particular fur
tubular structures like often used for mixed mode-{I, III} testing and seems to be
responsible for significant part of the data scatter. At the same time, a comparison of
the data from literature and the data obtained using the TU Delft hexapod suggests
that the residual stress is responsible for the difference between average quality or
high-performance welds, implying that residual stress measurements are considered
to indispensable for new tests (Chapter 5).

For the adopted time domain formulation, cycle counting has been used to
incorporate the mode-{I, III} non-proportionality aspects (Chapters 3 and 4).
However, if the loading and response conditions are linear, stationary and can be
considered as random Gaussian processes [e.g. 206], a more cost effective frequency
domain formulation can be used, improving the balance between accuracy, efforts
and complexity (Chapter 1). Several efforts have already been taken [e.g. 207–209],
but should be re-addressed in view of the Se and ST results. Particular attention
should be paid to mean stress and interaction effects; i.e. mode-{I, III} coupling
contributions (Chapters 3 and 4), as well as wide band process implications.

Whereas strength and mechanism effects for multiaxial mid-cycle fatigue of
arc-welded joints have been observed and incorporated, including mixed-mode
effects, the research was limited to steel structures (Chapters 2 to 5). In order to
verify if the obtained parameter coefficient estimates are material characteristic as
well, investigations for different metals like aluminium, magnesium and titanium are
recommended.

Although the developed multiaxial fatigue parameters and corresponding resistance
curves define the capacity part, the demand; i.e. the loading and response
conditions, should be investigated for multiaxiality in the first place. Introducing
screening criteria with respect to level of multiaxiality, level of non-proportionality,
response magnitude and damage magnitude [e.g. 186] can improve insight. In
particular for relatively new type of structures like floating offshore wind turbines in
different configurations or ships with wind assisted propulsion systems involving two
important load components: wind and waves, since the governing fatigue loading
and response conditions are not well-established yet.
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MODE-III NOTCH SHEAR STRESS

COMPONENT FORMULATION

Adopting a complex potential, identically satisfying equilibrium (body forces are
assumed to be zero) and compatibility requirements – deformations without any
gaps or overlaps, the characteristic stress distribution singularity at a V-shaped notch
for a fillet weld geometry with ρ = 0 (Fig. 2.2) can be obtained [35–39]:

τxr (r,θ) =C1rλ−1 sin(λθ)−C2r−λ−1 sin(λθ)

τxθ(r,θ) =C1rλ−1 cos(λθ)+C2r−λ−1 cos(λθ).
(A.1)

The transformation from Cartesian (Eq. A.1) to Polar coordinates has been obtained
using [36]:

τxr = τxz cos(θ)+τx y sin(θ)

τxθ = τx y cos(θ)−τxz sin(θ).
(A.2)

Boundary conditions to be satisfied at the free surface denote:

τxr (r,θ =α) = 0 (A.3a)

τxθ(r,θ =α) = 0. (A.3b)

Because of symmetry, τxθ(r,θ = α) = τxθ(r,θ = −α) = 0 is identically satisfied.
Substitution of the stress components (Eq. A.1) in the boundary conditions (Eq. A.3)
yield:

(C1rλ−1 −C2r−λ−1)sin (λα) = 0 (A.4a)

(C1rλ−1 +C2r−λ−1)cos (λα) = 0. (A.4b)

Since (C1rλ−1 +C2r−λ−1) ̸= 0, the τxθ boundary condition (Eqs. (A.3b) and (A.4b))
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provides the eigenvalue solution λ:

cos(λα) = 0

λ=λτ = π

2α
.

(A.5)
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Figure A.1.: Eigenvalue solutions λτ(2α).

Only the first governing notch angle dependent λτ, defining the degree of weld
notch stress field singularity, will be considered (Fig. A.1). To satisfy the τxr boundary
condition (Eqs. (A.3a) and (A.4a)) as well: sin(λα) = 0 → λ= λτ = π/(2α) cannot be
satisfied at the same time, meaning:

C2 =C1r 2λ. (A.6)

Substitution of C2 (Eq. A.6) into the stress components τxr (r,θ) and τxθ(r,θ) (Eq. A.1)
yields:

τxr (r,θ) = 0

τxθ(r,θ) =C ′
1rλ−1 cos(λθ).

(A.7)

Introducing the dimensionless coordinate (r /tp ) as well as τs in order to establish
a relation to the far field stress (Section 2.2.3) provides for a weld notch angle
dependent stress angle θ =β:

τxθ

(
r

tp

)
= τs

(
r

tp

)λτ−1

µτF cos(λτβ) (A.8)
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with

µτF = C ′
1tλτ−1

p

τs
. (A.9)

For ρ > 0 (Fig. 2.3), the stress distribution is assumed to be affected for r → 0
only, suggesting the same complex potential as for ρ = 0 can be adopted, but the
boundary conditions (Eq. A.3) have to be changed into [39]:

τxr (r = ρ,θ) = 0 (A.10a)

τxθ(r,θ =α) = 0. (A.10b)

Because of symmetry, τxθ(r,θ = α) = τxθ(r,θ =−α) = 0 is identically satisfied, like
for ρ = 0. Substitution of the stress components (Eq. A.1) in the boundary conditions
(Eq. A.10) yield [39]:

(C1ρ
λ−1 −C2ρ

−λ−1)sin(λθ) = 0. (A.11)

Since the τxθ boundary condition (Eq. A.10b) for (ρ = 0) and (ρ > 0) is the same,
the eigenvalue solution does not change: λ= λτ = π/(2α). However, to satisfy τxr

(Eq. A.10a) requires:
C2 =C1ρ

2λ. (A.12)

Substitution of C2 (Eq. A.12) into the stress components τxr (r,θ) and τxθ(r,θ)
(Eq. A.1) denotes:

τxr (r,θ) =C ′
1r ′λτ−1 sin(λτθ)

(
1− (r0/r ′)2λτ

)
τxθ(r,θ) =C ′

1r ′λτ−1 cos(λτθ)
(
1+ (r0/r ′)2λτ

)
.

(A.13)

Introducing the dimensionless coordinate (r /tp ) as well as τs in order to establish a
relation to the far field stress (Section 2.2.3), like for ρ = 0, provides for a weld notch
angle dependent stress angle θ =β:

τxr

(
r

tp

)
= τs

(
r ′

tp

)λτ−1

µτF sin(λτβ)

{
1−

(
r0

tp

)2λτ (
r ′

tp

)−2λτ }

τxθ

(
r

tp

)
= τs

(
r ′

tp

)λτ−1

µτF cos(λτβ)

{
1+

(
r0

tp

)2λτ (
r ′

tp

)−2λτ } (A.14)

with

µτF = C ′
1tλτ−1

p

τs
. (A.15)
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MODE-III WELD LOAD CARRYING

SHEAR STRESS COEFFICIENT

To capture Ct w estimates, 4th order polynomial fitting functions have been
established. In case of non-symmetry:

Ct w =
0.166 + 0.078Q3P + 0.037W Q2 − 0.003T W Q2 −

0.372P − 0.758QP − 1.517QP 2 + 0.020W QP +
0.908P 2 + 0.436Q2P + 0.355Q2P 2 − 0.024T W 2P −
2.309P 3 − 0.168W P 3 + 0.004W P + 0.001W Q2P +
0.536Q − 0.079W Q + 2.487QP 3 − 0.051W QP 2 −

0.398Q2 + 0.179W P 2 − 0.003W Q3 + 0.012T W Q +
0.127Q3 + 0.002W 2P 2 − 0.003W 2Q + 0.016W 2QP −
0.015Q4 − 0.019W 2P + 0.003W 3Q + 0.028TQ2P −
0.225W + 0.087T P 3 − 0.015TQ − 0.179T QP +

0.095W 2 + 0.013TQ2 + 0.271T P + 0.024T W P 2 −
0.014W 3 − 0.006T W − 0.003T Q3 + 0.062T W P −

0.027T W QP − 0.003W 2Q2 − 0.402T P 2 + 0.301TQP 2

(B.1)
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and in case of symmetry:

Ct w =
−0.036 − 0.049QP − 0.018Q2P + 0.087TQP +
0.257P − 0.035QP 2 + 0.235QP 3 − 0.024T 2W P −

0.159P 2 + 0.038Q2P 2 + 0.008T 2Q − 0.004T 2W Q +
0.599P 3 + 0.047W P 3 − 0.036W Q − 0.022W QP −
1.619P 4 + 0.006W Q2 + 0.004T 2Q2 − 0.036T W P −
0.012Q − 0.012W 2P 2 − 0.003W 2Q2 + 0.004TQ2P +

0.016Q2 − 0.084W P + 0.0189W 2P + 0.028W QP 2 +
0.006T + 0.093T P − 0.102T P 2 + 0.013TQP 2 −

0.016T 2 + 0.022TQ + 0.016W P 2 + 0.038T W P 2 +
0.056W − 0.278T P 3 − 0.024TQ2 + 0.005T W Q −

0.012W 2 + 0.005T 2P − 0.058T 2P 2 − 0.036T 2QP +
0.028T W QP − 0.002T W 2 + 0.002T 2W − 0.004T W 2P

(B.2)

with

T = log(tc /2+ lw )/tb

W = lw /hw

Q = lw /tb

P = tb/Rt .

(B.3)

Negligible terms are excluded. Fitting function application is not limited to the
absolute geometry dimensions as shown (Figs. 2.8 and 2.15), but the range for
particular relative ones: (lw /hw ), (lw /tb), log((tc /2+ lw )/tb), (tb/Rt ), has to be
satisfied.



C
MODE-I Se FORMULATION FOR

SYMMETRY WITH RESPECT TO (tp/2)

Taking advantage of the stress distribution formulations for mode-I [18], the effective
notch stress criterion Se,I =∆σe (Eq. 3.1) becomes in case of symmetry with respect
to (tp /2) for ρ = 0:

Se,I =∆σs

(
tp

ρ∗
I

){[
1−2rσs

(
1− fρ=0

(
r

tp
= 1

2

))]
·

((
ρ∗

I

tp

)λσs µσsλσs (λσs +1)

λσs

[
cos{(λσs +1)βa}−χσs cos{(λσs −1)βa}

]+
(
ρ∗

I

tp

)λσa µσaλσa(λσa +1)

λσa
[sin{(λσa +1)βa}−χσa sin{(λσa −1)βa}]+

Cbw

{
2

(
ρ∗

I

tp

)2

−
(
ρ∗

I

tp

)})
+ rσs

{
2 fρ=0

(
r

tp
= 1

2

)
−1

}
·[{

1− fρ=0

(
r

tp
= 1

2

)}(
ρ∗

I

tp

)
−

(
ρ∗

I

tp

)2
]}

(C.1)

with

fρ=0

(
r

tp
= 1

2

)
= (λσa −λσs ) (λσaλσs −2Cbw )

λσa (λσa −1)−λσs (λσs −1)
+Cbw . (C.2)
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For ρ > 0:

Se,I =∆σs

(
tp

r0 +ρ∗
I

){[
1−2rσs

(
1− fρ>0

(
r

tp
= 1

2

))]
·

([(
r0 +ρ∗

I

tp

)λσs

−
(

r0

tp

)λσs
]
µσsλσs (λσs +1)

λσs
·[

cos{(λσs +1)βa}−χσs cos{(λσs −1)βa}
]+[(

r0 +ρ∗
I

tp

)ζσs

−
(

r0
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)ζσs
](

r0

tp

)λσs−ζσs λσs

ζσs

( 2α
π

)
4
{( 2α

π

)−1
} ·[

ωσs1 cos
{
(ζσs +1)βa

}+ωσs2(ζσs +1)cos
{
(ζσs −1)βa

}]+[(
r0 +ρ∗

I

tp

)λσa

−
(

r0

tp

)λσa
]
µσaλσa(λσa +1)

λσa
·

[sin{(λσa +1)βa}−χσa sin{(λσa −1)βa}]+[(
r0 +ρ∗

I

tp

)ζσa

−
(

r0

tp

)ζσa
](

r0
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)λσa−ζσa λσa

4ζσa(ζσa −1)
·[

ωσa1 sin
{
(ζσa +1)βa

}+ωσa2(ζσa +1)sin
{
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}]+
Cbw

{(
r0 +ρ∗

I

tp

)2

−
(

r0

tp

)2

−
(

2r0 +ρ∗
I

tp

)})
−

rσs

{
2 fρ>0

(
r

tp
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2

)
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}[{
1− fρ>0

(
r
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= 1
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)}(
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I

tp

)
−

(
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I

tp

)2
]}

.

Plate thickness tp is either the base plate or the cross plate value: tp = tb or
tp = tc , respectively (Fig. 4.1). Coefficients {µs ,µa} are obtained using force and
moment equilibrium. The involved eigenvalues {λσs ,λσa}, the eigenvalue coefficients
{χσs ,χσa} as well as the stress angle βa are notch angle α dependent. The weld
notch load carrying stress coefficient Cbw is geometry (tb , tc , lw ,hw ) and loading
( fn ,mb) dependent and contains the notch stress distribution specific information.



D
MODE-I WELD NOTCH STRESS

DISTRIBUTION

For mode-I the self-equilibrium stress part σse (r /tp ) consisting of the V-shaped
notch angle characteristic stress and the weld notch load carrying stress components
yields:

σse

(
r

tp

)
=

(
r

tp

)λσs−1

µσsλσs (λσs +1) · [cos{(λσs +1)βa}−χσs cos{(λσs −1)βa}
]+(

r

tp

)λσa−1

µσaλσa(λσa +1) · [sin{(λσa +1)βa}−χσa sin{(λσa −1)βa}]+

Cbw

{
2

(
r

tp

)
−1

}
.

(D.1)

Plate thickness tp is either the base plate or the cross plate value: tp = tb or
tp = tc , respectively (Fig. 4.1). Coefficients {µs ,µa} are obtained using force and
moment equilibrium. The involved eigenvalues {λσs ,λσa}, the eigenvalue coefficients
{χσs ,χσa} as well as the stress angle βa are notch angle α dependent. The weld
notch load carrying stress coefficient Cbw is geometry (tb , tc , lw ,hw ) and loading
( fn ,mb) dependent and contains the notch stress distribution specific information
[18]. The weld toe notch stress distribution formulation yields:

σn

(
r

tp

)
=σs

(
σse

(
r

tp

)
−2rσs

(
r

tp

))
. (D.2)
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MODE-III WELD NOTCH STRESS

INTENSITY DISTRIBUTION

Although the real weld notch radius ρ is often virtually zero – justifying the ρ = 0
assumption, in some cases the influence of ρ > 0 (Fig. 4.3b) cannot be neglected.
The coordinate system origin will be transformed (O′ → O), keeping the polar axis
parallel to the original one:

r ′2 = r 2 +2cos
(
βa −θ

)
r0r + r 2

0 (E.1)

with
r0 = ρ

(
1− π

2α

)
.

The weight function approach (Eq. 4.10) should be modified accordingly (r → r ′) and
the τse formulation [29] denotes:

τse

(
r

tp

)
=

[(
r ′

tp

)λτ−1

µτF cos(λτβa)

{
1+

(
r0

tp

)2λτ (
r ′

tp

)−2λτ }
− (Ct w +µτM )

{
2

(
r ′

tp

)
−1

}]
(E.2)

with

µτF =−
λτ

{
µτM

[(
r0
tp

)2 −
(

r0
tp

)]
−

(
r0
tp

)2
rτs −1

}
cos(λτβa)

[
1−

(
r0
tp

)2λτ
]
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and

µτM =

6λτ(λτ+1)
(

r0
tp

)2λτ+1 −3(λ2
τ−1)

(
r0
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)2λτ+2−
12λτ
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(
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(
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}
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)2λτ+1 − (9λ2
τ+6λτ−3)

(
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)2λτ +12λτ
(
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)3 +9
(
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)2 +4
(
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)2λτ+3 −6
(
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]
λτ−

4
(

r0
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)3 +3
(

r0
tp

)2 +4
(

r0
tp

)2λτ+3 +1

}
(λτ−1)

.

Although the full self-equilibrium stress distribution τse (r /tb) should be involved in
order to obtain Yn , integrating the complete expression does not provide satisfactory
results and a simplification is required. The original coordinate system origin
transformation (Eq. E.1) is reduced to:

r ′2 = r 2 + r 2
0 (E.3)

and the

{
1+

(
r0
tp

)2λτ (
r ′
tp

)−2λτ
}

term is excluded. At the same time, for an accurate Yn

definition near the notch, only the exponential term
(

r ′
tp

)λτ−1
needs to be evaluated

and the bending equilibrium related term (Ct w +µτM )

{
2
(

r ′
tp

)
−1

}
can be excluded
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from integration. Notch factor Yn becomes:

Yn
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=
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(E.4)

with 2F1(·) representing the Hypergeometric function expression. Note that the ρ = 0
formulation (Eq. 4.10) is still a ρ > 0 limit case. The notch stress intensity in terms of
Yn,I I I Y f ,I I I and K I I I for the same geometry and loading conditions as provided for
ρ = 0 (Fig. 4.5) are shown for illustration purposes (Fig. E.1). A good match with the
FE results is obtained.

Weld toe notches appear at both sides of a plate/shell if stress distribution
symmetry with respect to (tp /2) is detected, as shown for a DS welded cruciform
joint (Fig. 4.1). Any influence of another crack at a weld toe notch in the plane of
symmetry at (tp /2) is assumed to be a long crack effect, i.e. considering one notch
at the time is sufficient. For an out-of-plane shear force induced response (τs = τss ),
the self-equilibrium stress part of τs (r /tp ) for ρ = 0 yields [29]:

τse

(
r

tp

)
=

(
r

tp

)λτ−1

µτF cos(λτβa)−µτM

{
2

(
r

tp

)
−1

}
−Ct w

{
4

(
r

tp

)
−1

}
. (E.5)

For ρ > 0, the coordinate system origin must be transformed (O′ → O) like for
non-symmetry (Eq. E.1) and becomes:
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Figure E.1.: Mode-III weld toe notch SIF far field- and notch distribution (a, b) and
K I I I distribution (c, d) for a DS welded T-joint with ρ > 0; rτs = 0 (a, c),
rτs = 0.25 (b, d).
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(E.6)

To calculate the coefficients µτF and µτM , half the plate thickness is considered.
Using force and moment equilibrium only is principally not sufficient and a
symmetry condition has been added as a 3rd equation. However, the system of
equations has become over determined, meaning a least squares solution will be
obtained. Allowing for some relaxation, i.e. ignoring moment equilibrium, provides
quite accurate results – like for mode-I [18]. Force equilibrium in a weak form and
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symmetry for ρ = 0 provides [130]:
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) (E.7)

and
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(E.8)

and for ρ > 0 [130]:
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and
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Applying the τse (r /tp ) formulation (Eq. E.5) as unit crack face traction along the
assumed virtual crack path using the weight function approach (Eq. 4.10) denotes
for ρ = 0:
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(E.11)

In case of ρ > 0, using the complete τse (r /tp ) formulation (Eq. E.6) does not
provide satisfactory Yn,I I I ,s (a/t p) results, like for non-symmetry with respect to
(tp /2). Similarly modifying the coordinate system transformation, ignoring the
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notch affecting term
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terms from transformation for the sake of simplification, the notch

factor for an out-of-plane shear force becomes:
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(E.12)

For a torsion moment induced response (τs = τst ) the far field torsion stress
projection must be included. Like for the τns (r /tp ) formulation [130], Yn,I I I ,s (a/tp )
needs to be shifted first by either {1− fρ=0(a/tp = 1/2)} or {1− fρ>0(a/tp = 1/2)}
in order to meet the condition τnt (r /tp = 1/2) = 0. To satisfy anti-symmetry, the
τnt gradient at (r /tp = 1/2) should be equal to the far field torsion value: −2.
Subtracting the shift in terms of a torsion stress gradient −2{1− fρ=0(r /tp = 1/2)} or
−2{1− fρ>0(r /tp = 1/2)} from the unit stress 1, the obtained formulation needs to be
scaled using {2 fρ=0(r /tp = 1/2)−1} or {2 fρ>0(r /tp = 1/2)−1}. For ρ = 0, the notch
factor yields:
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(E.13)
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with

fρ=0

(
a

tp
= 1

2

)
=

(
2

π

)[2−λτµτF cos(λτβa)
p
πΓ

(
λτ
2

)
Γ

(
λτ+1

2

) +

[(−2µτM −4Ct w
)+π(

µτM +Ct w
)]
Γ

(
λτ+1

2

)
2Γ

(
λτ+1

2

) ]
.

In case ρ > 0:
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(E.14)

with fρ>0(a/tp = 1/2) being numerically obtained (Eq. E.12). Adopting a linear
superposition principle for the shear force and torsion moment contributions
provides for ρ = 0:
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(E.15)

The same formulation applies for ρ > 0, involving fρ>0(a/tp = 1/2). Like for
non-symmetry with respect to (tp /2), the ρ = 0 formulations are a ρ > 0 limit case.
For a tubular structure with attachment involving a DS welded cruciform joint and
an applied torsion moment Mt (Fig. 4.1), rτs changes for varying Rt . For Rt → tb

(reflecting a solid shaft) and Rt →∞ (corresponding to a quasi-planar structure),
the (rτs = 1) and (rτs = 0) limit cases appear. The performance of the obtained
formulations is illustrated (Figs. E.2 and E.3) for both cases as well as for an in
between value (rτs = 0.25). In general, the relative error (Fig. E.4) is within 5 [%] for
both Yn,I I I Y f ,I I I and K I I I , except for (a/tp ) → 0.
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Figure E.2.: Weld toe SIF far field- and notch distribution for ρ = 0 (a, c, e) and ρ > 0
(b, d, f) for a DS welded cruciform joint; rτs = 1 (a, b), rτs = 0.25 (c, d),
rτs = 0 (e, f).
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Figure E.3.: Weld toe SIF for ρ = 0 (a, c, e) and ρ > 0 (b, d, f) for a DS welded
cruciform joint; rτs = 1 (a, b), rτs = 0.25 (c, d), rτs = 0 (e, f).
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Figure E.4.: Relative Yn,I I I Y f ,I I I (a) and K I I I (b) error for DS welded cruciform
joint, comparing the FE solutions and the analytical results for the full
parameter application range.
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Table F.1.: Constant amplitude loading test results.

load case
∆σn ∆τn N Rσ Rτ ph.shift freq.ratio

σ : τ [-]
th.

cond.[MPa] [MPa] [-] [-] [-] [◦]

normal force 175 5.18 ·106 0.1 AW
Fn 175 1.06 ·107 0.1 AW

bending moment 320 7.32 ·104 0.1 AW
Mb 320 7.48 ·104 0.1 AW

320 9.38 ·104 0.1 AW
305 1.18 ·105 0.1 AW
305 1.47 ·105 0.1 AW
305 1.81 ·105 0.1 AW
240 6.98 ·105 0.1 AW
240 1.97 ·106 0.1 AW
240 2.39 ·106 0.1 AW
305 8.19 ·106 -1 AW
305 1.56 ·105 0.1 SR
240 9.36 ·105 0.1 SR
370 1.73 ·105 -1 SR

torsion moment 318 3.03 ·104 -1 AW
Mt 318 5.97 ·104 -1 AW

318 1.61 ·105 -1 AW
274 2.63 ·105 -1 AW
274 9.41 ·105 -1 AW
274 1.42 ·106 -1 AW
254 3.53 ·106 -1 AW
254 2.24 ·106 -1 AW
242 ∗1.19 ·107 -1 AW
231 ∗1.71 ·107 -1 AW
318 2.75 ·104 -1 SR
274 1.31 ·106 -1 SR

Mb and Mt
induced multiaxial

in-phase

240 139 8.32 ·104 0.1 0.1 0 1 AW
240 139 4.73 ·105 0.1 0.1 0 1 AW
220 127 4.07 ·105 0.1 0.1 0 1 AW
220 127 1.28 ·106 0.1 0.1 0 1 AW
200 115 2.17 ·106 0.1 0.1 0 1 AW
200 115 9.11 ·106 0.1 0.1 0 1 AW
170 98 ∗2.00 ·107 0.1 0.1 0 1 AW

Mb and Mt
induced multiaxial
90◦ out-of-phase

260 150 6.40 ·104 0.1 0.1 90 1 AW
260 150 7.99 ·104 0.1 0.1 90 1 AW
240 139 1.19 ·105 0.1 0.1 90 1 AW
240 139 1.37 ·105 0.1 0.1 90 1 AW
200 115 3.07 ·106 0.1 0.1 90 1 AW
200 115 4.38 ·106 0.1 0.1 90 1 AW
170 98 ∗2.00 ·107 0.1 0.1 90 1 AW

Mb and Mt
induced multiaxial

1 : 3 asynchronous**

240 139 3.76 ·104 0.1 0.1 0 3 AW
240 139 6.94 ·104 0.1 0.1 0 3 AW
225 130 1.02 ·105 0.1 0.1 0 3 AW
225 130 1.14 ·105 0.1 0.1 0 3 AW
210 121 1.32 ·105 0.1 0.1 0 3 AW
210 121 2.26 ·105 0.1 0.1 0 3 AW
190 110 ∗7.49 ·106 0.1 0.1 0 3 AW
170 98 ∗7.83 ·106 0.1 0.1 0 3 AW

(∗)runout
(∗∗) N correspond to σ cycles



F

173

Table F.2.: Variable amplitude loading test results.

load case
∆σn,max ∆τn,max N Rσ Rτ ph.shift freq. ratio

σ : τ [-]
th.

cond.[MPa] [MPa] [-] [-] [-] [◦]

bending moment 320 2.88 ·105 0.1 AW
Mb 320 4.02 ·105 0.1 AW

320 6.77 ·105 0.1 AW
260 1.72 ·106 0.1 AW
260 2.88 ·106 0.1 AW
260 5.89 ·106 0.1 AW
260 ∗1.00 ·107 0.1 AW

torsion moment 570 5.02 ·106 -1 AW
Mt 570 5.15 ·106 -1 AW

570 3.29 ·106 -1 AW
Mb and Mt

induced multiaxial
in-phase

267 154 4.97 ·105 0.1 0.1 0 1 AW
267 154 6.31 ·105 0.1 0.1 0 1 AW
267 154 9.36 ·105 0.1 0.1 0 1 AW
242 140 2.12 ·106 0.1 0.1 0 1 AW
242 140 4.75 ·106 0.1 0.1 0 1 AW
235 136 ∗1.00 ·107 0.1 0.1 0 1 AW
235 136 ∗1.00 ·107 0.1 0.1 0 1 AW

Mb and Mt
induced multiaxial
90◦ out-of-phase

290 167 3.70 ·105 0.1 0.1 90 1 AW
290 167 4.00 ·105 0.1 0.1 90 1 AW
290 167 7.93 ·105 0.1 0.1 90 1 AW
267 154 8.55 ·105 0.1 0.1 90 1 AW
267 154 1.43 ·106 0.1 0.1 90 1 AW
267 154 2.17 ·106 0.1 0.1 90 1 AW

(∗)runout
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