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Abstract 
 
 

The strive for cleaner energy sources is one of the most demanding problems the world faces 

today. The role of offshore wind in the energy transition is becoming increasingly relevant. One 

of the areas where the industry expects to reduce conservatism and uncertainty in design is the 

interaction of the foundations of offshore wind turbines with the surrounding soil. Currently, it 

is known that the dynamic behavior and natural frequencies of the offshore wind turbines in 

design and in actual measurements do not match. This is mainly the result of inaccuracy and 

lack of understanding of the soil behavior and the interaction with the foundation piles. 

Therefore, this study is aimed at developing analytical and numerical methods to describe the 

nonlinear dynamic soil response as excited by a harmonic excitation representing a Dynamic 

Cone Pressure Meter. Measuring the dynamic soil properties more accurately and using them in 

design will reduce the uncertainties and conservatism in the design of foundation piles. 

 

The nonlinear response of the soil is obtained using both numerical and semi-analytical methods. 

Numerical integration in the time domain and finite difference discretization of the spatial 

domain is employed for the numerical method. The response is obtained in the time domain and 

consists of both transient and steady state solutions. For the semi-analytical method, the 

harmonic balance method (HBM), a frequency domain method for calculating the steady state 

response, is applied. The accuracy and robustness of the HBM is assessed by comparing it with 

the numerical method.  

 

This study is divided in two main parts. In the first part a soil column is modeled. The numerical 

and semi-analytical methods to describe the one-dimensional linear and nonlinear dynamic soil 

response to a prescribed displacement are developed. The linear solution is obtained first since 

it is easier to get and interpret. It is also used to study the extent to which the nonlinearity 

influences the soil behavior. In the nonlinear analysis strain-dependent shear modulus and 

damping ratio are used. These are essential input parameters for conducting a ground response 

analysis. In this study, the curves constructed using the hyperbolic soil model are used for the 

expressions of strain-dependent shear modulus and damping.  

 



ii  

In the second part of the study, the cavity expansion problem is modeled to simulate a Dynamic 

Cone Pressure Meter (DCPM) that will be used for in-situ investigation of dynamic soil 

properties. The response of the soil to a prescribed displacement/ stress at the cavity is found 

using the numerical method and the HBM. Using the HBM different assumed solutions are 

implemented to study the influence of the higher harmonics. The HBM is assessed for both a 

finite and an infinite medium, meaning when standing waves and propagating waves are formed 

respectively.  

 

Overall, the HBM was found to have a comparable level of accuracy with the numerical method 

in modelling the nonlinear response of the soil column and the cavity problem. The difference 

results due to the limited number of harmonics used in the HBM and also due to the tolerances 

of the MALAB solvers used such as bvp5c and ode45. Both methods show that the nonlinearity 

affects the response considerably. As the nonlinearity increases, the amplitude and the phase 

shift of the response change. While it may be hard to interpret the results judging from the 

numerical solution only, they become much easier to understand by comparing them with the 

harmonic balance method. Moreover, while it takes hours to obtain the numerical solutions for 

different forcing frequencies, the frequency response function is obtained in a couple of minutes 

through the harmonic balance method. This shows that the harmonic balance method is a 

computationally efficient and powerful tool. Overall this study is an important step of the project 

that aims to develop a prototype of a DCPM for in-situ soil investigations. The DCPM will pave 

the way for the reduction of uncertainty in the soil-structure interaction models and help the 

offshore wind industry to increase cost efficiency while harvesting energy from a sustainable 

natural resource. 
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Nomenclature 

 
Latin symbols 

 

𝑡  time 
    

s 

𝐺 shear modulus  
    

N/m2 

Kb bulk modulus 
    

N/m2 

𝑢 displacement 
    

m 

𝑢𝑚𝑎𝑥 maximum displacement 
    

m 

𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 displacement in x, y, z directions 
    

m 

𝑢0 prescribed displacement amplitude 
    

m 

𝑧 depth 
    

m 

𝐻 bedrock depth 
    

m 

𝑟 radial distance 
    

m 

𝑅 radius 
    

m 

𝑘 wave number 
    

m-1 

𝑓 frequency  
    

Hz 

𝑐 wave speed 
    

m/s 

𝑐𝑠
∗ complex wave speed 

     

𝑒 deviatoric strain 
     

𝐽2 strain invariant 
     

𝑊 energy dissipated in one cycle                                                               
   

J 

𝑈𝑐 amplitude corresponding to 𝑐𝑜𝑠(𝜔𝑡) 
     

𝑈𝑐 amplitude corresponding to 𝑠𝑖𝑛 (𝜔𝑡) 
     

𝑈𝑐3 amplitude corresponding to 𝑐𝑜𝑠(3𝜔𝑡) 
     

𝑈𝑠3 amplitude corresponding to 𝑠𝑖𝑛(3𝜔𝑡) 
     

𝑠 Laplace transform parameter 
     

v 



 

𝐽1(𝑥) Bessel function of 1st kind 
     

𝑌1(𝑥) Bessel function of 2nd kind 
     

𝐾1(𝑥) Modified Bessel function, 2nd kind, 1st order 
     

𝐾0(𝑥) Modified Bessel function, 2nd kind, 0th order 
     

 

 
Greek symbols 

 

𝜎𝑟𝑟  radial stress 
    

N/m2 

𝜎𝑡𝑡 tangential stress  
    

N/m2 

𝜏 shear stress 
    

N/m2 

𝜀𝑣𝑜𝑙  volumetric strain 
    

 

𝜀𝑟𝑟 , 𝜀𝑡𝑡 radial/tangential shear strain 
    

 

𝛾 shear strain 
    

 

𝛾𝑟𝑒𝑓 reference shear strain 
    

 

𝜌 soil density  
    

N/m2 

𝜔 forcing frequency  
    

rad/s 

𝜇 Lame constant 
    

N/m2 

𝜆 Lame constant 
    

N/m2 

ɳ soil viscosity  
    

N/m2 

ν Poison ratio 
    

 

ξ damping ratio 
    

 

ξmax, ξmin maximum/minimum damping ratio 
     

𝛽 nonlinear curvature exponential coefficient  
     

 
 
 

 

Abbreviations 

DCPM Dynamic cone pressure meter 

EOM Equation of motion 

PI Plasticity index 

HBM Harmonic Balance Method 

OWT Offshore wind turbine 

OCR Over consolidation ratio 

SH-wave Horizontal shear wave 
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1 

 
Introduction 

 
In this chapter the social and scientific context of this thesis is discussed.  Results of earlier 

studies are briefly presented. From here on, research questions are raised, and the research 

goal of this thesis is proposed.  Finally, the content of this Master of Science work is 

discussed based on the individual chapters of this thesis. 

 
1.1 Research context 

Offshore wind turbines (OWT) are large-scale instruments designed for harvesting 

energy from the wind, a sustainable natural resource. The offshore wind industry has 

committed to reduce the levelized cost of electricity by 40% from 2010 to 2020 in the 

Netherlands [1]. An important part of this reduction can be obtained by improvements to 

the foundation design. The monopile is the preferred foundation for 76% of the wind 

turbines installed until 2014. It is estimated that 3.6% of the cost reduction can be achieved 

by optimizing the monopile foundation design [2]. 

As the offshore wind turbines are increasing in size and placed in deeper water, their 

monopile diameters have also increased. These large diameters are usually employed to 

reach the desired natural frequency [3]. However, if the true soil stiffness is used, the 

desired frequency can be reached employing small diameters. The over-sizing of the 

monopiles implies a waste of steel. Next to the waste of steal, systems with a higher natural 

frequency than designed may enter a resonance regime which involves a risk in terms of 

dynamic amplification and fatigue. Regarding the prediction of the fatigue lifetime, both 

soil stiffness and soil damping are highly influential. This means that the in-situ soil 

stiffness and damping need to be accurately known to predict the fatigue lifetime and 

prevent dynamic amplification. It is envisaged that these in-situ soil properties can be 

measured by a Dynamic Cone Pressure Meter (DCPM) with significantly higher accuracy 

than in the current practice.  
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Therefore, the aim of this study is to model the nonlinear dynamic soil response as excited 

by harmonic excitation representing the DCPM. Both numerical and semi-analytical 

methods are used. The accuracy and robustness of the harmonic balance method (HBM), a 

frequency domain method for calculating the steady state response, is assessed by comparing it 

with the numerical method.  

 

1.2 Earlier studies 

 
Different techniques exist to determine frequency and strain-dependent small-strain properties 

of the soil in situ. Some of them include the Multi-channel Analysis of Surface Waves, the 

Cross-Hole Test and the Seismic Cone Penetration Test [4]. These tests can determine the in-

situ small-strain shear modulus and damping ratio of the soil. However, the employed frequency 

of the waves in these methods is at least 10 times larger than the frequency of interest for 

offshore wind turbines [5].  

 

Laboratory tests, however, can be used to assess the dynamic soil parameters at the frequency 

band relevant for the OWT monopiles [6]. The advantage of these tests is that they have well 

defined and controllable boundary conditions. While they are valuable, the laboratory tests have 

severe limitations as well. They deviate from the original/natural stress and drainage conditions 

since they require soil sampling. Moreover, in the case of sandy soils, these samples need to be 

reconstituted, which implies uncertainty in the mimicked soil conditions in the laboratory. The 

reconstituted samples lose the original microstructure of the soil, which is an essential factor for 

the actual soil behavior. At the same time, the shear modulus and damping ratio strongly depend 

on the in-situ confining stress [7], which poses a source of potential inaccuracy in the input 

parameters of OWT support structure design models.  

 

Not only the small-strain behaviour, but also the larger-strain behavior of the soil is relevant for 

OWT support structures. This behaviour is mainly important for the response in the ultimate  

limit state. Laboratory studies into cyclic loading indicate that the evolution of the mechanical 

response of dense sand upon the number of cycles is influenced severely by the frequency 

imposed [7], affecting the values of the large-strain shear modulus and damping ratio. Even  
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though this is not the result of in-situ testing, it clearly demonstrates the need of accounting for 

frequency dependence of the soil properties.  

 

Recently, Siemens Gamesa Renewable Energy, Delft University of Technology and Fugro 

conducted a TKI-funded project called Disstinct, which stands for Dynamic Soil-Structure 

Interaction [8]. The main objective of the project was to gain more insight into the interaction 

between soil and monopile structure and to bring down the levelized cost of electricity. A 

method called “Effective Stiffness Method for small-strain soil reactions” was developed in the 

Disstinct project. This was done because the initial stiffness derived with the conventional p-y 

methodology as prescribed by the American Petroleum Institute does not capture the true small-

strain stiffness for rigidly behaving piles. Different from the p-y method, the new method 

predicts the true small-strain soil stiffness based on in-situ characterisation of the small-strain 

soil parameters, 3D modelling and translation of the 3D effects into a 1D effective model [8].  

 

In the summer of 2015, in-situ validation experiments on a full-size stand-alone monopile on 

the IJsselmeer Lake [9], were performed. It was found that the predicted stiffness is much closer 

to the actual soil stiffness than that predicted by the conventional p-y method which 

underestimates the soil stiffness by 140%. The newly developed method however overestimates 

the actual soil stiffness by 20% [9]. Although the small-strain stiffness prediction was 

significantly improved (compared to predictions using traditional methods (p-y curves)), the 

small-strain soil damping could not be predicted at all in the Disstinct project. In addition, the 

strain-dependent stiffness and damping were not addressed, neither were cyclic effects, while 

these parameters do play an essential role in the dynamic behaviour of an OWT.  

 

Considering the lack of knowledge and tools to reliably asses the in-situ strain and frequency 

depended parameters, development of a new tool such as a Dynamic Cone Pressure Meter 

(DCPM) is necessary. The DCPM is different from a conventional pressure meter. The pressure 

meter test has always been conducted in a static way, meaning that the pressure is applied 

‘slowly enough’ to allow for static analysis and extract static parameters. The DCPM is a special 

version of the pressure meter where the cylindrical membrane is an integral part of the cone of 

the CPT device. The internal of the cylinder is pressurized harmonically, thus the DCPM is a  
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device that excites the soil dynamically and in-situ, at frequencies and strain levels relevant for 

OWT monopiles.  

 

Therefore, the soil response as excited by harmonic excitation representing the DCPM is 

obtained in this study. The strain-dependent stiffness and damping is considered and the soil 

behaviour using semi-analytical and numerical methods is studied. The accuracy and robustness 

of the harmonic balance method is assessed by comparing it with the numerical method. The 

results are expected to help the project undertaken by TU Delft, Fugro and Siemens which aims 

at enhancing the fundamental knowledge related to the dynamic soil behaviour and developing 

the tools as well as the models that enable direct use of the extracted soil properties in the design 

community 

 

1.3 Problem formulation 

 
Based on the results of earlier studies, motivation and discussions/recommendations with 

committee members, the research objectives of the present study have been decided.  

1.3.1 Research objectives 
 

1. Developing a numerical method to describe the 1D nonlinear dynamic soil response to 

a prescribed harmonic displacement.  

Firstly, the numerical method is developed. This method describes the 1D nonlinear analysis of 

the response of a soil column. As excitation, a prescribed harmonic displacement is applied at 

the lower boundary of the medium (bed-rock motion).  

 

2. Developing a semi-analytical method to describe the 1D nonlinear dynamic soil response 

to a prescribed harmonic displacement.  

Afterwards, a semi-analytical method is developed. This method describes the 1D nonlinear 

analysis of the response of the soil column to a prescribed harmonic displacement at the lower 

boundary. The analytical and numerical models are compared with each other to validate the 

accuracy of the solution. 
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3. Developing a numerical method to describe the nonlinear dynamic soil response to a 

harmonic excitation as excited by a DCPM. 

The DCPM has a flexible membrane. The membrane displaces radially upon pressurization of 

its internal. The basic theory to approach this device is the cavity expansion theory with 

harmonic excitation. The response to the excitation is found and certain dynamic properties of 

the soil can be extracted. 

 

4. Developing a semi-analytical model to describe the nonlinear soil response to a harmonic 

excitation as excited by a DCPM. 

After obtaining the numerical model, a semi-analytical one is developed. It is based again on 

the cavity expansion theory. The nonlinear dynamic soil response is obtained considering a finite 

and semi-infinite medium. Lastly, the results obtained from the semi-analytical method are 

compared with the ones obtained from the numerical method to assess the accuracy of the semi-

analytical method (HBM). 

 

Above listed research objectives are achieved by answering the following research questions 

during the span of the study. 

 

1.3.2 Research questions 

 

1. Is the HBM an accurate and robust method for modelling the soil column and obtaining 

the nonlinear dynamic soil response? 

(a) How does the performance of the HBM for a problem with standing waves qualitatively and 

quantitatively compare to that of the numerical method with respect to accuracy and robustness? 

(b) To what extend do the higher harmonics influence the solution? 

(c) What factors are inhibiting the accuracy and robustness of the HBM? 

 

The harmonic balance method [10] is the method used for the semi-analytical approach. It is a 

computationally efficient alternative to time marching methods for modeling nonlinear dynamic 

systems when the response is periodic in time. Such nonlinear dynamic systems range from 

models as simple as Duffing’s oscillator, to complex models of a complete aircraft configuration  
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where nonlinearities may exist in both the fluid and the structure, and where flutter onset and 

limit cycle oscillations are of much interest [10]. The classical harmonic balance method starts 

by first substituting a temporal Fourier series expansion of the solution variables into the 

governing equations. Next, the equations are expanded, and the terms associated with each 

harmonic (i.e. 1, cos(ωt), cos(2ωt), . . ., cos(NHωt), sin(ωt), sin(2ωt), . . ., sin(NHωt)) are 

balanced. This yields 2NH + 1 equations for the 2NH + 1 harmonic coefficients where NH is the 

number of harmonics used. This number of harmonics used can be an issue. While higher 

harmonics may significantly contribute to the overall solution, when the number of harmonics 

included in the analysis increases, the resulting expression may be long, complex and difficult 

to implement. 

 

The robustness and accuracy of the HBM method is assessed by comparing it with the numerical 

method. In order to assess the robustness and the accuracy of the method, it is essential to define 

what is meant by these two terms. Robustness shall refers to the method’s ease of completing 

the computation until the response is obtained. It entails the amount of time and effort required 

by the user to set up the analysis such that it runs successfully to completion, and the 

computation time for the analysis to be completed. Accuracy shall refers to the degree to which 

the HBM results match the results of the numerical method.  

 

2. Is the HBM an accurate and robust method for modelling the cavity problem 

considering a finite and semi-infinite medium? 

(a) How does the performance of the HBM for a problem with propagating waves (semi-infinite 

medium) qualitatively and quantitatively compare to that of the numerical method with respect 

to accuracy and robustness? 

 

The sub questions mentioned under the first research question are addressed again when the 

cavity problem is modeled. When a finite medium is considered, certain boundary conditions 

such as a prescribed displacement/stress acting at the cavity and zero displacement/stress or a 

boundary dashpot at a certain distance from the cavity are used. This means that there are always 

incoming and outgoing waves. In the steady state, a standing wave is produced by the 

constructive interference of these incoming and outgoing traveling waves. If a semi-infinite 

medium is considered, the condition at infinity has to be specified in such a way that the response  

 



 

 

1.3.2 RESEACH QUESTIONS 7 

 

 

contains only an outgoing wave (i.e., propagating towards infinity), which is known as the 

radiation condition. To do this, a nonreflective boundary condition is implemented meaning that 

it allows outgoing waves to exit the domain without being reflected back and corrupting the 

solution. The HBM method is assessed considering both the problems with standing waves 

(finite medium) and propagating waves (semi-infinite medium).  

 

The results obtained using the numerical method and the HBM method are not only used to 

assess the accuracy and robustness of the HBM, but also to understand the nonlinear dynamic 

soil behavior. That is why the response is compared with the linear solution to investigate the 

extent to which the nonlinearity influences the response. In the next section, the manner in which 

these research questions are investigated is presented together with the structure of this thesis. 

 

1.4 Approach  

 

In the first part of this thesis, the behaviour of a soil column excited by a prescribed harmonic 

displacement at the bedrock is studied. In Chapter 2, the soil column response using the 

numerical method is obtained. First, the linear equation of motion with and without damping is 

used to find the linear response. It is important to start with the linear solution because it is easier 

to obtain and interpret. Moreover, the analytical solution can be easily found for the linear case. 

This solution is compared with the one obtained using the numerical method to make sure that 

the results are correct. Afterward, the nonlinearity is introduced by using the strain-dependent 

damping and shear modulus. The numerical solution is obtained for different levels of 

nonlinearity.  

 

In Chapter 3, the harmonic balance method is used to obtain the soil response. First the response 

is found for the linear case. Then the frequency response function is obtained for the nonlinear 

case. Different levels of nonlinearity are studied. Different number of harmonics are also 

considered to study their influence. Lastly the solutions obtained using the numerical method in 

Chapter 2 are compared with the ones obtained in this chapter through harmonic balance method 

to assess the accuracy and robustness of the later one.  
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In the second part of the thesis the cylindrical cavity problem is studied. In Chapter 4, the linear 

soil response of the cavity problem is studied first. The analytical solution of a sinusoidal 

variation of the displacement at the boundary of a cavity in a semi-infinite medium is 

considered. Afterward, the numerical solutions are obtained for both the linear and nonlinear 

cases. Different levels of nonlinearity and different boundary conditions are considered.  

 

In Chapter 5, the harmonic balance method is used to study the sinusoidal vibrations at the cavity 

boundary. Different boundary conditions, nonlinearity levels and number of harmonics are 

considered. A nonreflective boundary condition is implemented as well to study the behaviour 

of the semi-infinite medium. The solutions obtained in Chapter 4 using numerical methods are 

compared with the ones obtained in this chapter through harmonic balance method. 

 

In the last chapter, Chapter 6, the conclusions drawn in this study are presented. The accuracy 

and robustness of the harmonic balance method, the importance of higher harmonic, the 

influence of the nonlinearity are stated. Concrete answers to the research questions are 

presented. Finally, recommendations are given for future research work.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

  

  

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Part I 

 
Modeling the soil column



 

 

 

 

 

 

 

 

 

 
 

2 

 
Numerical solution 

 
In this chapter, the response of a soil column to prescribed displacement at the bedrock 

level is studied. The linear solution is first obtained. That is because for the linear case it is 

possible to obtain the analytical solution. Afterward, the numerical solution for the linear 

system is obtained and compared with the analytical one. The linear solution is also used 

to study the degree at which the nonlinearity influences the response. Then the strain-

dependent damping and shear modulus are used to include the nonlinearity. The solution 

of the nonlinear equation of motion is obtained by applying finite difference method for the 

spatial discretisation and numerical integration to solve the obtained differential equations. The 

goal of this chapter is to develop a numerical method for a soil column, find the response 

of this column for both the linear and nonlinear case and compare them.  

 

2.1 Linear analysis 

 

Firstly, the one-dimensional linear soil response is analyzed, starting with the analytical 

solution. The one-dimensional response analysis is based on the assumption that boundaries are 

horizontal, and that the response of a soil deposit is predominantly caused by SH-wave 

propagation vertically from the underlying bedrock. For the one-dimensional response analysis, 

the soil and the bedrock surface are assumed to extend infinitely in the horizontal direction. 

Procedures based on this assumption have been shown to predict ground response that is in 

reasonable agreement with measured response in many cases.   
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With reference to Figure 1 [11], the motion at the surface of a soil deposit is the free surface 

motion. The motion at the base of the soil deposit (also the top of bedrock) is called a bedrock 

motion. The motion at the location where the bedrock is exposed at the ground surface is called 

a rock outcropping motion.  

 

Figure 1. Ground motion nomenclature 

 
2.1.1 Analytical solution 

 

 

Uniform undamped soil on rigid rock.   First, a uniform layer of isotropic, linear elastic soil 

overlying rigid bedrock is considered. Harmonic horizontal motion of the bedrock will produce 

vertically propagating shear waves in the overlaying soil.  The equation of motion for this case 

is 

𝜌
𝜕2𝑢

𝜕𝑡2
= 𝐺

𝜕2𝑢

𝜕𝑧2
, 

where 𝑢 is the horizontal displacement at a certain depth 𝑧 and time 𝑡, 𝜌 is the soil density and 

𝐺 is the shear modulus. The soil column is subjected to prescribed displacement at the bedrock 

level and zero shear stress at the free surface. Thus, the boundary conditions are 

 

                 𝜏(0, 𝑡) = 0                                      

 𝑢(𝐻, 𝑡) = 𝑢0𝑠𝑖𝑛(𝜔𝑡),    

 

where 𝐻 is the bedrock level, 𝜏 is the shear stress, 𝑢0 is the amplitude of the prescribed 

displacement and 𝜔 is the excitation frequency. Since the prescribed displacement is harmonic, 

the excited wave motion of the column is harmonic as well. The frequency of the harmonic  

 

 

(2.1) 

(2.2) 

(2.3) 
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motion is the same as the excitation frequency 𝜔. Thus, the steady-state solution can be sought 

in the form 

𝑢(𝑧, 𝑡) = ∑ 𝐴𝑛𝑒(𝑖𝜔𝑡−𝑖𝑘𝑛𝑧),

2

𝑛=1

 

where 𝐴𝑛 is the complex amplitude and 𝑘𝑛 is the wave number. When the solution (2.4) is 

substituted in the equation of motion (2.1), it yields 

 

−𝜌𝜔2𝑢(𝑧, 𝑡) = −𝐺𝑘𝑛
2𝑢(𝑧, 𝑡). 

After simplifying the expresion (2.5), the wave number 𝑘 can be written as 

𝑘𝑛
2 =

𝜌𝜔2

𝐺
, 

which can be further simplified to 𝑘𝑛
2 = 𝜔2 𝑐2⁄  by representing the wave propagation velocity 

as 𝑐 = √𝐺 𝜌⁄  . As a result 

 𝑘1,2 = ±
𝜔

𝑐
. 

To find the values of A1 and A2, the boundary conditions are used. The boundary condition at 

the ground surface (2.2) is written as 

𝜏(0, 𝑡) = 𝐺𝛾𝑙𝑖𝑛│𝑧=0 = 0,  

where 𝛾𝑙𝑖𝑛 = 𝜕𝑢 𝜕𝑧⁄  is the shear deformation found from liner kinematics. Taking the derivative 

of 𝑢(𝑧, 𝑡), equation (2.4), with respect to 𝑧 and substituting it into the boundary condition (2.8) 

results in 

𝐴1 = 𝐴2. 

Using the expression (2.7) i.e. 𝑘2 = −𝑘1, and the relation (2.9) the general solution (2.4) 

becomes 

𝑢(𝑧, 𝑡) = 𝐴1𝑒
(𝑖𝜔𝑡−𝑖𝑘1𝑧) + 𝐴1𝑒

(𝑖𝜔𝑡+𝑖𝑘1𝑧). 

 

Thus, the displacement is given by the sum of the incident and reflected waves. A standing wave 

is obtained by the constructive interference of these upward and downward traveling waves 

depicted in Figure 2 [11], and it has a fixed shape with respect to depth. 

 

 

 

 

 

 

(2.4) 

(2.5) 

(2.6) 

(2.8) 

(2.10) 

(2.7) 

(2.9) 



 

 

2.1.1 ANALYTICAL SOLUTION 13 

 

 

Figure 2. Linear elastic soil deposit of thickness H underlain by rigid bedrock 

 

The standing wave and its amplitude are obtained by rewriting the solution (2.10) using Euler’s 

trigonometric identity  cos 𝑥 =
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
. The result is 

 

𝑢(𝑧, 𝑡) = 2𝐴1 cos(𝑘1𝑧) 𝑒(𝑖𝜔𝑡) 

 

                                                           Standing wave of amplitude 2A1 

 

To complete the problem analysis, the value of 𝐴1 should be defined using the boundary 

conditions (2.3) at the bedrock level. Before doing this, it is noted that the sine function in (2.3) 

can be represented as sin(𝜔𝑡) = 𝐼𝑚(𝑒(𝑖𝜔𝑡)). Using this representation, the second boundary 

condition (2.3) is written as 

 2𝐴1 cos(𝑘1𝐻)𝑒(𝑖𝜔𝑡) = 𝑢0𝑒
(𝑖𝜔𝑡). 

From the expression (2.12), the value of 𝐴1 becomes 

𝐴1 =
𝑢0

2 cos(𝑘1𝐻)
. 

Substituting (2.13) into (2.11), the response of the soil column to the prescribed displacement at 

the bedrock level reads 

𝑢(𝑧, 𝑡) =
𝑢0 cos(𝑘1𝑧)

cos(𝑘1𝐻)
𝑒(𝑖𝜔𝑡). 

Taking the imaginary part of this expression, the “real” displacement of the soil column under 

the prescribed sinusoidal displacement is found. Figure 5 shows the response at different depths. 

It can be seen that all the peaks are in the same vertical line as the response contains a standing 

wave when the steady state is developed. Since the prescribed displacement is sinusoidal, the  

 

 

 

 

 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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response is also sinusoidal with the same frequency as the excitation frequency. 

 

Figure 3. Steady state response at different depths for u(H,t)=0.001sin(25t) 

 

Obviously, the type of unbounded amplification predicted by this analysis cannot physically 

occur. The analysis assumed no dissipation of energy, or damping, in the soil. Since damping is 

present in all materials, more realistic results can be obtained by including damping into the 

model as shown below.  

 

Uniform, damped soil on rigid rock. Assuming the soil to have the shearing characteristics of 

a Kelvin-Voigt solid, the linear constitutive law with material damping can be written as 

𝜏 = 𝐺𝛾𝑙𝑖𝑛 + ɳ
𝜕𝛾𝑙𝑖𝑛

𝜕𝑡
, 

where ɳ is the viscosity of the material. The balance of momentum results in 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕𝜏

𝜕𝑧
. 

 

By substituting the expression of shear stress (2.15) into the equation (2.16), the equation of 

motion of the soil column with damping is written as 

 

𝜌
𝜕2𝑢

𝜕𝑡2
− 𝐺

𝜕2𝑢

𝜕𝑧2
− ɳ

𝜕3𝑢

𝜕𝑧2𝜕𝑡
= 0. 

      

As in the previous analysis, the soil column is subjected to zero shear stress at the free surface 

(2.2) and prescribed displacement at the bedrock level (2.3). 

 

(2.15) 

(2.16) 

(2.17) 
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To find the steady state solution, a harmonic solution in the following form is assumed: 

𝑢(𝑧, 𝑡) = 𝐵1𝑒
(𝑖𝜔𝑡+𝑖𝑘∗𝑧) + 𝐵2𝑒

(𝑖𝜔𝑡−𝑖𝑘∗𝑧). 

where 𝑘∗ is the complex wave number. Substituting (2.18) into (2.17) gives 

𝑘∗ = 𝜔 (√(𝐺 + 𝑖𝜔ɳ) 𝜌⁄ )⁄ . It can be shown that 𝑘∗ is given by 

𝑘∗ = 𝑘1 + 𝑖𝑘2, 

where 

𝑘1
2 =

𝜌𝜔2

2𝐺(1 + 4𝜉2)
(√1 + 4𝜉2 + 1) 

𝑘2
2 =

𝜌𝜔2

2𝐺(1 + 4𝜉2)
(√1 + 4𝜉2 − 1) 

 

and only the positive root of 𝑘1 and the negative root of 𝑘2 have physical signification [12]. 

Using the assumed solution (2.18) and the boundary conditions (2.2)-(2.3), the mathematical 

manipulations performed for the undamped soil layer are repeated for this analysis. Using the 

first boundary condition (2.2) results in  

𝐵1 = 𝐵2. 

Using the second boundary condition (2.3) yields 

𝐵1 =
𝑈

2 cos(𝑘∗𝐻)
. 

Substituting (2.22) and (2.23) in the steady state solution (2.21) yields 

𝑢(𝑧, 𝑡) =
𝑢0 cos(𝑘∗𝑧)

cos(𝑘∗𝐻)
𝑒(𝑖𝜔𝑡). 

This completes the analysis for the damped soil layer. The analytical solutions of the undamped 

damped soil column (2.14) and damped soil column (2.24) are used to validate the numerical 

method in the following section and to find the transfer function in the next chapter.  

 
2.1.2 Numerical solution 
 

For the numerical solution, finite difference discretization of the spatial domain is done. The 

finite difference method consists in approximating the differential operator by replacing the 

derivatives in the equation using differential quotients. The domain is partitioned in space and 

approximations of the solution are computed at the space points. By definition, the first-order 

derivative can be written as: 

 

 

 

(2.18) 

(2.19) 

(2.20) 

(2.22) 

(2.23) 

(2.24) 

(2.21) 
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𝜕𝑢

𝜕𝑧
(𝑧̅) = lim

∆𝑧→0

𝑢(𝑧̅ + ∆𝑧) − 𝑢(𝑧̅)

∆𝑧
= lim

∆𝑧→0

𝑢(𝑧) − 𝑢(𝑧̅ − ∆𝑧)

∆𝑧
= lim

∆𝑧→0

𝑢(𝑧̅ + ∆𝑧) − 𝑢(𝑧̅ − ∆𝑧)

2∆𝑧
 

The formulations above are approximaed as: 

 

(
𝜕𝑢

𝜕𝑧
)
𝑖
≈

𝑢𝑖+1 − 𝑢𝑖

∆𝑧
            𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

(
𝜕𝑢

𝜕𝑧
)
𝑖
≈

𝑢𝑖 − 𝑢𝑖−1

∆𝑧
           𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

(
𝜕𝑢

𝜕𝑧
)
𝑖
≈

𝑢𝑖+1 − 𝑢𝑖−1

2∆𝑧
       𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

where ∆𝑧 is the step size and 𝑖 represents the spatial points. A geometric interpretation of 

forward, backward and central difference is given in Figure 13.  

 

Figure 4. Geometric interpretation of finite difference methods 

The approximation of second-order derivatives (central difference) is found as shown below 

(
𝜕2𝑢

𝜕𝑧2)
𝑖

≈ [
𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑧
)]

𝑖
= lim

∆𝑧→0

(
𝜕𝑢
𝜕𝑧

)
𝑖+

1
2

− (
𝜕𝑢
𝜕𝑧

)
𝑖−

1
2

∆𝑧
 

 

≈

𝑢𝑖+1 − 𝑢𝑖
∆𝑧 −

𝑢𝑖 − 𝑢𝑖−1
∆𝑧

∆𝑧
=

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(∆𝑧)2
. 

 

If the data values are equally spaced with the step size ∆𝑧, the truncation error of the forward 

difference approximation has the order of O(∆𝑧). The truncation error of the backward 

difference approximation is the same. The central difference approximation has a truncation 

error of order O(∆𝑧2). This means that as ∆𝑧 decreases, the central difference converges faster 

than the other two methods. Therefore, in this study, the central difference method is used. It is 

clear that the algorithm is explicit meaning it is possible to express 𝑢𝑖+1 in term of quantities 𝑖 

and earlier ones (which are known). The scheme is also conditionally stable. 

 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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Using the finite difference method, the differential operator is approximated by replacing the 

derivatives in the equation using differential quotients. The domain is partitioned in space and 

approximations of the solution are computed at the spatial points. Considering the linear 

equation of motion (2.1) and substituting the space derivative in this equation by the expression 

(2.28) results in 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= 𝐺

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(∆𝑧)2
. 

To use the finite difference solver of MATLAB, the set of equations must be written in the state-

space form  

𝑢1 = 𝑢, 

𝑢2 =
𝜕𝑢

𝜕𝑡
. 

Using the state-space representation (2.30), the equation of motion (2.29) is written as 

 

𝜌
𝜕𝑢2,𝑖

𝜕𝑡
= 𝐺

𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑧)2
 

 

For every i = 0...N, where N is the maximum number of nodes, N+1 equations are obtained, one 

at each node in space i.e., soil depths. Considering the EOM at i= 0, results in 𝑢1,−1, which falls 

outside of the domain of the soil column considered. This is called a ghost point. Another ghost 

point is at N+1. To handle the ghost points, the boundary conditions are applied. As an example, 

the boundary condition at the free surface is considered. For 𝑖=0, the boundary condition (2.2) 

becomes 

𝜏(0, 𝑡) = 𝐺
𝑢1,1 − 𝑢1,−1

2∆𝑧
= 0. 

Clearly for 𝑢1,−1=𝑢1,1, the equation (2.32) is satisfied. This means that for 𝑖 = 0, the ghost point  

𝑢1,−1, can be written in terms of 𝑢1,1. The other boundary condition is the prescribed 

displacement at point N. Since the value of displacement is known because it is prescribed, there 

is no need to solve the equation of motion at this point. In this way the other ghost point is 

handled.  

 

Following the same procedure for the linear equation of motion with damping (2.17), the 

equation below is obtained 

 

𝜌
𝜕𝑢2,𝑖

𝜕𝑡
= 𝐺

𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑧)2
+ ɳ

𝜕

𝜕𝑡
(
𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑧)2
) 

(2.29) 

(2.30) 

(2.31) 

(2.33) 

(2.32) 
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The ghost points are handled following the same procedure explained above. The equation 

(2.33) is solved using the MATLAB solver ode45 which is a solver for ordinary differential 

equations. This solver implements a Runge-Kutta method with a variable time step for efficient 

computation. As a result, the displacement and the velocity are obtained for different time 

moments and soil depths. The solution obtained with the numerical method incorporates both 

the transient and the steady state solution. The solution is shown in Figure 5 at different soil 

depths. First, the transient solution is observed. The steady state is observed after around 10 

 

Figure 5. Linear solution obtained using the numerical method for a prescribed displacement u(H,t)=0.01sin(25t) 

 

seconds and it corresponds to a sinusoidal wave. This is expected since a sinusoidal 

displacement is prescribed at the bedrock level. The steady state solution obtained using the 

numerical solution is compared with the analytical steady state solution obtained in the previous 

section. The comparison is shown in Figure 6. The solutions are obtained at the free surface,  

 

Figure 6. Comparison of analytical and  numerical solutions ( steady state) at z=0 m, u(H,t)=0.01sin(25t) 
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z=0 m. As it is shown in the figure, the solutions coincide proving that the numerical method 

gives the correct response. In the next section, the numerical method is applied for the nonlinear 

analysis.  

  

2.2 Nonlinear analysis 
  

After obtaining the linear solution, the nonlinear response analysis of a soil column to the 

prescribed displacement is performed. First, the nonlinear EOM of the soil column is derived. 

To incorporate the nonlinearity, the strain-dependent shear modulus and damping is included. 

Then the same numerical procedure described for the linear case is used to solve the nonlinear 

system. Several cases corresponding to different nonlinearity levels are studied. Finally, the 

results obtained are analyzed.   

 

Governing equations for 1D: nonlinear analysis.  

First, an undamped soil column is considered. This means that the nonlinearity is incorporated 

by including the strain-dependent shear modulus only. The stress-strain relationship for the one-

dimensional nonlinear analysis is obtained by replacing the shear modulus 𝐺 with the strain-

dependent shear modulus as 

𝜎𝑥𝑧 = 2𝐺(𝛾)𝑒𝑥𝑧 

 

where 𝐺(𝛾) is the strain-dependent shear modulus and 𝑒𝑥𝑧 is the deviatoric strain. The strain 

depended shear modulus is defined based on stress and strain invariants and not based on 

individual deviatoric stress and strain components. Therefore, the strain-dependent shear 

modulus should not depend on the individual shear strain 𝛾𝑙𝑖𝑛, but on a single unambiguous 

value 𝛾 that represents the strain state. To find 𝛾, the second strain invariant 𝐽2 is of importance 

since 𝛾 = √𝐽2 . The expression of 𝛾 becomes 

𝛾 = √𝐽2 = √2(𝑒𝑥𝑥
2 + 𝑒𝑦𝑦

2 + 𝑒𝑧𝑧
2 + 2𝑒𝑥𝑦

2 + 2𝑒𝑥𝑧
2 +2𝑒𝑦𝑧

2 ). 

For the one-dimensional case studied, the expression of 𝛾 reduces to 

 𝛾 = 2|𝑒𝑥𝑧| 

and the expression of deviatoric strain 𝑒𝑥𝑧 becomes  

𝑒𝑥𝑧 =
1

2

𝜕𝑢

𝜕𝑧
. 

Substituting the expression (2.37) into the stress-strain relationship (2.34) yields 

 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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𝜎𝑥𝑧 = 𝐺(𝛾)
𝜕𝑢

𝜕𝑧
 

 

Substituting the stress-strain relationship (2.38) into Newton’s second law, the equation of 

motion becomes 

 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝐺(𝛾)

𝜕𝑢

𝜕𝑧
) = 𝐺(𝛾)

𝜕2𝑢

𝜕𝑧2
+ (

𝜕𝐺(𝛾)

𝜕𝛾

𝜕𝛾

𝜕𝑧
)
𝜕𝑢

𝜕𝑧
. 

 

Several formulations of strain-dependent shear modulus exist in literature. One of them is the 

stiffness reduction curve by Darendeli based on the hyperbolic model developed by Hardin and 

Drnevich [13]. This formulation is adopted for the present nonlinear analysis and is defined as 

𝐺(𝛾) =
𝐺0

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
,     𝛾 ≥ 0, 

where 𝛽 is the nonlinear curvature exponential coefficient and 𝛾𝑟𝑒𝑓 is the reference shear strain 

corresponding to the strain for which 𝐺 = 0.5𝐺0. The derivative of 𝐺(𝛾) is   

𝜕𝐺

𝜕𝛾
= −

(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

𝛾

𝛽𝐺0

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2 = −

𝛽

𝛾

(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
𝐺(𝛾) 

 

which is singular at 0 =  for 0 1  . Substituting the hyperbolic soil model formulation 

(2.40) and its derivative with respect to 𝛾 (2.41) into the equation of  motion (2.39), results in 

 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝐺0

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

[
 
 
 
𝜕2𝑢

𝜕𝑧2
−

𝛽

|
𝜕𝑢
𝜕𝑧|

(|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

𝜕𝑢

𝜕𝑧

𝜕

𝜕𝑧
|
𝜕𝑢

𝜕𝑧
|

]
 
 
 

 

 

After several mathematical manipulations to the equation (2.42), the final formulation of the 

equation of motion becomes 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝐺0

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

[
 
 
 

1 − 𝛽
(|

𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

]
 
 
 
𝜕2𝑢

𝜕𝑧2
. 

The nonlinear equation of motion (2.43) was obtained for an undamped soil column. Since 

damping is present in all materials, more realistic results can be obtained by including damping 

into the model as shown below. 

 

 

 

 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 
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Damping term 

 

In the linear soil analysis performed in the previous section, the term "ɳ
𝜕3𝑢

𝜕𝑧2𝜕𝑡
" was included in 

equation (2.17) to represent the material damping. For the nonlinear analysis, the following 

strain-dependent damping formulation [14] is considered 

 

𝜉( 𝛾) = 𝜉𝑚𝑖𝑛 + (𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛)( 𝛾 𝛾𝑟𝑒𝑓)/(1 + 𝛾 𝛾𝑟𝑒𝑓),⁄⁄  

 

where 𝜉𝑚𝑖𝑛 and 𝜉𝑚𝑎𝑥 are the minimum damping values at very low strain and the maximum at 

very high strain respectively. To include the formulation (2.44) into the equation (2.43) a 

relation needs to be obtained between 𝜉 (linear case) and ɳ. Starting with the linear constitutive 

law with material damping (see (2.16)) the shear stress is  

𝜏 = 𝐺𝛾𝑙𝑖𝑛 + ɳ
𝜕𝛾𝑙𝑖𝑛

𝜕𝑡
. 

Thus, the shear stress is composed of an elastic part (proportional to strain) and a viscous part 

(proportional to strain rate). For a harmonic shear strain of the form 

𝛾𝑙𝑖𝑛 = 𝛾0 sin(𝜔𝑡), 

where 𝛾0 is the maximum shear strain, the shear stress becomes  

𝜏 = 𝐺𝛾0 sin(𝜔𝑡) + 𝜔ɳ𝛾0 cos(𝜔𝑡). 

Equations (2.46) -(2.47) show that the stress-strain loop of a Kelvin-Voigt solid is elliptical. The 

elastic energy dissipated in a single cycle ∆𝑊 is given by the area of the ellipse [11] 

 

∆𝑊 = ∫ 𝜏
𝜕𝛾

𝜕𝑡

𝑡0+2𝜋/𝜔

𝑡0

𝑑𝑡 = 𝜋ɳ𝜔𝛾0
2, 

which indicates that the dissipated energy is proportional to the frequency of loading. However, 

real soils dissipate elastic energy hysteretically, by the slippage of grains with respect to each 

other. Therefore, their energy dissipation characteristics are insensitive to frequency. For 

discrete Kelvin-Voigt systems, the damping ration 𝜉 was shown to be related to the force-

displacement loop as shown in Figure 7 [11].  

 

 

 

 

 

 

 

(2.44) 

(2.45) 

(2.47) 

(2.48) 

(2.46)  
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Figure 7. Relationship between hysteresis loop and damping ratio 

Since the peak energy in the cycle 𝑊 is 

 

𝑊 =
1

2
𝐺𝛾0

2, 

then the damping ration can be written as 

𝜉 =
1

4𝜋

𝜋ɳ𝜔𝛾0
2

1
2

𝐺𝛾0
2

=
ɳ𝜔

2𝐺
. 

Reformulating (2.50), the equivalent viscosity can be written as 

 ɳ =
2𝐺

𝜔
𝜉. 

Looking back at the linear analysis, by writing the displacement as 

𝑢(𝑧, 𝑡) = 𝑈(𝑧)𝑒𝑖𝜔𝑡 , 

and substituting it into the linear equation of motion with damping (2.17) yields 

(𝐺 + 𝑖𝜔ɳ)
𝜕2𝑈

𝜕𝑧2
= −𝜌𝜔2𝑈, 

where 𝐺 + 𝑖𝜔ɳ is the complex shear modulus. Using the expression (2.51), the complex shear 

modulus can be written in terms of the damping ration as 

𝐺 + 𝑖𝜔ɳ = 𝐺 + 𝑖𝜔
2𝐺

𝜔
𝜉 =  𝐺(1 + 𝑖2𝜉) 

Using the expression of shear modulus in terms of damping ratio (2.54), the equation of motion 

(2.17) can be written as 1 

𝜌
𝜕2𝑢

𝜕𝑡2
= 𝐺(1 + 2𝜉

𝜕

𝜕𝑡
)
𝜕2𝑢

𝜕𝑧2
 

 

 

 
1 Note that to go from equation (2.54) to equation (2.55) the hysteretic damping ratio 𝜉 in (2.54) is 

multiplied by 𝜔 𝜔⁄ . When going to the time domain, the 𝑑 𝑑𝑡⁄  introduced corresponds to 𝑖𝜔. The 𝜔 left 

in the denominator should not exist in the time domain. However, if this 𝜔 is replaced by a fixed value 

such as the dominant frequency in the excitation, the frequency can be retained as a constant in the time 

domain equation. Thus, going from equation (2.54) to equation (2.55) entails a redefinition of 𝜉. This 

redefinition does not cause a problem since the purpose of this study is to assess the HBM. 

 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 
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The equation (2.55) is still for the linear case. For the nonlinear one, the shear modulus and 

damping are strain-dependent. The equation of motion becomes 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑧
(𝐺(𝛾)

𝜕𝑢

𝜕𝑧
+ 2𝐺𝜉(𝛾)

𝜕

𝜕𝑡

𝜕𝑢

𝜕𝑧
) 

 

Taking the derivatives with respect to 𝛾 and performing some mathematical manipulations on 

equation (2.56), the equation of motion obtained is  

 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝐺0

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

[
 
 
 

1 − 𝛽
(|

𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

]
 
 
 
𝜕2𝑢

𝜕𝑧2
+ 

 

+2𝐺0

(

 
 

𝜉𝑚𝑖𝑛 +

((𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛) (|
𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

)

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

)

 
 𝜕3𝑢

𝜕𝑧2𝜕𝑡
 

+2𝐺0

(

 
 

((𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛) (|
𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

)𝛽 |
𝜕𝑢
𝜕𝑧

|⁄

(1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

)

2

)

 
 𝜕

𝜕𝑧
|
𝜕𝑢

𝜕𝑧
|
𝜕2𝑢

𝜕𝑧𝜕𝑡
 

 

The last term of equation (2.57) contains 
𝜕

𝜕𝑧
|
𝜕𝑢

𝜕𝑧
| which is equal to 𝑠𝑔𝑛(𝑢𝑥,𝑧)𝑢𝑥,𝑧𝑧. The signum 

function can become negative which may introduce instability in the model. The instability in 

this situation is unrealistic and it results due to the chosen damping model. Normally 𝜉( 𝛾) is 

defined as the effective damping ratio for different strain levels, where the strain level is 

understood as the maximum strain in the oscillation. Hence, it is not the actual strain. However, 

in this analysis, the incorporation of 𝜉( 𝛾) (2.44) does implicitly assume that gamma is the actual 

(instantaneous) strain, which varies between zero and the maximum. Since this formulation may 

lead to instability, a different strain depended damping expression may be a way to improve the 

model. In the current analysis, to hinder the instability from occurring, the last term is neglected. 

Thus, the nonlinear equation of motion related to the soil column becomes 

 

 

 

 

(2.56) 

(2.57) 
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𝜌
𝜕2𝑢

𝜕𝑡2
=

𝐺0

1 + (|
𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

[
 
 
 

1 − 𝛽
(|

𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

1 + (|
𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

]
 
 
 
𝜕2𝑢

𝜕𝑧2
 

+2𝐺0

(

 
 

𝜉𝑚𝑖𝑛 +

((𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛) (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

)

1 + (|
𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

)

 
 𝜕3𝑢

𝜕𝑧2𝜕𝑡
 

This equation will be used to obtain the numerical and semi-analytical solutions.  

 

2.2.1 Numerical solution 
 
 

Even for the nonlinear case, the numerical solution is obtained using the same procedure as for 

the linear case. Finite difference method is used again followed by the state-space 

representation. In the equation of motion (2.58), first- and second- order space derivatives are 

present. They are replaced by the central difference approximations shown below 

(
𝜕𝑢

𝜕𝑧
)
𝑖
≈

𝑢𝑖+1 − 𝑢𝑖−1

2∆𝑧
 

(
𝜕2𝑢

𝜕𝑧2)
𝑖

≈
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(∆𝑧)2
 

Using the approximations (2.59)-(2.60), the state-space representation (2.30) and substituting 

them into the equation of motion (2.58) yields 

 

𝜌
𝜕𝑢2,𝑖

𝜕𝑡
=

𝐺0

1 + (|
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑧 | 𝛾𝑟𝑒𝑓)⁄
𝛽

[1 − 𝛽
(|

𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑧 | 𝛾𝑟𝑒𝑓)⁄
𝛽

1 + (|
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑧 | 𝛾𝑟𝑒𝑓)⁄
𝛽
]
𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑧)2
 

 

+2𝐺0 (𝜉𝑚𝑖𝑛 +
((𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛)(|

𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑧 | 𝛾𝑟𝑒𝑓)⁄
𝛽

)

1 + (|
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑧 | 𝛾𝑟𝑒𝑓)⁄
𝛽

)
𝜕

𝜕𝑡
(
𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑧)2
)    

 

Considering the EOM (2.61) at 𝑖= 0 and i= N results in 𝑢1,−1 and  𝑢1,𝑁+1 respectively, which 

fall outside of the domain of the soil column considered.  These ghost points are handled as 

explained in the previous section for the linear case by implementing the boundary conditions. 

Then the equations are solved using ode45. As a result, the displacement and the velocity are 

found for different time steps at different soil depths.  

 

(2.58) 

(2.59) 

(2.60) 

(2.61) 
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Now that the response is fully determined, the influence of the nonlinearity is investigated. To 

do so, different parameters can be changed. In this study, the value of 𝛾𝑟𝑒𝑓 is changed. Looking 

at the nonlinear equation of motion (2.58), it can be seen that for 𝛾𝑟𝑒𝑓 → ꝏ, this equation reduces 

to the linear equation of motion (2.55). This means that as the value of 𝛾𝑟𝑒𝑓 increases, the 

nonlinearity decreases and vice versa. The value of 𝛾𝑟𝑒𝑓 can be determined by the expression 

shown below [15] 

𝛾𝑟𝑒𝑓 = (𝜑1 + 𝜑2 ∗ 𝑃𝐼 ∗ 𝑂𝐶𝑅𝜑3)𝑝′𝜑4 , 

 

where 𝜑1to 𝜑5 are parameters which relate the reduction curve to the soil type and loading 

conditions and have been defined statistically after tests on samples of various materials and 

locations by Darendeli as follow 

𝜑1 = 0.0352,    𝜑2 = 0.0010,       𝜑3 = 0.3246,         𝜑4 = 0.3483,       𝜑5 = 0.9190.  

Given the values of plasticity index (PI) and the over consolidation ratio (OCR), the value of 

𝛾𝑟𝑒𝑓 can be calculated. For example, for PI=0 and OCR=1, 𝛾𝑟𝑒𝑓=0.03%. Of course, different 

values of PI and OCR would result in different 𝛾𝑟𝑒𝑓 values. In this study the largest 𝛾𝑟𝑒𝑓 used 

is 𝛾𝑟𝑒𝑓 = 0.1%, which for the soil properties chosen, Table 1, results to a 𝐺/𝐺0 = 0.87, a 

relatively low nonlinearity. To find the ratio 𝐺/𝐺0, the 𝛾 value is calculated at different nodes 

is space using the expression (2.36). Then the maximum 𝛾 value is chosen and used in the 

hyperbolic soil model expression (2.40) to find the 𝐺/𝐺0. Since the maximum 𝛾 value is used, 

the ratio 𝐺/𝐺0 corresponds to the maximum reduction in 𝐺. To study the influence of 

nonlinearity, the value of 𝛾𝑟𝑒𝑓 is decreased. The input parameters shown in Table 1 on are the 

same for all the cases studied.  

 

Table 1. Input parameters 

𝐺0 (MPa) 𝜌 (𝑘𝑔 𝑚3⁄ ) 𝛽 𝜉𝑚𝑎𝑥  𝜉𝑚𝑖𝑛  𝑢0 (m) 𝜔 (rad/s) 

1.8 ∙ 108 2000 1 2% 0 0.001 25 

 

 

While the response can be found at different depth levels, for comparison reasons, the steady 

state solution of the linear case and the nonlinear response at the surface, i.e. z=0 are presented.  

Figure 8 shows the solution for a level of nonlinearity corresponding to G/G0 =0.87, Table 2. It 

can be seen that for this level of nonlinearity, the amplitude of the nonlinear solution is slightly 

bigger than that of the linear solution. As the nonlinearity increases, the value of the shear 

(2.62) 
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modulus decreases. Since the soil stiffness decreases, an increase in the amplitude of the 

displacement is expected.  

 

Table 2.Output parameters for γref=0.1 % (HB2) 

𝛾ref G/G0 𝜉 

0.1% 0.87 0.26% 

 

 

Figure 8. Comparison of steady state solution (linear case) and nonlinear solution for u(H, t)=0.001sin(25t) and 
𝛾𝑟𝑒𝑓 = 0.1% 

 

By decreasing the 𝛾𝑟𝑒𝑓 value to 0.035%, the nonlinearity is increased (𝐺/𝐺0  = 0.58), Table 3. 

From Figure 9, it is observed that the amplitude of this nonlinear case is not only higher than 

that of the linear one, but also higher than the one seen in Figure 8, corresponding to a lower 

nonlinearity(𝐺/𝐺0  = 0.87). This means that as the nonlinearity increased, the amplitude of the 

steady state of the nonlinear solution increased as well.  

 

Table 3. Output parameters for γref=0.035%, 

𝛾𝑟𝑒𝑓  G/G0 ξ 

0.035% 0.58 0.84 % 
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Figure 9. Comparison of steady state solution (linear case) and nonlinear solution for u(H, t)=0.001sin(25t) and 
𝛾𝑟𝑒𝑓 = 0.035% 

The trend changes when 𝛾ref =0.01% corresponding to a higher nonlinearity (𝐺/𝐺0  = 0.53), 

Table 4, is used. Now the amplitude of the displacement is smaller than the one shown in 

Figure 9 where 𝐺/𝐺0  = 0.58. Moreover, a phase shift is observed, Figure 10.  

 

Table 4.Output parameters  for γref =0.01%, 

𝛾𝑟𝑒𝑓  G/G0 ξ 

0.01% 0.53 0.94 % 

 

 

Figure 10. Comparison of steady state solution (linear case) and nonlinear solution for u(H, t)=0.001sin(25t) and 
𝛾𝑟𝑒𝑓 = 0.01% 
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From the cases shown above, it is observed that the amplitude of the displacement (steady state) 

of the nonlinear case is bigger than that of the linear case. As the level of nonlinearity increases 

by decreasing the 𝛾ref value, the value of the shear modulus decreases. This corresponds to a 

decrease in soil stiffness which explains the increase of the amplitude of the displacement for 

the first two cases. However, the last case, Figure 10, shows that the amplitude of the 

displacement drops, and a phase shift is also observed. This can be explained considering the 

damping ratio  𝜉. In the cases studied, as the nonlinearity increased, the 𝜉 value increased as 

well. In the last case, the damping value was big enough to decrease the amplitude and cause 

the phase shift. A better understanding is gained by comparing the numerical solution with the 

semi-analytical one obtained using the HBM as it is presented in the next chapter.



 

 

 

 

 

 

 
 

3 

 
Harmonic balance method 

 

 

The harmonic balance method is applied to obtain the semi-analytical model of the soil column 

under prescribed displacement at the bedrock level. This method is a computationally efficient 

alternative to time marching methods for modeling nonlinear dynamic systems when the 

response is periodic in time. Such nonlinear dynamic systems range from models as simple as 

Duffing’s oscillator, to complex models of a complete aircraft configuration where 

nonlinearities may exist in both the fluid and the structure, and where flutter onset and limit 

cycle oscillations are of much interest [10]. The aim of this chapter is to obtain the response of 

the soil column under a prescribed displacement at the bedrock level using the HBM method 

and compare it with the response obtained using the numerical method to validate the HBM. 

3.1 Linear analysis 

 
In the second chapter, the analytical solutions of the damped and undamped soil column for the 

linear case were obtained in time domain. These solutions found can be used to find the transfer 

functions. Therefore, using the equation below (corresponding to (2.14)) from the uniform 

undamped soil analysis, a transfer function 𝐹1(𝜔) that describes the ratio of displacement 

amplitudes at any two points in the soil layer can be defined.  

𝑢(𝑧, 𝑡) =
𝑢0 cos(𝑘1𝑧)

cos(𝑘1𝐻)
𝑒(𝑖𝜔𝑡). 

Choosing these two points to be the top and bottom of the soil layer the transfer function 

becomes 

𝐹1(𝜔) =
𝑢𝑚𝑎𝑥(0, 𝑡)

𝑢𝑚𝑎𝑥(𝐻, 𝑡)
=

1

cos (𝑘1𝐻)
=

1

cos (𝜔𝐻/𝑐)
. 

The modulus of the transfer function is the amplification function 

|𝐹1(𝜔)| =
1

|cos (𝜔𝐻/𝑐)|
 

which indicates that the surface displacement is always at least as large as the bedrock  

(3.2) 

(3.3) 

(3.1) 

29 
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displacement (since the denominator can never be greater than 1) and, at certain frequencies, is 

much larger. Thus |𝐹1(𝜔)| is the ratio of the free surface motion amplitude to the bedrock 

motion amplitude. As 𝜔𝐻/𝑐 approaches 𝜋 2⁄ + 𝑛𝜋, the denominator of equation (3.3) 

approaches zero, which implies that infinite amplification (since 𝜉 = 0), or resonance, will 

occur as shown in Figure 11.  

 

Figure 11. Influence of frequency on steady-state response of undamped linear elastic layer 

In Chapter 2, the response was found for a damped soil layer as well. Using the equation below 

(corresponding to (2.24)) from the uniform damped soil analysis, 

𝑢(𝑧, 𝑡) =
𝑢0 cos(𝑘∗𝑧)

cos(𝑘∗𝐻)
𝑒(𝑖𝜔𝑡) 

the complex valued transfer function is expressed again as the ratio of the displacement response 

at the ground surface and the bedrock level 

𝐹2(𝜔) =
𝑈̃(0, 𝜔)

𝑈̃(𝐻,𝜔)
=

1

cos (
𝜔
𝑐𝑠

∗ 𝐻)
 

A plot of |𝐹2(𝜔)| versus frequency for different values of material viscosity ɳ, is shown in 

Figure 12. The amplification reaches a local maximum whenever 𝑘𝐻 ≈ 𝜋 2 + 𝑛𝜋⁄  but it never 

reaches a value of infinity since the material viscosity is included. Comparing the three graphs 

in Figure 12, it can be seen that the amplification value is smaller when the material viscosity is 

bigger. Moreover, the response at the higher frequencies is more effected that the one at the 

lower frequencies. 

 

 

 

(3.4) 

(3.5) 
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Figure 12. Influence of frequency on steady-state response of damped linear elastic layer 

This completes the derivation of the transfer function 𝐹1(𝜔) (3.2) for the undamped soil column and the 

transfer function 𝐹2(𝜔) (3.5) for the damped soil column. These solutions are compared with the ones 

obtained using the HBM in the following section. 

 

3.2 Nonlinear analysis 

 
3.2.1 Semi-analytical solution 

 
The harmonic balance method starts by first substituting a temporal Fourier series expansion of 

the solution variables into the governing equations. Next, the equations are expanded, and the 

terms associated with each harmonic (i.e. 1, cos(ωt), cos(2ωt), . . ., cos(NHωt), sin(ωt), sin(2ωt), 

. . ., sin(NHωt)) are balanced. To do this, the orthogonal properties of sine and cosine functions 

are used and the terms proportional to cos(nωt), 𝑛 ∈ {0,1,… ,𝑁𝐻} and sin(nωt), 𝑛 ∈ {1,2,… ,𝑁𝐻} 

are collected. This yields 2NH + 1 equations for the 2NH + 1 harmonic coefficients where NH is 

the number of harmonics used. However, the number of harmonics used can be an issue. While 

higher harmonics may significantly contribute to the overall solution, as the number of 

harmonics included in the analysis increases, the resulting expression may be long, complex and 

difficult to implement. The equation of motion presented below is used to apply the harmonic 

balance method and it is same equation as the one used for the numerical analysis 
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𝜌
𝜕2𝑢

𝜕𝑡2
=

𝐺0

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

[
 
 
 

1 − 𝛽
(|

𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

1 + (|
𝜕𝑢
𝜕𝑧| 𝛾𝑟𝑒𝑓⁄ )

𝛽

]
 
 
 
𝜕2𝑢

𝜕𝑧2
+ 

 

+2𝐺0

(

 
 

𝜉𝑚𝑖𝑛 +

((𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛) (|
𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

)

1 + (|
𝜕𝑢
𝜕𝑧

| 𝛾𝑟𝑒𝑓⁄ )
𝛽

)

 
 𝜕3𝑢

𝜕𝑧2𝜕𝑡
. 

The solution of the equation (3.6) is considered to be of the form of a truncated Fourier series 

expansion as follows 

u(z, t) = û0(z) + ∑(û2n−1(z) cos(nωt) + û2n(z) sin(nωt)),

NH

n=1

 

where ω is the fundamental frequency of oscillation and ûn (n = 0,1, … , NH) are the harmonic 

balance solution Fourier coefficient variables. The Fourier expansions of the first- and second-

order time derivatives of displacement are 

u̇(z, t) = ∑(−nωû2n−1(z) sin(nωt) + nωû2n(z) cos(nωt)),

NH

n=1

 

ü(z, t) = ∑(−(nω)2û2n−1(z) cos(nωt) − (nω)2û2n(z) sin(nωt)).

NH

n=1

 

The Fourier expansions of the first- and second-order space derivatives of displacement are 

u′(z, t) = ∑(û2n−1
′ (z) cos(nωt) + û2n

′ (z) sin(nωt))

NH

n=1

, 

u′′(z, t) = ∑(û2n−1
′′ (z) cos(nωt) + û2n

′′ (z)sin(nωt)).

NH

n=1

 

 

The first assumed solution is referred to as HB2, because it includes 2 terms. 

u(z, t) = Uc cos(ωt) + Us sin(ωt), 

where Uc and Us correspond to the unknown amplitudes of cos(ωt) and sin(ωt) respectively,  

 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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for n=1. Using this assumed solution, the partial derivatives of the equation of motion (3.6) are 

written as 

𝜕2𝑢

𝜕𝑡2
= −𝜔2(𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡)) 

|
𝜕𝑢

𝜕𝑧
| = |𝑈𝑐

′ cos(𝜔𝑡) + 𝑈𝑠
′sin(𝜔𝑡)| 

𝜕2𝑢

𝜕𝑧2
= 𝑈𝑐

′′ cos(𝜔𝑡) + 𝑈𝑠
′′sin(𝜔𝑡) 

𝜕3𝑢

𝜕𝑧2𝜕𝑡
= −𝜔𝑈𝑐

′′ sin(𝜔𝑡) + 𝜔𝑈𝑠
′′sin(𝜔𝑡) 

 
The terms (3.13) -(3.16) are substituted into the equation of motion (3.6). After substituting, 

each term of the equation is multiplied with 2cos(𝜔𝑡)/𝑇 where 𝑇 = 2𝜋 𝜔⁄  and integrated over 

one period 𝑇 to make use of the orthogonality properties. Afterwards, each term is multiplied 

with 2sin(𝜔𝑡) /𝑇 and integrated over one period. As a result, two equations are obtained which 

can be written in the matrix form as shown below 

 

−𝜔2

𝑐2 [
𝑈𝑐

𝑈𝑠
] = 𝑴[

𝑈𝑐
′′

𝑈𝑠
′′], 

where  

𝑴 = [
𝑚11 𝑚12

𝑚21 𝑚22
], 

 

 

𝑚11 = ∫
𝜔

𝜋

𝑇

0

𝑙1𝑐𝑜𝑠2(𝜔𝑡)𝑑𝑡 − ∫
𝜔2

𝜋

𝑇

0

𝑙2𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡, 

 

𝑚12 = ∫
𝜔

𝜋

𝑇

0

𝑙1𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 + ∫
𝜔2

𝜋

𝑇

0

𝑙2𝑐𝑜𝑠2(𝜔𝑡)𝑑𝑡, 

 

𝑚21 = ∫
𝜔

𝜋

𝑇

0

𝑙1𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 − ∫
𝜔2

𝜋

𝑇

0

𝑙2𝑠𝑖𝑛
2(𝜔𝑡)𝑑𝑡, 

 

𝑚22 = ∫
𝜔

𝜋

𝑇

0

𝑙1𝑠𝑖𝑛
2(𝜔𝑡)𝑑𝑡 + ∫

𝜔2

𝜋

𝑇

0

𝑙2𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡, 

 

 

 

 

 

 

(3.13) 

(3.14) 

(3.17) 

 
 

(3.7) 

(3.18) 

 
 

(3.7) 

(3.19) 

 
 

(3.7) 

(3.20) 

 
 

(3.7) 

(3.21) 

 
 

(3.7) 

(3.22) 

 
 

(3.7) 

(3.15) 

(3.16) 
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𝑙1 =
1

1 + (|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′ sin(𝜔𝑡)| 𝛾
𝑟𝑒𝑓

)⁄
𝛽
[1 − 𝛽

(|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡)| 𝛾
𝑟𝑒𝑓

)⁄
𝛽

1 + (|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡)| 𝛾
𝑟𝑒𝑓

)⁄
𝛽
], 

 

 

 

𝑙2 = 2(𝜉
𝑚𝑖𝑛

+
((𝜉

𝑚𝑎𝑥
− 𝜉

𝑚𝑖𝑛
)(|𝑈𝑐

′ cos(𝜔𝑡) + 𝑈𝑠
′sin(𝜔𝑡)| 𝛾

𝑟𝑒𝑓
)⁄
𝛽
)

1 + (|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡)| 𝛾
𝑟𝑒𝑓

)⁄
𝛽

). 

 

Not only the terms of the equation of motion are projected onto cosine and sine. The boundary 

conditions are projected as well. The boundary conditions of the soil column are prescribed 

displacement at the soil base and zero shear stress at the surface. Considering a sinusoidal 

displacement as the prescribed displacement, with a forcing amplitude 𝑢0, at the bedrock depth 

𝐻 results in 

𝑢(𝐻, 𝑡) = 𝑢0𝑠𝑖𝑛(𝜔𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡) 

⟾ 𝑈𝑐 = 0,      𝑈𝑠 = 𝑢0. 

 

Considering the boundary condition at the free surface results in  

   𝜏(0, 𝑡) = 𝐺
𝜕𝑢

𝜕𝑧
⃒𝑧=0 + 2𝜉

𝜕

𝜕𝑡

𝜕𝑢

𝜕𝑧
⃒𝑧=0 

=  𝐺|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡)| + 2𝜉|−𝜔𝑈𝑐
′ sin(𝜔𝑡) + 𝜔𝑈𝑠

′cos(𝜔𝑡)| = 0 

⟾ 𝑈𝑐
′ = 0, 𝑈𝑠

′ = 0. 

 

The obtained equations (3.17) and the projected boundary conditions (3.25)-(3.26) are 

implemented and the resulting boundary value problem (BVP) is solved using the MATLAB 

solver bvp5c.  This BVP solver integrates the system of differential equations of the form y′ 

= f(x,y) subjected to the boundary conditions and the initial solution guess. Thus, to use this 

solver, the equation (3.17) must be written as shown below and then in the state-space form  

[
𝑈𝑐

′′

𝑈𝑠
′′] =

−𝜔2

𝑐2
𝑴−𝟏 [

𝑈𝑐

𝑈𝑠
]. 

 

As a result, the amplitudes 𝑈𝑐 and 𝑈𝑠 are found at a certain depth, for different excitation 

frequencies. Adding the squares of these terms and taking their square root, the frequency 

response function (FRF) is found.  

 

 

 

(3.23) 

 
 

(3.7) 

(3.24) 

 
 

(3.7) 

(3.25) 

 
 

(3.7) 

(3.26) 

 
 

(3.7) 

(3.27) 

 
 

(3.7) 
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To obtain the solution, an initial excitation frequency is chosen, 𝜔 = 1 𝑟𝑎𝑑/𝑠 in this case. Then 

the excitation frequency is varied over the range of interest. Due to the nonlinear behaviour, 

multiple amplitudes may exist for the same frequency of excitation depending on the initial 

guess. To observe if there is more than one amplitude for a certain frequency of excitation, two 

solutions are obtained. One solution is obtained by increasing frequency sweep and the another 

one by decreasing the frequency sweep. When the excitation frequency is increased/ decreased, 

the amplitudes 𝑈𝑐 and 𝑈𝑠 found from the previous computational step are used as initial guesses 

for the HB solution process. The very first initial guess used is 𝑢 = 0. If both the solutions 

obtained coincide, it means that for each frequency of excitation there exists a unique amplitude. 

 

Several cases are studied, corresponding to different levels of nonlinearity. The cases presented 

in this chapter correspond to the ones obtained in Chapter 2 using the numerical method. This 

means that the values of input parameters are the same, Table 5. Using the numerical method, 

the response was found for one forcing frequency. This response included both the transient and 

the steady state solution. Now the FRF is obtained, which gives the amplitude of the response 

of the steady state only, at a range of forcing frequencies.  

 

Table 5. Input parameters 

G0 (MPa) 𝜌 (𝑘𝑔 𝑚3⁄ ) 𝛽 𝜉𝑚𝑎𝑥  𝜉𝑚𝑖𝑛  𝑢0(m) 𝜔 (rad/s) 

1.8 ∙ 108 2000 1 2% 0 0.001 25 

 

The first case studied corresponds to 𝛾ref=0.1%. The values of 𝐺/𝐺0 and ξ are shown in Table 7. 

 

Table 6. Output parameters for 𝛾ref=0.1 % (HB2) 

𝛾ref G/G0 𝜉 

0.1% 0.87 0.26% 

 

Figure 13 shows the FRF at z=0 m, i.e. the free surface. The amplitude of the response is 𝑈 =

√𝑈𝑐
2 + 𝑈𝑠

2. This FRF is clearly different from that of the linear case. It is slightly tilted to the 

left due to the softening behavior of the soil. As it can be seen, both the solutions obtained by 

increasing the excitation frequency (non-linear up) and decreasing the excitation frequency 

(non-linear down) coincide meaning that a unique amplitude exist for each excitation frequency.  
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Figure 13. FRF obtained using HB2 for u(H, t)=0.001sin(25t) and γref=0.1% 

 

The point noted corresponds to a frequency f=3.979 𝐻𝑧 which is ≈25 𝑟𝑎𝑑/𝑠. This value 

corresponds to the forcing frequency used for the numerical approach. The amplitude obtained 

through the numerical solution is 1.9827 𝑚𝑚 as shown in Figure 8. The value obtained from 

the HBM is 1.9936 𝑚𝑚, Figure13. The difference between the values is around 0.55%. A 

difference in the amplitude is expected since the HBM is obtained using 2 terms only while the 

numerical method includes all harmonics. The solvers of MATLAB used to obtain the numerical 

and semi-analytical solutions, such as ode45 and bvp5c are also a source of error. However, the 

error is negligible. 

 

Another case is presented in Figure 14, for a smaller 𝛾ref value, corresponding to a higher 

nonlinearity, Table 7. 

Table 7. Output parameters for 𝛾ref=0.035 % (HB2) 

𝛾ref G/G0 𝜉 

0.035% 0.58 0.84% 

 

The point noted corresponds to the same frequency ≈25 𝑟𝑎𝑑/𝑠. The amplitude is bigger than 

the one shown in Figure 14. This is expected since as the nonlinearity increased, the shear 

modulus decreased. The soil became less stiff, so the amplitude of the response increased. When  
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compared to the amplitude in Figure 9, obtained using the numerical approach, the error is 

around 1.06 % which is again a negligible value.  

 
Figure 14. FRF obtained using HB2 for u(H, t)=0.001sin(25t) and γref=0.035% 

 

The next case studied corresponds to a 𝛾ref =0.01%. From Figure 15 it is seen that the point 

corresponding to the frequency ≈25 𝑟𝑎𝑑/𝑠 now lies to the right of the resonance peak. 

 

 
Figure 15. FRF obtained using HB2 for u(H, t)=0.001sin(25t) and γref=0.01% 
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Of course, the location of the point does not change since it corresponds to the same frequency. 

What changes as the nonlinearity increases, is the shape of the FRF. This also explains the phase 

shift observed in Figure 10 since the influence of the damping increased. The difference in 

response amplitude values obtained using the numerical method and HBM is around 12% for 

this case. Comparing the differences in displacement amplitudes obtained using the numerical 

method and HBM for the three cases presented, it can be seen that the difference in the 

amplitudes of the responses increases as the nonlinearity increases. Since the HB2 was obtained 

using only two terms (3.12), a difference is expected. A higher number of terms, including 

higher harmonics, may result in a decrease in the difference of the amplitudes obtained with 

these two different approaches. Therefore, another solution is assumed referred to as HB4, 

which includes 4 terms.  

𝑢(𝑧, 𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡) + 𝑈𝑐3 cos(3𝜔𝑡) + 𝑈𝑠3 sin(3𝜔𝑡), 

where 𝑈𝑐, 𝑈𝑠 correspond to the unknown amplitudes of cos(𝜔𝑡) and sin(𝜔𝑡) respectively, for 

n=1 and 𝑈𝑐3 and 𝑈𝑠3 correspond to the unknown amplitudes of cos(3𝜔𝑡) and sin(3𝜔𝑡) 

respectively, for n=2. Using the assumed solution (3.28), the partial derivatives of the nonlinear 

equation of motion (3.6) with respect to time and space are obtained. The terms are then 

substituted into the equation of motion (3.6). Next, the procedure explained in HB2 is followed 

and each term of the equation of motion is projected into cos(𝜔𝑡), sin(𝜔𝑡), cos(3𝜔𝑡) and 

sin(𝜔𝑡). These steps are presented in Appendix A. As a result, four equations are obtained 

which can be written in the matrix form as shown below 

[
 
 
 
 
 
 
 
 

−𝜔2

𝑐2
𝑈𝑐

−𝜔2

𝑐2
𝑈𝑠

−9𝜔2

𝑐2
𝑈𝑐3

−9𝜔2

𝑐2
𝑈𝑠3]

 
 
 
 
 
 
 
 

= 𝑩

[
 
 
 
𝑈𝑐

′′

𝑈𝑠
′′

𝑈𝑐3
′′

𝑈𝑠3
′′ ]

 
 
 

, 

 

where B is a 4x4 matrix. The matrix entities are presented in Appendix A. 

 

 

 

 

 

 

(3.28) 

 
 

(3.7) 

(3.28) 

 
 

(3.7) 
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As done in the case of HB2, for HB4 as well, the boundary conditions are projected into 

cos(𝜔𝑡) , sin(𝜔𝑡) , cos(3𝜔𝑡) and sin(3𝜔𝑡). The obtained equations and the projected boundary 

conditions are implemented and the BVP is solved with the MATLAB program bvp5c.  As a 

result, the terms 𝑈𝑐, 𝑈𝑠, 𝑈𝑐3 and 𝑈𝑠3 are found for a certain depth, at different frequencies. 

 

Now two different FRF are studied. In one of them the amplitude is 𝑈= √𝑈𝑐
2 + 𝑈𝑠

2  which is the 

amplitude of vibration at the fundamental harmonic (ω). The amplitude of vibration at the higher 

harmonic (3ω) is 𝑈3 = √𝑈𝑐3
2 + 𝑈𝑠3

2 . These two different FRF are studied since the assumed 

solution HB4 consists of 4 terms. The amplitude  𝑈3 is used to show the influence of higher 

harmonics. The nonlinearity levels studied are the same as the ones considered for the assumed 

solution HB2. The soil parameters used are also the same (Table 5). In the first case studied the 

value of  𝛾𝑟𝑒𝑓 =0.1%, Table 8. The amplitude 𝑈 at the frequency 25 𝑟𝑎𝑑/𝑠 is close to one 

obtained using HB2, Figure 13 (0.09% difference).  

 

                           Table 8. Output parameters for γref=0.1 % (HB4) 

𝛾ref G/G0 𝜉 

0.1% 0.87 0.26% 

 

 

Figure 16. FRF obtained using HB4 for γref=0.1% and u(H, t)=0.001sin(25t) (fundamental harmonic) 
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The amplitude 𝑈3 versus frequency is presented in Figure 17. The amplitude 𝑈3 at the frequency 

25 𝑟𝑎𝑑/𝑠 (3.979 𝐻𝑧) is significantly smaller (≈150 times) compared to the amplitude 𝑈 at the 

same frequency as shown in Figure 16. Moreover, another peak is observed close to one-third 

of the resonance frequency of the linear system (𝑓 = 2.069 𝐻𝑧). The reason why this peak is at 

one-third of the resonance frequency is because the assumed solution is HB4 which includes the 

higher harmonic 3𝜔. The amplitude at this frequency is also significantly smaller compared to 

the amplitude of vibration at the fundamental frequency (ω). This means that the contribution 

of the higher terms is negligible for this nonlinearity level.  

 

 
Figure 17. FRF obtained using HB4 for γref=0.1% and u(H, t)=0.001sin(25t) (higher harmonic) 

 

The second case studied corresponds to 𝛾𝑟𝑒𝑓 = 0.035%, Table 9. The value of the amplitude 

𝑈 at the frequency 25 𝑟𝑎𝑑/𝑠, Figure 18, differs by only 2.4% from the one obtained using 

HB2, Figure 14.  

 

 
Table 9. Output parameters for γref=0.1 % (HB4) 

𝛾ref G/G0 𝜉 

0.035% 0.58 0.84% 
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Figure 18. FRF obtained using HB4 for γref=0.035% and u(H, t)=0.001sin(25t) (fundamental harmonic) 

The amplitude in Figure 19 corresponds to 𝑈3. It can be observed that even for this level of 

nonlinearity (𝐺 𝐺0 = 0.58)⁄  the amplitude of vibration at the higher harmonic (3ω) is 

significantly smaller (≈60 times) compared to the amplitude of vibration at the fundamental 

frequency (ω). The peak at the frequency close to one-third of the resonance frequency of the 

linear system is observed again. The amplitude at this frequency is also significantly smaller 

compared to the amplitude of vibration at the fundamental frequency (ω). This means that the 

contribution of the higher terms is negligible at this nonlinearity level.   

 

 
 

Figure 19. FRF obtained using HB4 for γref=0.035% and u(H, t)=0.001sin(25t) (higher harmonic) 
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The same trend is observed for the last case studied with γref = 0.01%, Table 10. 

 

Table 10. Output parameters for γref=0.001 % (HB4) 

𝛾ref G/G0 𝜉 

0.01% 0.53 0.94% 

 

 

Figure 20.  FRF obtained using HB4 for γref=0.01% and u(H, t)=0.001sin(25t) (fundamental harmonic) 

 

The value of the amplitude 𝑈 at the frequency 25 rad/s, Figure 20, differs by 5% from the one 

obtained using HB2, Figure 15. Moreover, while the difference in the displacement amplitude 

values between the numerical method and HB2 for this nonlinearity level is around 12%, the 

difference between numerical method and HB4 is around 7.8%. This means that HB4 gives a 

closer solution to the numerical method, but only by a small percentage. The displacement 

amplitude in Figure 21 corresponds to 𝑈3.  The contribution of higher harmonics is negligible 

for this nonlinearity level as well.   
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Figure 21. FRF obtained using HB4 for γref=0.01% and u(H, t)=0.001sin(25t) (higher harmonic) 

 

In the cases studied above, the FRF was obtained for the assumed solution HB4. The similarities 

and differences between the FRF obtained using HB2 and HB4 were presented. A comparison 

with the displacement amplitude values obtained using the numerical method were presented as 

well. The influence of the higher harmonic (3ω) was observed. A more in-depth comparison is 

stated in the following section. 

3.3 Comparison of numerical and semi-analytical methods 
 

While some comparison of HB2 and HB4 with each other and with the numerical method were 

presented in the previous section, a summary of the conclusions drawn is stated here. Figure 22 

shows the comparison of amplitude of vibration vs. frequency for different levels of nonlinearity 

using HB2. From Figure 22 and the cases studied in the previous section it can be concluded 

that 

 

▪ The shape of the FRF changes as the nonlinearity increases. Considering only the maximum 

amplitude of the FRF, as nonlinearity increases, the value of the maximum amplitude decreases. 

The frequency at which the maximum amplitude occurs decreases as well. This is due to the 

softening behavior of soil resulting from using the hyperbolic soil model. 
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Figure 22. Comparison of FRF for different nonlinearity levels for u(H, t)=0.001sin(25t) 

▪ For the forcing frequency considered, 𝜔 = 25 𝑟𝑎𝑑/𝑠, as the nonlinearity increases, the soil 

stiffness decreases. As a result, the displacement amplitude increases as it was observed from 

numerical and HBM results. The amplitude is higher than that of the linear case. In the HBM 

this can be observed by comparing it with the linear case (blue line in Figure 22).  

▪ The displacement amplitude keeps increasing until the maximum amplitude is reached. After 

this point, the amplitude decreases (at  𝛾𝑟𝑒𝑓 = 0.01%). The phase shift becomes considerably 

bigger which means that the damping ratio is bigger as well. 

▪ The amplitude continues to decrease and for 𝛾𝑟𝑒𝑓 = 0.005%, it is less than that of the linear 

case (below blue line in HBM as well).  

▪ The difference between the displacement amplitude values obtained using the numerical 

method and HB4 is less than the difference between the displacement amplitude values 

obtained using the numerical method and HB2 (for forcing frequency 𝜔 = 25 𝑟𝑎𝑑/𝑠). 

However, the difference is small.  

▪ The difference between the displacement amplitude values of the numerical and semi-

analytical approach increases as the nonlinearity increases. This is expected as the HBM 

includes a limited number of terms, either 2 or 4 terms in this study, while the numerical 

approach includes all of them.  

▪ The influence of the higher harmonics is negligible. The amplitude of vibration at the higher 

harmonic (3ω) is significantly smaller (≈100 times) compared to the amplitude of  
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vibration at the fundamental frequency (ω) and even smaller is some other cases.  

 

In this study the numerical method was used to obtain the response for a certain value of 

forcing frequency, 25 rad/s in this case. The same procedure can be followed to obtain the 

response for other forcing frequencies. The steady state solution is then projected into sine 

and cosine. In this way an FRF is obtained. This FRF is compared with the one obtained 

from the HB2 as shown in Figure 23 for a 𝛾𝑟𝑒𝑓 = 0.1%. 

 

 

Figure 23. Comparison of numerical and semi-analytical methods for  u(H, t)=0.001sin(25t) 

 

The values of the difference between displacement amplitudes shown in Figure 23 range from 

0.007 % to 6.126% with an average value of 2.26%. This difference is not only due to the 

limited number of terms used in the HBM, but also due to the tolerances of the MATLAB 

solvers used such as ode45 and bvp5c. Considering all the cases studied, the difference in 

percentage between the results obtained using HBM and numerical method, and the reasons 

behind the differences, it can be concluded that HBM is an accurate method. Moreover, the 

computational time of the HBM to obtain the FRF in Figure 23, for example, is around 20 

minutes while that of numerical method is about 15 hours. This makes the HBM a robust 

method according to the definition of robustness used in this study.  
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Part II 

 
Modeling the cavity problem 



 

 

 

 

 

4 

 
Numerical solution 

 
In this chapter, the response of a cylindrical cavity to harmonic excitation is studied. This 

cylindrical cavity represents the DCPM. The linear solution is first obtained since for this 

case it is possible to obtain the analytical solution. Afterward, the numerical solution is 

found and compared with the analytical one. The linear solution is also used to study the 

degree to which the nonlinearity influences the response. The strain-dependent shear 

modulus is used to include the nonlinearity. The solution of the nonlinear equation of 

motion is found using the numerical method. For this model, numerical integration in the time 

domain and finite difference discretization of the spatial domain is done. The goal of this 

chapter is to develop a numerical solution for a cylindrical cavity, find the response of this 

cavity for both the linear and nonlinear case and compare them to validate the numerical 

solution.   

 

4.1 Linear analysis 
 
 

4.1.1 Analytical solution 
 

First, the static problem is studied to obtain the 

equilibrium equation. Figure 24 [16] shows an 

element of material in a cylindrical coordinate 

system. The radial coordinate is denoted by 𝑟, and 

the tangential coordinate by 𝜃. The stresses acting 

upon the element are indicated in the figure. If it is 

assumed that the displacement field is cylindrically symmetrical, it may be assumed that there 

are no shear stresses acting upon the element and that the normal stresses 𝜎𝑟𝑟 and 𝜎𝑡𝑡 are 

independent of the tangential coordinate 𝜃. The derivation presented below are done based on  

 

 

Figure 24. Element in circular coordinates 
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the work of Verruijt [16]. Since there are no shear stresses acting upon the element, the only 

non-trivial equation of equilibrium is the one in radial direction, 

𝑑𝜎𝑟𝑟

𝑑𝑟
+

𝜎𝑟𝑟 − 𝜎𝑡𝑡

𝑟
= 0. 

 

The deformations are related to the stresses by Hooke’s law. If the body considered is a thick 

plate, it may be assumed that the plate deforms in a state of plane strain. In that case Hooke’s 

law states, in its inverse form, is 

𝜎𝑟𝑟 = 𝜆𝜀𝑣𝑜𝑙 + 2𝜇𝜀𝑟𝑟, 

𝜎𝑡𝑡 = 𝜆𝜀𝑣𝑜𝑙 + 2𝜇𝜀𝑡𝑡, 

where 𝜀𝑣𝑜𝑙 is the volume strain, 𝜀𝑟𝑟 and 𝜀𝑡𝑡 are the radial and tangential strains respectively  

𝜀𝑣𝑜𝑙 = 𝜀𝑟𝑟 + 𝜀𝑡𝑡 , 

𝜆 and 𝜇 are the elastic coefficients (Lamé constants), 

𝜆 =
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
 , 

𝜇 =
𝐸

2(1 + 𝜈)
 , 

and 𝐸 and 𝜈 are the Young’s modulus and Poisson’s ratio respectively. 

The strains 𝜀𝑟𝑟  and 𝜀𝑡𝑡 can be related to the radial displacement u by the relations 

𝜀𝑟𝑟 =
𝑑𝑢

𝑑𝑟
 , 

𝜀𝑟𝑟 =
𝑢

𝑟
 . 

Substituting (4.2) -(4.8) into (4.1) the equilibrium equation gives 

(𝜆 + 2𝜇) {
𝑑2𝑢

𝑑𝑟2
+

1

𝑟

𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2} = 0 , 

or 

𝑑2𝑢

𝑑𝑟2
+

1

𝑟

𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2
= 0 . 

 

This is the differential equation for radially symmetric elastic deformations. From equation (4.9) 

it can be seen that all terms appear to have a coefficient (𝜆 +  2𝜇), which means that the equation 

is independent of the elastic properties of the material. Hence, if the boundary conditions can 

all be expressed in terms of the displacement u, then the solution will be independent of the 

elastic properties. 

 

 

 

 

(4.1) 
 

(3.7) 

(4.2) 
 

(3.7) 

(4.3) 
 

(3.7) 

(4.4) 
 

(3.7) 

(4.5) 
 

(3.7) 

(4.6) 
 

(3.7) 

(4.7) 
 

(3.7) 

(4.8) 
 

(3.7) 

(4.9) 
 

(3.7) 

(4.10) 
 

(3.7) 
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In the dynamic case the equilibrium equation must be extended with an inertia term, 

𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜎𝑟𝑟 − 𝜎𝑡𝑡

𝑟
= 𝜌

𝜕2𝑢

𝜕𝑡2
 , 

where 𝜌 is the mass density of the material. Substitution of (4.2)– (4.8) into this equation (4.11) 

results in 

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
=

1

𝑐2

𝜕2𝑢

𝜕𝑡2
 , 

where c is the propagation velocity of compression waves defined as 

𝑐 = √(𝜆 + 2𝜇)/𝜌 . 

 
First, the case of a sinusoidal variation of the displacements at the boundary of a cylindrical 

cavity, 𝑟 = 𝑎, where 𝑎 is the cavity radius, in an infinite medium is considered. The boundary 

condition at the cavity radius is  

𝑢(𝑎, 𝑡) = 𝑢0 sin(𝜔𝑡), 

where 𝑢0 is the forcing amplitude and 𝜔 is the forcing frequency. The steady state solution of 

the differential equation (4.12) can be written as 

𝑢 = 𝑅𝑒 {𝐹(𝑟)exp (𝑖𝜔𝑡)} . 

Substitution (4.15) into (4.11) shows that this is the case if the function 𝐹(𝑟) satisfies the 

equation 

𝑑2𝐹

𝑑𝑟2
+

1

𝑟

𝑑𝐹

𝑑𝑟
+ (

𝜔2

𝑐2
−

1

𝑟2)𝐹 = 0 . 

 

The solution of the differential equation (4.16) can be expressed in terms of Bessel functions. 

The general solution is 

𝐹 = 𝐴𝐽1 (
𝜔𝑟

𝑐
) + 𝐵𝑌1 (

𝜔𝑟

𝑐
) , 

where 𝐽1(𝑥) and 𝑌1(𝑥) are the Bessel functions of the first and second kind, of order one. To 

find the amplitudes A and B, boundary conditions are employed. Since an infinite medium is 

considered, the behaviour of 𝐽1(𝑥) and 𝑌1(𝑥) for 𝑥→∞ is presented below. At very large 

distances 𝐽1(𝑥)  and 𝑌1(𝑥)  may be approximated by the asymptotic expansions 

 

𝑥 → ∞ ⟾ 𝐽1(𝑥) ≈ −√2 𝜋𝑥⁄ cos (𝑥 +
𝜋

4
), 

𝑥 → ∞ ⟾ 𝑌1(𝑥) ≈ −√2 𝜋𝑥⁄ sin (𝑥 +
𝜋

4
). 

 

 

 

 

 

 

(4.11) 
 

(3.7) 

(4.12) 
 

(3.7) 

(4.13) 
 

(3.7) 

(4.14) 
 

(3.7) 

(4.15) 
 

(3.7) 

(4.16) 
 

(3.7) 

(4.17) 
 

(3.7) 

(4.18) 
 

(3.7) 

(4.19) 
 

(3.7) 
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This means that for large values of r the radial displacement will be 

 

𝑟 →∞ ⟾  𝑢 ≈ 𝑅𝑒 [ √𝑐 2𝜋𝜔𝑟⁄ {(𝐴 − 𝑖𝐵) exp [𝑖𝜔(𝑡 + 𝑟 𝑐) +
𝜋

4
𝑖⁄ ]

+ (𝐴 + 𝑖𝐵) exp [𝑖𝜔(𝑡 − 𝑟 𝑐) −
𝜋

4
𝑖⁄ ]}]. 

 

The first term in the right-hand side represents a wave traveling from infinity towards the origin, 

whereas the second term represents an outgoing wave, traveling towards infinity. This is the 

only acceptable term, and thus the radiation condition in this case requires that 

𝐴 = 𝑖𝐵. 

The solution for the function 𝐹(𝑟) now is 

𝐹 = 𝑖𝐵𝐽1 (
𝜔𝑟

𝑐
) + 𝐵𝑌1 (

𝜔𝑟

𝑐
). 

The amplitude B must be determined from the condition at the inner boundary 𝑟 =  𝑎, see 

(4.14). The result is 

𝐵 = −𝑢0

𝐽1 (
𝜔𝑎
𝑐 ) + 𝑖𝑌1 (

𝜔𝑎
𝑐 )

𝐽1
2 (

𝜔𝑎
𝑐

) + 𝑌1
2 (

𝜔𝑎
𝑐

)
. 

Using the expression (4.23) for the coefficient B the final solution for the radial displacement 

becomes 

𝑢

𝑢0
=

𝐽1 (
𝜔𝑎
𝑐

) 𝐽1 (
𝜔𝑟
𝑐

) + 𝑌1 (
𝜔𝑎
𝑐

)𝑌1 (
𝜔𝑟
𝑐

)

𝐽1
2 (

𝜔𝑎
𝑐 ) + 𝑌1

2 (
𝜔𝑎
𝑐 )

sin(𝜔𝑡) 

           −
𝐽1 (

𝜔𝑎
𝑐 )𝑌1 (

𝜔𝑟
𝑐 ) + 𝑌1 (

𝜔𝑎
𝑐 ) 𝐽1 (

𝜔𝑟
𝑐 )

𝐽1
2 (

𝜔𝑎
𝑐 ) + 𝑌1

2 (
𝜔𝑎
𝑐 )

cos (𝜔𝑡) 

 

The normalized amplitude of the solution 𝑢 𝑢0⁄  is shown graphically in Figure 24, as a function 

of the radial distance r. The value of the parameter 𝜔𝑎/𝑐 has been taken as 0.2. The figure 

shows that the amplitude at great distances from the inner boundary approaches zero rather 

slowly. 

 

 

 

 

 

 

 

 

(4.20) 
 

(3.7) 

(4.21) 
 

(3.7) 

(4.22) 
 

(3.7) 

(4.23) 
 

(3.7) 

(4.24) 
 

(3.7) 
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Figure 25. Radial displacement for u(a, t)=10sin(104t) 

 

This completes the derivation of the analytical solution for the case of a sinusoidal variation of 

the displacements at the boundary of a cylindrical cavity in an infinite medium. The analytical 

solution is used to validate the solutions obtained using the numerical method and HBM. In the 

next chapter the numerical method is presented for the linear case.  

 

 

4.1.2 Numerical solution 
 
 

For the numerical solution, finite difference method is implemented as done in Chapter 2. The 

linear equation of motion (4.43) is used. The numerical solution is found for a finite medium 

with boundary conditions 

  𝑢(𝑎, 𝑡) = 𝑢0𝑠𝑖𝑛(𝜔𝑡) 

 

 𝜎𝑟𝑟(𝑅, 𝑡) = 0 

 

In the liner equation of motion (4.43) first and second space derivatives are present. They are 

replaced by the central difference approximations (2.59)-(2.60). To use the finite difference 

solver of MATLAB, the set of ODEs must be written in the state-space form (2.30). The 

resulting equation of motion is 

1

𝑐2
(
𝜕𝑢2,𝑖

𝜕𝑡
) =

𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑟)2
+

1

𝑟

𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟
−

𝑢1,𝑖

𝑟2
 

 

 

 

 

 

(4.27) 
 

(3.7) 

(4.25) 
 

(3.7) 

(4.26) 
 

(3.7) 
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Considering the EOM at i= 0, and 𝑖=N results in the ghost point 𝑢1,−1, and 𝑢1,𝑁+1 respectively. 

The ghost points are handled as described in Chapter 2, by applying the boundary conditions. 

The node i = 0 corresponds to r = 𝑎 where the boundary condition (4.25) is a prescribed 

displacement. Since the value of displacement is known because it is prescribed, there is no need 

to solve the equation of motion at this node. The other boundary conditions is zero stress  at 𝑟 =

𝑅 (4.26) which corresponds to the node 𝑖 = 𝑁.  Considering the expression of stress  (4.2) and 

the finite difference approximation, the expression of stress 𝜎𝑟𝑟𝑁  becomes 

 

𝜎𝑟𝑟𝑁 = (𝜆 + 2𝜇)
𝑢1,𝑁+1 − 2𝑢1,𝑁 + 𝑢1,𝑁−1

(∆𝑟)2
+ 𝜆

𝑢1,𝑁

𝑅
= 0 

 

Using the expression (4.28), the ghost point 𝑢1,𝑁+1 is written in terms of 𝑢1,𝑁−1 and 𝑢1,𝑁. In 

this way both ghost points are handled. After implementing the boundary conditions, the 

equations are solved using ode45. As a result, the displacement and the velocity are found. 

 

To check that the boundary condition is implemented correctly, the numerical solution at the 

cavity radius 𝑟 = 𝑎 is plotted and compared with the analytical solution in the Figure 26. Since 

the solutions coincide, the numerical method is implemented correctly. 

 

Figure 26. Comparison of numerical and analytical solutions for u(a, t)= 10sin(104t) 

 

In Figure 27, the linear solution as a function of the radial distance 𝑟 is presented. It can be 

observed that the attenuation of the displacement in space is rather slowly. 

 

 

 

 

(4.28) 
 

(3.7) 
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Figure 27. Radial displacement using numerical approach for the linear case for u(a, t)= 10sin(104t) 

 

Until now the analytical and numerical solution are obtained for the linear case. In the next 

section the nonlinear analysis is studied.  

 
 

4.2  Nonlinear analysis 
 

4.2.1 Numerical solution  
 

To obtain the numerical and semi-analytical solution for the nonlinear case, the nonlinear 

equation of motion should be derived. First, the linear equation of motion is considered. The 

equilibrium equation is 

𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜎𝑟𝑟 − 𝜎𝑡𝑡

𝑟
= 𝜌

𝜕2𝑢

𝜕𝑡2
, 

where 

𝜎𝑟𝑟 = 𝜆𝜀𝑣𝑜𝑙 + 2𝜇𝜀𝑟𝑟, 

𝜎𝑡𝑡 = 𝜆𝜀𝑣𝑜𝑙 + 2𝜇𝜀𝑡𝑡. 

 

Using the deviatoric strain expressions  

𝑒𝑟𝑟 = 𝜀𝑟𝑟 −
1

3
𝜀𝑣𝑜𝑙  and 𝑒𝑡𝑡 = 𝜀𝑡𝑡 −

1

3
𝜀𝑣𝑜𝑙 , 

 

substituting them into (4.30) -(4.31) and rearranging them, the following expressions of the 

stresses are obtained  

 

 

 

 

(4.29) 
 

(3.7) 

(4.30) 
 

(3.7) 

(4.31) 
 

(3.7) 

(4.32) 
 

(3.7) 
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𝜎𝑟𝑟= (𝜆 + 2𝜇/3)𝜀𝑣𝑜𝑙 + 2𝜇𝑒𝑟𝑟, 
 

𝜎𝑡𝑡= (𝜆 + 2𝜇/3)𝜀𝑣𝑜𝑙 + 2𝜇𝑒𝑟𝑟. 
 

The expression (𝜆 + 2𝜇/3) is equal to the bulk modulus 𝐾𝑏, and 𝜇 is equal to the shear 

modulus 𝐺. Thus, the stress expression (4.33)-(4.34) are written as 

 

𝜎𝑟𝑟= 𝐾𝑏𝜀𝑣𝑜𝑙 + 2 𝐺𝑒𝑟𝑟, 

 

𝜎𝑡𝑡= 𝐾𝑏𝜀𝑣𝑜𝑙 + 2 𝐺𝑒𝑡𝑡. 

 

According to the theory of elasticity, 𝐾𝑏 can be expressed in terms of 𝐺 as follows 

 

𝐾𝑏 =
3𝐺(1 + 𝜈)

3(1 − 2𝜈)
. 

 

To obtain the nonlinear equation of motion, the shear modulus 𝐺 is replaced by 𝐺(𝛾), where 

𝐺(𝛾) is the hyperbolic soil model 

𝐺(𝛾) =
𝐺0

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
 .      

 

The expression of 𝛾 in (4.38) is obtained from the strain invariant as √𝐽2 . For the cavity problem 

the second strain invariant 𝐽2 is 

𝐽2 = 2(𝑒𝑟𝑟
2 + 𝑒𝑡𝑡

2 ). 
 

After the necessary substitutions, the expression of 𝛾 becomes 

𝛾 = √2(
2

𝜕𝑢
𝜕𝑟
3

− 
𝑢

3𝑟
)

2

+ 2(
2𝑢

3𝑟
−

𝜕𝑢
𝜕𝑟
3

)

2

 

 

Using (4.35)-(4.37) with 𝐺(𝛾) instead of 𝐺, and substituting them into the equation of motion 

(4.29), the following equation of motion is obtained for the nonlinear case  

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝐺0

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

[
 
 
 
 

−

4𝑋 (
𝛾

𝛾𝑟𝑒𝑓
)
𝛽

𝛽(𝑋𝑌 + 𝑍𝑇)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)𝛾2

+ 2𝑌

−

4(1 + 𝜈) (
𝑑𝑢
𝑑𝑟

+
𝑢
𝑟) (

𝛾
𝛾𝑟𝑒𝑓

)
𝛽

𝛽(𝑋𝑌 + 𝑍𝑇)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
) (3 − 6𝜈)𝛾2

+
2(1 + 𝜈) (

𝑑2𝑢
𝑑𝑟2 +

𝑑𝑢
𝑑𝑟

1
𝑟 −

𝑢
𝑟2)

(3 − 6𝜈)

+
2(𝑋 − 𝑍)

𝑟

]
 
 
 
 

 

 
 

 

 

 

(4.33) 
 

(3.7) 

 (4.35) 
 

(3.7) 

(4.36) 
 

(3.7) 

(4.37) 
 

(3.7) 

(4.39) 
 

(3.7) 

(4.40) 
 

(3.7) 

(4.41) 
 

(3.7) 

(4.38) 
 

(3.7) 

(4.34) 
 

(3.7) 
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where 

 

𝑋 =
2

𝜕𝑢
𝜕𝑟
3

−
𝑢

3𝑟
, 𝑌 =

2
𝜕2𝑢
𝜕𝑟2

3
−

𝜕𝑢
𝜕𝑟
3𝑟

+
𝑢

3𝑟2
, 

 

  𝑍 =
2𝑢

3𝑟
−

𝜕𝑢
𝜕𝑟
3

, 𝑇 =
2

𝜕𝑢
𝜕𝑟
3𝑟

−
2𝑢

3𝑟2
−

𝜕2𝑢
𝜕𝑟2

3
. 

 

The boundary conditions are the same as the ones for the linear case (4.25) -(4.26). 

 

A change in 𝛾𝑟𝑒𝑓 changes the nonlinearity. In the limit of 𝛾𝑟𝑒𝑓 reaching to infinity, equation 

(4.41) reduces to  

𝜌
𝜕2𝑢

𝜕𝑡2
=

2(𝜈 − 1)𝐺0 ((
𝜕2𝑢
𝜕𝑟2) 𝑟2 + (

𝜕𝑢
𝜕𝑟

) 𝑟 − 𝑢)

(−1 + 2𝜈)𝑟2
 

 

 

Simplifying equation (4.44) result in the equation  

 

𝜌
𝜕2𝑢

𝜕𝑡2
= (𝜆 + 2𝜇) ((

𝜕2𝑢

𝜕𝑟2) + (
𝜕𝑢

𝜕𝑟
)
1

𝑟
−

𝑢

𝑟2
)

 
 

which is the same as linear equation of motion (4.14). For the nonlinear case, the numerical 

solution is obtained using the same procedure as for the linear case. In the nonlinear equation of 

motion (4.41), first and second space derivatives are replaced by the central difference 

approximations (4.50) -(4.50) and then written in the state-space form (4.30) The result is 

𝜌
𝜕𝑢2,𝑖

𝜕𝑡
=

𝐺0

1 + (𝛾𝑖 𝛾𝑟𝑒𝑓)⁄ 𝛽

[
 
 
 
 

−

4𝑋𝑖 (
𝛾𝑖

𝛾𝑟𝑒𝑓
)
𝛽

𝛽(𝑋𝑖𝑌𝑖 + 𝑍𝑖𝑇𝑖)

(1 + (𝛾𝑖 𝛾𝑟𝑒𝑓)⁄ 𝛽
)𝛾𝑖

2
+ 2

−

4(1 + 𝜈) ((
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟
) +

𝑢1,𝑖

𝑟
) (

𝛾𝑖
𝛾𝑟𝑒𝑓

)
𝛽

𝛽(𝑋𝑖𝑌𝑖 + 𝑍𝑖𝑇𝑖)

(1 + (𝛾𝑖 𝛾𝑟𝑒𝑓)⁄ 𝛽
) (3 − 6𝜈)𝛾𝑖

2

+

2(1 + 𝜈) ((
𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑟)2 ) + (
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟 )
1
𝑟 −

𝑢1,𝑖

𝑟2 )

(3 − 6𝜈)

+
2(𝑋𝑖 − 𝑍𝑖)

𝑟

]
 
 
 
 

, 

 

 

 

(4.42) 
 

(3.7) 

(4.43) 
 

(3.7) 

(4.44) 
 

(3.7) 

(4.45) 
 

(3.7) 

(4.46) 
 

(3.7) 
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where 

𝛾𝑖 = √2(
2(

𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟
)

3
− 

𝑢1,𝑖

3𝑟
)

2

+ 2(
2𝑢1,𝑖

3𝑟
−

(
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟
)

3
)

2

, 

 

 

𝑋𝑖 =
2(

𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟
)

3
−

𝑢1,𝑖

3𝑟
, 𝑌𝑖 =

2(
𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑟)2 )

3
−

(
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟
)

3𝑟
+

𝑢1,𝑖

3𝑟2
, 

𝑍𝑖 =
2𝑢1,𝑖

3𝑟
−

(
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟 )

3
, 𝑇𝑖 =

2(
𝑢1,𝑖+1 − 𝑢1,𝑖−1

2∆𝑟 )

3𝑟
−

2𝑢1,𝑖

3𝑟2
−

(
𝑢1,𝑖+1 − 2𝑢1,𝑖 + 𝑢1,𝑖−1

(∆𝑟)2 )

3
. 

 

 

Considering the EOM at i = 0 and 𝑖 = 𝑁  results in ghost points 𝑢1,−1 and 𝑢1,𝑁+1 respectively 

which are handled as described in the numerical solution for the linear case in the previous 

section. However, for the boundary condition  𝜎𝑟𝑟 = 0 at 𝑟 = 𝑅 , the nonlinear expression of 

𝜎𝑟𝑟 is used as presented in Appendix B. After implementing the boundary conditions, the set of 

ordinary differential equations are solved using ode45. As a result, the displacement and the 

velocity are found.  

 

To study the influence of nonlinearity, different parameters can be changed. In this study, the 

value of 𝛾𝑟𝑒𝑓 is changed. First, the numerical linear solution obtained in the previous section is 

compared with the nonlinear solution for the case of 𝛾𝑟𝑒𝑓 → ꝏ, meaning that the nonlinear 

equation of motion reduces to the linear one. Figure 28 shows that for a big value of 𝛾𝑟𝑒𝑓 the 

nonlinear and linear solution obtained through the numerical approach coincide, as expected. 

 

Figure 28. Comparison of radial displacement using linear and nonlinear solution for 𝛾 → ∞ 𝑎𝑛𝑑 u(a, t)=10sin(104t) 

 

(4.47) 
 

(3.7) 

(4.48) 
 

(3.7) 
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The radial displacement for the nonlinear case can be obtained for different levels of nonlinearity 

by decreasing the 𝛾𝑟𝑒𝑓 value. Figure 29 shows the solution for a 𝐺 𝐺0⁄ = 0.98 which is almost 

linear and for a 𝐺 𝐺0⁄ = 0.75 resulting when a smaller 𝛾𝑟𝑒𝑓 value is used. To find the ratio 

𝐺/𝐺0, the 𝛾 value is calculated at different nodes is space using the expression (4.40). Then the 

maximum 𝛾 value is chosen and used in the hyperbolic soil model expression (4.38) to find the 

𝐺/𝐺0. Since the maximum 𝛾 value is used, the ratio 𝐺/𝐺0 corresponds to the maximum 

reduction in 𝐺. From Figure 29 it can be observed that due to the nonlinearity the solutions differ 

from each other. Depending on the radial distance 𝑟, the amplitude of the displacement obtained 

for the nonlinear case can be bigger or smaller than that obtained for the almost linear case. 

 

Figure 29.Radial displacement for G⁄G0 =0.75 (blue line) and G⁄G0 =0.98 ( red line) for u(a,t)=10sin(104t) 

 

The solutions shown in the graph are obtained at a certain time moment, along the radial distance 

𝑟. As in the case of soil column, even for the cavity problem, the numerical solution gives not 

only the steady state response, but also the transient one, which is not obtained when HBM is 

used. However, different from the HBM, the numerical approach requires significant 

computational time. Due to the long computational time, it is hard to obtain the steady state 

response using the numerical approach.  

 



 

 

      

 

 

 

 

 

 

 

 

5 

 
Harmonic balance method 

 

 

The harmonic balance method is applied to obtain the semi-analytical solution for the cavity 

problem. The procedure implemented is the same as the one followed to obtain the semi-

analytical solution for the soil column in Chapter 3. In this case the equation of motion differs 

because the cavity problem is considered.  

 

5.1 Linear analysis 

 
The harmonic balance method was explained in Chapter 3 where the method is used to obtain 

the nonlinear dynamic response of the soil column. In this chapter, the same procedure is 

followed again. First the FRF for the linear case is obtained. The governing linear equation of 

motion is  

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
=

1

𝑐2

𝜕2𝑢

𝜕𝑡2
. 

The boundary conditions used are the same as the ones implemented for the numerical method 

in Chapter 4 i.e. a prescribed displacement at the cavity radius 

 
𝑢(𝑎, 𝑡) = 𝑢0𝑠𝑖𝑛(𝜔𝑡) 

and zero stress at a radial distance R 

 

 𝜎𝑟𝑟(𝑅, 𝑡) = 0. 

The steady solution for the linear problem is  

𝑢(𝑟, 𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡). 

(5.1) 
 

(3.7) 

(5.4) 
 

(3.7) 

(5.2) 
 

(3.7) 

(5.3) 
 

(3.7) 
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Substituting the solution (5.4) into the equation of motion (5.1) results into  

𝑈𝑐
′′ cos(𝜔𝑡) + 𝑈𝑠

′′sin(𝜔𝑡) = 

=
−𝜔2

𝑐2
(𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠sin (𝜔𝑡)) −

𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡)

𝑟
−

𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠sin (𝜔𝑡)

𝑟2
 

Projecting each term of the equation (5.5) into sine and cosine results in  

𝑈𝑐
′′ =

−𝜔2𝑈𝑐

𝑐2
−

𝑈𝑐
′

𝑟
−

𝑈𝑐

𝑟2
 

𝑈𝑠
′′ =

−𝜔2𝑈𝑠

𝑐2
−

𝑈𝑐
′

𝑟
−

𝑈𝑐

𝑟2
 

The boundary conditions are projected into sine and cosine as well. Projecting the boundary 

condition (5.2) results in 

𝑢(𝑎, 𝑡) = 𝑢0𝑠𝑖𝑛(𝜔𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡) 

⟾ 𝑈𝑐 = 0,      𝑈𝑠 = 𝑢0 

Projecting the boundary condition (5.3), results in 

𝜎𝑟𝑟(𝑅, 𝑡) = (𝜆 + 2𝜇)(𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′ sin(𝜔𝑡)) + 𝜆
𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡)

𝑅
= 0 

⟾ (𝜆 + 2𝜇)𝑈𝑐
′ = −𝜆

𝑈𝑐

𝑅
,    (𝜆 + 2𝜇)𝑈𝑠

′ = −𝜆
𝑈𝑠

𝑅
 

The obtained equations (5.4)-(5.5) and the projected boundary conditions (5.6)-(5.7) are 

implemented and this boundary value problem is solved using the MATLAB solver bvp5c.  As 

a result, the terms 𝑈𝑐 and 𝑈𝑠 are found at a certain depth, for different frequencies. Adding the 

squares of these terms and taking their square root i.e. 𝑈 = √𝑈𝑐
2 + 𝑈𝑠

2, the FRF amplitude 𝑈 

is found.  

In Figure 30, a comparison of the FRF obtained using the HBM and the analytical solution is 

presented. Since the medium is finite, peaks are observed at certain frequencies corresponding 

to the frequencies at which the response amplificates. The FRF is obtained at a certain location 

in space and in this case, it is at R/2 for R=40m. 

 

 

 

(5.5) 
 

(3.7) 

(5.6) 
 

(3.7) 

(5.7) 
 

(3.7) 

(5.8) 
 

(3.7) 

(5.9) 
 

(3.7) 



 

 

  60                                                                                                                                           5.1 LINEAR ANALYSIS 

 
Figure 30. Comparison of FRF for the linear case, analytical vs HBM for u0=0.1m 

 

From the figure it is clear that the solutions coincide. This proves that the FRF for the linear 

case obtained using HBM is correct. The next section studies the nonlinear method meaning 

that the hyperbolic soil model is considered, making the shear modulus strain-dependent.  

   

5.2 Nonlinear analysis 

 
5.2.1 Semi-analytical solution 

 
For the nonlinear case the solution procedure to apply the HBM for the cavity problem is the 

same as the one followed for the soil column problem. The equation of motion considered is 

the same as the one used for the numerical method (4.41). 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝐺0

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

[
 
 
 
 

−

4𝑋 (
𝛾

𝛾𝑟𝑒𝑓
)
𝛽

𝛽(𝑋𝑌 + 𝑍𝑇)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)𝛾2

+ 2𝑌 −

4(1 + 𝜈) (
𝑑𝑢
𝑑𝑟

+
𝑢
𝑟) (

𝛾
𝛾𝑟𝑒𝑓

)
𝛽

𝛽(𝑋𝑌 + 𝑍𝑇)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
) (3 − 6𝜈)𝛾2

+
2(1 + 𝜈) (

𝑑2𝑢
𝑑𝑟2 +

𝑑𝑢
𝑑𝑟

1
𝑟 −

𝑢
𝑟2)

(3 − 6𝜈)
+

2(𝑋 − 𝑍)

𝑟

]
 
 
 
 

 

 
where  

(5.10) 
 

(3.7) 
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𝑋 =
2

𝑑𝑢
𝑑𝑟
3

−
𝑢

3𝑟
, 𝑌 =

2
𝑑2𝑢
𝑑𝑟2

3
−

𝑑𝑢
𝑑𝑟
3𝑟

+
𝑢

3𝑟2
, 

 

  𝑍 =
3𝑢

3𝑟
−

𝑑𝑢
𝑑𝑟
3

, 𝑇 =
2

𝑑𝑢
𝑑𝑟
3𝑟

−
2𝑢

3𝑟2
−

𝑑2𝑢
𝑑𝑟2

3
. 

           

To apply the harmonic balance method, the first step is considering the solution to be of the 

form of a truncated Fourier series expansion. The first assumed solution is HB2, which includes 

2 terms. 

𝑢(𝑟, 𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡), 

where 𝑈𝑐 and 𝑈𝑠 are the unknows amplitudes of cos(𝜔𝑡) and sin(𝜔𝑡) respectively. As done in 

Chapter 3, the bvp5c solver of MATLAB is used to find 𝑈𝑐 and 𝑈𝑠. To use this solver, the 

equation of motion is rewritten as shown below so that the terms related to 𝑈𝑠
′ and 𝑈𝑐

′ are 

collected   

 

𝜌
𝜕2𝑢

𝜕𝑡2
= [

𝐺0𝛽𝐵𝐸(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2

+
4𝐺0

3(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
−

𝐺0𝛽𝐵(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 (1 + 𝜈) (
𝑑𝑢
𝑑𝑟

+
𝑢
𝑟
)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2(3 − 6𝜈)

+
2𝐺0(1 + 𝜈)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)(3 − 6𝜈)

]
𝝏𝟐𝒖

𝝏𝒓𝟐
 

−
𝐺0𝛽𝐸(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 (4𝐸𝐶 − 8𝐶𝐹)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2

+
2𝐺0𝐶

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
−

𝐺0𝛽(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 (1 + 𝜈) (
𝑑𝑢
𝑑𝑟

+
𝑢
𝑟
) (4𝐸𝐶 − 8𝐶𝐹)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2(3 − 6𝜈)

+
2𝐺0(1 + 𝜈) (

𝑑𝑢
𝑑𝑟

1
𝑟

+
𝑢
𝑟2)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)(3 − 6𝜈)

+

2𝐺0𝐸

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 −
2𝐺0𝐹

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

𝑟
, 

 

 

where 

𝐵 =
20

𝑑𝑢
𝑑𝑟

9
−

16𝑢

9𝑟
, 𝐶 = −

𝑑𝑢
𝑑𝑟
3𝑟

+
𝑢

3𝑟2
 

𝐸 =
2

𝑑𝑢
𝑑𝑟
3

−
𝑢

3𝑟
, 𝐹 = −

𝑑𝑢
𝑑𝑟
3

+
2𝑢

3𝑟
. 

 

(5.11) 
 

(3.7) 

(5.12) 
 

(3.7) 

(5.14) 
 

(3.7) 

(5.15) 
 

(3.7) 

(5.16) 
 

(3.7) 

(5.13) 
 

(3.7) 
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For simplicity, the equation (5.21) is written as 

𝜌
𝜕2𝑢

𝜕𝑡2
= 𝑛1

𝝏𝟐𝒖

𝝏𝒓𝟐
+ 𝑛2 

where 

𝑛1 =
𝐺0𝛽𝐵𝐸(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2

+
4𝐺0

3(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
−

𝐺0𝛽𝐵(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 (1 + 𝜈) (
𝑑𝑢
𝑑𝑟

+
𝑢
𝑟
)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2(3 − 6𝜈)

+
2𝐺0(1 + 𝜈)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)(3 − 6𝜈)

, 

 

𝑛2 = −
𝐺0𝛽𝐸(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 (4𝐸𝐶 − 8𝐶𝐹)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2

+
2𝐺0𝐶

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

−
𝐺0𝛽(𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 (1 + 𝜈) (

𝑑𝑢
𝑑𝑟

+
𝑢
𝑟
) (4𝐸𝐶 − 8𝐶𝐹)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)
2
𝛾2(3 − 6𝜈)

+
2𝐺0(1 + 𝜈) (

𝑑𝑢
𝑑𝑟

1
𝑟

+
𝑢
𝑟2)

(1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽
)(3 − 6𝜈)

+

2𝐺0𝐸

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽 −
2𝐺0𝐹

1 + (𝛾 𝛾𝑟𝑒𝑓)⁄ 𝛽

𝑟
. 

The assumed solution (5.13) is substituted into the equation (5.17). Each term of the equation 

is projected into cos(𝜔𝑡) and sin(𝜔𝑡). This results in two equations as shown below 

 

[
 
 
 
 −𝜌𝜔2𝑈𝑐 − ∫

𝜔

𝜋
𝑛2

∗
𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡

−𝜌𝜔2𝑈𝑠 − ∫
𝜔

𝜋
𝑛2

∗
𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡
]
 
 
 
 

= 𝑸 [
𝑈𝑐

′′

𝑈𝑠
′′], 

where Q is a 2x2 matrix. The matrix entities are presented in Appendix C.1. The expression 𝑛2
∗  

is obtained after the assumed solution (5.13) is substituted into the expression 𝑛2 (5.19). The 

boundary conditions (5.2)-(5.3) are also projected into sine and cosine in the same way they 

were projected for the linear case (5.8)-(5.9). The only difference is that the nonlinear expression 

𝜎𝑟𝑟 presented in Appendix B is used. Finally, the system of differential equations is written as 

presented below  

 

[
𝑈𝑐

′′

𝑈𝑠
′′] =

−𝜔2

𝑐2
𝑸−𝟏

[
 
 
 
 −𝜌𝜔2𝑈𝑐 − ∫

𝜔

𝜋
𝑛2

∗
𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡

−𝜌𝜔2𝑈𝑠 − ∫
𝜔

𝜋
𝑛2

∗
𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡
]
 
 
 
 

, 

(5.17) 
 

(3.7) 

(5.18) 
 

(3.7) 

(5.19) 
 

(3.7) 

(5.20) 
 

(3.7) 

(5.21) 
 

(3.7) 
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and then in the state-space form in order to be implemented into the MATLAB solver bvp5c. 

As a result, the amplitude of vibration 𝑈 at the fundamental frequency (𝜔) is found at a certain 

depth, for different frequencies.  

 

The solution is obtained as explained in Chapter 3, by sweeping over the frequency range of 

interest. In the example shown below the maximum frequency is around 30 rad/s. This 

maximum value is chosen because the focus is on the first peak in amplitude which happens at 

a frequency smaller than 30 rad/s.  Later, to observe the second peak, the frequency range is 

increased. An initial excitation frequency is chosen, 𝜔 = 1 𝑟𝑎𝑑/𝑠 in this case. Due to the 

nonlinear behaviour, multiple amplitudes may exist for the same frequency of excitation 

depending on the initial guess. To observe if there is more than one amplitude for a certain 

frequency of excitation, two solutions are obtained. One solution is obtained by increasing 

frequency sweep and the another one by decreasing the frequency sweep. When the excitation 

frequency is increased/ decreased, the amplitudes 𝑈𝑐 and 𝑈𝑠 found from the previous 

computation step are used as initial guesses for the HB solution process. The very first initial 

guess used is 𝑢 = 0. If both the solutions obtained coincide, it means that for each frequency of 

excitation, there exists a unique amplitude. 

 

Several cases are studied, corresponding to different levels of nonlinearity. Figure 34 shows the 

FRF obtained using different 𝛾𝑟𝑒𝑓 values corresponding to different levels of nonlinearity.  

The boundary conditions used are prescribed sinusoidal displacement at the cavity (5.2) and a 

dashpot at 𝑟 = 𝑅  

𝜎𝑟𝑟(𝑅, 𝑡) = 𝑐𝑑𝑝

𝑑𝑢

𝑑𝑟
 

where 𝑐𝑑𝑝 is the damping coefficient of the dashpot. 

 

 

 

 

 

 

 

 

 

(5.22) 
 

(3.7) 
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Figure 31. FRF obtained using HB2 for 𝑢0 = 0.1𝑚.             2         

 

The 𝐺 𝐺0⁄  values (referring to the maximum reduction in 𝐺), corresponding to each 𝛾𝑟𝑒𝑓 shown 

in Figure 31, are shown in the Table 11.  

 
Table 11. Maximum reduction in shear modulus for each 𝛾𝑟𝑒𝑓 value 

𝛾𝑟𝑒𝑓  1.5 1 0.5 0.25 

𝐺 𝐺0⁄  0.88 0.82 0.71 0.53 

 

The values of 𝛾𝑟𝑒𝑓 shown in the table are larger than the ones used when the soil problem was 

studied because the excitation amplitude 𝑢0 considered is larger as well. As the value of 𝛾𝑟𝑒𝑓 

decreases, the nonlinearity increases. The shape of the FRF changes for different nonlinearity 

levels. A softening behaviour is observed as expected. For the cases obtained using 𝛾𝑟𝑒𝑓 until 

0.5, the solutions obtained by increasing the frequency and decreasing the frequency coincide. 

This means that a unique amplitude exists for each excitation frequency. However, for 

a 𝛾𝑟𝑒𝑓=0.25 (𝐺 𝐺0 ≈ 0.53),⁄  it is observed that for the frequency range between 26.2 𝑟𝑎𝑑/𝑠   

 

 
2 The plot in Figure 31 corresponding to 𝛾𝑟𝑒𝑓 = 0.25∗ is obtained by decreasing the frequency sweep. 

All the other pots are obtained by increasing the frequency sweep. The solutions obtained by decreasing 

the frequency for 𝛾𝑟𝑒𝑓 = 1.5, 𝛾𝑟𝑒𝑓 = 1.0 and 𝛾𝑟𝑒𝑓 = 0.5 coincide with the solutions obtained by 

decreasing the frequency.  
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and 26.4 𝑟𝑎𝑑/𝑠, the solution obtained by increasing and decreasing the frequency do not 

coincide. Thus, multiple amplitudes may exist for a single frequency. In this frequency regime, 

there is most likely another branch which is not obtained in the current analysis, as it does not 

correspond to a stable response. Only the jump between branches is observed. Therefore, at this 

nonlinearity level,  the true shape of the branch connecting the obtained branches is not known.  

 

It is worth noting that when the soil column was studied, the solutions obtained by increasing 

the frequency sweep and by decreasing the frequency sweep always coincided. However, this 

stands only for the cases studied and shown in this work. Even for the case shown above 

corresponding to  𝛾𝑟𝑒𝑓=0.25 (𝐺 𝐺0 ≈ 0.53),⁄  if the damping coefficient of the dashpot is 

increased, the solution obtained by increasing the frequency sweep and by decreasing the 

frequency sweep coincide. This shows that the amount of damping influences the shape of the 

FRF, and it may happen that the solutions obtained by increasing and decreasing the frequency 

do not coincide, which is most likely an indicator of an unstable branch.  

 

The assumed solution used until now had only two terms, cos(𝜔𝑡)and sin(𝜔𝑡). This assumed 

solution does not contain higher harmonics so their influence is not observed. Therefore, another 

solution is assumed, referred to as HB4, which includes 4 terms 

 

𝑢(𝑧, 𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡) + 𝑈𝑐3 cos(3𝜔𝑡) + 𝑈𝑠3si n(3𝜔𝑡), 

where 𝑈𝑐, 𝑈𝑠 correspond to the coefficients of cos(𝜔𝑡) and sin(𝜔𝑡) respectively, and 𝑈𝑐3 and 

𝑈𝑠3 correspond to the coefficients of cos(3𝜔𝑡) and sin(3𝜔𝑡) respectively. Using this assumed 

solution (5.23), the partial derivatives of the nonlinear equation of motion (5.17) are obtained 

as presented in Appendix C.2. These terms are substituted into the equation of motion (5.17) 

which is a rearranged form of the governing nonlinear equation of motion. After substituting, 

each term of the equation and also the boundary conditions are projected into cos(𝜔𝑡), sin(𝜔𝑡), 

cos(3𝜔𝑡) and sin(3𝜔𝑡). As a result, four equations are obtained which can be written in the 

matrix form shown below 

 

 

 

 

 

(5.23) 
 

(3.7) 
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[
 
 
 
 
 
 
 
 
 −𝜌𝜔2𝑈𝑐 − ∫

𝜔

𝜋
𝑑2

𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡

−𝜌𝜔2𝑈𝑠 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡

−𝜌9𝜔2𝑈𝑐3 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑐𝑜𝑠(3𝜔𝑡)𝑑𝑡

−𝜌9𝜔2𝑈𝑠3 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡
]
 
 
 
 
 
 
 
 
 

= 𝑷

[
 
 
 
𝑈𝑐

′′

𝑈𝑠
′′

𝑈𝑐3
′′

𝑈𝑠3
′′ ]

 
 
 

 

 

where  

𝑷 = [

𝑝11 𝑝12

𝑝21 𝑝22

𝑝13 𝑝14

𝑝23 𝑝24
𝑝31 𝑝32

𝑝41 𝑝42

𝑝33 𝑝34

𝑝43 𝑝44

] 

 

where P is a 4x4 matrix. The matrix entities are shown in Appendix C.2. The expression 𝑑2 is 

obtained after the assumed solution (5.36) is substituted into the expression 𝑛2. Finally, the 

system of differential equations is written as presented below and then in the state-space form 

in order to be implemented into the MATLAB solver bvp5c.  

[
 
 
 
𝑈𝑐

′′

𝑈𝑠
′′

𝑈𝑐3
′′

𝑈𝑠3
′′ ]

 
 
 

= 𝑷−𝟏

[
 
 
 
 
 
 
 
 
 −𝜌𝜔2𝑈𝑐 − ∫

𝜔

𝜋
𝑑2

𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡

−𝜌𝜔2𝑈𝑠 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡

−𝜌9𝜔2𝑈𝑐3 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑐𝑜𝑠(3𝜔𝑡)𝑑𝑡

−𝜌9𝜔2𝑈𝑠3 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡
]
 
 
 
 
 
 
 
 
 

 

As a result, the amplitude of vibration 𝑈 = √𝑈𝑐 + 𝑈𝑠 at the fundamental harmonic (ω) and the 

amplitude of vibration 𝑈3 = √𝑈𝑐3 + 𝑈𝑠3 at the higher harmonic (3ω)  is found.  𝑈3 is obtained 

to study the influence of higher harmonics. 

 

The first case studied corresponds to  𝛾𝑟𝑒𝑓=1.5 (𝐺 𝐺0 ≈ 0.88)⁄ , Table 12. The solution 

obtained is shown in Figure 32.  

 

 

 

 

(5.24) 
 

(3.7) 

(5.25) 
 

(3.7) 

(5.26) 
 

(3.7) 
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Table 12.  Parameters used for  𝛾𝑟𝑒𝑓=0.25 

𝛾ref β G/G0 𝑅(𝑚) 𝑢0(𝑚) 

1.5 1 0.88 40 0.1 

 

 

 

 

Figure 32. FRF obtained using HB4 for γref=1.5 and u(a, t)=0.1sin(25t) (fundamental harmonic) 

 

Comparing the plot in Figure 32 with the one in Figure 31 corresponding to  𝛾𝑟𝑒𝑓=1.5 ( obtained 

using HB2), it is found that the amplitude of vibration 𝑈 at the fundamental harmonic obtained 

using HB4 differs in average by the one obtained using HB2 by ≈0.2%. This difference is small. 

However, when HB4 is used, the amplitude of vibration 𝑈3 at the higher harmonic is also 

obtained. The plot is shown in Figure 33. Studying the plot, it can be seen that there is one peak 

close to the resonance frequency of the linear system (𝑓 = 4.302 𝐻𝑧). Another peak is at one-

third of that resonance frequency(𝑓 = 1.432 𝐻𝑧). The reason why this peak is at one-third of 

the resonance frequency is because the assumed solution is HB4 which includes the higher 

harmonic 3𝜔. 
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Figure 33. FRF obtained using HB4 for γref=1.5 and u(a, t)=0.1sin(25t) (higher harmonic)  

To understand the peak at 𝑓 = 3.726 𝐻𝑧,  the solution is obtained for a larger range of 

frequencies. In the Figure 34 below, showing the amplitude of vibration 𝑈 at the fundamental 

harmonic, a second peak is also observed. 

 

 

Figure 34. FRF obtained using HB4 for γref=1.5 and u(a, t)=0.1sin(25t) (fundamental harmonic) , 1st and 2nd peak  
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A zoom in on the first peak in Figure 34 can be seen in Figure 32. A zoom in on the second peak 

is presented in Figure 35. 

 
Figure 35. Zoom in on the 2nd peak shown in Figure 34 

Looking at Figure 35, it is observed that for the frequency range between 10.8 𝐻𝑧 and 11 𝐻𝑧, 

the solution obtained by increasing and decreasing the frequency do not coincide which is most 

likely an indicator of an unstable branch. The FRF corresponding to higher harmonic is shown 

in Figure 36. Studying the plot, it can be seen that, as it was shown in Figure 33, there is one 

peak close to the resonance frequency of the linear system (𝑓 = 4.302 𝐻𝑧) and another peak at 

one-third of this resonance frequency (𝑓 = 1.432 𝐻𝑧). Other peaks are also observed 

corresponding to the second resonance frequency (𝑓 = 11.05 𝐻𝑧) and at one-third of this 

frequency (𝑓 = 3.726 𝐻𝑧).  
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Figure 36. FRF obtained using HB4 for γref=1.5 and u(a, t)=0.1sin(25t) (higher harmonic)  

 

From the graphs studied, it is concluded that when HB4 is used, the FRF corresponding to the 

higher harmonic shows peaks not only at the resonance frequencies of the linear system but also 

at one-third of these frequencies since the assumed solution is HB4, which includes the higher 

harmonic 3𝜔. However, the amplitude of vibration at the higher harmonic is around 100 times 

smaller than the amplitude of vibration at the fundamental harmonic. This means that the 

influence of higher harmonics is negligible. The amplitudes of the vibration corresponding to 

the fundamental harmonic, obtained using HB2 and HB4, differ by around 0.2%. This difference 

is not only due to the different number of terms used, but also due to the tolerances of the 

MATLAB solvers used such as ode45 and bvp5c. 

 

 

 

  



 

    5.3 RESPONSE OF THE SEMI-INFINITE SYSTEM                                                                                                71 

 

5.3 Response of the semi-infinite system 

5.3.1 Derivation of the nonreflective boundary condition  

Until now, in all the cases studied the medium was finite. A prescribed displacement/stress acted 

at the cavity and the displacement/stress was zero at a certain distance or a boundary dashpot 

was placed. This means that there were always incoming and outgoing waves. A standing wave 

was produced by the constructive interference of the incoming and outgoing traveling waves in 

the steady state. If a semi-infinite medium is considered, waves may only propagate towards 

infinity. Therefore, in this section, to find the response of a semi-infinite system, a nonreflective 

boundary condition is implemented meaning that it allows outgoing waves to exit the domain 

without being reflected back and corrupting the solution. To implement this nonreflective 

boundary condition in the cavity problem, the medium is divided into two domains, the right 

domain (RD) and the computational domain in the left (CD). The right domain starts at a certain 

distance R from the center of the cavity where the nonreflective boundary condition is placed 

and behaves in a linear way.  

Firstly, the right domain is considered. The Laplace transform method is suited to solve the 

problem. The Laplace transform of the displacement is defined by 

𝑢̅𝑅𝐷(𝑟, 𝜔) = ∫ 𝑢(𝑟, 𝑡)𝑒−𝑠𝑡𝑑𝑡,
∞

0

 

where 𝑠 is the Laplace transform parameter. Application of the Laplace transform to the linear 

equation of motion (5.1) gives 

𝑑2𝑢̅𝑅𝐷

𝑑𝑟2
+

1

𝑟

𝑑𝑢̅𝑅𝐷

𝑑𝑟
− (

𝑠2

𝑐2
+

1

𝑟2) 𝑢̅𝑅𝐷 = 0. 

The solution of the differential equation (5.28), vanishing at infinity, is 

𝑢̅𝑅𝐷 = 𝐴𝐾1 (
𝑠𝑟

𝑐
), 

where 𝐾1(𝑥) is the modified Bessel function of the second kind and of order one. The expression 

of the radial stress 𝜎̅𝑟𝑟 at the right domain is  

𝜎̅𝑅𝐷 = (2𝜇 + 𝜆)
𝑑𝑢̅𝑅𝐷

𝑑𝑟
+ 𝜆

𝑢̅𝑅𝐷

𝑟
. 

(5.27) 
 

(3.7) 

(5.28) 
 

(3.7) 

(5.29) 
 

(3.7) 

(5.30) 
 

(3.7) 
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Substituting the equation (5.29) into (5.30) yields 

𝜎̅𝑅𝐷 = (2𝜇 + 𝜆)

𝐴𝑠 (−𝐾0 (
𝑠𝑟
𝑐 ) −

𝑐𝐾1 (
𝑠𝑟
𝑐

)

𝑠𝑟 )

𝑐
+ 𝜆

𝐴𝐾1 (
𝑠𝑟
𝑐

)

𝑟
. 

One of the interface conditions at 𝑟 = 𝑅 is 𝜎̅𝑅𝐷 = 𝜎̅𝐶𝐷. Substituting equation (5.31) in this 

interface condition and expressing the unknown amplitude A results in 

𝐴 =
𝜎̅𝐶𝐷(𝑟 = 𝑅, 𝑠)𝑅𝑐

𝑅𝐾0 (
𝑠𝑅
𝑐

)𝜆𝑠 + 2𝑅𝐾0 (
𝑠𝑅
𝑐

)𝜇𝑠 + 2𝐾1 (
𝑠𝑅
𝑐

)𝜇𝑐
. 

The expression of the radial stress 𝜎̅𝑟𝑟 of the computational domain is 

𝜎̅𝐶𝐷 = (2𝜇 + 𝜆)
𝑑𝑢̅𝐶𝐷

𝑑𝑟
+ 𝜆

𝑢̅𝐶𝐷

𝑟
, 

which after substitution in (5.32) yields 

𝐴 =

((2𝜇 + 𝜆)
𝑑𝑢̅𝐶𝐷
𝑑𝑟

│𝑟=𝑅 + 𝜆
𝑢̅𝐶𝐷(𝑟 = 𝑅, 𝑠)

𝑟 )𝑅𝑐

𝑅𝐾0 (
𝑠𝑅
𝑐

)𝜆𝑠 + 2𝑅𝐾0 (
𝑠𝑅
𝑐

)𝜇𝑠 + 2𝐾1 (
𝑠𝑅
𝑐

)𝜇𝑐
. 

The other interface condition at 𝑟 = 𝑅 is 𝑢̅𝑅𝐷 = 𝑢̅𝐶𝐷 

𝑢̅𝑅𝐷 = 𝐴𝐾1 (
𝑠𝑅

𝑐
) = 𝑢̅𝐶𝐷. 

 Using the expression of 𝐴 (5.34) in the interface condition (5.35) gives 

𝑢̅𝐶𝐷(𝑟 = 𝑅, 𝑠) = −
𝑅𝐾1 (

𝑠𝑅
𝑐 ) 𝑐

𝑅𝑠𝐾0 (
𝑠𝑅
𝑐 ) + 𝐾1 (

𝑠𝑅
𝑐 ) 𝑐

𝑑𝑢̅𝐶𝐷

𝑑𝑟
⃒𝑟=𝑅. 

 

From equation (5.36) it can be seen that there is a relation between the displacement and the 

derivative of the displacement with respect to space, in the computational domain only, at 𝑟 =

𝑅. This is the boundary condition that is used for the computational domain. The distance 𝑅 

where the nonreflective boundary condition should be placed should correspond to a location 

where the strains are small (so that 𝐺 𝐺0 ≈ 1)⁄ .  

 

 

(5.31) 
 

(3.7) 

(5.32) 
 

(3.7) 

(5.33) 
 

(3.7) 

(5.34) 
 

(3.7) 

(5.35) 
 

(3.7) 

(5.36) 
 

(3.7) 
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From here on, for simplicity, the boundary condition (5.36) is going to be written as   

𝑢̅𝐶𝐷 = 𝐶̅(𝑠)
𝑑𝑢̅𝐶𝐷

𝑑𝑟
, 

where 

𝐶̅(𝑠) = −
𝑅𝐾1 (

𝑠𝑅
𝑐

) 𝑐

𝑅𝑠𝐾0 (
𝑠𝑅
𝑐

) + 𝐾1 (
𝑠𝑅
𝑐

) 𝑐
, 

where 𝐶̅(𝑠) is the dynamic flexibility. This concludes the derivation of the nonreflective 

boundary condition. The boundary condition (5.37) however is still in the Laplace domain. For 

a Laplace transformed parameter 𝑠 = 𝑖𝜔, Laplace Transform reduces to Fourier transform, which 

implies that the result can be used for the analysis of the steady state behavior. In the next 

section, the response of the semi-infinite system is obtained. 

5.3.2 Response of the semi-infinite system 

When HBM is used, the boundary conditions are projected into the sines and cosines. To do this 

the boundary condition (5.37) should be written in the time domain i.e. 𝑢𝐶𝐷(𝑡) = 𝐶𝑢𝐶𝐷
′ (𝑡) for 

𝑡 → ∞. This expression is written as 

𝑢𝐶𝐷(𝑡) = ∫ 𝐶(𝑡 − 𝜏)
𝑡

−∞
𝑢𝐶𝐷

′ (𝜏)dτ, with 𝑡 → ∞. 

Using the inverse Fourier transform for the dynamic flexibility (5.38) results in  

𝑢𝐶𝐷(𝑡) = ∫
1

2𝜋
∫ 𝐶̂(𝜔)

+∞

−∞

𝑡→∞

−∞

𝑒𝑖𝜔(𝑡−𝜏)𝑑𝜔 𝑢𝐶𝐷
′ (𝜏)dτ 

=
1

2𝜋
∫ 𝐶̂(𝜔)∫ 𝑢𝐶𝐷

′ (𝜏)𝑒𝑖𝜔(𝑡−𝜏)dτdω .
𝑡→∞

−∞

+∞

−∞

 

For an assumed steady state solution  

𝑢𝐶𝐷(𝜏) = 𝑈𝑐 cos(𝛺𝜏), 

where 𝛺 is the forcing frequency, the space derivative is 

𝑢𝐶𝐷
′ (𝜏) = 𝑈𝑐

′ cos(𝛺𝜏). 

(5.37) 
 

(3.7) 

(5.38) 
 

(3.7) 

(5.39) 
 

(3.7) 

(5.40) 
 

(3.7) 

(5.41) 
 

(3.7) 

(5.42) 
 

(3.7) 
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Substituting the expression (5.42) into (5.40) results in 

𝑢𝐶𝐷(𝑡) =
1

2𝜋
∫ 𝐶̂(𝜔)∫ 𝑈𝑐

′ cos(𝛺𝜏) 𝑒𝑖𝜔(𝑡−𝜏)dτdω.
𝑡→∞

−∞

+∞

−∞

 

Representing the cos(𝛺𝜏) in (5.43) in terms of complex-valued exponentials and integrating 

over τ using the integral representation of the Dirac function 𝛿 gives 

𝑢𝐶𝐷(𝑡) =
𝑈𝑐

′

4𝜋
∫ 𝐶̂(𝜔)2𝜋(𝛿(𝜔 + 𝛺) + 𝛿(𝜔 − 𝛺))

+∞

−∞

𝑒𝑖𝜔𝑡𝑑𝜔. 

After performing the integration, the equation (5.44) becomes  

𝑢𝐶𝐷(𝑡) =
𝑈𝑐

′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 + 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡) with 𝑡 → ∞. 

For an assumed solution  

𝑢𝐶𝐷(𝜏) = 𝑈𝑠 sin(𝛺𝜏), 

following the same procedure presented above for the assumed solution (5.41), results in 

𝑢𝐶𝐷(𝑡) = −𝑖
𝑈𝑠

′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 − 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡) with 𝑡 → ∞. 

For an assumed solution  

𝑢𝐶𝐷(𝜏) = 𝑈𝑐 cos(𝛺𝑡) + 𝑈𝑠 sin(𝛺𝑡), 

the result is the summation of the solutions (5.45) and (5.47) as shown below 

𝑢𝐶𝐷(𝑡) =
𝑈𝑐

′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 + 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡) − 𝑖

𝑈𝑠
′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 − 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡) with 𝑡 → ∞. 

Projecting the boundary condition (5.49) into cos(𝛺𝑡) gives 

𝑈𝑐 = ∫
𝜔

𝜋

𝑇

0

(
𝑈𝑐

′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 + 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡) − 𝑖

𝑈𝑠
′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 − 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡)) cos(𝛺𝑡) 𝑑𝑡. 

 

 

(5.43) 
 

(3.7) 

(5.44) 
 

(3.7) 

(5.45) 
 

(3.7) 

(5.46) 
 

(3.7) 

(5.47) 
 

(3.7) 

(5.50) 
 

(3.7) 

(5.48) 
 

(3.7) 

(5.49) 
 

(3.7) 
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Projecting the boundary condition (5.49) into sin (𝛺𝑡) gives 

𝑈𝑠 = ∫
𝜔

𝜋

𝑇

0

(
𝑈𝑐

′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 + 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡) − 𝑖

𝑈𝑠
′

2
(𝐶̂(𝛺)𝑒𝑖𝛺𝑡 − 𝐶̂(−𝛺)𝑒−𝑖𝛺𝑡)) sin(𝛺𝑡) 𝑑𝑡, 

where 𝐶̂(𝛺) is obtained by substituting 𝑠 = 𝑖𝛺 in 𝐶̅(𝑠) (5.38). 

 

Using the nonreflective boundary condition and a prescribed stress at the cavity 𝜎𝑟𝑟(𝑟 = 𝑎) =

𝑝0sin (𝜔𝑡), the response is found for the assumed solution HB2 (𝑈 = 𝑈𝑐 cos(𝜔𝑡) +

𝑈𝑠 sin(𝜔𝑡)). The parameters used are shown in Table 13. As it is seen, for 𝛾𝑟𝑒𝑓 = 0.5 the 

response obtained is almost linear since 𝐺/𝐺0 =0.99 (referring to the maximum reduction in 𝐺). 

 

Table 13. Parameters corresponding to 𝛾𝑟𝑒𝑓 = 0.5 

𝛾ref β G/G0 𝑅(𝑚) a(m) 

0.5 1 0.99 40 1 

 

That is why the solutions shown in Figure 37, obtained using the linear and nonlinear equation 

of motions, coincide. The solutions coincide with the analytical response as well which proves 

that they are correct. In Figure 38, the FRF is obtained for the nonlinear and linear case at the  

 
Figure 37. Comparison of HBM linear/nonlinear and analytical solution for 𝑝0 = 1𝑀𝑃𝑎 and 𝛾𝑟𝑒𝑓 = 0.5 

(5.51) 
 

(3.7) 
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cavity radius 𝑟 = 𝑎. The amplitudes are close to each other, as expected, since the nonlinearity 

level is low.  

 
Figure 38. FRF at r=a, 𝑓𝑜𝑟 𝑝0 = 1𝑀𝑃𝑎 𝑎𝑛𝑑 𝛾𝑟𝑒𝑓 = 0.5 (HB2) 

Now the value of  𝛾𝑟𝑒𝑓 is decreased to study the influence of nonlinearity. Parameters used are 

shown in Table 14. The 𝐺 𝐺0⁄  ratio drops to 0.85. Since the nonlinearity increases, the nonlinear  

 

Table 14.Parameters corresponding to γref=0.025 

𝛾ref β G/G0 𝑅(𝑚) a(m) 

0.025 1 0.85 40 1 

solution does not coincide with the linear one anymore, as it is observed in Figure 39. The increase 

in the nonlinearity has caused a phase shift in the response which becomes more pronounced at 

bigger radial distances as the propagation damping increases. A slight increase in the amplitude of 

the displacement of the nonlinear solution is also observed, especially near the cavity radius, and it 

becomes less pronounced at bigger radial distances as the propagation damping increases. This 

increase in amplitude is due to the decrease in shear modulus which results is a less stiff soil. Since  
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Figure 39. Comparison of HBM linear/nonlinear and analytical solution,𝑓𝑜𝑟 𝑝0 = 1𝑀𝑃𝑎 𝑎𝑛𝑑 𝛾𝑟𝑒𝑓 = 0.025 

the nonlinearity increases, the FRF of the nonlinear solution changes, as shown in Figure 40. 

The amplitude of the nonlinear response is higher than that of the linear one. At the peak value, 

the amplitude of the nonlinear solution is around 1.18 times higher than that of the linear one. 

The difference is less for higher frequencies. Moreover, after the maximum amplitude, in the 

plot of the nonlinear solution some wiggles can be observed meaning that the line becomes 

wavy. These wiggles should be a result of the nonlinearity since they are not present in the plot 

of the linear response. 

 

Figure 40.FRF at r=a, 𝑓𝑜𝑟 𝑝0 = 1𝑀𝑃𝑎 𝑎𝑛𝑑 γref = 0.025 (HB2) 
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As the nonlinearity increases, Table 15, the difference in the linear and nonlinear solutions 

becomes more pronounced, as shown in Figure 41. The phase shift in the nonlinear response is 

bigger than in the previous case, Figure 39, and it becomes more pronounced at bigger radial 

distances as the propagation damping increases. The increase in the amplitude of the 

displacement of the nonlinear solution is also bigger than that shown in the previous case, 

especially near the cavity radius, and it becomes less pronounced at bigger radial distances as 

the propagation damping increases. The difference becomes more pronounced even in the case  

 

Table 15. Parameters corresponding to γref=0.1 

𝛾ref β G/G0 𝑅(𝑚) a(m) 

0.01 1 0.67 40 1 

 

 
Figure 41. Comparison of HBM linear/nonlinear and analytical solution, 𝑓𝑜𝑟 𝑝0 = 1𝑀𝑃𝑎 𝑎𝑛𝑑 𝛾𝑟𝑒𝑓 = 0.01 

 

of the FRF, Figure 42. The amplitude of the nonlinear response is higher than that of the linear 

one at the cavity. At the peak value, the amplitude of the nonlinear solution is around 1.45 times 

higher than that of the linear one. This shows that as the nonlinearity increases, at 𝒓 = 𝒂, the  
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cavity radius, the amplitude of the nonlinear response increases. In this case, the amplitude 

increased by around 50% which is a significant percentage. Moreover, the wiggles in the plot 

of the nonlinear solution are more pronounced than the ones observed in Figure 40. Thus, it can 

be inferred that an increase in nonlinearity make the wiggles more pronounced. This may be 

also due to the influence of higher harmonics. 

 
Figure 42.FRF at r=a, 𝑓𝑜𝑟 𝑝0 = 1𝑀𝑃𝑎 𝑎𝑛𝑑 γref = 0.01 (HB2) 

 

Using the nonreflective boundary condition and the prescribed stress at the cavity, the same 

procedure is followed using HB4 to study the influence of higher harmonics. The parameters 

used are shown in Table 16. The FRF presented in Figure 43 shows the amplitude of vibration 

 

Table 16. Parameters corresponding to γref=0.025 (HB4) 

𝛾ref β G/G0 𝑅(𝑚) a(m) 

0.025 1 0.85 40 1 

at the fundamental frequency (𝜔) 𝑈 = √𝑈𝑐
2 + 𝑈𝑠

2 for 𝛾𝑟𝑒𝑓=0.025. The amplitude values are 

almost the same as the ones shown in Figure 40 using HB2 for the same 𝛾𝑟𝑒𝑓=0.025.  
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Figure 43. FRF at r=a, for 𝑝0 = 1𝑀𝑃𝑎 and γref=0.025 (HB4)3 

Moreover, when HB4 is used, the amplitude of vibration at higher harmonic (3𝜔) 𝑈3 =

√𝑈𝑐3
2 + 𝑈𝑠3

2  is also obtained. The plot is shown in Figure 44. Studying the plot, it can be seen 

that there is one peak at the one-third of the resonance frequency of the linear system, which is 

expected considering that cos(3ωt) and sin(3ωt) are used in the assumed solution. However, the 

amplitude values corresponding to the higher harmonic (3𝜔), Figure 44, are around 50 times 

smaller than the ones shown in Figure 43. Wiggles are also present in the plot of the amplitude 

of vibration at higher harmonic and increase as the frequency increases.  

 
Figure 44. FRF at r=a, for 𝑝0 = 1𝑀𝑃𝑎 and γref=0.025 (HB4, higher harmonics) 

 

 

 
3 The plots in Figure 43 and Figure 44 corresponding to “non-linear (r=a) down” are obtained by 

decreasing the frequency sweep.  
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Now, the value of  𝛾𝑟𝑒𝑓 is decreased to study the influence of nonlinearity, Table 17. 

Table 17. Parameters corresponding to γref=0.025 (HB4) 

𝛾ref β G/G0 𝑅(𝑚) a(m) 

0.01 1 0.67 40 1 

The FRF shown in Figure 45 corresponding to the amplitude of response 𝑈 at the fundamental 

harmonic for 𝛾𝑟𝑒𝑓=0.01. The amplitude values are almost the same as the ones shown in Figure 

42 using HB2 for the same 𝛾𝑟𝑒𝑓=0.01. 

 
Figure 45. FRF at r=a, for 𝑝0 = 1𝑀𝑃𝑎 and γref=0.01 (HB4) 

The FRF corresponding to the amplitude of vibration 𝑈3 at the higher harmonic is shown in 

Figure 46. The peak at the one-third of the resonance frequency of the linear system is observed 

again. However, for this level of nonlinearity, the amplitude values corresponding to the higher 

harmonic, Figure 46, are around 18 times smaller than the ones shown in Figure 45. Even 

though the amplitude values shown in Figure 46 are small compared to the ones shown in 

Figure 45, they are considerably bigger than the ones shown in Figure 44. This means that as 

the nonlinearity increases, the influence of the higher harmonic increases which is reflected in 

the increase of the amplitude values of the FRF.  
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Figure 46. FRF at r=a, for 𝑝0 = 1𝑀𝑃𝑎 and γref=0.01 (HB4, higher harmonics) 

 

5.3.3 Concluding remarks 

The cases studied show that HBM method works for both finite and semi-infinite media. 

However, depending on the frequency range used, the level of nonlinearity and the damping on 

the system, the FRF may contain an unstable branch. The shape of this unstable branch is 

unknown and cannot be found directly using the HBM. As done for the soil column problem, 

for the cavity problem the responses were obtained using HB2 and HB4. In all the cases studied 

the amplitude values corresponding to HB2 and HB4 are almost the same (0.2% difference). 

Moreover, using HB4 the influence of higher harmonic is observed. The amplitude of response 

at the higher harmonic is small but it increases as the nonlinearity increases. Due to the very 

long computational time, the FRF was not obtained using the numerical method. However, the 

linear response and the nonlinear response (for 𝛾𝑟𝑒𝑓 → ∞ ) obtained using HBM were compared 

with the analytical response. Since all the solutions coincided, it can be concluded that the HBM 

is accurate.  

In each chapter of this study, the HBM and the numerical method were compared for several 

cases. Conclusions were drawn from these comparisons related to the accuracy and robustness 

of the methods and the reasons behind their limitations. The next chapter sums up the 

conclusions discussed and gives some recommendations for further research.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

6 

 
Conclusions and 
recommendations 

 

6.1 Conclusions 

 
The aim of this thesis was to validate the HBM for modelling the soil column and the cavity 

problem, considering both finite and semi-infinite media, by quantitatively assessing the 

accuracy and robustness of the HBM compared to the numerical method. Moreover, the 

influence of the nonlinearity in the dynamic soil response was studied. In this section, firstly the 

influence of the nonlinearity will be stated, followed by an overview of the HBM, its limitations 

and recommendations for future research.  

 

▪ Influence of nonlinearity 

In the cases studied, it was observed that the response changed due to the nonlinearity. The 

differences between the linear and nonlinear solutions were in terms of amplitude and phase 

shift. These differences were observed in both the numerical and semi-analytical methods. In 

both these methods, the hyperbolic soil model was used, so the shear modulus decreased as the 

nonlinearity increased. A smaller shear modulus, meaning a less stiff soil, resulted in an increase 

in the amplitude of the response of the nonlinear system. Moreover, since a stain dependent 

damping was included in the soil column problem, an increase in nonlinearity resulted in higher 

damping. As the damping value increased, the amplitude of the response of the nonlinear system 

decreased and the phase shift became more pronounced.  
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In the soil column problem, a finite medium was studied. Therefore, the HMB was tested for a 

problem with standing waves only. The semi-analytical solution was obtained by sweeping over 

the frequency range of interest. Due to the nonlinear behaviour, multiple amplitudes could exist 

for the same frequency of excitation depending on the initial guess. To observe if there was 

more than one amplitude for a certain frequency of excitation, two solutions were obtained. One 

solution was obtained by increasing the frequency sweep and the another one by decreasing the 

frequency sweep. For the soil column model, both the solutions obtained coincided, meaning 

that for each frequency of excitation there existed a unique amplitude. However, this holds only 

for the cases presented in this work. If a smaller damping value was used, the solutions obtained 

might not coincide meaning that multiple amplitudes could exist for a single frequency. 

 

In the cavity problem, both finite and semi-infinite media were considered, so the HBM was 

tested for a problem with standing waves and propagating waves respectively. For the finite 

medium, at some nonlinearity levels, the solutions obtained by increasing and decreasing the 

frequency coincided, meaning that for each frequency of excitation there existed a unique 

amplitude. However, as the nonlinearity increased, the solutions did not coincide, so multiple 

amplitudes could exist for a single frequency. Thus, in a certain frequency regime, there was 

most likely another branch which could not be obtained in the analysis as it did not correspond 

to a stable response. Only the jump between the two branches with stable solutions was observed 

and the true shape of the branch connecting the obtained branches remained unknown. The 

influence of the nonlinearity was also shown in the shape of the FRF, which was slightly tilted 

to the left due to the softening behavior of the soil. Different levels of nonlinearity resulted in 

different FRF shapes. For the semi-infinite system, the solutions obtained by increasing/ 

decreasing the frequency coincided. In contrast to the FRFs obtained for the finite systems and 

linear analysis, wiggles (wavy lines) were observed in the FRF obtained for the semi-infinite 

system. They became more pronounced as the nonlinearity increased.  

 

▪ Influence of higher harmonics 

To observe the influence of higher harmonics, for both the soil column and the cavity problem, 

the FRF corresponding to the amplitude of vibration at the higher harmonic (3𝜔) was obtained. 

Studying the FRF, it was observed that there was one peak close to the resonance frequency of 

the linear system and one peak close to one-third of this resonance frequency. This was expected 

considering that cos(3ωt) and sin(3ωt) are used in the assumed solution. For the soil column  
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problem, the amplitude of vibration at the higher harmonic was around 100 times smaller than 

the amplitude of vibration at the fundamental harmonic (𝜔). Therefore, the influence of higher 

harmonic was negligible. For the cavity problem, the amplitude of vibration at the higher 

harmonic was around 50 times smaller (𝐺 𝐺0 ≈ 0.85)⁄  than the amplitude of vibration at the 

fundamental harmonic. As the nonlinearity increased, the amplitude of vibration at the higher 

harmonic increased as well. In the last case studied for the semi-infinite medium, the amplitude 

of vibration at the higher harmonic was around 18 smaller (𝐺 𝐺0 ≈ 0.67)⁄  than that at the 

fundamental harmonic. While this value is still small, it is much bigger than the values obtained 

in all the other cases. An even bigger level of nonlinearity may result in higher amplitude of 

vibration at the higher harmonic. 

 

▪ Accuracy of harmonic balance method 

A frequency response function was obtained using both the numerical method and the HBM. 

The comparison was done at different levels of nonlinearity. For a nonlinearity corresponding 

to 𝐺 𝐺0 = 0.87⁄ , the values of the relative ‘error’ between the numerical and HBM ranged from 

0.007 % to 6.126% with an average value of 2.26%. Following the same procedure, the relative 

‘error’ was found for different levels of nonlinearity. While the ‘error’ increased with increasing 

nonlinearity, the value was still on the same order of magnitude (around 2%-3% on average). 

This difference was not only due to the limited number of terms used in the HBM, but also due 

to the tolerances of the MATLAB solvers used such as ode45 and bvp5c. Considering all the 

cases studied, the difference in percentage between the results obtained using HBM and 

numerical method, and the reasons behind the differences, it can be concluded that HBM is an 

accurate method. 

 

▪ Robustness of harmonic balance method.  

With regard to ease of computation, the HBM outperformed the numerical method. The 

computation time of the HBM for the cases studied in this thesis, considering both the soil 

column and the cavity problem, was low, mostly less than half an hour. For the soil column 

problem, the computation time needed to obtain the FRF using the numerical method was 

around 15 hours. Computation time was found to increase as the level of nonlinearity increased. 

For the cavity problem, due to the very high computational time, the FRF was not obtained using 

the numerical solutions. In terms of ease of implementing the method, both the numerical  
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method and the HBM become cumbersome as the complexity of the equations of motion 

increases. In the case of the HBM, as the number of harmonics included in the analysis increases, 

the resulting expression may be long and complex. However, it is still feasible to implement the 

method.  

 

▪ Limitations of harmonic balance method 

While the HBM gives accurate results, as it was shown for several cases, according to the 

frequency range used, the level of nonlinearity, and the damping of the system, the FRF obtained 

may contain an unstable branch. The shape of this unstable branch is unknown and cannot be 

found directly using the HBM4. Another limitation is related to the number of higher harmonics 

included in the assumed solution. Even though higher harmonics have a small influence on the 

cases studied in this thesis, their impact increases as the nonlinearity increases. However, a 

higher number of harmonics makes the implementation of HBM more difficult. Moreover, since 

the assumed solution is limited, certain phenomena such as the wiggles present in the FRF 

become harder to interpret. While they may be due to the higher harmonics, to be sure, one 

needs to add terms to the assumed solution to prove if that is the case. Again, this makes the 

implementation of the HBM more difficult. Lastly, different from the numerical method that 

gives both the transient and steady state solutions, the harmonic balance method gives only the 

steady state solution. For cases when the transient solution is important, the harmonic balance 

method cannot be used. 

 

6.2 Recommendations  

 

A list of recommendations is presented below for future research and development. 

 

▪ Numerical method, steady state 

For the cavity problem, due to the very long computational time, the FRF was not obtained using 

the numerical method. However, the linear response and the nonlinear response (for 𝜸𝒓𝒆𝒇 → ∞) 

obtained using HBM were compared with the analytical response to assess the accuracy of the  

 
4 While this is a drawback of the HBM, it is worth mentioning that the unstable branch cannot be 

obtained with the numerical method either.  
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HBM. For a better assessment of the HBM and considering that the numerical method includes 

all the harmonics, obtaining the steady state using the numerical method is recommended. 

Making the code more efficient or using other robust programs instead of MATLAB can help  

in obtaining the numerical solution and reducing the computational effort.  

 

▪ Numerical method, nonreflective boundary condition 

For the cavity problem, a semi-infinite medium was modeled by implementing a nonreflective 

boundary condition. In the time domain, this boundary condition can be implemented using a 

convolution integral. The nonreflective boundary condition was not implemented in the context 

of the numerical method. However, for a better assessment of the HBM, and considering that 

the numerical method includes all the harmonics, obtaining the response of a semi-infinite 

medium using the numerical method is recommended. 

 

▪ Strain-dependent damping 

For the soil column problem, strain-dependent shear modulus and strain-dependent damping 

terms were used. For the cavity problem, only the shear modulus was strain-dependent. For a 

better prediction of the soil behavior, the implementation of a strain-dependent damping term is 

recommended. A different formulation from the one shown in this thesis can also be followed 

to prevent the formation of an improper term which may give rise to instability. 
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Appendix A 

 

Application of the HB4 for the soil column problem 

 
To obtain the FRF for the soil column, the assumed solution HB4 is used 

𝑢(𝑧, 𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡) + 𝑈𝑐3 cos(3𝜔𝑡) + 𝑈𝑠3 sin(3𝜔𝑡), 

where 𝑈𝑐, 𝑈𝑠 correspond to the unknown amplitudes of cos(𝜔𝑡) and sin(𝜔𝑡) respectively, for 

n=1 and 𝑈𝑐3 and 𝑈𝑠3 correspond to the unknown amplitudes of cos(3𝜔𝑡) and sin(3𝜔𝑡) 

respectively, for n=2. Using the assumed solution (A.1), the partial derivatives of the nonlinear 

equation of motion (3.6) with respect to time and space are obtained.  

𝜕2𝑢

𝜕𝑡2
= −𝜔2(𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡)) − 9𝜔2(𝑈𝑐3 cos(3𝜔𝑡) + 𝑈𝑠3 sin(3𝜔𝑡)) 

 

|𝑢𝑥,𝑧| = |𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡) + 𝑈𝑐3
′ cos(3𝜔𝑡) + 𝑈𝑠3

′ sin(3𝜔𝑡)| 

 

𝜕2𝑢

𝜕𝑧2
= 𝑈𝑐

′′ cos(𝜔𝑡) + 𝑈𝑠
′′sin(𝜔𝑡) + 𝑈𝑐3

′′ cos(3𝜔𝑡) + 𝑈𝑠3
′′ sin(3𝜔𝑡) 

 

𝜕3𝑢

𝜕𝑧2𝜕𝑡
= −𝜔𝑈𝑐

′′ sin(𝜔𝑡) + 𝜔𝑈𝑠
′′ sin(𝜔𝑡) − 3𝜔𝑈𝑐3

′′ sin(3𝜔𝑡) + 3𝜔𝑈𝑠3
′′ cos(3𝜔𝑡) 

 

The terms are then substituted into the equation of motion (3.6). each term of the equation of 

motion is projected into cos(𝜔𝑡), sin(𝜔𝑡), cos(3𝜔𝑡) and sin(𝜔𝑡). As a result, four equations 

are obtained which can be written in the matrix form as shown below 

[
 
 
 
 
 
 
 
 

−𝜔2

𝑐2
𝑈𝑐

−𝜔2

𝑐2
𝑈𝑠

−9𝜔2

𝑐2
𝑈𝑐3

−9𝜔2

𝑐2
𝑈𝑠3]

 
 
 
 
 
 
 
 

= 𝑩

[
 
 
 
𝑈𝑐

′′

𝑈𝑠
′′

𝑈𝑐3
′′

𝑈𝑠3
′′ ]

 
 
 

 

 

 

(A.2) 

 
 

(3.7) 

(A.3) 

 
 

(3.7) 

(A.4) 

 
 

(3.7) 

(A.5) 

 
 

(3.7) 

(A.1) 

 
 

(3.7) 

(A.6) 

 
 

(3.7) 
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where B is  

 

 

𝑩 = [

𝑏11 𝑏12

𝑏21 𝑏22

𝑏13 𝑏14

𝑏23 𝑏24

𝑏31 𝑏32

𝑏41 𝑏42

𝑏33 𝑏34

𝑏43 𝑏44

] 

 

 

 

𝑏11 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠2(𝜔𝑡)𝑑𝑡 − ∫
𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

𝑏12 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 + ∫
𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠2(𝜔𝑡)𝑑𝑡 

 

𝑏13 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(3𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 − ∫
3𝜔2

𝜋

𝑇

0

ℎ2𝑠𝑖𝑛(3𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 

 

𝑏14 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑠𝑖𝑛(3𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 + ∫
3𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠(3𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 

 

𝑏21 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 − ∫
𝜔2

𝜋

𝑇

0

ℎ2sin
2(𝜔𝑡)𝑑𝑡 

 

𝑏22 = ∫
𝜔

𝜋

𝑇

0

ℎ1sin
2(𝜔𝑡)𝑑𝑡 + ∫

𝜔2

𝜋

𝑇

0

ℎ2𝑠𝑖𝑛(𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 

 

𝑏23 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 − ∫
3𝜔2

𝜋

𝑇

0

ℎ2𝑠𝑖𝑛(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

𝑏24 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑠𝑖𝑛(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 + ∫
3𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

𝑏31 = ∫
𝜔

𝜋

𝑇

0

ℎ1cos(3𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡 − ∫
𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

 

𝑏32 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 + ∫
𝜔2

𝜋

𝑇

0

ℎ2cos(3𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡 

 

𝑏33 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(3𝜔𝑡)cos(3𝜔𝑡)𝑑𝑡 − ∫
3𝜔2

𝜋

𝑇

0

ℎ2𝑠𝑖𝑛(3𝜔𝑡)𝑐𝑜𝑠(3𝜔𝑡)𝑑𝑡 

 

𝑏34 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑠𝑖𝑛(3𝜔𝑡)𝑐𝑜𝑠(3𝜔𝑡)𝑑𝑡 + ∫
3𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠(3𝜔𝑡)cos(3𝜔𝑡)𝑑𝑡 

 

 

(A.7) 

 
 

(3.7) 

(A.8) 

 
 

(3.7) 

(A.9) 

 
 

(3.7) 

(A.10) 

 
 

(3.7) 

(A.11) 

 
 

(3.7) 

(A.12) 

 
 

(3.7) 

(A.13) 

 
 

(3.7) 

(A.14) 

 
 

(3.7) 

(A.15) 

 
 

(3.7) 

(A.16) 

 
 

(3.7) 

(A.17) 

 
 

(3.7) 

(A.18) 

 
 

(3.7) 

(A.19) 

 
 

(3.7) 
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𝑏41 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(𝜔𝑡)𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡 − ∫
𝜔2

𝜋

𝑇

0

ℎ2sin(𝜔𝑡)𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡 

 

 

𝑏42 = ∫
𝜔

𝜋

𝑇

0

ℎ1sin(𝜔𝑡)𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡 + ∫
𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠(𝜔𝑡)𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡 

 

𝑏43 = ∫
𝜔

𝜋

𝑇

0

ℎ1𝑐𝑜𝑠(3𝜔𝑡)sin(3𝜔𝑡)𝑑𝑡 − ∫
3𝜔2

𝜋

𝑇

0

ℎ2sin(3𝜔𝑡)sin(3𝜔𝑡)𝑑𝑡 

 

𝑏44 = ∫
𝜔

𝜋

𝑇

0

ℎ1sin(3𝜔𝑡)sin(3𝜔𝑡)𝑑𝑡 + ∫
3𝜔2

𝜋

𝑇

0

ℎ2𝑐𝑜𝑠(3𝜔𝑡)sin(3𝜔𝑡)𝑑𝑡 

 

 

where 

ℎ1 =
1

1 + (|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡) + 𝑈𝑐3
′ cos(3𝜔𝑡) + 𝑈𝑠3

′ sin(3𝜔𝑡)| 𝛾
𝑟𝑒𝑓

)⁄
𝛽
 

[1 − 𝛽
(|𝑈𝑐

′ cos(𝜔𝑡) + 𝑈𝑠
′ sin(𝜔𝑡) + 𝑈𝑐3

′ cos(3𝜔𝑡) + 𝑈𝑠3
′ sin(3𝜔𝑡)| 𝛾𝑟𝑒𝑓)⁄

𝛽

1 + (|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′ sin(𝜔𝑡) + 𝑈𝑐3
′ cos(3𝜔𝑡) + 𝑈𝑠3

′ sin(3𝜔𝑡)| 𝛾𝑟𝑒𝑓)⁄
𝛽
] 

 

 

 

ℎ2 = 2 (𝜉
𝑚𝑖𝑛

+
((𝜉

𝑚𝑎𝑥
− 𝜉

𝑚𝑖𝑛
)(|𝑈𝑐

′ cos(𝜔𝑡) + 𝑈𝑠
′sin(𝜔𝑡) + 𝑈𝑐3

′ cos(3𝜔𝑡) + 𝑈𝑠3
′ sin(3𝜔𝑡)| 𝛾

𝑟𝑒𝑓
)⁄
𝛽
)

1 + (|𝑈𝑐
′ cos(𝜔𝑡) + 𝑈𝑠

′sin(𝜔𝑡) + 𝑈𝑐3
′ cos(3𝜔𝑡) + 𝑈𝑠3

′ sin(3𝜔𝑡)| 𝛾
𝑟𝑒𝑓

)⁄
𝛽

) 

 

 

 

The obtained equations and the projected boundary conditions are implemented and the BVP is 

solved with the MATLAB program bvp5c.  As a result, the terms 𝑈𝑐, 𝑈𝑠, 𝑈𝑐3 and 𝑈𝑠3 are found 

for a certain depth, at different frequencies. 

  

(A.20) 

 
 

(3.7) 

(A.21) 

 
 

(3.7) 

(A.22) 

 
 

(3.7) 

(A.23) 

 
 

(3.7) 

(A.24) 

 
 

(3.7) 

(A.25) 

 
 

(3.7) 



 

 

 

 

Appendix B 

 

Implementation of the boundary conditions 
 

The boundary condition at 𝑟 = 𝑅 is 𝜎𝑟𝑟 = 0 which corresponds to the node 𝑖 = 𝑁. Considering 

the expression of 𝜎𝑟𝑟 for the linear case (4.33), and using 𝐺(𝛾) instead of 𝐺, the 𝜎𝑟𝑟 expression 

for the nonlinear case becomes 

𝜎𝑟𝑟 =
3𝐺(𝛾)(1 + 𝜈)

3(1 − 2𝜈)
𝜀𝑣𝑜𝑙 + 2 𝐺(𝛾)𝑒𝑟𝑟 

 

Using (B.1) and finite difference method, the expression of 𝜎𝑟𝑟𝑁 becomes 

 

𝜎𝑟𝑟𝑁 =
2𝐺0 (

𝑢1,𝑁+1 − 𝑢1,𝑁−1

3∆𝑟 −
𝑢1,𝑁

3𝑟 )

1 +

(

 
 
 √2(

𝑢1,𝑁+1 − 𝑢1,𝑁−1

3∆𝑟 −
𝑢1,𝑁

3𝑟 )
2

+ 2(
2𝑢1,𝑁

3𝑟 −
𝑢1,𝑁+1 − 𝑢1,𝑁−1

6∆𝑟 )
2

𝛾𝑟𝑒𝑓

)

 
 
 

𝛽
+ 

2𝐺0(1 + 𝜈) (
𝑢1,𝑁+1 − 𝑢1,𝑁−1

2∆𝑟 −
𝑢1,𝑁

𝑟 )

(

 
 
 
 

1 +

(

 
 
 √2(

𝑢1,𝑁+1 − 𝑢1,𝑁−1

3∆𝑟 −
𝑢1,𝑁

3𝑟 )
2

+ 2(
2𝑢1,𝑁

3𝑟 −
𝑢1,𝑁+1 − 𝑢1,𝑁−1

6∆𝑟 )
2

𝛾𝑟𝑒𝑓

)

 
 
 

𝛽

)

 
 
 
 

(3 − 6𝜈)

 

 

where 𝑢1,𝑁+1 represents the ghost point. However, for 𝜎𝑟𝑟𝑁 = 0, 𝑢1,𝑁+1 can be written in terms 

of the previous points as 

𝑢1,𝑁+1 =
2∆𝑟𝜈𝑢1,𝑁 + 𝑟𝜈𝑢1,𝑁−1 − 𝑟𝑢1,𝑁−1

𝑟(𝜈 − 1)
 

In this way the ghost point is handled.  
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(B.1) 

 
 

(3.7) 

(B.2) 

 
 

(3.7) 

(B.3) 

 
 

(3.7) 



 

 

 

Appendix C 

 

Application of the harmonic balance method 
 

C.1 Application of the HB2 for the cavity problem 

To apply the harmonic balance method for the cavity problem, the first step is considering the 

solution to be of the form of a truncated Fourier series expansion i.e.,  

𝑢(𝑟, 𝑡) = 𝑢̂0 + ∑(𝑢̂2𝑛−1(𝑟) cos(𝑛𝜔𝑡) + 𝑢̂2𝑛(𝑟) sin(𝑛𝜔𝑡))

𝑁𝐻

𝑛=1

 

where 𝜔 is the fundamentah frequency of oscillation, 𝑢̂𝑛 (𝑛 = 0,1,… ,𝑁𝐻) are the HB solution 

Fourier coefficient variable, and 𝑁𝐻 is the number of overall harmonics used in the HB truncated 

Fourier series expansion. The Fourier expansions of the first- and second- order time derivative 

terms are 

𝑢̇(𝑟, 𝑡) = ∑(−𝑛𝜔𝑢̂2𝑛−1(𝑟) sin(𝑛𝜔𝑡) + 𝑛𝜔𝑢̂2𝑛(𝑟) cos(𝑛𝜔𝑡))

𝑁𝐻

𝑛=1

 

𝑢̈(𝑟, 𝑡) = ∑(−(𝑛𝜔)2𝑢̂2𝑛−1(𝑟) cos(𝑛𝜔𝑡) − (𝑛𝜔)2𝑢̂2𝑛(𝑟) sin(𝑛𝜔𝑡))

𝑁𝐻

𝑛=1

 

The Fourier expansions of the first and second space derivative terms are 

𝑢′(𝑟, 𝑡) = ∑(𝑢̂2𝑛−1
′ (𝑟) + 𝑢̂2𝑛

′ (𝑟) sin(𝑛𝜔𝑡))

𝑁𝐻

𝑛=1

 

𝑢′′(𝑟, 𝑡) = ∑(𝑢̂2𝑛−1
′′ (r)cos(𝑛𝜔𝑡) + 𝑢̂2𝑛

′′ (r)sin(𝑛𝜔𝑡))

𝑁𝐻

𝑛=1

 

The first assumed solution is HB2, which includes 2 harmonics. 

𝑢(𝑟, 𝑡) = 𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠sin (𝜔𝑡) 

where 𝑈𝑐 and 𝑈𝑠 correspond the coefficients of cos(𝜔𝑡) and sin(𝜔𝑡) respectively, for n=1. 

 

 

 

 

(C.1.1) 

 
 

(3.7) 

(C.1.2) 
 

(3.7) 

(C.1.3) 

 
 

(3.7) 

(C.1.4) 

 
 

(3.7) 

(C.1.5) 

 
 

(3.7) 

(C.1.6) 

 
 

(3.7) 
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Using this assumed solution, the partial derivatives of the equation of motion (5.8) can be written 

as 

𝜕2𝑢

𝜕𝑡2
= −𝜔2(𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡)) 

 

𝜕𝑢

𝜕𝑟
= 𝑈𝑐

′ cos(𝜔𝑡) + 𝑈𝑠
′ sin(𝜔𝑡) 

𝜕2𝑢

𝜕𝑧2
= 𝑈𝑐

′′ cos(𝜔𝑡) + 𝑈𝑠
′′sin(𝜔𝑡) 

𝜕3𝑢

𝜕𝑧2𝜕𝑡
= −𝜔𝑈𝑐

′′ sin(𝜔𝑡) + 𝜔𝑈𝑠
′′sin(𝜔𝑡) 

 

Substituting (C.1.7) -(C.1.10) in the equation of motion (5.8) results in two equations as shown 

below 

 

[
 
 
 
 −𝜌𝜔2𝑈𝑐 − ∫

𝜔

𝜋
𝑛2

∗
𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡

−𝜌𝜔2𝑈𝑠 − ∫
𝜔

𝜋
𝑛2

∗
𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡
]
 
 
 
 

= 𝑸 [
𝑈𝑐

′′

𝑈𝑠
′′] 

where  

𝑸 = [
𝑞11 𝑞12

𝑞21 𝑞22
] 

 

𝑞11 = ∫
𝜔

𝜋
𝑛1

∗
𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡 

 

𝑞12 = ∫
𝜔

𝜋
𝑛1

∗
𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡 

 

𝑞21 = ∫
𝜔

𝜋
𝑛1

∗
𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡 

 

𝑞22 = ∫
𝜔

𝜋
𝑛1

∗
𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡 

 

The expression 𝑛1
∗ is obtained after the assumed solution (5.10) is substituted into the expression 

𝑛1 and the expression 𝑛2
∗  is obtained after the assumed solution (5.10) is substituted into the 

expression 𝑛2. 

 

 

(C.1.11) 

 
 

(3.7) 

(C.1.12) 

 
 

(3.7) 

(C.1.13) 

 
 

(3.7) 

(C.1.14) 

 
 

(3.7) 

(C.1.15) 

 
 

(3.7) 

(C.1.16) 

 
 

(3.7) 

(C.1.8) 

 
 

(3.7) 

(C.1.7) 

 
 

(3.7) 

(C.1.9) 

 
 

(3.7) 

(C.1.10) 

 
 

(3.7) 
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C.2 Application of HB4 for the cavity problem 

Using this assumed solution HB4, the partial derivatives of the equation of motion (5.14) can 

be written as 

𝜕2𝑢

𝜕𝑡2
= −𝜔2(𝑈𝑐 cos(𝜔𝑡) + 𝑈𝑠 sin(𝜔𝑡)) − 9𝜔2(𝑈𝑐3 cos(3𝜔𝑡) + 𝑈𝑠3 sin(3𝜔𝑡)) 

 

𝜕2𝑢

𝜕𝑟2
= 𝑈𝑐

′′ cos(𝜔𝑡) + 𝑈𝑠
′′sin(𝜔𝑡) + 𝑈𝑐3

′′ cos(3𝜔𝑡) + 𝑈𝑠3
′′ sin(3𝜔𝑡) 

 

These terms are substituted into the equation of motion (5.14) After substituting, each term of 

the equation is projected into cos(𝜔𝑡), sin(𝜔𝑡), cos(3𝜔𝑡) and sin(3𝜔𝑡). As a result, four 

equations are obtained which can be written in the matrix form as shown below 

 

[
 
 
 
 
 
 
 
 
 −𝜌𝜔2𝑈𝑐 − ∫

𝜔

𝜋
𝑑2

𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡

−𝜌𝜔2𝑈𝑠 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡

−𝜌9𝜔2𝑈𝑐3 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑐𝑜𝑠(3𝜔𝑡)𝑑𝑡

−𝜌9𝜔2𝑈𝑠3 − ∫
𝜔

𝜋
𝑑2

𝑇

0

𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡
]
 
 
 
 
 
 
 
 
 

= 𝑷

[
 
 
 
𝑈𝑐

′′

𝑈𝑠
′′

𝑈𝑐3
′′

𝑈𝑠3
′′ ]

 
 
 

 

 

where  

𝑷 = [

𝑝11 𝑝12

𝑝21 𝑝22

𝑝13 𝑝14

𝑝23 𝑝24
𝑝31 𝑝32

𝑝41 𝑝42

𝑝33 𝑝34

𝑝43 𝑝44

] 

 

 

𝑝11 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑐𝑜𝑠(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡 

 

𝑝12 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑠𝑖𝑛(𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 

 

𝑝13 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑐𝑜𝑠(3𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 

 

𝑝14 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑠𝑖𝑛(3𝜔𝑡)cos(𝜔𝑡)𝑑𝑡 

 

 

 

(C.2.1) 

 
 

(3.7) 

(C.2.2) 

 
 

(3.7) 

(C.2.3) 

 
 

(3.7) 

(C.2.4)  

(C.2.5)  

(C.2.6)  

(C.2.7)  

(C.2.8)  
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𝑝21 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑐𝑜𝑠(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

𝑝22 = ∫
𝜔

𝜋

𝑇

0

𝑑1sin(𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

𝑝23 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑐𝑜𝑠(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

𝑝24 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑠𝑖𝑛(3𝜔𝑡)sin(𝜔𝑡)𝑑𝑡 

 

𝑝31 = ∫
𝜔

𝜋

𝑇

0

𝑑1cos (𝜔𝑡)𝑐𝑜𝑠(3𝜔𝑡)𝑑𝑡 

 

𝑝32 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑠𝑖𝑛(𝜔𝑡)cos(3𝜔𝑡)𝑑𝑡 

 

𝑝33 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑐𝑜𝑠(3𝜔𝑡)cos(3𝜔𝑡)𝑑𝑡 

 

𝑝34 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑠𝑖𝑛(3𝜔𝑡)𝑐𝑜𝑠(3𝜔𝑡)𝑑𝑡 

 

𝑝41 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑐𝑜𝑠(𝜔𝑡)𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡 

 

𝑝42 = ∫
𝜔

𝜋

𝑇

0

𝑑1sin(𝜔𝑡)𝑠𝑖𝑛(3𝜔𝑡)𝑑𝑡 

 

𝑝43 = ∫
𝜔

𝜋

𝑇

0

𝑑1𝑐𝑜𝑠(3𝜔𝑡)sin(3𝜔𝑡)𝑑𝑡 

 

𝑝44 = ∫
𝜔

𝜋

𝑇

0

𝑑1 sin(3𝜔𝑡) sin(3𝜔𝑡) 𝑑𝑡 

 

where 

𝑑1 =
𝐺0𝛽𝐵𝐸(𝛾 𝛾

𝑟𝑒𝑓
)⁄ 𝛽

(1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽
)

2

𝛾2

+
4𝐺0

3 (1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽
)

−
𝐺0𝛽𝐵(𝛾 𝛾

𝑟𝑒𝑓
)⁄ 𝛽 (1 + 𝜈) (

𝑑𝑢
𝑑𝑟

+
𝑢
𝑟
)

(1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽
)

2

𝛾2(3 − 6𝜈)

+
2𝐺0(1 + 𝜈)

(1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽
) (3 − 6𝜈)

 

 

 

 

 

(C.2.9)  

(C.2.10)  

(C.2.11)  

(C.2.12)  

(C.2.13)  

(C.2.14)  

(C.2.15)  

(C.2.16)  

(C.2.17)  

(C.2.18)  

(C.2.19)  

(C.2.20)  

(C.2.21)  
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𝑑2 = −
𝐺0𝛽𝐸(𝛾 𝛾

𝑟𝑒𝑓
)⁄ 𝛽 (4𝐸𝐶 − 8𝐶𝐹)

(1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽
)

2

𝛾2

+
2𝐺0𝐶

1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽

−
𝐺0𝛽(𝛾 𝛾

𝑟𝑒𝑓
)⁄ 𝛽 (1 + 𝜈) (

𝑑𝑢
𝑑𝑟

+
𝑢
𝑟
) (4𝐸𝐶 − 8𝐶𝐹)

(1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽
)

2

𝛾2(3 − 6𝜈)
+

2𝐺0(1 + 𝜈) (
𝑑𝑢
𝑑𝑟

1
𝑟

+
𝑢

𝑟2)

(1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽
) (3 − 6𝜈)

+

2𝐺0𝐸

1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽 −
2𝐺0𝐹

1 + (𝛾 𝛾
𝑟𝑒𝑓

)⁄ 𝛽

𝑟
 

 

 

where 

 

𝐵 =
20

𝑑𝑢
𝑑𝑟

9
−

16𝑢

9𝑟
, 𝐶 = −

𝑑𝑢
𝑑𝑟
3𝑟

+
𝑢

3𝑟2
 

𝐸 =
2

𝑑𝑢
𝑑𝑟
3

−
𝑢

3𝑟
, 𝐹 = −

𝑑𝑢
𝑑𝑟
3

+
2𝑢

3𝑟
 

 

 

The obtained equations and the projected boundary conditions are implemented and the BVP is 

solved with the MATLAB program bvp5c.  As a result, the terms 𝑈𝑐, 𝑈𝑠, 𝑈𝑐3 and 𝑈𝑠3 are found 

for a certain depth, at different frequencies. 

 

 

  

(C.2.22)  

(C.2.23)  



 

 

 

 

 

 

 

Challenge the future 


