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Abstract

Automated negotiation is a key form of interaction in systems composed of multiple autonomous agents
with different preferences. Such interactions aim to reach agreements through an iterative process of making
offers. With the growth of Peer-to-Peer (P2P) energy markets due to the development and deployment of a
variety of small-scale electricity generation and storage devices (DERs), automated negotiation is seen as one
of the advanced techniques that can improve the efficiency of energy distribution with the consideration of
preferences of different entities. Opponent modeling is one of the essential abilities of automated negotiation
agents that can further benefit automated negotiation. This project introduces a new opponent modeling
technique considering the specific characteristics of P2P energy markets. These particular characteristics
are a) Two automated negotiation agents can negotiate with each other many times, and b) The preferences
of the users of agents are decided mainly by their energy consumption patterns, which usually do not have
massive fluctuation across the year. The proposed opponent modeling method is developed from the idea of
modeling the policy of a Reinforcement Learning agent. It uses a neural network to approximate the bidding
strategy of the opposite automated negotiation agent. The network is learned based on the observations
of offers exchanged in negotiations. With the learned network, the negotiation agent can predict the future
actions of its opponent and make better decisions. We evaluated our opponent modeling with an existing
automated negotiation system designed for off-grid energy trading. In experiments, the introduced opponent
modeling always performs better than a random-guess model while modeling basic bidding strategies. Its
performance is stable in dynamic environments where its opponent’s preference and bidding strategy may
change randomly. It is also proved that the introduced method has potential for further improvement with the
help of advanced opponent modeling techniques, which model the preference profile of the opponent. With
our new opponent modeling method, the automated negotiators who take part in the P2P energy markets
should be able to find better joint agreements that are preferred by both itself and its opponents. And in this
case, a better joint agreement means a more efficient way of distributing energy.
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2 1. Introduction

With the integration of a variety of small-scale electricity generation and storage devices (DERs), such as pho-
tovoltaics panels and micro-wind turbines installations for commercial buildings and residential dwellings
(Nair and Garimella, 2010), individual households can consume as well as produce energy. This kind of indi-
vidual has the name which is prosumer (Chen, 2012). For an individual prosumer, the DERs may continue to
generate energy when the energy demand has already been fulfilled. They may also stop generating energy
when there is still a huge energy requirement, which inevitably causes waste and inefficiency. With the growth
of prosumers who can participate in the local energy market (The number of prosumers have increased in
the Netherlands by 200.000 in 2019 (1)), cooperative sharing of the produced energy among neighborhoods
(local energy market) is seen as an effective way of efficiently utilizing energy. However, there are two main
challenges to effectively sharing energy. Firstly, people may have different preferences regarding the trading
of energy, but they may not be willing to engage in competition and local trading themselves. Secondly, how
to optimize the sharing of energy is still a big challenge. In centralized solutions to these challenges, medi-
ators are at the center of local prosumers collecting information from participating prosumers and trying to
optimize resource distribution. However, centralized solutions suffer from scaling problems as the number
of participating prosumers increases rapidly. Besides, collecting personal data and preferences also raises
privacy concerns. As a result, more and more research is starting to focus on the peer-to-peer (P2P) markets
where prosumers can trade and transfer energy directly with each other, with the development of DER and
smart metering technologies along with communications systems (Andoni et al., 2019, Andoni et al., 2017, Jo-
gunola et al., 2018). The P2P market with decentralized management and collaborative principles allows for
a bottom-up approach that would empower prosumers (Sousa et al., 2019). Among the advanced technolo-
gies applied on the P2P energy market (Paudel et al., 2020, M. R. Alam et al., 2017, Moret and Pinson, 2019),
automated negotiation is one of the key technologies. For instance, Chakraborty et al., 2019 and Etukudor
et al., 2019 propose their own bilateral automated negotiations applied in the field of P2P energy market.

1.1. Automated negotiation
Automated negotiation is a key form of interaction in systems composed of multiple autonomous agents
with different preferences. The aim of such interactions is to reach agreements through an iterative process
of making offers. The content of such proposals is a function of the strategy of the agents (Faratin et al., 2002).

1.1.1. Automated negotiation for P2P energy market
Negotiation technologies are seen as a key coordination mechanism for the interaction of providers and con-
sumers in future electronic markets (Chakraborty et al., 2019). In the case of the local P2P energy market,
each agent represents a prosumer or a group of prosumers and only knows its owner’s preference such as
how much energy is required. The final agreement is about how much energy will be transferred among pro-
sumers. Since each agent only needs to care about the participants of the negotiation instead considering
the whole local P2P energy market, the agent can have less pressure on computing and have the potential to
apply intelligent algorithms. In addition, because an automated negotiation agent’s goal is always to maxi-
mize its owner’s achievement, entities’ incentive of attending local energy market can also be improved by
applying an automated negotiation system. In concern of the privacy problem, the data such as preference
profiles and bidding strategies are not shared between negotiators. Therefore, to further improve the benefit
brought by automated negotiation, it is essential for an agent to build the model of opposite negotiators.

1.1.2. Opponent modeling
Baarslag et al., 2014 divided a negotiation agent into three components: bidding strategy, acceptance strategy
and opponent modeling (BOA). Different parts are responsible for different functions. Bidding strategy de-
fines how an agent proposes offers at each round. Acceptance strategy decides what offer to accept and what
offer to reject. And opponent modeling of a negotiation agent is defined as the ability to make a model of the
opponent. It is an important component of a negotiation agent because efficient and effective negotiation
requires the bidding agent to take the other’s wishes and future behavior into account when deciding on a
proposal (Baarslag et al., 2016). In general, an automated negotiation agent has two important components
that can be modeled, namely strategy and preference profile. Strategy refers to the agent’s bidding strategy
and acceptance strategy, and preference decides the value of each offer for the agent. There have already
been some strategy estimation (Mudgal and Vassileva, 2000, Masvoula et al., 2011) and preference estimation
techniques (Tunali et al., 2017, Baarslag et al., 2013) with good performance. However, no opponent mod-

1https://www.uu.nl/en/news/nearly-200000-new-pv-prosumers-in-the-netherlands
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eling method so far is typically designed for the automated negotiation systems applied to the P2P energy
market. Consequently, their functions are limited and may even not fit in domain of P2P energy market. We
will talk about the limitations of existing opponent modeling methods in detail in related works in chapter 2.

1.1.3. Modeling Reinforcement Learning agent’s policy
While training Reinforcement Learning (RL) agents in a multi-agent environment, Lowe et al., 2020 find that
RL agents can perform better if they know the policy of other RL agents interacting with them. Therefore,
they propose a method that one RL agent can model the policies of other RL agents. We see the opportunity
of transferring the idea of modeling RL agent’s policy to the design of a new opponent modeling method
considering the particular characteristics of the P2P energy market. We will make explicit assumptions based
on the P2P energy market’s specific characteristics in the section Problem statement. In chapter 2, we will
introduce the concept of RL agents and the method of modeling RL agents. In chapter 3, we will explain how
we convert the idea of modeling RL agent to opponent modeling in automated negotiation.

1.2. Problem statement
Opponent modeling have been added and evaluated into automated negotiation systems applied in different
domains such as strategic video game (Afiouni and Ovrelid, 2013), cloud computing (Alsrheed et al., 2014)
and supply chain management (Fang et al., 2008). However, to the best of our knowledge, no research has
focused on opponent modeling methods of automated negotiation systems in the field of the P2P energy
market. Besides, some special characteristics of the field of the P2P energy market can be utilized. Based on
these features, we make assumptions needed for developing novel opponent modeling techniques.

• A1 : In the case of agent-agent negotiation applied in the P2P energy market, two prosumers may trade
energy over and over again, which means two automated negotiation agents may negotiate with each
other more than once.

• A2 : We assume in this project that the agent’s bidding strategy is stable, which means an automated
agent always uses similar bidding strategies in different negotiations. Furthermore, the preferences of
the users of agents in the field of the P2P energy market are decided mainly by their energy consump-
tion patterns, which usually do not change rapidly or dramatically during the year.

Therefore, there is a potential for an agent to build a model of an opponent’s bidding strategy based on the
bidding history of previous negotiations between the agent and the opponent and use and update the built
model in future negotiations. So far, no bidding strategy modeling technique utilizes data from prior nego-
tiations between the agent and the opponent instead of one negotiation. Additionally, an agent-agent nego-
tiation can take over a hundred or a thousand rounds. For example, in their automated negotiation system,
Chakraborty et al., 2019 set the negotiation deadline as 5000 rounds. The availability of a vast amount of data
opens the door to deep learning methods.

1.3. Research question
To explore possible methods that can utilize the specific features of the domain of the P2P energy market
discussed in the previous section, the research question of this work is:

• How can an automated negotiation agent model its opponent in the field of the P2P energy market.?

To answer this research question, we propose an opponent modeling technique based on the new as-
sumptions of the field of the P2P energy market. To evaluate our proposed opponent modeling technique,
we formulated three sub-questions:

1. Can our technique model different bidding strategies with good accuracy?

2. How stable is our opponent modeling method to opponent’s preference profile changes?

3. Can our opponent modeling react to the changing of opponent’s bidding strategy?
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1.4. Contributions
This project introduces a new opponent modeling method, designed considering assumptions made in the
case of agent-agent negotiation applied in the field of the P2P energy market:

1. The concept of the new opponent modeling method is developed from the idea of modeling the policy
of Reinforcement Learning agents. With the new opponent modeling method, the agent can model the
bidding strategy of the opponent by repeatedly negotiating with the opponent. With the opponent’s
bidding strategy model, the agent can predict the opponent’s future actions, which gives the agent
ability of what-if analysis, thus making better decisions.

2. To answer sub-questions, we applied our opponent modeling method to an automated negotiation
system designed for off-grid P2P energy trading and evaluated the method with load profiles of typical
off-grid energy consumers. Our new method has stable and sufficient performance in experiments
while modeling basic time-dependent and behavior-dependent bidding strategies.

3. Our opponent modeling method’s performance relies on the used opponent’s preference model, and
there is still a potential to improve the performance of our new opponent modeling method.

1.5. Outline
Chapter 2 will discuss related works about Automated negotiations applied in the domain of the P2P energy
market and existing opponent modeling methods. Besides, the theoretical background needed to understand
our approach and experiments will also be included. In chapter 3, the general setting of automated negoti-
ation in our project will be introduced, and the design of the new opponent modeling will be presented in
detail. Chapter 4 includes the design of the experiment and the results. Conclusions and future works will be
given in chapter 5.
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In this chapter, we will study the related works from automated negotiation systems applied to the P2P energy
market and opponent modeling techniques. For the opponent modeling, we will focus on existing preference
estimation and bidding strategy estimation techniques and how these techniques compare and contribute to
our new opponent modeling method. Then we will talk about the theoretical background of our project,
including different bidding strategies of automated negotiation agents used in our experiments, the concept
of deep reinforcement learning (DRL) agent, and the method of modeling the policy of DRL agents.

2.1. Related works
2.1.1. Automated negotiation applied in the domain of P2P energy market
In general, two kinds of negotiation protocols have been analyzed in the field of electronic markets, which are
multilateral negotiation protocol and bilateral negotiation protocol. In multilateral protocol, agents negoti-
ate with multiple agents at the same time. For example, M. Alam et al., 2015 presents a negotiation protocol
for decentralized, concurrent negotiation over energy exchange between off-grid houses. This protocol has
been proven to reduce battery charging and can be scaled to 100 houses. However, the multilateral negotia-
tion protocol still suffers from the problem of complexity in designing agents since each agent needs to make
offers to all potential negotiating partners simultaneously. This is why bilateral negotiation protocol has be-
come a focus of many studies.
Chakraborty et al., 2018 present a bilateral negotiation protocol. This protocol focuses on settling energy con-
tracts among prosumers considering heterogeneous prosumer preferences. Each offer has two issues in this
protocol: the volume of energy to be transferred and the time to pay back the transferred energy. This pro-
tocol has been evaluated over real residential demand, generation, and storage data and proved that it can
increase system efficiency and fairness. The same protocol has been improved by adding a reinforcement
learning method to help select negotiation partners (Chakraborty et al., 2019).
Etukudor et al., 2019 introduce another bilateral negotiation framework that has a different structure of offers.
Besides, the agents in their framework are implemented with three different negotiation strategies (Zero In-
telligence Strategy, Linear Heuristic Strategy, and Expert Agent Strategy). By case study with Community-scale
Energy Demand Reduction in India 1. It is demonstrated that this framework allows prosumers to increase
their revenue while providing electricity access to the community at a low cost. Also, the Linear Heuris-
tic Strategy and Expert Agent Strategy perform better than the Zero Intelligence Strategy. In another similar
study, bilateral negotiation heuristics applied to a low-income, off-grid, community P2P energy market is pro-
posed (Etukudor et al., 2020). Five negotiation strategies are implemented and compared. The result shows
that local P2P markets using negotiation strategies such as the Boulware strategy are solutions to bridge the
electricity-deficit gap effectively. Although the frameworks mentioned above have already been implemented
with some negotiation strategies and achieved good results in the field of the P2P energy market, no agent
in these frameworks can model opponents. However, efficient and effective negotiation requires the bid-
ding agent to consider the other’s wishes and future behavior when deciding on a proposal (Baarslag et al.,
2016). In the P2P energy market field, a negotiator may encounter opponents with different preferences and
strategies, and no single bidding strategy performs the best against all opponents. Therefore, models of the
opponent are needed for negotiators to make better decisions at each round of the negotiation. We believe
that the agents in these frameworks can be further improved by proper opponent modeling methods, thus
making more efficient energy distribution.

2.1.2. Opponent modeling
Opponent modeling of a negotiation agent is the ability to make a model of the opponent. A good opponent
modeling can improve the benefit of automated negotiation, including but not limited to achieving a win-win
outcome and avoiding failure of the negotiation. Baarslag et al., 2012 prove that proper opponent modeling
techniques can result in significant gains in both the time-based and round-based negotiation protocols. Be-
sides, opponent modeling can help agents find fairer agreements without sacrificing any agent. For example,
Sanchez-Anguix et al., 2021 introduce a social agent relying the opponent modeling. Experiments prove that
this social agent can achieve better performance in terms of individual utility and social fairness. Automated
negotiation agents capable of modeling opponents have already been applied in different fields. Afiouni and
Ovrelid, 2013 implements a multi-issue negotiation system for the strategic video game Civilization IV and
focuses on improving negotiation results using opponent modeling. Alsrheed et al., 2014 proposes an auto-
mated negotiation system for providers and consumers in the field of cloud computing. They evaluate the

1(www.cedri.hw.ac.uk/)

(www.cedri.hw.ac.uk/)
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system with agents that can model the opponent and achieves a good performance. Fang et al., 2008 im-
proves the automated negotiation agent applied in supply chain management by equipping the agent with
the ability to retrieve the opponent’s knowledge. However, no opponent modeling method so far has been
designed and applied to the domain of the P2P energy market. Therefore, new opponent methods need to be
introduced to automated negotiations in the P2P energy market.
There has already been a method to model the policy of other RL agents in a multi-agent scenario (Lowe et al.,
2020). However, such methods need continuous interactions between agents, which is usually not the case
for automated negotiations. But in the P2P energy market field, we see opportunities to use such methods to
model the bidding strategy of the opponent thanks to assumptions A1 and A2. Besides, preference estima-
tion techniques are needed to compensate for the incomplete information about the opponent’s preference
profile to clearly describe the interactions between the negotiation agent and its opponent. Therefore, this
project focuses on developing a new bidding strategy estimation technique by utilizing existing preference
estimation technique.
Some representative bidding strategy estimation techniques have been introduced before our work. Mudgal
and Vassileva, 2000, Hou, 2004 and Brzostowski and Kowalczyk, 2006 apply regression analysis to model the
bidding strategy of opponent negotiator. However, their methods need knowledge of the modeled bidding
strategy type in advance. Masvoula et al., 2011 trains Multi-layer Perceptrons (MLPs), which predict the next
offer from the opponent, with counter offers proposed by the opponent, and no assumption of the modeled
bidding strategy is needed. In this method, only the offers received from the opponent are considered, but
a bidding strategy can depend on other factors such as offers received by the opponent and the number of
negotiation rounds that have passed. Besides, this method does not assume that a negotiator can negotiate
with one opponent many times. Therefore, this method only utilizes the history of the current negotiation in-
stead of all previous negotiations. Our opponent modeling method models the opponent based on data from
past negotiations between the agent and its opponent. Additionally, since the MLPs directly use offers as in-
put and output in the design from Masvoula et al., 2011, their method also does not consider the case that
the opponent’s preference can be different in different negotiations. Although there are many limitations,
this method is one of the inspirations for our new opponent modeling method. Our opponent modeling
method also models the opponent by training an MLP. However, instead of using offers as input and output,
our method takes utilities of offers and other related variables as inputs and predicts how the utility of the op-
ponent’s offer will change. In this way, our method can handle changing preference profiles with the help of
existing preference estimation techniques. In the P2P energy market, the preference of each prosumer largely
depends on their energy consumption pattern, which can slightly change through the days or months. And
our method’s ability to handle changing preference reduce the possible negative influence on modeling ac-
curacy due to the changing consumption pattern. To efficiently handle changing preferences of opponents,
the choice of preference estimation method is important.
Baarslag et al., 2013 has evaluated and compared three preference estimation methods. These three meth-
ods are Bayesian models, Frequency models, and Value models. Among them, Frequency models and Value
models have a better and more robust performance in general, and CUHK value mode and Smith Frequency
model are the best Value model and Frequency model, respectively (Baarslag et al., 2013). Since Value models
assume equal issue weights, which is not usually the case in the field of the P2P energy market, we choose the
Smith Frequency model as the help function in our new opponent modeling method.

2.2. Theoretical background
2.2.1. Bidding strategies of automated negotiation agents
There are two categories of bidding strategies: time-dependent and behavior-dependent (Faratin et al., 1998).
Generally, an automated negotiation agent changes its target utility Ut ar g et at each round based on either the
negotiation round or the behavior of the opponent negotiator, or both. To propose an offer, the agent first
finds all offers with a utility higher than the target utility Ut ar g et and randomly chooses one offer from those
found offers as a counteroffer for the next negotiation round.

1. t i me −dependent str ateg y . The negotiator with a time-dependent strategy concedes with time. At
each round r , the target utility Ut ar g et is defined as:

Ut ar g et =Ur ev +F (r )(Umax −Ur ev ) (2.1)

where Ur ev is the reservation utility of the negotiator and Umax is the maximum utility the negotiator
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can obtain. The F (r ) is defined as:
F (r ) = 1− r

1
e (2.2)

where e is the concession rate.

2. behavi our −dependent str ateg y . The negotiator with a behavior-dependent strategy bases its ac-
tion on its opponent’s action. The naive Tit-For-Tat(TFT) strategy (Mohammad et al., 2020) is one rep-
resentative of the behavior-dependent strategy family, At each round r , the target utility Ut ar g et of a
naive-TFT negotiator is defined as:

Ut ar g et = mi n(Umax −max(Umax −Ur−1(woppo),0),Ur ev ) (2.3)

where Ur−1(woppo) is the utility of the offer received from the negotiator’s opponent at the previous
round r −1. A naive-TFT negotiator always calculates the utility of offers with its own preference profile.

2.2.2. Reinforcement Learning
Reinforcement Learning (RL) is learning what to do—how to map situations to actions—so as to maximize
a numerical reward signal. It is about training a learning agent that is able to sense the state of its environ-
ment to some extent, take actions that affect the state and have a goal or goals relating to the state of the
environment (Sutton and Barto, 2018). Generally, a RL agent connects to an environment via perception and
action. At each step of interaction between the RL agent and the environment, the agent observes the state of
the environment and chooses an action to conduct. The conducted action changes the state of the environ-
ment, and the environment sends a reward to the agent. The RL agent learns a policy π(A|O) to maximize the
long-run sum of received rewards by systematic trial and error. The policy π(A|O) takes an observation O as
input and outputs an action A. The policy of an RL agent can be represented by a tabular or a complex neural
network. The RL agents whose policy is approximated by neural networks are called Deep Reinforcement
Learning (DRL) agents.

2.2.3. DRL agents and opponent’s strategy modeling
Lowe et al., 2020 trains approximate policy networks to model the policy of DRL agents in a multi-agent envi-
ronment. The approximate policy network is trained online with the collection of previous observations and
actions of the DRL agent to be modeled. With the help of approximate policy networks, a DRL agent can pre-
dict the actions of other DRL agents in the environment and learns to make better decisions. This work forms
the base of our opponent modeling method. Our method views an intelligent automated negotiation agent
as a DRL agent with a good and stable policy and trains an approximate policy network to model the policy
of the automated negotiation agent. A considerable amount(more than 100 epochs if each epoch consists
of around 100 steps for one particular agent) of collections of observations and actions are needed to train
the approximate policy network. According to the assumption A1, acquiring the required amount of data
becomes much softer in the field of the P2P energy market since two agents can negotiate with each other
many times, and one negotiation may consist of hundreds or thousands of rounds.
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Approach

This chapter firstly discusses the general setting of automated negotiation used throughout this project.
Then, the detailed design of our new opponent modeling method is introduced, and the main challenge
of realizing our method is discussed. We propose two solutions to solve the main challenge of our work. The
advantages and disadvantages of each solution will be discussed in detail.

3.1. Setting of automated negotiation
The negotiation we are concerned about within this project is the automated bilateral negotiation, where two
automated agents negotiate with each other during a negotiation. The setting of an automated negotiation
consists of negotiation protocol, negotiators and the negotiation scenario (Baarslag, 2014). The negotiation
protocol defines how two negotiators interact with each other. The protocol used in this project is the stacked
alternating offers protocol (Aydoğan et al., 2017), where one negotiation session consists of rounds of con-
secutive turns. At every turn, each negotiators can choose to propose the next offer, accept the offer from the
opponent, or end the negotiation. The negotiation ends if a joint agreement is found by two negotiators, the
deadline is reached, or one negotiator decides to end the negotiation. The deadline is defined as the max-
imum number of rounds a negotiation session can last. The negotiation scenario contains the negotiation
domain and the preference profile of each agent. The negotiation domain contains one or more issues. To
propose an offer, the value of each issue should be set. The outcome space of the negotiation domain is de-
fined asΩ= {w1, w2, ...wn} where wn is a possible offer and n is the number of possible offers in this domain.
In this project, the negotiation domain is limited to the P2P energy market. It is assumed that the negoti-
ations can happen between each pair of negotiators repeatedly, in addition to what the stacked alternating
offers protocol usually assumes. The preference profile of each negotiator is defined as the utility function
U (w). Each negotiator only knows its own utility function. Besides, each negotiator has its reservation utility
Ur ev , which is the utility they will get if the negotiation ends with no joint agreement.

3.1.1. The structure of the negotiator
In Fig. 3.1, the structure of the automated negotiator used in this project is presented. The negotiator is doing
the i th negotiation (assumption A1) with the same opponent who has a stable bidding strategy and prefer-
ence profile (assumption A2). The negotiator is based on a BOA agent (Baarslag et al., 2014), which consists
of three components: bidding strategy (B), opponent model (O) and acceptance strategy (A). In this project,
we mainly focus on developing a new method for building a bidding strategy model (highlighted in red in
figure 3.1) of the opponent with the help of a preference profile model built by existing preference estima-
tion methods. The bidding strategy estimation method, which is the core part of our opponent modeling
method, learns a MLP that approximates the bidding strategy of the opponent based on the bidding history
of previous negotiations between the negotiator and the opponent, such as the offers received from and by
the opponent. For each opponent, one model is learned. For better decisions, information such as predicting
the opponent’s next actions can be extracted from the learned model and utilized by the negotiator.

9
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Figure 3.1: Structure of the negotiator in this project

3.2. Design of the new opponent modeling technique
Our opponent modeling method consists of bidding strategy estimation and preference estimation, and
building a bidding strategy model of the opponent is the core part of our method.
Lowe et al., 2020 propose a method that can infer the policy network of other RL agents in a multi-agent coop-
erative and competitive environment. If the data of its previous observations and corresponding actions are
available for a specific agent, its policy network can be approximated. This method can also be transferred as
an opponent modeling method in automated negotiation in the domain of the P2P energy market.
Firstly, an intelligent automated negotiator makes decisions at every round of negotiation based on the pre-
vious interactions such as proposed and received offers between it and its opponent. Previous interactions
are the observation of the negotiator, and its decisions can be viewed as actions it chooses to take based on
its observation. The bidding strategy of the negotiator defines how the observations are transferred to spe-
cific actions, which is similar to the policy of an RL agent. An RL agent’s policy decides which actions to take
based on its observations. Therefore, we can assume that each negotiator has a policy network that repre-
sents its bidding strategy and then uses a MLP to approximate it. However, in a multi-agent environment, the
observations and actions of each RL agent are usually available to other RL agents, which is not the case in
negotiation since the negotiator do not know the preference of their opponents. Therefore, we use preference
estimations to help the negotiator to describe their opponent’s observations and actions. We will talk about
this in detail in the following sub-sections. Secondly, in the domain of the P2P energy market, one negotia-
tor can negotiate with the same opponent more than hundreds of times, and each negotiation can consist
of more than hundreds of rounds (assumption A1). With more and more negotiation happening between
the negotiator and the opponent, the increased collection of the opponent’s observations and actions should
improve the accuracy of inferring the opponent’s policy.

3.2.1. Structure
Fig. 3.2 presents the process of our opponent modeling method modeling an opponent’s bidding strategy. It
is assumed that the opponent to be modeled has a Target Policy network Pt ar g et which has observations as
input and next actions as output (demonstrated at the top of the figure). This policy network represents the
opponent’s bidding strategy. During negotiation, the opponent’s observations and corresponding actions are
collected, and our method trains an Approximate Policy network (Pappr o) with collected data by minimizing
the loss function (3.1). Pappr o takes the opponent’s observations as input and predicts the opponent’s sub-
sequent actions (demonstrated at the bottom of the figure). For each opponent, there is a separate Pappr o to
model their bidding strategy.
The loss function to be minimized while training Pappr o is defined as:

L(Pappr o) = LC E (Pappr o ,Pt ar g et )+ (−λH(Pappr o)) (3.1)
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Figure 3.2: Opponent Modeling Structure

where LC E (Pappr o ,Pt ar g et ) is the cross-entropy loss between Pt ar g et and Pappr o , and H(Pappr o) is the en-
tropy regularizer. Since the Pappr o is trained with the collection of the opponent’s observations and actions,
clearly and accurately describing the opponent’s observations and actions is essential to building a good
model of the opponent’s bidding strategy.

3.2.2. Observation and action space
The core of modeling the opponent policy is the design of the observation and action space of the opponent.
In each round r of negotiation, the observation or is represented as:

or = {Uo(w r−1
pr op ),Uo(w r−1

r ec ),r } (3.2)

where Uo is the utility function of the opponent, and w r−1
pr op and w r−1

r ec are the offers proposed and received
by the opponent in the last round r − 1 respectively. The policy network (bidding strategy) Pt ar g et of the
opponent takes Or as input returns a discrete action ar (3.3). There are three discrete actions: the opponent
can choose to propose an offer with a utility higher/lower/equal to the utility of the most recent proposed
offer.

Pt ar g et (Or ) = ar (3.3)

To clearly explain our design. The negotiator equipped with our opponent modeling method is referred to as
nego in the remaining part of the section.
Since it is assumed that the nego only knows its own utility function (Us ) and has no knowledge of the op-
ponent’s utility function (Uo), in practice, our method can only use the estimated opponent’s utility function
Uo′ as the replacement of Uo . In this case, the observation or is redefined as:

or = {Uo′ (w r−1
pr op ),Uo′ (w r−1

r ec ),r } (3.4)

The actions observed by the nego are also different from the actions done by the opponent due to using
of the estimated opponent’s utility function Uo′ . To clearly divide these two kinds of actions in this report, we
use two terminologies:

1. Relative action ar el
r : action observed by the nego and used in online training. It is calculated by esti-

mated opponent’s utility function Uo′ .

2. Absolute action aabs
r : action done by the opponent. It is calculated by Uo which is not available to the

nego .

To estimate the Uo , we came up with two options:

1. The first option is using Us as Uo′ all the time, which means that the nego looks at the world only in
the view of its own utility function. On the one hand, since Us is always known to the nego , the learned
Pappr o should be stable if Us is stable. On the other hand, the nego directly ignores the opponent’s
preference, and the changes in preferences may affect how the nego estimates the observations and
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actions of the opponent. Therefore, the learned Pappr o should react to changes in the opponent’s pref-
erence. In other words, the Pappr o may need to be relearned once the preference of one side of the
negotiation changes. The relation between relative actions ar el

r and absolute actions aabs
r is complex

and unpredictable for the first option. This option is concise, and its performance only relates to how
well the Pappr o is trained. Therefore, we use this option as the first and base option.

2. In automated negotiation, one efficient way of estimating the opponent’s utility function during ne-
gotiation is using existing preference estimation techniques, and frequency opponent modeling is one
of the most successful preference estimation techniques. Therefore, the second option uses the mod-
eled utility function from frequency opponent modeling as Uo′ . However, the frequency of opponent
modeling itself is not always stable or accurate, which brings extra complexity and problems of accu-
racy and stability of learned Pappr o . With the estimated opponent’s utility function Uo′ , the nego can
calculate the relative actions ar el

r done by the opponent, but the opponent’s absolute actions aabs
r are

not available during the negotiation. Suppose the frequency opponent modeling is stable and accurate
enough, in that case, the relative actions ar el

r will be close to the absolute actions aabs
r , and our model

can predict the future absolute actions aabs
r of the opponent with high accuracy. It is worth mentioning

that the frequency of opponent modeling itself initializes after every negotiation because we want the
second option to work in a general setting.

In the following part of this report, we refer to the first option as opti onnoF , which means the first op-
tion model the opponent’s bidding strategy without the help of frequency opponent modeling. And we use
opti onF to represent the second option which is the option using the frequency opponent modeling.
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4.1. Automated negotiation system for off-grid P2P energy trading
To evaluate the performance of our opponent modeling method, we applied our method to a bilateral auto-
mated negotiation system proposed by Etukudor et al., 2020. The system is designed for off-grid P2P energy
markets. In the system, a negotiator, on behalf of a seller, negotiates with a buyer who another negotiator
represents. The seller and buyer negotiate with each other for the quantity and price of the energy to be
traded the next day. Fig. 4.1 gives an overview of the system. In experiments, the seller negotiator equips
with our method to model the buyer negotiator’s bidding strategy. We include essential formulas from the
original paper in this report to illustrate the seller and buyer agents in the system and the whole set-up of
experiments. Some formulas are modified to make the agents compatible with different bidding strategies.
For that modified formulas, we will explain what changes have been made to them.

Figure 4.1: Automated negotiation system for off-grid P2P energy markets based on Etukudor et al., 2020

4.1.1. Domain
A day is divided into four sectors, which are night (0:00-6:00), morning (6:00-12:00), afternoon (12:00-18:00)
and evening (18:00-24:00). Therefore, an offer W is defined as:

W = (q1, q2, q3, q4, p) (4.1)

where q1, q2, q3 and q4 are the quantities of energy to be transferred at night, morning, afternoon and
evening, respectively. p is the price of each unit of energy.

4.1.2. Seller negotiator
For a seller, if the offer W = (q1, q2, q3, q4, p) is feasible, the utility U (W ) of the offer will be as same as the
revenue utility R(W ) after conducting the offer. Otherwise, the utility U (W ) will be set to −1, and the offer will
be directly ignored during the negotiation. An offer W is feasible if the seller has enough energy to conduct
the offer in all four sectors. The algorithm for checking infeasible offers is presented in appendix A. The
revenue utility R(W ) is defined as:

R(W ) =
∑4

i=1 qi pi −∑4
i=1 qi MCi

maxR
(4.2)

where MCi is the marginal cost of generating energy in each sector, and maxR is the maximum revenue
the seller can expect from all possible offers. To limit the R(W ) between 0 and 1 (the utility of the offer most
preferred by the seller exactly equals 1) our definition of maxR is different from the original paper:

maxR = max
W

4∑
i=1

qi pi −
4∑

i=1
qi MCi (4.3)
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The reservation utility of the seller U sel ler
r ev is defined as:

U sel ler
r ev =U ((0,0,0,0, pT )) (4.4)

where (0,0,0,0, pT ) is an offer which means no energy will be traded at all, and pT is the minimally ac-
ceptable price for the seller.

4.1.3. Seller profile

The load profile of a seller is defined as Qsel ler = (qr equi r ed
1 , qr equi r ed

2 , qr equi r ed
3 , qr equi r ed

4 ), which represents
the quantities of energy the seller needs to consume itself during different sectors of one day. The World Bank
has categorized consumers into different tiers based on their electricity needs (Bhatia and Angelou, 2015).
In our experiment, we assume that the seller is a "Tier 4" consumer and use load profiles constructed for a
representative "Tier 4" off-grid household. The data of load profiles are from the work of Narayan et al., 2020.
Following the case study in Etukudor et al., 2020, we also assume that a seller owns a small solar PV system
of 1.5 kW with a battery of 2.8 kWh of available capacity. The battery is assumed to be full at the start of the
experiment, and Gsel ler = (0,2,2.5,0)kW h is the forecasting of the energy generated by the solar PV system
per day.

4.1.4. Buyer negotiator
For a buyer, the utility U (W ) of an offer W = (q1, q2, q3, q4, p) is defined as:

U (W ) = wc ∗C (W )+wq ∗Q(W ) (4.5)

where wc and wq are weight coefficients and add up to 1. wc is the importance of the cost of an offer for
the buyer, and wq is the importance of quantities of traded energy in an offer. C (W ) represents the utility of
the overall cost of the offer w . It is defined as:

C (W ) =
∑4

i=1 pmax qmax
i +∑4

i=1 qr equi r ed
i pmax −∑4

i=1 qi pi∑4
i=1 pmax qmax

i +∑4
i=1 qr equi r ed

i pmax −∑4
i=1 pmi n qmi n

i

(4.6)

where qr equi r ed
i is the quantity of the energy the buyer requires in each sector of the day, pmax and qmax

i
are the highest possible price and maximum energy quantity that can be set in an offer, while pmi n and qmi n

i
are the lowest possible price and minimum quantity of energy that can be traded. With this definition, an
offer’s cost-utility is always higher than another offer with the same amount of energy to trade but a higher
price. To limit the C (W ) between 0 and 1 (the highest C (W ) exactly equals 1), we add

∑4
i=1 pmax qmax

i to both
numerator and denominator in our definition of C (W ).
Additionally, Q(W ) is the buyer’s utility for the quantities of energy according to the offer W , and it is defined
as:

Q(W ) =
4∑

i=1
mi wi (4.7)

where mi represents the matching between the buyer’s required energy quantity and traded energy quan-
tity for sector i according to the offer, it is defined as:

mi =


mi n(qi ,q
r equi r ed
i )

q
r equi r ed
i

qi <= qr equi r ed
i +φbuyer

0 qi > qr equi r ed
i +φbuyer

(4.8)

where φbuyer is the flexibility the buyer has for overconsumption.
wi represents the importance of each sector i for a buyer, and it is defined as:

wi =

q
r equi r ed
i

max
i

q
r equi r ed
i∑4

i=1 wi
(4.9)
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where max
i

qr equi r ed
i is the maximum energy quantity required by the buyer among four sectors of the

day, and
∑4

i=1 wi = 1. The reservation utility of the buyer U buyer
r ev is defined as:

U buyer
r ev = mi n(U ((0,0,0,0, pT )),U ((qr q

1 , qr q
2 , qr q

3 , qr q
4 , pT ))) (4.10)

where (qr q
1 , qr q

2 , qr q
3 , qr q

4 , pT ) is the offer that the energy requirement of the buyer is perfectly satisfied,

and pT here is the maximum acceptable price for the buyer. Therefore, the value of U buyer
r ev depends on the

buyer’s profile.

4.1.5. Buyer profile
The load profile of a buyer is defined as Qbuyer = (qr equi r ed

1 , qr equi r ed
2 , qr equi r ed

3 , qr equi r ed
4 ). In our experi-

ment, we assume the buyer is on behalf of a "Tier 3" consumer and use load profiles constructed for a repre-
sentative "Tier 3" off-grid household.

4.2. Pool of opponents
There are two categories of bidding strategies: time-dependent and behavior-dependent (Faratin et al., 1998).
To evaluate the generality of our modeling methods, we test our methods on a diverse pool of opponents,
including negotiators with bidding strategies from both categories. In our experiments, there are three time-
dependent strategies, which are Boulware, Linear and Conceder, with concession rates e equal to 0.3, 1, 3
respectively. For behavior-dependent strategy, we use a naive Tit-For-Tat(TFT) strategy (Mohammad et al.,
2020) as the representative.

4.3. Metrics
A good opponent model should predict the opponent’s following action accurately after being trained with
data from bidding histories. Therefore, we use accuracy

acc = num_cor r ect_pr edi ct i ons

num_pr edi ct i ons
(4.11)

to evaluate the performance of our opponent modeling method.
There are two kinds of accuracy used as metrics in our experiments:

1. The first accuracy accr el is computed with action predicted by our model apr ed and relative actions

ar el
r . The opponent model of our agents is trained online with relative actions ar el

r . So the first accuracy
accr el aims at checking whether the opponent model can learn from past bidding histories.

2. The second accuracy accabs is computed with predicted actions apr ed and absolute actions aabs
r be-

cause, for opti onF , we are also interested in the accuracy of predicting the opponent’s absolute action
aabs

r while training the approximate network with the help of estimated preference profile from fre-
quency opponent modeling.

4.4. Experimental set-up
We evaluate our opponent modeling method in four different settings to assess the opponent modeling
method and answer the research questions. In each experiment, a seller negotiator with our opponent mod-
eling method models the strategy of its opponent, which is a buyer negotiator. Table 4.1 presents the parame-
ters of experiments and bilateral automated negotiation. One experiment consists of 600 negotiations, which
means the seller negotiator with our opponent modeling method negotiates with one single opponent 600
times during one experiment. We set the number of negotiations to 600 per experiment because we want to
make sure our method has sufficient amount data to model the opponent and find out what will happen after
a model is made by our method. Besides, 600 also gives us enough room to manipulate the buyer negotiator’s
bidding strategy and preference profile during experiments. The deadl i ne of one negotiation is 200 rounds.
The seller and buyer negotiator’s bidding strategy and preference profile are fixed during one negotiation.
However, the bidding strategy and preference of the buyer negotiator may change during one experiment
based on different settings. The load profile of the seller is presented in appendix A. The hyper-parameters of
training Pappr o are presented in Table 4.2. It is worth noting that the batch size is equal to the deadl i ne of
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one negotiation, which means our method updates the learned model at the end of each negotiation during
experiments. The parameters presented in the tables are constant in all four settings unless mentioned ex-
plicitly.
Table 4.3 compares four different settings of experiments, and we will discuss the details in the following
subsections.

Experiment settings value

Negotiations per experiment 600

Deadline per negotiation 200 rounds
Bidding strategy of the seller negotiator Linear

Qsel ler (0.18, 1.07, 1.10, 0.95)kWh
Gsel ler (0, 2, 2.5, 0)kWh
Usel ler

r ev 0
φbuyer 0.05kWh

Table 4.1: Parameters for experiments.

Hyper-parameters value

Learning rate opti onnoF 0.003

Learning rate opti onF 0.006
λ 0.003

Layers of Pappr o 4
Size of hidden layers 64

Batch size 200

Table 4.2: hyper-parameters for training Pappr o .

Settings Bidding strategy
our negotiator

Bidding strategy
opponent nego-
tiator

Preference our
negotiator

Preference
opponent nego-
tiator

Setting 1 fixed fixed fixed fixed
Setting 2 fixed fixed fixed randomly

changes ev-
ery negotiation

Setting 3 fixed randomly
changes every
100 negotia-
tions

fixed fixed

Setting 4 fixed randomly
changes every
100 negotia-
tions

fixed randomly
changes ev-
ery negotiation

Table 4.3: Comparison between four settings .

4.4.1. Setting 1: Fixed strategy and preference profiles
The goal of setting 1 is to know whether our method can model the bidding strategy of time-dependent nego-
tiators and behavior-dependent agents. Besides, it is also essential to evaluate and compare the overall per-
formance of opti onnoF and opti onF . For setting 1, we conduct four experiments. In each experiment, the
seller negotiator models the buyer negotiator which has one of Boulware, Linear, Conceder and naive-TFT
as its bidding strategy. During the experiment, the preference and bidding strategy of the seller negotiator
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and the buyer negotiator are fixed. The load profile of the buyer negotiator is set to (0.15,0.3,0.17,0.32)kW h,
which is a profile of a representative "Tier 3" consumer, and the weight coefficients wc and wq are both set to
0.5. The detailed load profile of the buyer is presented in appendix A.

4.4.2. Setting 2: Fixed strategy and varying preference profile
As discussed in section 3.2.3, we expected that the performance of the opti onnoF should be influenced neg-
atively by the changing preference of the opponent. Therefore, for setting 2, it is assumed that the preference
of the buyer negotiator changes randomly after every negotiation. In contrast, the bidding strategy of both
the seller and buyer negotiators is fixed during each experiment. To randomly change the preference of the
buyer negotiator, we randomly draw a load profile from a set of load profiles. The set contains the load pro-
files of a "Tier 3" consumer across one year, so there are in total 365 load profiles in this set. Besides, the
buyer negotiator’s weight coefficient wc also changes randomly between 0.1 and 0.9 per negotiation, and
wq = 1−wc

4.4.3. Setting 3: Varying strategy and fixed preference profile
To find out if our opponent modeling method can react to the changing of the opponent’s bidding strategy
quickly, we conduct experiments in setting 3. It is assumed that during each experiment, the bidding strat-
egy of the buyer negotiator changes randomly among Boulware, Linear, Conceder and naive-TFT every 100
negotiations. The preference of both the seller and buyer negotiators is fixed during each experiment. In this
setting, the load profile of the buyer negotiator is set to (0.15,0.3,0.17,0.32)kW h, and the weight coefficients
wc and wq are both set to 0.5.

4.4.4. Setting 4: Varying strategy and preference profile
Setting 4 is a combination of setting 2 and 3, which is closer to a real scenario. During each experiment, the
bidding strategy of the buyer negotiator changes randomly among Boulware, Linear, Conceder and naive-
TFT every 100 negotiations. The preference of the buyer negotiator changes randomly after every negotiation
during experiments.

4.4.5. Baseline
Our opponent modeling method is unique in three main aspects. Firstly, our method models the bidding
strategy of the opponent based on the bidding history of a series of previous negotiations. Secondly, our
method views the opponent negotiator as a DRL agent and tries to model the agent’s policy. Thirdly, our
method can collaborate with the existing preference estimating methods. To the best of our knowledge,
there is no similar work in the field of opponent modeling in automated negotiation. Therefore, to verify
our method can indeed learn the pattern of the bidding strategy of the opponent to some extent, we use a
random-guess model as our baseline.

4.5. Results
With experiments in the above four settings, we evaluate the performance of our method while modeling
the opponent’s bidding strategies. We will demonstrate and explain the experiment results in four settings in
detail in the following subsections.

4.5.1. Setting 1: Fixed strategy and preference profiles
Plots in Fig. 4.2 present the performance of opti onnoF and opti onF while modeling the buyer negotia-
tor which has time-dependent (Boulware, Linear and Conceder) and behavior-dependent (naive-TFT) as its
bidding strategy respectively in different instances of the experiment. Plots 4.2a, 4.2c, 4.2e and 4.2g compare
the performance of opti onnoF and opti onF to the baseline in terms of relative accuracy accr el . Plots 4.2b,
4.2d, 4.2f and 4.2h show the performance of opti onnoF and opti onF while using absolute accuracy accabs

as the metric since we are interested in our method’s ability of predicting the absolute actions aabs
r with the

help of existing preference estimation methods as well (opti onF ).
We can find that the accr el of opti onnoF is stable while modeling different time-dependent and behavior-
dependent bidding strategies. The accr el of opti onF is between 0.6 and 0.7 most of the time while modeling
opponents with varying bidding strategies. From modeling the Boulware strategy to modeling the naive-
TFT strategy, the performance gap between opti onnoF and opti onF increases in terms of accr el . Although
opti onF does not perform as well as opti onnoF , both opti onnoF and opti onF outperform the baseline
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Figure 4.2: Results of experiments in setting 1 where the preference and bidding strategy of the opponent
(buyer negotiator) are both fixed. Plots a, c, e and g show the performance of two different options in accr el .
Plots b, d, f and h compare the performance of two options in terms of accabs
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Figure 4.3: The accuracy of preference estimation while using frequency opponent modeling. The model
has the highest accuracy while estimating the preference of the Boulware negotiator and the lowest accuracy
while estimating the preference of the naive-TFT negotiator

model in terms of accr el .
The accabs of opti onF are even lower compared to the accr el . Meantime, the difference between accabs

and accr el of opti onF slightly grows from the plots on the first row to the plots on the last row. However,
our method’s opti onF can still build a model of the buyer negotiator’s bidding strategies to some extent be-
fore the 200th negotiation and outperforms the baseline model in terms of accabs as well. As we expected,
opti onnoF cannot predict the absolute actions aabs

r without preference estimation methods. The accabs of
opti onnoF is always lower than that of opti onF and close to the baseline.
The reason for such a performance gap between opti onnoF and opti onF and the difference between two
used metrics of opti onF is that, for opti onF , the accuracy of modeling an opponent’s bidding strategy is
highly influenced by the accuracy of modeling the opponent’s preference (we use frequency opponent mod-
eling as the preference estimation method). The frequency opponent modeling performs best while mod-
eling the preference of the Boulware negotiator, and performs worst while modeling the preference of the
Conceder negotiator and naive-TFT negotiator. As presented in Fig. 4.3, the accuracy of frequency opponent
modeling changes when the buyer negotiator has a different bidding strategy.

4.5.2. Setting 2: Fixed strategy and varying preference profile
Plots in Fig. 4.4 present the performance of opti onnoF and opti onF in experiments of setting 2, where the
preference of the buyer negotiator changes randomly. Since accabs is only influenced by the frequency op-
ponent modeling as we explained in the previous sub-section, the plots only show accr el of opti onnoF and
opti onF . Plots 4.4a, 4.4c, 4.4e and 4.4g present how the performance of opti onnoF in setting 2 compares
to the performance in setting 1 while modeling three different time-dependent bidding strategies (Boulware,
Linear, and Conceder) and one behaviour-dependent bidding strategy (naive-TFT). Plots 4.4b, 4.4d, 4.4f and
4.4h present how the performance of opti onF in setting 2 compares to the performance in setting 1.
As we expected, the performance of our method is influenced by changing preferences. On the one hand,
the adverse effects of randomly changing preferences are more evident for opti onnoF than opti onF while
modeling time-dependent strategies. The learned opponent’s bidding strategy model of opti onnoF in setting
2 is more unstable and less accurate than the model of opti onnoF in setting 1 since opti onnoF ’s estimation
of the actions of the opponent will change once the preference of one side of the negotiation changes. Al-
though struggling with the instability due to the evolving preferences, opti onnoF can still build a model of
the opponent with an accuracy of around 0.6, which is still higher than a naive model. One reason could be
that changing preferences is not significant enough to break the bidding strategy model learned with previ-
ous preferences, which is usually the case in the real world since we used load profiles constructed from data
on the energy consumption of representative households. Fig. 4.5 shows the averaged daily load profiles of
a "Tier 3" consumer across one year. The energy consumption pattern is relatively stable with low variance.
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a b

c d

e f

g h

Figure 4.4: Results of experiments in setting 2 where the preference of the opponent changes every negotia-
tion and the opponent’s bidding strategy is fixed during an experiment. Plots a, c, e and g compare the per-
formances of opti onnoF in setting 1 and setting 2. Plots b, d, f and h compare the performances of opti onF

in setting 1 and setting 2
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Figure 4.5: Averaged daily energy consumption of "Tier 3" consumer across the year

On the other hand, such influence is not significant for opti onnoF while modeling the naive-TFT strategy.
The reason can be that the behavior of a naive-TFT negotiator will also change if the preference of one side
of the negotiation changes because the naive-TFT negotiator always tries to imitate its opponent’s behavior.
The changing of behavior mediates the effect of changing preference to some extent.
Opposite to opti onnoF , opti onF has decent and stable performances while modeling time-dependent strate-
gies because opti onF uses the utility function estimated by the frequency opponent model rather than its
own utility function. However, opti onF ’s performance is compromised a bit while modeling the behavior-
dependent strategies because the behavior of the naive-TFT strategy will change if the preference of one side
of the negotiation changes.
Since the energy consumption pattern of a particular consumer is relatively stable across one year, we also
tried to improve the performance of opti onF by not initializing the frequency opponent modeling at the start
of each negotiation. The design and results of this extra setting are presented in appendix B.

a b

Figure 4.6: Results of experiments in the third and fourth settings. In the third setting, the bidding strategy of
the opponent randomly changes every 100 negotiations where the opponent’s preference is fixed during an
experiment. The fourth setting is a combination of the second and third setting.

4.5.3. Setting 3: Varying strategy and fixed preference profile
Plot 4.6a shows the performance of opti onnoF and opti onF in setting 3 with accr el as metric. Both opti onnoF

and opti onF can sense the change in bidding strategy and model the new strategies. However, as explained
while analyzing the results of setting 1, different bidding strategies can influence the accuracy and stability of
frequency opponent modeling used in opti onF . Therefore, opti onF is more struggling with reacting to the
changes in bidding strategy and has a lower performance than opti onnoF in most of time.
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4.5.4. Setting 4: Varying strategy and preference profile
Setting 4 is the combination of setting 2 and setting 3. Therefore, based on the results of setting 2 and 3,
it is not hard to predict the performance of our new opponent modeling method. Plot 4.6b presents how
opti onnoF and opti onF of our method performs in setting 3. . As we expected, the performance of both
opti onnoF and opti onF is always better than that of the naive model.

4.6. Discussion
In the experiments, we evaluated our opponent modeling method with an existing automated negotiation
system for the off-grid P2P energy market and real-life load profiles of representative off-grid households.
Our method generally has stable performance: our method can build a model of all bidding strategies in
experiments. Once the model is made, the model’s accuracy does not decrease as more negotiations happen
between seller and buyer agents. Besides, although prediction accuracy may drop while modeling negotiators
with changing preferences and inconsistent bidding strategies, both options of our method outperform the
random-guess model (baseline) in all scenarios. However, since, in some cases, our method can only have a
prediction accuracy of around 0.6, which cannot be counted as a remarkable prediction, it is critical to decide
the timing of using the current version of our method. On the one hand, in some automated negotiation
systems where negotiation failure can lead to severe harmful consequences, wrong predictions may increase
the probability of failure. People should be cautious about relying on our method. On the other hand, in
some systems where collapses of negotiations do not influence the daily life of consumers a lot, and the
correct predictions can help negotiators to find better joint agreements, which can benefit the whole market,
then it is worth giving our method a try.
Furthermore, during experiments, we notice that opti onnoF and opti onF are good at different scenarios.
Therefore, deciding which option to use during negotiations is also essential.
Last but not least, our system has the potential to be further improved and adjusted to other P2P systems
where agents need to interact with each other repeatedly and knowing the strategy of other agents is vital for
decision-making.
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5.1. Conclusion
In this project, we designed a new opponent modeling method to model the bidding strategy of opponent
negotiators. Our new method is dedicated to the automated negotiation applied to the P2P energy mar-
ket because a) Two negotiators can negotiate with each other many times (assumption A1). Therefore, our
method can collect sufficient data to build a good model b) Agents’ preferences in the P2P energy market
usually depend on their energy consumption patterns, which are generally stable, as demonstrated during
experiments. Besides, agents always utilize similar bidding strategies in different negotiations (Assumption
A2). Therefore, the learned model can be used in future negotiations without the requirement of significant
modification. To the best of our knowledge, there is no similar opponent modeling technique that can uti-
lize the characteristics of the P2P energy market in the domain of automated negotiation. With the ability to
model the opponent’s bidding strategy and predict the opponent’s future actions, an automated negotiator
attending in a P2P energy market can conduct what-if analyses and finally make a better decision, which can
improve the efficiency of the energy distribution in the P2P energy market. With the improved ability of auto-
mated negotiators, the prosumers should have a larger incentive to take part in the P2P energy market where
automated negotiation is applied.
To evaluate the overall ability of our new opponent modeling method, we applied it to a bilateral automated
negotiation system designed for the P2P off-grid energy market. To make our experiments close to reality,
we also used load profiles from Narayan et al., 2020. The used load profiles are all constructed from data on
the energy consumption of representative consumers. With the experiments’ results, we can now answer the
research questions we proposed.

1. Can our opponent modeling technique models different bidding strategies with good accuracy?
Answer: Based on the results of experiments in setting 1, our method can model representative time-
dependent and behavior-dependent strategies.

2. How stable our opponent modeling method is while the opponent’s preference profile changes?
Answer: Both the opti onnoF and opti onF of our method can be negatively influenced by changing
preference profiles. However, since the preferences of the household in the P2P energy market mainly
depend on their consumption patterns which are usually stable across the year, our method is still
stable in the case of changing preferences. Besides, in the experiment, we found that opti onnoF and
opti onF are good at modeling different bidding strategies. Therefore, the two options of our method
can sometimes be complementary to each other.

3. Can our opponent modeling reacts to the changing of opponent’s bidding strategy?
Answer: Based on the experiments in setting 3, both opti onnoF and opti onF of our method can
quickly react to the change of bidding strategies.

5.2. Future works
There are three directions for future works. The first direction is about the further evaluation of our oppo-
nent modeling method. So far, only straightforward time-dependent and behavior-dependent negotiators
are used in experiments. We are interested to see the performance of our method while modeling negotia-
tors with more complex bidding strategies and the ability of opponent modeling. Besides, the preference and
consumption pattern of agents in the P2P-energy market can also be influenced by season and weather. For
example, households usually spend more power on air conditions and less energy on lights during hotter sea-
sons. As a result, they are more sensitive to the price in the summer (Filippini and Pachauri, 2004). It would
be nice to include more such factors in experiments. The second direction is about further improvement of
our opponent modeling method. The accuracy of opti onF of our method is largely affected by the accuracy
of the used preference estimation method. Therefore, our method can be further improved with better pref-
erence estimation methods. We used frequency opponent modeling as the preference estimation method in
this project, which can probably be improved if more detailed data on the consumption patterns of differ-
ent consumers are available. Additional, we found in experiments that opti onnoF and opti onF are good at
modeling different bidding strategies. It would be good if there were a mechanism to decide which option
to use in different scenarios. The third direction is about utilizing the model built by our method. A model
is useless without proper utilization of it. An automated negotiator can probably conduct a search to find
good decisions by using the learned model’s predicted actions. Furthermore, if a RL (reinforcement learning)
negotiator includes predicted actions in their observation, it may be able to learn a better policy with proper
training.
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appendix-a

Al g or i thm 1 demonstrates the procedure of checking whether an offer W = (q1, q2, q3, q4, p) is feasible to
the seller.

Algorithm 1 Check whether an offer is feasible

SoC : Amount of energy in the battery
SoCi ni t : initial energy in the batter
SoCmax : battery capacity

Qsel ler = (qr equi r ed
i ) : energy requirement of the seller in each sector

Gsel ler = (gi ) : forecasting energy generation of the seller in each sector
procedure Feasible_Offer(W = (q1, q2, q3, q4, p))

SoC ← SoCi ni t

for i ← 1,4 do
SoC ← mi n(SoC + gi −qr equi r ed

i ,SoCmax )
if SoC ≥ qi then

SoC ← SoC −qi

else
return not f easi bl e

end if
end for
return i s f easi bl e

end procedure

a b

Figure A.1: One day load profiles of Tier 4 and Tier 3 consumers in experiments
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Daily load profiles of Tier 4 and Tier 3 consumers used in our experiments are presented in figure A.1.
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appendix-b

During the experiments of setting 2 where the opponent’s preference randomly changes every negotiation,
we found that the magnitude of changing load profiles is even lower than we expected. Therefore, to ex-
plore the probabilities of improving our method’s opti onF , we conducted experiments with one extra setting
set t i ngex . During set t i ngex , the load profiles of the buyer negotiator (opponent) are drawn from a list of
load profiles. The list consists of one particular "Tier 3" consumer’s load profiles during one year and is or-
dered by date. During the experiment, the buyer negotiator draws one load profile from the list in order after
each negotiation. Meantime, the preference estimation in our method does not initialize after each negotia-
tion anymore. Instead, it keeps what it has learned in previous negotiations and updates itself in subsequent
negotiations. Plots B.1a and B.1b compare the performances of opti onF in the case that the frequency op-
ponent modeling is initialized every negotiation and the case that the frequency opponent modeling is not
initialized every negotiation. Unluckily, we found that turning off the initialization of the frequency opponent
modeling cannot improve our method further. A more dedicated way of updating and using the frequency
opponent modeling is needed in order to improve our method.

a b

Figure B.1: Results of experiments of set t i ngex . In this setting, the preference of the opponent changes each
negotiation regularly. Plots a compares the performances of opti onF with and without the initialization of
frequency opponent modeling after each negotiation in terms of accr el . Plot b shows the performance in
terms of accabs .
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