
Spectrum-based Fault Localization
in Embedded Software

Spectrum-based Fault Localization
in Embedded Software

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op woensdag, 4 november 2009 om 12:30 uur door

Rui Filipe LIMA MARANHÃO de ABREU

Informatics Engineer - University of Minho
geboren te Fão, Portugal.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. A.J.C. van Gemund

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. A.J.C. van Gemund Delft University of Technology, promotor
Prof. dr. A. van Deursen Delft University of Technology
Prof. dr. C. Witteveen Delft University of Technology
Prof. dr. ir. M. Akşit University of Twente
Prof. dr. ir. A.C. Brombacher Eindhoven University of Technology
dr. J. de Kleer Palo Alto Research Center
dr. W. Mayer University of South Australia

This work was carried out as part of the TRADER project under the responsibility of the Em-
bedded Systems Institute. This project was partially supported by the Netherlands Ministry of
Economic Affairs under the BSIK03021 program.

Copyright c© 2009 by R. Abreu

All rights reserved. No part of the material protected by this copyright notice may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without the prior permission of
the author.

isbn 978-90-79982-04-2

Typeset by the author with the LATEX Documentation System.
Printed in the Netherlands by Wöhrmann Print Service.

Author email: r.f.abreu@tudelft.nl

In memoriam of my grandparents

Acknowledgements

I compare doing a Ph.D. to what the Portuguese sailors faced during the dis-
coveries in the 16

th century. Back then, they also had their setbacks, tempests,
and yearning (probably the best translation for this very Portuguese feeling
saudade), but the after-lull only made them believe that they could achieve
their ultimate goal: discover unknown land. Although I am the commander-
in-chief of this man-o’-war, I could not have weathered the storm without the
help of my “crew”. I would like to take this opportunity to acknowledge
them.

First of all, I doubt I can properly express my gratitude to Prof.dr.ir. Arjan
J.C. van Gemund. Arjan has been a great source of inspiration and I am very
thankful for his continuous encouragement, support, patient, and enthusiasm.

My man-o’-war went plain sailing greatly due to dr.ir. Peter Zoeteweij. In his
farewell dinner, Arjan said that Peter was a gentleman in science: I truly agree
with him. It was a great pleasure to work with Peter on a daily basis. Thanks
a million! I would also like to extend my gratitude to the M.Sc. students that
worked under my supervision.

I would like to thank the members of my defense committee: prof.dr. A.
van Deursen, prof.dr. C. Witteveen, prof.dr.ir. M. Akşit, prof.dr.ir. A.C. Brom-
bacher, dr. J. de Kleer, and dr. W. Mayer for providing me with valuable
feedback on this thesis. In particular, I would like to give a special thanks
to dr. Mayer for the collaboration which resulted in Chapter 7, and dr. J. de
Kleer for the many conversations which inspired the work of Chapter 5.

Many thanks to the members of the Trader project: Hasan, we still have
to write that paper together! I would also like to acknowledge those, ex-
ternal to the TU Delft, that co-authored my papers: Rob Golsteijn, Markus
Stumptner, and Wolfgang Mayer. Moreover, I acknowledge the (current and
former) members of the Software Engineering Research Group (SERG) at TU
Delft: Arie van Deursen, Andy Zaidman, Bas Cornelissen, Cathal Boogerd
(we still have to publish a joint paper; thanks for helping with the “Samenvat-
ting”), Marius Marin, Martin Pinzger, Gerd Gross, Ali Mesbah, Eelco Visser
and his fellas, Leon Moonen, Alberto González, Michaela Greiler, Eric Piel,
Hans Geers, Kees Pronk, Peter Kluit, Rini van Solingen, Frans Ververs (your
retirement was a big loss for the group’s social life), Teemu Kanstren, Eric
Bouwers, Alex Feldman (aye man, the Northern crossing... what a trip!), and
Paulo Anita. Finally, within TU Delft, I also wish to express my gratitude to
Theodoros Zoumpoulidis: thanks for being such a great friend and put up
with me for the past four years.

Concerning the non-academic side of my life in the Netherlands, I have to
thank a great number of people for their friendship and the many enjoyable
moments we spent together. To avoid failing to remember somebody, their

iii

names will not be brought to light (I guess you all know who you are anyway).
I would also take this opportunity to thank all my friends back home. First
of all, to “O Bando”, a group of 13 apostles (and their respective ones) that
met for the first time several years ago in Braga. Based on our experiences
together, I am sure we are no fair-weather friends. Guys, thanks for making
my trips back to Portugal as pleasant as they could possibly be: “E as gajas
a cantar, e as gajas a cantar! Olé Bando olé...”. Second, I would like to show
my appreciation to my dear friend Ricardo Gomes: thanks for cheer me up in
the many MSN conversations we had. Finally, I would also like to state my
appreciation to all those that visited me in the Netherlands (I hope you came
over for visiting me and not for what the Dutch law tolerates...).

A word (in Portuguese) of gratitude to my family: mommy Maria de Lur-
des, pappy Bernardino, sister Bela, brother-in-law Rui, and nephew (in fact,
my little bro) Rui Pedro. Este e certamente um dos projectos mais importan-
tes da minha vida, e sem o vosso incondicional apoio e confiança nas minhas
capacidades esta tese nunca teria sido possı́vel. As minhas desculpas por me
ter ausentado por tanto tempo.

Last, but certainly not least, I would like to thank my girlfriend, and above
all my best friend, Liliana. I managed to finish this thesis greatly due to your
support and comprehension. Your flair to motivate me, viz. in the not-so-
good moments, was of great importance for me to finish this journey. Thank
you, my love!

Delft, Rui Abreu

October 7, 2009

iv

Contents

List of Symbols ix

List of Acronyms xi

1 Introduction 1
1.1 Concepts and Definitions . 4

1.2 Fault Localization . 5

1.2.1 Statistical Approaches . 6

1.2.2 Reasoning Approaches 6

1.3 Problem Statement . 7

1.4 Contributions . 9

1.5 Thesis Outline . 10

1.6 Origin of Chapters . 10

2 Spectrum-based Fault Localization 13
2.1 Preliminaries . 15

2.1.1 Program Spectra . 15

2.1.2 Spectrum-based Fault Localization 17

2.2 Experimental Setup . 20

2.2.1 Benchmark Set . 20

2.2.2 Data Acquisition . 21

2.2.3 Evaluation Metric . 22

2.3 Similarity Coefficient Impact . 23

2.4 Observation Quality Impact . 25

2.4.1 A Measure of Observation Quality 25

2.4.2 Varying qe . 27

2.4.3 Similarity Coefficients Revisited 27

2.5 Observation Quantity Impact . 28

2.6 Related Work . 32

2.7 Summary . 34

3 Industrial Case Studies with SFL 37
3.1 Relevance to Embedded Software 38

3.2 Experiments with ADOC . 40

3.2.1 Platform . 40

3.2.2 Faults . 41

3.2.3 Implementation . 42

3.2.4 Diagnosis . 43

3.2.5 Overhead . 44

3.3 Experiments with TV520 . 44

v

3.3.1 Platform . 45

3.3.2 Space Efficiency . 45

3.3.3 Implementation . 46

3.4 Experiments . 48

3.4.1 NVM Corrupted . 48

3.4.2 Scrolling Bug . 49

3.4.3 Pages Without Visible Content 50

3.4.4 Repeated Tuner Settings 51

3.4.5 Evaluation . 51

3.5 Summary . 53

4 Using Fault Screeners for Error Detection 55
4.1 Fault Screeners . 57

4.2 Experiments . 62

4.2.1 Experimental Setup . 62

4.2.2 Results . 64

4.3 Analytic Model . 64

4.3.1 Concepts and Definitions 65

4.3.2 Ideal Screening . 66

4.3.3 Bitmask Screening . 67

4.3.4 Range Screening . 68

4.3.5 Discussion . 69

4.4 Fault Screening and SFL . 70

4.5 Related Work . 73

4.6 Summary . 75

5 A Bayesian Approach to SFL 77
5.1 Model-based Reasoning Approaches 79

5.2 The Barinel Approach . 83

5.2.1 Specific Features . 83

5.2.2 Algorithm . 87

5.2.3 Maximum Likelihood Estimation 88

5.2.4 Estimating Intermittency 90

5.3 Analytic Model . 91

5.3.1 Number of Failing Runs 93

5.3.2 Behavior for Small Number of Runs 94

5.3.3 Behavior for Large Number of Runs 94

5.3.4 Experimental Validation 95

5.4 Empirical Evaluation . 97

5.4.1 Experimental Setup . 98

5.4.2 Performance Results . 98

5.4.3 Time/Space Complexity 102

5.5 Related Work . 104

5.6 Summary . 105

vi

6 A Low-Cost Approximate Minimal Hitting Set Algorithm 107
6.1 Minimal Hitting Set Problem . 108

6.2 STACCATO . 109

6.2.1 Approximation . 110

6.2.2 Model-Based Diagnosis 111

6.2.3 An MBD Heuristic . 112

6.2.4 Algorithm . 112

6.2.5 Complexity Analysis . 114

6.3 Experimental Results . 115

6.3.1 Synthetic Diagnosis Experiments 115

6.3.2 Real Software Analysis for Diagnosis 118

6.4 Related Work . 119

6.5 Summary . 120

7 Using SFL to Focus Model-based Software Debugging 123
7.1 MBSD . 124

7.1.1 Issues in MBSD . 129

7.2 Deputo . 131

7.3 Empirical Evaluation . 133

7.3.1 Experimental Setup . 133

7.3.2 Experimental Results . 135

7.4 Related Work . 139

7.5 Summary . 140

8 Conclusions 143
8.1 Summary of Contributions . 144

8.2 Recommendations for Future Work 145

Appendices 149

A Bloom Filter Hash Functions 151

B Gradient Ascent Procedure 153

Bibliography 157

Summary 175

Samenvatting 177

Curriculum Vitæ 179

Contents vii

viii

List of Symbols

P - Program under test
A - Program Activity Matrix (M× N)
aij - Value of A[i, j]

b - Bloom Filter
C - Fault cardinality
C - Set of components in program P
cj - Component number j, cj ∈ C
D - Diagnostic report (list of diagnosis candidates)
dk - Diagnosis candidate
e - Error vector, with N positions
f - Probability a run behaves as expected

fp - False positive rate
fn - False negative rate
gj - Goodness parameter for component j

g(dk) - Goodness parameter for diagnosis dk
H - Heuristic function for guiding minimal hitting set computation
hj - Health variable of component j
I - List of inspected components

M - Number of components in program P
N - Number of runs/transactions

NF - Number of failed runs/transactions
NP - Number of passed runs/transactions

npq(j) - Number of times component j is involved (p = 1) or not (p = 0)
in passed (q = 0) or failed (q = 1) runs

Pr(dk) - Probability diagnosis dk being the true explanation
qd - Quality of the diagnosis, aka Score, effort
qe - Quality of the error detection
r - Probability a component is executed

s(j) - Similarity coefficient of component cj with error vector
T - Set of test cases
TF - Set of test cases that fail
TP - Set of test cases that pass
tn - True negative rate
tp - True positive rate
y - Hash function

W - Wasted testing/debugging effort (diagnostic quality metric)

ix

x

List of Acronyms

AAAI - Association for the Advancement of Artificial Intelligence
ACM - Association for Computer Machinery

Barinel - Bayesian approach to diagnose intermittent faults
CBI - Cooperative Bug Isolation

CPU - Central processing unit
DD - Delta Debugging

DDD - Data Display Debugger
GCC - GNU Compiler Collection
Gcov - GNU Profiler
GDB - GNU Debugger
IEEE - Institute of Electrical and Electronics Engineers
J2EE - Java 2 Platform, Enterprise Edition

KLOC - Kilo lines of code
LCD - Liquid crystal display
LOC - Lines of code

MBD - Model-based diagnosis
MBSD - Model-based software debugging

MIPS - Microprocessor without Interlocked Pipeline Stages
MLOC - Mega lines of code

NN - Nearest Neighbor
NVM - Non-volatile memory
RAM - Read access memory

SFL - Spectrum-based fault localization
Staccato - Statistics-directed minimal hiting set algorithm
TRADER - TV Related Architecture to Design and Enhance Reliability

xi

xii

1
Introduction

“There has never been an unexpectedly short software debugging
period in the history of computers.”

– Steven Levy

Modern daily devices such as televisions rely increasingly on (embedded)
software. Features implemented in software are often cheaper, easier, flexible
to future modifications, and more portable than when implemented in hard-
ware. Such properties are extremely important as, nowadays, many devices
serve no single purpose but, instead, have several functionalities which need
to be easily modified or upgraded to adhere to the high expectations of the
consumers. As an example, a mobile phone is used not only to make phone
calls but also, e.g., as a navigation system which has to contain the most up-
to-date navigation engine and maps.

Not only are more and more features implemented in software, but soft-
ware is also developed by several in/off-shore teams or outsourced. As a
consequence, software complexity increases drastically. Due to this complex-
ity, software systems are difficult to maintain and typically have a high defect
density which decreases the quality (i.e., correctness) of the system [Carey
et al., 1999]. Defects in the system may lead to unintended behavior or
even critical system failures. This problem is especially serious for em-
bedded software, as such systems (1) often have to meet additional, non-
functional requirements (resource-constrained systems), and (2) are gener-
ally mission-critical (e.g., embedded software running on an artificial pace-
maker [Halperin et al., 2002]). Next to the well-known disasters caused by
software defects [Garfinkel, 2005], the author’s personal experience includes
the effects of a critical computer glitch which led to a 3-hour shut down of the
M5 East highway’s tunnel in New South Wales, Australia during peak hours
in September 2008. Due to a software defect, the component responsible for
managing the tunnel’s fire and air circulation could not be controlled reliably.
The malfunction caused many vehicles to be diverted (see Figure 1.1). At the
time of writing, the glitch’s root cause is still unknown.

In addition to the increasing software complexity, increased market com-
petitiveness leads to restricted systems testing, in an attempt to further reduce
time-to-market. As exhaustive testing of complex systems is prohibitively ex-
pensive, testing would not reveal all faults in the software anyway. Conse-
quently, software is shipped with residual defects. While some of the defects

1

Figure 1.1 Computer glitch closes M5 highway during peak hour [source: The
Sydney Morning Herald, September 23rd, 2008]

are either tolerated or never perceived by the users [de Visser, 2008, Keijzers
et al., 2008], others may cause the system to critically fail, possibly entailing
extremely serious financial or life-threatening consequences. Amongst the
high-profile examples of the drastic financial consequences a defect can cause
is the malfunction of the control software of Ariane 5, which caused the rocket
to disintegrate 37 seconds after launch [Lions, 1996, Dowson, 1997]. An exam-
ple of life-threatening consequences is the crash of a British Royal Air Force
Chinook helicopter in 1994, killing 29 service men. Although initially dis-
missed as a pilot error, an investigation uncovered sufficient evidence that the
accident was caused by a software defect in the helicopter’s engine control
computer [Rogerson, 2002].

When unexpected behavior is observed, developers need to identify the
root cause(s) that makes the system deviate from its intended behavior. This
task (also known as software debugging, fault localization, or fault diagnosis1)
is the most time-intensive and expensive phase of the software development
cycle [Hailpern and Santhanam, 2002], and is being performed since the be-
ginning of computer history (see Figure 1.2 for an account of the first reported
bug in computer history).

1In this thesis, the terms software debugging, fault diagnosis, and fault localization are used
interchangeably.

2

Figure 1.2 First reported bug in computer history, 1947: Operators traced an error
in the Harvard Mark II computer to a moth trapped in a relay, coining the term bug.

A traditional approach to fault localization is to insert print statements in
the program to cause the program to generate additional debugging infor-
mation to help identifying the root cause of the observed failure. Essentially,
the developer adds these statements to the program to get a glimpse of the
runtime state, variable values, or to verify that the program has reached a
particular program point. Another common technique is the use of a sym-
bolic debugger which supports additional features such as breakpoints, sin-
gle stepping, and state modifying. Examples of symbolic debuggers are
GDB [Stallman, 1994], DBX [DBX, 1990], DDD [Zeller and Lütkehaus, 1996],
Exdams [Balzer, 1969], and the debugger proposed by Agrawal, Demillo, and
Spaord [Agrawal et al., 1991]. Symbolic debuggers are included in many in-
tegrated development environments (IDE) such as Eclipse2, Microsoft Visual
Studio3, Xcode4, and Delphi5.

These traditional, manual fault localization approaches have a number of
important limitations. The placement of print statements as well as the inspec-
tion of their output are unstructured and ad-hoc, and are typically based on
the developer’s intuition. In addition, developers tend to use only test cases
that reveal the failure, and therefore do not use valuable information from
passing test cases. Furthermore, the size of the program state at each point

2http://www.eclipse.org
3http://msdn.microsoft.com/en-us/vstudio/default.aspx
4http://developer.apple.com/tools/xcode/
5http://www.codegear.com

Chapter 1. Introduction 3

http://www.eclipse.org
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://developer.apple.com/tools/xcode/
http://www.codegear.com

can be large, and there are many combinations of program executions that
have to be examined. Hence, such techniques still require a detailed knowl-
edge of the program, and also suffer from a substantial execution overhead in
terms of execution time and space to store historical run-time data. Last, but
not least, manual debugging is extremely expensive in terms of labor cost. As
an indication of the downtime, debugging, and repair costs involved, a 2002

landmark study indicated that software bugs pose an annual $60 billion cost
to the US economy alone [RTI, 2002].

Aimed at drastic cost reduction, much research has been performed in de-
veloping automatic software debugging techniques and tools. This thesis aims
to contribute to advancing the state-of-the-art in automatic fault localization.
Most of the work presented in this thesis was carried out in the context of the
TRADER project [Trader, 2009], involving several Dutch universities, Philips
Tass, IMEC, and NXP Semiconductors. The project was conducted under
the responsibility of the Embedded Systems Institute (ESI) in Eindhoven, the
Netherlands. The main goal of the TRADER project was to develop meth-
ods and techniques for ensuring reliability of consumer electronic products,
minimizing product failures that are exposed to the end user.

1.1 C O N C E P T S A N D D E F I N I T I O N S

Throughout this thesis, we use the following terminology [Avižienis et al.,
2004].

• A failure is an event that occurs when delivered service deviates from
correct service.

• An error is a system state that may cause a failure.

• A fault (defect/bug) is the cause of an error in the system.

In this thesis, we apply this terminology to computer programs, where
faults are bugs in the program code. Typically, these programs transform in-
put data into output data in a single run, and a failure occurs when the output
for a given input differs from the expected output for that input. Failures and
errors are symptoms caused by faults in the program.

To illustrate these concepts, consider the simple C function in Figure 1.3.
It is meant to sort, using the bubble sort algorithm, a sequence of n rational
numbers whose numerators and denominators are stored in the parameters
num and den, respectively. There is a fault (bug) in the swapping code within
the body of the if statement. Only the numerators of the rational numbers
are swapped while the denominators are left in their original order. In this
case, a failure occurs when RationalSort changes the contents of its argument
arrays in such a way that the result is not a sorted version of the original.
An error may occur after the code inside the conditional statement is exe-
cuted, while den[j] , den[j+1]. Such errors can be temporary, and do not

4

void RationalSort(int n, int *num, int *den){
int i,j,temp;
for (i=n-1; i>=0; i--){
for (j=0; j<i; j++){
if (RationalGT(num[j],den[j],num[j+1],den[j+1])){
/* Bug: forgot to swap denominators */

temp = num[j];

num[j] = num[j+1];

num[j+1] = temp;

}

}

}

}

Figure 1.3 A faulty C function for sorting rational numbers

automatically lead to failures. For example, if we apply RationalSort to the
sequence 〈 4

1 , 2
2 , 0

1 〉, an error occurs after the first two numerators are swapped.
However, this error is “canceled” by later swapping actions, and the sequence
ends up being sorted correctly. Note that faults do not automatically lead to
errors either: no error will occur if the sequence is already sorted, or if all
denominators are equal.

A program under analysis comprises a set of M components (such as state-
ments, basic blocks, functions) cj where j ∈ {1, . . . , M}, and can have multiple
faults, the number being denoted C (fault cardinality). A diagnostic candidate is a
set of component indices that may explain observed failures. A diagnostic report
D =< . . . , dk, . . . > is a ranked set of diagnostic candidates dk ordered in terms
of likelihood to be the true diagnosis.

Error detection is a prerequisite for triggering a fault localization technique.
One must know that a symptom has occurred before trying to locate the re-
sponsible fault. Program failures constitute a rudimentary form of error de-
tection, as many errors remain latent and never lead to a failure. An example
of a technique that increases the number of errors that can be detected is
program instrumentation with invariants such as checks on null pointers and
array bounds checking [Jones and Kelly, 1997].

1.2 FA U LT L O C A L I Z AT I O N

The process of pinpointing the fault(s) that led to symptoms (failures/errors)
is called fault localization, and has been an active area of research for the past
decades. Based on a set of observations, automatic approaches to software
fault localization yield a list of likely fault locations, which is subsequently
used either by the developer to focus the software debugging process, or as an
input to automatic recovery mechanisms [Patterson et al., 2002, Sözer, 2009].
Depending on the amount of knowledge that is required about the system’s

Chapter 1. Introduction 5

internal component structure and behavior, the most predominant approaches
can be classified as (1) statistical approaches or (2) reasoning approaches. The
former approach uses an abstraction of program traces, dynamically collected
at runtime, to produce a list of likely candidates to be at fault, whereas the lat-
ter combines a static model of the expected behavior with a set of observations
to compute the diagnostic report.

Statistical approaches yield a diagnostic report with the M components or-
dered in terms of statistical evidence of being faulty (e.g., < {3}, {1}, . . . >,
in terms of the indices j of the components cj). Reasoning approaches yield a
diagnostic report that comprise candidates dk (possibly multiple-fault) that ex-
plain the observations, ordered in terms of probability (e.g., < {4}, {1, 3}, . . . >,
meaning that either component c4 is at fault, or components c1 and c3 are at
fault, etc.). For brevity, we will often refer to diagnostic candidates as di-
agnoses as well, as it is clear from the context whether we refer to a single
diagnosis candidate or to the entire diagnosis.

1.2.1 Statistical Approaches

Statistics-based fault localization techniques use an abstraction of program
traces, also known as program spectra, to find a statistical relationship with ob-
served failures. Program spectra are collected at run-time, during the exe-
cution of the program, and many different forms exist [Harrold et al., 2000].
For example, component-hit spectra indicate whether a component was in-
volved in the execution of the program or not. In contrast to model-based
approaches, program spectra and pass/fail information are the only dynamic
source of information used by statistics-based techniques.

Well-known examples of such approaches are the Tarantula tool by Jones,
Harrold, and Stasko [Jones et al., 2002], the Nearest Neighbor technique by
Renieris and Reiss [Renieris and Reiss, 2003], the Sober tool by Lui, Yan, Fei,
Han, and Midkiff [Liu et al., 2006], the work of Liu and Hand [Liu and Han,
2006], PPDG by Baah, Podgurski, and Harrold [Baah et al., 2008], CrossTab
by Wong, Wei, Qi, and Zap [Wong et al., 2008], the Cooperative Bug Isola-
tion by Liblit and his colleagues [Liblit et al., 2005, Liblit, 2008, Nainar et al.,
2007, Zheng et al., 2006], the Pinpoint tool by Cheng and his colleagues [Chen
et al., 2002], the AMPLE tool by Dallmeier, Lindig, and Zeller [Dallmeier et al.,
2005], the work by Steimann, Eichstädt-Engelen, and Schaaf [Steimann et al.,
2008], and the Time Will Tell approach by Yilmaz, Paradkar, and Williams [Yil-
maz et al., 2008]. Although differing in the way they derive the statistical fault
ranking, all techniques are based on measuring program spectra, and will be
analyzed in great detail later.

1.2.2 Reasoning Approaches

Reasoning approaches to fault localization use prior knowledge of the system,
such as required component behavior and interconnection, to build a model

6

of the correct behavior of the system. An example of a reasoning technique
is model-based diagnosis (see, e.g., [de Kleer and Williams, 1987]), where a
diagnosis is obtained by logical inference from the static model of the sys-
tem, combined with a set of run-time observations. In the software engineer-
ing community this approach is often called model-based software debug-
ging [Mayer and Stumptner, 2008]. Well-known approaches to model-based
software debugging include the approaches of Friedrich, Stumptner, and
Wotawa [Friedrich et al., 1999, Friedrich et al., 1996], Nica and Wotawa [Nica
and Wotawa, 2008], Wotawa, Stumptner, and Mayer [Wotawa et al., 2002], and
Mayer and Stumpter [Mayer and Stumptner, 2008], all of which are described
in more detail later.

Other techniques that use prior information about the system being diag-
nosed are approaches based on model checkers. Such techniques automati-
cally verify whether a model of the system meets a given specification or not.
For instance, they verify whether a software system can reach a critical state
that will cause it to fail, or check whether the software is deadlock or race
condition-free. Examples of such approaches include Groce’s ∆-slicing [Groce
et al., 2006] and explain [Groce, 2004], the JavaPathFinder work of Visser
and his colleagues [Visser et al., 2003, Visser and Mehlitz, 2005], the CEGAR
approach of Sharygina et al. [Sharygina et al., 2009], the SPIN tool by Holz-
mann and his colleagues [Holzmann, 1997], and the work of Dolby, Vaziri,
and Tip [Dolby et al., 2007].

1.3 P R O B L E M S TAT E M E N T

As explained in the previous section, statistics-based approaches take as their
only input dynamic information collected at run-time, using no prior knowl-
edge of the system under analysis. Such approaches have therefore intrinsi-
cally no modeling costs attached. Amongst the best statistical approaches in
terms of diagnostic cost/performance ratio are those based on the computa-
tion of a statistical similarity between component activity and failure behavior
using a so-called similarity coefficient s [Jones and Harrold, 2005, Liu et al.,
2006, Wong et al., 2008], which we refer to as spectrum-based fault localiza-
tion (SFL). Component activity is recorded as program spectra (collected in a
matrix A, explained in detail in Chapter 2), and information on whether each
of the program spectra in A corresponds to a passed of failed execution is
collected in a vector e. The diagnostic process can be explained as

(A, e) s−−−→ D

SFL is a light-weight approach since for each component only a similarity co-
efficient (scalar operation) has to be computed, after which the M components
in the system are sorted into D in order of likelihood to be at fault. Besides,
dynamically collecting (A, e) requires only marginal overhead.

Given these properties, SFL is particularly interesting because (1) it has
the potential to scale well to very large code bases, (2) it may be applicable

Chapter 1. Introduction 7

to resource-constrained environments, and (3) it is transparent to the devel-
opment process (entailing no extra effort, assuming a test suite is available).
While (A, e) appears to be a good basis for localizing software faults, the di-
agnostic accuracy of SFL is inherently limited since no reasoning is applied.
For example, SFL creates a ranking containing all M components, and not
only with the subset of components that logically explain observed failures
(reasoning would discard invalid candidates). Moreover, SFL considers only
single faults. However, software bug density is high, and therefore in real
software programs the probability of multiple faults is very high. Hence, ap-
proaches to multiple-fault localization are of great importance.

In contrast to SFL, reasoning approaches not only reason in terms of mul-
tiple faults, but also have a strong theoretical foundation in terms of the log-
ical theories that haven been proposed in the past years, e.g., [de Kleer and
Williams, 1987, De Kleer et al., 1992, Struss and Dressler, 1989, Console and
Torasso, 1991]. Exploiting the information present in the model, the diagnos-
tic performance of reasoning approaches is higher than SFL. However, current
state-of-the-art techniques have several limitations that hinder their applica-
tion to large, industrial software systems. Manually creating a model of the
intended behavior may be as complex and/or error-prone as building the sys-
tem itself. Hence, it is extremely difficult to guarantee that the model is correct
and, moreover, that it is consistent with the ever evolving software system. To
overcome these shortcomings, approaches to automatically derive a model
from software system have been proposed (e.g. [Mayer, 2007]). Unfortunately,
these approaches are prohibitively complex because (1) they are dependent
on computationally expensive static analysis techniques and (2) it is difficult
to abstract from the program code (e.g., the expression level). Consequently,
the complexity of the models as well as the underlying diagnostic algorithms
prohibit the application of reasoning to anything but toy programs of a few
hundred lines of code.

With the aim to capture the best of both worlds, in this thesis we study a
spectrum-based reasoning approach to fault localization. By abstracting from
program topology and dependencies, the (A, e)-based modeling allows the
reasoning to be relatively cheap, while benefiting from the increased accuracy
due to reasoning. In particular, the main research question addressed in this
thesis is as follows:

What is the inherent performance limitation of (traditional) SFL, and what are
the benefits and costs of applying a spectrum-based reasoning approach?

Apart from this main research question, this thesis also addresses the follow-
ing, peripheral questions:

• Traditionally, SFL takes as input error information e from test oracles
(e.g., during testing phase, a specification of expected behavior is used to
determine whether a test case fails or not). However, at the operational
phase, test oracles are typically not available. Aimed at total automation

8

of fault localization, can simple, generic program invariants replace test
oracles for pass/fail input to SFL?

• Reasoning techniques typically generate an excessive number of diagno-
sis candidates, most of which are highly improbable. Can an SFL-based
heuristic function be used to focus the search to highly probable di-
agnosis candidates, rendering reasoning approaches amenable to large
software systems?

• Model-based software debugging suffers from being extremely complex,
and returns to the user a diagnostic report without ranking information.
Consequently, all components in the report need to be inspected. Can
SFL be integrated with model-based software debugging (1) to focus the
search of the latter, reducing its high time complexity, and (2) to improve
its diagnostic quality?

1.4 C O N T R I B U T I O N S

Overall, this thesis makes six contributions. The first three contributions are
related to SFL, and the last three are based on combining SFL with reasoning:

1. We perform a thorough study on SFL in order to clearly understand its
fundamental limitations. In particular, we study the diagnostic accuracy
as a function of (1) similarity coefficient, (2) quantity of observations,
and (3) quality of the error detectors. We present a new similarity co-
efficient that consistently outperforms all coefficients investigated, inde-
pendent of the experimental environment.

2. Owing to its small time and space complexity, SFL is amenable to
resource-constrained software systems, such as embedded software. We
report our experiences in applying this fault localization approach to the
control software which serves as the basis for televisions sets manufac-
tured by NXP Semiconductor’s customers [NXP, 2009].

3. We show that fault screeners (error detectors originating from the hard-
ware domain) have the capabilities to replace test oracles with respect to
the diagnostic performance of SFL, at limited overhead, enabling a fully
automated approach to software fault localization.

4. As a central contribution, we present a low-cost, Bayesian reasoning
approach to spectrum-based multiple fault localization. We show that
the Bayesian reasoning approach clearly outperforms SFL, at marginal
increase of complexity.

5. Computing the set of valid diagnosis candidates from program spectra
includes computing the minimal hitting set which is a NP-hard problem.
We present an SFL-based heuristic to focus the search of minimal hitting

Chapter 1. Introduction 9

Static Dynamic

MBSD Statistics (Ch2) Barinel (Ch5)

Deputo (Ch7)

Staccato (Ch6)

Detection (Ch4)

Case Studies (Ch3)

Diagnosis

Figure 1.4 Overview

sets, decreasing the time complexity by orders of magnitude while cap-
turing all relevant solutions.

6. Finally, we combine SFL with model-based software debugging to ren-
der the latter amenable to larger programs, as well as to rank its diagnos-
tic report. We show that the combination of semantics-based analysis as
undertaken in model-based diagnosis and the dynamic aspects obtained
from program execution spectra yield better diagnostic reports.

1.5 T H E S I S O U T L I N E

The six contributions outlined in the previous section are described in terms
of six chapters, respectively. Chapter 2 describes the thorough study per-
formed on SFL. In Chapter 3 we report our findings on applying SFL to large,
industrial case studies. Chapter 4 studies the usage of fault screeners for
automatic error detection. Chapter 5 presents a low-cost, (Bayesian) reason-
ing approach to spectrum-based multiple fault localization, coined Barinel.
Chapter 6 describes a low-cost, heuristic approach to generate the set of valid
diagnosis candidates, coined Staccato. Chapter 7 describes an approach to
combine statistics-based fault localization with model-based software debug-
ging (MBSD), coined Deputo, to focus the search of MBSD. Figure 1.4 depicts
the relationships between the various topics chapters as well as the main re-
search topic of each chapter. Each core chapter in this thesis is directly based
on at least two peer-reviewed publications. Finally, in Chapter 8 we draw
conclusions and present recommendations for future work.

1.6 O R I G I N O F C H A P T E R S

Most of the publications have been co-authored with Zoeteweij and Van
Gemund. The publications of Chapter 3 have been co-authored with
Zoeteweij, Golsteijn, and Van Gemund. The publication of Chapter 6 has

10

been co-authored with Van Gemund only. The publication of Chapter 7 has
been co-authored with Mayer, Stumptner, and Van Gemund. The following
list gives an overview of these publications:

Chapter 2 has been published in Journal of Systems & Software (JSS), 2009 [Abreu
et al., 2009c]. An earlier version of the chapter appeared in the Proceed-
ings of the IEEE Testing: Academic and Industrial Conference - Practice and Research
Techniques (TAIC PART’07) [Abreu et al., 2007].

Chapter 3 has been published in Journal of Systems and Software (JSS), 2009 [Abreu
et al., 2009c], and in the Proceedings of the International Conference on the Engi-
neering of Computer Based Systems (ECBS’07) [Zoeteweij et al., 2007];

Chapter 4 has been published in Lecture Notes in Communications in Computer and
Information Science (LNCCIS), 2009 [Abreu et al., 2009a]. An earlier ver-
sion of this work appeared in Proceedings of the ACM Symposium on Applied
Computing (SAC’08) [Abreu et al., 2008a], and in the Proceedings of the In-
ternational Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE’08) [Abreu et al., 2008b].

Chapter 5 has been published in the Proceedings of the AAAI International Joint Con-
ference on Artificial Intelligence (IJCAI’09) [Abreu et al., 2009d], and has also
been accepted for publication in the Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE’09) [Abreu et al., 2009e]. An
earlier version of this work appeared in the Proceedings of the ACM Workshop
on Dynamic Analysis (WODA’08) [Abreu et al., 2008d];

Chapter 6 has been published in the Proceedings of the Symposium on Abstraction,
Reformulation and Approximation (SARA’09) [Abreu and van Gemund, 2009a].
An earlier version of this work appeared in the Proceedings of the Interna-
tional Workshop on Principles of Diagnosis (DX’09) [Abreu and van Gemund,
2009b];

Chapter 7 has been published in the Proceedings of the ACM Symposium on Applied
Computing (SAC’09) [Abreu et al., 2009b]. An earlier version was pub-
lished in the Proceedings of the International Workshop on Principles of Diagnosis
(DX’08) [Mayer et al., 2008].

Chapter 1. Introduction 11

12

2
Spectrum-based Fault Localization

A B S T R A C T

Spectrum-based fault localization (SFL) shortens the test-diagnose-repair cy-
cle by reducing the debugging effort. As a light-weight automated diagnosis
technique it can easily be integrated with existing testing schemes. Since SFL
is based on discovering statistical coincidences between system failures and
the activity of the different parts of a system, its diagnostic accuracy is in-
herently limited. Using a common benchmark consisting of the Siemens set
and the space program, we investigate this diagnostic accuracy as a function
of several parameters (such as quality and quantity of the program spectra
collected during the execution of the system), some of which directly relate to
test design. Our results indicate that the superior performance the Ochiai sim-
ilarity coefficient, taken from the molecular biology domain and introduced
by us in the context of fault localization, is largely independent of test de-
sign. Furthermore, near-maximal diagnostic accuracy (exonerating over 80%
of the blocks of code on average) is already obtained for low-quality error
observations and limited numbers of test cases. The influence of the number
of test cases is of primary importance for continuous (embedded) processing
applications, where only limited observation horizons can be maintained.

//

Testing, debugging, and verification represent a major expenditure in the soft-
ware development cycle [Hailpern and Santhanam, 2002], which to a large
extent is due to the labor-intensive task of diagnosing the faults (bugs) that
cause tests to fail. Because under typical market conditions, only those faults
that affect the user most can be solved before the release deadline, the effi-
ciency with which faults can be diagnosed and repaired directly influences
software reliability. Automated diagnosis can help to improve this efficiency.

Diagnosis techniques are complementary to testing in two ways. First, for
tests designed to verify correct behavior, they generate information on the root
cause of test failures, focusing the subsequent tests that are required to expose
this root cause. Second, for tests designed to expose specific potential root
causes, the extra information generated by diagnosis techniques can help to
further reduce the set of remaining possible explanations. Given its incremen-
tal nature (i.e., taking into account the results of an entire sequence of tests),
automated diagnosis alleviates much of the work of selecting tests in the latter

13

category, and can hence have a profound impact on the test-diagnose-repair
cycle.

An important part of diagnosis and repair consist in localizing faults, and
several tools for automated debugging and systems diagnosis implement
spectrum-based fault localization (SFL), an approach to diagnosis based on
an analysis of the differences in program spectra [Harrold et al., 2000, Reps et al.,
1997] for passed and failed runs. Passed runs are executions of a program that
completed correctly, whereas failed runs are executions in which an error was
detected. A program spectrum is an execution profile that indicates which
parts of a program are active during a run. Spectrum-based fault localization
entails identifying the part of the program whose activity correlates most with
the detection of errors. Examples of tools that implement this approach are
Pinpoint [Chen et al., 2002], which focuses on large, dynamic on-line transac-
tion processing systems, Tarantula [Jones et al., 2002], whose implementation
focuses on the analysis of C programs, and AMPLE [Dallmeier et al., 2005],
which focuses on object-oriented software (see Section 2.6 for a discussion).

Spectrum-based fault localization does not rely on a model of the system
under investigation. It can easily be integrated with existing testing proce-
dures, and because of the relatively small overhead with respect to CPU time
and memory requirements, it lends itself well for application within resource-
constrained environments [Zoeteweij et al., 2007]. However, the efficiency of
SFL comes at the cost of a limited diagnostic accuracy. As an indication, in one
of the experiments described in Section 2.4, on average 20% of a program still
needs to be inspected after the diagnosis due to a low number of failed runs.

In SFL, a similarity coefficient is used to rank potential fault locations. In
earlier work [Abreu et al., 2006a], we obtained preliminary evidence that
the Ochiai similarity coefficient, known from the biology domain (see, e.g.,
[da Silva Meyer et al., 2004]), can improve diagnostic accuracy over eight
other coefficients, including those used by the Pinpoint and Tarantula tools
mentioned above. Extending as well as generalizing this previous result, in
this chapter we investigate the main factors that influence the accuracy of SFL
in a much wider setting. Apart from the influence of the similarity coefficient
on the diagnostic accuracy, we also study the influence of the quality and
quantity of the (pass/fail) observations used in the analysis.

Quality of the observations relates to the classification of runs as passed or
failed. Since most faults lead to errors only under specific input conditions,
and as not all errors propagate to system failures, this parameter is relevant
because error detection mechanisms are usually not ideal. Quantity of the
observations relates to the number of passed and failed runs available for
the diagnosis. If fault localization has to be performed at run-time, e.g., as
a part of a recovery mechanism, one cannot wait to accumulate many obser-
vations to diagnose a potentially disastrous error until sufficient confidence
is obtained. In addition, quality and quantity of the observations both relate
to test coverage. Varying the observation context with respect to these two
observational parameters allows a much more thorough investigation of the

14

influence of similarity coefficients. Our study is based on a widely-used set of
benchmark faults (single faults) consisting of the Siemens set [Hutchins et al.,
1994] and the space program, both of which are available from the Software-
artifact Infrastructure Repository [Do et al., 2005].

The main contributions of this chapter are the following.

• We show that the Ochiai similarity coefficient consistently outperforms
the other coefficients mentioned above. This can be attributed to the
Ochiai coefficient being more sensitive to activity in passed runs than to
activity in failed runs of potential fault locations, which is well suited
to software fault diagnosis because execution of faulty code does not
necessarily lead to failures, while failures always involve a fault.

• We establish this result across the entire quality space, and for vary-
ing numbers of runs involved. Furthermore, we show that near-optimal
diagnostic accuracy (exonerating over 80% of all code on average) is al-
ready obtained for low-quality (ambiguous) error observations, while,
in addition, only a few runs are required. In particular, maximum di-
agnostic performance is already reached at 6 failed runs on average.
However, including up to 20 passed runs may improve but also degrade
diagnostic performance, depending on the program and/or input data.

The remainder of this chapter is organized as follows. In Section 2.1 we
introduce some basic concepts and terminology, and explain the diagnosis
technique in more detail. In Section 2.2 we describe our experimental setup.
In Sections 2.3, 2.4, and 2.5 we describe the experiments on the similarity coef-
ficient, and the quality and quantity of the observations, respectively. Related
work is discussed in Section 2.6. We summarize this chapter in Section 2.7.

2.1 P R E L I M I N A R I E S

In this section we introduce program spectra, and describe how they are used
in spectrum-based fault localization.

2.1.1 Program Spectra

A program spectrum [Reps et al., 1997] is a collection of data that provides
a specific view on the dynamic behavior of software. This data is collected
at run-time, and typically consist of a number of counters or flags for the
different parts of a program. As such, recording a program spectrum is a
light-weight analysis compared to other run-time methods, such as, e.g., dy-
namic slicing [Korel and Laski, 1988]. Many different forms of program spec-
tra exist, see Table 2.1 and [Harrold et al., 2000] for a comprehensive overview.
Although we work with so-called block-hit spectra, the approach studied in
this paper easily generalizes to other types of program spectra (e.g., path-hit
spectra, data-dependence-hit spectra).

Chapter 2. Spectrum-based Fault Localization 15

Form Description
Statement-hit statements that were executed

Statement-count number of times a statement was executed
Block-hit conditional branches executed

Block-count number of times a conditional branch was executed
Path-hit path executed

Path-count number of times each path was executed
Complete-path complete path that was executed

Data-dependence-hit definition-use pairs executed
Data-dependence-count number of times a definition-use pair was executed

Output output that was produced
Execution trace execution trace produced

Time Spectra execution time of, e.g., functions

Table 2.1 A catalog of program spectra

void RationalSort(int n, int *num, int *den){
/* block 1 */

int i,j,temp;

for (i=n-1; i>=0; i--) {
/* block 2 */

for (j=0; j<i; j++) {
/* block 3 */

if (RationalGT(num[j], den[j],
num[j+1], den[j+1])) {

/* block 4 */

/* Bug: forgot to swap denominators */

temp = num[j];

num[j] = num[j+1];

num[j+1] = temp;

}

}

}

}

Figure 2.1 A faulty C function for sorting rational numbers

A block hit spectrum contains a flag for every block of code in a program,
that indicates whether or not that block was executed in a particular run. With
a block of code we mean a C language statement, where we do not distinguish
between the individual statements of a compound statement, but where we
do distinguish between the cases of a switch statement1. As an illustration,
we have identified the blocks of code in Figure 2.1. Suppose that the func-
tion RationalSort of Figure 2.1 is used to sort the sequence 〈 2

1 , 3
1 , 4

1 , 1
1 〉, which

it happens to do correctly. This would result in the block count spectrum

1This is a different notion from a basic block, which is a block of code that has no branch.

16

Figure 2.2 Block count spectrum

represented by the histogram in Figure 2.2, where block 5 refers to the body
of the RationalGT function, which has not been shown in Figure 2.1. Block
1, the body of the function RationalSort, is executed once. Blocks 2 and 3,
the bodies of the two loops, are executed four and six times, respectively. To
sort our example array, three exchanges must be made, and block 4, the body
of the conditional statement, is executed three times. Block 5, the RationalGT
function body, is executed six times: once for every iteration of the inner loop.

If we are only interested in whether a block is executed or not, we can use
binary flags instead of counters. In this case, the block count spectra revert to
block hit spectra.

2.1.2 Spectrum-based Fault Localization

The hit spectra of N runs constitute a NxM binary matrix A, whose columns
correspond to M different parts (blocks in our case) of a program (see Fig-
ure 2.3). The information in which runs an error was detected constitutes
another column vector, the error vector e. This vector can be thought to rep-
resent a hypothetical part of the program that is responsible for all observed
errors. Spectrum-based fault localization essentially consists in identifying
the part whose column vector resembles the error vector most.

In the field of data clustering, resemblances between vectors of binary, nom-
inally scaled data, such as the columns in our matrix of program spectra, are
quantified by means of similarity coefficients (see, e.g., [Jain and Dubes, 1988]).
Many similarity coefficients exist. As an example, below are two different
similarity coefficients, namely the Jaccard coefficient sJ , which is used by the

Chapter 2. Spectrum-based Fault Localization 17

M parts errors

N spectra

a11 a12 . . . a1N
a21 a22 . . . a2N
...

...
. . .

...
aM1 aM2 . . . aMN

e1
e2
...

eM

s(1) s(2) . . . s(N)

Figure 2.3 The ingredients of spectrum-based fault localization

Pinpoint tool [Chen et al., 2002], the coefficient sT , used in the Tarantula fault
localization tool [Jones and Harrold, 2005]

sJ(j) =
n11(j)

n11(j) + n01(j) + n10(j)
(2.1)

sT(j) =
n11(j)

n11(j)+n01(j)
n11(j)

n11(j)+n01(j) + n10(j)
n10(j)+n00(j)

(2.2)

where n11(j) is the number of failed runs in which part j is involved, n10(j) is
the number of passed runs in which part j is involved, n01(j) is the number of
failed runs in which part j is not involved, and n00(j) is the number of passed
runs in which part j is not involved, i.e., referring to Figure 2.3,

n00(j) = |{i | aij = 0∧ ei = 0}|
n01(j) = |{i | aij = 0∧ ei = 1}|
n10(j) = |{i | aij = 1∧ ei = 0}|
n11(j) = |{i | aij = 1∧ ei = 1}|

In addition, we introduce the Ochiai coefficient sO, used in the molecular
biology domain [da Silva Meyer et al., 2004]

sO(j) =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(2.3)

Note that n10(j) + n11(j) equals the number of runs in which part j is involved,
and that n10(j)+ n00(j) and n11(j)+ n01(j) equal the number of passed and failed
runs, respectively. The latter two numbers are equal for all j. Similarly, for all
j, the four counters sum op to the number of runs N.

Under the assumption that a high similarity to the error vector indicates
a high probability that the corresponding parts of the software cause the de-
tected errors, the calculated similarity coefficients rank the parts of the pro-
gram with respect to their likelihood of containing the faults. Algorithm 1

concisely describes the SFL approach to fault localization.
To illustrate the approach, suppose that we apply the RationalSort func-

tion in Figure 2.1 to the input sequences t1, . . . , t6 shown in Table 2.2. The

18

Algorithm 1 SFL Algorithm
Input: Program P , set of test cases T , and similarity coefficient s
Output: Diagnostic report D

1 N ← |T |
2 M← Get NumOfComponents(P)
3 D ← ∅
4 for j = 0 to M do
5 n11(j)← 0
6 n10(j)← 0
7 n01(j)← 0
8 n00(j)← 0
9 S[j]← 0 . Similarity s of component j

10 end for
11 (A, e)← Run Program(P , T)
12 for i = 0 to N do
13 for j = 0 to M do
14 if a[i, j] = 1∧ e[i] = 1 then
15 n11(j)← n11(j) + 1
16 else if a[i, j] = 0∧ e[i] = 1 then
17 n01(j)← n01(j) + 1
18 else if a[i, j] = 1∧ e[i] = 0 then
19 n10(j)← n10(j) + 1
20 else if a[i, j] = 0∧ e[i] = 0 then
21 n00(j)← n00(j) + 1
22 end if
23 end for
24 end for
25 for j = 0 to M do
26 S[j]← s(n11(j), n10(j), n01(j), n00(j))
27 end for
28 D ← Sort(S)
29 return D

block hit spectra for these runs are shown in the central part of the table (’1’
denotes a hit), where block 5 corresponds to the body of the RationalGT func-
tion, which has not been shown in Figure 2.1. The test cases t1, t2, and t6
are already sorted, and lead to passed runs. t3 is not sorted, but the denom-
inators in this sequence happen to be equal, hence no error occurs. The test
case t4 is the example from Section 1.1 of Chater 1: an error occurs during
its execution, but goes undetected. For t5 the program fails, since the cal-
culated result is 〈 1

1 , 2
2 , 4

3 , 3
4 〉 instead of 〈 1

4 , 2
2 , 4

3 , 3
1 〉, which is a clear indication

that an error has occurred. For this data, the calculated similarity coefficients
sx∈{J,T,P}(1), . . . , sx∈{J,T,P}(5) listed at the bottom of Table 2.2 (correctly) identify

Chapter 2. Spectrum-based Fault Localization 19

block
input 1 2 3 4 5 error
t1 = 〈 〉 1 0 0 0 0 0

t2 = 〈 1
4 〉 1 1 0 0 0 0

t3 = 〈 2
1 , 1

1 〉 1 1 1 1 1 0

t4 = 〈 4
1 , 2

2 , 0
1 〉 1 1 1 1 1 0

t5 = 〈 3
1 , 2

2 , 4
3 , 1

4 〉 1 1 1 1 1 1

t6 = 〈 1
4 , 1

3 , 1
2 , 1

1 〉 1 1 1 0 1 0

sJ 0.17 0.20 0.25 0.33 0.25
sT 0.50 0.56 0.63 0.71 0.63
sO 0.41 0.45 0.50 0.58 0.50

Table 2.2 SFL applied on six runs of the RationalSort program

block 4 as the most likely location of the fault.

2.2 E X P E R I M E N TA L S E T U P

In this section we describe the benchmark set that we use in our experiments.
We also detail how we extract the data of Figure 2.3, and define how we
measure diagnostic accuracy.

2.2.1 Benchmark Set

In our study we work with two sets of faults that are available from the
Software-artifact Infrastructure Repository (SIR [Do et al., 2005]):

• the Siemens set [Hutchins et al., 1994], which is a widely-used collection
of benchmark faults in seven small C programs, and

• a set of faults in a somewhat larger program called space.

The Siemens set and space are the only programs in SIR that are ANSI-C
compliant, and that could therefore be handled by our instrumentation tool
(see below). Table 2.3 contains details about our benchmark set. For all eight
programs, a correct version, and a number of faulty versions is available. Each
faulty version contains a single fault, but this fault may span through multiple
statements and/or functions. In addition, every program has a set of inputs
(test cases) designed to provide full code coverage. For space, 1,000 test suites
are provided that consist of a selection of (on average) 150 test cases.

In our experiments we were not able to use all the faults offered by the
Siemens set and space. Because we conduct our experiments using block hit
spectra, we cannot use faults that are located outside a block, such as global
variable initializations. Versions 4 and 6 of print tokens contain such faults
and were therefore excluded. Version 9 of schedule2, version 32 of replace,
and versions 1, 2, 32, and 34 of space were not considered in our experiments

20

Program Faulty Versions Blocks Test Cases Description
print tokens 7 110 4,130 lexical analyzer
print tokens2 10 105 4,115 lexical analyzer
replace 32 124 5,542 pattern recognition
schedule 9 53 2,650 priority scheduler
schedule2 10 60 2,710 priority scheduler
tcas 41 20 1,608 altitude separation
tot info 23 44 1,052 information measure
space 38 777 13,585 Array definition language

Table 2.3 Set of programs used in the experiments

Figure 2.4 Experimental phases

because no test case fails and therefore the existence of a fault was never
revealed. In total, we used 162 faulty versions in our experiments: 128 out of
132 faulty versions provided by the Siemens set, and and 34 out of 38 faulty
versions of space.

2.2.2 Data Acquisition

An overview of the experimental environment is depicted in Figure 2.4, and
its main steps described below.

Collecting Spectra To obtain block hit spectra, we automatically instrument
the source code of all faulty versions of the programs in our benchmark set.
A function call is inserted at the beginning of every block of code to log its
execution. For the Siemens set, the spectra are generated for all test cases
that are provided with the programs. For the faulty versions of space, we

Chapter 2. Spectrum-based Fault Localization 21

randomly choose one of the 1,000 test suites. For instrumentation we use
the parser generator Front [Augusteijn, 2002], which is part of the develop-
ment environment of NXP Semiconductors [NXP, 2009].The overhead of the
instrumentation on the execution time is measured to be approximately 6% on
average (with standard deviation of 5%). The programs were compiled on a
Fedora Core release 4 system with gcc-3.2. For details of the instrumentation
process, see [Abreu et al., 2006a].

Error Detection As for each program our benchmark set provides a correct
version, we use the output of the correct version of each program as error
detection reference. We characterize a run as ‘failed’ if its output differs from
the corresponding output of the correct version, and as ‘passed’ otherwise.

2.2.3 Evaluation Metric

As spectrum-based fault localization creates a ranking of blocks in order of
likelihood to be at fault, we can retrieve how many blocks we still need to
inspect until we hit the faulty block. If other blocks have the same similarity
coefficient as the fault location, we use the average ranking position for these
blocks. In those cases where the fault spans multiple locations, we verified
that there is one block that is involved in the fault, and that is executed in all
failed runs. This is the block that our evaluation metric is based on for the
multiple-location faults. Repairing the fault at just this location would lead to
iterative testing and debugging, but in our experiments we assume that the
program is bug-free after the first iteration.

For all j ∈ {1, . . . , M}, let s(j) denote the similarity coefficient calculated
for block j. Specifically, let j′ be the index of the block that is known to
contain the fault, and let s(j′) denote the similarity coefficient calculated for
this block. Then, assuming that on average, half of the blocks j with s(j) = s(f)
are inspected before block f is found, the number of blocks that need to be
inspected in total is given by

τ =
|{j|s(j) > s(j′)}|+ |{j|s(j) ≥ s(j′)}| − 1

2

We define accuracy, or quality of the diagnosis as the effectiveness to pin-
point the faulty block. This metric represents the fraction of all blocks that
need not be considered when searching for the fault by traversing the rank-
ing. It is defined as

qd = 1− τ

M− 1
(2.4)

In the remainder of this chapter, values for qd will be expressed as percentages.

22

Sorensen-Dice
2 · n11

2 · n11 + n01 + n10

Anderberg
n11

n11 + 2 · (n01 + n10)

Simple-matching
n11 + n00

n11 + n01 + n10 + n00

Rogers and Tanimoto
n11 + n00

n11 + n00 + 2 · (n01 + n10)

Ochiai II
n11 · n00√

(n11 + n01) · (n11 + n10) · (n00 + n01) · (n00 + n10)

Russel and Rao
n11

n11 + n01 + n10 + n00

Table 2.4 Additional similarity coefficients evaluated; see [da Silva Meyer et al.,
2004] for references

2.3 S I M I L A R I T Y C O E F F I C I E N T I M PA C T

At the end of Section 2.1.2 we reduced the problem of spectrum-based fault
localization to finding resemblances between binary vectors. The key element
of this technique is the calculation of a similarity coefficient. Many different
similarity coefficients are used in practice, and in this section we investigate
the impact of the similarity coefficient on the diagnostic accuracy qd.

For this purpose, we evaluate qd on all faults in our benchmark set, using
nine different similarity coefficients. We only report the results for the Jaccard
coefficient of Eq. (2.1), the coefficient used in the Tarantula fault localization
tool as defined in Eq. (2.2), and the Ochiai coefficient of Eq. (2.3). We exper-
imentally identified the latter as giving the best results among all eight coef-
ficients used in a data clustering study in molecular biology [da Silva Meyer
et al., 2004]. Table 2.4 contains the details of the coefficients that are involved
in this study, and that have not already been introduced in Section 2.1.2. For
brevity, the block index j as an argument to the counter functions n11, . . . , n00
has been omitted.

In addition to the coefficient sT of Eq. (2.2), the Tarantula tool uses a sec-
ond coefficient, which amounts to the maximum of the two fractions in the
denominator of Eq. (2.2). This second coefficient is interpreted as a brightness
value for visualization purposes, but the experiments in [Jones and Harrold,
2005] indicate that sT can be studied in isolation. For this reason, we have not
taken the brightness coefficient into account.

Chapter 2. Spectrum-based Fault Localization 23

0

20

40

60

80

100
q

d

p
ri
n

t_
to

k
e

n
s

p
ri
n

t_
to

k
e

n
s
2

re
p

la
c
e

s
c
h

e
d

u
le

s
c
h

e
d

u
le

2

tc
a

s

to
t_

in
fo

s
p

a
c
e

Tarantula

Jaccard

Ochiai

Figure 2.5 Diagnostic accuracy qd

Figure 2.5 shows the results of this experiment. It plots qd, as defined
by Eq. (2.4), for the Tarantula, Jaccard, and Ochiai coefficients, averaged per
program of our benchmark set. See [Abreu et al., 2006a] for more details on
these experiments.

An important conclusion that we can draw from these results is that under
the specific conditions of our experiment, the Ochiai coefficient gives a better
diagnosis: it always performs at least as good as the other coefficients, with
an average improvement of 4% over the second-best case, and improvements
of up to 30% for individual faults. This effect can be explained as follows.

First, note that if n11 = 0, all three coefficients evaluate to 0, so blocks that
are not executed in failed runs rank lowest. For the case that n11 > 0, the
rankings produced by the Tarantula, Jaccard, and Ochiai coefficients are the
same as the ranking produced by the respective coefficients below, where the
block index j as an argument to the coefficients and counter functions n11 and
n10 has been omitted for brevity.

s′T =
1

1 + cT · n10
n11

s′J =
n11

cJ + n10

s′O =
n11

1 + n10
n11

Here cT = n11+n01
n10+n00

and cJ = n11 + n01, both of which are constant for all blocks,
and do not influence the ranking. Coefficient s′T is derived from sT by divid-

24

ing the numerator and denominator by n11
n11+n01

. Coefficient s′O is derived by
squaring sO, dividing the denominator of the resulting fraction by the con-
stant n11 + n01, and dividing the numerator and denominator by n11. Note
that for n11 > 0, none of these operations modify the rankings implied by the
Tarantula and Ochiai coefficients. The expression for s′J is identical to that for
sJ except for the introduction of cJ .

By thus rewriting the coefficients, it becomes apparent that the rankings
implied by the Tarantula, Jaccard, and Ochiai coefficients depend only on n11
and n10, i.e., the involvement of a block in passed and failed runs. It can also
be seen that for n10 = 0, it follows that s′T = 1, which implies that all blocks that
are exclusively active in failed runs rank with the same, and highest sT . This
explains the improvement of Jaccard and Ochiai over Tarantula, because these
coefficients both take n11 into account for ranking the blocks that have n10 = 0.
The improved performance of the Ochiai coefficient over the Tarantula and
Jaccard coefficients can be explained by observing that increasing n11 both
increases the numerator, and decreases the denominator of s′O, whereas to s′T
and s′J , only one of these effects applies. As a result, compared to the other
coefficients, Ochiai is much more sensitive to presence in failed runs than to
presence in passed runs. This is well-suited to fault diagnosis because the
execution of faulty code does not necessarily lead to a failure, while failures
always involve a fault.

2.4 O B S E RVAT I O N Q U A L I T Y I M PA C T

Before reaching a definitive decision to prefer one similarity coefficient over
another, as suggested by the results in Section 2.3, we want to verify that
the impact of this decision is independent of specific conditions in our ex-
periments. Because of its relation to test coverage, and to the error detection
mechanism used to characterize runs as passed or failed, an important con-
dition in this respect is the quality of the error detection information used in
the analysis.

In this section we define a measure of quality of the error observations,
and show how it can be controlled as a parameter if the fault location is
known, as is the case in our experimental setup. Thus, we verify the results
of the previous section for varying observation quality values. Investigating
the influence of this parameter will also help us to assess the potential gain
of more powerful error detection mechanisms and better test coverage on
diagnostic accuracy.

2.4.1 A Measure of Observation Quality

Correctly locating the fault is trivial if the column for the faulty part in the
matrix of Figure 2.3 resembles the error vector exactly. This would mean that
an error is detected if, and only if the faulty part is active in a run. In that

Chapter 2. Spectrum-based Fault Localization 25

case, any coefficient is bound to deliver a highly accurate diagnosis. However,
spectrum-based fault localization suffers from the following phenomena.

• Most faults lead to an error only under specific input conditions. For
example, if a conditional statement contains the faulty condition v<c,
with v a variable and c a constant, while the correct condition would be
v<=c, no error occurs if the conditional statement is executed, unless the
value of v equals c.

• Similarly, as we have already seen in Section 1.1 of Chapter 1, errors
need not propagate all the way to failures [Morell, 1990, Voas, 1992],
and may thus go undetected. This effect can partially be remedied by
applying more powerful error detection mechanisms, but for any realis-
tic software system and practical error detection mechanism there will
likely exist errors that go undetected.

As a result of both phenomena, the set of runs in which an error is detected
will only be a subset of the set of runs in which the fault is activated2. We use
the ratio of the size of these two sets as a measure of observation quality for a
diagnosis problem. Using the notation of Section 2.1.2, we define

qe =
n11(f)

n11(f) + n10(f)
(2.5)

where f is the known location of the fault, as in Section 2.2.3. This value can
be interpreted as the unambiguity of the passed/failed data in relation to the
fault being exercised, which may be loosely referred to as “error detection
quality,” hence the symbol qe. In the remainder of this chapter, values for qe
will be expressed as percentages.

A problem with the qe measure is that no information on undetected errors
is available: n10(f) counts both the undetected errors, and the number of
times the fault location was activated without introducing an error. This can
be summarized as follows, where X, E, and D denote activation of the fault
location, the occurrence of an error, and detection of an error, respectively:

X E D
0 0 0 n00(f)
1 0 0

1 1 0

}
n10(f)

1 1 1 n11(f)

Even though the ratio of the two contributions to n10(f) is unknown, it can
still be influenced in our experimental setup. We now describe our procedure
for doing so.

2In our experimental setup, we do not consider effects that carry over from one run to another,
so conversely, if an error is detected, the fault is always active.

26

2.4.2 Varying qe

Subject to various factors such as the nature of the fault, the similarity coeffi-
cient used in the diagnosis, the design of the test data, but also the compiler
and the operating system, each faulty version of a program in our benchmark
set has an inherent value for qe, which can be evaluated by collecting spectra
and error detection information for all available test cases, and performing
the diagnosis of Section 2.1.2. For the Siemens set, this inherent value for qe
ranges from 1.4% for schedule2 to 20.3% for tot info, whereas for space this
value is measured to be 50.9% on average for our selection of test suites.

We can construct a different value for qe by excluding runs that contribute
either to n11(f) or to n10(f) as follows.

• Excluding a run that activates the fault location, but for which no error
has been detected lowers n10(f), and will increase qe.

• Excluding a run that activates the fault location and for which an error
has been detected lowers n11(f), and will decrease qe.

Excluding runs to achieve a certain value of qe raises the question of which
particular selection of runs to use. For this purpose we randomly sample
passed or failed runs from the set of available runs to control qe within a 99%
confidence interval. We verified that the variance in the values measured for
qd is negligible.

Note that for decreasing qe, i.e., obscuring the fault location, we have an-
other option: setting failed runs to ‘passed.’ In our experiments we have tried
both options, but the results were essentially the same. The results reported
below are generated by excluding failed runs. Conversely, setting passed runs
that exercise the fault location to ‘failed’ is not a good alternative for increas-
ing qe: this may obstruct the diagnosis as we cannot be certain that an error
occurs for a particular data input. Moreover, it may allocate blame to parts of
the program that are not related to the fault. Thus, excluding runs is always to
be preferred as this does not compromise observation consistency. This way,
we were able to vary qe from 1% to 100% for all programs.

2.4.3 Similarity Coefficients Revisited

Using the technique for varying qe introduced in Section 2.4.2 we revisit the
comparative study of similarity coefficients in Section 2.3. Figure 2.6 shows
qd for the three similarity coefficients, and values of qe ranging from 1% to
100%. In this case, instead of averaging per program in our benchmark set,
as we did in Figure 2.5, we arithmetically averaged qd over all 162 faulty
program versions to summarize the results (this is valid because qd is already
normalized with respect to program size). As in Figure 2.5, the graphs for the
individual programs are similar, only having different offsets.

These results confirm what was suggested by the experiment in Section 2.3.
The Ochiai similarity coefficient leads to a better diagnosis than the other

Chapter 2. Spectrum-based Fault Localization 27

 75

 80

 85

 90

 95

 1 20 40 60 80 100

q
d
 [
%

]

qe [%]

Tarantula
Jaccard

Ochiai

Figure 2.6 Observation quality impact

eight, including the Jaccard coefficient and the coefficient of the Tarantula
tool. Compared to the Jaccard coefficient the improvement is greatest for
lower observation quality. As qe increases, the performance of the Jaccard
coefficient approaches that of the Ochiai coefficient. The improvement of the
Ochiai coefficient over the Tarantula coefficient appears to be consistent.

Another observation that can be made from Figure 2.6 is that all three coef-
ficients provide a useful diagnosis (qd around 80%) already for low qe values
(qe = 1% implies that only around 1% of the runs that exercised the faulty
block actually resulted in a failed run). The diagnostic accuracy increases as
the quality of the error detection information improves, but the effect is not
as strong as we expected. This suggests that more powerful error detection
mechanisms, or test sets that cover more input conditions will have limited
gain. In the next section we investigate a possible explanation, namely that
not only the quality of observations, but also their quantity determines the
diagnostic accuracy.

2.5 O B S E RVAT I O N Q U A N T I T Y I M PA C T

To investigate the influence of the number of runs on the accuracy of
spectrum-based fault localization, we evaluated qd while varying the num-
bers of passed (NP) and failed runs (NF) that are involved in the diagnosis,
across the benchmark set. Since all interesting effects appear to occur for
small numbers of runs, we have focused on the range of 1..100 passed and

28

 0 20 40 60 80 100

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

qd[%]
print_tokens2_v1

NP

NF

qd[%]

(a)

 0 20 40 60 80 100

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

qd[%]
schedule_v2

NP

NF

qd[%]

(b)

Figure 2.7 Observation quantity impact

Chapter 2. Spectrum-based Fault Localization 29

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30

q
d
[%

]

NF

Figure 2.8 Impact of NF on qd, on average

failed runs. Although the number of available runs in the Siemens set ranges
from 1,052 (tot info) to 5,542 (replace), the number of runs that fail is com-
paratively small, down to a single run for tcas version 8. The situation is
comparable for space, with only 7 out of 13, 585 runs failing for version 33.
For this reason, even in the range 1..100, some selections of failed runs are not
possible for some of the faulty versions.

Figure 2.7 shows two representative examples of such evaluations, where
we plot qd according to the Ochiai coefficient for NP and NF varying from
1 to 100. For each entry in these graphs, we averaged qd over 50 randomly
selected combinations of NP passed runs and NF failed runs, where we verified
that the variance in the measured values of qd is negligible. Apart from the
apparent monotonic increase of qd with NF, we observe that for version 1 of
print tokens2, qd decreases when more passed runs are added (Figure 2.7(a)),
while qd increases for version 2 of schedule (Figure 2.7(b)).

Given a set of faulty program versions that all allow failed runs to be se-
lected up to a given value for NF, we can average the measured values for qd
again over these versions. This summarizes several graphs of the kind shown
in Figure 2.7. This way, in Figure 2.8 we plot the average qd using the Ochiai
coefficient for 1 ≤ NF ≤ 30 and 1 ≤ NP ≤ 100, projected on the NF × qd plane.
The ticks on the vertical bars in the graph indicate the minimum, maximum,
and average observed for the 100 values for NP. With this limited range for
NF we can still use 110 of the 162 versions in the benchmark set, whereas for
NF ≤ 100, we can only use 60. We verified that for NF ≤ 15, for which we can
use 128 versions, the results are essentially the same.

30

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

q
d
 [

%
]

NP

Tarantula
Jaccard

Ochiai

Figure 2.9 Impact of NP on qd for print tokens2 v1, and NF = 6

A first conclusion that we draw from Figure 2.8 is that overall, adding failed
runs improves the accuracy of the diagnosis. However, the benefit of having
more than around 10 runs is marginal on average. In addition, because the
measurements for varying NP show little scattering in the projection, we can
conclude that on average, NP has little influence.

Inspecting the results for the individual program versions confirms our ob-
servation that adding failed runs consistently improves the diagnosis. How-
ever, although the effect does not show on average, NP can have a significant
effect on qd for individual runs. As shown in Figure 2.7, this effect can be
negative or positive. This shows more clearly in Figures 2.9 and 2.10, which
contain cross sections of the graphs in Figure 2.7 at NF = 6. To factor out any
influence of NF, we have created similar cross sections at the maximum num-
ber of failed runs. Across the entire benchmark set, we found that the effect
of adding more passed runs stabilizes around NP = 20.

Returning to the influence of the similarity coefficient once more, Fig-
ures 2.9 and 2.10 further indicate that the superior performance of the Ochiai
coefficient is consistent also for varying numbers of runs. We have not plotted
qd for the other coefficients in Figure 2.7, but we verified this observation for
all program versions, with NP and NF varying from 1 to 100.

From our experiments on the impact of the number of runs we can draw
the following conclusions. All of these are in the context of our benchmark
set, which has the important characteristic that most faults involve a single
location in the source code. First, including more failed runs is safe because
the accuracy of the diagnosis either improves or remains the same. This is

Chapter 2. Spectrum-based Fault Localization 31

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

q
d
 [

%
]

NP

tarantula
jaccard

ochiai

Figure 2.10 Impact of NP on qd for schedule v2, and NF = 6

observed due to the fact that failed runs add evidence about the block that is
causing the program to fail, and hence causing it to move up in the ranking.
Our results show that the optimum value for NF is in the order of 10 runs.
To what extent this result depends on characteristics of the fault or program
is subject to further investigation. Second, while stabilizing around NP = 20,
the effect of including more passed runs is unpredictable, and may actually
decrease qd. In fact, qd decreases only if the faulty block is touched often in
passed runs, as spectrum-based fault localization works under the assump-
tion that if a block is touched often in passed runs, it should be exonerated.
Besides, a large number of runs can apparently compensate weak error de-
tection quality: even for small qe, a large amount of runs provides sufficient
information for good diagnostic accuracy, as shown in Figure 2.6. Lastly, the
number of runs has no influence on the superiority of the Ochiai coefficient.

2.6 R E L AT E D W O R K

Program spectra themselves were introduced in [Reps et al., 1997], where hit
spectra of intra-procedural paths are analyzed to diagnose year 2000 prob-
lems. The distinction between count spectra and hit spectra is introduced in
[Harrold et al., 2000], where several kinds of program spectra are evaluated
in the context of regression testing.

In the introduction of this chapter we already mentioned three practical
diagnosis/debugging tools [Chen et al., 2002, Dallmeier et al., 2005, Jones

32

et al., 2002] that are essentially based on spectrum-based fault localization.
Pinpoint [Chen et al., 2002] is a framework for root cause analysis on the J2EE
platform and is targeted at large, dynamic Internet services, such as web-
mail services and search engines. The error detection is based on information
coming from the J2EE framework, such as caught exceptions. The Tarantula
tool [Jones et al., 2002] has been developed for the C language, and works
with statement hit spectra. AMPLE [Dallmeier et al., 2005] is an Eclipse plug-
in for identifying faulty classes in Java software. However, although we have
recognized that it uses hit spectra of method call sequences, we didn’t include
its weight coefficient in our experiments because the calculated values are only
used to collect evidence about classes, not to identify suspicious method call
sequences.

Diagnosis techniques can be classified as white box or black box, depend-
ing on the amount of knowledge that is required about the system’s internal
component structure and behavior. An example of a white box technique is
model-based diagnosis (see, e.g., [de Kleer and Williams, 1987]), where a di-
agnosis is obtained by logical inference from a formal model of the system,
combined with a set of run-time observations. White box approaches to soft-
ware diagnosis exist (see, e.g., [Wotawa et al., 2002]), but software modeling
is extremely complex, so most software diagnosis techniques are black box.
Since the technique studied in this chapter requires practically no informa-
tion about the system being diagnosed, it can be classified as a black box
technique.

Examples of other black box techniques are Nearest Neighbor [Renieris
and Reiss, 2003], dynamic program slicing [Agrawal et al., 1993], Sober [Liu
et al., 2006], Delta Debugging [Zeller, 2002, Zeller and Hildebrandt, 2002],
CROSSTAB [Wong et al., 2008], TWT [Yilmaz et al., 2008], PPDG [Baah et al.,
2008], Value replacement [Jeffrey et al., 2008, Xie and Notkin, 2005], and Pred-
icate Switching [Zhang et al., 2006]. The Nearest Neighbor technique first
selects a single failed run, and computes the passed run that has the most
similar code coverage. Then it creates the set of all statements that are exe-
cuted in the failed run but not in the passed run. Dynamic program slicing
narrows down the search space to the set of statements that influence a value
at a program location where the failure occurs (e.g., an output variable). Sober
is a statistical debugging tool which analysis traces fingerprints and produces
a ranking of predicates by contrasting the evaluation bias of each predicate in
failing cases against those in passing cases. Delta Debugging compares the
program states of a failing and a passing run, and actively searches for failure-
inducing circumstances in the differences between these states. In [Gupta
et al., 2005] Delta Debugging is combined with dynamic slicing in 4 steps:
(1) Delta Debugging is used to identify the minimal failure-inducing input;
step (2) computes the forward dynamic slice of the input variables obtained
in step 1; (3) the backward dynamic slice for the failed run is computed; (4)
finally it returns the intersection of the slices given by the previous two steps.
This set of statements is likely to contain the faulty code. CROSSTAB exploits

Chapter 2. Spectrum-based Fault Localization 33

the joint distribution of two variables derived from coverage information of
different program executions to compute a ranked list of possible faults. In
TWT, discrepancies between execution time spectra obtained from correct and
failing tests are used to locate possible faults. PPDG presents an innovative
model of a program’s behavior over a set of test inputs, which is called prob-
abilistic program dependence graph, that facilitates reasoning about program
failures. Value Replacement is a state-altering technique that alters the state
of an execution program to locate faulty statements. Predicate Switching at-
tempts to isolate erroneous code by identifying predicates whose outcomes
can be altered during a failing run to cause it to pass.

Regarding our observation that for the benchmark faults in the Siemens set
and space program the diagnostic quality does not change significantly when
using more than 20 passed runs and 10 failed runs, in [Yu et al., 2008], the
effect of several test-suite reduction strategies on the accuracy of spectrum-
based fault localization is studied, and the authors reach the same conclu-
sions. The SFL variants taken into account in this study include Tarantula,
and the Jaccard and Ochiai coefficients. In [Baudry et al., 2006] a study on the
dependency between test cases and SFL is given, and the authors conclude
that test suites should be chosen with care to optimize diagnostic accuracy.
To our knowledge, no other evaluations of the diagnostic quality of similarity
coefficients in the context of varying observation quality and quantity exist.

2.7 S U M M A RY

Reducing fault localization effort greatly improves the test-diagnose-repair
cycle. In this chapter, we have investigated the influence of different param-
eters on the accuracy of the diagnosis delivered by spectrum-based fault lo-
calization. Our starting point was a previous study on the influence of the
similarity coefficient, which indicated that the Ochiai coefficient, known from
the biology domain, can give a better diagnosis than eight other coefficients,
including those used by the Pinpoint [Chen et al., 2002] and Tarantula [Jones
and Harrold, 2005] tools.

By varying the quality and quantity of the observations on which the fault
localization is based, we have established this result in a much wider context.
We conclude that the superior performance of the Ochiai coefficient in diag-
nosing single-site faults in the Siemens set is consistent, and does not depend
on the quality or quantity of observations. We expect that this result is rel-
evant for the Tarantula tool, whose analysis is essentially the same as ours.
This superiority was already observed in other domains, such as clustering
in the molecular biology [da Silva Meyer et al., 2004]. [Bolton, 1991] suggests
the geometrical interpretation of the coefficient as a possible explanation for
its good performance.

In addition, we find that even for the lowest quality of observation that
we applied (qe = 1%, corresponding to a highly ambiguous error detection),
the accuracy of the diagnosis is already quite useful: around 80% for all the

34

programs in the Siemens set, which means that on average, only 20% of the
code remains to be investigated to locate the fault. Furthermore, we conclude
that while accumulating more failed runs only improves the accuracy of the
diagnosis, the effect of including more passed runs is unpredictable. With
respect to failed runs we observe that only a few (around 10) are sufficient
to reach near-optimal diagnostic performance. Adding passed runs, however,
can both improve or degrade diagnostic accuracy. In either case, including
more than around 20 passed runs has little effect on the accuracy. Our find-
ings imply that using current similarity coefficients in combination with all
available test data does not guarantee optimum diagnostic results, and that if
a selection can be made, care should be taken when selecting the passed runs
to include in the analysis. A possible strategy for making this selection is
the nearest neighbor technique of [Renieris and Reiss, 2003], but the influence
of such strategies requires further investigation. The fact that a few obser-
vations can already provide a near-optimal diagnosis enables the application
of spectrum-based fault localization methods within continuous (embedded)
processing, where only limited observation horizons can be maintained.

Chapter 2. Spectrum-based Fault Localization 35

36

3
Industrial Case Studies with SFL

A B S T R A C T

Automated diagnosis of errors detected during software testing can improve
the efficiency of the debugging process, and can thus help to make software
more reliable. In this chapter we discuss the application of software fault
localization through the analysis of program spectra (SFL) in the area of em-
bedded software in high-volume consumer electronics products. We discuss
why the technique is particularly well suited for this application domain, and
through experiments on an industrial test case we demonstrate that it can
lead to highly accurate diagnoses of realistic errors. This chapter shows that
SFL lends particularly well to resource-constrained systems, due to its low
time/space complexity and the fact that no modeling effort is required. Fur-
thermore, our experiments show that the diagnostic quality yield by SFL lead
developers to pinpoint the root cause of software failures quickly. In addition,
compared to the previous chapter, we observed that the large the systems the
better the diagnostic quality becomes (less than 1% of the code needs to be
inspected in these experiments, in contrast to the 20% obtained in the Siemens
benchmark set’s experiments).

//

Software reliability can generally be improved through extensive testing and
debugging, but this is often in conflict with market conditions: software can-
not be tested exhaustively, and of the bugs that are found, only those with
the highest impact on the user-perceived reliability can be solved before the
release. In this typical scenario, testing reveals more bugs than can be solved,
and debugging is a bottleneck for improving reliability. Automated debug-
ging techniques can help to reduce this bottleneck.

The subject of this chapter is a particular automated debugging technique,
namely software fault localization through the analysis of program spectra [Reps
et al., 1997]. These can be seen as projections of execution traces that indicate
which parts of a program were active during various runs of that program.
The diagnosis consist in analyzing the extent to which the activity of specific
parts correlates with errors detected in the different runs.

Locating a fault is an important step in actually solving it, and program
spectra have successfully been applied for this purpose in several tools fo-
cusing on various application domains, such as Pinpoint [Chen et al., 2002],

37

which focuses on large, dynamic on-line transaction processing systems, AM-
PLE [Dallmeier et al., 2005], which focuses on object-oriented software, and
Tarantula [Jones et al., 2002], which focuses on C programs.

In this chapter, we discuss the applicability of the technique to embedded
software, and specifically to embedded software in high-volume consumer
electronics products. Software has become an important factor in the devel-
opment, marketing, and user-perception of these products, and the typical
combination of limited computing resources, complex systems, and tight de-
velopment deadlines make the technique a particularly attractive means for
improving product reliability.

To support our argument, we report the outcome of two experiments,
where we diagnosed two different errors occurring in the control software
of a particular product line of television sets from a well-known international
consumer electronics manufacturer. In both experiments, the technique is able
to locate the (known) faults that cause these errors quite well, and in one case,
this implies an accuracy of a single statement in approximately 450K lines of
code.

The remainder of this chapter is organized as follows. In Section 3.1 we dis-
cuss its applicability to embedded software in consumer electronics products.
In Sections 3.2, 3.3 and 3.4 we describe our experiments with two industrial
test cases. We summarize this chapter in Section 3.5.

3.1 R E L E VA N C E T O E M B E D D E D S O F T WA R E

The effectiveness of the diagnosis technique described in the previous chap-
ter has already been demonstrated in several articles (see, e.g., [Abreu et al.,
2006a], [Chen et al., 2002], [Jones et al., 2002]). Although we have already ex-
plained the adequacy of the technique for embedded software, in this section,
we elaborate more in detail the benefits and discuss the issues specifically
related to debugging embedded software in consumer electronics products.
Especially because of constraints imposed by the market, the conditions un-
der which this software is developed are somewhat different from those for
other software products:

• To reduce unit costs, and often to ensure portability of the devices, the
software runs on specialized hardware, and computing resources are
limited.

• As a consequence, many facilities that developers of non-embedded soft-
ware have come to rely on are absent, or are available only in rudimen-
tary forms. Examples are profiling tools that give insight in the dynamic
behavior of systems.

• At the same time, the systems are highly concurrent, and operate at a
low level of abstraction from the hardware. Therefore, their design and
implementation are complicated by factors that can largely be abstracted

38

away from in other software systems, such as deadlock prevention, and
timing constraints involved in, e.g., writing to the graphics display only
in those fractions of a second that the screen is not being refreshed.

• On top of challenges that the entire software industry has to deal
with, such as geographically distributed development organizations,
the strong competition between manufacturers of consumer electronics
makes it absolutely vital that release deadlines are met.

• Although important safety mechanisms, such as short-circuit detection,
are sometimes implemented in software, for a large part of the function-
ality there are no personal risks involved in transient failures.

Consequently, it is not uncommon that consumer electronics products are
shipped with several known software faults outstanding. To a certain ex-
tent, this also holds for other software products, but the combination of the
complexity of the systems, the tight constraints imposed by the market, and
the relatively low impact of the majority of possible system failures creates
a unique situation. Instead of aiming for correctness, the goal is to create a
product that is of value to customers, despite its imperfections, and to bring
the reliability to a commercially acceptable level (also compared to the com-
petition) before a product must be released. More than with other types of
commercial software, instead of aiming for correctness, the goal is to reduce
the unreliability of the system to an acceptable level (also compared to the
competition) before a product must be released.

The technique of Chapter 2 can help to reach this goal faster, and may
thus reduce the time-to-market, and lead to more reliable products. Specific
benefits are the following:

• As a black-box diagnosis technique, it can be applied without any ad-
ditional modeling effort. This effort would be hard to justify under the
market conditions described above. Moreover, concurrent systems are
difficult to model.

• The technique improves insight in the run-time behavior. For embedded
software in consumer electronics, this is often lacking, because of the
concurrency, but also because of the decentralized development.

• We expect that the technique can easily be integrated with existing test-
ing procedures, such as overnight playback of recorded usage scenarios.
In addition to the information that errors have occurred in some sce-
narios, this gives a first indication of the parts of the software that are
likely to be involved in these errors. Given geographically distributed
development organizations, it may also help to identify which teams of
developers to contact.

• Last but not least, the technique is light-weight, which is relevant be-
cause of the specialized hardware and limited computing resources. All

Chapter 3. Industrial Case Studies with SFL 39

that is needed is some memory for storing program spectra, or for cal-
culating the similarity coefficients on the fly (which reduces the space
complexity from O(M × N) to O(N), see Section 3.2.5). Profiling tools
such as gcov are convenient for obtaining program spectra, but they
are typically not available in a development environment for embedded
software. However, the same data can be obtained through source code
instrumentation.

While none of these benefits are unique, their combination makes program
spectrum analysis an attractive technique for diagnosing embedded software
in consumer electronics.

3.2 E X P E R I M E N T S W I T H A D O C

While the benchmark problems are well-suited for studying the influence of
parameters such as the similarity coefficient, and the quality and quantity of
the observations, they give little indication on the accuracy of spectrum-based
fault localization for large-scale codes, and the kind of problems that are en-
countered in practice. For this reason, in this section and the next we report
our experience with implementing SFL for an industrial software product,
namely the control software of a particular product line of hybrid analog/dig-
ital LCD television sets. These experiments are done in the context of the
TRADER project [Trader, 2009], whose goal is to improve the user-perceived
reliability of consumer electronics systems with embedded software. In this
section we describe the experimental platform, and our implementation of
SFL for it.

3.2.1 Platform

The subject of our experiments is the control software in a particular product
line of analog television sets. All audio and video processing is implemented
in hardware, but the software is responsible for tasks such as decoding remote
control input, displaying the on-screen menu, and coordinating the hardware
(e.g., optimizing parameters for audio and video processing based on an anal-
ysis of the signals). Most teletext1 functionality is also implemented in soft-
ware.

The software itself consists of approximately 450K lines of C code, which is
configured from a much larger (several MLOC) code base of Koala software
components [van Ommering et al., 2000].

The control processor is a MIPS2 running a small multi-tasking operating
system. Essentially, the run-time environment consists of several threads with

1A standard for broadcasting information (e.g., news, weather, TV guide) in text pages, popu-
lar in Europe. See Figure 3.1 for an example of a teletext page.

2MIPS is a reduced instruction set computing (RISC) microprocessor architecture developed
by MIPS Technologies - for further information see [Sweetman, 2006].

40

Figure 3.1 A teletext page example

increasing priorities, and for synchronization purposes, the work on these
threads is organized in 315 logical threads inside the various components.
Threads are preempted when work arrives for a higher-priority thread.

The total available RAM memory in consumer sets is two megabytes, but
in the special developer version that we used for our experiments, another
two megabytes was available. In addition, the developer sets have a serial
connection, and a debugger interface for manual debugging on a PC.

3.2.2 Faults

We diagnosed two faults, one existing, and one that was seeded to reproduce
an error from a different product line.

Load Problem. A known problem with the specific version of the control soft-
ware that we had access to, is that after teletext viewing, the CPU load when
watching television (TV mode) is approximately 10% higher than before tele-
text viewing (see Figure 3.2).

This is illustrated in Figure 3.3, which shows the CPU load for the following
scenario: one minute TV mode, 30 s teletext viewing, and one minute of TV
mode. The CPU load clearly increases around the 60th sample, when the
teletext viewing starts, but never returns to its initial level after sample 90,
when we switch back to TV mode.

Teletext Lock-up Problem. Another product line of television sets provides a func-
tion for searching in teletext pages. An existing fault in this functionality
entails that searching in a page without visible content locks up the teletext
system. A likely cause for the lock-up is an inconsistency in the values of two
state variables in different components, for which only specific combinations

Chapter 3. Industrial Case Studies with SFL 41

Figure 3.2 CPU load problem

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
o

a
d

 %

Sample

Figure 3.3 CPU load measured per second

are allowed. We hard-coded a remote control key-sequence that injects this
error on our test platform.

3.2.3 Implementation

We wrote a small Koala component for recording and storing program spec-
tra, and for transmitting them off the television set via the serial connection.
The transmission is done on a low-priority thread while the CPU is otherwise
idle, in order to minimize the impact on the timing behavior. Pending their
transmission via the serial connection, our component caches program spectra
in the extra memory available in our developer version of the hardware.

For diagnosing the load problem we obtained hit spectra for the logical
threads mentioned in Section 3.2.1, resulting in spectra of 315 binary flags.

42

We approached the lock-up problem at a much finer granularity, and obtained
block hit spectra for practically all blocks of code in the control software,
resulting in spectra of over 60,000 flags.

The hit spectra for the logical threads are obtained by manually instrument-
ing a centralized scheduling mechanism. For the block hit spectra we auto-
matically instrumented the entire source code using the Front [Augusteijn,
2002] parser generator. See [Abreu et al., 2006b] for details of the instrumen-
tation process.

In Chapter 2 we use program spectra for different runs of the software, but
for embedded software in consumer electronics, and indeed for most interac-
tive systems, the concept of a run is not very useful. Therefore we record the
spectra per transaction, instead of per run, and we use two different notions of
a transaction for the two different faults that we diagnosed:

• for the load problem, we use a periodic notion of a transaction, and
record the spectra per second.

• for the lock-up problem, we define a transaction as the computation in
between two key-presses on the remote control.

3.2.4 Diagnosis

For the load problem we used the scenario of Figure 3.3. We marked the
last 60 spectra, for the second period of TV mode as ‘failed,’ and those of
earlier transactions as ‘passed.’ In the ranking that follows from the analysis
using the technique described in Chapter 2, the logical thread that had been
identified by the developers as the actual cause of the load problem was in the
second position out of 315. In the first position was a logical thread related
to teletext, whose activation is part of the problem, so in this case we can
conclude that although the diagnosis is not perfect, the implied suggestion
for investigating the problem is quite useful.

For the lock-up problem, we used a proper error detection mechanism. On
each key-press, when caching the current spectrum, a separate routine ver-
ifies the values of the two state variables, and marks the current spectrum
as failed if they assume an invalid combination. Although this is a special-
purpose mechanism, including and regularly checking high-level assert-like
statements about correct behavior is a valid means to increase the error-
awareness of systems.

Using a very simple scenario of 23 key-presses that essentially (1) verifies
that the TV and teletext subsystems function correctly, (2) triggers the error
injection, and (3) checks that the teletext subsystem is no longer responding,
we immediately got a good diagnosis of the detected error: the first two po-
sitions in the total ranking of over 60,000 blocks pointed directly to our error
injection code. Adding another three key-presses to exonerate an uncovered
branch in this code made the diagnosis perfect: the exact statement that intro-

Chapter 3. Industrial Case Studies with SFL 43

duced the state inconsistency was located out of approximately 450K lines of
source code.

3.2.5 Overhead

Especially the results for the lock-up problem suggest that program spectra,
and their application to fault diagnosis are a viable technique and useful tool
in the area of embedded software in consumer electronics. However, there are
a number of issues with our implementation.

First, we cannot claim that we have not altered the timing behavior of the
system. Because of its rigorous design, the TV is still functioning properly,
but everything runs much slower with the block-level instrumentation (e.g.,
changing channels now takes seconds). One reason is that currently, we collect
block count spectra at byte resolution, and convert to block hit spectra off-line.
Updating the counters in a multi-threaded environment requires a critical
section for every executed block, which is hugely expensive. Fortunately,
this information is not used, and we believe we can implement a binary flag
update without a critical section.

Second, we cache the spectra of passed transactions, and transmit them
off the system during CPU idle time. Because of the low throughput of the
serial connection, this may become a bottleneck for large spectra and larger
scenarios. In our case we could store 25 spectra of 65,536 counters, which was
already slowing down the scenarios with more than that number of transac-
tions, but even with a more memory-efficient implementation, this inevitably
becomes a problem with, for example, overnight testing.

For many purposes, however, we will not have to store the actual spectra.
In particular for fault diagnosis, ultimately we are only interested in the cal-
culated similarity coefficients, and all similarity coefficients that we are aware
of are expressed in terms of the four counters n00, n01, n10, and n11 introduced
in Chapter 2. If an error detection mechanism is available, like in our exper-
iments with the lock-up problem, then these four counters can be calculated
on the fly, and the memory requirements become linear in the number of
components.

Although these two experiments were valuable to assess the diagnostic
quality of SFL, they are still controlled experiments: faults were seeded to
resemble faults seen during development. However, the results obtained gave
us leverage and confidence to tackle current faults. Results of in-field experi-
ments are reported in the next section.

3.3 E X P E R I M E N T S W I T H T V 5 2 0

In this section we describe our experience with applying the techniques of
Chapter 2 to yet another industrial test case.

44

3.3.1 Platform

One of the products of NXP Semiconductors is the TV520 platform for build-
ing hybrid analog/digital LCD television sets (used in Philips television sets),
which in turn serves as the basis for televisions sets manufactured by NXP’s
customers. The TV520 platform comprises one or two proprietary CPUs for
audio and video signal processing, plus a MIPS CPU running the control
software (under Linux). More details on TV520 can be found on the NXP
website [NXP, 2009].

Our experiments are performed on development versions of television sets
based on TV520. All problems that we diagnosed are in the control software
of the sets, which is responsible for tasks such as

• decoding the remote-control input,

• navigating the on-screen menu,

• coordinating the hardware (e.g., the tuner),

• coordinating the audio and video processing on the proprietary CPUs,
based on an analysis of the signals,

• teletext decoding, viewing, and navigation.

The control software comprises roughly one million lines of C code (config-
ured from a much larger code base of software components), and 150, 000
blocks. With a block of code we mean a C language statement, where we do
not distinguish between the individual statements of a compound statement,
but where we do distinguish between the cases of a switch statement (see
Section 2.1.1 of Chapter 2 for an example).

3.3.2 Space Efficiency

In a regular computing environment, storing all program spectra for a series
of test cases is no problem, and this is how we implemented spectrum-based
fault localization for the experiments reported in the previous section and
chapter. In the embedded domain, however, memory is typically a scarce
resource, and storing all spectra to be post-processed at diagnosis time is
usually not an option. As an indication, the 64 MB that is available for our
experiments is shared with the application binaries and variables, and de-
pending on the usage scenario, only approximately 10 spectra can be stored
in the remaining space, using a byte for each flag. Bytes are the smallest data
unit that can be transferred to/from memory directly. There is a potential
problem when different bytes in the same word are updated from within dif-
ferent threads. However, due to an extra layer of virtual threads running on
top of the operating systems threads, the probability that two blocks that are
mapped on the same word are executed in parallel is negligible in practice,
and we chose to ignore this issue.

Chapter 3. Industrial Case Studies with SFL 45

Fortunately, although the available storage space is quite limited, the set
of spectra that a diagnosis is based on contains much more information than
needed, and can easily be compacted at run-time. In the end, the only in-
formation that is needed to generate the ranking are the four sets of counters
n00(j), . . . , n11(j), introduced in Chapter 2, and the space required to store these
is linear in the size of the program, not in the number of test cases. To avoid
having to store the actual spectra, we can update the counters right after a
run has finished, and the passed/failed verdict has become available:

• For a passed run, and all blocks j: if block j has been active, increment
n10(j), otherwise increment n00(j).

• For a failed run, and all blocks j: if block j has been active, increment
n11(j), otherwise increment n01(j).

After thus having processed the program spectrum of a passed or failed
run, the spectrum itself can be discarded. Any time after processing at least
one failed run, the diagnosis can be performed by evaluating the similarity
coefficient of choice for all blocks, and by ranking the blocks based on their
calculated coefficients.

In our implementation, we use a small circular buffer to cache recently
recorded spectra until they can be processed on a low priority thread (see
Figure 3.4). Two pointers cycle through this buffer: i1, pointing to the current
spectrum, where the system activity is being recorded, and i2, pointing to the
first spectrum whose contributions must still be added to the sets of counters
n00(j), . . . , n11(j). While in theory, spectra can be overwritten if insufficient idle
time is available for processing spectra of previous runs, this is not a problem
in our experiments, and spectra are cleaned up almost immediately after they
are cached by advancing i1. However, if runs are delimited automatically, it
may be necessary to tune the rate at which spectra are generated to the size
of the buffer.

3.3.3 Implementation

As we describe in Section 2.2.2, the spectra are obtained via instrumentation.
Compared to the experiments on the benchmark set, additional, but nonfun-
damental difficulties that are encountered in the NXP development environ-
ment are the following.

• Although the code base is ANSI-C compliant, several GNU extensions
that are inserted by the preprocessor cannot be handled by the Front
parser, which is not normally applied to preprocessed code, and require
a work-around.

• Parallel build threads must be disabled, to ensure that unique numbers
are assigned to blocks.

46

11

01

10

00

i1

i2

j

n
n
n
n

spectrum buffer

counters

error

Figure 3.4 Data structures

• The possibilities for incremental builds are limited because we have to
set a maximum number of blocks.

• In addition to constraints on the available memory, discussed in the
previous section, CPU time is also a scarce resource, and the TV520

architecture imposes various timing constraints on different activities.

Regarding the last point, the sorting task that is involved in ranking the
approximately 150,000 blocks does not violate any of the timing constraints.
Although the block-level instrumentation noticeably slows down the opera-
tion of the TV, enough CPU idle time is available to support the extra load
on the MIPS. This is not the case for the proprietary CPUs though, and we
have not yet found a practical solution to instrumenting the signal processing
software.

The spectrum bookkeeping illustrated in Figure 3.4 is implemented in a
small software component that is added to the control software. Commu-
nication with this component is via standard I/O, using a PC and terminal
emulator connected to the TV set. On the terminal we can enter commands
such as

• start a new run, and mark the previous run as passed,

• start a new run, and mark the previous run as failed,

• select a particular similarity coefficient,

• calculate the diagnosis, and print the n locations at the top of the rank-
ing,

where we consider a “run” to be any given period of activity of the system.
We used the Jaccard and Ochiai coefficients, introduced in Chapter 2, but

Chapter 3. Industrial Case Studies with SFL 47

because of the highly accurate (manual) error detection information involved
in these experiments, the diagnoses were essentially the same. This confirms
the observation made in Section 2.4.3, that the performance of the former
coefficient approaches that of the latter as the quality of the error detection
information improves (see Figure 2.6). Because of the superior performance
of these two coefficients, we have not included the Tarantula coefficient in this
case study.

3.4 E X P E R I M E N T S

We diagnosed four problems that were encountered during the development
of television sets based on the TV520 platform. In the same way as the known
location of a fault can be used to evaluate the quality of the diagnosis for the
benchmark experiments, the location of the repairs that were made can be
used as an indication of diagnostic quality here.

Selecting the problems to use for this case study was more difficult than
we anticipated when planning the experiment. Enough problem reports and
repairs are available, but in many cases we could not reproduce the problem,
for reasons such as

• the source tree having been removed from the version repository,

• the version of the hardware for which the problem manifested itself no
longer being available,

• the problem residing in the streaming code on the proprietary CPUs, for
which our tooling is not yet available, and

• the problem being hard to reproduce in itself.

In Sections 3.4.1 to 3.4.4 below we give a description of the four problems,
our approach to diagnose them, and the result delivered by SFL. The quality
of these diagnoses is discussed in Section 3.4.5.

3.4.1 NVM Corrupted

Problem description. The TV sets that we used in our experiments contain
a small amount of non-volatile memory (NVM), whose contents are retained
without the set being powered. In addition to storing information such as the
last channel watched, and the current sound volume, the NVM contains sev-
eral parameters of a TV’s configuration, for example to select a geographical
region. These parameters can be set via the so-called service menu, which is
not normally accessible to the user.

A subset of the parameters stored in NVM are so important for the correct
functioning of the set, that it has been decided to implement them with triple
redundancy and majority voting. This provides a basic protection against
memory corruption, since at least two copies of a value have to be corrupted

48

to take effect. The problem that we analyze here entails that two of the three
copies of redundant NVM parameters are not updated when changes are
made via the service menu.

Approach. To diagnose this problem, we extend our diagnosis component
such that once per second, it starts a new run. Knowing that the problem
manifests itself in NVM, we add a consistency check on the redundant items
to characterize the runs as passed or failed. The runs are taken from a simple
scenario where we first activate the general menu-browsing functionality, to
exonerate that part of the code. Then we make several changes to nonredun-
dant NVM parameters, before changing the value of a redundant parameter,
and performing the diagnosis based on a single failed run. The number of
passed runs depends on the time to run the scenario, which is in the order of
one or two minutes.

Diagnosis. In the ranking produced by SFL, 96 blocks have the highest sim-
ilarity to the error vector. These blocks are in ten files, one of which is part
of the NVM stack, making this the obvious place to continue the diagnosis.
Inside its component, this files’ functions access modules for normal, and re-
dundant access to NVM, which confirms that the problem is in this area. The
bug, however, resides in a routine that is called at system initialization time to
retrieve the status (redundant, or not), of the individual NVM items to pop-
ulate a table describing the NVM layout. Since this routine is always used at
initialization, while the problem does not yet manifest itself, there is no way
that SFL can associate it with the failures that occur later on, so in this case,
the actual diagnosis is indirect at best. In general, SFL based on block-hit
spectra cannot be expected to directly locate data-dependent faults, or faults
in code that is always executed. However, debugging is usually an iterative
process, and in this sense, zooming in on the code that accesses the table de-
scribing the NVM layout can still be seen as a valuable suggestions for where
to look next.

3.4.2 Scrolling Bug

Problem description. The TV has several viewing modes to watch content
with different aspect ratios. In 16:9 viewing mode, only part of a 4:3 im-
age is displayed on screen, and the “window” through which the image is
watched can be positioned using the directional buttons on the remote con-
trol (scrolling). The problem considered here entails that after scrolling in
a vertical direction, switching to dual-picture mode and back re-centers the
screen. Continuing to scroll after this re-centering has occurred makes the
screen jump back to the position that it had before entering dual-picture
mode, and scrolling continues from that position. It should be noted that in
dual-picture mode, one of the two screen halves displays the original picture,
and the other half displays teletext.

Approach. To diagnose this problem, we rerun the above scenario as follows:

Chapter 3. Industrial Case Studies with SFL 49

1. enter 4:3 mode, and switch to dual-picture and back,

2. enter 16:9 mode, and scroll up and down,

3. demonstrate the problem in both vertical scrolling directions,

4. switch to teletext and back.

The runs are defined by the various actions such as scrolling, selecting the
viewing modes, etc., leading to approximately 20 runs, two of which are
marked as failed. Because we do not know where exactly the problem oc-
curs, the two failed runs both involve two key-presses: one to switch back
from dual-picture mode (which re-centers the picture), and another to scroll
(which makes the picture jump).

Diagnosis. The repair of this problem involves three locations, and one of
these is right on top of the ranking produced by SFL, sharing the first place
with four other blocks. The second location is in the top 13 of the rank-
ing, with the second-highest similarity, but the third location is much further
down: so many other blocks have the same similarity that effectively, SFL
cannot find it. However, all three fixes are in the same file, and the third fix is
a natural extension of the other two.

Given the small number of locations that have to be examined before we hit
two of the locations where this problem is repaired, we consider this diagnosis
quite accurate. However, the last step of the scenario, where we exonerate
the teletext functionality, appears to be essential for getting a good result
consistently. Why the first step of the scenario, which also activates teletext
in one of the two screen halves, is not sufficient, is still subject of further
investigation.

3.4.3 Pages Without Visible Content

Problem description. In the particular product line where this problem man-
ifests itself, it is possible to highlight a word on a teletext page, and then
search the whole database of teletext pages for the current channel for other
occurrences of that word. However, the teletext standard provides for pages
with invisible content, through which, for example, certain control messages
can be broadcast: the characters are there, but a special flag marks them in-
visible to the user. The problem that we investigate here entails that the word
search function also finds occurrences of a word on invisible pages, and that
hitting such an occurrence locks up the search functionality. In addition, at-
tempting to highlight a word on an invisible page locks up the entire teletext
functionality until the user returns to TV mode.

Approach. To diagnose this problem we use a scenario where we activate the
relevant teletext browsing functionality, including the word search, and where
we start new runs after, for example, changing the page, navigating to words
of interest, and finding new occurrences of those words. We manually mark

50

runs as passed or failed depending on whether the TV enters the locked-up
state, or not. In the end, we could not improve the diagnosis by using more
than a single failed run, and around 10 passed runs.

Diagnosis. Because this particular problem is still under investigation at NXP,
it is not possible to evaluate the quality of the diagnosis based on the locations
of the fixes. However, several code locations at the top of the ranking gener-
ated by SFL involve statements whose execution depend on whether a page
contains invisible content. According to NXP developers, this would serve as
a reminder that pages can have invisible content, and that this information
provides a good suggestion on the nature of a possible fix.

3.4.4 Repeated Tuner Settings

Problem description. Some broadcasters’ signals contain regional informa-
tion in a protocol that is recognized by many television sets, and which spec-
ifies, for example, a preferred order for the television channels. The problem
that we investigate here entails that after an installation (finding all channels)
is performed in presence of this regional information, tuning twice in a row
to an analog signal at the same frequency results in a black screen.

Approach. There are two ways in which the same frequency can be set re-
peatedly: by entering the same channel number on the remote-control twice,
and by switching from an analog channel to an external video source (which
does not change the tuner frequency) and back. We run a scenario where we
demonstrate the problem in both ways, on both a single-digit and a two-digit
channel, and where we also include several examples of changing the chan-
nel without triggering the problem. The general strategy is to start a new
run after each channel change, and to mark the previous run as passed or
failed depending on whether the problem manifests itself, or not, resulting in
4 failed runs, and depending on the exact scenario, around 15 passed runs.

Diagnosis. The repairs for this problem involve modifications in 13 code
blocks, all in the same file. Although none of the exact locations appears
at a high position in the ranking generated by SFL, depending on the exact
scenario, typically 11 other blocks are found at the highest level of similarity,
10 of which are from the file where the problem has been repaired, making
this the obvious place to start debugging. Given the fact that over 1,800 C files
are involved in the build, with approximately a dozen files related to low-level
tuner functionality, this can be considered a reasonably accurate diagnosis yet.
We have not been able to exploit the information that the problem only occurs
after an installation in presence of the regional information.

3.4.5 Evaluation

These experiments demonstrate that the integration of SFL in an industrial
software development process is feasible: although much more time was in-

Chapter 3. Industrial Case Studies with SFL 51

Case estimated qd inspect
NVM corrupt 99.96 %∗ 96 blocks, 10 files
Scrolling bug > 99.99 % 5 blocks
Invisible pages > 99.99 % 12 blocks
Tuner problem 99.97 % 2 files

∗ indirect, see Section 3.4.1

Table 3.1 Diagnostic accuracy for the industrial test cases; total numbers of blocks
and files are 150,000 and 1,800, respectively

vested in these experiments, the estimated costs for an analysis are 2 hours for
building the application binary of the control software with instrumentation
enabled, plus another few hours for running the experiments, and analyz-
ing the data. If automated error detection is required, as we described for
the NVM corruption in Section 3.4.1, some more time must be reserved for
writing the special-purpose error detectors. In any case, running the analysis
within a working day is feasible, and in some debugging scenario’s this can
be a sensible investment. In addition to that, opportunities for integrating SFL
with automated testing schemes still have to be explored.

Of the four cases that we have considered thus far, one diagnosis is quite
good (the scrolling bug), and in the other three cases, SFL provides a use-
ful suggestion, where in the case of the NVM corruption, this suggestion is
indirect because of the data dependencies involved. In Table 3.1 we give an es-
timate of the quality of the diagnosis in terms of qd, as defined in Section 2.2.3.
For the NVM corruption, this is based on the 96 blocks and 10 files on top of
the ranking, as described in Section 3.4.1. For the scrolling bug we use the
highest-ranking location where a repair has been made. In case of the tele-
text lock-up at invisible pages, we use the rank of the block that directs our
attention to the flag for invisible content. For the tuner problem, the estimate
is based on two out of approximately 1,800 files, instead of blocks, as dis-
cussed in Section 3.4.4. Because of the high percentages involved, we have
also included an indication of the amount of code that must be investigated,
based on the number of blocks with an equal or higher calculated similarity
coefficient.

While the estimates in Table 3.1 are debatable, the experiments demonstrate
that spectrum-based fault localization scales well, and that it can be applied
as a practical tool in industrial software development. Note that while the es-
timated qd values in Table 3.1 clearly indicate the power of SFL on large codes,
these numbers are not indicative for the added value for an experienced de-
veloper. For example, as we discussed in Section 3.4.4, an NXP developer
would immediately concentrate on the dozen of files related to low-level tuner
functionality, lowering qd to just over 95% of files that do not have to be inves-
tigated. Nevertheless, SFL confirms such a decision as well as improves on it
in terms of qd.

52

3.5 S U M M A RY

In this chapter we have demonstrated software fault diagnosis though the
analysis of program spectra (SFL) on two large-scale industrial test cases in
the area of embedded software in consumer electronics devices. In particular,
we showed that SFL is well suited for resource-constrained environments due
to its low time/space complexity. Moreover, our experiments indicate that
the diagnostic accuracy of SFL leads the developer quickly to the fault. In
comparison with the effectiveness results obtained in the previous chapter, we
conclude that the large the system under analysis is the better the diagnostic
accuracy, even if only a few failures are observed. Furthermore, we are not
aware that any of the other techniques mentioned above have successfully
been applied for diagnosing software faults in resource-constrained systems.

While our current experiments focus on development-time debugging, they
open corridors to further applications, such as run-time recovery by reboot-
ing only those parts of a system whose activities correlate with detected er-
rors [Sözer, 2009].

Chapter 3. Industrial Case Studies with SFL 53

54

4
Using Fault Screeners for Error Detection

A B S T R A C T

Despite extensive testing in the development phase, residual defects can be
a great threat to dependability in the operational phase. This chapter stud-
ies the utility of low-cost, generic invariants (“screeners”) in their capacity to
act as error detectors. Fault screeners are simple software (or hardware) con-
structs that detect variable value errors based on unary invariant checking.
In this chapter we evaluate and compare the performance of three low-cost
screeners (Bloom filter, bitmask, and range screener) that can be automatically
integrated within a program, and trained during the testing phase. We com-
pare the performance of the fault screeners with test oracles in terms of false
positives and negatives, and show that “ideal”-screeners (e.g., screeners that
store each individual value during training) are slower learners than simple
screeners (e.g, range screeners), but have less false negatives. We present a
novel analytic model that predicts the false positive and false negative rate for
ideal and simple screeners. We show that the model agrees with our empiri-
cal findings. Furthermore, we describe an application of the screeners, where
the screener’s error detection output is used as input to a fault localization
process that provides automatic feedback on the location of residual defects
during operation in the field.

//

In many domains such as consumer products the residual defect rate of soft-
ware is considerable, due to the trade-off between reliability on the one hand
and development cost and time-to-market on the other. Proper error detection
is a critical factor in successfully recognizing, and coping with (recovering
from) failures during the deployment phase [Patterson et al., 2002, Kephart and
Chess, 2003, Sözer, 2009]. Even more than during testing at the development
phase, errors may otherwise go unnoticed, possibly resulting in catastrophic
failure later on.

Error detection is typically implemented through tests (invariants) that
usually trigger some exception handling process. The invariants range from
application-specific (e.g., a user-programmed test to assert that two state variables
in two different components are in sync) to generic (e.g., a compiler-generated
value range check). While application-specific invariants cover many failures
anticipated by the programmer and have a low false positive and false nega-
tive rate (see Table 4.1 for a summary of the relation between warnings and

55

Error No error
Warning true positive false positive
No warning false negative true negative

Table 4.1 Relationship between error vs. warning

errors), their (manual) integration within the code is typically a costly, and
error-prone process. Despite the simplicity of generic invariants, and their
higher false positive and false negative rates, they can be automatically gen-
erated within the code, while their application-specific training can also be
automatically performed as integral part of the testing process during the de-
velopment phase. Furthermore, generic invariants correlate to some extent
with application-specific invariants. Consequently, violation of the latter is
typically preluded by violation of the former type [Ernst et al., 2001].

In view of the above, attractive properties, generic invariants, often dubbed
fault screeners, have long been subject of study in both the software and the
hardware domain (see Section 4.5). Examples include value screeners such
as simple bitmask [Hangal and Lam, 2002, Racunas et al., 2007] and range
screeners [Hangal and Lam, 2002, Racunas et al., 2007], and more sophisti-
cated screeners such as Bloom filters [Hangal and Lam, 2002, Racunas et al.,
2007]. In previous work, screeners are used for fault localization [Hangal and
Lam, 2002, Pytlik et al., 2003], albeit with limited success [Pytlik et al., 2003].
Also from this perspective, feeding their output to a specific (spectrum-based)
fault localization algorithm increases diagnostic quality.

This chapter studies the utility of low-cost, generic error detectors (“screen-
ers”) as input to SFL in the operational phase. The motivation for this study
is the following. In Chapter 2 it has been established that the diagnostic ac-
curacy of SFL is not very sensitive to error detection quality, provided that
the number of (test) runs (program execution profile information) is not too
small. As this insensitivity especially applies to the false negatives (a weak
point of low-cost screeners, as shown in the paper), low-cost screeners may
already yield acceptable diagnostic accuracy. As low-cost and generic error
detectors would:

• avoid costly programmer involvement, and

• minimize run-time time/space overhead, the combination screening-
SFL seems an appealing prospect in the context of dependable (embed-
ded) software development.

In this chapter we analytically and empirically investigate the performance
of screeners. In particular, we make the following contributions:

• We develop a simple, approximate, analytical performance model that
predicts the false positive and false negative rates in terms of the variable

56

domain size and training effort. We derive a model for (ideal) screen-
ers that store each individual value during training, one for bitmask
screeners that express all observed values in terms of a bit array, and an-
other model for range screeners that compress all training information
in terms of a single range interval.

• We evaluate the performance of Bloom filters, bitmask, and range
screeners based on instrumenting them within the Siemens benchmark
suite, which comprises a large set of program versions, of which a sub-
set is seeded with faults. We show that our empirical findings are in
agreement with our model.

• As a typical application of screeners, we show how the Bloom filter,
bitmask, and range screeners are applied as input for automatic fault
localization, namely spectrum-based fault localization (SFL). It is shown
that the resulting fault localization accuracy is comparable to one that
is traditionally achieved at the design (testing) phase, namely for either
Bloom filter or range screeners.

• Since program invariants violations can occur in other locations than the
faulty one, we argue that the screener-SFL combination gives more edu-
cated guesses to find the faulty locations than the stand-alone screeners,
such as in [Pytlik et al., 2003].

The significance of the empirical results is that no costly, application-specific
modeling is required for diagnostic purposes, paving the way for truly auto-
matic program debugging. Our main findings show that although the error
detection quality of screeners is quite limited, the diagnostic quality of SFL
using range screeners in the operational phase can match the quality of SFL
based on test cases in the development phase, provide sufficient test cases are
available for training (hundreds of runs).

The remainder of this chapter is organized as follows. In the next section
we introduce the Bloom filter, bitmask and range screeners. In Section 4.2
the experimental setup is described and the empirical results are discussed.
Section 4.3 presents our analytical performance model to explain the experi-
mental results. The application of screeners as input for SFL is discussed in
Section 4.4. A comparison to related work appears in Section 4.5. Section 4.6
summarizes the chapter.

4.1 FA U LT S C R E E N E R S

Program invariants, first introduced by Ernst et al. [Ernst et al., 2001] with
the purpose of supporting program evolution, are conditions that have to be
met by the state of the program for it to be correct. Many kinds of program
invariants have been proposed [Ernst et al., 2001, Ernst et al., 2007, Racunas
et al., 2007]. We focus on dynamic range invariants [Racunas et al., 2007],

Chapter 4. Using Fault Screeners for Error Detection 57

bitmask invariants [Hangal and Lam, 2002, Racunas et al., 2007], and Bloom
filter invariants [Racunas et al., 2007]. Besides being generic, they require
minimal overhead (lending themselves well for application within resource-
constrained environments, such as embedded systems).

xor not and

and !=0

fst

v

msk

violation

Figure 4.1 Bitmask invariant block diagram

A bitmask invariant (see Figure 4.1) is composed of two fields: the first ob-
served value (fst) and a bitmask (msk) representing the activated bits (initially
all bits are set to 1). Every time a new value v is observed, it is checked against
the currently valid msk according to:

violation = (v⊕ fst) ∧msk (4.1)

where ⊕ and ∧ are the bitwise xor and and operators respectively. If the violation
is non-zero, an invariant violation is reported. In error detection mode (oper-
ational phase) an error is flagged. During training mode (development phase)
the invariant is updated according to:

msk := ¬(v⊕ fst) ∧msk (4.2)

An example of the life cycle of an eight-bitmask invariant can be seen in
Table 4.2. During the training phase only odd values are observed, and thus
the first bit is a 1 (fixed) in the bitmask. During the checking we observe an
even value, and therefore a violation is reported.

Times visited f st msk v violation
Training

0 - - 0001 0101 -
1 0001 0101 1111 1111 0001 0111 0000 0010

2 0001 0101 1111 1101 0101 0001 0100 0100

3 0001 0101 1011 1001 0001 1111 0001 1000

Checking
4 0001 0101 1011 0001 0000 0010 0000 0001

Table 4.2 The typical life cycle of a bitmask invariant

Although bitmask invariants were used with success by Hangal and Lam
[Hangal and Lam, 2002], they have limitations. Their support for represent-
ing negative and floating point numbers is limited. Furthermore, the upper

58

bound representation of an observed number is far from tight. Yet another
issue is the problem with functions that can return 0 or −1. If an invari-
ant is created with an initial value of 0 (0x00000000) and then the value −1
(0xFFFFFFFF) is returned in a subsequent pass, the bitmask will accept any
value, even if only 0 and −1 are correct. For example, consider the return
value of strcmp() in the following code:

if (strcmp(a, b) == 0) {
printf("a = b");

} else {
printf("a shorter than b");

}

During the training phase, we only observe a values that are shorter or
equal than b, and thus strcmp() has returned 0 or −1 only. In the checking
phase a value of a longer than b is used as input to the program, making
strcmp() return 1. This should be reported as a violation, but this will not
happen because the invariant is already at its most general form. To overcome
these problems, we also consider range invariants, e.g., used by Racunas et al. in
their hardware perturbation screener [Racunas et al., 2007].

min max

v

< >

violation violation

l u

Figure 4.2 Range invariant block diagram

Range invariants (see Figure 4.2) are used to represent the (integer or real)
bounds of a program variable. Every time a new value v is observed, it is
checked against the currently valid lower bound l and upper bound u accord-
ing to

violation = ¬(l < v < u) (4.3)

If v is outside the bounds, an error is flagged in error detection mode (op-
erational phase), whereas in training mode (development phase) the range is
extended according to the assignment

l := min(l, v) (4.4)

u := max(l, v) (4.5)

Table 4.3 shows the evolution of a range invariant as values are observed.
During the training values between 1 and 10 are observed. During the check-
ing we observe a value grater than 10, and it is reported as a violation.

Chapter 4. Using Fault Screeners for Error Detection 59

Times visited l u v violation
Training

0 - - 10 -
1 10 10 1 1

2 1 10 5 0

3 1 10 8 0

Checking
4 1 10 12 1

Table 4.3 The typical life cycle of a range invariant

Bloom filters [Bloom, 1970] (see Figure 4.3) are a space-efficient probabilistic
data structure used to check if an element is a member of a set. This screener
is stricter than the range screeners, as it is basically a compact representation
of a variable’s entire history.

v

ia

v'

y1 y2

b

and !=0
violation

Figure 4.3 Bloom filter block diagram

All variables share the same Bloom filter, which is essentially a bit array
(64KB, the size of the filter could be decreased by using a backup filter to
prevent saturation [Racunas et al., 2007]). Each 32-bit value v and instruction
address ia are merged into a single 32-bit number v′:

v′ = (v ∗ 216) ∨ (0xFFFF ∧ ia) (4.6)

60

where ∨ and ∧ are bitwise operators, respectively. This number v′ is used
as input to two hash functions [Knuth, 1997] (y1 and y2, see Appendix A for
details on the hash functions used), which index into the Bloom filter b. In
detection mode an error is flagged according to (see Figure 4.4)

violation = ¬(b[y1(v′)] ∧ b[y2(v′)]) (4.7)

0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1 0

v'

v'

Check fails:

Check succeeds:

y1 y2

y1 y2

Figure 4.4 Checking whether value v′ is in the bloom filter

During training mode, the outputs of the hash functions are used to update
the Bloom filter according to the assignment (see Figure 4.5)

b[y1(v′)] := 1 (4.8)

b[y2(v′)] := 1 (4.9)

0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0

v'

After:

Before:

0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

y1 y2

Figure 4.5 Adding a new value v′ to the Bloom filter

An example of the life cycle of an 8-bit Bloom filter can be seen in Table 4.4.
During the training phase we observe the values 1 and 2, which updated the
Bloom filter as in the table. During the checking phase, value 2 is observed,
and since it has not been observed before a violation is reported.

Chapter 4. Using Fault Screeners for Error Detection 61

Times visited y1 y2 b violation
Training

0 - - 0000 0000 -
1 1 8 1000 0001 1

2 3 5 1010 1001 1

Checking
3 3 6 1010 1001 1

Table 4.4 The typical life cycle of a Bloom filter invariant

Program Faulty Versions LOC Test Cases Description
print tokens 7 539 4130 Lexical Analyzer
print tokens2 10 489 4115 Lexical Analyzer
replace 32 507 5542 Pattern Recognition
schedule 9 397 2650 Priority Scheduler
schedule2 10 299 2710 Priority Scheduler
tcas 41 174 1608 Altitude Separation
tot info 23 398 1052 Information Measure

Table 4.5 Set of programs used in the experiments

4.2 E X P E R I M E N T S

In this section the experimental setup is presented, namely the benchmark set
of programs, the workflow of the experiments, and the evaluation metrics.
Finally, the experimental results are discussed.

4.2.1 Experimental Setup

Benchmark set In our study, we use a set of test programs known as the Siemens
set [Hutchins et al., 1994]. The Siemens set is composed of seven programs.
Every single program has a correct version and a set of faulty versions of the
same program. The correct version can be used as reference version. Each
faulty version contains exactly one fault. Each program also has a set of
inputs that ensures full code coverage. Table 4.5 provides more information
about the programs in the package (for more information see [Hutchins et al.,
1994]). Although the Siemens set was not assembled with the purpose of
testing fault diagnosis and/or error detection techniques, it is typically used
by the research community as the set of programs to test their techniques.

In total the Siemens set provides 132 programs. However, as no failures are
observed in two of these programs, namely version 9 of schedule2 and version
32 of replace, they are discarded. Besides, we also discard versions 4 and 6

of print tokens because the faults in these versions are in global variables and
the profiling tool used in our experiments does not log the execution of these
statements. In summary, we discarded 4 versions out of 132 provided by the
suite, using 128 versions in our experiments.

62

Workflow of Experiments Our approach to study the performance of fault
screeners as error detectors in the operational phase comprises three stages.
First, the target program is instrumented to generate program spectra (used
by the fault localization technique, see Section 4.4) and to execute the in-
variants (see Figure 4.6). To prevent faulty programs to corrupt the logged
information, the program invariants and spectra themselves are located in
an external component (“Screener”). The instrumentation process is imple-
mented as an optimization pass for the LLVM tool [Lattner and Adve, 2004]
in C++ (for details on the instrumentation process see [González, 2007]). The
program points screened are all memory loads/stores, and function argument
and return values.

Figure 4.6 Workflow of experiments

Second, the program is run for those test cases for which the program
passes (its output equals that of the reference version), in which the screeners
are operated in training mode. The number of (correct) test cases used to train
the screeners is of great importance to the performance of the error detectors
at the operational (detection) phase. In the experiments this number is varied
between 5% and 100% of all correct cases (134 and 2666 cases on average,
respectively) in order to evaluate the effect of training.

Finally, we execute the program over all test cases (excluding the previous
training set), in which the screeners are executed in detection, operational
mode.

Error Detection Evaluation Metrics We evaluate the error detection performance
of the fault screeners by comparing their output to the pass/fail outcome per
program over the entire benchmark set. The (“correct”) pass/fail information
is obtained by comparing the output of the faulty program with the reference
program.

Let NP and NF be the size of the set of passed and failed runs, respectively,
and let Fp and Fn be the number of false positives and negatives, respectively.
We measure the false positive rate fp and the false negative rate fp according
to

fp =
Fp

NP
(4.10)

fn =
Fn

NF
(4.11)

Chapter 4. Using Fault Screeners for Error Detection 63

4.2.2 Results

Figure 4.7 plots fp and fn in percents for bitmask (msk), range (rng), and Bloom
filter (blm) screeners for different percentages of (correct) test cases used to
train the screeners, when instrumenting all program points in the program
under analysis. The plots represent the average over all programs, which has
negligible variance (between 0− 0.2% and 3− 5%, for fp and fn, respectively).
From the figure, the following conclusions can be drawn for fp: the more
test cases used to train the screeners, the lower fp (as screeners evolve with
the learning 1 process). In addition, it can be seen that Bloom filter screeners
learn slower than the range screener, which in turn learn slower than bitmask
screeners. Furthermore, for all screeners fn rapidly increases, meaning that
even after minimal training many errors are already tolerated. This is due to:

• limited detection capabilities: only either single upper/lower bounds or
a compact representation of the observed values are stored, i.e., simple
and invariants, in contrast to the host of invariants conceivable, based
on complex relationships between multiple variables (typically found in
application-specific invariants)

• program-specific properties: certain variables exhibit the same values
for passed and failed runs, see Section 4.3. Those cases lead to false
negatives.

• limited training accuracy: although the plots indicate that the quantity of
pass/fail training input is sufficient, the quality of the input is inherently
limited. In a number of cases a (faulty) variable error does not result
in a failure (i.e., a different output than the correct reference program).
Consequently, the screener is trained to accept the error, thus limiting
its detection sensitivity.

Due to its strictness, Bloom filter screeners have on the one hand lower fn
than range screeners. On the other, this strictness increases fp. In the next
section we provide a more theoretic explanation for the observed phenomena.

Because of their simplicity, the evaluated screeners entail minimal compu-
tational overhead. On average, the 494 (0.40 cov2) program points screened
introduced an overhead of 14.2% (0.33% cov) for the range screener, and 46.2%
(0.15% cov) was measured for the Bloom filter screener (when all program
variable loads/stores and function argument/returns are screened).

4.3 A N A LY T I C M O D E L

In this section we present our analytic screening performance model. First,
we derive some main properties that apply without considering the particular

1For, e.g., range screeners, “generalization” is a more appropriate term. However, we shall use
“learning” to be more compatible with related work

2Coefficient of variance (standard deviation divided by mean).

64

0%

20%

40%

60%

80%

100%

 5 10 20 30 40 50 60 70 80 90 100

Training %

msk fp
msk fn
rng fp
rng fn
blm fp
blm fn

Figure 4.7 False positives and negatives on average

properties that (simple) screeners exhibit. Next we present a performance
model for the bitmask screening. Finally, we focus on the range screener,
which is a typical example of a simple, yet powerful screener, and which is
amongst the screeners evaluated.

4.3.1 Concepts and Definitions

Consider a particular program variable x. Let P denote the set of values x
takes in all NP passing runs, and let F denotes the set of values x takes in
all NF failing runs. Let T denote the set of values recorded during training.
Let |P|, |F|, |T| denote the set sizes, respectively. Screener performance can
generally be analyzed by considering the relationship between the three sets
P, F, and T as depicted in Fig. 4.8.

P F

T

2

tn tn/fn

3 4

fp tpfn

1 5

Figure 4.8 Domain of variable x

In the figure we distinguish between five regions, numbered 1 through 5, all

Chapter 4. Using Fault Screeners for Error Detection 65

of which associate with false positives (fp), false negatives (fn), true positives
(tp), and true negatives (tn). For example, values of x which are within P (i.e.,
OK values) but which are (still) outside of the training set T, will trigger a
false positive (region 1). Region 3 represents the fact that certain values of x
may occur in both passing runs, as well as failing runs, leading to potential
false negatives. Region 4 relates to the fact that for many simple screeners
the update due to training with a certain OK value (e.g., in region 2) may
also lead to acceptance of values that are exclusively associated with failed
runs, leading to false negatives (e.g., an upper bound 10, widened to 15 due
to x = 15, while x = 13 is associated with a failed run).

4.3.2 Ideal Screening

In the following we derive general properties of the evolution of the false pos-
itive rate fp and the false negative rate fn as training progresses. Assuming
that all values exercised by the test cases are independent and uniformly dis-
tributed, for each new value of x in a passing run the probability p that x
represents a value that is not already trained equals

p =
|P| − |T|
|P| = 1− |T||P| (4.12)

Note that for ideal screeners region 4 does not exist. Hence T grows entirely
within P. Consequently, the expected growth of the training set is given by

tk − tk−1 = pk−1 (4.13)

where tk denotes the expected value of |T|, E[|T|], at training step k, and pk
denotes the probability that a value is not already trained p at step k. It
follows that tk is given by the recurrence relation

tk = α · tk−1 + 1 (4.14)

where α = 1− 1/|P|. The solution to this recurrence relation is given by

tk =
αk − 1
α− 1

(4.15)

Consequently

E[|T|] = |P| ·
(

1− (1− 1
|P|)

k
)

(4.16)

Thus the fraction of T within P initially increases linearly with k, approaching
P in the limit for k→ ∞.

Since in detection mode the false positive rate fp equals p, from (4.12) it
follows

fp = (1− 1
|P|)

k (4.17)

66

Thus the false positive rate decreases with k, approaching a particular thresh-
old after a training effort k that is (approximately) proportional to |P|. As the
false negative rate is proportional to the part of T that intersects with F (region
3) it follows that fn is proportional to the growth of T according to

fn = f ·
(

1− (1− 1
|P|)

k
)

(4.18)

where f denotes the fraction of P that intersects with F. Thus the false negative
rate increases with k, approaching f in the limit when T equals P. From the
above it follows

fn = f · (1− fp) (4.19)

4.3.3 Bitmask Screening

In the following we introduce the constraint that the entire value domain of
a variable is compressed in terms of a bitmask. Let msk be a bit array with
a indices. Without loss of generality, let pi = p be the probability that the
bit in index i equals 0 after a value is observed. The expected number H
of indices set to 1 (aka Hamming weight) after that observation follows a
binomial distribution, and amounts to E[H] = (1− p) · a. Thus, msk has the
following expected number of 1’s after k observations

E[H]k = (1− pk) · a (4.20)

Consequently,

E[|T|]k = 2(1−pk)·a (4.21)

Note that every time a bit is flipped in msk, the number of accepted values
doubles. From (4.12) it follows that

fp = 1− 2(1−pk)·a

|P| (4.22)

Thus the false positive rate decreases exponentially with k, approaching a
particular threshold after a training effort k that is (approximately) proportional
to |P|. The analysis of fn is similar to the previous section with the modifica-
tion that for simple screeners such as the bitmask screener the fraction f ′ of T
that intersects with F is generally greater than the fraction f for ideal screeners
(regions 3 and 4, as explained earlier). Thus,

fn = f ′ · (1− fp) = f ′ · 2(1−pk)·a

|P| > f · 2(1−pk)·a

|P| (4.23)

Chapter 4. Using Fault Screeners for Error Detection 67

4.3.4 Range Screening

In the following we introduce the constraint that the entire value domain of
variable x available for storage is compressed in terms of only one range,
coded in terms of two values l (lower bound) and u (upper bound). Despite
the potential negative impact on fp and fn we show that the training effort
required for a particular performance is independent of the entire value domain,
unlike the two previous screeners.

After training with k values, the range screener bounds have evolved to

lk = min
i=1,...,k

xi (4.24)

uk = max
i=1,...,k

xi (4.25)

Since xi are samples of x, it follows that lk and uk are essentially the lowest and
highest order statistic [David and Nagaraja, 1970], respectively, of the sequence
of k variates taken from the (pseudo) random variable x with a particular
probability density function (pdf). The order statistics interpretation allows
a straightforward performance analysis when the pdf of x is known. In the
following we treat two cases.

Uniform Distribution

Without loss of generality, let x be distributed according to a uniform pdf
between 0 and r (e.g., a uniformly distributed index variable with some upper
bound r). From, e.g., [David and Nagaraja, 1970] it follows that the expected
values of lk and uk are given by

E[lk] =
1

k + 1
· r (4.26)

E[uk] =
k

k + 1
· r (4.27)

Consequently,

E[|T|] = E[uk]− E[lk] =
k− 1
k + 1

· r (4.28)

Since |P| = r, from (4.12) it follows (fp = p) that

fp = 1− k− 1
k + 1

=
2

k + 1
(4.29)

The analysis of fn is similar to the previous section, thus, with the modification
that for simple screeners such as the range screener the fraction f ′ of T that
intersects with F is generally greater than the fraction f for ideal screeners
(regions 3 and 4, as explained earlier). Hence,

fn = f ′ · (1− fp) = f ′ · k− 1
k + 1

> f · k− 1
k + 1

(4.30)

68

Normal Distribution

Let x be distributed according to a normal pdf with zero mean and variance
σ (many variables such as loop bounds are measured to have a near-normal
distribution over a series of runs with different input sets [Gautama and van
Gemund, 2006]). From, e.g., [Gumbel, 1962] it follows that the expected values
of lk and uk are given by the approximation (asymptotically correct for large
k)

E[lk] = −σ ·
√

2 · log(0.4 · k) (4.31)

E[uk] = σ ·
√

2 · log(0.4 · k) (4.32)

Consequently,

E[|T|] = E[uk]− E[lk] = 2 · σ ·
√

2 · log(0.4 · k) (4.33)

The false positive rate equals the fraction of the normal distribution (P) not
covered by T. Let erf be the error function encountered in integrating the
normal distribution, in terms of the normal distribution’s cumulative density
function (cdf) it follows

fp = 1− erf
σ ·
√

2 · log(0.4 · k)
σ ·
√

2
(4.34)

which reduces to
fp = 1− erf

√
log(0.4 · k) (4.35)

Note that, again, fp is independent of the variance of the distribution of x. For
the false negative rate it follows

fn = f ′ · (1− fp) = f ′ · erf
√

log(0.4 · k) (4.36)

4.3.5 Discussion

Both the result for uniform and normal distributions show that the use of
range screeners implies that the false positive rate (and, similarly, the false
negative rate) can be optimized independent of the size of the value domain.
Since the value domain of x can be very large this means that range screeners
require much less training than “ideal” screeners to attain bounds that are
close to the bounds of P. Rather than increasing one value at a time by “ideal”
screeners, range screeners can “jump” to a much greater range at a single
training instance. The associated order statistics show that |T| approaches |P|
regardless their absolute size. For limited domains such as in the case of the
uniform pdf the bounds grow very quickly. In the case of the normal pdf the
bounds grow less quickly. Nevertheless, according to the model a 1 percent
false positive rate can be attained after a few thousand training runs (few

Chapter 4. Using Fault Screeners for Error Detection 69

hundred in the uniform case). Although bitmask screeners are dependent on
the size of variable x, they learn much faster than range and “ideal” screeners.
This is due to the fact that every time a bit is flipped in the bitmask, the
number of accepted values doubles.

The model is in good agreement with our empirical findings (see Figure
2). While exhibiting better fn performance, the Bloom filter suffers from a less
steep learning curve (fp) compared to the range screener, which has a higher
fp rate if compared to the bitmask screener. Although it might seem that even
the Bloom filter has acceptable performance near the 100 percent mark, this is
due to an artifact of the measurement setup. For 100 percent training there are
no passing runs available for the evaluation (detection) phase, meaning that
there will never be a (correct) value presented to the screener that it has not
already been seen during training. Consequently, for the 100 percent mark fp
is zero by definition, which implies that in reality the Bloom filter is expected
to exhibit still a non-zero false positive rate after 2666 test cases (in agreement
with the model). In contrast, for the range/bitmask screener it is clearly seen
that even for 1066 tests fp is already virtually zero (again, in agreement with
the model).

4.4 FA U LT S C R E E N I N G A N D S F L

In this section we evaluate the performance of the studied fault screeners as
error detector input for automatic fault localization tools, in particular SFL.

To recap, in SFL program runs are captured in terms of a spectrum. A
program spectrum [Harrold et al., 1998] can be seen as a projection of the ex-
ecution trace that shows which parts (e.g., blocks, statements, or even paths)
of the program were active during its execution (a so-called “hit spectrum”).
In the context of the experiments reported in this section, we consider a pro-
gram part to be a statement. Basically, diagnosis consists in identifying the
part whose activation pattern resembles the occurrences of errors in differ-
ent executions. This degree of similarity is calculated using similarity coefficients
taken from data clustering techniques [Jain and Dubes, 1988]. Amongst the
best similarity coefficients for SFL is the Ochiai coefficient, which was intro-
duced in Chapter 2. The output of SFL is a ranked list of parts (program
statements in the context of these experiments) in order of likelihood to be at
fault.

Given that the output of SFL is a ranked list of statements in order of
likelihood to be at fault, we define quality of the diagnosis qd as

qd = 1− (τ/(M− 1))

where τ is the position of the faulty statement in the ranking, and M the total
number of statements. Hence qd measures the number of statements that need
not be inspected when following the ranking in searching for the fault. If there
are more statements with the same coefficient, τ is then the average ranking

70

position for all of them (see Section 2.2.3 of Chapter 2 for a more elaborate
definition).

0%

20%

40%

60%

80%

100%

 10 20 30 40 50 60 70 80 90 100

D
ia

gn
os

tic
 q

ua
lit

y
q d

Training %

rng-Ochiai
msk-Ochiai
blm-Ochiai

development-time

Figure 4.9 Diagnostic quality qd on average

Figure 4.9 plots qd for SFL using the three screeners versus the training
percentage as used in Figure 4.7. In addition, we also plot the diagnostic ac-
curacy yielded by SFL at development-time, i.e., using a reference program to
flag runs as passed or failed (similar to the experiments in Chapter 2). From
the figure, we conclude that the bitmask screener is the worst performing one.
In general, the performance of bloom filter and range screeners is similar. The
higher fn of the range screener is compensated by its lower fp, compared to
the Bloom filter screener. The best qd, 81% for the range screener is obtained
for 50% training, whereas the Bloom filter screener has its best 85% perfor-
mance for 100% (although this is due to an artifact of the measurement setup
as explained in the Section 4.3.5). From this, we can conclude that, despite
its slower learning curve, the Bloom filter screener can outperform the range
screener if massive amounts of data are available for training (fp becomes ac-
ceptable). On the other hand, for those situations where only a few test cases
are available, it is better to use the range screener. Comparing the screener-
SFL performance with SFL at development-time (85% on average [Abreu et al.,
2006a], see Figure 4.10), we conclude that the use of screeners in an oper-
ational (operational) context yields comparable diagnostic accuracy to using
pass/fail information available in the testing phase. As shown in [Abreu et al.,
2008a] this is due to the fact that the quantity of error information compen-
sates the limited quality (in particular, the false negative rate).

Due to their small overhead, fault screeners are attractive for being used
as error detectors. A way to reduce the overhead is to carefully select which

Chapter 4. Using Fault Screeners for Error Detection 71

Figure 4.10 Screener-SFL vs. reference-based SFL

program points to instrument (e.g., currently we also store invariants for con-
stants, but they do not give any relevant info - hence, they could be discarded).
To obtain an indication of the potential improvement we have also varied the
number of range screeners by considering ld/st and arg/ret points separately
(as they outperform bitmasks we only consider ranges).

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
ia

g
n
o
s
ti
c
 q

u
a
lit

y
 q

d

Training %

Rng(ld/st)-Tarantula
Rng(ld/st)-Jaccard

Rng(ld/st)-Ochiai
Rng(a/r)-Tarantula

Rng(a/r)-Jaccard
Rng(a/r)-Ochiai

Figure 4.11 Diagnostic quality qd for only either function arguments/returns (a/r) or
loads/stores (ld/st)

Figure 4.11 shows qd based on screening either ld/st points or arg/ret
points. For simplicity, we only plot the results using range screeners as they
yield better results than the other screeners. For many training situations, the
(average 393) ld/st screeners approach achieves similar performance to total

72

screening, whereas the (average 101) arg/ret screeners entail a drop in diag-
nostic performance. Figure 4.12 plots fn/ fp for either ld/st points or arg/ret
points, refer to Figure 4.7 for a comparison to arg/ret and ld/st screening.

0%

20%

40%

60%

80%

100%

 5 10 20 30 40 50 60 70 80 90 100

Training %

ld/st fp
ld/st fn

arg/ret fp
arg/ret fn

Figure 4.12 False positives and negatives on average for range screeners for only
either function arguments/returns (a/r) or loads/stores (ld/st)

Table 4.6 summarizes the trade-off between diagnostic performance and
overhead, where we report the training percentage that delivers the best re-
sults.

arg/ret ld/st arg/ret and ld/st
Program Points 101 ± 72.3 393 ± 172 494 ± 203.6

Overhead [%] 4.8 ± 1.9 11.6 ± 4.6 14.3 ± 5.5
qd (training) 75% (10%) 81% (50%) 81% (50%)

Table 4.6 Range screener density vs. Performance

4.5 R E L AT E D W O R K

Dynamic program invariants have been subject of study by many researchers
for different purposes, such as program evolution [Ernst et al., 2001, Ernst
et al., 2007, Yang and Evans, 2004], fault detection [Racunas et al., 2007], and
fault localization [Hangal and Lam, 2002, Pytlik et al., 2003]. More recently,
they have been used as error detection input for fault localization techniques,
namely SFL [Abreu et al., 2008a].

Daikon [Ernst et al., 2007] is a dynamic and automatic invariant detec-
tor tool for several programming languages, and built with the intention of

Chapter 4. Using Fault Screeners for Error Detection 73

supporting program evolution, by helping programmers to understand the
code. It stores program invariants for several program points, such as call
parameters, return values, and for relationships between variables. Examples
of stored invariants are constant, non-zero, range, relationships, containment,
and ordering. Besides, it can be extended with user-specified invariants. Car-
rot [Pytlik et al., 2003] is a lightweight version of Daikon, that uses a smaller
set of invariants (equality, sum, and order). Carrot tries to use program invari-
ants to pinpoint the faulty locations directly. Similarly to our experiments, the
Siemens set is also used to test Carrot. Due to the negative results reported,
it has been hypothesized that program invariants alone may not be suitable
for debugging. DIDUCE [Hangal and Lam, 2002] uses dynamic bitmask in-
variants for pinpointing software bugs in Java programs. Essentially, it stores
program invariants for the same program points as in this chapter. It was
tested on four real world applications yielding “useful” results. However, the
error detected in the experiments was caused by a variable whose value was
constant throughout the training mode and that changed in the operational
phase (hence, easy to detect using the bitmask screener). In [Racunas et al.,
2007] several screeners are evaluated to detect hardware faults. Evaluated
screeners include dynamic ranges, bitmasks, TLB misses, and Bloom filters.
The authors concluded that bitmask screeners perform slightly better than
range and Bloom filter screeners. However, the (hardware) errors used to test
the screeners constitute random bit errors which, although ideal for bitmask
screeners, hardly occur in program variables. IODINE [Hangal et al., 2005] is
a framework for extracting dynamic invariants for hardware designs. In has
been shown that dynamic invariant detection can infer relevant and accurate
properties, such as request-acknowledge pairs and mutual exclusion between
signals.

In [Hangal and Lam, 2002, Pytlik et al., 2003], screeners were used to di-
rectly pinpoint the faulty location (in this chapter, C-code statement). How-
ever, we observed that program invariants violations can occur in other loca-
tions than the faulty one, leading the developer to inspect code that is neither
the faulty line itself nor related to it (this situation led to the conclusion that
program invariants may not be useful for debugging in [Pytlik et al., 2003]).
The advantages of our screener-SFL approach over stand-alone screeners are
therefore twofold:

1. the set of unrelated candidate statements is much smaller than for stand-
alone screeners

2. the set is ranked, which further reduces the probability of inspecting
unnecessary code.

Dynamic program invariants are suitable for detecting errors that occur ei-
ther in the data- or control-flow of a program. However, there are errors that
cannot be detected using such mechanism, such as memory leaks. To auto-
matically detect other type of errors, the following works have been presented.

74

Valgrind provides a memory error screener plugin that reports leaked mem-
ory blocks in a program [Seward and Nethercote, 2005, Seward and Nether-
cote, 2005]. CRED [Ruwase and Lam, 2004] is a memory overflow detector
that determines pointer bounds by finding their referent object in an object
table, which is a runtime structure that collects all base addresses and size
information of all static, heap, and stack objects. This work is based on a pre-
vious GCC extension [Jones and Kelly, 1997]. Eraser [Savage et al., 1997] is a
tool that implements a lockset algorithm to detect race conditions. Yet another
recent method to detect deadlocks is presented in [Bensalem and Havelund,
2005]. As opposed to the generic fault screeners studied in this chapter, all
the work above use bug-specific fault screeners.

To the best of our knowledge, none of the previous work has analytically
modeled the performance of the screeners, nor evaluated their use in an au-
tomatic debugging context.

4.6 S U M M A RY

In this chapter we have analytically and empirically investigated the perfor-
mance of low-cost, generic program invariants (also known as “screeners”),
namely bitmask, range and Bloom-filter invariants, in their capacity of error
detectors. Empirical results show that near-“ideal” screeners, of which the
Bloom filter screener is an example, are slower learners than range invariants,
but have less false negatives. As major contribution, we present a novel, ap-
proximate, analytical model to explain the fault screener performance. The
model confirms that the training effort required by near-“ideal” screeners,
such as Bloom filters, increases with the variable domain size, whereas sim-
ple screeners, such as range screeners, only require constant training effort.
Despite its simplicity, the model is in agreement with the empirical findings.
Finally, we evaluated the impact of using such error detectors within a fault lo-
calization approach aimed at the operational (operational) phase, rather than
just the development phase. We verified that, despite the simplicity of the
screeners (and therefore considerable rates of false positives and/or nega-
tives), the diagnostic performance of SFL is similar to the development-time
situation. This implies that fault diagnosis with an accuracy comparable to
that in the development phase can be attained at the operational phase with
no additional programming effort or human intervention.

Chapter 4. Using Fault Screeners for Error Detection 75

76

5
A Bayesian Approach to SFL

A B S T R A C T

Fault diagnosis approaches can generally be categorized into spectrum-based
fault localization approaches (SFL, reasoning over abstraction of program
traces), and model-based diagnosis approaches (MBD, reasoning over a model
of expected behavior). Although MBD approaches are inherently more accu-
rate than SFL approaches, they are also more complex, prohibiting their use
for large software systems. In this paper, we present a framework to combine
the best of both worlds, coined Barinel. The program is modeled using ab-
straction of program traces (as in SFL) and a Bayesian reasoning framework is
used to deduce multiple-fault candidates and their probabilities (as in MBD).
A distinguishing feature of Barinel is the usage of a probabilistic component
model that accounts for the fact that a faulty component may fail intermit-
tently, which is determined using maximum likelihood estimation. Experi-
mental results on both synthetic and real software programs (multiple-fault
versions of the Siemens benchmark set and space) indicate that our approach
outperforms current spectrum-based approaches to computer-aided fault lo-
calization at a cost complexity that is comparable to SFL. In the context of
single faults this superiority is confirmed by formal proof.

//

As mentioned in the Introduction, two major approaches to software fault
diagnosis can be distinguished, (1) the spectrum-based fault localization (SFL) ap-
proach, and (2) the model-based diagnosis or debugging (MBD) approach. SFL,
uses abstraction of program traces to correlate software component activ-
ity with program failures (a statistical approach) [Abreu et al., 2007, Gupta
et al., 2005, Jones et al., 2002, Liu et al., 2006, Renieris and Reiss, 2003, Zeller,
2002]. Although statistical approaches are very attractive from complexity
point of view, there is no reasoning in terms of multiple faults that explains all
failures. Consequently, the diagnostic report is ranked in terms of single com-
ponents, inherently limiting diagnostic accuracy compared to multiple-fault
techniques.

MBD approaches deduce component failure through logic reasoning [de Kleer
and Williams, 1987, Feldman et al., 2008, Feldman and van Gemund,
2006, Mayer and Stumptner, 2008, Pietersma and van Gemund, 2006, Wotawa
et al., 2002] using propositional models of component behavior. An inher-
ent, strong point of MBD is that it reasons in terms of multiple-faults, which

77

with current defect densities and program sizes is a fact of life. Its diagnostic
report contain multiple-fault candidates, providing more diagnostic informa-
tion compared to the one-dimensional list in SFL. Ranking is determined in
terms of (multiple) fault probability, a more solid basis than similarity, whereas
the purpose of the latter is ranking only. While inherently more accurate than
statistical approaches, the main disadvantages of reasoning approaches are

(1) the need for model generation, usually with the help of static analysis
that is unable to capture dynamic data dependencies, and

(2) the exponential cost of diagnosis candidates generation, prohibiting its
use for programs larger than a few hundred lines [Mayer and Stumptner,
2008].

Aimed to combine the best of both worlds, in this paper we present a novel,
probabilistic reasoning approach to spectrum-based multiple fault localiza-
tion. Similar to SFL, we model program behavior in terms of program spec-
tra, abstracting from modeling specific components and data dependencies.
Similar to MBD, we employ a probabilistic (Bayesian) approach to deduce
multiple-fault candidates and their probabilities, yielding an information-rich
diagnostic ranking. To solve the inherent exponential complexity problem,
we use a novel, heuristic approach to generate the most significant diagnosis
candidates only, dramatically reducing computational complexity. As a result,
our approach is in the same complexity class as SFL, allowing it to be used on
large, real-world programs.

A particular feature of our Bayesian approach is the use of a probabilistic
component failure model that accounts for the fact that a faulty component
j may still behave as expected (with health probability hj), i.e., need not con-
tribute to a program failure (intermittent fault behavior). Such an intermit-
tency model is crucial for MBD approaches where (deterministic) component
behavior is abstracted to a modeling level where particular input and output
values are mapped to, e.g., ranges, as shown in [Abreu et al., 2008c, de Kleer,
2007, de Kleer, 2009]. In our approach we use a Bayesian approach to com-
pute the component health parameters hj from the spectrum and to derive
the associated multiple-fault candidate probabilities. Compared to previous
Bayesian approaches in MBD that also use intermittency models [Abreu et al.,
2008c, Abreu et al., 2008d], the one described in this paper represents a signifi-
cant departure. Whereas the previous approaches used approximations for hj,
in this chapter hj and the resulting candidate probabilities are computed us-
ing a maximum likelihood estimation approach, yielding a solid, probabilistic
foundation.

Results on synthetic program models show that our approach outperforms
the best similarity coefficient known to date in SFL, the Ochiai coefficient, as
well as other spectrum-based MBD approaches (including our last contribu-
tions [Abreu et al., 2008c, Abreu et al., 2008d]). These results confirm that
Bayesian reasoning inherently delivers better diagnostic performance than

78

similarity-based ranking. Similarly, results on real programs demonstrate that
our approach outperforms all SFL approaches at a time and space complexity
that is comparable to SFL.

In particular, this chapter makes the following contributions

• We present our new approach for the candidate probability computa-
tion which features the algorithm to compute the hj of all components
involved in the diagnosis. The approach is coined Barinel

1, which is the
name of the software implementation of our method;

• We present a diagnostic performance model for a probabilistic program
model with parameters such as the number of faults, components, and
test runs.

• We evaluate the inherent accuracy of the resulting diagnostic ranking
using synthetic program spectra based on injected faults of which the hj
are given, and compare the accuracy with statistical approaches, as well
as our previous reasoning work.

• We prove that for the single-fault case our approach is optimal. We
demonstrate this result by comparing diagnostic accuracy of our ap-
proach with existing work for the (single-fault) Siemens benchmark
suite;

• We compare Barinel with a large body of existing work such as Taran-
tula, Ochiai, and previous, approximate Bayesian approaches for the
Siemens set and space, extended with multiple faults, demonstrating the
superior performance of our approach and the low computation costs
involved.

The chapter is organized as follows. Section 5.1 presents the basic prin-
ciples of model-based diagnosis. In Section 5.2 our Bayesian reasoning ap-
proach to spectrum-based fault diagnosis is described. Our analytical perfor-
mance model is presented in Section 5.3.4. The diagnostic performance on
the Siemens set is evaluated in Section 5.4. We summarize this chapter in
Section 5.6.

5.1 M O D E L - B A S E D R E A S O N I N G A P P R O A C H E S

In this section we briefly describe the principles underlying model-based rea-
soning approaches for fault localization as far as relevant to this chapter. Con-
sider a system (in this chapter a software program) that applies some system
function y = F (x, h), where x and y represent observations of system input
and output, respectively, and where h = (h1, . . . , hm) indicates the health state
of the system. For each component cj, the (binary) health states are: healthy

1Barinel stands for Bayesian AppRoach to dIagnose iNtErmittent fauLts. A barinel is a type
of caravel used by the Portuguese sailors during their discoveries.

Chapter 5. A Bayesian Approach to SFL 79

x h1

h2

h3 y2

y1

(a) 3-inverters circuit

(y1, y2) 3inv(bool x) {
1. w = ¬x
2. y1 = ¬w;
3. y2 = w; //should be y2 = ¬w

return (y1, y2);

}

(b) Function’s pseudo-code

Figure 5.1 A defective function

(hj = 1) or faulty (hj = 0). Diagnosis can be understood as solving the inverse
problem h = F−1(x, y), i.e., finding the combinations of component health
states that explain the observed output for a given input. Note that the in-
ternals of the system are not observable which distinguishes the diagnosis
problem from a component testing problem.

To put MBD into perspective with respect to this chapter, consider the sim-
ple program function in Figure 5.1 which is composed of three inverting state-
ments (with a fault in statement c3), resembling a binary circuit example often
used within the model-based diagnosis community (e.g., see [Pietersma and
van Gemund, 2006]). The function takes one boolean input (x = x), and re-
turns two boolean outputs (y = (y1, y2)). Each statement (cj) is modeled in
terms of the logical proposition

hj ⇒ lhsj = ¬rhsj (5.1)

which specifies nominal (required) behavior (information on faulty behavior
could also be included in the logical proposition, but that requires more mod-
eling / specification effort).

Given the data dependency of the program, the interconnection topology
of the three inverting components is easily obtained, yielding the (combined)
program model

h1 ⇒ w = ¬x

h2 ⇒ y1 = ¬w

h3 ⇒ y2 = ¬w

80

Typically, the set of diagnostic candidates is computed using consistency-
based reasoning algorithms (e.g., GDE [de Kleer and Williams, 1987],
CDA* [Williams and Ragno, 2007], Safari [Feldman et al., 2008]), which de-
termine the health states hj such that the model is consistent with the set of
observations. For instance, from the model above and the single observation
obs = ((x, y1, y2) = (1, 1, 0)), it follows

h1 ⇒ ¬w

h2 ⇒ ¬w

h3 ⇒ w

which equals

(¬h1 ∨ ¬w)

(¬h2 ∨ ¬w)

(¬h3 ∨ w)

Resolution yields

(¬h1 ∨ ¬h3) ∧ (¬h2 ∨ ¬h3)

also known as conflicts [De Kleer et al., 1992], meaning that (1) at least c1 or c3
is at fault, and (2) at least c2 or c3 is at fault. The minimal diagnoses are the
minimal hitting set [Reiter, 1987], given by

¬h3 ∨ (¬h1 ∧ ¬h2)

Thus either c3 is at fault (single fault), or c1 and c2 are at fault (double fault).
A number of other double faults (¬h2 ∧ ¬h3, ¬h1 ∧ ¬h3), and a triple fault
(¬h1 ∧ ¬h2 ∧ ¬h3), are diagnoses as well. However, they are subsumed by the
previous two diagnoses (i.e., they not add information since c1, c2, c3 are al-
ready indicted). Hence, they do not explicitly appear in the set of candidates.

Unlike statistical approaches which return all M component indices, model-
based reasoning approaches only return diagnosis candidates dk that are con-
sistent with the observations at the price of reasoning cost. Despite this can-
didate reduction, the number of remaining candidates dk is still too large in
practice, and not all of them are equally probable. Hence, the computation of
diagnosis candidate probabilities Pr(dk), establishing a ranking, is critical to the
diagnostic performance of model-based reasoning approaches. In MBD the
probability that a diagnosis candidate is the actual diagnosis is computed us-
ing Bayes’ rule, that updates the probability of a particular candidate dk given
new observational evidence (e.g., from a new program run).

The Bayesian probability update, in fact, can be seen as the foundation
for the derivation of diagnostic candidates in any reasoning approach, i.e., (1)
deducing whether a candidate diagnosis dk is consistent with the observations,
and (2) computing the posterior probability Pr(dk) of that candidate being the

Chapter 5. A Bayesian Approach to SFL 81

actual diagnosis. Rather than computing Pr(dk) for all possible candidates, just
to find that most of them have Pr(dk) = 0, consistency-based algorithms are
used as mentioned before, but the Bayesian probability framework remains
the basis.

For each candidate the probability that it describes the actual system fault
state depends on the extent to which it explains all observations. To com-
pute the posterior probability that a candidate dk is the true diagnosis given
observation obsi (i.e., input and expected output values) Bayes’ rule is used:

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk|obsi−1) (5.2)

The denominator Pr(obsi) is a normalizing term that is identical for all dk and
thus needs not be computed directly. Pr(dk|obsi−1) is the prior probability of dk.
In absence of any observation, Pr(dk|obsi−1) equals Pr(dk) = p|dk | · (1− p)M−|dk |,
where p denotes the a priori probability that component cj is at fault, which in
practice we set to pj = p, and M denotes the number of components. Pr(obsi|dk)
is defined as

Pr(obsi|dk) =

0 if obsi ∧ dk are inconsistent
1 if obsi is unique to dk
ε otherwise

(5.3)

As mentioned earlier, rather than updating each candidate only candidates
derived from the consistency-based reasoning algorithm are updated, imply-
ing that the 0-clause need not be considered.

In model-based reasoning, many policies exist for ε [de Kleer, 2007], based
on the chosen component modeling strategy. To illustrate the probability com-
putation, consider the previous example. A well-known policy is to define
ε = 1/#obs where #obs is the number of observations that can be explained by
diagnosis dk. As there are 4 possible observations that can be explained by
dk = {3}, and 8 that can be explained by dk = {1, 2}, it follows

Pr(obs|{3}) =
1
4

Pr(obs|{1, 2}) =
1
8

Let p = 0.01 (1% prior fault probability for each cj). It follows that

Pr({3}) = 0.01

Pr({1, 2}) = 0.0001

Applying Eq. (5.2) yields

Pr({3}|(1, 1, 0)) = 0.995

Pr({1, 2}|(1, 1, 0)) = 0.005

Consequently, the diagnostic report equals D =< {3}, {1, 2} >. Thus, the most
probable cause of the observed failure is c3 being faulty. Therefore, debugging
would start with the actual faulty statement.

82

5.2 T H E BARINEL APPROACH

Our approach is characterized by the following features

1. The use of program spectra ((A, e) like SFL), abstracting from actual obser-
vation variables (unlike MBD);

2. The use of a low-cost, heuristic reasoning algorithm to extract the signifi-
cant set of multiple-fault candidates dk;

3. The use of abstract, intermittent component models, extending the bi-
nary hj to a real-valued health parameter;

4. Candidate probability computation based on maximum likelihood estimation
of hj.

5.2.1 Specific Features

In the following we elaborate on each feature.

(1) Spectrum-based Reasoning

As explained in Section 5.1, model-based reasoning approaches take a model
of the program and a set of observations to reason over inconsistencies be-
tween the expected and observed behavior. However, building a model of the
software program can be as difficult and error prone as building the program
itself. Besides, tools/approaches to automatically generate a model of a pro-
gram (as in, e.g., dependency- and value-based models [Mayer and Stumpt-
ner, 2008]), are typically based on static analysis at the statement level. Conse-
quently, dynamic information such as conditional control flow is not properly
accounted for in the model. Furthermore, reasoning in terms of statement-
level models do not scale to large software programs containing millions of
lines. To overcome such limitations, in the same fashion as SFL we abstract
from modeling the program in detail and use program spectra and pass/fail
information (A, e) as the only dynamic source of information, from which both
a model, and the input-output observations are derived. Apart from the fact
that we exploit dynamic information, this approach also allows us to apply a
generic component model, avoiding the need for detailed functional model-
ing, or relying, e.g., on invariants or pragmas for model information.

Abstracting from particular component behavior, each component cj is
modeled by the weak model

hj ⇒ (xj ⇒ yj)

where hj models the health state of cj and xj, yj model its input and output
variable value correctness (i.e., we abstract from actual variable values, in con-
trast to the earlier example). This weak model implies that a healthy compo-
nent cj translates a correct input xj to a correct output yj. However, a faulty
component or a faulty input may lead to an erroneous output.

Chapter 5. A Bayesian Approach to SFL 83

As each row in A specifies which components were involved, we interpret
a row as a “run-time” model of the program as far as it was considered in
that particular run. Consequently, A is interpreted as a sequence of typically
different models of the program, each with its particular input and output
correctness observation. The overall approach can be viewed as a sequential
diagnosis that incrementally takes into account new program (and pass/fail)
evidence with increasing N. A single row An,∗ corresponds to the (sub)model

hm ⇒ (xm ⇒ ym), for m ∈ Sn

xsi = ysi−1 , for i ≥ 2

xs1 = true

ys′ = ¬en

where Sn = {m ∈ {1, . . . , M} | anm = 1} denotes the well-ordered set of com-
ponent indices involved in computation n, si denotes the ith element in this
ordering, (i.e., for i ≤ j, si ≤ sj), and s′ denotes its last element. The resulting
component chain logically reduces to∧

m∈Sn

hm ⇒ ¬en

For example, consider the row (M = 5)

c1 c2 c3 c4 c5 e
1 0 0 1 0 1

This corresponds to a model where components c1, c4 are involved. As the
order of the component invocation is not given (and with respect to our above
weak component model is irrelevant), we derive the model

h1 ⇒ (x1 ⇒ y1)

h4 ⇒ (x4 ⇒ y4)

x4 = y1

x1 = true

y4 = ¬en

In this chain the first component c1 is assumed to have correct input (x1 = true,
typical of a proper test), its output feeds to the input of the next component
c4 (x4 = y1), whose output is measured in terms of en (y4 = ¬en). This chain
logically reduces to

h1 ∧ h4 ⇒ false

If this were a passing computation (h1 ∧ h4 ⇒ true) we could not infer anything
(apart from the exoneration when it comes to probabilistically rank the diag-
nosis candidates as explained in next section). However, as this run failed this
yields

¬h1 ∨ ¬h4

84

which, in fact, is a conflict. In summary, each failing run in A generates a
conflict ∨

m∈Sn

¬hm

As in MBD, the conflicts are then subject to a hitting set algorithm that gener-
ates the diagnostic candidates.

To illustrate this concept, again consider the example program. For the
purpose of the spectral approach we assume the program to be run two times
where the first time we consider the correctness of y1 and the second time y2.
This yields the observation matrix A below

c1 c2 c3 e
1 1 0 0 obs1
1 0 1 1 obs2

From obs2, it follows

¬h1 ∨ ¬h3

which equals the first conflict from the MBD approach discussed in the pre-
vious section, and the diagnosis trivially comprises the two single faults ¬h1
and ¬h3. Compared to the MBD approach, the second conflict (¬h2 ∨ ¬h3) is
missing due to the fact that no knowledge is available on component behavior
and component interconnection. Although this suggests that the dynamic ap-
proach yields lower diagnostic performance, note that the example program
does not have conditional control flow, and hence is ideally suitable to static
analysis (MBD).

(2) Low-cost Reasoning

The observation (A, e) can be partitioned into two sets with respect to the
outcome of the run. One set consists of the program spectra observed in
failed runs S f = {Ai∗ | ei = 1}, and the other contains the program spectra
collected in passed runs Sp = {Ai∗ | ei = 0}. Essentially, failed runs indict
components, whereas passed runs exonerate components. The set S f is used
to derive the set of diagnostic candidates dk, essentially using a consistency-
based algorithm (such as a minimal hitting set or minimal set cover algo-
rithm). Instead of computing all diagnostic candidates dk, however, (an ex-
ponential number, given the abstract modeling approach), only a subset of
candidates is computed using a low-cost, heuristic reasoning algorithm called
Staccato (STAtistiCs-direCted minimAl hiTing set algOrithm, see Chapter 6).
Staccato not only uses just S f but also Sp to select those candidates that are
most likely to represent a significant part of the probability mass. As a result,
Staccato returns a diagnostic report of limited size (typically, 100 candidates),
yet capturing all significant probability mass at dramatically reduced reason-
ing cost.

Chapter 5. A Bayesian Approach to SFL 85

(3) Component Intermittency Modeling

Although in traditional model-based approaches faults are typically assumed
to be persistent (i.e., always induce a failure when involved), in many prac-
tical situations they manifest themselves intermittently. Consequently, in a
spectrum-based context it may happen that a faulty component (statement) is
involved in both failed and passed runs (e.g., different program input values).
Although the component model in Eq. (5.1) allows a faulty component to ex-
hibit correct behavior, the binary health and associated epsilon policy do not
exploit the information contained in the number of fails or passes in which the
component is involved. In order to allow us to further indict or exonerate a
component as more information (runs) are available (refining the probability
ranking), we model components in terms of intermittent health by extending
hj’s binary definition to hj ∈ [0, 1], where hj expresses the probability that faulty
component j produces correct output (hj = 0 means persistently failing, and
hj = 1 essentially means healthy, i.e., never inducing failures). Consequently,
for a given observation obsi = (Ai∗, ei), the epsilon policy in Eq. (5.3) becomes
as follows

ε(dk) =

∏

j∈dk∧aij=1
hj if ei = 0

1− ∏
j∈dk∧aij=1

hj if ei = 1
(5.4)

Eq. (5.4) follows from the fact that the probability that a run passes is the
product of the probability that each involved, faulty component exhibits cor-
rect behavior, in which we assume components fail independently (a standard
assumption in fault diagnosis for tractability reasons). This epsilon policy al-
lows us to optimally exploit indicting and exonerating information in the
derivation of component health, which is a key step in deriving the diagnos-
tic ranking.

(4) Health Probability Estimation

Before computing Pr(dk) the hj must be estimated from (A, e). Previous
Bayesian approaches [Abreu et al., 2008c, Abreu et al., 2008d] have approxi-
mated hj from (A, e) by computing the probability that the combination of com-
ponents involved in a particular dk produce a failure, instead of computing
the individual component intermittency rate values [Abreu et al., 2008c, Abreu
et al., 2008d]. Although such approaches already give significant improve-
ment over the classical model-based reasoning (Section 5.1, see [Abreu et al.,
2008c] for results), more accurate results can be achieved if the individual hj
can be determined by an exact estimator. In our approach we determine hj
per component based on their effect on the epsilon policy Eq. (5.4) to com-
pute Pr(dk). The key idea underlying our approach is that for each candidate
dk we compute the hj for the candidate’s faulty components that maximizes the
probability Pr(e|dk) of the observation e occurring, conditioned on that candidate dk (max-
imum likelihood estimation for naive Bayes classifier dk). Hence, hj is solved

86

Algorithm 2 Diagnostic Algorithm: Barinel

Input: Activity matrix A, error vector e
Output: Diagnostic Report D

1 γ← ε
2 D ← Staccato((A, e)) . Compute MHS
3 for all dk ∈ D do
4 expr← GeneratePr((A, e), dk)
5 i← 0
6 Pr[dk]i ← 0
7 ∀j∈dk

gj ← 0.5
8 repeat
9 i← i + 1

10 for all j ∈ dk do
11 gj ← gj + γ · ∇expr(gj)
12 end for
13 Pr[dk]i ← evaluate(expr, ∀j∈dk

gj)
14 until |Pr[dk]i−1 − Pr[dk]i| ≤ ξ . where ξ > 0 is the error tolerance
15 end for
16 return sort(D, Pr)

by maximizing Pr(e|dk) under the above epsilon policy, according to

H = arg max
H

Pr(e|dk)

where H = {hj | j ∈ dk}.

5.2.2 Algorithm

In this section we present our approach to compute the hj and the associated,
posterior candidate probabilities Pr(dk|obs) given a set of observations (A, e),
along with some examples. Our approach is described in Algorithm 2 and
comprises three main phases. In the first phase (line 2) a list of candidates D
is computed from (A, e) using Staccato (typically, 100 candidates, yet captur-
ing all significant probability mass). In the second phase Pr(dk) is computed
for each candidate in D (lines 3 to 15). First, GeneratePr derives for every
candidate dk a symbolic expression for the probability Pr(e|dk) for the current
set of observations (A, e). For example, suppose the following measurements
where c1, c2 are faulty (ignoring other components):

c1 c2 e Pr(ei|{1, 2})
1 0 1 1− h1
1 1 1 1− h1 · h2
0 1 0 h2
1 0 0 h1

Chapter 5. A Bayesian Approach to SFL 87

Pr(ei|dk) is computed using the same probability computation as in Eq. (5.3).
As the four observations are independent, the probability of observing e as-
suming dk = {1, 2} equals

Pr(e|dk) = h1 · h2 · (1− h1) · (1− h1 · h2)

In the next phase, all hj are computed such that they maximize Pr(e|dk). To
solve the maximization problem we apply a simple gradient ascent proce-
dure [Avriel, 2003] bounded within the domain 0 < hj < 1 (the ∇ operator
signifies the gradient computation).

In the third and final phase, for each dk the diagnoses are ranked according
to Pr(dk|(A, e)), which is computed by Evaluate based on the usual Bayesian
update (Eq. (5.2) for each row):

Pr(dk|(A, e)) =
Pr(e|dk)
Pr(obs)

· Pr(dk)

where Pr(e|dk) is the probability that e is observed assuming dk correct.

5.2.3 Maximum Likelihood Estimation

For single-fault conditions the maximization procedure is trivial. Consider
candidate c1 (i.e, dk = {1}). Intuitively, the maximum likelihood estimator
for h1 equals the average health state h1 = n10(1)/(n10(1) + n11(1)) (fraction
of passes for the runs c1 is involved in). Consider the following (A, e) (only
showing the column of c1 and the rows where c1 is hit), e, and the probability
of that occurring (Pr):

c1 e Pr(ei|{1})
1 0 h1
1 0 h1
1 1 1− h1
1 0 h1

Averaging e (3 passes and 1 fail) yields the estimate h1 = 3
4 . To prove that

this is a perfect estimate, we show that h1 maximizes the probability of this
particular e (or any permutation with 1 fail and 3 passes) to occur. As Pr(e|{1})
is given by Pr(e|{1}) = h3

1 · (1− h1), the value of h1 that maximizes Pr(e|{1}) is
indeed 3

4 .

Proof Let x = n10(1)/(n10(1) + n11(1)). denote our intuitive estimation of h1.
Let N′ = n10(1) + n11(1) denote the number of runs in which c1 is involved.
Thus n10 = N′ · h1 and n11 = N′ · (1− h1), respectively. Consequently, Pr(e|dk) is
given by

Pr(e|dk) = xN′ ·h1 · (1− x)N′ ·(1−h1)

Maximizing Pr(e|{1}) implies maximizing xh1 · (1− x)1−h1 as N′ is independent
of x. The value x that maximizes this expression is the one for which its

88

derivative to x equals zero. Consequently,

x · hx−1
1 · (1− h1)1−x − xh1 · (1− x) · (1− h1)(1−x−1) = 0

which reduces to
x · (1− h1) = h1 · (1− x)

yielding x = h1.

For multiple-fault candidates the derivation of hj is not so trivial. Instead
of generalizing to the C-fault case, we just treat the C = 2 case for ease of
exposition, as generalization to C faults is straightforward. Consider the same
(A, e) given in Section 5.2.2 for c1 and c2 at fault. As there is a failing row that
involves both c1 and c2 we cannot just estimate hj through the above, single-
fault approach (i.e., averaging over e) due to the mutual influence of both h1
and h2 on e2, reflected in the (1− h1 · h2) term in the Pr(e|dk) equation

Pr(e|dk) = h1 · h2 · (1− h1) · (1− h1 · h2)

In general, for a double fault A will contain

a 10 0 entries (with Pr = h1)
b 10 1 entries (with Pr = 1− h1)
c 01 0 entries (with Pr = h2)
d 01 1 entries (with Pr = 1− h2)
e 11 0 entries (with Pr = h1 · h2)
f 11 1 entries (with Pr = 1− h1 · h2)

where a, . . ., f are samples from the binomial distributions (with µ = NF · h1,
σ = NF · h1 · (1− h1), . . ., µ = NF · h1 · h2, σ = NF · h1 · h2 · (1− h1 · h2), respectively).
Consequently, we need to find the hj that maximize

Pr(e) = ha
1 · (1− h1)b · hc

2 · (1− h2)d · he
1 · he

2 · (1− h1 · h2) f

The above easily generalizes to the C-fault case although the formulae become
much more complex. Due to the shape of the expression, an analytic solution
to the maximization problem is not as straightforward as in the single-fault
case (except when f = 0 in which case A is partitionable) which has prompted
us to apply our numeric maximization approach (gradient ascent) as in real
problems A is never partitionable.

As the formulae that need to be maximized are simple and bounded in
the [0, 1] domain, the time/space complexity of our approach is identical to
previous spectrum-based reasoning policies, e.g., [de Kleer, 2007, Abreu et al.,
2008c] (see next section for a detailed discussion) modulo a constant factor
on account of the gradient ascent procedure, which exhibits reasonably rapid
convergence for all M and C (see Section 5.4.3). Note that the linear conver-
gence of the simple, gradient ascent procedure can be improved to a quadratic
convergence (e.g., Newton’s method), yielding significant speedup.

Chapter 5. A Bayesian Approach to SFL 89

5.2.4 Estimating Intermittency

As said before, there are many ε policies that can be used in the Bayesian
update formula (see Eq. (5.3) [de Kleer, 2007]). As calibration data on correct
and incorrect component behavior is typically not available, previous efforts
to diagnose intermittent component failures, such as [de Kleer, 2007, De Kleer
et al., 2008, Kuhn et al., 2008, Abreu et al., 2008c, de Kleer, 2009], have instead
approximated hj for the faulty components in dk, g(dk). Yet another reason for
using approximation is that obtaining hj from the activity matrix was far from
trivial. This “effective” intermittency parameter g(dk) is estimated for the
candidate dk by counting how many times components in dk are involved in
passed and failed runs. The parameter g(dk) is defined as follows

g(dk) =

∑
i=1..N

[(
∨

j∈dk

aij = 1) ∧ ei = 0]

∑
i=1..N

[
∨

j∈dk

aij = 1]

where [·] is Iverson’s operator [Iverson, 1962] ([true] = 1, [false] = 0).
In the following we distinguish between two, intermittent policies, which

we refer to as ε(1), and ε(2), which are defined as follows

ε(1) =

{
g(dk) if run passed
1− g(dk) if run failed

and

ε(2) =

{
g(dk)η if run passed
1− g(dk)η if run failed

where η is the number of faulty components according to dk involved in the
run i

η = ∑
j∈dk

[aij = 1]

We propose policy ε(2) as a variant of ε(1), proposed in [de Kleer, 2007]. It ap-
proximates the probability ∏j∈dk

hj that the components in dk all exhibit good
behavior by g(dk)η , assuming that all components of dk have equal goodness
probabilities.

As a final example to illustrate the benefits of our approach, consider the
following program spectra (c1 and c2 faulty):

c1 c2 c3 c4 c5 e
1 1 0 1 0 1

0 1 0 0 1 1

1 0 0 0 1 1

1 1 0 0 1 1

0 1 0 0 1 1

1 0 0 1 1 0

90

dk ε(0) ε(1) ε(2) Barinel

{1, 2} 0.25 0.25 0.40 0.91

{2, 5} 0.25 0.25 0.47 0.07

{1, 5} 0.25 0.25 0.07 0.018

{4, 5} 0.25 0.25 0.06 0.002

Table 5.1 Diagnosis candidates’ probabilities

Staccato yields the diagnostic candidates {1, 2}, {2, 5}, {1, 5}, {4, 5}. As said
before, many ε policies exist. Besides the two intermittent policies outlined
above, in the following we also consider a traditional policy, ε(0), which is de-
fined as follows

ε(0) =

{
EP

EP+EF
if run passed

EF
EP+EF

if run failed
(5.5)

where EP = 2M and EF = (2l − 1) · 2M−l are the number of passed and failed
observations that can be explained by diagnosis dk, respectively, and l = |dk|
is the number of faulty components in the diagnosis. Note that this policy is
slightly different from the one in Section 5.1, as the lack of component inter-
connection information allows more diagnoses (component combinations) as
likely explanations for pass/fail outcomes.

The probabilities for the valid diagnosis candidates are presented in Ta-
ble 5.1. Common to traditional policies, ε(0) does not distinguish between
candidates with the same cardinality. Hence, as they rank with the same
probability, half of all candidates would have to be inspected on average. Al-
though ε(1) does distinguish between candidates with equal cardinality, in this
example the g(dk) is estimated to be the same, therefore yielding the ranking
as ε(0). In addition to g(dk), ε(2) uses the number of passed and failed runs the
component is involved in to further distinguish between diagnosis candidates
with equal cardinality, and it ranks {2, 5} at the first place. Still the developer
has to inspect a component in vain. Barinel yields better results due to a
correct estimation of the individual hj, ranking the true fault {1, 2} at the first
position.

5.3 A N A LY T I C M O D E L

In this section we derive a simple, approximate model to assess the influ-
ence of various parameters on the diagnostic performance of our framework.
Diagnostic performance is measured in terms of a diagnostic performance
metric W that measures the percentage of excess work incurred in finding the
actual components at fault. The metric is an improvement on metrics typi-
cally found in software debugging which measure debugging effort [Abreu
et al., 2007, Renieris and Reiss, 2003]. We use wasted effort instead of effort
because in our multiple-fault research context we wish the metric to be inde-

Chapter 5. A Bayesian Approach to SFL 91

pendent of the number of faults C in the program to enable easier evaluation
of the effect of C on W. For instance, consider a M = 5 component program
with the following diagnostic report D =< {4, 5}, {4, 3}, {1, 2} >, while c1 and
c2 are actually faulty. The first diagnosis candidate leads the developer to
inspect c4 and c5. As both components are healthy, W is increased with 2

5
and h4 = h5 = 1.0. Using the knowledge that components 4 and 5 are 100%
healthy, the probabilities of the remaining candidates are updated, leading
to Pr({4, 3}) = 0. Consequently, candidate {4, 3} is also discarded. The next
components to be inspected are c1 and c2. As they are both faulty, no more
wasted effort is incurred2.

The evaluated parameters are number of components M, number of test
cases N, testing code coverage r, testing fault coverage h, and fault cardinal-
ity C. Consider the example A in Figure 5.2(a), with M = 5 components of
which the first C = 2 components are faulty. As a faulty component can still
produce correct behavior which does not not cause a run to fail, we use an
extended encoding where ‘1’ denotes a component that is involved, and ‘2’
denotes a (faulty) component whose involvement actually produced a failure
(and consequently a failing run). Note, however, that a debugger only knows
about component involvement and does not know whether a component is
responsible for an observed failure or not.

c1 c2 c3 c4 c5 e
1 0 1 0 1 0

0 2 1 0 0 1

0 2 1 1 0 1

1 1 1 1 0 0

2 1 0 1 0 1

(a) Example A

c1 c2 c3 c4 c5 e
0 2 1 0 0 1

0 2 1 1 0 1

2 1 0 1 0 1

(b) A’s failed runs only

Figure 5.2 Activity Matrix Example

In the following we focus on the hitting set since its constituents are primar-
ily responsible for the asymptotic behavior of W. Although their individual
ranking is influenced by component activity in passed runs, the hitting set
itself is exclusively determined by the failing runs. Thus, we consider the
sub-matrix shown in Figure 5.2(b).

From Figure 5.2(b) it can be seen that the first 2 columns together form a
hitting set of cardinality 2 (which corresponds to our choice C = 2). This can

2Effort, as defined in [Abreu et al., 2007, Renieris and Reiss, 2003], would be increased by 2
5 to

account for the fact that both components were inspected.

92

be seen by the fact that in each row there is at least one set member involved,
i.e., there is a so-called “chain” of c1 and/or c2 involvement that is “unbroken”
from top row to bottom row.

While this chain exists by definition (given the fact that both are faulty
there is always at least one of them involved in every failed run), other chains
may also exist, and may cause W to increase. This occurs when those chains
pertain to diagnostic candidates of equal or lower cardinality (B) than C. Gen-
erally, two types of chains can be distinguished: (1) chains (of cardinality
B < C) within the faulty components set, called internal chains, and (2) chains
(of cardinality B ≤ C) completely outside the faulty components set, called
external chains. In the above example after N = 2 (so considering only the first
two failed runs, see Figure 5.2(b)), there is still one internal chain (correspond-
ing to single fault c2), and two external chains (corresponding to single fault
{3}, and double fault {3, 4}). As their probability will be higher (due to the
a priori probability computation) they will head the ranking. With respect to
the internal fault this does not significantly influence W since this indicates a
true faulty component (the real double fault {1, 2} being subsumed by {2}).
Consequently, there is no wasted debugging effort. With respect to {3} how-
ever, this fault will induce wasted effort. After N = 3 both single faults has
disappeared (both chain of ‘1’s have been broken during the third failing run),
while the double fault c3, c4 is still present. From the above example it follows
that (1) W is primarily impacted by external chains, and (2) the probability
of a B cardinality chain still “surviving” decreases with the number of failing
runs. Assuming that components are executed randomly, the latter is the rea-
son why in the limit for N → ∞ all external (and internal) chains will have
disappeared, exposing the true fault as only diagnosis.

5.3.1 Number of Failing Runs

As the number of failing runs is key to the behavior of W, in the following we
first compute the fraction of failed runs f out of the total of N runs, given r
and h. Consider C faulty components. Let f denote the probability of a run
failing. A run passes when none of the C components induces a failure, i.e.,
does not generate a ‘2’ in the matrix. Since the probability of the latter equals
1− r · (1− h) and generating a ‘2’ requires (1) being involved (probability r) and
(2) producing a failure (probability (1− h)), the probability of not generating
a ‘2’ in the matrix equals (1− r · (1− h)). Consequently, the probability a run
passes equals (1− r · (1− h))C, yielding

f = 1− (1− r · (1− h))C

This implies that for high h (and/or low r) a very large number of runs N is
required to generate a sufficient number NF = f · N of failing runs in order to
eliminate competing chains of equal of lower cardinality B. As r also affects
the number of external chains which, however, is not affected by h, the effect of
h can be seen orthogonal to r in that it only impacts the number of failed runs

Chapter 5. A Bayesian Approach to SFL 93

through f . Consequently, h and N are related in that a high h is compensated
by a, possible huge, increase in N. In the sequel, we therefore only focus on
the effect of r.

5.3.2 Behavior for Small Number of Runs

While for large N the determination of W depends on the probability that
competing chains will have terminated, for small N a more simple derivation
can be made. Consider the case of a single failing run (NF = f · N = 1). From
the first (failing) row (k = 1) in the above example (Figure 5.2(b)) it can be
seen that there are generally r · (M− C) external single-fault (B = 1) chains (c3
and c5) that induce wasted effort. As W denotes the ratio of wasted effort it
follows

W =
r · (M− C)

M
(5.6)

which for large M approaches r. This is confirmed by the experiments dis-
cussed later.

After the second failed run (k = 2) the probability a B = 1 chain survives
two failing runs equals r2 (i.e., the probability of two ‘1’s for a particular com-
ponent). Consequently, the number of B = 1 chains equals r2 · (M− C), which,
in general, decreases negative-exponentially with the number of (failing) runs
(f · N). For B = 2 the situation is less restrictive as any combination of ‘1’s of
the first and second row qualifies as a double-fault chain. As on average there
are M′ = br · (M− C)c ‘1’s per row there are (M′

2) double-faults.
After the third failing run (k = 3) the number of surviving B = 1 chains

equals r3 · (M − C), whereas the number of triple faults equals (M′
3). As for

sufficiently large M the higher-cardinality combinations outnumber the lower-
cardinality combinations, W is dominated by the combinations that have the
same cardinality as the fault cardinality C. Consequently, assuming NF ≤
C it follows that the number of C-cardinality chains that compete with the
actual C-cardinality diagnosis is approximated by (M′

C). However, if there are
more combinations than M − C these combinations will overlap in terms of
component indices. As W does not measure wasted effort on a component
that was already previously inspected (and subsequently removed from the
next diagnosis), the average number of “effective” C-cardinality chains will
never exceed M

C (as there are C indices per candidate). Hence, the number of
competing C-cardinality chains is approximated by min(M

C , (M′
C)).

5.3.3 Behavior for Large Number of Runs

For large NF the trend of W can also be approximated from the probability
that competing chains will still have survived after NF runs, which we derive
as follows. Consider a B-cardinality external chain. At each row there is a
probability that this chain does not survive. Similar to the derivation of f we
consider the probability that all B components involved in the chain have a ’0’

94

entry, which would terminate that particular chain. This probability equals
(1− r)B. Hence, the probability that a B-cardinality chain does not break per
run equals 1− (1− r)B. Consequently, the probability that a chain survives NF
failing runs equals

(1− (1− r)B)NF

Similar to the derivation for small NF, we only consider C-cardinality chains.
The largest number of competing chains at the outset equals (M′

C). As there
always exists an NF for which this number is less than M

C (in the asymptotic
case we consider only a few chains) the number of competing chains after NF
runs is given by

(1− (1− r)C)NF ·
(

M′

C

)
Consequently, W is approximated by

W ≈
(1− (1− r)C)NF · (M′

C)
M

(5.7)

We observe a negative-exponential (geometric) trend with NF (N) while C
postpones that decay to larger NF (N) as the term 1 − (1 − r)C approaches
unity for large C.

In the following we asymptotically approximate the number of failing test
runs NF needed for an optimal diagnosis (i.e., W approaches 0). Consider-
ing Eq. (5.7), a constant number of diagnoses (ideally, a single diagnosis) is
approximately reached for

(1− (1− r)C)NF ·
(

M′

C

)
= W ·M = very small = K

It follows NF = − log K/ log 1− (1− r)C. Since for sufficiently large C the term
1 − (1 − r)C approaches unity, and since log 1− ε ≈ −ε it follows that NF ∼
log K/(1− r)C. As (1− r) < 1 it follows NF ∼ log K · ((1− r)−1)C of which the
second term increases exponentially with C. Since K = (M′

C) for large M this
term also increases exponentially with C. However, as the term is included
in a logarithm, the effect of this term is less than the previous. In the next
section we numerically verify the exponential trend of N.

5.3.4 Experimental Validation

In order to experimentally validate the predictions of the model just outlined
and assess the performance improvement of our framework, we generate syn-
thetic observations based on random (A, e) generated for various values of N,
M, and the number of injected faults C (cardinality). Component activity aij is
sampled from a Bernoulli distribution with parameter r, i.e., the probability a
component is involved in a row of A equals r. For the C faulty components cj
(without loss of generality we select the first C components, i.e., c1, . . . , cC are

Chapter 5. A Bayesian Approach to SFL 95

faulty). We also set the component healths (intermittency rates) hj. Thus the
probability of a component j being involved and generating a failure equals
r · (1− hj). A row i in A generates an error (ei = 1) if at least 1 of the C compo-
nents generates a failure (or-model). Measurements for a specific (N, M, C, r, g)
scenario are averaged over 1, 000 sample matrices, yielding a coefficient of
variance of approximately 0.02.

We compare the accuracy of our Bayesian framework with the three previ-
ous Bayesian approaches ε(0), ε(1), and ε(2), and the two spectrum-based fault
localization methods Ochiai and Tarantula. The graphs in Figure 5.3 plot W
versus N for M = 20, r = 0.6 (the trends for other M and r values are essentially
the same, r = 0.6 is typical for the Siemens suite), and different values for C
and h (in our experiments we set all hj = h). A number of common properties
emerge. All plots show that W for N = 1 is similar to r, which agrees with
the fact that there are on average (M − C) · r components which would have
to be inspected in vain. For sufficiently large N all approaches produce an
optimal diagnosis, as there are sufficient runs for all approaches to correctly
single out the faulty components. For small hj, W converges quicker than
for large hj as computations involving the faulty components are much more
prone to failure, while for large hj the faulty components behave almost sim-
ilar to healthy components, requiring more observations (larger N) to rank
them higher. Also for increasing C more observations are required before the
faulty components are isolated. This is due to the fact that failure behavior
can be caused by much more components, reducing the correlation between
failure and particular component involvement.

The plots confirm that Barinel is the best performing approach. ε(0) is the
worst performing approach, mainly because (1) it does not not distinguish
between diagnosis with the same fault cardinality C, and (2) it does not exon-
erate components based on their involvement on passed runs. Only for C = 1
the ε(1)/ε(2) approach has equal performance to Barinel, as for this trivial
case the approximations for the hj are equal. For C ≥ 2 the plots confirm that
Barinel has superior performance, demonstrating that an exact estimation of
hj is quite relevant. The more challenging the diagnostic problem becomes
(higher fault densities), the more Barinel stands out compared to the SFL
approaches and the previous Bayesian approaches.

The plots show that W for N = 1 is similar to r as predicted in Eq. (5.6),
while for sufficiently large N all techniques produce an optimal diagnosis.
Besides, from the plots we verify that the higher C the more runs N are needed
to attain optimal diagnostic performance. As an example, for h = 0.1, r = 0.4,
and C = 1, 10 runs would be enough for a perfect diagnosis, whereas for
C = 5, 250 runs would be needed. For small h almost each run that involves
the faulty component yields a failure (f ≈ 1), already producing near-perfect
diagnoses for only small N. For high h the transition between the small-NF
behavior and large-NF behavior is visible. As the negative-exponential trend
with NF is clear from the analytical model we have determined the value of
N (NF) for which our C-cardinality fault remains as the only candidate, i.e., a

96

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(a) C = 1 and h = 0.1

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(b) C = 2 and h = 0.1

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(c) C = 5 and h = 0.1

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(d) C = 1 and h = 0.5

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(e) C = 2 and h = 0.5

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(f) C = 5 and h = 0.5

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(g) C = 1 and h = 0.9

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(h) C = 2 and h = 0.9

0%

10%

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50 60 70 80 90 100

W

N

ε(0)

ε(1)

ε(2)

Ochiai
Tarantula
BARINEL

(i) C = 5 and h = 0.9

Figure 5.3 Wasted effort W vs. N for several settings of C and h

perfect multiple-fault diagnosis. Table 5.2 shows the values of N (NF) where
optimality is reached for different values of C and h. Apart from a scaling due
to h one can clearly see the exponential impact of C on NF and N.

h 0.1 0.9
C 1 2 3 4 5 1 2 3 4 5

N∗ 13 31 90 120 250 200 300 500 1000 1700

NF 5 19 71 111 245 12 36 84 219 459

Table 5.2 Optimal N∗ for perfect diagnosis (r = 0.6)

5.4 E M P I R I C A L E VA L U AT I O N

Whereas the synthetic matrices used in the previous section are populated
using a uniform distribution, this is not the case with matrices for actual
software programs. In this section, we evaluate the diagnostic capabilities
and efficiency of the diagnosis techniques for real-world programs.

Chapter 5. A Bayesian Approach to SFL 97

Program Faulty Versions M N Description
print tokens 7 539 4,130 Lexical Analyzer
print tokens2 10 489 4,115 Lexical Analyzer
replace 32 507 5,542 Pattern Recognition
schedule 9 397 2,650 Priority Scheduler
schedule2 10 299 2,710 Priority Scheduler
tcas 41 174 1,608 Altitude Separation
tot info 23 398 1,052 Information Measure
space 38 9.564 13,585 Array Definition Language

Table 5.3 The Siemens benchmark set

5.4.1 Experimental Setup

For evaluating the performance of our approach we use the well-known
Siemens benchmark set and space [Do et al., 2005]. For ease of reference,
Table 5.3 summarizes the Siemens benchmark set and space, where M corre-
sponds to the number of lines of code (components in this context). The test
suite package of space also provides 1, 000 test suites that consist of a random
selection of (on average) 150 test cases and guarantees that each branch of the
program is exercised by at least 30 test cases. In our experiments, the test
suite used is randomly chosen from the 1, 000 suites provided.

For our experiments, we have extended the Siemens benchmark set and
space with program versions where we can activate arbitrary combinations of
multiple faults. For this purpose, we limit ourselves to a selection of 130 out
of the 170 faults, based on criteria such as faults being attributable to a single
line of code, to enable unambiguous evaluation.

The activity matrices are obtained using the GNU gcov3 profiling tool and
a script to translate its output into a matrix. As each program suite includes
a correct version, we use the output of the correct version as reference. We
characterize a run as failed if its output differs from the corresponding output
of the correct version, and as passed otherwise.

5.4.2 Performance Results

In this section we evaluate the diagnostic capabilities of Barinel and compare
it with several fault localization techniques. We first evaluate the performance
in the context of single faults, and then for multiple fault programs.

Single Faults

We compare Barinel with several well-known statistics-based techniques
which have used the Siemens benchmark set described in the previous sec-
tion. Although the set comprises 132 faulty programs, two of these programs,
namely version 9 of schedule2 and version 32 of replace, are discarded as no

3http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

98

failures are observed. Besides, we also discard versions 4 and 6 of print tokens
because the faults are not in the program itself but in a header file. In sum-
mary, we discarded 4 versions out of 132 provided by the suite, using 128

versions in our experiments. For compatibility with previous work in (single-
) fault localization, we use the effort/score metric [Abreu et al., 2007, Renieris
and Reiss, 2003] which is the percentage of statements that need to be in-
spected to find the fault - in other words, the rank position of the faulty
statement divided by the total number of statements. Note that some tech-
niques such as in [Liu et al., 2006, Renieris and Reiss, 2003] do not rank all
statements in the code, and their rankings are therefore based on the program
dependence graph of the program.

Figure 5.4 plots the percentage of located faults in terms of debugging
effort. Apart from the two SFL approaches, Ochiai and Tarantula, the fol-
lowing techniques are also plotted: Intersection and Union [Renieris and
Reiss, 2003], Delta Debugging (DD) [Zeller, 2002], Nearest Neighbor (NN) [Re-
nieris and Reiss, 2003], Sober [Liu et al., 2006], PPDG [Baah et al., 2008],
and CrossTab [Wong et al., 2008], which are amongst the best statistics-based
techniques (see Section 5.5). In the single fault context, as explained in the
previous section, ε(1) and ε(2) perform equally well as Barinel, and all outper-
form ε(0). As Sober is publicly available, we run it in our own environment.
The values for the other techniques are, however, directly taken from their
respective papers. From Figure 5.4, we conclude that Barinel is consistently

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 lo

ca
te

d
fa

ul
ts

Effort (Percentage of inspected components)

BARINEL
PPDG

CrossTab
Ochiai

Tarantula
Sober

NN
DD

Intersection
Union

Figure 5.4 Effectiveness Comparison (C = 1)

the best performing technique, finding 60% of the faults by examining less
than 10% of the source code. For the same effort, using Ochiai would lead
a developer to find 52% of the faulty versions, and with Tarantula only 46%

Chapter 5. A Bayesian Approach to SFL 99

tcas AIM explain ∆-slicing ε(0) ε(1)/ε(2)/Barinel

v1 0.74 0.51 0.91 0.13 0.99

v11 0.84 0.36 0.93 0.17 0.97

v31 0.77 0.76 0.93 0.17 0.98

v40 0.85 0.75 – 0.17 0.90

v41 0.73 0.68 0.88 0.18 0.99

Table 5.4 Comparison with model-based approaches

would be found. For an effort of less than 1% PPDG performs equally well
as Barinel. Our approach outperforms Ochiai, which is consistently better
than Sober and Tarantula. The former two yield similar performance, as also
concluded in [Liu et al., 2006]. Finally, the other techniques plotted are clearly
outperformed by the spectrum-based techniques.

Table 5.4 compares the different policies used in our approach with AIM,
explain, and ∆-slicing for 5 versions of tcas, because these are the versions to
which explain and ∆-slicing could be applied to. From the table, we conclude
that Barinel and ε(1)/ε(2) consistently outperforms all other techniques, with
ε(0) being the worst performing technique. The fact that the diagnostic quality
of Barinel and ε(1)/ε(2) is due to the fact that the estimation used in ε(1)/ε(2)

is perfect.
The reason for Barinel’s superiority for single-fault programs is established

in terms of the following theorem.

Theorem For single-fault programs, given the available set of observations (A, e), the diag-
nostic ranking produced by Barinel is theoretically optimal.

Proof In the single-fault case, the maximum likelihood estimation for hj re-
duces from a numerical procedure to a simple analytic expression given by

hj =
n10(j)

n10(j) + n11(j)
=

x(j)
x(j) + 1

as, by definition, hj is the pass fraction of the runs where cj is involved. Con-
sequently, Pr(dk|e) can be written as

Pr(dk|e) = hx(j)·n11(j)
j · (1− hj)n11(j)

where x(j) = n10(j)/n11(j). For C = 1 where a run fails the faulty component
has to be involved. In Barinel, when a candidate does not explain all failing
runs its probability is set to 0 as a result from the consistency-based reasoning
within Barinel (cf. the 0-clause of Eq. (5.3)). This implies that for the remain-
ing candidates n11(j) equals the number of failing runs, which is independent
of j. Hence, with respect to the ranking the constant n11(j) can be ignored,
yielding

Pr′(dk|e) =
x(j)x(j)

(x(j) + 1)(x(j)+1)

100

Since x(j) > 0, Pr′(dk|e), and therefore Pr(dk|e), is monotonically decreasing
with x(j) and therefore with hj. Consequently, the ranking in D equals the
(inverse) ranking of hj. As the maximum likelihood estimator for hj is perfect
by definition, the ranking returned by Barinel is optimal.

While the above theorem establishes Barinel’s optimality, the following
corollary describes the consequences with respect to similarity coefficients.

Corollary For single-fault programs, any similarity coefficient that includes n10(j) in the
denominator is optimal, provided components cj are removed from the ranking for which
n01(j) , 0.

Proof From the above theorem it follows that the ranking in terms of hj is
optimal for the subset of components indicted by the reasoning process, i.e.,
those components that are always involved in a failing run. The latter condi-
tion implies that only components for which n01(j) = 0 can be considered. The
former implies that (for this subset) the similarity coefficient

s(j) = 1− hj =
n11(j)

n11(j) + n10(j)

is optimal. As for the components subset n11(j) is constant, n10(j) determines
the ranking while n01(j) plays no role. As all similarity coefficients have an
n11(j) term in the numerator, it follows that as long as n10(j) is present in the
denominator (the only term that varies with j), such a coefficient yields the
same, optimal, ranking as the above Barinel expression for s(j).

Experiments using the n01(j) = 0 “reasoning” filter, combined with a simple
similarity coefficient such as Tarantula or Ochiai indeed confirm that this ap-
proach leads to the best performance [Vayani, 2007] (equal to Barinel).

Multiple Faults

We now proceed to evaluate our approach in the context of multiple faults,
using our extended Siemens benchmark set and space. In contrast to Sec-
tion 5.4.2 we only compare with the same techniques as in Section 5.3.4 (ε(0),
ε(1), ε(2), Tarantula, and Ochiai) as for the other related work no data for
multiple-fault programs are available. Similar to Section 5.3.4, we aimed at
C = 5 for the multiple fault-cases, but for print tokens insufficient faults are
available. All measurements except for the four-fault version of print tokens
are averages over 100 versions, or over the maximum number of combinations
available, where we verified that all faults are active in at least one failed run.

Table 5.5 presents a summary of the diagnostic quality of the different tech-
niques. The diagnostic quality is quantified in terms of wasted debugging
effort W (see Section 5.3.4 for an explanation of the difference between wasted
effort and effort). Again, the results confirm that on average Barinel outper-
forms the other approaches, especially considering the fact that the variance
of W is considerably higher (coefficient of variance up to 0.5 for schedule2)

Chapter 5. A Bayesian Approach to SFL 101

than in the synthetic case (1,000 sample matrices versus up to 100 matrices
in the Siemens case). Only in 4 out of 24 cases, Barinel is not on top. Apart
from the obvious sampling noise (variance), this is due to particular proper-
ties of the programs. Using the paired two-tailed Student’s t-test, we verified
that the differences in the means of W are not significant for those cases in
which Barinel does not clearly outperforms the other approaches, and thus
noise is the cause for the small differences in terms of W. As an example,
for print tokens2 with C = 2 the differences in the means are significant, but
it is not the case for schedule with C = 1. For tcas with C = 2 and C = 5,
ε(1) marginally outperforms Barinel (by less than 0.5%), Ochiai being the best
performing approach. This is caused by the fact that (1) the program is almost
branch-free and small (M = 174) combined with large sampling noise (σW =
5% for tcas), and (2) almost all failing runs involve all faulty components
(highly correlated occurrence). Hence, the program effectively has a single
fault spreading over multiple lines. For schedule2 with C = 2 and C = 5, ε(0) is
better due to the fact that almost all failing runs involve all faulty components
(highly correlated occurrence). Hence, the program effectively has a single
fault spreading over multiple lines, which favors ε(0) since it ranks candidates
with cardinality one first. For tcas with C = 2 and C = 5, ε(2) marginally
outperforms Barinel (by less than 0.5%), being Ochiai the best performing
approach which is caused by the fact that the program is almost branch-free
and small (M = 174) combined with large sampling noise (significant variance
of the individual diagnostic performances, σW = 5% for tcas).

Our results show that W decreases with increasing program size (M). This
confirms our expectation that the effectiveness of automated diagnosis tech-
niques generally improves with program size. As an illustration, near-zero
wasted effort is measured in experiments with large NXP codes as described
in Chapter 3, where the problem reports (tests) typically focus on a particular
anomaly (small C).

5.4.3 Time/Space Complexity

In this section we report on the time/space complexity of Barinel, compared
to other fault localization techniques.

In contrast to the M components in statistical approaches, the Bayesian
techniques update |D| candidate probabilities where |D| is determined by
Staccato. Although in all our measurements a constant |D| = 100 suffices,
it is not unrealistic to assume that for very large systems |D| would scale with
M, again, yielding O(N · M) for the probability updates. However, there are
two differences with the statistical techniques, (1) the cost of Staccato and (2)
in case of Barinel, the cost of the maximization procedure. The complexity of
Staccato is estimated to be O(N ·M) (for a constant matrix density r) [Abreu
et al., 2008d]. The complexity of the maximization procedure appears to be
rather independent of the size of the expression (i.e., M and C) reducing this
term to a constant. As, again, the report is ordered, the time complexity again

102

print tokens print tokens2 replace schedule
C 1 2 4 1 2 5 1 2 5 1 2 5

versions 4 6 1 10 43 100 23 100 100 7 20 11

M
BD

ε(0)
13.7 18.2 22.8 21.6 26.1 30.8 16.2 25.1 33.8 17.2 23.5 28.6

ε(1)
1.2 2.4 5.0 4.2 7.6 14.5 3.0 5.2 12.5 0.8 1.6 3.0

ε(2)
1.2 2.4 4.8 5.1 8.9 15.5 3.0 5.2 12.4 0.8 1.5 3.1

Barinel 1.2 2.4 4.4 1.9 3.4 6.6 3.0 5.0 11.9 0.8 1.5 3.0

SF
L Ochiai 2.6 5.3 11.5 3.9 7.0 13.5 3.0 5.6 12.4 1.1 2.0 3.7

Tarantula 7.3 13.2 21.0 6.0 10.4 17.8 4.5 7.7 14.9 1.5 2.7 5.4

schedule2 tcas tot info space
C 1 2 5 1 2 5 1 2 5 1 2 5

versions 9 35 91 30 100 100 19 100 100 28 100 100

M
BD

ε(0)
29.3 26.6 28.9 28.0 26.9 28.7 14.0 18.2 21.5 19.5 25.2 34.3

ε(1)
22.8 31.4 38.3 16.7 24.2 30.5 5.1 8.7 17.4 2.2 3.6 9.5

ε(2)
21.5 29.4 35.6 16.7 24.1 30.5 6.1 11.7 20.9 2.2 3.7 9.9

Barinel 21.5 28.1 34.9 16.7 24.5 30.7 5.0 8.5 15.8 1.7 3.0 7.4

SF
L Ochiai 21.5 29.1 35.5 15.5 22.0 27.4 5.2 9.1 16.5 1.7 3.6 8.6

Tarantula 23.5 31.4 38.3 16.1 22.8 31.6 6.9 11.4 19.4 3.4 6.5 13.9

Table 5.5 Wasted effort W [%] on combinations of C = 1− 5 faults for the Siemens
set and space

equals O(N ·M + M · log M), putting the Bayesian approaches in the same com-
plexity class as the statistical approaches modulo a large factor. The results in
Table 5.6 follow the trends predicted by this complexity analysis.

We measure the time efficiency by conducting our experiments on a 2.3
GHz Intel Pentium-6 PC with 4 GB of memory. As most fault localization
techniques have been evaluated in the context of single faults, in order to
allow us to compare our fault localization approach to related work we limit
ourselves to the original, single-fault Siemens benchmark set, which is the
common benchmark set to most fault localization approaches. We obtained
timings for PPDG and DD from published results [Baah et al., 2008, Zeller,
2002].

Table 5.6 summarizes the results of the study. The columns show the pro-
grams, the average CPU time (in seconds) of Barinel, ε(0)/ε(1)/ε(2), Taran-
tula/Ochiai, PPDG, and DD, respectively. As expected, the less expensive
techniques are the statistics-based techniques Tarantula and Ochiai. At the
other extreme are PPDG and DD. Barinel costs less than PPDG and DD.
For example, Barinel requires less than 10 seconds on average for replace,
whereas PPDG needs 6 minutes and DD needs approximately 1 hour to pro-
duce the diagnostic report. Note that our implementation of Barinel has not
been optimized (the gradient ascent algorithm). This explains the fact that
Barinel is more expensive than the other Bayesian approaches. The effect of
the gradient ascent costs is clearly noticeable for the first three programs, and
is due to a somewhat lower convergence speed as a result of the fact that the
hj are close to 1. Note, that by using a procedure with quadratic convergence
this difference would largely disappear (e.g., 100 iterations instead of 10,000,
gaining two orders of magnitude). Therefore, the efficiency results should not

Chapter 5. A Bayesian Approach to SFL 103

Program Barinel ε(0,1,2) Tarantula/Ochiai PPDG DD
print tokens 24.3 4.2 0.37 846.7 2590.1
print tokens2 19.7 4.7 0.38 243.7 6556.5
replace 9.6 6.2 0.51 335.4 3588.9
schedule 4.1 2.5 0.24 77.3 1909.3
schedule2 2.9 2.5 0.25 199.5 7741.2
tcas 1.5 1.4 0.09 1.7 184.8
tot info 1.5 1.2 0.08 97.7 521.4
space 41.4 7.4 0.15 N/A N/A

Table 5.6 Diagnosis cost for the single-fault Siemens benchmark set (time in sec-
onds)

be viewed as definitive. Experiments using the extended Siemens benchmark
set to accommodate multiple faults also show the same trend. Although not
listed in the table, the execution time of Barinel for space (10kLOC) is 48s (no
results of related work are available).

With respect to space complexity, statistical techniques need two store the
counters (n11, n10, n01, n00) for the similarity computation for all M components.
Hence, the space complexity is O(M). ε(0), ε(1), and ε(2) also store similar
counters but per diagnosis candidate. Assuming that |D| scales with M, these
approaches have O(M) space complexity. Barinel is slightly more expensive
because for a given diagnosis dk it stores the number of times a combination of
faulty components in dk is observed in passed runs (2|dk |− 1) and in failed runs
(2|dk |− 1). Thus, Barinel’s space complexity is estimated to be O(2C ·M) - being
slightly more complex than SFL. In practice, however, memory consumption
is reasonable (e.g., around 3.7 MB for space).

5.5 R E L AT E D W O R K

In model-based reasoning approaches to automatic software debugging the
model of the program under analysis is typically generated using static anal-
ysis. In the work of Mayer and Stumptner [Mayer and Stumptner, 2008] an
overview of techniques to automatically generate program models from the
source code is given. They conclude that models generated by means of ab-
stract interpretation [Mayer and Stumptner, 2007b] are the most accurate for
debugging. In [Wotawa, 2002] the relationship between program slicing [Tip,
1995] and model-based software debugging is described. Model-based ap-
proaches include the ∆-slicing and explain work of Groce [Groce, 2004], and
the work of Wotawa, Stumptner, and Mayer [Wotawa et al., 2002]. Although
model-based diagnosis inherently considers multiple faults, thus far the above
software debugging approaches only consider single faults. Apart from this,
our approach differs in the fact that we use program spectra as dynamic in-
formation on component activity, which allows us to exploit execution be-
havior, unlike static approaches. Besides, our approach does not rely on the
approximations required by static techniques (i.e., incompleteness). Most im-

104

portantly, our approach is less complex, as can also be deduced by the limited
set of programs used by the model-based techniques (as an indication, from
the Siemens set, these techniques can only handle tcas which is the small-
est program). In [Wieland, 2001] a similar trace-based dynamic dependency
model has been proposed. The main difference to our work is that we do not
exploit component (execution) dependencies.

Essentially all of the above work have mainly been studied in the context of
single faults (e.g., Siemens set), except for recent work by Jones, Bowring, and
Harrold [Jones et al., 2007], Abreu, Zoeteweij, and Van Gemund [Abreu et al.,
2008c], and Steimann and Bertchler [Steimann and Bertchler, 2009], who all
take an explicit multiple-fault, spectrum-based approach. The work in [Jones
et al., 2007] employs clustering techniques to identify traces (rows in A) which
refer to the same fault, after which Tarantula is applied to each cluster of rows.
In this clustering approach there is a possibility that multiple developers will
still be effectively fixing the same bug. As the experimental environment
in [Jones et al., 2007] is different from the one in this chapter, no comparison
was possible. The significant difference between our previous work in [Abreu
et al., 2008c, Abreu et al., 2008d] and our approach in this chapter is (1) the
maximum likelihood health estimation algorithm, replacing the previous, ap-
proximate approach, and (2) the use of a heuristic reasoning algorithm to
bound the number of multiple-fault candidates. In [Steimann and Bertchler,
2009] another ranking mechanism is introduced for diagnosis candidates that
are derived using a similar technique as in [Abreu et al., 2008d], which has
exponential time complexity. Unlike our work, neither [Jones et al., 2007]
nor [Steimann and Bertchler, 2009] present results on the Siemens set in terms
of established effort metrics, prohibiting any form of direct comparison. To
our knowledge, there is also no implementation available of these techniques,
so we cannot evaluate them.

5.6 S U M M A RY

In this chapter we have presented a multiple-fault localization technique,
coined Barinel, which is based on the dynamic, spectrum-based approach
from statistical fault localization methods, combined with a probabilistic rea-
soning approach from model-based diagnosis, inspired by our previous work
in both separate disciplines [Abreu et al., 2007, Abreu et al., 2008c, Abreu
et al., 2008d]. Barinel employs low-cost, approximate reasoning, employing a
novel, maximum likelihood estimation approach to compute the health prob-
abilities per component at a comparable time and space complexity to current
SFL approaches.

Apart from a formal proof of Barinel’s optimality in the single-fault case,
synthetic experiments with multiple injected faults have confirmed that our
approach consistently outperforms other spectrum-based approaches, such as
the Tarantula tool and previous Bayesian reasoning approaches. Application
to a set of software programs (Siemens set, space) also indicates Barinel’s ad-

Chapter 5. A Bayesian Approach to SFL 105

vantage (20 wins out of 24 trials, despite the significant variance), while the
exceptions can be pointed to particular program properties in combination
with sampling noise. Although being more expensive than statistics-based
techniques, our approach is a comparable complexity class, which, after fur-
ther optimization, makes it quite amenable to large software systems.

106

6
A Low-Cost Approximate Minimal Hitting
Set Algorithm

A B S T R A C T

In Chapter 5 we have used a minimal hitting set algorithm to compute a set
of high-potential multiple-fault candidates that were subject to a subsequent
Bayesian reasoning approach to rank them. Generating minimal hitting sets of
a collection of sets is known to be NP-hard, necessitating heuristic approaches
to handle large problems. In this chapter a low-cost, approximate minimal
hitting set (MHS) algorithm, coined Staccato, is presented. Staccato uses
a heuristic function borrowed from SFL to guide the MHS search. Given the
nature of the heuristic function, Staccato is specially tailored to model-based
diagnosis problems (where each MHS solution is a diagnosis to the problem),
although well-suited for other application domains. We apply Staccato in
the context of model-based diagnosis and show that even for small problems
our approach is orders of magnitude faster than the brute-force approach,
while still capturing all important solutions - as the diagnostic accuracy of
both approaches is essentially the same. Due to its low cost complexity, we
also show that Staccato is amenable to large problems including millions of
variables.

//

Identifying minimal hitting sets (MHS) of a collection of sets is an important
problem in many domains, such as in model-based diagnosis (MBD) where
the MHS are the solutions for the diagnostic problem. Known to be a NP-
hard problem [Garey and Johnson, 1979], the usage of exhaustive algorithms,
e.g. [Reiter, 1987, Greiner et al., 1989, Wotawa, 2001], is prohibitive for large-
scale problems. To decrease the cost complexity of MHS algorithms, rendering
them amenable to large problems, one

1. uses focusing heuristics to increase the search efficiency and/or

2. limits the size of the return set.

Such strategies have the potential to reduce the MHS problem to a polynomial
time complexity at the cost of completeness.

107

In this chapter, we present an algorithm, coined Staccato
1, to derive an

approximate collection of MHS that uses an heuristic borrowed from SFL (see
Chapter 2 for a detailed definition). SFL uses sets of component involvement
in nominal and failing program executions to yield a ranking of components
in order of likelihood to be at fault. We show that this ranking heuristic is suit-
able to derive the MHS solutions in the MBD domain as the search is focused
by visiting solutions in best-first order (aiming to capture the most relevant
probability mass in the shortest amount of time). Although the heuristic orig-
inates from the MBD domain, it can also be used for other problem domains.
We also introduce a search pruning parameter λ and a search truncation pa-
rameter L. λ specifies the percentage of top components in the ranking that
should be considered, using the knowledge that only most probable solutions
are visited. Taking advantage of the fact that most relevant solutions are vis-
ited first, the search can be truncated after L solutions are found, avoiding the
generation of a myriad of solutions.

In particular, this chapter makes the following contributions:

• We present a new algorithm Staccato, and derive its time and space
complexity;

• We compare Staccato with a brute-force approach using synthetic data
as well as data collected from a real software program;

• We investigate the impact of λ and L on Staccato’s cost/completeness
trade-off.

To the best of knowledge this heuristic approach has not been presented be-
fore and has proven to have a significant positive effect on MBD complexity
in practice (see Chapter 5).

The reminder of this chapter is organized as follows. We start by intro-
ducing the MHS problem. Subsequently, Staccato is described, followed by
a derivation of the time/space complexity. The experimental results are then
presented, followed by a discussion of related work. Finally, a summary of
this chapter is given.

6.1 M I N I M A L H I T T I N G S E T P R O B L E M

In this section we describe the minimal hitting set (MHS) problem, and the
concepts used throughout this chapter.

Let S be a collection of N non-empty sets S = {s1, . . . sN}. Each set si ∈ S
is a finite set of elements (components from now on), where each of the M
elements is represented by a number j ∈ {1, . . . , M}. A minimal hitting set of S
is a set d such that

∀si ∈ S, si ∩ d , ∅ ∧ @d′ ⊂ d : si ∩ d′ , ∅

1Staccato is an acronym for STAtistiCs-direCted minimAl hiTting set algOrithm.

108

i.e., each member of S has at least one component of d as a member.,
and no proper subset of d is a hitting set. There may be several mini-
mal hitting sets for S, which constitutes a collection of minimal hitting sets
D = {d1, . . . , dk, . . . , d|D|}. The computation of this collection D is known to be
a NP-hard problem [Garey and Johnson, 1979].

In the remainder of this chapter, the collection of sets S is encoded into a
N × M (binary) matrix A (which is similar to the activity matrix in SFL). An
element aij is equal to 1 if component j is a member of set i, and 0 otherwise.
For j ≤ M, the row Ai∗ indicates whether a component is a member of set i,
whereas the column A∗j indicates which sets component j is a member. As
an example, consider the set S = {{1, 3}, {2, 3}} for M = 3, represented by the
matrix

1 2 3

1 0 1 first set
0 1 1 second set

A naı̈ve, brute-force approach to compute the collection D of minimal hit-
ting sets for S would be to iterate through all possible component combina-
tions to (1) check whether it is a hitting set, and (2) and (if it is a hitting
set) whether it is minimal, i.e., not subsumed by any other set of lower car-
dinality (cardinality of a set dk, |dk|, is the number of elements in the set).
As all possible combinations are checked, the complexity of such an ap-
proach is O(2M). For the example above, the following sets would be checked:
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} to find out that only {3} and {1,2} are
minimal hitting sets of S.

6.2 S TA C C AT O

As explained in the previous section, brute-force algorithms have a cost that is
exponential in the number of components. Since many of the potential solu-
tion candidates turn out to be no minimal hitting set, a heuristic that focuses the
search towards high-potentials will yield significant efficiency gains. In addi-
tion, many of the computed minimal hitting sets may potentially be of little
value for the problem that is being solved. Therefore, one would like the solu-
tions to be ordered in terms of relevance, possibly terminating the search once
a particular number of minimal hitting sets have been found, again boosting
efficiency. In this section we present our approximate, statistics-directed mini-
mal hitting set algorithm, coined Staccato, aimed to increase search efficiency.

The key idea behind our approach is the fact, that components that are
members of more sets than other components, may be an indication that there
is a minimal hitting set containing such component. The trivial case are those
components that are involved in all sets, which constitute a minimal hitting set
of cardinality 1. A simple search heuristic is to exploit a ranking based on the

Chapter 6. A Low-Cost Approximate Minimal Hitting Set Algorithm 109

number of set involvements such as

H(j) =
N

∑
i=1

aij

To illustrate, consider again the example above. Using the heuristic func-
tion H(j), it follows that H(1) = 1, H(2) = 1, and H(3) = 2, yielding the ranking
< 3, 1, 2 >. This ranking is exploited to guide the search. Starting with compo-
nent 3, it appears that it is involved in the two sets, and therefore is a minimal
hitting set of minimal cardinality. Next in the ranking comes component 1.
As it is not involved in all sets, it is combined with those components that are
involved in all sets except the ones already covered by 1 (note, that combina-
tions involving 3 are no longer considered due to subsumption). This would
lead us to find {1,2} as a second minimal hitting set.

Although this heuristic avoids having to iterate through all possible com-
ponent combinations (O(2M)), it may still be the case that many combinations
have to be considered. For instance, using the heuristic one has to check 3

sets, whereas the brute-force approach iterates over 8 sets. Consequently, we
introduce a parameter λ that contains the fraction of the ranking that will be
considered. The reasoning behind this parameter is that the components that
are involved in most sets (ranked high by H) are more likely to be a mini-
mal hitting set. Clearly, λ cannot be too small. In the previous example, if
λ would be set to λ = 1/3, only element 3 would be considered, and there-
fore we would miss the solution set {1,2}. Hence, such a parameter trades
efficiency for completeness.

6.2.1 Approximation

While the above heuristic increases search efficiency, the number of minimal
hitting sets can be prohibitive, while often only a subset need be considered
that are most relevant with respect to the application context. Typically, ap-
proaches to compute the minimal hitting set are applied in the context of
(cost) optimization problems. In such case, one is often interested in finding
the minimal hitting set of minimal cardinality. For example, suppose one is re-
sponsible for assigning courses to teachers. Due to lack of funds, one proposes
to minimize the number of teachers that need to be hired. Hence, one would
like to find the minimal number of teachers that can teach all courses, which
can be solved by formulating the problem as a minimal hitting set problem.
For this example, solutions with low cardinality (i.e., number of teachers) are
more attractive than those with higher cardinality. The brute-force approach,
as well as the above heuristic approach are examples of approaches that find
minimal hitting sets with lower cardinality first.

In many situations, however, obtaining MHS solutions in order of just car-
dinality does not suffice. An example is model-based diagnosis (MBD) where
the minimal hitting sets represent fault diagnosis candidates, each of which
has a certain probability of being the actual diagnosis. The most cost-efficient

110

approach is to generate the MHS solutions in decreasing order of probabil-
ity (minimizing average fault localization cost). Although probability typi-
cally decreases with increasing MHS cardinality, cardinality is not sufficient,
as, e.g., there may be a significant probability difference between diagnosis
(MHS) solutions of equal cardinality (of which there may be many). Conse-
quently, a heuristic that predicts probability rather than just cardinality makes
the difference. The fact that the MHS solutions are now generated in decreas-
ing order of probability allows us to truncate the number of solutions, where,
e.g., one only considers the MHS subset of L solutions that covers .99 probabil-
ity mass, ignoring the (many) improbable solutions. This approximation trades
limited cost penalty (completeness) for significant efficiency gains.

6.2.2 Model-Based Diagnosis

In this section we extend our above heuristic for use in MBD, as outlined
in Chapter 5, where conflicts are deduced from the activity matrix A and are
input to the MHS algorithm to deduce the multiple-fault diagnosis candidates.
As mentioned in Chapter 5, the MHS solutions dk are ranked in order of
probability of being the true fault explanation Pr(dk), which is computed using
Bayes’ update according to

Pr(dk|obsi) =
Pr(obsi|dk)

Pr(obsi)
· Pr(dk|obsi−1) (6.1)

where obsi denotes observation i. In the context of this chapter, an observation
obsi stands for a conflict set si that results from a particular observation. The
denominator Pr(obsi) is a normalizing term that is identical for all dk and thus
needs not be computed directly. Pr(dk|obsi−1) is the prior probability of dk,
before incorporating the new evidence obsi. For i = 1 Pr(dk) is defined in a
way such that it ranks components of lower cardinality higher in absence of
any observation. Pr(obsi|dk) is defined as

Pr(obsi|dk) =

0 if obsi ∧ dk |=⊥
1 if dk → obsi
ε otherwise

In MBD, many policies exist for ε based on the chosen modeling strategy. In
the context of this chapter we use the ε(2) strategy defined in Chapter 5.

Given a sequence of observations (conflicts), the MHS solutions should be
ordered in terms of Eq. (6.1). However, using Eq. (6.1) as heuristic is compu-
tationally prohibitive as it has exponential complexity (e.g., in M). Clearly, a
low-cost heuristic that still provides a good prediction of Eq. (6.1) is crucial if
Staccato is to be useful in MBD.

Chapter 6. A Low-Cost Approximate Minimal Hitting Set Algorithm 111

M components conflict

N sets

a11 a12 . . . a1M
a21 a22 . . . a2M

...
...

. . .
...

aN1 aM2 . . . aNM

e1
e2
...

eN

Figure 6.1 Encoding for a collection of sets

6.2.3 An MBD Heuristic

A low-cost, statistics-based technique that is known to be a good predictor
for ranking (software) faults in order of likelihood is SFL, as demonstrated
in Chapters 2 and 3. To comply with SFL, we extend A into a pair (A, e)
(see Figure 6.1), where e is a binary array which indicates whether the Ai∗
corresponds to erroneous system behavior (e = 1) or nominal behavior (e = 0).
Many similarity coefficients exist for SFL, the best one currently being the
Ochiai coefficient known from molecular biology and introduced to SFL in
Chapter 2 (see Eq. (2.3) in Section 2.1.2 of Chapter 2). In Chapter 2, it has been
shown that similarity coefficients provide an ordering of components that
yields good diagnostic accuracy, i.e., components that rank high are usually
faulty. This diagnostic performance, combined with the very low complexity
of s(j) is the key motivation to use the Ochiai coefficient s(j) for H. Thus,

s(j) =
n11(j)√

(n11(j) + n01(j)) ∗ (n11(j) + n10(j))
(6.2)

where
npq(j) = |{i | aij = p ∧ ei = q}|

If (A, e) only contains conflicts (i.e., @ei = 0), the ranking returned by this
heuristic function reduces to the original one

H(j) =
N

∑
i=1

aij = n11(j) (6.3)

and, therefore, classic MHS problems are also adequately handled by this
MBD heuristic.

6.2.4 Algorithm

Staccato uses the SFL heuristic Eq. (6.2) to focus the search of the minimal
hitting set computation (see Algorithm 3). To illustrate how Staccato works,
consider the following (A, e), comprising two (conflict) sets originating from
erroneous system behavior and one set corresponding to component involve-
ment in nominal system behavior.

112

1 2 3 ei
1 0 1 1 first set (error)
0 1 1 1 second set (error)
1 0 1 0 third set (nominal)

From (A, e) it follows H(1) = 0.5, H(2) = 0.7, and H(3) = 1, yielding the fol-
lowing ranking < 3, 2, 1 >. As component 3 is involved in all failed sets,
it is added to the minimal hitting set and removed from A using function
Strip Component, avoiding solutions subsumed by {3} to be considered (lines
5–12). After this phase, the (A, e) is as follows

1 2 ei
1 0 1

0 1 1

1 0 0

Next component to be checked is component 2, which is not involved in
one failed set. Thus, the column for that component as well as all conflict
sets in which it is involved are removed from (A, e), using the Strip function,
yielding the following

1 ei
1 1

1 0

Running Staccato with the newly generated (A, e) yields a ranking with
component 1 only (line 17), which is a MHS for the current (A, e). For each
MHS d returned by this invocation of Staccato, the union of d and component
2 is checked ({1, 2}), and because this set is involved in all failed sets, and is
minimal, it is also added to the list of solutions D (lines 18–24). The same
would be done for component 1, the last in the ranking, but no minimal
set would be found. Thus, Staccato would return the following minimal
hitting sets {{3}, {1, 2}}. Note that this heuristic ranks component 2 on top of
component 1, whereas the previous heuristic ranked component 1 and 2 at
the same place (because they both explained the same number of conflicts).

Staccato calls SFL C times to find a diagnosis candidate with cardinality C.
For instance, Figure 6.2 depicts the workflow for generating a candidate with
cardinality 3, the only solution for the following (A, e):

1 2 3 ei
1 0 0 1

0 1 0 1

0 0 1 1

0 0 1 1

1 0 0 0

In the figure, (A, e)(1) and (A, e)(2) represent the intermediate matrices.
In summary, Staccato comprises the following steps

Chapter 6. A Low-Cost Approximate Minimal Hitting Set Algorithm 113

3
2

1

(A,e)

SFL

SFL

2
1

(A,e)
(1)

SFL

1

(A,e)
(2)

{3,2,1}

Figure 6.2 Example workflow to generate a candidate with cardinality 3

• Initialization phase, where a ranking of components using the heuristic
function borrowed from SFL is computed (lines 1–4 in Algorithm 3);

• Components that are involved in all failed sets are added to D (lines
5–12);

• While |D| < L, for the first top λ components in the ranking (including
also the ones added to D, lines 13-25) do the following:

– remove the component j and all Ai∗ for which ei = 1 ∧ aij = 1 holds
from (A, e) (line 17);

– run Staccato with the new (A, e), and

– combine the solutions returned with the component and verify
whether it is a minimal hitting set (lines 17–24).

6.2.5 Complexity Analysis

To find a minimal hitting set of cardinality C Staccato has to be (recursively)
invoked C times. Each time it (1) updates the four counters per component
(O(N ·M)), (2) ranks components in fault likelihood (O(M · log M)), (3) traverses
λ components in the ranking (O(M)), and (4) checks whether it covers all failed
sets (O(N)). Hence, the overall time complexity of Staccato is merely O((M ·
(N + log M))C). In practice, however, due to the search focusing heuristic the
time complexity is merely O(C ·M · (N + log M)) (confirmed by measurements
in Section 6.3).

With respect to space complexity, for each invocation of Staccato, it
has to store four counters per component to create the SFL-based ranking

114

Algorithm 3 Staccato

Input: Matrix (A, e), number of components M, stop criteria λ, L
Output: Minimal Hitting set D

1 TF ← {Ai∗|ei = 1} . Collection of conflict sets
2 R← rank(H, A, e)
3 D ← ∅
4 seen← 0
5 for all j ∈ {1..M} do
6 if n11(j) = |TF| then
7 push(D, {j})
8 A← Strip Component(A, j) . Remove cj from A
9 R← R\{j}

10 seen← seen + 1
M

11 end if
12 end for
13 while R , ∅ ∧ seen ≤ λ ∧ |D| ≤ L do
14 j← pop(R)
15 seen← seen + 1

M
16 (A′, e′)← Strip(A, e, j)
17 D′ ← Staccato (A′, e′, λ, L)
18 while D′ , ∅ do
19 j′ ← pop(D′)
20 j′ ← {j} ∪ j′

21 if is not subsumed(D, j′) then
22 push(D, j′)
23 end if
24 end while
25 end while
26 return D

(n11, n10, n01, n00). As the recursion depth is C to find a solution of the same
cardinality, Staccato has a space complexity of O(C ·M).

6.3 E X P E R I M E N TA L R E S U LT S

In this section we present our experimental results using synthetic data and
data collected from a real software program.

6.3.1 Synthetic Diagnosis Experiments

In order to assess the performance of our algorithm we use the synthetic (A, e)
sets generated for the diagnostic algorithm research described in Chapter 5,
generated for various values of N, M, and the number of injected faults C

Chapter 6. A Low-Cost Approximate Minimal Hitting Set Algorithm 115

(cardinality). Component activity aij is sampled from a Bernoulli distribution
with parameter r, i.e., the probability a component is involved in a row of A
equals r. For the C faulty components cj (without loss of generality we select
the first C components, i.e., c1, . . . , cC are faulty). We also set the probability
a faulty component behaves as expected hj. Thus the probability of a com-
ponent j being involved and generating a failure equals r · (1− hj). A row i
in A generates an error (ei = 1) if at least 1 of the C components generates a
failure (or-model). Measurements for a specific scenario are averaged over 500
sample matrices.

Table 6.1 summarizes the results of our study for r = 0.6 (typical value for
software), M = 20 and N = 300, which is the limit for which a brute-force
approach is feasible. Per scenario, we measure the number of MHS solutions
(|D|), the computation CPU time (T), the completeness ρ per C (the ratio of so-
lutions with cardinality C found using Staccato and the brute-force approach,
indication of the heuristic’s search focusing ability), and the diagnostic per-
formance (W) for the brute-force approach (B-F) and Staccato with several λ

parameters. The completeness ρ values presented are per cardinality - sep-
arated by a ‘/’ - where the last value is the percentage of solutions missed
with C ≥ 6. Diagnostic performance is measured in terms of a diagnostic
performance metric W that measures the percentage of excess work incurred
in finding the actual components at fault, a typical metric in software debug-
ging [Abreu et al., 2007], after ranking the MHS solutions using the Bayesian
policy described in [Abreu et al., 2008c]. For instance, consider a M = 5 com-
ponent program with the following diagnostic report D =< {4, 5}, {1, 2} >,
while components 1 and 2 are actually faulty. The first diagnosis candidate
leads the developer to inspect components 4 and 5. As both components are
healthy, W is increased with 2

5 . The next components to be inspected are com-
ponents 1 and 2. As they are both faulty, no more wasted effort is incurred.
After repairing these two components, the program would be re-run to verify
that all test cases pass. Otherwise, the debugging process would start again
until no more test cases fail.

As expected, |D| and the time needed to compute D decreases with λ. Al-
though some solutions are missed for low values of λ, they are not important
for the diagnostic problem as W does not increase. This suggest that our
heuristic function captures the most probable solutions to be faulty. An im-
portant observation is that for λ = 1, the results are essentially the same as an
exhaustive search but with several orders of magnitude speed-up. Further-
more, we also truncated |D| to 100 to investigate the impact of this parameter
in the diagnostic accuracy for λ = 1. Although it has a small negative impact
on W, it reduces the time needed to compute W by more than half. For in-
stance, for C = 5 and h = 0.1 it takes 0.008 s to generate D, demanding the
developer to waste more effort to find the faulty components, W = 10%.

We have not presented results for other settings of M, N because the brute-
force approach does not scale. However, we observed the same trends with
Staccato as the ones presented. As an example, for M = 1, 000, 000, N =

116

h 0.1 0.9
C 1 5 1 5

B-
F |D| 355 508 115 286

T (s) 25.5 54.3 0.27 5.72

W (%) 0.0 13 14 21

St
a

c
c

a
t

o

λ = 0.1

|D| 63 127 10 46

T (s) 0.006 0.007 0.001 0.003

ρ (%) 0/0/0/65/87/0 0/0/41/95/60/82 0/44/100/0/0/0 0/0/42/88/0/0

W (%) 0.0 10.7 0.0 12.9

λ = 0.2

|D| 86 181 16 63

T (s) 0.008 0.009 0.02 0.003

ρ (%) 0/0/0/54/87/0 0/0/30/87/59/70 0/31/100/0/0/0 0/0/36/88/0/0

W (%) 0.0 9.2 0.0 13.9

λ = 0.3

|D| 112 232 26 75

T (s) 0.009 0.010 0.003 0.004

ρ (%) 0/0/0/30/74/0 0/0/21/87/53/65 0/25/73/0/0/0 0/0/26/75/0/0

W (%) 0.0 9.1 0.0 14.4

λ = 0.4

|D| 175 276 47 83

T (s) 0.011 0.012 0.004 0.004

ρ (%) 0/0/0/26/75/0 0/0/21/87/18/64 0/6/72/0/0/0 0/0/10/63/0/0

W (%) 0.0 9.2 0.0 13.8

λ = 0.5

|D| 218 300 67 146

T (s) 0.013 0.018 0.004 0.007

ρ (%) 0/0/0/23/66/0 0/0/10/87/6/65 0/0/64/0/0/0 0/0/5/56/0/0

W (%) 0.0 9.0 0.0 14.3

λ = 0.6

|D| 253 372 83 180

T (s) 0.015 0.019 0.004 0.008

ρ (%) 0/0/0/20/61/0 0/0/0.08/65/0/65 0/0/39/0/0/0 0/0/0/46/0/0

W (%) 0.0 8.8 0.0 14.7

λ = 0.7

|D| 293 425 87 199

T (s) 0.019 0.025 0.005 0.008

ρ (%) 0/0/0/11/50/0 0/0/0.06/54/0/55 0/0/39/0/0/0 0/0/0/44/0/0

W (%) 0.0 8.6 0.0 14.4

λ = 0.8

|D| 343 449 109 228

T (s) 0.023 0.028 0.06 0.009

ρ (%) 0/0/0/7/26/0 0/0/0.02/38/0/24 0/0/24/0/0/0 0/0/0/32/0/0

W (%) 0.0 8.8 0.0 14.8

λ = 0.9

|D| 355 508 115 270

T (s) 0.024 0.034 0.08 0.012

ρ (%) 0/0/0/0/0/0 0/0/0/15/0/10 0/0/0/0/0/0 0/0/0/13/0/0

W (%) 0.0 9.0 0.0 14.8

λ = 1

|D| 355 508 115 286

T (s) 0.025 0.041 0.010 0.016

ρ (%) 0/0/0/0/0/0 0/0/0/0/0/0 0/0/0/0/0/0 0/0/0/0/0/0

W (%) 0.0 9.0 0.0 14.9

Table 6.1 Results for the synthetic matrices

Chapter 6. A Low-Cost Approximate Minimal Hitting Set Algorithm 117

1, 000, and C = 1, 000, the candidate generation rate with Staccato is 4.1 ms on
average (2.1 ms for C = 100).

6.3.2 Real Software Analysis for Diagnosis

In this section we apply the Staccato algorithm in the context of model-based
software fault diagnosis, namely to derive the set of valid diagnoses given
a set of observations (test cases). We use the tcas program which can be
obtained from the software infrastructure repository (SIR, [Do et al., 2005]).
The other programs in SIR were not used because the brute-force approach
cannot handle them. TCAS (Traffic Alert and Collision Avoidance System) is
an aircraft conflict detection and resolution system used by all US commercial
aircraft. The SIR version of tcas includes 41 faulty versions of ANSI-C code
for the resolution advisory component of the TCAS system. In addition, it
also provides a correct version of the program and a pool containing N =
1, 608 test cases. tcas has M = 178 lines of code, which, in the context of the
following experiments, are the number of components. In our experiments,
we randomly injected C faults in one program. All measurements are averages
over 100 versions, except for the single fault programs which are averages
over the 41 available faults. The activity matrices are obtained using the GNU
gcov2 profiling tool and a script to translate its output into a matrix. As each
program suite includes a correct version, we use the output of the correct
version as reference. We characterize a run/computation as failed if its output
differs from the corresponding output of the correct version, and as passed
otherwise.

Table 6.2 presents a summary of the results obtained using a brute-force
approach (B-F) and Staccato with different λ parameters. Again, we report
the size of the minimal hitting set (|D|), the time T required to generate D, and
the diagnostic performance incurred by the different settings. As expected,
the brute-force approach is the most expensive of them all. The best trade-off
between complexity and the diagnostic cost W is for λ ≈ 0.5, since Staccato

does not miss important candidates - judging by the fact that W is essentially
the same as the brute-force approach - and it is faster than for other, higher λ.

Although Staccato was applied to other, bigger software programs (see
Chapter 5), no comparison is given as the brute-force algorithm does not scale.
As an indication, for a given program with M = 10, 000 lines of code and
N = 132 test cases, Staccato required roughly 1 s to compute the relevant
MHS solutions (for λ = 0.5 and L = 100). In addition, in these experiments,
using the well-known Siemens benchmark set of software faults and the space
program, L = 100 was proven to already yield comparable results to those
obtained for L = ∞ (i.e., generating all solutions).

2http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

118

tcas

C 1 2 5

#matrices 41 100 100

B-
F |D| 76 59 68

T (s) 0.98 2.1 11.2
W (%) 16.7 23.7 29.7

St
a

c
c

a
t

o

λ = 0.1
|D| 30 35 61

T (s) 0.11 0.16 0.22

W 15.2 29.3 37.1

λ = 0.2
|D| 34 39 62

T (s) 0.15 0.17 0.25

W 15.2 29.3 37.0

λ = 0.3
|D| 50 44 63

T (s) 0.18 0.18 0.26

W 16.2 28.8 37.1

λ = 0.4
|D| 51 58 65

T (s) 0.19 0.19 0.27

W 16.3 23.7 32.1

λ = 0.5
|D| 76 58 66

T (s) 0.20 0.20 0.30

W 16.7 23.7 30.1

λ = 0.6
|D| 76 59 67

T (s) 0.22 0.22 0.31

W 16.7 23.7 29.7

λ = 0.7
|D| 76 59 68

T (s) 0.23 0.25 0.34

W 16.7 23.7 29.7

λ = 0.8
|D| 76 59 68

T (s) 0.24 0.26 0.35

W 16.7 23.7 29.7

λ = 0.9
|D| 76 59 68

T (s) 0.27 0.27 0.37

W 16.7 23.7 29.7

λ = 1
|D| 76 59 68

T (s) 0.30 0.28 0.48

W 16.7 23.7 29.7

Table 6.2 Results for tcas

6.4 R E L AT E D W O R K

Several algorithms have been presented to solve the MHS problem. Exhaus-
tive approaches, which are in general independent of the application domain,
include the following works. Since Reiter [Reiter, 1987] showed that diagnoses
are MHSs of conflict sets, many approaches to solve this problem in this con-
text have been presented. In [Greiner et al., 1989, de Kleer and Williams,
1987, Reiter, 1987, Wotawa, 2001] the hitting set problem is solved using so-

Chapter 6. A Low-Cost Approximate Minimal Hitting Set Algorithm 119

called hit-set trees. In [Fijany and Vatan, 2004, Fijany and Vatan, 2005] the
MHS problem is mapped onto an 1/0-integer programming problem. Con-
trary to our work, their approach, which also targets the model-based di-
agnosis problem, does not use any other information but the conflict sets.
The integer programming approach has the potential so solve problems with
thousands of variables but no complexity results are presented. In contrast,
our low-cost approach can easily handle much larger problems. In [Zhao and
Ouyang, 2007] a method using set-enumeration trees to derive all minimal
conflict sets in the context of model-based diagnosis is presented. The authors
conclude that this method has a exponential time complexity in the number of
elements in the sets (components). The Quine-McCluskey algorithm [Quine,
1955], originating from logic optimization, is a method for deriving the prime
implicants of a monotone boolean function (which is a dual problem of the
MHS problem). This algorithm is, however, of limited use due to its expo-
nential complexity, which has prompted the development of heuristics such
as Espresso (discussed later on).

Many heuristic approaches have been proposed to render MHS computa-
tion amenable to large systems. In [Lin and Jiang, 2002, Lin and Jiang, 2003] an
approximate method to compute MHSs using genetic algorithms is described.
The fitness function used aims at finding solutions of minimal cardinality,
which is less suitable for MBD as even solutions with similar cardinality have
different probabilities of being the true fault explanation. Their paper does
not present a time complexity analysis, but we suspect the cost/complete-
ness trade-off to be worse than for Staccato. Stochastic algorithms, as dis-
cussed in the framework of constraint satisfaction [Freuder et al., 1995] and
propositional satisfiability [Qasem and Prügel-Bennett, 2008], are examples of
domain independent approaches to compute the MHS. Stochastic algorithms
are more efficient than exhaustive methods. The Espresso algorithm [Rudell,
1986], primarily used to minimize logic circuits, uses a heuristics to guide the
final result. Originating from logic circuits, it uses an heuristic to guide the
circuit minimization that is specific for this domain. Due to its efficiency, this
algorithm still forms the basis of every logic synthesis tool. Dual to the MHS
problem, no prime implicants cost/completeness data is available to allow
comparison with Staccato.

To our knowledge the statistics-based heuristic to guide the search for com-
puting MHS solutions has not been presented before. Although the heuristic
function used in our approach comes from a fault diagnosis approach, there
is no reason to believe that Staccato will not work well in other domains.

6.5 S U M M A RY

In this chapter we presented a low-cost approximate hitting set algorithm,
coined Staccato, which uses an heuristic borrowed from a low-cost, statistics
fault diagnosis tool, making it especially suitable to the model-based diagno-
sis domain.

120

Synthetic experiments have demonstrated that even for small problems our
heuristic approach is orders of magnitude faster than exhaustive approaches,
even when the algorithm is set to be complete. Our experiments have shown
that search can be further focused using a parameter to prune the search
space λ where completeness is hardly sacrificed for λ ≈ 0.5. Compared to λ,
the impact of truncating the number of solutions L in the set on cost is much
greater. As most relevant solutions are visited first, the number of solutions
returned to the user can be suitably truncated (e.g., only returning 100 can-
didates in the context of model-based diagnosis). Hence, a very attractive
cost/completeness trade-off is reached by setting λ = 1 while limiting L.

Chapter 6. A Low-Cost Approximate Minimal Hitting Set Algorithm 121

122

7
Using SFL to Focus Model-based Software
Debugging

A B S T R A C T

SFL is a statistical technique that aims at helping software developers to find
faults quickly by analyzing abstractions of program traces to create a rank-
ing of most probable faulty components (e.g., program statements). Although
spectrum-based fault localization has been shown to be effective, its diagnos-
tic accuracy is inherently limited, since the semantics of components are not
considered. In particular, components that exhibit identical execution patterns
cannot be distinguished. To enhance its diagnostic quality, in this chapter, we
combine spectrum-based fault localization with a model-based debugging ap-
proach based on abstract interpretation within a framework coined Deputo.
The model-based approach is used to refine the ranking obtained from the
spectrum-based method by filtering out those components that do not ex-
plain the observed failures when the program’s semantics is considered. We
show that this combined approach outperforms the individual approaches
and other state-of-the-art automated debugging techniques.

//

Considerable costs are attached to locating and eliminating problems in soft-
ware systems during development as well as after deployment [RTI, 2002].
Hence, numerous approaches have been proposed to automate parts of the
testing and debugging process to help detect more defects earlier in the de-
velopment cycle and to guide software engineers towards possible faults.

Statistical techniques are rather dependent on the availability of a suitable
test suite. Better results can often be achieved if a model of the correct pro-
gram behavior is available. Model-based software debugging (MBSD) tech-
niques have been advocated as powerful debugging aid that isolate faults in
complex programs [Mayer and Stumptner, 2008, Mayer, 2007]. By comparing
the state and behavior of a program to what is anticipated by its programmer,
model-based reasoning techniques separate those parts of a program that may
contain a fault from those that cannot be responsible for observed symptoms.
Although being competitive with other state of the art automated debugging
approaches [Mayer and Stumptner, 2008], MBSD is computationally much
more demanding than SFL and may still produce a large output that lacks
ranking information.

123

In this chapter, we present a new framework, coined Deputo
1, that inte-

grates SFL with MBSD to focus the search by filtering ranked results. Our
approach first uses SFL to compute the ranked list of likely faulty compo-
nents, and, subsequently, applies MBSD to refine the ranking by removing
components that do not explain observed failures. Our algorithm combines
the low computational complexity from SFL and the significantly improved
diagnostic accuracy from MBSD. While MBSD is general enough to be com-
bined with almost any debugging tool that can expose its findings in terms of
the original program’s source code and a set of fault assumptions, the com-
bination of semantic and trace-based analysis (SFL) is particularly appealing,
since the approaches contribute complementary information: MBSD injects
and analyses specific modifications to the semantics of a program, while dy-
namic analysis exploits fault correlation to focus the search.

In this chapter, similar to the previous one, SFL is used as a focusing mech-
anism. In the previous chapter, SFL was used to derive the set of valid diagno-
sis candidates given the matrix. However, no program component topology
is taken into account, many of the solutions generated can, in fact, be dis-
carded. In this chapter, MBSD is used to find “mere coincidence” to definite
explanations.

In particular, this chapter makes the following contributions

• We present a new algorithm, Deputo, that integrates MBSD with SFL to
focus search and rank results.

• We show that, as a result, fewer program fragments are being impli-
cated, leading to considerably increased accuracy.

• We show that our algorithm has low complexity, specially compared
with MBSD, making it amenable to large programs.

The chapter is organized as follows. The principles of model-based debug-
ging are outlined in Section 7.1. The combined framework is discussed in
Section 7.2. Empirical validation of our approach and our findings are given
in Section 7.3. Section 7.4 discusses relevant related works, followed by the
summary.

7.1 M B S D

Statistics-based techniques, such as the one described on Chapter 2, are rather
dependent on the availability of a suitable test harness. Better results can often
be achieved if a model of the correct program behavior is available to guide
debugging efforts, for example, a partial specification expressed in some for-
mal language. Unfortunately, building such models is error-prone and pro-
hibitively expensive for many software development scenarios. Attempts to

1Latin for pruning.

124

Conformance Test

Diagnoses

MBSD Engine

Conflict sets Assumptions
Fault

Test Cases

Components

Program

Figure 7.1 Model-based Software Debugging

devise formal specifications for non-trivial systems has shown that construct-
ing a model that captures an abstraction of the semantics of a system can be
as difficult and fallible as building a concrete implementation [Musuvathi and
Engler, 2003].

Model-based diagnosis has been proven successful in aiding developers in
locating the root cause of failures in physical systems by using a model of the
systems’ intended behavior [Reiter, 1987]. For software programs, however,
creating such a model can be as difficult and error-prone as building the actual
implementation [Musuvathi and Engler, 2003]. Model-based Software debug-
ging [Mayer and Stumptner, 2008] (see Figure 7.1, which was taken from the
website of the MBSD project [MBSD, 2008]) aims to close the gap between
powerful formal analysis techniques and execution-based strategies in a way
that does not require the end-user to possess knowledge of the underlying rea-
soning mechanisms. Here, an adaptation of the classic “reasoning from first
principles” [Reiter, 1987] (that is, information directly available from program
execution and source code) paradigm borrowed from diagnosis of physical
systems is particularly appealing, since much of the complexity of the formal
underpinnings of program analysis can be hidden behind an interface that re-
sembles the end-user’s traditional view of software development. In contrast
to statistics-based approaches, MBSD is less dependent on large test suites as
it exploits a model of normal behavior.

In contrast to classical model-based diagnosis, where a correct model is
furnished and compared to symptoms exhibited by an actual faulty physi-
cal artifact, debugging software reverses the roles of model and observations.
Instead of relying on the user to formally specify the desired program be-

Chapter 7. Using SFL to Focus Model-based Software Debugging 125

havior, the (faulty) program is taken as its own model and is compared to
examples representing correct and incorrect executions. Hence, the model
in MBSD reflects the faults present in the program, while the observations
indicate program inputs and correct and incorrect aspects of a program’s exe-
cution. Observations can either be introduced interactively or can be sourced
from existing test suites.

In the following, we briefly outline the model construction. More detailed
discussion can be found in [Mayer and Stumptner, 2008]. Similar to SFL, a
program is partitioned into components, each representing a particular frag-
ment in the program’s source code. The behavior of each component is au-
tomatically derived from the effects of individual expressions the component
comprises. Connections between components are based on control- and data-
dependencies between the program fragments represented by each compo-
nent.

Assume a model at statement granularity is to be created from the program
in Figure 7.2. For each statement s, a separate component is created that
is comprised of the expressions and sub-expressions in s. The inputs and
outputs of the components correspond to the used and modified variables,
respectively. Connections between the components are created to reflect data
dependencies between statements in the program (as determined by a simple
data flow analysis). Additional variables and components may be introduced
to correctly capture data flow at points where control flow paths may split
or merge. The component c7 corresponding to statement 7 in Figure 7.2 is
represented as a component with input i2 and output i7. Here, i7 represents
the result value of statement 7, and i2 denotes the previous value of variable i
that is implicitly defined at the loop head in line 2.

Similar to classical model-based diagnosis, the model also provides op-
erating modes for each component, where the “correct” (healthy) mode hj of
component cj corresponds to the case where cj is not to blame for a program’s
misbehavior. In this case, cj is defined to function as specified in the program.
Conversely, when component j is assumed “not healthy” (¬hj), cj may deviate
from the program’s behavior.

For example, the behavior of c7 can be expressed as the logical sentence

h7 ⇒ i7 = i2 + 1. (7.1)

In the case where c7 is considered faulty (¬h7 is true), the effect on i7 is left
unspecified.

The main difference between the original program and its model is that the
model represents the program in a form that is suitable for automated con-
sistency checking and prediction of values in program states in the presence
of fault assumptions. This includes program simulation on partially defined
program states, using abstract interpretation [Cousot and Cousot, 1977], and
backward propagation of values or constraints, which would not occur in a
regular (forward) program execution.

126

function FindIndex(tbl, n, k)
. Find the index of key k in the hash table tbl[0, . . . , n − 1], or −1 if not

found.
Assumes that tbl contains a free slot.

1 i← Hash(k) . Hash key
2 while tbl[i] , 0 do . Empty slot?
3 if tbl[i] = k then
4 return i . Found match
5 end if
6 if i < n− 1 then . At end?
7 i← i + 1 . Try next
8 else
9 i← 1 . Wrap around (Fault)

10 end if
11 end while
12 return −1 . Not found

end function
Figure 7.2 Algorithm to search in a hash table

Since the resulting model includes the same faults as the program, means
to compensate for incorrect structure and behavior of components must be
introduced. While heuristics to diagnose structural deficiencies in physical
systems can be based on invariants and spatial proximity [Böttcher, 1995],
in software, the model must be adapted and restructured once a defect in
its structure has become a likely explanation. Here, detection and model
adaptation must be guided by using abstract assertions that capture simple
“structural invariants” [Mayer and Stumptner, 2008]. Also, since different
fault assumptions may alter the control and data flow in a program, models
may be created lazily rather than in the initial setup stage.

A trade-off between computational complexity and accuracy can be
achieved by selecting different abstractions and models [Mayer and Stumpt-
ner, 2008], both in terms of model granularity and representation of program
states and executed transitions. In Eq. (7.1) the representation of program
state has been left unspecified. Using an interval abstraction to approximate
a set of values, sentence Eq. (7.1) becomes a constraint over interval-valued
variables i2 and i7 [Mayer and Stumptner, 2008]. Another possible abstraction
is to encode the operation as logical sentences over the variables’ bit repre-
sentations [Mayer and Stumptner, 2008]. In this chapter, we use the inter-
val abstraction, since it provides good accuracy but avoids the computational
complexity of the bit-wise representation. In this chapter, we use a combina-
tion of both approaches, where interval abstraction is applied first, followed
by bit-wise representation to gain precision but avoid the computational com-
plexity required by the bit-wise model.

Similar to consistency-based diagnosis of physical systems [Reiter, 1987],

Chapter 7. Using SFL to Focus Model-based Software Debugging 127

from discrepancies between the behavior predicted by the model and the be-
havior anticipated by the user, sets of fault assumptions are isolated that ren-
der the model consistent with the observations. Formally, the MBSD frame-
work is based on extensions to Reiter’s consistency-based framework, where
a diagnosis is a set of faulty components that together explain all observed
failures. Diagnoses are obtained by mapping the implicated components into
the program’s source code [Mayer and Stumptner, 2008].

Diagnosis Let P denote a program and T a set of test cases, where each T ∈ T
is a pair 〈I, O〉 where I specifies P ’s inputs and A is a set of assertions over
variables in P that (partially) specify the correct behavior of P with respect to T.
Let C denote a partition of the statements in P . A diagnosis of P with respect
to T is a set of components D such that ∀〈I, A〉 ∈ T :

P(I)∧{¬hj|cj ∈ D} ∧{hj|cj ∈ C \ D} 6|= ¬O.

As an example, suppose the program in Figure 7.2, which contains a defect
in line 9 – instead of assigning 0 to variable i, it assigns 1. An observation for
this program consists of program inputs, i.e., values for variables tbl, n and
k, together with the anticipated result value returned by the algorithm. For
example, the following assignments

• tbl ← [90, 21, 15, 0, 0, 0, 8, 23, 0, 0, 0, 0, 50, 60, 59],

• n← 16, and

• k← 90

and the assertion result = 0 could be an “observation” specifying the inputs
and the desired result of a particular program execution. Since the result (−1)
obtained by running the program on the given inputs contradicts the antic-
ipated result (0), it has been shown that the program is incorrect (assuming
that the test harness is correct).

When MBSD is used with the program in Figure 7.2 and the test case above,
a contradiction is detected when the assertion checking the expected result
fails. It is derived that the (cardinality-) minimal fault assumptions that are
consistent with our test specification are: {¬h1}, {¬h7}, {¬h9}, and {¬h12}.
Hence, the statements in lines 1, 7, 9 and 12 are considered the possible root
causes of the symptoms. Any other statement cannot alone explain the incor-
rect result, since the result remains incorrect even if a statement is altered.

Internally, MBSD compiles the program into a notation that facilitates sym-
bolic execution of the program. This representation is used to reason over ob-
served failures. To illustrate how MBSD works internally, suppose the simple
program in Figure 7.3 (we decided to use this program instead of the working
example using thusfar for simplicity). When the program is run with x = 2
and n = 3, the expected result is 8, but instead a 0 is returned. As an exam-
ple, and using the test case, MBSD computes whether c3 is a valid diagnosis

128

candidate by checking if the following formula is consistent

¬h3 ∧
x, n, p ∈ {[k, l] | x, n ∈ R, k ≤ l} ∧
x = 2∧ n = 3∧

¬h1 ∨ p = 1∧
(¬h2 ∨ n > 0∧
¬h3 ∨ p = p÷ x ∧
¬h4 ∨ n = n− 1)n ∧

p = 8

function Pow(x, n)
. Compute xn

1 p← 1
2 while n > 0 do
3 p← p÷ x . Fault: used ÷ instead of ×.
4 n← n− 1
5 end while

return p
end function

Figure 7.3 Faulty power function

Because there is a solution for the formula above, c3 is a valid diagnosis and
it is added to the diagnostic report. This is repeated to all components in
the program to obtain the list of all possible diagnosis candidates. For this
example D = {{1}, {3}, {5}}.

Conversely to SFL (see Chapter 2), the model-based technique captures
the semantics of programming constructs, but does not assign ranking in-
formation to candidate explanations. Hence, in this respect the techniques
complement each other.

7.1.1 Issues in MBSD

While the pure MBSD framework is well-suited to carry out complex infer-
ences, its application in practice is limited due to the following factors:

Result interpretation: If many explanations are returned, MBSD alone pro-
vides little information to discriminate between the different explanations.
Here, a mechanism to rank results would be desired.

In contrast to electronic circuits, where long sequences of e.g. inverters are
uncommon, program executions frequently contain long chains of control-
and data dependencies, leading to a number of explanations that cannot be
distinguished without further observations. For example, the value of the con-
ditional test in line 2 of the program in Figure 7.2 depends on all statements

Chapter 7. Using SFL to Focus Model-based Software Debugging 129

executed in previous iterations. Interactive measurement selection techniques
are difficult to apply, since program states in different executions may be in-
comparable, rendering entropy-based solutions ineffective.Returning a “super
component” as explanation is also not viable in general, since the involved
statements can span many different program fragments. Therefore, an ap-
proach that works with little or no user involvement is desired.

Scalability: The application of MBSD has been limited to small programs,
since the computational effort exceeds what is considered reasonable for in-
teractive scenarios. Hence, inference processes must be applied selectively to
remain efficient.

External interfaces: MBSD requires that effects of program fragments can be
simulated even if only partial information is available. Programs interacting
with external components, such as I/O, files and GUIs, must be modified to
either remove these interactions or provide placeholder implementations.

The first two issues can be addressed by introducing a mechanism to es-
timate, for each component c in the model, how likely it is that c contains a
fault. The third issue is common to most program analysis techniques and is
beyond the scope of this chapter.

Assuming a suitable measure is available, ranking of results based on fault
probability and investigating different explanations in best-first order rather
than computing all explanations at once are straightforward. Since a priori
probabilities are typically not directly available, other means to determine a
suitable likelihood value must be used.

As demonstrated in Chapter 2, SFL is a light-weight technique that ana-
lyzes abstraction of program traces to yield a ranking of likely fault locations.
To illustrate how SFL works, consider the faulty program in Figure 7.2 and
the inputs/outputs used to illustrate the MBSD approach. Executing the pro-
gram in Figure 7.2 using that observation results in the first row vector in the
activity matrix A in Figure 7.4. The vector contains a single 0 entry, indicating
that all components but c4 are executed. Since the returned value does not
match the anticipated result, the entry in the error vector is set to 1. Assume
that further tests are executed to yield the other 5 rows in the activity matrix.

For each component cj the Ochiai similarity sj is given below the matrix.
For c3, the similarity coefficient s3 is 0.63: as can be seen from the third column
in the matrix, there are two failing test runs where c3 is executed (n11(3) = 2),
no failing run where c3 does not participate (n01(3) = 0), and three successful
executions where c3 is involved (n10(3) = 3). c6, c7 and c9 are considered to
be most closely correlated with failing tests and should be examined first.
Conversely, c4 is not considered relevant at all.

Since SFL abstracts a program’s behavior into a model that is not suitable
for reasoning about the semantics of individual components, results may suf-
fer from the following phenomena:

130

c1 c2 c3 c4 c6 c7 c9 c12 e
1 1 1 0 1 1 1 1

1 1 0 0 0 0 0 1

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 0

1 1 1 0 1 1 1 1

1 1 1 0 1 1 1 0

1
0
0
0
0
1

0.58 0.58 0.63 0.00 0.71 0.71 0.71 0.58

Figure 7.4 Activity Matrix

• If a fault lies in a component that participates in all runs (for example,
an initialization component), the component is likely not to be ranked
in the first places;

• SFL cannot distinguish between components that exhibit identical exe-
cution patterns (such as components c6, c7, and c9);

• Nested components executed after the fault is hit are likely to outrank
the faulty component. For example, branches of a conditional statement
are likely to outrank those components preceding it.

• Many components may be included in the ranking. In our example,
seven out of eight components are included in the report.

The aim of this chapter is to show that correlation between the execution
patterns of statements with correct and failed executions can significantly im-
prove diagnosis results. The following section outlines our approach to assess-
ing the similarity between different program executions and test outcomes.
Since MBSD does not usually exploit correct program executions in any way,
this approach can contribute valuable information to guide the model-based
framework.

7.2 D E P U T O

In this section we describe how we combine the spectrum-based and the
model-based approaches described earlier, in order to capture the best char-
acteristics of both techniques.

Algorithm 4 outlines our combined approach. The algorithm executes in
three stages, with the similarity-based approach used in the setup stage (steps
1 to 6), feeding into the subsequent model-based filtering stage (steps 7 to 16),
followed by an optional best-first search stage (lines 17 to 24). This combi-
nation has significantly lower resource requirements than applying MBSD on
the whole program and using SFL only to rank results as proposed in [Mayer
et al., 2008]. We start by partitioning the program P into a set of components
C and execute P on the available test cases T to obtain the activity matrix M.

Chapter 7. Using SFL to Focus Model-based Software Debugging 131

Algorithm 4 Deputo Algorithm
Input: Program P , set of test cases T
Output: Fault assumptions explaining failed test runs

1 C ← CreateComponents(P)
2 M← GetComponentMatrix(C,P , T)
3 〈TP, TF〉 ← Partition(M, T)
4 R ← SFL(M) . Apply SFL
5 S ← ∅ . Skipped components
6 I ← ∅ . Inspected components
7 repeat
8 Ĉ ← Ranking pop(R)
9 D ← MBSD(Ĉ, TF) . Apply MBSD

10 I ← I ∪ D
11 if Dbug ∈ D is confirmed faulty then
12 return Dbug
13 else
14 S ← S ∪ (Ĉ \ D)
15 end if
16 until R = ∅
17 while S , ∅ do
18 Ĉ ← PDG Ranking pop(S , I)
19 I ← I ∪ Ĉ
20 if cbug ∈ Ĉ is confirmed faulty then
21 return {¬hbug}
22 end if
23 end while
24 return ∅ . No explanation found

UsingM, we partition T into passing tests (TP) and failing ones (TF). FromM,
a sorted list of components R in order of likelihood to be at fault is obtained
as described in Chapter 2 (line 4).

In the subsequent loop, MBSD (line 9) is used to eliminate the top-ranked
candidate explanations that are not considered valid explanations by the
model-based approach. Instead of applying MBSD once to compute all expla-
nations and present the ranked candidates to the user, an incremental strategy
allows for early termination once a fault has been identified. First, the set of
components Ĉ with the highest similarity coefficient in R are obtained using
the Ranking pop(R) function, which also removes from R all elements in Ĉ.
Second, function MBSD(Ĉ, TF) returns a set of candidate explanations D ⊆ Ĉ
that explain observed failures TF. Finally, if the fault is in the returned set,
the algorithm stops; otherwise none of the candidates represent valid expla-
nations and other must be generated. The algorithm stops once no more
explanations could be found or if none of the remaining components was ex-

132

ecuted for a failing test. S is the set of components that are implicated by SFL
but not by MBSD.

If no explanation is found after all components implicated by MBSD have
been explored, we employ a best-first search procedure that traverses the pro-
gram along dependencies between components with decreasing fault simi-
larity. No explanation may be found if the fault affects component inter-
dependencies such that the fault assumptions and model abstraction can no
longer represent the fault. In line 18, the set of components with maximum
fault similarity that are connected to the previously explored components is
returned. Function PDG Ranking pop(S , I) returns the set of components in S
with highest similarity that are directly connected to the previously inspected
set of component I. If the component is confirmed to be (part of) a valid
explanation, the search stops and the diagnosis is returned. Note that the
explanation may only cover part of the true fault. Line 24 in Algorithm 4 can
only be reached if the faulty program fragment is not covered by any com-
ponent, or if the user oracle that decides whether an explanation is indeed a
satisfying explanation is imperfect and may miss a fault.

Applying Algorithm 4 using the test suite from the example in Section 7.1,
{¬h7} and {¬h9} are obtained as candidate explanations. Both candidates are
associated with the highest similarity coefficient 0.71.

Notably, this result improves upon both individual fault localization proce-
dures. Different from pure SFL, {¬h6} is no longer considered an explanation.
Conversely, candidates {¬h1} and {¬h12} obtained using pure MBSD are low-
ranking in SFL and hence omitted at this stage. ({¬h12} is already eliminated
by pure MBSD when using the second failing test case in the example.)

Without further information, neither approach can discriminate between
the two remaining candidate explanations. Since it is assumed that the user
acts as oracle that can reliably recognize true faults, the algorithm stops in the
first iteration (in line 12), once the statement in Figure 7.2 corresponding to
{¬h9} has been confirmed to be incorrect.

7.3 E M P I R I C A L E VA L U AT I O N

To gain a better understanding of the combined approach, in this section,
we empirically evaluate its efficiency. First, we introduce the program under
analysis and the evaluation metric.

7.3.1 Experimental Setup

Program under analysis In our study we use the TCAS program as taken from
the Siemens Test Suite[Do et al., 2005]. TCAS simulates the resolution-advisory
component of a collision avoidance system similar to those found in commer-
cial aircraft. It consists of 138 lines of C code and takes twelve parameters as
input; the numeric result value encodes one out of three possible resolution
advisories. The program comes with 1608 test cases and 41 different variants

Chapter 7. Using SFL to Focus Model-based Software Debugging 133

B

F

Figure 7.5 SCORE: Traversing the PDG

with known faults. For each variant, an average of forty test cases reveal a
fault. In our experiments, all available test cases were used.

Evaluation Metric In the fault diagnosis research community rank- [Abreu
et al., 2007, Jones and Harrold, 2005, Wong et al., 2008] and dependency-
based [Liu et al., 2005, Renieris and Reiss, 2003] metrics have often been used.
The former quantify the quality of a result based on the ranking position of
the faulty component relative to all components, and is mainly used with
techniques that rank components in a program. In contrast, dependency-
based measures typically operate on the program dependence graph (PDG)
and are mainly applied to evaluate techniques that either do not rank com-
ponents (for example MBSD) or do not rank all components of a program
(such as SOBER [Liu et al., 2005]). Essentially, starting with the set of blamed
components, dependencies between components are traversed in breadth-first
order until the fault has been reached. The quality of a diagnostic report is
measured as the fraction of the PDG that is traversed. Both metrics quantify
the percentage of a program that needs to be inspected in order to find the
fault. We refer to them as Score.

To assess the accuracy of Deputo, we use both metrics. First, if a fault is
found in the refining phase (lines 7 to 16 in algorithm 4), the Score is given by

Score =
|I|
M
· 100%,

where |I| denotes the number of inspected components. However, if no fault is
found in this phase then we use the PDG-based metric by traversing the rank-
ing starting with the previous inspected set of components I (lines 17 to 23).
Figure 7.5 depicts how the PDG is used to compute the Score: consider B (for
blamed) to be the only component in I, Score is computed by computing the
number of nodes that we need to inspect to reach node F (for faulty).

134

� � � � � � � � �
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

������ ��������� ��������
�
��
�
�
�
�
��
�
��
�
�
�
��
��
��
�

Figure 7.6 Components implicated by SFL, MBSD, and DEPUTO for the 41 variants
of TCAS

7.3.2 Experimental Results

Results for the individual approaches have already been published elsewhere.
MBSD using an interval abstraction requires 11 statements to be inspected on
average [Mayer and Stumptner, 2008]. The median Score is 13% (14% on aver-
age) for TCAS. Note that when MBSD fails to implicate the faulty component,
more statements than just those in the diagnostic report must be inspected.
The results obtained with SFL are discussed in Chapter 2. Following the
generated ranking would lead to the fault after inspecting 20 statements on
average, resulting in a median (and average) Score of 14%.

Deputo combines SFL with MBSD to refine the ranking of implicated com-
ponents. To understand how well MBSD filters statements from the ranking,
we first study the number of implicated components. Figure 7.6 contrasts the
components implicated by either approach with those blamed by both. It can
be seen that MBSD significantly reduces the number of components when
compared with SFL. Furthermore, neither approach subsumes the other. Re-
stricting the debugging process to those statements that are implicated by
both approaches, the average number of statements reduces from 36 (20 if
considering only until the fault is hit) to 8. Hence, the total number of rel-
evant statements reduces considerably. Note, however, that Figure 7.6 does
not imply that SFL’s contribution is negligible; although it implicates more
components, it also builds a ranking that more quickly leads to the fault.

Chapter 7. Using SFL to Focus Model-based Software Debugging 135

Percentage of inspected code

N
u
m
b
e
r
o
f
lo
ca
te
d
 b
u
g
s

0
5

1
0

1
5

2
0

2
5

3
0

[0,10)
[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

NN
Sober
Deputo

Figure 7.7 Debugging efficiency

Similar improvements can be observed in the ranking of components. Us-
ing the pure SFL approach one hits the true fault after inspecting twenty
statements on average, but many unrelated statements must be examined.
When using MBSD as filtering mechanism, the true fault is located after seven
statements on average. Hence, the model-based filtering mechanism seems
well-suited to discard irrelevant components from the SFL fault profiles.

The improved accuracy of the combined approach also reflects in much im-
proved quality indicators. It is observed that the combined approach largely
outperforms the individual techniques. In some cases, SFL outperforms the
combined approach, suggesting that the model used in MBSD may not be able
to accurately reflect the fault; so far, we have not been able to devise heuristics
that can consistently predict such discrepancy from the a-priori component
probabilities and diagnoses to further improve accuracy. Overall, the fraction
of the program that must be inspected reduces from 13% and 30% for SFL
and MBSD, respectively, to 8%. Although MBSD alone is not able to locate
faults for 9 of the 41 programs (due to limitations on faults in global vari-

136

0%

20%

40%

60%

80%

100%

[0
,
1
0
)

[1
0
,
2
0
)

[2
0
,
3
0
)

[3
0
,
4
0
)

[4
0
,
5
0
)

[5
0
,
6
0
)

[6
0
,
7
0
)

[7
0
,
8
0
)

[8
0
,
9
0
)

[9
0
,
1
0
0
]

P
e
rc

e
n
ta

g
e
 o

f
L
o
c
a
te

d
 B

u
g
s

Percentage of Inspected Code (Score)

NN
Crosstab

Sober
MBSD

SFL
Deputo

Figure 7.8 Cummulative Debugging efficiency

able initialization in our current implementation), the overall performance of
the combined approach does not seem to be adversely affected in most cases.
This can be explained by two observations: (i) the number of diagnoses that
are implicated in those cases is small (4 on average), and (ii) the suspect pro-
gram fragments are close to the actual faults when navigating the program
structure.

Since the diagnostic report obtained from Deputo is a ranked list of likely
faulty components, its size alone is not a good indicator for its quality. Instead,
we employ the Score metric as defined in the previous section to evaluate our
results. Figures 7.7 and 7.8 visualize the percentage of located bugs and cu-
mulative percentage of located bugs, respectively, for different fractions of in-
spected code. Our approach outperforms the individual approaches as well as
the simple statistics-based fault localization technique proposed in [Renieris
and Reiss, 2003], where different combinations of union and intersection of
“similar” passing and failing test runs are computed. This can be attributed to
the improved ranking mechanisms built into our algorithm that is more robust
with respect to overlapping passing and failing executions. Our combined ap-
proach also improves on SOBER [Liu et al., 2005] and CROSSTAB [Wong et al.,
2008], which are statistical approaches based on hypothesis testing that have
been shown to dominate other recent bug detectors. For instance, if up to
10% of the program would have been inspected, Deputo would locate 71% of
the faults, whereas SOBER and CROSSTAB would yield only 51% and 53%,
respectively.

Chapter 7. Using SFL to Focus Model-based Software Debugging 137

sc
o

re

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

TCAS Variants

SFL
MBSD
Deputo
Top6

Figure 7.9 Individual report quality

We also evaluated a modified version of Algorithm 4, where the MBSD
section is stopped after the six2 most highly ranked components have been
explored; the remaining components were subsequently explored using the
best-first part of our algorithm. The resulting quality indicators are labeled
Top6 in Figure 7.9. The results indicate that the components implicated by the
combined approach sometimes narrowly miss the true faults; in these cases,
the score measure improves compared to the combined approach. In other
cases, following the original algorithm is more successful. Overall, the quality
indicators do not differ significantly between the two models. Investigating
whether heuristics can be developed that choose a cutoff to improve accuracy
remains for future work.

∆-slicing and explain [Groce et al., 2006] are two techniques for fault lo-
calization that exploit differences between passing and failing abstract pro-
gram executions traces found by a model checker. Table 7.1 compares our

2This cutoff seemed to have the best overall effect for an extended test suite used in [Liu et al.,
2005].

138

explain ∆-slicing Deputo

v1 49 9 7

v11 64 7 7

v31 24 7 7

v40 25 – 16

v41 32 12 6

Table 7.1 Individual SCORES

results to the published individual results for all five versions of TCAS re-
ported in [Groce et al., 2006]. We conclude that Deputo is far superior to
explain (which requires to explore 24–64% of a program) and performs com-
petitive with respect to Delta slicing (within 5%), yet at reduced complexity.
However, to understand whether our approach is indeed much better than
the ones presented in [Groce et al., 2006] more experimentation is needed.

Our combined framework also reduces the time required by MBSD from
185s [Mayer and Stumptner, 2008] to 73.2s on average, representing an average
speed-up of 2.5 times. The time required by the SFL part of our algorithm is
negligible.

7.4 R E L AT E D W O R K

The most similar work to the one presented in this chapter is described
in [Mayer et al., 2008] where a statistics-based approach is used to rank the
set of candidates given by MBSD. The authors conclude that the combina-
tion of the two approaches reduces the effort to track down faulty compo-
nents. However the computational complexity of this approach is determined
by MBSD. As a result of its high computational complexity, the approach
proves prohibitive for large programs. While the underlying principle is sim-
ilar to [Mayer et al., 2008], we achieved an 2.5 times (on average) speed-up
while maintaining the accuracy of the previous approach.

In model-based reasoning, the program model is typically generated from
the source code, as opposed to the traditional application of model based di-
agnosis where the model is obtained from a formal specification of the (phys-
ical) system [Reiter, 1987]. In [Mayer and Stumptner, 2008] an overview of
different MBSD techniques concludes that the Abstract Interpretation model
used in this work leads to good results while not suffering from the compu-
tational complexity inherent to more precise analysis techniques [Mayer and
Stumptner, 2008]. Recently, model-based techniques have also been proposed
to isolate specific faults stemming from incorrect implementation of high-level
conceptual models [Yilmaz and Williams, 2007], where mutations are applied
to state machine models to detect conceptual errors (see Figure 7.10), such as
incorrect control flow and missing or additional features found in the imple-
mentation. Other approaches that fit into this category include explain [Groce
et al., 2006] and ∆-slicing [Groce et al., 2006], which are based on comparing

Chapter 7. Using SFL to Focus Model-based Software Debugging 139

Conformance Test

Confirmed
Mutations

MBSD Engine

Test results

Test Cases

Program

Mutations

Specification

Selected
Mutation

Figure 7.10 Using Conceptual Models to Enhance MBSD

execution traces of correct and failed runs using model checkers. Model-based
test generation [Esser and Struss, 2007] from abstract specifications of systems
employs a similar idea where possible faults manifested as differences in ab-
stract state machines are analyzed to generate tests. Our work differs in that
we are concerned with program representations that more closely reflect the
actual program artifact to locate faults at a more detailed level [Mayer and
Stumptner, 2007a].

Machine learning techniques have been applied to programs [Xie and En-
gler, 2003] and their executions [Nimmer and Ernst, 2001] to infer likely in-
variants that must hold at particular locations in a program. Violations can
subsequently be used to detect potential errors. Model-based approaches have
been shown to provide more reliable behavior than [Nimmer and Ernst, 2001],
since success of the trace analysis depends much on the test runs and type of
invariants to be inferred [Köb and Wotawa, 2005]. The static program analysis
approach requires that similar patterns appear repeatedly in a program, but
is not applicable when common patterns are not easily identified.

Combining program execution and symbolic evaluation has been proposed
to infer possible errors [Engler and Dunbar, 2007]. Similar to MBSD, a sym-
bolic, under-constrained representation of a program execution and memory
structures are built. Instead of using fault probabilities to guide diagnosis,
only those candidate explanations that definitively imply a test failure are
flagged.

7.5 S U M M A RY

We have shown that the accuracy of spectrum-based fault localization in-
creases significantly when combined with approaches that make use of a

140

model to yield valid explanations for observed failures. Our unique com-
bination of semantics-based analysis as undertaken in model-based software
debugging and dynamic aspects obtained from program execution spectra
has proved to greatly focus debugging efforts to relevant parts of a program.
Overall, a reduction of suspect program fragments to less than 8% of the
complete program has been achieved on our test suite, outperforming both
individual techniques and most other state of the art techniques. Further-
more, an average speed-up of 2.5 compared to the model-based approach has
been observed. We have further shown that our approach is among the state
of the art automated debugging tools.

Chapter 7. Using SFL to Focus Model-based Software Debugging 141

142

8
Conclusions

“All truths are easy to understand once they are discovered; the
point is to discover them.”

– Galileo Galilei

Automatic fault localization techniques aid developers/testers to pinpoint
the root cause of software faults, thereby reducing the debugging effort. De-
pending on the amount of knowledge that is required about the system’s
internal component structure and behavior, current, predominant approaches
to automatic software fault localization can be classified as (1) statistics-based
approaches, and (2) reasoning approaches. Statistics-based fault localization
techniques such as SFL use program spectra to find a statistical relationship
with observed failures. While modeling costs and computational complexity
are minimal, SFL’s diagnostic accuracy is inherently limited as no reasoning is
used. In contrast to SFL, model-based reasoning approaches use prior knowl-
edge of the system, such as component interconnection and statement seman-
tics, to build a model of the correct behavior of the system. While delivering
higher diagnostic accuracy, they suffer from high computation complexity.

In this thesis, we endeavored to capture the best of both worlds in one sin-
gle approach by investigating a spectrum-based reasoning approach to fault
localization. By abstracting from program topology and dependencies, the
spectrum-based modeling approach, in conjunction with a low-cost heuris-
tic minimal hitting set algorithm, allows the reasoning to be relatively cheap,
while accuracy is increased compared to SFL. In particular, we investigated (1)
the inherent performance limitation of SFL, and (2) the benefits of a reasoning
approach to spectrum-based fault localization.

In addition, we also conducted the following studies. First, aimed at to-
tal automation of the fault localization process, we studied the capabilities of
simple, generic program invariants to replace test oracles. Second, we investi-
gated the possibility of using an SFL-based heuristic to focus the computation
of valid diagnosis candidates, rendering our reasoning approach amenable to
large programs. Finally, we studied whether SFL can be integrated with ex-
isting model-based software debugging approaches to reduce their high time
complexity, while improving their diagnostic quality.

143

8.1 S U M M A RY O F C O N T R I B U T I O N S

The main contributions of this thesis are twofold:

• From our study on SFL we found that near-maximal diagnostic accuracy
is already obtained for low-quality error observations and limited num-
bers of test cases (approximately 20% of the Siemens programs needs to
be inspected, on average, to find the fault). In particular, we found that
a new similarity coefficient, known from the molecular biology commu-
nity, the Ochiai similarity coefficient, consistently outperforms all coef-
ficients investigated, independent of the experimental environment.

• We present a novel, low-cost, Bayesian reasoning approach to spectrum-
based multiple fault localization, coined Barinel. A central feature of
our contribution is the use of a generic, intermittent component fail-
ure model. Whereas previous approaches have used approximations
instead, in Barinel component intermittency rate is computed as part
of the posterior candidate probability computation, using a maximum
likelihood estimation procedure. This procedure optimally exploits all
information contained by the program spectra. Our synthetic and real
software experiments show that Barinel outperforms SFL. Furthermore,
we have both empirically and theoretically established that Barinel’s di-
agnostic accuracy is optimal in the context of single-fault programs. In
perspective, our results also show that the diagnostic accuracy of the
previous, approximation-based approaches is only marginally worse,
while allowing an attractive, low-cost, incremental computation scheme
similar to coefficient computation in SFL.

Furthermore, this thesis also makes the following five additional contri-
butions. First, as SFL is amenable to resource-constrained software systems,
such as embedded software, we applied SFL to industrial (real-time) embed-
ded television software. From our experiments, we conclude that not only
SFL is well-suited to resource-constrained (embedded) systems, but SFL also
has the potential to reduce debugging effort from several weeks to a couple
of hours.

Second, we showed that simple fault screeners have the capabilities to re-
place test oracles with respect to the diagnostic performance of SFL at lim-
ited overhead. In particular, our empirical experiments suggest that SFL is
robust to false positives and negatives, which are a fact of life when using
generic fault screeners as error detectors. Our analytical screeners’ perfor-
mance model confirms the empirical experiments in that the training effort
required by near-“ideal” screeners increases with the variable domain size,
whereas simple screeners, such as range screeners, only require limited (con-
stant) training effort. From preliminary experiments, we conclude that not all
program variables need to be screened to yield comparable diagnostic results
as when all program variables are screened. This result paves the way for
automatic fault localization at modest run-time cost.

144

Third, we present an SFL-based heuristic algorithm, coined Staccato, to
focus the search of minimal hitting sets, decreasing the time complexity by
orders of magnitude while capturing all important diagnosis candidates. Stac-
cato is extremely important as Barinel critically depends on low-cost minimal
hitting set algorithms to be amenable to large software systems. For the pro-
grams considered, only O(100) candidates need to be generated to capture all
candidates needed to find the actual faults.

Fourth, we combined SFL with model-based software debugging to render
the latter amenable to larger programs, as well as to introduce ranking of its
diagnostic set. We showed that the combination of semantics-based analy-
sis as performed in model-based diagnosis and the dynamic aspects obtained
from program execution spectra yields better diagnostic reports. In our ex-
periments, an average reduction of suspect program fragments to less than 8%
of the complete program has been achieved, outperforming both individual
techniques and most other state-of-the-art techniques. We have also shown
that our combined approach yields an average speed-up of 2.5 compared to
the model-based approach.

Finally, on a more practical note, we released a toolset providing most of
the algorithms proposed in this thesis (http://www.fdir.org/zoltar) [Janssen
et al., 2009]. The toolset is composed of several instances of SFL (i.e., several
similarity coefficients), Barinel, and Staccato. Error detection input can either
be manually given by the developer, provided using test oracles, or using the
output from fault screeners.

8.2 R E C O M M E N D AT I O N S F O R F U T U R E W O R K

Inspired by the contributions made in this thesis, a multitude of interesting
open issues are worth investigating. In the following we suggest several rec-
ommendations for future work:

• We have mainly investigated the fundamental limitations of SFL empir-
ically. Although such experiments are valuable to understand how SFL
works in detail, creating an analytic performance model to predict the
impact of several parameters on W would give us a complete overview
of SFL’s limitations/trends. The model could potentially aid, e.g., in
creating an optimal similarity coefficient. Another application would be
to prove that the optimal grain size for componentization is the basic
block size, something that is intuitive but not based on a formal proof.

• Aimed at total automation of the detection-diagnose process, we in-
vestigated the capabilities of generic program invariants to replace test
oracles at the operational phase. More time-consuming and program-
specific screeners, such as relationship invariants between variables, or
components’ state machine-based program invariants [Lorenzoli et al.,
2008], may lead to better diagnostic performance, and are therefore

Chapter 8. Conclusions 145

http://www.fdir.org/zoltar

worth investigating. In addition, given the fact that only a limited num-
ber of (so-called collar) variables are primarily responsible for program
behavior [Menzies et al., 2007, Pattabiraman et al., 2005], a study of the
impact of (judiciously) reducing the amount of screened program points
is required to minimize overhead.

• As for Barinel, recommendation for future work includes (1) extending
the activity matrix from binary to integer, allowing us to also exploit
component involvement frequency (e.g., program loops), (2) reducing
the cost of gradient ascent by implementing quadratic convergence tech-
niques.

• The SFL-based heuristic function used by the Staccato algorithm is
specifically tailored to fault localization problems, as it visits solutions
in best-first order (aiming to capture the maximum posterior probabil-
ity mass in the shortest amount of time). Staccato is interesting due
to its low complexity, and may be well-suited to other application do-
mains, such as test case minimization and prioritization [Harrold et al.,
1993, Tallam and Gupta, 2005, Li et al., 2007, Smith and Kapfhammer,
2009, Santelices et al., 2008]. Given the different domain, a prerequisite
is to devise a prospect heuristic focusing function, e.g., based on infor-
mation gain, which efficiently emits test cases in best-first order. Such
heuristic function could be plugged into Staccato to perform test case
minimization and prioritization for, e.g., sequential diagnosis.

• With regard to model-based software debugging, connecting the lower-
level models that reflect most details of a program to high-level concep-
tual models to detect a more diverse set of faults seems promising to
broaden the scope of applicability. Moreover, as the number of possi-
ble multiple-fault diagnosis candidates is exponential in the number of
components, model-based software debugging has only been applied in
the context of single faults. Integrating Staccato within the model-based
software debugging framework could potentially allow it to be applied
in the context of multiple faults, as well as making it amenable to large
software systems.

• Our current diagnostic performance metric W assumes a debugging con-
text, and does not take into account that the cost of operating on a wrong
diagnosis can be quite different from offline component testing, such as
in situations where a critical fault necessitates a high-cost shutdown. In
particular, a cost-reward metric to judge the utility of the diagnosis can-
didates should be investigated, which would be used by the system to
either ignore the candidate or, e.g., start a recovery process. An interest-
ing issue is to compare this utility metric with currently used metrics,
such as (wasted) debugging effort W.

146

• Thusfar, SFL has been applied exclusively in the software engineering
domain. Although the hardware domain is much more amenable to a
model-based diagnosis approach, even in this domain (except for, e.g.,
boolean logic) modeling can be an inhibiting factor. Despite the inher-
ently superior precision of model-based diagnosis, SFL’s greater ability
to handle large time series of observation data can partly compensate for
its inherently limited precision. Furthermore, further investigation is re-
quired to ascertain whether SFL’s spectral information input can be en-
riched with additional information (conflict sets [de Kleer and Williams,
1987]) up to the point where SFL’s precision starts approaching that of
model-based diagnosis, yet at the attractive, low time complexity of the
former method. Consequently, the performance loss may well be out-
weighed by the extent of automation that can be achieved.

• Last but not least, although the industrial case studies presented on
Chapter 3 already indicate the added value of using automatic fault lo-
calization approaches, a more elaborate field test would have to be per-
formed to assess whether automatic fault localization techniques have
the real potential to reduce software debugging efforts.

Chapter 8. Conclusions 147

148

Appendices

149

A
Bloom Filter Hash Functions

This appendix gives further information on the two hash functions used on
the implementation of the Bloom filter screener described on Section 4. The
two hash functions used are the 32 bit Mix Functions by Thomas Wong (see
Figure A.1) and the 32 bit integer hash function and Robert Jekins (see Fig-
ure A.2).

function 32Mix(a)
. Compute hash value for a.

1 a = ¬a + (a ∗ 215)
2 a = a ∧ (a ∗ 212∧(32−1))
3 a = a + (a ∗ 22)
4 a = a ∧ (a ∗ 24∧(32−1))
5 a = a ∗ 2057
6 a = a ∧ (a ∗ 216∧(32−1))
7 return a

end function
Figure A.1 32-bit Mix Function

function 32Int(a)
. Compute hash value for a.

1 a = (a + 0x7ed55d16) + (a ∗ 212)
2 a = (a ∧ 0xc761c23c) ∧ (a÷ 219)
3 a = (a + 0x165667b1) + (a ∗ 25)
4 a = (a + 0xd3a2646c) ∧ (a ∗ 29)
5 a = (a + 0x f d7046c5) + (a ∗ 23)
6 a = (a ∧ 0xb55a4 f 09) ∧ (a÷ 216)
7 return a

end function
Figure A.2 32-bit Integer Hash Function

151

152

B
Gradient Ascent Procedure

The Barinel algorithm, described in Chapter 5, computes the individual
health probabilities hj of faulty components cj using a maximum likelihood
estimation method. Underlying this method is a gradient ascent procedure
for the computation of the individual hj. This appendix outlines the com-
putational aspects of the Barinel algorithm for C = 2 for ease of exposition.
However, the explanation as well as the approach easily generalizes for C > 2.

As an example, consider the following activity matrix and error vector (A, e)

c1 c2 e
1 0 0

1 1 0

0 1 1

1 0 1

Let the minimal hitting set algorithm (e.g., Staccato) yield the set of diagnosis
D comprising the valid candidates {d1, . . . , dk, . . . , dK}, where K = |D| is the
number of diagnosis candidates in D. For example, d = (1, 1, 0, . . . , 0) means
that component 1 and 2 are considered to be faulty. For simplicity, d is also
represented only in terms of the indices of faulty components only. Hence,
d = (1, 1, 0, . . . , 0) is mapped into {1, 2}. In the following, d(j) indexes bit j of d,
where j ≤ M. The minimal hitting set for the (A, e) example given above is the
following list containing one diagnosis candidates D = {(1, 1)}.

For each d ∈ D, the probability diagnosis candidate d is correct Pr(d) is
defined. Compiled in order of the rows of A and e, it follows

Pr((1, 1)) = (1− h1) · (1− h1 · h2) · h2 · h1

Generalized per row i we obtain

Pr(d, i) = h(d(1) ·ai,1)
1 · . . . · h(d(M) ·ai,M)

M

for ei = 0, or
Pr(d, i) = 1− h(d(1) ·ai,1)

1 · . . . · h(d(M) ·ai,M)
M

for ei = 1.
Returning back to the example, it follows

Pr((1, 1), 1) = 1− h(1·1)
1 · h(1·0)

2 = 1− h1

Pr((1, 1), 2) = 1− h(1·1)
1 · h(1·1)

2 = 1− h1 · h2

Pr((1, 1), 3) = h(1·0)
1 · h(1·1)

2 = h2

Pr((1, 1), 4) = h(1·1)
1 · h(1·0)

2 = h1

153

(note that there are no more hj involved than h1, h2, i.e., only faulty compo-
nents in d contribute to the computation of the probability).

In general, the expression for Pr(d) has a complex form with many terms.
For instance, for C = 2 the Pr(d) expression is as follows

hn10
1 , hn01

2 , (h1 · h2)n11 , (1− h1)n
′
10 , (1− h2)n

′
01 , (1− h1 · h2)n

′
11

where n, n′ are counters for passed and failed runs, respectively, coded as bit
strings that encode the involvement of individual components (like d), accu-
mulated while scanning the rows like above. As an example, n10 counts the
number of times a passed run was observed while only component one was
involved, whereas n′10 counts the number of times a failed run was observed
while only component one was involved. Note that for simplicity the running
example only contains two components (M = 2), but the definitions for n and
n′ generalize for larger systems. In the above example for candidate (1, 1) it
follows

n10 = 1

n01 = 1

n11 = 0

n′10 = 1

n′01 = 0

n′11 = 1

The key idea underlying Barinel is that for each candidate d we compute
the hj for the candidate’s faulty components that maximizes the probability
Pr(e|d) of the outcome e occurring, conditioned on that candidate d (maximum
likelihood estimation for naive Bayes classifier d). In order to compute those hj,
a gradient ascent procedure is used, which is a general framework for solving
optimization problems where we want to maximize functions of continuous
(differentiable) parameters. Essentially, starting at a point h(0)

j , this method
takes the form of iterating until a fixed point is reached, i.e., maximum point
of Pr(e|d) (for detailed information on this procedure, refer to [Avriel, 2003]):

h1 = h(0)
1 +∇Pr(e|d)

·
·

hM = h(0)
M +∇Pr(e|d)

Note, however, that, in practice, only the healthy variables for non-faulty com-
ponents in d need to be calculated. We consider log Pr(e|d) instead of Pr(e|d),
as maximizing log Pr(e|d) gives us the same hj and computing the gradient as-

cent ∇, i.e., ∂(log Pr(e|d))
∂hj

for each faulty component j in d, from the log is much
more convenient.

154

∂(log Pr(e|d))
∂h1

has the form (for C = 2, per term):

(
1
h1

)n10 · n10 · h
(n10−1)
1 · 1 + 0 + (

1
h1 · h2

)n11 · n11 · (h1 · h2)(n11−1) · h2 +

(
1

1− g1
)n
′
10 · n′10(1− h1)(n′10−1) · (−1) + 0 +

(
1

1− h1 · h2
)n
′
11 · n′11(1− h1 · h2)(n′11−1) · (−h2)

which reduces to

n10
h1

+ 0 +
n11
h1
−

n′10
(1− h1)

− 0− n′11
h2

(1− h1 · h2)

=
n10
h1

+
n11
h1
−

n′10
(1− h1)

− n′11
h2

(1− h1 · h2)

Similarly, ∂(log Pr(e|d))
∂h2

equals

0 +
n01
h2

+
n11
h2
− 0−

n′01
(1− h2)

− n′11
h1

(1− h1 · h2)

=
n01
h2

+
n11
h2
−

n′01
(1− h2)

− n′11
h1

(1− h1 · h2)

Consequently ∂(log Pr(e|d))
∂hj

contains all terms which involve hj. It follows

∂ log Pr(e|d)
∂hj

= ∑
all n involving j

n
hj

+ ∑
all n’ involving j

−n′
f ′(n′)

(1− f (n′))

where f (n) = hn1
1 . . . hnM

M and f ′(n) = f (n)
hj

.
In the above example for diagnosis candidate (1, 1)

n10 = 1

n01 = 1

n11 = 0

n′10 = 1

n′01 = 0

n′11 = 1

As

Pr((1, 1)) = h1
1 · h1

2 · (h1 · h2)0 · (1− h1)1 · (1− h2)0 · (1− h1 · h2)1

= h1 · h2 · (1− h1) · (1− h1 · h2)

Chapter B. Gradient Ascent Procedure 155

it follows

∂ log Pr(e|d)
∂h1

= ∑
x∈{10,11}

nx

h1
− ∑

x∈{10,11}
n
′
x

f ′(n′)
(1− f (n′))

=
(n10 + n11)

h1
− n′10

f ′(n10)
(1− f (n10))

− n′11
f (n11)

1− f (n11))

=
(n10 + n11)

h1
− n′10

1
(1− h1)

− n′11
h2

(1− h1 · h2)

and

∂ log Pr(e|d)
∂h2

= ∑
x∈{10,11}

nx

h2
− ∑

x∈{10,11}
n
′
x

f ′(n′)
(1− f (n′))

=
(n01 + n11)

h2
− n′01

f ′(n01)
(1− f (n01))

− n′11
f (n11)

(1− f (n11))

=
(n01 + n11)

h2
− n′01

1
(1− h2)

− n′11
h1

(1− h1 · h2)

When substituting the n and n′ counters for the above example, the proper
expressions are derived. The above expressions are the terms used for ∇. The
use of ∇ in the gradient ascent iteration is straightforward.

156

Bibliography

[Abreu et al., 2008a] Abreu, R., González, A., Zoeteweij, P., and van Gemund,
A. J. C. (2008a). Automatic software fault localization using generic pro-
gram invariants. In Wainwright, R. L. and Haddad, H., editors, Proceedings
of the 23rd Annual ACM Symposium on Applied Computing (SAC’08), pages 712–717,
Fortaleza, Ceará, Brazil. ACM Press. (Cited on pages 11, 71, and 73.)

[Abreu et al., 2008b] Abreu, R., González, A., Zoeteweij, P., and van Gemund,
A. J. C. (2008b). On the performance of fault screeners in software develop-
ment and deployment. In Gonzalez-Perez, C. and Jablonski, S., editors, Pro-
ceedings of the 3rd International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE’08), pages 123–130. INSTICC Press. (Cited on page 11.)

[Abreu et al., 2009a] Abreu, R., González, A., Zoeteweij, P., and van Gemund,
A. J. C. (2009a). Using fault screeners for software error detection. In
WEBIST / ENASE 2008 Revised Best Papers, Lecture Notes in Communications
in Computer and Information Science (LNCCIS). Springer-Verlag. (Cited
on page 11.)

[Abreu et al., 2009b] Abreu, R., Mayer, W., Stumptner, M., and van Gemund,
A. J. C. (2009b). Refining spectrum-based fault localization rankings. In
Wainwright, R. L. and Haddad, H., editors, Proceedings of the 24th Annual ACM
Symposium on Applied Computing (SAC’09), pages 409–414, Honolulu, Hawaii,
USA. ACM Press. (Cited on page 11.)

[Abreu and van Gemund, 2009a] Abreu, R. and van Gemund, A. J. C. (2009a).
A low-cost approximate minimal hitting set algorithm and its application
to model-based diagnosis. In Bulitko, V. and Beck, J. C., editors, Proceedings of
the 8th Symposium on Abstraction, Reformulation and Approximation (SARA’09), Lake
Arrowhead, California, USA. AAAI Press. (Cited on page 11.)

[Abreu and van Gemund, 2009b] Abreu, R. and van Gemund, A. J. C.
(2009b). Statistics-directed minimal hitting set algorithm. In Nyberg, M.,
Frisk, E., Krysander, M., and Aslund, J., editors, Proceedings of the 20th Inter-
national Workshop on Principles of Diagnosis (DX’09), pages 51 – 58, Stockholm,
Sweden. (Cited on page 11.)

[Abreu et al., 2009c] Abreu, R., Zoeteweij, P., Golsteijn, R., and van Gemund,
A. J. C. (2009c). A practical evaluation of spectrum-based fault localization.
Journal of Systems & Software (JSS). (Cited on page 11.)

[Abreu et al., 2006a] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.
(2006a). An evaluation of similarity coefficients for software fault local-
ization. In Jeske, D., Ciardo, G., and Dai, Y.-S., editors, Proceedings of the 12th

157

Pacific Rim International Symposium on Dependable Computing (PRDC’06), pages 39–
46, Riverside, California, USA. IEEE Computer Society. (Cited on pages 14,
22, 24, 38, and 71.)

[Abreu et al., 2006b] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.
(2006b). Program spectra analysis in embedded software: A case study.
In Lelieveldt, B., Haverkort, B., de Laat, C., and Heijnsdijk, J., editors, Pro-
ceedings of the 12th Annual Conference of the Advanced School for Computing and Imaging
(ASCI’06), pages 263–269, Lommel, Belgium. Advanced School for Comput-
ing & Imaging (ASCI). (Cited on page 43.)

[Abreu et al., 2007] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C. (2007).
On the accuracy of spectrum-based fault localization. In McMinn, P., edi-
tor, Proceedings of the Testing: Academia and Industry Conference - Practice And Research
Techniques (TAIC PART’07), pages 89–98, Windsor, United Kingdom. IEEE
Computer Society. (Cited on pages 11, 77, 91, 92, 99, 105, 116, and 134.)

[Abreu et al., 2008c] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.
(2008c). A dynamic modeling approach to software multiple-fault local-
ization. In Grastien, A. and Stumptner, M., editors, Proceedings of the 19th
International Workshop on Principles of Diagnosis (DX’08), pages 7–14, Blue Moun-
tains, NSW, Australia. (Cited on pages 78, 86, 89, 90, 105, and 116.)

[Abreu et al., 2008d] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.
(2008d). An observation-based model for fault localization. In Liblit, B.
and Rountev, A., editors, Proceedings of the 6th Workshop on Dynamic Analysis
(WODA’08), pages 64–70. ACM Press. (Cited on pages 11, 78, 86, 102,
and 105.)

[Abreu et al., 2009d] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.
(2009d). A new Bayesian approach to multiple intermittent fault diagnosis.
In Boutilier, C., editor, Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI’09), pages 653 – 658, Pasadena, California, USA. AAAI
Press. (Cited on page 11.)

[Abreu et al., 2009e] Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.
(2009e). Spectrum-based multiple fault localization. In Taentzer, G. and
Heimdahl, M., editors, Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE’09), Auckland, New Zealand. IEEE Com-
puter Society, to appear. (Cited on page 11.)

[Agrawal et al., 1991] Agrawal, H., de Millo, R., and Spafford, E. (1991). An
execution backtracking approach to program debugging. IEEE Software, 8:21

– 26. (Cited on page 3.)

[Agrawal et al., 1993] Agrawal, H., DeMillo, R. A., and Spafford, E. H. (1993).
Debugging with dynamic slicing and backtracking. Software - Practice and
Experience, 23(6):589–616. (Cited on page 33.)

158

[Augusteijn, 2002] Augusteijn, L. (2002). Front: A front-end generator for Lex,
Yacc and C, release 1.0. http://front.sourceforge.net/. (Cited on pages 22

and 43.)

[Avižienis et al., 2004] Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr,
C. E. (2004). Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable Secure Computing, 1(1):11–33. (Cited on
page 4.)

[Avriel, 2003] Avriel, M. (2003). Nonlinear Programming: Analysis and Methods.
Dover Publishing, Mineola, New York, USA. (Cited on pages 88 and 154.)

[Baah et al., 2008] Baah, G. K., Podgurski, A., and Harrold, M. J. (2008). The
probabilistic program dependence graph and its application to fault diag-
nosis. In Ryder, B. G. and Zeller, A., editors, Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’08), pages 189 –
200, Seattle, Washington, USA. ACM Press. (Cited on pages 6, 33, 99,
and 103.)

[Balzer, 1969] Balzer, R. M. (1969). EXDAMS: Extendible debugging and mon-
itoring system. In Proceedings of the AFIPS Spring Joint Conference, volume 34,
pages 567 – 580, Montvale, New Jersey, USA. AFIPS Press. (Cited on
page 3.)

[Baudry et al., 2006] Baudry, B., Fleurey, F., and Traon, Y. L. (2006). Improving
test suites for efficient fault localization. In Osterweil, L. J., Rombach, H. D.,
and Soffa, M. L., editors, Proceedings of the 28th International Conference on Software
Engineering (ICSE’06), pages 82–91, Shanghai, China. ACM Press. (Cited on
page 34.)

[Bensalem and Havelund, 2005] Bensalem, S. and Havelund, K. (2005). Dy-
namic deadlock analysis of multi-threaded programs. In Ur, S., Bin, E.,
and Wolfsthal, Y., editors, Proceedings of the 1st International Haifa Hardware and
Software Verification and Testing Conference, Revised Selected Papers, volume 3875 of
Lecture Notes in Computer Science, pages 208–223, Haifa, Israel. Springer-Verlag.
(Cited on page 75.)

[Bloom, 1970] Bloom, B. (1970). Space/time trade-offs in hash coding with al-
lowable errors. Communications of the ACM, 13(7):422–426. (Cited on page 60.)

[Bolton, 1991] Bolton, H. C. (1991). On the mathematical significance of the
similarity index of ochiai as a measure for biogeographical habitats. Aus-
tralian Journal of Zoology, 39(2):143–156. (Cited on page 34.)

[Böttcher, 1995] Böttcher, C. (1995). No faults in structure? How to diagnose
hidden interaction. In Mellish, C. S., editor, Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI’95), pages 1728–1735, Montreal,
Quebec, Canada. Morgan Kaufmann Publishers. (Cited on page 127.)

Bibliography 159

http://front.sourceforge.net/

[Carey et al., 1999] Carey, J., Gross, N., Stepanek, M., and Port, O. (1999).
Software hell. Business Week, pages 391–411. (Cited on page 1.)

[Chen et al., 2002] Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., and Brewer,
E. A. (2002). Pinpoint: Problem determination in large, dynamic internet
services. In Lala, J. H., editor, Proceedings of the International Conference on De-
pendable Systems and Networks (DSN’02), pages 595–604, Bethesda, Maryland,
USA. IEEE Computer Society. (Cited on pages 6, 14, 18, 33, 34, 37, and 38.)

[Console and Torasso, 1991] Console, L. and Torasso, P. (1991). A spectrum of
logical definitions of model-based diagnosis. Computational Intelligence, 7:133–
141. (Cited on page 8.)

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract inter-
pretation: a unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Conference Record of the 4th ACM
Symposium on Principles of Programming Languages (POPL’77), pages 238–252, Los
Angeles, California, USA. ACM Press. (Cited on page 126.)

[da Silva Meyer et al., 2004] da Silva Meyer, A., Franco Farcia, A. A., and
Pereira de Souza, A. (2004). Comparison of similarity coefficients used
for cluster analysis with dominant markers in maize (Zea mays L). Genetics
and Molecular Biology, 27(1):83–91. (Cited on pages 14, 18, 23, and 34.)

[Dallmeier et al., 2005] Dallmeier, V., Lindig, C., and Zeller, A. (2005).
Lightweight defect localization for java. In Black, A. P., editor, Proceedings
of the 19th European Conference on Object-Oriented Programming (ECOOP’05), vol-
ume 3586 of Lecture Notes in Computer Science, pages 528–550, Glasgow, UK.
Springer-Verlag. (Cited on pages 6, 14, 33, and 38.)

[David and Nagaraja, 1970] David, H. A. and Nagaraja, H. N. (1970). Order
Statistics. John Wiley & Sons. (Cited on page 68.)

[DBX, 1990] DBX (1990). Debugging tools – DBX, SunOS 4.1.1 ed. SUN MI-
CROSYSTEMS, INC. (Cited on page 3.)

[de Kleer, 2007] de Kleer, J. (2007). Diagnosing intermittent faults. In Biswas,
G., Koutsoukos, X., and Abdelwahed, S., editors, Proceedings of the 18th In-
ternational Workshop on Principles of Diagnosis (DX’07), pages 45 – 51, Nashville,
Tennessee, USA. (Cited on pages 78, 82, 89, and 90.)

[de Kleer, 2009] de Kleer, J. (2009). Diagnosing multiple persistent and in-
termittent faults. In Boutilier, C., editor, Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’09), Pasadena, California, USA. AAAI
Press. (Cited on pages 78 and 90.)

[De Kleer et al., 1992] De Kleer, J., Mackworth, A. K., and Reiter, R. (1992).
Characterizing diagnoses and systems. Artificial Intelligence, 56:197–222.
(Cited on pages 8 and 81.)

160

[De Kleer et al., 2008] De Kleer, J., Price, B., Kuhn, L., Do, M., and Zhou, R.
(2008). A framework for continuously estimating persistent and intermit-
tent failure probabilities. In Grastien, A. and Stumptner, M., editors, Pro-
ceedings of the 19th International Workshop on Principles of Diagnosis (DX’08), pages
22–24, Blue Mountains, NSW, Australia. (Cited on page 90.)

[de Kleer and Williams, 1987] de Kleer, J. and Williams, B. C. (1987). Diag-
nosing multiple faults. Artificial Intelligence, 32(1):97–130. (Cited on pages 7,
8, 33, 77, 81, 119, and 147.)

[de Visser, 2008] de Visser, I. (2008). Analyzing User Perceived Failure Severity in
Consumer Electronics Products. PhD thesis, Eindhoven University of Technol-
ogy. (Cited on page 2.)

[Do et al., 2005] Do, H., Elbaum, S. G., and Rothermel, G. (2005). Support-
ing controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering: An International Journal,
10(4):405–435. (Cited on pages 15, 20, 98, 118, and 133.)

[Dolby et al., 2007] Dolby, J., Vaziri, M., and Tip, F. (2007). Finding bugs ef-
ficiently with a sat solver. In Crnkovic, I. and Bertolino, A., editors, Pro-
ceedings of the 6th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering (ES-
EC/SIGSOFT FSE’07), pages 195–204. ACM Press. (Cited on page 7.)

[Dowson, 1997] Dowson, M. (1997). The Ariane 5 software failure. SIGSOFT
Software Engineering Notes, 22(2):84. (Cited on page 2.)

[Engler and Dunbar, 2007] Engler, D. R. and Dunbar, D. (2007). Under-
constrained execution: making automatic code destruction easy and scal-
able. In Rosenblum, D. S. and Elbaum, S. G., editors, Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’07),
pages 1–4, London, UK. ACM Press. (Cited on page 140.)

[Ernst et al., 2001] Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin,
D. (2001). Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engineering (TSE), 27(2):99–
123. (Cited on pages 56, 57, and 73.)

[Ernst et al., 2007] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S.,
Pacheco, C., Tschantz, M. S., and Xiao, C. (2007). The daikon system for
dynamic detection of likely invariants. Science of Computer Programming, 69(1-
3):35–45. (Cited on pages 57 and 73.)

[Esser and Struss, 2007] Esser, M. and Struss, P. (2007). Automated test gen-
eration from models based on functional software specifications. In Veloso,
M. M., editor, Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI’07), pages 2255–2268, Hyderabad, India. AAAI Press. (Cited on
page 140.)

Bibliography 161

[Feldman et al., 2008] Feldman, A., Provan, G., and van Gemund, A. J. C.
(2008). Computing minimal diagnoses by greedy stochastic search. In Fox,
D. and Gomes, C. P., editors, Proceedings of the 23rd National Conference on Artifi-
cial Intelligence (AAAI’08), pages 919–924, Chicago, Illinos, USA. AAAI Press.
(Cited on pages 77 and 81.)

[Feldman and van Gemund, 2006] Feldman, A. and van Gemund, A. J. C.
(2006). A two-step hierarchical algorithm for model-based diagnosis. In
Gil, Y. and Mooney, R., editors, Proceedings of the 21st National Conference on Arti-
ficial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference
(AAAI’06), Boston, MA, USA. AAAI Press. (Cited on page 77.)

[Fijany and Vatan, 2004] Fijany, A. and Vatan, F. (2004). New approaches for
efficient solution of hitting set problem. In Proceedings of the Winter International
Symposium on Information and communication technologies (WISICT’04), volume 58 of
ACM International Conference Proceeding Series, Cancun, Mexico. Trinity College
Dublin. (Cited on page 120.)

[Fijany and Vatan, 2005] Fijany, A. and Vatan, F. (2005). New high perfor-
mance algorithmic solution for diagnosis problem. In Profet, K., Mat-
tingly, R., and Bryan, E., editors, Proceedings of the 2005 IEEE Aerospace Conference
(IEEEAC’05). IEEE Computer Society. (Cited on page 120.)

[Freuder et al., 1995] Freuder, E. C., Dechter, R., Ginsberg, M. L., Selman, B.,
and Tsang, E. P. K. (1995). Systematic versus stochastic constraint satisfac-
tion. In Mellish, C. S., editor, Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI’95), pages 2027–2032, Montréal, Québec, Canada.
(Cited on page 120.)

[Friedrich et al., 1996] Friedrich, G., Stumptner, M., and Wotawa, F. (1996).
Model-based diagnosis of hardware designs. In Wahlster, W., editor, Pro-
ceedings of the 12th European Conference on Artificial Intelligence (ECAI’96), pages
491–495, Budapest, Hungary. John Wiley and Sons, Chichester. (Cited on
page 7.)

[Friedrich et al., 1999] Friedrich, G., Stumptner, M., and Wotawa, F. (1999).
Model-based diagnosis of hardware designs. Artificial Intelligence, 111(1-2):3–
39. (Cited on page 7.)

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability — A Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, New York. (Cited on pages 107 and 109.)

[Garfinkel, 2005] Garfinkel, S. (2005). History’s worst software bugs. http://
www.wired.com/software/coolapps/news/2005/11/69355/. (Cited on page 1.)

[Gautama and van Gemund, 2006] Gautama, H. and van Gemund, A. J. C.
(2006). Low-cost static performance prediction of parallel stochastic task

162

http://www.wired.com/software/coolapps/news/2005/11/69355/
http://www.wired.com/software/coolapps/news/2005/11/69355/

compositions. IEEE Transactions on Parallel Distributed Systems, 17(1):78–91.
(Cited on page 69.)

[González, 2007] González, A. (2007). Automatic error detection techniques
based on dynamic invariants. Master’s thesis, Delft University of Technol-
ogy and Universidad de Valladolid. (Cited on page 63.)

[Greiner et al., 1989] Greiner, R., Smith, B. A., and Wilkerson, R. W. (1989). A
correction to the algorithm in Reiter’s theory of diagnosis. Artificial Intelli-
gence, 41(1):79–88. (Cited on pages 107 and 119.)

[Groce, 2004] Groce, A. (2004). Error explanation with distance metrics. In
Jensen, K. and Podelski, A., editors, Proceedings of the 10th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’04),
Held as Part of the Joint European Conferences on Theory and Practice of Software
(ETAPS’04), volume 2988 of Lecture Notes in Computer Science, pages 108 – 122,
Barcelona, Spain. Springer-Verlag. (Cited on pages 7 and 104.)

[Groce et al., 2006] Groce, A., Chaki, S., Kroening, D., and Strichman, O.
(2006). Error explanation with distance metrics. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 8(3):229–247. (Cited on pages 7, 138,
and 139.)

[Gumbel, 1962] Gumbel, E. (1962). Statistical theory of extreme values (main
results). In Sarhan, A. and Greenberg, B., editors, Contributions to Order Statis-
tics. John Wiley & Sons. (Cited on page 69.)

[Gupta et al., 2005] Gupta, N., He, H., Zhang, X., and Gupta, R. (2005). Lo-
cating faulty code using failure-inducing chops. In Redmiles, D. F., Ellman,
T., and Zisman, A., editors, Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’05), pages 263 – 272, Long Beach,
California, USA. IEEE Computer Society. (Cited on pages 33 and 77.)

[Hailpern and Santhanam, 2002] Hailpern, B. and Santhanam, P. (2002). Soft-
ware debugging, testing, and verification. IBM Systems Journal, 41(1):4–12.
(Cited on pages 2 and 13.)

[Halperin et al., 2002] Halperin, D., Heydt-Benjamin, T. S., Ransford, B.,
Clark, S. S., Defend, B., Morgan, W., Fu, K., Kohno, T., and Maisel, W. H.
(2002). Pacemakers and implantable cardiac defibrillators: Software radio
attacks and zero-power defenses. In Abadi, M. and Bellovin, S., editors, Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 129 – 142, Oakland,
California, USA. IEEE Computer Society. (Cited on page 1.)

[Hangal et al., 2005] Hangal, S., Chandra, N., Narayanan, S., and Chakra-
vorty, S. (2005). IODINE: a tool to automatically infer dynamic invariants
for hardware designs. In Jr., W. H. J., Martin, G., and Kahng, A. B., editors,
Proceedings of the 42nd Design Automation Conference (DAC’05), pages 775–778, San
Diego, California, USA. ACM Press. (Cited on page 74.)

Bibliography 163

[Hangal and Lam, 2002] Hangal, S. and Lam, M. S. (2002). Tracking down
software bugs using automatic anomaly detection. In Young, M. and
Magee, J., editors, Proceedings of the 22nd International Conference on Software Engi-
neering (ICSE’02), pages 291–301, Orlando, Florida, USA. ACM Press. (Cited
on pages 56, 58, 73, and 74.)

[Harrold et al., 1998] Harrold, M., Rothermel, G., Wu, R., and Yi, L. (1998).
An empirical investigation of program spectra. ACM SIGPLAN Notices, 33(7).
(Cited on page 70.)

[Harrold et al., 1993] Harrold, M. J., Gupta, R., and Soffa, M. L. (1993). A
methodology for controlling the size of a test suite. ACM Transactions on
Software Engineering and Methodology (ACM TOSEM), 2(3):270–285. (Cited on
page 146.)

[Harrold et al., 2000] Harrold, M. J., Rothermel, G., Sayre, K., Wu, R., and Yi,
L. (2000). An empirical investigation of the relationship between spectra
differences and regression faults. Software Testing, Verification and Reliability,
10(3):171–194. (Cited on pages 6, 14, 15, and 32.)

[Holzmann, 1997] Holzmann, G. J. (1997). The model checker SPIN. IEEE
Transactions on Software Engineering (TSE), 23:279–295. (Cited on page 7.)

[Hutchins et al., 1994] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T.
(1994). Experiments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In Taylor, R. N. and Coutaz, J., editors, Proceedings of
the International Conference on Software Engineering (ICSE’94). IEEE CS. (Cited on
pages 15, 20, and 62.)

[Iverson, 1962] Iverson, K. E. (1962). A programming language. John Wiley &
Sons, New York, NY, USA. (Cited on page 90.)

[Jain and Dubes, 1988] Jain, A. and Dubes, R. (1988). Algorithms for clustering
data. Prentice-Hall, Inc. (Cited on pages 17 and 70.)

[Janssen et al., 2009] Janssen, T., Abreu, R., and van Gemund, A. J. C. (2009).
Zoltar: A toolset for automatic fault localization. In van der Hoek, A.
and Menzies, T., editors, Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE’09) - Tools Track, Auckland, New Zealand.
IEEE Computer Society, to appear. (Cited on page 145.)

[Jeffrey et al., 2008] Jeffrey, D., Gupta, N., and Gupta, R. (2008). Fault local-
ization using value replacement. In Ryder, B. G. and Zeller, A., editors, Pro-
ceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’08), pages 119–120, Seattle, Washington, USA. ACM Press. (Cited on
page 33.)

164

[Jones and Harrold, 2005] Jones, J. A. and Harrold, M. J. (2005). Empiri-
cal evaluation of the tarantula automatic fault-localization technique. In
Redmiles, D. F., Ellman, T., and Zisman, A., editors, Proceedings of the
20th IEEE/ACM International Conference on Automated Software Engineering (ASE’05),
pages 273–282, Long Beach, California, USA. IEEE Computer Society.
(Cited on pages 7, 18, 23, 34, and 134.)

[Jones et al., 2007] Jones, J. A., Harrold, M. J., and Bowring, J. F. (2007). De-
bugging in parallel. In Rosenblum, D. S. and Elbaum, S. G., editors, Proceed-
ings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’07), pages 16–26, London, UK. ACM Press. (Cited on page 105.)

[Jones et al., 2002] Jones, J. A., Harrold, M. J., and Stasko, J. T. (2002). Visu-
alization of test information to assist fault localization. In Young, M. and
Magee, J., editors, Proceedings of the 22rd International Conference on Software Engi-
neering (ICSE’02), pages 467–477, Orlando, Florida, USA. ACM Press. (Cited
on pages 6, 14, 33, 38, and 77.)

[Jones and Kelly, 1997] Jones, R. W. M. and Kelly, P. H. J. (1997). Backwards-
compatible bounds checking for arrays and pointers in c programs. In
Kamkar, M., editor, Proceedings of the 3rd International Workshop on Automatic De-
bugging (AADEBUG’97), pages 13–26, Linköping, Sweden. ACM Press. (Cited
on pages 5 and 75.)

[Keijzers et al., 2008] Keijzers, J., den Ouden, E., and Lu, Y. (2008). Usability
benchmark study of commercially available smart phones: cell phone type
platform, pda type platform and pc type platform. In ter Hofte, G. H.,
Mulder, I., and de Ruyter, B. E. R., editors, Proceedings of the 10th Conference
on Human-Computer Interaction with Mobile Devices and Services, Mobile HCI, pages
265–272. ACM Press. (Cited on page 2.)

[Kephart and Chess, 2003] Kephart, J. and Chess, D. (2003). The vision of
autonomic computing. Computer, 36(1). (Cited on page 55.)

[Knuth, 1997] Knuth, D. E. (1997). The art of computer programming, volume 2 (3rd
ed.): seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA. (Cited on page 61.)

[Köb and Wotawa, 2005] Köb, D. and Wotawa, F. (2005). A comparison of
fault explanation and localization. In Dearden, R. and Narasimhan, S., edi-
tors, Proceedings of the 16th International Workshop on Principles of Diagnosis (DX’05),
pages 157–162, Monterey, California, USA. (Cited on page 140.)

[Korel and Laski, 1988] Korel, B. and Laski, J. (1988). Dynamic program slic-
ing. Information Processing Letters, 29:155–163. (Cited on page 15.)

[Kuhn et al., 2008] Kuhn, L., Price, B., de Kleer, J., Do, M., and Zhou, R.
(2008). Pervasive diagnosis: Integration of active diagnosis into produc-
tion plans. In Fox, D. and Gomes, C. P., editors, Proceedings of the 23rd National

Bibliography 165

Conference on Artificial Intelligence (AAAI’08), pages 1306–1312, Chicago, Illinois,
USA. AAAI Press. (Cited on page 90.)

[Lattner and Adve, 2004] Lattner, C. and Adve, V. S. (2004). LLVM: A compi-
lation framework for lifelong program analysis & transformation. In Dupré,
M., Drach, N., and Temam, O., editors, Proceedings of the 2nd IEEE / ACM In-
ternational Symposium on Code Generation and Optimization (CGO’04),, pages 75–88,
San Jose, California, USA. IEEE Computer Society. (Cited on page 63.)

[Li et al., 2007] Li, Z., Harman, M., and Hierons, R. M. (2007). Search al-
gorithms for regression test case prioritization. IEEE Transactions on Software
Engineering (TSE), 33(4):225–237. (Cited on page 146.)

[Liblit, 2008] Liblit, B. (2008). Cooperative debugging with five hundred mil-
lion test cases. In Ryder, B. G. and Zeller, A., editors, Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’08),
pages 119–120, Seattle, Washington, USA. ACM Press. (Cited on page 6.)

[Liblit et al., 2005] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan,
M. I. (2005). Scalable statistical bug isolation. In Sarkar, V. and Hall, M. W.,
editors, Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI’05), pages 15–26, Chicago, Illinois, USA. ACM
Press. (Cited on page 6.)

[Lin and Jiang, 2002] Lin, L. and Jiang, Y. (2002). Computing minimal hitting
sets with genetic algorithms. In Proceedings of the 13rd International Workshop on
Principles of Diagnosis (DX’02), Semmering, Austria. (Cited on page 120.)

[Lin and Jiang, 2003] Lin, L. and Jiang, Y. (2003). The computation of hitting
sets: review and new algorithms. Information Processing Letters, 86(4):177–184.
(Cited on page 120.)

[Lions, 1996] Lions, J. L. (1996). Ariane 5: Flight 501 failure. Report, European
Space Agency. (Cited on page 2.)

[Liu et al., 2006] Liu, C., Fei, L., Yan, X., Han, J., and Midkiff, S. (2006). Sta-
tistical debugging: A hypothesis testing-based approach. IEEE Transactions
on Software Engineering (TSE), 32(10):831–848. (Cited on pages 6, 7, 33, 77, 99,
and 100.)

[Liu and Han, 2006] Liu, C. and Han, J. (2006). Failure proximity: a fault
localization-based approach. In Young, M. and Devanbu, P. T., editors, Pro-
ceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT FSE’06), pages 46–56, Portland, Oregon, USA. ACM
Press. (Cited on page 6.)

[Liu et al., 2005] Liu, C., Yan, X., Fei, L., Han, J., and Midkiff, S. P. (2005).
SOBER: statistical model-based bug localization. In Wermelinger, M. and

166

Gall, H., editors, Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/SIGSOFT FSE), pages 286–295, Lisbon, Portugal. ACM
Press. (Cited on pages 134, 137, and 138.)

[Lorenzoli et al., 2008] Lorenzoli, D., Mariani, L., and Pezzè, M. (2008). Au-
tomatic generation of software behavioral models. In Schäfer, W., Dwyer,
M. B., and Gruhn, V., editors, Proceedings of the 30th International Conference on
Software Engineering (ICSE’08), pages 501–510, Leipzig, Germany. ACM Press.
(Cited on page 145.)

[Mayer, 2007] Mayer, W. (2007). Static and Hybrid Analysis in Model-based Debugging.
PhD thesis, School of Computer and Information Science, University of
South Australia. (Cited on pages 8 and 123.)

[Mayer et al., 2008] Mayer, W., Abreu, R., Stumptner, M., and van Gemund,
A. J. C. (2008). Prioritizing model-based debugging diagnostic reports. In
Grastien, A., Stumptner, M., and Mayer, W., editors, Proceedings of the 19th In-
ternational Workshop on Principles of Diagnosis (DX’08), pages 127–134, Blue Moun-
tains, New South Wales, Australia. (Cited on pages 11, 131, and 139.)

[Mayer and Stumptner, 2007a] Mayer, W. and Stumptner, M. (2007a). Model-
based debugging - state of the art and future challenges. Electronic Notes on
Theoretical Computer Science, 174(4):61–82. (Cited on page 140.)

[Mayer and Stumptner, 2007b] Mayer, W. and Stumptner, M. (2007b). Models
and tradeoffs in model-based debugging. In Biswas, G., Koutsoukos, X.,
and Abdelwahed, S., editors, Proceedings of the 18th International Workshop on
Principles of Diagnosis (DX’07), pages 138 – 145, Nashville, Tennessee, USA.
(Cited on page 104.)

[Mayer and Stumptner, 2008] Mayer, W. and Stumptner, M. (2008). Evaluat-
ing models for model-based debugging. In Ireland, A. and Visser, W., edi-
tors, Proceedings of the 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE’08), pages 128–137, L’Aquila, Italy. ACM Press. (Cited on
pages 7, 77, 78, 83, 104, 123, 125, 126, 127, 128, 135, and 139.)

[MBSD, 2008] MBSD (2008). Model-based software debugging website,
School of Computer and Information Science, University of South Aus-
tralia. http://www.acrc.unisa.edu.au/groups/kse/mbsd/index.html. (Cited
on page 125.)

[Menzies et al., 2007] Menzies, T., Owen, D., and Richardson, J. (2007). The
strangest thing about software. Computer, 40(1):54–60. (Cited on page 146.)

[Morell, 1990] Morell, L. J. (1990). A theory of fault-based testing. IEEE Trans-
actions on Software Engineering (TSE), 16(8):844–857. (Cited on page 26.)

Bibliography 167

http://www.acrc.unisa.edu.au/groups/kse/mbsd/index.html

[Musuvathi and Engler, 2003] Musuvathi, M. and Engler, D. R. (2003). Some
lessons from using static analysis and software model checking for bug
finding. Electronic Notes Theoretical Computer Science, 89(3). (Cited on page 125.)

[Nainar et al., 2007] Nainar, P. A., Chen, T., Rosin, J., and Liblit, B. (2007).
Statistical debugging using compound boolean predicates. In Rosenblum,
D. S. and Elbaum, S. G., editors, Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’07), pages 5–15, London, UK,
July. ACM Press. (Cited on page 6.)

[Nica and Wotawa, 2008] Nica, M. and Wotawa, F. (2008). From constraint
representations of sequential code and program annotations to their use in
debugging. In Ghallab, M., Spyropoulos, C. D., Fakotakis, N., and Avouris,
N. M., editors, Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI’08), volume 178 of Frontiers in Artificial Intelligence and Applications, pages
797–798, Patras, Greece. IOS Press. (Cited on page 7.)

[Nimmer and Ernst, 2001] Nimmer, J. W. and Ernst, M. D. (2001). Static ver-
ification of dynamically detected program invariants: Integrating daikon
and ESC/Java. Electronic Notes Theoretical Computer Science, 55(2). (Cited on
page 140.)

[NXP, 2009] NXP (2009). NXP Semiconductors website, NXP Semiconduc-
tors. http://www.nxp.com. (Cited on pages 9, 22, and 45.)

[Pattabiraman et al., 2005] Pattabiraman, K., Kalbarczyk, Z., and Iyer, R. K.
(2005). Application-based metrics for strategic placement of detectors. In
Cao, J. and Zhang, D., editors, Proceedings of the 11th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC’05), pages 75–82, Changsha, Hunan,
China. IEEE Computer Society. (Cited on page 146.)

[Patterson et al., 2002] Patterson, D., Brown, A., Broadwell, P., Candea, G.,
Chen, M., Cutler, J., Enriquez, P., Fox, A., Kiciman, E., Merzbacher, M.,
Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman, J., and Treuhaft, N.
(2002). Recovery Oriented Computing (ROC): Motivation, definition, tech-
niques, and case studies. Technical Report UCB/CSD-02-1175, University
of California at Berkeley. (Cited on pages 5 and 55.)

[Pietersma and van Gemund, 2006] Pietersma, J. and van Gemund, A. J. C.
(2006). Temporal versus spatial observability in model-based diagnosis. In
Lin, C.-T., editor, Proceedings of 2006 IEEE International Conference on Systems, Man,
and Cybernetics (SMC’06), pages 5325–5331, Taipei, Taiwan. IEEE Computer
Society. (Cited on pages 77 and 80.)

[Pytlik et al., 2003] Pytlik, B., Renieris, M., Krishnamurthi, S., and Reiss, S.
(2003). Automated fault localization using potential invariants. In Ronsse,
M., editor, Proceedings of the International Workshop on Automated and Analysis-Driven
Debugging (AADEBUG’03). ACM Press. (Cited on pages 56, 57, 73, and 74.)

168

http://www.nxp.com

[Qasem and Prügel-Bennett, 2008] Qasem, M. and Prügel-Bennett, A. (2008).
Complexity of max-sat using stochastic algorithms. In Ryan, C. and Kei-
jzer, M., editors, Proceedings of the 10th annual conference on Genetic and evolutionary
computation (GECCO’08), pages 615–616, Atlanta, Georgia, USA. ACM Press.
(Cited on page 120.)

[Quine, 1955] Quine, W. (1955). A way to simplify truth functions. American
Mathematical Monthly, 62:627 – 631. (Cited on page 120.)

[Racunas et al., 2007] Racunas, P., Constantinides, K., Manne, S., and
Mukherjee, S. S. (2007). Perturbation-based fault screening. In Mudge,
T., editor, Proceedings of the 13rd International Conference on High-Performance Com-
puter Architecture (HPCA-13), pages 169–180, Phoenix, Arizona, USA. IEEE
Computer Society. (Cited on pages 56, 57, 58, 59, 60, 73, and 74.)

[Reiter, 1987] Reiter, R. (1987). A theory of diagnosis from first principles. Ar-
tificial Intelligence, 32(1):57–95. (Cited on pages 81, 107, 119, 125, 127, and 139.)

[Renieris and Reiss, 2003] Renieris, M. and Reiss, S. P. (2003). Fault localiza-
tion with nearest neighbor queries. In Grundy, J. and Penix, J., editors,
Proceedings of the 18th IEEE International Conference on Automated Software Engineer-
ing (ASE’03), pages 30–39, Montreal, Canada. IEEE Computer Society. (Cited
on pages 6, 33, 35, 77, 91, 92, 99, 134, and 137.)

[Reps et al., 1997] Reps, T. W., Ball, T., Das, M., and Larus, J. R. (1997). The
use of program profiling for software maintenance with applications to the
year 2000 problem. In Jazayeri, M. and Schauer, H., editors, Proceedings of the
6th European Software Engineering Conference Held Jointly with the 5th ACM SIGSOFT
Symposium on Foundations of Software Engineering (ESEC / SIGSOFT FSE), volume
1301 of Lecture Notes in Computer Science, pages 432–449, Zurich, Switzerland.
Springer-Verlag. (Cited on pages 14, 15, 32, and 37.)

[Rogerson, 2002] Rogerson, S. (2002). The chinook helicopter disaster. The
Institute for the Management of Information Systems (IMIS), 12(2). (Cited on page 2.)

[RTI, 2002] RTI (2002). Planning report 02-3: The economic impacts of inad-
equate infrastructure for software testing. Planning Report 02-3, National
Institute of Standards and Technology. (Cited on pages 4 and 123.)

[Rudell, 1986] Rudell, R. L. (1986). Multiple-valued logic minimization for pla
synthesis. Technical Report UCB/ERL M86/65, EECS Department, Univer-
sity of California, Berkeley. (Cited on page 120.)

[Ruwase and Lam, 2004] Ruwase, O. and Lam, M. S. (2004). A practical dy-
namic buffer overflow detector. In Proceedings of the Network and Distributed
System Security Symposium (NDSS’04), San Diego, California, USA. The Inter-
net Society. (Cited on page 75.)

Bibliography 169

[Santelices et al., 2008] Santelices, R. A., Chittimalli, P. K., Apiwattanapong,
T., Orso, A., and Harrold, M. J. (2008). Test-suite augmentation for evolv-
ing software. In Ireland, A. and Visser, W., editors, Proceedings of the
23rd IEEE/ACM International Conference on Automated Software Engineering (ASE’08),
pages 218–227, L’Aquila, Italy. ACM Press. (Cited on page 146.)

[Savage et al., 1997] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and
Anderson, T. E. (1997). Eraser: A dynamic data race detector for mul-
tithreaded programs. ACM Transactions on Computer Systems, 15(4):391–411.
(Cited on page 75.)

[Seward and Nethercote, 2005] Seward, J. and Nethercote, N. (2005). Using
Valgrind to detect undefined value errors with bit-precision. In Proceedings
of the 2005 USENIX Annual Technical Conference, General Track, pages 17–30, Ana-
heim, California, USA. (Cited on page 75.)

[Sharygina et al., 2009] Sharygina, N., Tonetta, S., and Tsitovich, A. (2009).
The synergy of precise and fast abstractions for program verification. In
Shin, S. Y. and Ossowski, S., editors, Proceedings of the 2009 ACM Symposium on
Applied Computing (SAC’09), pages 566–573, Honolulu, Hawaii, USA. (Cited
on page 7.)

[Smith and Kapfhammer, 2009] Smith, A. M. and Kapfhammer, G. M. (2009).
An empirical study of incorporating cost into test suite reduction and pri-
oritization. In Wainwright, R. L. and Haddad, H., editors, Proceedings of
the 24th Annual ACM Symposium on Applied Computing (SAC’09), pages 461–467,
Honolulu, Hawaii, USA. ACM Press. (Cited on page 146.)

[Sözer, 2009] Sözer, H. (2009). Architecting Fault-Tolerant Software Systems. PhD
thesis, University of Twente. (Cited on pages 5, 53, and 55.)

[Stallman, 1994] Stallman, R. (1994). Debugging with GDB – The GNU source
level debugger. Free Software Foundation. (Cited on page 3.)

[Steimann and Bertchler, 2009] Steimann, F. and Bertchler, M. (2009). A sim-
ple coverage-based locator for multiple faults. In Offutt, J. and Runeson, P.,
editors, Proceedings of the 2nd International Conference on Software Testing, Verification,
and Validation (ICST’09), Denver, CO, USA. IEEE Computer Society. (Cited on
page 105.)

[Steimann et al., 2008] Steimann, F., Eichstädt-Engelen, T., and Schaaf, M.
(2008). Towards raising the failure of unit tests to the level of compiler-
reported errors. In Paige, R. F. and Meyer, B., editors, Proceedings of the
46th International Conference on Objects, Components, Models and Patterns (TOOLS EU-
ROPE’08), volume 11 of Lecture Notes in Business Information Processing, pages
60–79. Springer-Verlag. (Cited on page 6.)

170

[Struss and Dressler, 1989] Struss, P. and Dressler, O. (1989). Physical Nega-
tion: Integrating fault models into the general diagnostic engine. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI’89), pages
1318–1323. (Cited on page 8.)

[Sweetman, 2006] Sweetman, D. (2006). See MIPS Run, Second Edition. Mor-
gan Kaufmann Publishers Inc., San Francisco, California, USA. (Cited on
page 40.)

[Tallam and Gupta, 2005] Tallam, S. and Gupta, N. (2005). A concept analysis
inspired greedy algorithm for test suite minimization. In Ernst, M. D. and
Jensen, T. P., editors, Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis For Software Tools and Engineering (PASTE’05), pages 35–42,
Lisbon, Portugal. ACM Press. (Cited on page 146.)

[Tip, 1995] Tip, F. (1995). A survey of program slicing techniques. Journal of
Programming Languages, 3(3). (Cited on page 104.)

[Trader, 2009] Trader (2005 – 2009). Trader project website, Embedded Sys-
tems Institute. http://www.esi.nl/trader/. (Cited on pages 4 and 40.)

[van Ommering et al., 2000] van Ommering, R. C., van der Linden, F.,
Kramer, J., and Magee, J. (2000). The Koala component model for consumer
electronics software. IEEE Computer, 33(3):78–85. (Cited on page 40.)

[Vayani, 2007] Vayani, R. (2007). Improving automatic software fault localiza-
tion. Master’s thesis, Delft University of Technology. Best thesis award,
Faculty of Mathematics and Computer Science. (Cited on page 101.)

[Visser et al., 2003] Visser, W., Havelund, K., Brat, G. P., Park, S., and Lerda, F.
(2003). Model checking programs. Automated Software Engineering, 10(2):203–
232. (Cited on page 7.)

[Visser and Mehlitz, 2005] Visser, W. and Mehlitz, P. C. (2005). Model check-
ing programs with java pathfinder. In Godefroid, P., editor, Proceedings of the
12th International SPIN Workshop on Model Checking Software, San Francisco, CA, USA,
August 22-24, 2005, volume 3639 of Lecture Notes in Computer Science, page 27,
San Francisco, CA, USA. Springer. (Cited on page 7.)

[Voas, 1992] Voas, J. (1992). PIE: A dynamic failure based technique. IEEE
Transactions on Software Engineering (TSE), 18(8):717–727. (Cited on page 26.)

[Wieland, 2001] Wieland, D. (2001). Model-based Debugging of Java Programs Us-
ing Dependencies. PhD thesis, Vienna University of Technology. (Cited on
page 105.)

[Williams and Ragno, 2007] Williams, B. and Ragno, R. (2007). Conflict-
directed A* and its role in model-based embedded systems. Discrete Applied
Mathematics, 155(12). (Cited on page 81.)

Bibliography 171

http://www.esi.nl/trader/

[Wong et al., 2008] Wong, E., Wei, T., Qi, Y., and Zhao, L. (2008). A crosstab-
based statistical method for effective fault localization. In Hierons, R. and
Mathur, A., editors, Proceedings of the 1st International Conference on Software Test-
ing, Verification, and Validation (ICST’08), pages 42–51, Lillehammer, Norway.
IEEE Computer Society. (Cited on pages 6, 7, 33, 99, 134, and 137.)

[Wotawa, 2001] Wotawa, F. (2001). A variant of Reiter’s hitting-set algorithm.
Information Processing Letters, 79(1):45–51. (Cited on pages 107 and 119.)

[Wotawa, 2002] Wotawa, F. (2002). On the relationship between model-based
debugging and program slicing. Artificial Intelligence, 135(1-2):125–143. (Cited
on page 104.)

[Wotawa et al., 2002] Wotawa, F., Stumptner, M., and Mayer, W. (2002).
Model-based debugging or how to diagnose programs automatically. In
Hendtlass, T. and Ali, M., editors, Proceedings of IAE/AIE 2002, volume 2358 of
LNCS, pages 746–757, Cairns, Australia. Springer-Verlag. (Cited on pages 7,
33, 77, and 104.)

[Xie and Notkin, 2005] Xie, T. and Notkin, D. (2005). Checking inside the
black box: Regression testing by comparing value spectra. IEEE Transactions
on Software Engineering (TSE), 31(10):869–883. (Cited on page 33.)

[Xie and Engler, 2003] Xie, Y. and Engler, D. R. (2003). Using redundancies
to find errors. IEEE Transactions on Software Engineering (TSE), 29(10):915–928.
(Cited on page 140.)

[Yang and Evans, 2004] Yang, J. and Evans, D. (2004). Automatically inferring
temporal properties for program evolution. In Briand, L. and Voas, J., ed-
itors, Proceedings of the 15th International Symposium on Software Reliability Engineer-
ing (ISSRE’04), pages 340–351, Saint-Malo, Bretagne, France. IEEE Computer
Society. (Cited on page 73.)

[Yilmaz et al., 2008] Yilmaz, C., Paradkar, A. M., and Williams, C. (2008).
Time will tell: fault localization using time spectra. In Schäfer, W., Dwyer,
M. B., and Gruhn, V., editors, Proceedings of the 30th International Conference on
Software Engineering (ICSE’08), pages 81–90, Leipzig, Germany. ACM Press.
(Cited on pages 6 and 33.)

[Yilmaz and Williams, 2007] Yilmaz, C. and Williams, C. (2007). An auto-
mated model-based debugging approach. In Stirewalt, R. E. K., Egyed, A.,
and Fischer, B., editors, Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE’07), pages 174–183, Atlanta, Georgia,
USA. ACM Press. (Cited on page 139.)

[Yu et al., 2008] Yu, Y., Jones, J. A., and Harrold, M. J. (2008). An empirical
study of the effects of test-suite reduction on fault localization. In Schäfer,
W., Dwyer, M. B., and Gruhn, V., editors, Proceedings of the 30th International

172

Conference on Software Engineering (ICSE’08), pages 201–210, Leipzig, Germany.
ACM Press. (Cited on page 34.)

[Zeller, 2002] Zeller, A. (2002). Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE’02), pages 1 – 10, Charleston, South Carolina, USA.
ACM Press. (Cited on pages 33, 77, 99, and 103.)

[Zeller and Hildebrandt, 2002] Zeller, A. and Hildebrandt, R. (2002). Sim-
plifying and isolating failure-inducing input. IEEE Transactions on Software
Engineering, 28(2):183–200. (Cited on page 33.)

[Zeller and Lütkehaus, 1996] Zeller, A. and Lütkehaus, D. (1996). DDD –
A free graphical front-end for UNIX debuggers. ACM SIGPLAN Notices,
31(1):22–27. (Cited on page 3.)

[Zhang et al., 2006] Zhang, X., Gupta, N., and Gupta, R. (2006). Locating
faults through automated predicate switching. In Osterweil, L. J., Rombach,
H. D., and Soffa, M. L., editors, Proceedings of the 28th International Conference
on Software Engineering (ICSE’06), pages 272–281, Shanghai, China. (Cited on
page 33.)

[Zhao and Ouyang, 2007] Zhao, X. and Ouyang, D. (2007). Improved algo-
rithms for deriving all minimal conflict sets in model-based diagnosis. In
Huang, D.-S., Heutte, L., and Loog, M., editors, Proceedings of the 3rd Inter-
national Conference on Intelligent Computing (ICIC’07), Advanced Intelligent Computing
Theories and Applications. With Aspects of Theoretical and Methodological Issues, vol-
ume 4681 of Lecture Notes in Computer Science, pages 157–166, Qingdao, China.
Springer-Verlag. (Cited on page 120.)

[Zheng et al., 2006] Zheng, A. X., Jordan, M. I., Liblit, B., Naik, M., and Aiken,
A. (2006). Statistical debugging: simultaneous identification of multiple
bugs. In Cohen, W. W. and Moore, A., editors, Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML’06), volume 148 of ACM International
Conference Proceeding Series, pages 1105–1112, Pittsburgh, Pennsylvania, USA.
ACM Press. (Cited on page 6.)

[Zoeteweij et al., 2007] Zoeteweij, P., Abreu, R., Golsteijn, R., and van
Gemund, A. J. C. (2007). Diagnosis of embedded software using program
spectra. In Leaney, J., Rozenblit, J., and Peng, J., editors, Proceedings 14th In-
ternational Conference on the Engineering of Computer Based Systems (ECBS’07), pages
213 – 218. IEEE Computer Society. (Cited on pages 11 and 14.)

Bibliography 173

174

Summary

Spectrum-based Fault Localization in Embedded Software
– Rui Abreu –

Locating software components that are responsible for observed failures
is a time-intensive and expensive phase in the software development cycle.
Automatic fault localization techniques aid developers/testers in pinpointing
the root cause of software failures, as such reducing the debugging effort.
Automatic fault localization has been an active area of research in the past
years.

Current approaches to automatic software fault localization can be clas-
sified as either (1) statistics-based approaches, or (2) reasoning approaches.
This distinction is based on the required amount of knowledge about the
program’s internal component structure and behavior. Statistics-based fault
localization techniques such as Spectrum-based Fault Localization (SFL) use
abstraction of program traces (also known as program spectra) to find a
statistical relationship between source code locations and observed failures.
Although SFL’s modeling costs and computational complexity are minimal,
its diagnostic accuracy is inherently limited since no reasoning is used. In
contrast to SFL, model-based reasoning approaches use prior knowledge of
the program, such as component interconnection and statement semantics,
to build a model of the correct behavior of the system. On the one hand,
model-based reasoning approaches deliver higher diagnostic accuracy, but on
the other hand, they suffer from high computation complexity.

In this thesis, we thoroughly studied the fundamental limitations of SFL. In
particular, we studied its diagnostic accuracy as a function of similarity coef-
ficient, quantity of observations, and quality of the error detectors. As a result
of this study, we discovered a new similarity coefficient (Ochiai), known from
the molecular biology community. Ochiai consistently outperforms all coeffi-
cients investigated, including those used by related approaches. Furthermore,
we present a novel, low-cost, Bayesian reasoning approach to spectrum-based
multiple fault localization, dubbed Barinel. A central feature of our approach
is the use of a generic, intermittent component failure model. The novelty
of this model lies in the computation of the component intermittency rate
as part of the posterior candidate probability computation using a maximum
likelihood estimation procedure, rather than using previous approaches’ ap-
proximations. This procedure optimally exploits all information contained in
the program spectra. Our synthetic and real software experiments show that
Barinel outperforms previous approaches to fault localization.

175

Furthermore, this thesis reports on the following additional studies. First,
we studied the capabilities of simple, generic program invariants to replace
test oracles, so as to achieve total automation of the fault localization pro-
cess. We verified that, despite the simplicity of the program invariants (and
therefore considerable rates of false positives and/or negatives), the diagnos-
tic performance of SFL is similar to the combination of SFL and test oracles.

Second, to scale to large systems, reasoning approaches such as Barinel de-
pends on low-cost algorithms to compute the set of diagnosis candidates. We
investigated the possibility of using an SFL-based heuristic to focus the com-
putation of valid diagnosis candidates. We show that the SFL-based heuristic
is suitable to derive the set of candidates as the search is focused by visiting
candidates in best-first order (aiming to capture the most relevant probability
mass in the shortest amount of time). Therefore, our algorithm, Staccato, is
order of magnitude faster than, e.g., brute-force approaches, rendering our
reasoning approach amenable to large programs.

Finally, we studied whether SFL can be integrated with existing model-
based software debugging approaches (MBSD) to reduce their high time com-
plexity, while improving their diagnostic quality. We have shown that the
combination of SFL with MBSD focus the debugging process to relevant parts
of the program. Specially compared to MBSD, we have shown that our algo-
rithm has lower complexity, making it scale to large programs.

176

Samenvatting

Spectrum-based Fault Localization in Embedded Software
– Rui Abreu –

Het lokaliseren van software componenten verantwoordelijk voor waar-
genomen fouten is een intensieve en kostbare fase van het software-
ontwikkelingsproces. Automatische foutlokalisatietechnieken reduceren de-
bugging tijd door ontwikkelaars en testers te helpen de hoofdoorzaak van
programmastoringen te achterhalen. Automatische foutlokalisatie is gedu-
rende de laatste jaren een actief onderzoeksgebied geweest.

Huidige benaderingen van automatische foutlokalisatie kunnen worden
geklassificeerd als (1) gebaseerd op statistiek, of (2) gebaseerd op logisch rede-
neren. Dit onderscheid is gebaseerd op de vereiste hoeveel informatie over de
interne componentenstructuur en het gedrag van een programma. Statistiek-
gebaseerde foutlokalisatietechnieken zoals Spectrum-gebaseerde Fout Loka-
lisatie (SFL) gebruiken geabstraheerde programmatraces (ook wel program-
maspectra genoemd) om een statistische relatie te vinden tussen broncodelo-
katies en waargenomen programmastoringen. Alhoewel SFL weinig model-
leertijd vereist en een minimale computationele complexiteit heeft, heeft diens
diagnostische precisie inherente beperkingen, aangezien geen formele logica
wordt gebruikt. In tegenstelling to SFL gebruiken model-gebaseerde benade-
ringen wel a priori kennis van een programma, zoals component-interrelaties
en taalsemantiek, om correct systeemgedrag te modelleren. Enerzijds bieden
model-gebaseerde benaderingen een hogere diagnostische precisie, anderzijds
hebben zij last van een hogere computationele complexiteit.

In dit proefschrift hebben we de fundamentele beperkingen van SFL gron-
dig bestudeerd. We hebben met name de diagnostiche precisie bestudeerd,
en de invloed daarop van similarity coëfficiënten, aantallen observaties, en
kwaliteit van de foutdetectiebenaderingen. Tijdens dit onderzoek hebben we
een nieuwe similarity coëfficiënt gevonden (Ochiai), die al eerder bekend was
binnen de moleculaire biologie. Ochiai presteert consequent beter dan alle
andere bestudeerde coëfficiënten, waaronder die van gerelateerde benaderin-
gen. Verder introduceren we een nieuwe, goedkope, Bayesiaanse benadering
voor spectrumgebaseerde lokalisatie van meerdere fouten, genaamd Barinel.
Een belangrijk kenmerk van onze benadering is het gebruik van een generiek
model voor onregelmatig optredende componentstoringen. Het vernieuwen-
de van dit model is de berekening van de mate waarin componenten falen als
onderdeel van de berekening van de diagnostische waarden van kandidaat-
lokaties. Hierbij wordt gebruik gemaakt van een meest aannemelijke schatter
methode in plaats van de schattingen zoals gebruikt door voorgaande bena-

177

deringen. Deze procedure benut optimaal alle informatie aanwezig in de pro-
grammaspectra. Zowel onze synthetische als echte experimenten tonen aan
dat Barinel beter presteert dan voorgaande benaderingen van foutlokalisatie.

Bovendien bevat dit proefschrift nog de volgende additionele studies. Al-
lereerst hebben we de bekeken of het mogelijk is om eenvoudige, generieke
programma-invarianten te gebruiken om test-orakels te vervangen, waarmee
volledige automatisering van het foutlokalisatieproces mogelijk wordt. Deze
studie bevestigde dat, ondanks de eenvoud van de programma-invarianten
(en het daardoor relatief hoge aantal fout-positieven en fout-negatieven), de
diagnostische kwaliteit van SFL vergelijkbaar blijft met de combinatie van SFL
en test-orakels.

Ten tweede, om naar grote systemen te schalen, hebben benaderingen zoals
Barinel goedkope algoritmes nodig die de verzameling diagnose-kandidaten
kunnen berekenen. Daarom hebben we onderzocht of we een SFL-gebaseerde
heuristiek kunnen gebruiken om het aantal diagnostische mogelijkheden te
beperken. Ons onderzoek toont aan dat de heuristiek snel een passende ver-
zameling diagnose-kandidaten oplevert, doordat het algoritme eerst de meest
waarschijnlijke kandidaten selecteert (waardoor de grootst mogelijke totale
waarschijnlijkheid in een zo kort mogelijke tijd wordt behaald). Hierdoor is
ons algoritme, Staccato, orden van grootte sneller dan bijvoorbeeld een uit-
puttende zoekopdracht, en daarmee toepasbaar bij grote programma’s.

Als laatste hebben we onderzocht of SFL geı̈ntegreerd kan worden met be-
staande model-gebaseerde software debugging benaderingen (MBSD), zodat
de computationele complexiteit gereduceerd kan worden, en tegelijkertijd de
diagnostische kwaliteit verbetert. We tonen aan dat de combinatie van SFL
en MBSD het debugging proces kunnen begeleiden naar relevante delen van
het programma. Bovendien heeft deze combinatie een lagere computationele
complexiteit dan MBSD, en schaalt het naar grote programma’s.

178

Curriculum Vitæ

PERSONAL DATA

Full Name
Rui Filipe Lima Maranhão de Abreu

Date of birth
August 14

th, 1981

Place of birth
Fão, Portugal

EDUCATION

August 2005 – September 2009
PhD Student at Delft University of Technology, the Netherlands, under
the supervision of prof.dr.ir. A.J.C. van Gemund;

September 1999 – September 2004
Degree on Systems and Computer Science Engineering, specialization
in information technologies, University of Minho, Portugal;

September 2002 –February 2003
Followed courses of the Software Technology Master program as an
Erasmus Exchange Student, Utrecht University, the Netherlands;

September 1996 – June 1999
Secondary Education Diploma, specialization in informatics, Escola Se-
cundária de Santa Maria Maior, Viana do Castelo, Portugal.

WORK EXPERIENCE

August 2005 – September 2009
Research Assistant at Delft University of Technology and Embedded
Systems Institute, the Netherlands;

May 2007 – May 2008
Guest Software Developer at NXP Semiconductors, Eindhoven, the
Netherlands;

October 2004 –June 2005
Research Trainee at Philips Research Labs, Eindhoven, the Netherlands;

March 2004 – September 2004
Software-Developer Trainee at Siemens S.A., Porto, Portugal.

179

PUBLICATIONS

1. R. Abreu, A. González, P. Zoeteweij, and A.J.C. van Gemund, Using Fault
Screeners to Software Error Detection. In (J. Cordeiro, L.A. Maciaszek, S.
Hammoudi and J. Filipe, eds.) WEBIST / ENASE 2008 Revised Best
Papers, Lecture Notes in Communications in Computer and Information
Science (LNCCIS). Springer-Verlag. (to appear)

2. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, Spectrum-based Multiple
Fault Localization. In Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE’09), Auckland,
New Zealand, November 2009. IEEE Computer Science. (to appear)

3. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, Zoltar: A Toolset for
Automatic Fault Localization. In Proceedings of the 24th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE’09) -
Tools Track, Auckland, New Zealand, November 2009. IEEE Computer
Science. (to appear)

4. R. Abreu, P. Zoeteweij, A.J.C. van Gemund, Fault Localization of Embed-
ded Software. In (R. Mathijssen, ed.) TRADER: Reliability of High-
Volume Consumer Products, pp. 103-112, ISBN 978-90-78679-04-2,
September 2009. Embedded Systems Institute, Eindhoven, the Nether-
lands.

5. P. Zoeteweij, R. Abreu, A.J.C. van Gemund, Spectrum-Based Fault Lo-
calization in Practice. In (R. Mathijssen, ed.) TRADER: Reliability of
High-Volume Consumer Products, pp. 112-124, ISBN 978-90-78679-04-2,
September 2009. Embedded Systems Institute, Eindhoven, the Nether-
lands.

6. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, Localizing Software
Faults Simultaneously. In Proceedings of the 9th International Confer-
ence on Quality of Software (QSIC’09), Jeju, South Korea, August 2009.
IEEE Computer Science.

7. T. Janssen, R. Abreu, and A.J.C. van Gemund, Zoltar: A Spectrum-based
Fault Localization Tool. In Proceedings of the 1st International Workshop
on Software Integration and Evolution @ Runtime (SINTER’09), pp. 23-
29, Amsterdam, the Netherlands, August 2009. ACM Press.

8. R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund, A Practi-
cal Evaluation of Spectrum-based Fault Localization. Journal of Systems &
Software (JSS), Elsevier, 2009.

9. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, A New Bayesian Ap-
proach to Multiple Intermittent Fault Diagnosis. In Proceedings of the 21st

180

International Joint Conference on Artificial Intelligence (IJCAI’09), pp.
653-658, Pasadena, CA, USA, July 2009. AAAI Press.

10. R. Abreu and A.J.C. van Gemund, A Low-Cost Approximate Minimal Hit-
ting Set Algorithm and its Application to Model-Based Diagnosis. In Pro-
ceedings of the 8th Symposium on Abstraction, Reformulation and Ap-
proximation (SARA’09), Lake Arrowhead, CA, USA, July 2009. AAAI
Press.

11. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, A Model-based Software
Reasoning Approach to Software Debugging. In Proceedings of the 22nd
International Conference on Industrial, Engineering and Other Applica-
tions of Applied Intelligent Systems (IEA-AIE’09), Tainan, Taiwan, June
2009. Studies in Computational Intelligence, vol. 214, pp. 233-239,
Springer-Verlag.

12. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, A Bayesian Approach
to Diagnose Multiple Intermittent Faults. In Proceedings of the 20th In-
ternational Workshop on Principles of Diagnosis (DX’09), pp. 27-33,
Stockholm, Sweden, June 2009.

13. R. Abreu and A.J.C. van Gemund, Statistics-directed Minimal Hitting Set
Algorithm. In Proceedings of the 20th International Workshop on Prin-
ciples of Diagnosis (DX’09), pp. 51-58, Stockholm, Sweden, June 2009.

14. R. Abreu, W. Mayer, M. Stumptner, and A.J.C. van Gemund, Refining
Spectrum-based Fault Localization Rankings. In Proceedings of the 24th
Annual ACM Symposium on Applied Computing (SAC’09) - Software
Engineering Track, pp. 409–414, Honolulu, Hawai’i, USA, March 2009.
ACM Press.

15. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, A Dynamic Modeling
Approach to Software Multiple-Fault Localization. In Proceedings of the
19th International Workshop on Principles of Diagnosis (DX’08), pp. 7-
14, Blue Mountains, NSW, Australia, September 2008.

16. W. Mayer, R. Abreu, M. Stumptner, and A.J.C. van Gemund, Prioritizing
Model-Based Debugging Diagnostic Reports. In Proceedings of the 19th
International Workshop on Principles of Diagnosis (DX’08), pp. 127-134,
Blue Mountains, NSW, Australia, September 2008.

17. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, An Observation-based
Model for Fault Localization. In Proceedings of the 6th Workshop on
Dynamic Analysis (WODA’08), colocated with the International Sym-
posium on Software Testing and Analysis (ISSTA’08), pp. 64-70, Seattle,
WA, USA, July 2008. ACM Press.

Curriculum Vitæ 181

18. P. Zoeteweij, J. Pietersma, R. Abreu, A. Feldman, and A.J.C. van
Gemund, Automated Fault Diagnosis in Embedded Systems. In Proceed-
ings of the 2nd IEEE International Conference on Secure Systems and
Reliability Improvement (SSIRI’08), pp. 103-110, Yokohama, Japan, July
2008. IEEE Computer Society.

19. R. Abreu, A. González, P. Zoeteweij, and A.J.C. van Gemund, On the Per-
formance of Fault Screeners in Software Development and Deployment. In
Proceedings of the 3rd International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE’08), pp. 123–130, Funchal,
Madeira, Portugal, May 2008. INSTICC Press.

20. R. Abreu, A. González, P. Zoeteweij, and A.J.C. van Gemund, Auto-
matic Software Fault Localization using Generic Program Invariants. In Pro-
ceedings of the 23rd Annual ACM Symposium on Applied Computing
(SAC’08) - Software Engineering Track, pp. 712–717, Fortaleza, Ceará,
Brazil, March 2008. ACM Press.

21. P. Zoeteweij, J. Pietersma, R. Abreu, A. Feldman, and A.J.C. van
Gemund, Automated Fault Diagnosis in Embedded Software. In Proceed-
ings of the ESI / Bits & Chips Embedded Systems Conference, Eind-
hoven, The Netherlands, October 2007.

22. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, On the Accuracy
of Spectrum-based Fault Localization. In Proceedings of the Testing:
Academia and Industry Conference - Practice And Research Techniques
(TAIC PART’07), pp. 89–98, Windsor, United Kingdom, September 2007.
IEEE Computer Society.

23. P. Zoeteweij, R. Abreu, and A.J.C. van Gemund, Software Fault Diagnosis.
Tutorial in the joint tutorial day of the TESTCOM / FATES and FORTE
conferences, Tallinn, Estonia, June 2007.

24. P. Zoeteweij, R. Abreu, R. Golsteijn, and A.J.C. van Gemund, Diagnosis
of Embedded Software using Program Spectra. In Proceedings of the 14th
Annual IEEE International Conference and Workshop on the Engineer-
ing of Computer Based Systems (ECBS’07), pp. 213–218, Tucson, AZ,
USA, March 2007. IEEE Computer Society.

25. P. Zoeteweij, R. Abreu, R. Golsteijn, and A.J.C. van Gemund, Fault Di-
agnosis of Embedded Software using Program Spectra. In Proceedings of
the 3rd European Symposium on Verification and Validation of Soft-
ware Systems (VVSS 2007), LaQuSo: Laboratory for Quality Software,
Eindhoven, The Netherlands, March 2007, also available as Eindhoven
Computing Science Technical Report: CS-Report 07-04

26. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, An Evaluation of Sim-
ilarity Coefficients for Software Fault Localization. In Proceedings of the

182

12th International Symposium on Pacific Rim Dependable Computing
(PRDC’06), pp. 39–46, Riverside, CA, USA, December 2006. IEEE Com-
puter Society.

27. R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund, Automatic
Fault Diagnosis in Embedded Software. In Proceedings of 10th Philips
Software Conference (PSC’06), Veldhoven, The Netherlands, November
2006.

28. R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, Program Spectra Analy-
sis in Embedded Software: A Case Study. In Proceedings of the 12th An-
nual Conference of the Advanced School for Computing and Imaging
(ASCI’06), pp. 263 – 269, Lommel, Belgium, June 2006.

Curriculum Vitæ 183

	Acknowledgements
	Contents
	List of Symbols
	List of Acronyms
	Introduction
	Concepts and Definitions
	Fault Localization
	Statistical Approaches
	Reasoning Approaches

	Problem Statement
	Contributions
	Thesis Outline
	Origin of Chapters

	Spectrum-based Fault Localization
	Preliminaries
	Program Spectra
	Spectrum-based Fault Localization

	Experimental Setup
	Benchmark Set
	Data Acquisition
	Evaluation Metric

	Similarity Coefficient Impact
	Observation Quality Impact
	A Measure of Observation Quality
	Varying qe
	Similarity Coefficients Revisited

	Observation Quantity Impact
	Related Work
	Summary

	Industrial Case Studies with SFL
	Relevance to Embedded Software
	Experiments with ADOC
	Platform
	Faults
	Implementation
	Diagnosis
	Overhead

	Experiments with TV520
	Platform
	Space Efficiency
	Implementation

	Experiments
	NVM Corrupted
	Scrolling Bug
	Pages Without Visible Content
	Repeated Tuner Settings
	Evaluation

	Summary

	Using Fault Screeners for Error Detection
	Fault Screeners
	Experiments
	Experimental Setup
	Results

	Analytic Model
	Concepts and Definitions
	Ideal Screening
	Bitmask Screening
	Range Screening
	Discussion

	Fault Screening and SFL
	Related Work
	Summary

	A Bayesian Approach to SFL
	Model-based Reasoning Approaches
	The Barinel Approach
	Specific Features
	Algorithm
	Maximum Likelihood Estimation
	Estimating Intermittency

	Analytic Model
	Number of Failing Runs
	Behavior for Small Number of Runs
	Behavior for Large Number of Runs
	Experimental Validation

	Empirical Evaluation
	Experimental Setup
	Performance Results
	Time/Space Complexity

	Related Work
	Summary

	A Low-Cost Approximate Minimal Hitting Set Algorithm
	Minimal Hitting Set Problem
	STACCATO
	Approximation
	Model-Based Diagnosis
	An MBD Heuristic
	Algorithm
	Complexity Analysis

	Experimental Results
	Synthetic Diagnosis Experiments
	Real Software Analysis for Diagnosis

	Related Work
	Summary

	Using SFL to Focus Model-based Software Debugging
	MBSD
	Issues in MBSD

	Deputo
	Empirical Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Summary

	Conclusions
	Summary of Contributions
	Recommendations for Future Work

	Appendices
	Bloom Filter Hash Functions
	Gradient Ascent Procedure
	Bibliography
	Summary
	Samenvatting
	Curriculum Vitæ

