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Calibration of Response Amplitude Operators based 
on Measurements of Vessel Motions and Directional 
Wave Spectra 
D. Skandali1,2, E. Lourens1, R.H.M. Ogink1,2

1Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The 
Netherlands 
2Heerema Marine Contractors Nederland SE, Leiden, The Netherlands 

Abstract 
A vessel’s response to waves is dependent on a large number of parameters, some of which are 
both frequency and direction dependent. To predict vessel response, these parameters are used 
to construct response amplitude operators (RAOs) that act as transfer functions between the 
directional wave spectra and the motion spectra of the vessel. In particular situations, however, 
vessel motions predicted using RAOs calculated with general-purpose radiation-diffraction 
codes and measured wave spectra are found to deviate from measured vessel responses. To 
address this problem, a methodology for calibrating RAOs based on measurements of the 
directional wave spectra and vessel motions is proposed. Use is made of a vector fitting method 
through which the frequency dependent hydrodynamic properties of the vessel can be 
approximated by a ratio of two polynomials, thus greatly reducing the number of parameters 
that need to be calibrated. The reduced set of parameters is subsequently related to previously 
identified causes of RAO inaccuracy in order to arrive at optimization algorithms for identifying 
more accurate RAOs from the measurements. It is shown that the RAOs can be improved with 
accuracy in situations where the discrepancies are caused by imprecise estimates for the vessel’s 
radii of gyration, center of gravity, or viscous damping. When the discrepancies in the RAOs 
are related to the potential mass, damping and wave forces, however, the problem becomes 
highly non-convex and it is not possible to find a unique RAO that satisfies the data. 

Keywords: response amplitude operator, vector fitting, directional wave spectra, vessel motion, 
calibration procedure  
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1 INTRODUCTION 

Accurate prediction of ship, barge or semi-submersible motion during offshore projects is of 
importance to the operator of the vessel. A vessel’s motion response to incoming waves is 
calculated on the basis of Response Amplitude Operators (RAOs). The incoming irregular 
waves are described by frequency- and direction-dependent wave spectra. The vessel’s 
response spectra are then calculated by multiplying the wave spectra by the RAOs squared. In 
the offshore industry, these RAOs are typically calculated using general-purpose radiation-
diffraction codes [1, 2]. These codes are based on two- or three-dimensional analyses that 
predict linear wave induced loads on large volume structures [1, 2, 3, 4, 5] on the basis of 
potential theory. 

To verify the accuracy of the calculations, the vessel motions can be measured by, for example, 
Motion Reference Units (MRUs). In particular cases, the measured vessel motions are found to 
differ from the predicted (calculated) motions. Inaccuracies have, among others, been observed 
in the following cases:  

• A semi-submersible vessel on a draught with a small amount of water on the floaters: 
the so-called inconvenient draught.  

• When viscous damping forces are of the same order of magnitude or even larger than 
potential damping forces due to wave radiation. 

• When the mass distribution or the centre of gravity (CoG) of the vessel changes.  

Diffraction software is less reliable for calculation of RAOs for semi-submersibles with a thin 
layer of water on the floater. The standing wave pattern that develops on the floaters and the 
breaking of those waves is predicted incorrectly by conventional diffraction theory, resulting 
in incorrect wave radiation and diffraction potentials. Matters are complicated even further, if 
the floaters emerge and re-submerge. This results in a non-constant water plane area and 
therefore in non-constant restoring forces in the motion equations. Calculation of RAOs for 
semi-submersibles at inconvenient draught with CFD is ongoing research within the offshore 
industry [6, 7, 8]. 

Viscous damping forces due to eddy shedding can be as large as or even larger than the potential 
damping forces. Depending on the hull shape, this is especially true for roll damping. This 
means that for accurate roll prediction, a viscous damping force has to be added to the potential 
forces in the equations of motion [3, 9]. Estimates for viscous roll damping of monohulls are 
often based on the work of Tanaka [10]. An example of the evaluation of the viscous roll 
damping of a semi-submersible is given in [22]. A recent overview of prediction methods for 
roll damping of ships is given in [11]. 

During offshore projects the mass distribution of vessels can change, for example when heavy 
loads are shifted on the vessel or are transferred from vessel to vessel. This can result in 
situations in which the CoG and/or the radii of gyration of the vessel are not known accurately. 
Also more generally, fuel consumption will change the mass distribution of the vessel as well. 
Incomplete knowledge of the mass distribution will result in inaccurate RAO determination. 

The phenomena mentioned above can result in inaccurate motion prediction when standard 
RAOs are used. Often during offshore installation projects, frequency- and direction-dependent 
wave spectra are recorded by special purpose buoys and the vessel motions are recorded by 
MRUs. The difficulty in back-calculation of the RAOs lies in the measured wave spectra having 
wave energy over multiple directions. RAOs need to be determined for each combination of 
vessel Degree of Freedom (DoF) and incoming wave direction. Each incoming wave direction 
transfers energy to each of the 6 vessel DoFs. The problem is to determine how much energy 
each directional wave bin has contributed to the response spectrum of a certain motion as the 
response spectrum is a summation of energy received from multiple directions. This should be 
contrasted with model tests. In model tests, RAOs are determined based on uni-directional 
waves with no wave spreading. The waves can either be regular, random or transient [12, 13], 
but as long as they are uni-directional, incoming wave direction and resulting vessel motion 
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can be directly related and the RAOs can be determined based on the quotient of the response 
and wave spectra [14]. 

The above mentioned problem has resulted in the question whether, based on measured wave 
spectra and vessel motions, a method can be developed to calibrate existing RAOs for a change 
of mass distribution or to obtain a better estimate of viscous damping and potential mass, 
damping and wave forces. In this paper, a method for calibration is proposed, based on vector 
fitting [15] of the original RAOs and subsequently modifying the fitting parameters.  

The method is tested on an imaginary semi-submersible vessel for 2 test cases. The procedure 
that has been used is as follows. Based on the results of a diffraction calculation, a set of 
standard RAOs have been determined for the imaginary vessel. Subsequently, for the first test 
case, mass distribution and viscous roll damping have been changed and target RAOs have been 
determined in the normal manner. For the second test case, the vessel draught has been changed, 
a new diffraction calculation performed and target RAOs have been determined in the normal 
manner. With the target RAOs motion responses have been generated using directional wave 
spectra that have been encountered during offshore installation projects. For the purpose of this 
paper, these motion responses represent the ‘measured’ motions of the imaginary vessel. Then, 
starting from the motion responses and the original set of standard RAOs, it has been attempted 
to back-calculate the target RAOs, after which the target RAOs and back-calculated RAOs are 
compared. 

The imaginary semi-submersible vessel used in the test cases is depicted in Figure 1. The 
meshing as used in the diffraction calculations is shown as well in this figure. The vessel is 
symmetrical with respect to the centreline. The origin of the local axis-system used is at [stern, 
centreline, keel]. With the x-axis positive towards bow, the y-axis positive towards portside and 
z-axis positive upwards. The vessel has a floater length of 120.0 m and an overall length of 
137.5 m. The width of the vessel is 88.0 m. The height of the floaters is 12.0 m and the deck 
level is at 42.0 m measured from the keel. At 25.0 m draught, the vessel’s displacement is 
117800 m3 and the waterplane area is 3570 m2. The radii of gyration are rxx = 38.7 m, ryy = 52.1 
m and rzz = 52.1 m. The position of the CoG is [62.2, 0.0, 24.5] m from [stern, centreline, keel]. 
The natural period for heave, roll and pitch are 23.8 s, 23.1 s and 17.3 s, respectively.  

 
Figure 1: Semi-submersible vessel used in test cases   
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The vector fitting of the standard RAOs is described in Section 3. A novelty here is that the 
vector fitting method allows for the potential wave forces at intermediate directions to be 
obtained by interpolation. By relating the variables of the fitting functions to physical quantities 
and taking the above-discussed causes of RAO inaccuracies into account, an optimization 
strategy for finding the target RAOs is developed in Section 4.  Finally, in Section 5, the 
procedure is applied to the imaginary semi-submersible vessel and the test cases are considered. 
Conclusions are given in Section 6. 
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2 CALCULATION OF RAOS 

The motion RAOs for the six degrees of freedom (surge, sway, heave, roll, pitch and yaw) are 
expressed by the following matrix equation [3, 5, 16]: 

𝑹𝑹𝑹𝑹𝑹𝑹(ω,𝑑𝑑𝑑𝑑𝑑𝑑) = {−ω2 ∙ (𝜧𝜧 + 𝑹𝑹(ω)) + 𝑑𝑑ω ∙ (𝑩𝑩(ω) + 𝑩𝑩𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗) + 𝑪𝑪}−1 ∙ 𝑭𝑭(ω,𝑑𝑑𝑑𝑑𝑑𝑑)                            (1) 

in which M is the mass matrix of the vessel, given by Equation 2 below, A(ω) is the potential 
hydrodynamic mass matrix, B(ω) is the potential hydrodynamic damping matrix, Bvisc is the 
damping matrix due to viscous effects, C is the vessel stiffness matrix, given by Equation 3, 
F(ω,dir) is the potential hydrodynamic force vector and RAO(ω,dir)∈ ℂ6𝑥𝑥1 is the RAO matrix 
of the vessel for the wave frequency ω and the wave direction dir. The hydrodynamic wave 
forces are calculated for a unit wave with amplitude ζ. The amplitude of the RAOs 
𝑹𝑹𝑹𝑹𝑹𝑹𝒂𝒂(ω,𝑑𝑑𝑑𝑑𝑑𝑑) represents the motion amplitude per unit wave amplitude, while the phase of the 
RAOs denotes the phase difference between the vessel motions and the waves. The mass matrix 
M and stiffness matrix C are defined by: 

𝑴𝑴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜌𝜌∇    0      0   

   0   𝜌𝜌∇    0   
   0      0   𝜌𝜌∇

     0          0          0     
  0    0    0  
  0    0    0  

   0      0      0   
   0      0      0   
   0      0      0   

𝑑𝑑𝑥𝑥𝑥𝑥2 𝜌𝜌∇      0          0     
     0     𝑑𝑑𝑦𝑦𝑦𝑦2 𝜌𝜌∇   0  

  0    0  𝑑𝑑𝑧𝑧𝑧𝑧2 𝜌𝜌∇ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                                                        (2) 

𝑪𝑪 =

⎣
⎢
⎢
⎢
⎢
⎡
 0  0                      0                     
 0  0                      0                     
 0  0 𝜌𝜌𝜌𝜌𝐴𝐴𝑊𝑊𝑊𝑊

       0              0          0  
       0              0          0  

0 −𝜌𝜌𝜌𝜌𝐴𝐴𝑊𝑊𝑊𝑊(𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶)   0  
 0  0                      0                     
 0  0 −𝜌𝜌𝜌𝜌𝐴𝐴𝑊𝑊𝑊𝑊(𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶)
 0  0    0   

𝜌𝜌𝜌𝜌∇𝐺𝐺𝐺𝐺𝑇𝑇                     0                       0  
       0       𝜌𝜌𝜌𝜌∇𝐺𝐺𝐺𝐺𝑊𝑊   0  
       0       0   0  ⎦

⎥
⎥
⎥
⎥
⎤

                  (3) 

In the above equations, ρ denotes the water density, g denotes the acceleration due to gravity, 
∇ denotes the vessel displacement, rxx, ryy and rzz are the radii of gyration around the 
longitudinal, transversal and vertical axes, AWL denotes the vessel’s waterplane area, xCoF and 
xCoB denote the longitudinal coordinates of the vessel’s centre of floatation and buoyancy and 
GMT and GML are the transversal and longitudinal metacentric heights. For small angles of heel 
or trim, they are given by: GMT = KB + BMT − KG and GML = KB + BML − KG, in which KB  
and KG denote the height of the CoB and CoG above the keel and BMT and BML denote the 
height of the transverse and longitudinal metacentre above the CoB. 

For determination of RAOs, it is normal practice to add diagonal stiffness terms for surge, sway 
and yaw, such that the resulting natural periods for these motions are very long and fall well 
outside the wave spectrum. 

In this paper RAOs will be determined for the motions of the CoG of the vessel. If the CoG is 
shifted by a distance [dx, dy, dz], the motions and forces at the shifted CoG can be calculated 
with linearised transformation matrices [5, 9].  

When the RAOs have been determined, the motion response spectra are obtained through 
integration over the wave directions [3, 5]:  

𝑺𝑺𝒗𝒗(𝝎𝝎) = ∫ 𝑺𝑺𝜻𝜻(𝝎𝝎,𝒅𝒅𝒗𝒗𝒅𝒅) ∙ 𝑹𝑹𝑹𝑹𝑹𝑹𝒂𝒂;𝒗𝒗(𝝎𝝎,𝒅𝒅𝒗𝒗𝒅𝒅)𝟐𝟐 𝒅𝒅(𝒅𝒅𝒗𝒗𝒅𝒅)𝝅𝝅
−𝝅𝝅                                                                       (4) 

where i indicates the degree of freedom, 𝑆𝑆𝑖𝑖 is the response spectrum and 𝑆𝑆𝜁𝜁  is the wave 
spectrum. 
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3 VECTOR FITTING OF THE STANDARD RAOS 

The aim of this paper is to back-calculate RAOs based on given motion responses and a set of 
given standard RAOs. Depending on the frequency and wave direction sampling, the matrix 
containing the standard RAOs can contain a large number of elements. Instead of trying to 
adjust each element separately, it will be tried to reduce the number of elements to be calibrated 
by using the method of vector fitting. 

The method of vector fitting as developed by Semlyen and Gustavsen [15] allows for expressing 
the frequency-dependent hydrodynamic properties of the vessel (characterized by multiple 
resonant peaks) in terms of only a limited number of parameters. Similar approaches of 
approximating the frequency-dependent hydrodynamic properties with complex functions are 
applied by Liu et al. [17, 18] for the determination of frequency response and retardation 
functions. 

An approximation function can be found by fitting a ratio of two polynomials to given 
frequency-dependent data: 

𝑓𝑓(𝑠𝑠) = 𝑎𝑎0+𝑎𝑎1𝑠𝑠+𝑎𝑎2𝑠𝑠2+⋯+𝑎𝑎𝑁𝑁𝑠𝑠𝑁𝑁

𝑏𝑏0+𝑏𝑏1𝑠𝑠+𝑏𝑏2𝑠𝑠2+⋯+𝑏𝑏𝑁𝑁𝑠𝑠𝑁𝑁
                                                                                                                                            (5) 

where 𝑠𝑠 = 𝑑𝑑ω and 𝑓𝑓(𝑠𝑠) represents the frequency dependent data. In order to find the unknown 
coefficients of the polynomial, Equation 9 is written as a linear matrix equation of the type 
𝑹𝑹𝑨𝑨 = 𝒃𝒃. This can be achieved by multiplying both sides with the denominator. The resulting 
problem is, however, badly scaled, as the columns of 𝑹𝑹 are multiplied by different powers of 𝑠𝑠. 
Only low-order approximations can thus be found using this relation. To avoid this limitation, 
the data are approximated by fitting partial fractions with pre-calculated resonant complex poles 
[15]. The equation for the approximation function then becomes: 

𝑓𝑓(𝑠𝑠) = � � c𝑛𝑛
𝑠𝑠−𝑝𝑝𝑛𝑛

�
𝑁𝑁

𝑛𝑛=1
+ 𝑑𝑑 + 𝑠𝑠 ∙ ℎ                                                                                            (6) 

where c𝑛𝑛 are the complex residues, 𝑝𝑝𝑛𝑛 are the complex resonant poles, 𝑑𝑑 and ℎ are real 
quantities and N is the total amount of resonant poles. Both the residues and the poles come in 
complex conjugate pairs.  

Each parameter plays a certain role in defining the characteristics of the resulting approximation 
function. By selecting the appropriate values of these parameters, a curve with resonant peaks 
of a specific amplitude and shape can be created. It is useful to mention the following:  

• The frequencies at which the approximation curve displays resonant peaks are 
specified by the imaginary part of the poles.  

• The amplitudes of the real parts of the poles specify the sharpness of the resonant 
peaks. 

• The moduli of the residues specify the amplitude of the resonant peaks.  
• The parameter 𝑑𝑑 lifts the curve of the approximation function. 
• The parameter ℎ tilts the curve of the approximation function.  

The vector fitting procedure as developed by Semlyen and Gustavsen, consists of two stages. 
In the first stage, a set of complex poles distributed over the frequency range of interest is 
selected. In the second stage the remaining parameters are determined based on the poles as 
identified in stage 1.  

It should be noted that the selection of the initial poles has an important effect on the accuracy 
of the approximation. A practical location of the initial poles should thus be decided on. These 
poles are complex conjugate pairs distributed over the frequency range, and can be written as 
follows: 

𝑝𝑝𝑛𝑛 = −α𝑝𝑝𝑛𝑛 + 𝑑𝑑β𝑝𝑝𝑛𝑛  ,   𝑝𝑝𝑛𝑛+1 = −α𝑝𝑝𝑛𝑛 − 𝑑𝑑β𝑝𝑝𝑛𝑛                                                                          (7) 
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where pn, pn+1 is a conjugate pair of complex poles, and αpn,  βpn are the real and imaginary parts 
of the pole, respectively. It is assumed that the real parts of the initial poles are given by: αpn =
βpn
100

 [15]. 

In what follows, the vector fitting for a) the added mass and damping and b) the wave forces, 
will be discussed separately. The process is applied to the added mass, damping and wave forces 
of the imaginary semi-submersible vessel described in Section 1. 

 

3.1 Vector fitting of the added mass and damping 
The vector fitting method is applied to approximate the frequency domain elements of the added 
mass and damping matrices. Based on potential theory, added mass and damping are 
mathematically related through the Kramers-Kronig relations, and should thus not be treated 
separately [19]. The fitting process is accomplished for the complex number ab which is related 
to the added mass a and damping b in the following manner: 

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔) = 𝑎𝑎𝑖𝑖𝑖𝑖(𝜔𝜔) − 𝑏𝑏𝑖𝑖𝑖𝑖(𝜔𝜔)
𝜔𝜔

∙ 𝑑𝑑                                                                                                    (8) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 is an element of the added mass matrix, 𝑎𝑎𝑖𝑖𝑖𝑖  an element of the damping matrix, and 𝜔𝜔 
the wave frequency. In total, the added mass and damping matrices have 36 frequency-
dependent elements of which 18 are zero. A maximum of 18 approximation functions should 
thus be constructed.  

Furthermore, when considering the vessel having a vertical-longitudinal plane of symmetry the 
motions can be split into symmetric and anti-symmetric components, further reducing the 
number of unknowns. Surge, heave and pitch are coupled symmetric motions, while sway, roll 
and yaw then become coupled anti-symmetric motions. Taking advantage of symmetry and 
anti-symmetry conditions, the number of approximation functions can be reduced from 18 to 
12.  

Each of these elements of the hydrodynamic added mass and damping matrices is replaced by 
a fitting function as shown below: 
A(ω)= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎𝑎11(𝜔𝜔) 0 𝑎𝑎13(𝜔𝜔) 0 𝑎𝑎15(𝜔𝜔) 0

0 𝑎𝑎22(𝜔𝜔) 0 𝑎𝑎24(𝜔𝜔) 0 𝑎𝑎26(𝜔𝜔)
𝑎𝑎31(𝜔𝜔) 0 𝑎𝑎33(𝜔𝜔) 0 𝑎𝑎35(𝜔𝜔) 0

0 𝑎𝑎42(𝜔𝜔) 0 𝑎𝑎44(𝜔𝜔) 0 𝑎𝑎46(𝜔𝜔)
𝑎𝑎51(𝜔𝜔) 0 𝑎𝑎53(𝜔𝜔) 0 𝑎𝑎55(𝜔𝜔) 0

0 𝑎𝑎62(𝜔𝜔) 0 𝑎𝑎64(𝜔𝜔) 0 𝑎𝑎66(𝜔𝜔)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 →

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ℜ�𝑓𝑓𝑎𝑎𝑏𝑏11(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏13(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏15(𝑠𝑠)� 0

0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏22(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏24(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏26(𝑠𝑠)�
ℜ�𝑓𝑓𝑎𝑎𝑏𝑏31(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏33(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏35(𝑠𝑠)� 0

0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏42(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏44(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏46(𝑠𝑠)�
ℜ�𝑓𝑓𝑎𝑎𝑏𝑏51(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏53(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏55(𝑠𝑠)� 0

0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏62(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏64(𝑠𝑠)� 0 ℜ�𝑓𝑓𝑎𝑎𝑏𝑏66(𝑠𝑠)�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(9) 
B(ω)= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎𝑎11(𝜔𝜔) 0 𝑎𝑎13(𝜔𝜔) 0 𝑎𝑎15(𝜔𝜔) 0

0 𝑎𝑎22(𝜔𝜔) 0 𝑎𝑎24(𝜔𝜔) 0 𝑎𝑎26(𝜔𝜔)
𝑎𝑎31(𝜔𝜔) 0 𝑎𝑎33(𝜔𝜔) 0 𝑎𝑎35(𝜔𝜔) 0

0 𝑎𝑎42(𝜔𝜔) 0 𝑎𝑎44(𝜔𝜔) 0 𝑎𝑎46(𝜔𝜔)
𝑎𝑎51(𝜔𝜔) 0 𝑎𝑎53(𝜔𝜔) 0 𝑎𝑎55(𝜔𝜔) 0

0 𝑎𝑎62(𝜔𝜔) 0 𝑎𝑎64(𝜔𝜔) 0 𝑎𝑎66(𝜔𝜔)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 →

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ℑ�𝑓𝑓𝑎𝑎𝑏𝑏11(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏13(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏15(𝑠𝑠)� 0

0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏22(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏24(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏26(𝑠𝑠)�
ℑ�𝑓𝑓𝑎𝑎𝑏𝑏31(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏33(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏35(𝑠𝑠)� 0

0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏42(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏44(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏46(𝑠𝑠)�
ℑ�𝑓𝑓𝑎𝑎𝑏𝑏51(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏53(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏55(𝑠𝑠)� 0

0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏62(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏64(𝑠𝑠)� 0 ℑ�𝑓𝑓𝑎𝑎𝑏𝑏66(𝑠𝑠)�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(10) 

where, according to Equation 10:  

𝑓𝑓𝑎𝑎𝑏𝑏11(𝑠𝑠) = � c𝑛𝑛,𝑎𝑎𝑎𝑎11
𝑠𝑠−𝑝𝑝𝑛𝑛,𝑎𝑎𝑎𝑎11

𝑁𝑁

𝑛𝑛=1
+ 𝑑𝑑𝑎𝑎𝑏𝑏11 + 𝑠𝑠 ∙ ℎ𝑎𝑎𝑏𝑏11 and so forth.  

For the selection of the initial poles in stage 1 of the vector fitting, it is suggested to use the 
local minima and maxima of the amplitudes of 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖. In accordance with the explanation given 
above, the wave frequencies that correspond to these minima and maxima are used as the 
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imaginary part of the initial poles. The real parts of the initial poles are then calculated by 
dividing the imaginary part by 100 [15]. Due to the fact that the vessel motions are mainly 
influenced by wind-sea and swell, the curve fitting has been performed for the frequency range 
of 0.15-1.60 rad/s, thus avoiding the selection of poles at frequencies outside this range. 
Furthermore, several iterations should be performed to get a better set of poles. The iterations 
stop when the scaling function reaches a minimum value [15]. In the second stage of the vector 
fitting process, the residues and the real quantities of the final approximation function have 
been identified.  

To evaluate the accuracy of the fitting process, the Normalized Root Mean Square Error [20] 
is used: 

 𝑁𝑁𝑅𝑅𝐺𝐺𝑆𝑆𝑅𝑅𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖 = 1 −
�1
𝑘𝑘∙∑ �𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖,𝑉𝑉𝑉𝑉(𝜔𝜔𝑖𝑖)−𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖,𝑂𝑂𝑂𝑂(𝜔𝜔𝑖𝑖)�

2𝑘𝑘
𝑖𝑖=1

�1
𝑘𝑘∙∑ �𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖,𝑂𝑂𝑂𝑂(𝜔𝜔𝑖𝑖)−𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛(𝑎𝑎𝑏𝑏𝑖𝑖𝑖𝑖,𝑂𝑂𝑂𝑂)�

2𝑘𝑘
𝑖𝑖=1

                                                              (11) 

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑉𝑉𝐶𝐶  and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖,𝑂𝑂𝑂𝑂 represent the approximated and original values of element 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖, 
respectively, and k is the total number of wave frequencies. The denominator corresponds to 
the standard deviation of the original values of element 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖.  

The NRMSE varies from −∞ (bad fit) to 1 (perfect fit). The NRMSEs obtained for fitting of 
the potential mass and damping of the imaginary vessel considered in this paper are shown in 
Table 1, where it can be seen that the fitting functions approximate the data with accuracy. 
Figure 2 and Figure 3 below show the fitted and original curves for the elements 𝑎𝑎33 and 𝑎𝑎33 

(the best fit), and 𝑎𝑎64 and 𝑎𝑎64 (the worst fit), respectively. 

 

 
Figure 2: Vector fitting for hydrodynamic damping b33 and added mass a33   
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Figure 3: Vector fitting for hydrodynamic damping b64 and added mass a64  

 
Table 1: Normalized Root Mean Square Error: Potential added mass and damping 

ab11 ab22 ab31 ab33 ab42 ab44 ab51 ab53 ab55 ab62 ab64 ab66 

0.990 0.976 0.987 0.998 0.996 0.998 0.990 0.993 0.984 0.968 0.951 0.982 

 

The number of poles used for each element of the potential added mass and damping is shown 
in the following table: 

 
Table 2: Number of poles used for the vector fitting of potential added mass and damping 

ab11 ab22 ab31 ab33 ab42 ab44 ab51 ab53 ab55 ab62 ab64 ab66 

20 22 22 22 28 12 22 18 16 26 22 24 

 

3.2 Vector fitting of the wave forces 
Diffraction software suites typically provide frequency-dependent hydrodynamic forces for 6 
DoFs and 24 wave directions. For every wave direction, there is a set of 6 hydrodynamic forces, 
corresponding to the 6 vessel motions. In this paper, the wave directions are considered in steps 
of 15 degrees. As a result, a maximum of 144 approximation functions should be found for the 
wave forces.  

This number of fitting functions can, however, again be reduced based on symmetry and anti-
symmetry conditions. The forces that are related to symmetric motions have the same amplitude 
and phase for symmetric angles of wave heading with respect to the longitudinal axis of the 
vessel. Additionally, the forces that are related to anti-symmetric motions have the same 
amplitude, but opposite phases, for those wave headings. Considering this, only approximation 
functions corresponding to the range 0 to 180 degrees of wave headings have to be found.  

For example, the matrix for the wave forces of 0o wave heading is defined below: 
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𝑭𝑭(ω, 0°) = �
𝐹𝐹1(ω1, 0°) ⋯ 𝐹𝐹1(ωk, 0°)

⋮ ⋱ ⋮
𝐹𝐹6(ω1, 0°) ⋯ 𝐹𝐹6(ωk, 0°)

�                                                                                                   (12) 

where k is again the number of wave frequencies.  

After applying the fitting functions, the matrix becomes: 

𝑭𝑭(𝜔𝜔, 0°) =

⎣
⎢
⎢
⎢
⎡𝑓𝑓1(𝑠𝑠1, 0°) …𝑓𝑓1(𝑠𝑠𝑘𝑘, 0°)
𝑓𝑓2(𝑠𝑠1, 0°) …𝑓𝑓2(𝑠𝑠𝑘𝑘, 0°)

⋮
𝑓𝑓6(𝑠𝑠1, 0°) …𝑓𝑓6(𝑠𝑠𝑘𝑘, 0°)⎦

⎥
⎥
⎥
⎤
,   where: 𝑓𝑓1�𝑠𝑠, 0°� = �

𝑐𝑐𝑛𝑛,𝑉𝑉1_0°

𝑠𝑠−p𝑛𝑛,𝑉𝑉1_0°

𝑁𝑁

𝑛𝑛=1

  , etc                        (13) 

The same fitting functions are used for symmetric wave headings: 

𝑓𝑓1(𝑠𝑠, 345°) =    𝑓𝑓1�𝑠𝑠, 15°�,     𝑓𝑓3(𝑠𝑠, 345°) =    𝑓𝑓3�𝑠𝑠, 15°�,     𝑓𝑓5(𝑠𝑠, 345°) =    𝑓𝑓5�𝑠𝑠, 15°� 

𝑓𝑓2(𝑠𝑠, 345°) = −𝑓𝑓2�𝑠𝑠, 15°�,    𝑓𝑓4(𝑠𝑠, 345°) = −𝑓𝑓4�𝑠𝑠, 15°�,     𝑓𝑓6(𝑠𝑠, 345°) = −𝑓𝑓6�𝑠𝑠, 15°�          (14) 

In addition, it is noticed that the real quantities d and h can be omitted from the fitting functions. 

For each of the 6 wave forces, it is suggested to use the same poles for the entire range of 0 to 
180 degrees of wave headings. First, a set of poles is identified for the force that corresponds 
to the wave direction with the highest number of peaks. This set of poles is then applied for the 
approximation functions for all the wave directions. For the directions with less resonant peaks, 
the residues related to the extra poles will be assigned low values. The remainder of the process 
for the vector fitting of the wave force in the direction containing the maximum number of 
resonant peaks is the same as described in the previous section. Given the fitted poles in this 
direction, only the second stage of vector fitting is accomplished for the rest of the wave 
directions (identification of residues). 

The NRMSEs obtained for the fitting of the wave forces are shown in Table 3. It can be seen 
that the fitting functions are less accurate than for the fitting of the potential mass and damping.  
The best and worst fit are depicted in Figure 4 and Figure 5. It is, however, expected that the 
fitting is still good enough for the purpose of this paper. This assumption will be checked in the 
next section. 

 
Figure 4: Real and imaginary parts of F4, direction = 75o 
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Figure 5: Real and imaginary parts of F1, direction = 90o 

 

Table 3: Normalized Root Mean Square Error: Wave forces 

NRMSE F1 F1 F3 F4 F5 F6 

0o 0.911 - 0.836 - 0.956 - 

15o  0.928 0.898 0.863 0.827 0.961 0.856 

30o 0.932 0.942 0.877 0.867 0.974 0.874 

45o 0.952 0.965 0.918 0.920 0.958 0.791 

60o 0.838 0.946 0.949 0.949 0.939 0.778 

75o 0.891 0.946 0.968 0.992 0.938 0.875 

90o 0.766 0.934 0.969 0.956 0.945 0.859 

105o 0.880 0.955 0.954 0.953 0.933 0.876 

120o 0.912 0.945 0.927 0.961 0.928 0.882 

135o 0.906 0.941 0.859 0.969 0.917 0.904 

150o 0.903 0.907 0.853 0.951 0.929 0.921 

165o 0.920 0.902 0.885 0.953 0.956 0.978 

180o 0.909 - 0.891 - 0.933 - 

 

The number of poles used for each of the wave forces is shown in the following table: 
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Table 4: Number of poles used for the vector fitting of the wave forces 

F1 F1 F3 F4 F5 F6 

30 42 20 26 32 32 

 

The vector fitting method provides a suitable means to express the hydrodynamic properties of 
the vessel using only a limited number of parameters. Furthermore, the implementation of the 
same poles for all wave directions is an advantage for the interpolation of the wave forces over 
the wave directions. Only by interpolating the residues, the wave forces for the in-between 
wave directions can be determined.  

 

3.3 Fitted standard RAOs and motion spectra 
Having obtained approximation functions for the potential added mass, damping and wave 
forces, the RAOs can be calculated according to Equation 1. These RAOs are now compared 
to those obtained using the original vessel matrices. The NRMSEs calculated for the frequency 
range of 0.20-1.60 rad/s are shown in Table 5. The best and worst fits are again shown in Figure 
6 and Figure 7, respectively. 

 
Figure 6: Roll RAO, 75 degrees, real and imaginary parts  
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Figure 7: Yaw RAO, 60 degrees, real and imaginary parts 

 
Table 5: Normalized Root Mean Square Error: RAOs 

Wave dir.\Motion SURGE SWAY HEAVE ROLL PITCH YAW 

0o 0.914 - 0.912 - 0.922 - 

15o 0.909 0.902 0.914 0.240 0.927 0.642 

30o 0.910 0.912 0.926 0.472 0.931 0.808 

45o 0.912 0.912 0.961 0.723 0.947 0.249 

60o 0.899 0.924 0.935 0.845 0.947 0.134 

75o 0.920 0.917 0.954 0.968 0.894 0.496 

90o 0.756 0.921 0.965 0.939 0.801 0.176 

105o 0.920 0.922 0.964 0.883 0.791 0.740 

120o 0.934 0.925 0.933 0.941 0.835 0.696 

135o 0.929 0.922 0.840 0.898 0.840 0.767 

150o 0.926 0.924 0.811 0.803 0.868 0.833 

165o 0.921 0.906 0.826 0.911 0.877 0.967 

180o 0.927 - 0.828 - 0.876 - 

 

In the last part of this section, the motion responses of the vessel as calculated by the standard 
RAOs and the fitted standard RAOs are compared. As wave input, a directional spectrum as 
encountered during an offshore installation project, has been used. The significant wave height 
of the spectrum is Hs = 1.4 m. The spectrum is presented in Figure 8. The vessel is experiencing 
wind seas coming from the Northnortheast and the East. 
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Figure 8: Wave spectrum used for motion comparison 

 

The heading of the vessel is assumed to be 45o (Northeast). The responses obtained using the 
fitted and original standard RAOs are compared in Figure 9: 

 
Figure 9: Motion response spectra using fitted and original standard RAO 

 

To analyze the fit, the significant values of the fitted and original response spectra for the 6 
vessel motions are calculated as follows: 

𝛸𝛸𝑠𝑠,𝑖𝑖 = 4 ∙ �∫ 𝑆𝑆𝑖𝑖(𝜔𝜔) ∙ 𝑑𝑑𝜔𝜔∞
0                                                                                                              (15) 

where i indicates the vessel DoF. 

These significant values are compared in the following table: 
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Table 6: Significant responses calculated with Fitted and Original standard RAOs 

Motions \ Significant value Fitted Original Error 

SURGE (cm) 4.59 4.61 -0.02 

SWAY (cm) 4.82 4.84 -0.02 

HEAVE (cm) 3.84 3.90 -0.07 

ROLL (degrees*10-2) 8.15 8.18 -0.03 

PITCH (degrees*10-2) 3.86 3.92 -0.05 

YAW (degrees*10-2) 6.99 6.97 0.02 

 

The inaccuracies in the fitted standard RAOs do not influence the final response spectra. The 
large errors obtained in the low-frequency ranges for certain RAOs (see Figure 7) do not effect 
the final motion response, since the wave energy in these frequency ranges is insignificant. 
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4 CALIBRATION OF FITTED RAOS 

After application of the vector fitting method, the fitted standard RAOs for the vessel motions 
have become a function of the fitting parameters for the potential mass, damping and wave 
forces and of the orginal mass matrix M, damping matrix Bvisc and stiffness matrix C, which 
themselves are functions of displacement, radii of gyration, waterplane area, metacenter heights 
and CoG position. The aim is to calibrate these quantities based only on given wave and 
response spectra. In this paper, the focus will lie on calibration of the CoG position, the radii of 
gyration, the viscous roll damping and the fitting parameters for the potential mass, damping 
and wave forces, for the reasons discussed in Section 1. Five algorithms have been created, 
corresponding to the calibration of the CoG, the radii of gyration, the viscous damping, the 
hydrodynamic added mass-damping, and the hydrodynamic forces, respectively. These 
algorithms are based on the following steps: 

1. The vessel motions are calculated based on the original vessel properties with the fitted 
standard RAOs. Then the resulting response spectra are compared with the vessel 
response spectra of the given data set. This comparison is accomplished by calculating 
the normalized root mean square error of each vessel motion. Therefore, 6 NRMSEs 
are obtained in total. Then the average of these 6 values is determined.  

2. For the parameter to be calibrated, a wide interval of possible values is defined. 
3. By using the ‘golden section method’, a value within the before mentioned interval is 

chosen.  
4. The motion response spectra are re-calculated based on the new value of the parameter. 
5. The new response spectra are compared with the response spectra of the data set in 

terms of average NRMSEs.  
6. By comparing the two averages of the NRMSEs of step 1 and step 5, a smaller interval 

of values for the parameter can be obtained. More details about the determination of 
the new interval of values, are provided in Section 4.1. 

7. The process is repeated until the interval of values is acceptably small or the NRMSE 
cannot be further improved.  

 

4.1 Golden section method 
The golden section method is applied to minimize the number of iterations required to optimize 
each parameter. Based on the work of Press, Teukolsky, Vetterling and Flannery [21], the 
method is illustrated using as example the identification of the radius of gyration ryy. The 
maximum NRMSE for the roll motion is bracketed by a triplet of values of ryy. The three 
different values of ryy (α < β < γ) are such that the NRMSE of the response spectrum for ryy = β 
is larger than the NRMSEs for ryy = α and ryy = γ. Therefore, it is concluded that the NRMSE 
has a maximum within the interval [α, γ]. The next step is to choose a new point χ, either 
between α and β or between β and γ. Suppose that the latter choice is made, then the NRMSE 
for ryy = χ will be evaluated. If the NRMSE for ryy = β is larger than the NRMSE for ryy = χ, then 
the new bracketing triplet of points is [α, β, χ]. For the opposite case, the new bracketing triplet 
is [β, χ, γ]. In all cases the middle point of the new triplet is the best maximum achieved so far. 
For each stage, the point χ has a fractional distance 0.61803 into the larger of the two intervals, 
[α, β] or [β, γ]. This fractional distance is the so-called golden section or golden mean [21]. It 
should be clear that the limits of the NRMSE are −∞, for poor approximations, and 1, for 
perfect approximations. Thus, modifications that lead to NRMSEs close to 1, are searched for.  
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Figure 10: Golden section method [21] 

To stop the repetitions of the golden section method, the following conditions should be 
defined: 

1. Minimum distance between the limits of the final bracketing interval. 
2. Minimum difference between the resulting NRMSEs of the triplet.  

 
It should be noted that the golden section method is a numerical method to make guesses for 
the solution to the inverse problem. This can lead to values which do not correspond to the true 
underlaying physics. 

4.2 Algorithms for the calibration of the RAOs 
The algorithms for calibration of the CoG position and the radii of gyration are very similar. 
Each coordinate of the CoG and each radius of gyration is investigated separately. In the case 
of a symmetrical vessel like a semi-submersible, each radius of gyration mainly influences one 
specific motion. For instance, to calibrate the yaw motion, the radius of gyration rzz is 
investigated according to the NRMSE for yaw motion. Regarding the identification of the CoG, 
each coordinate influences more than one motion and as a consequence the average error of all 
vessel motions should be considered. The algorithm for calibration of the radii of gyration is 
depicted in Figure 11. 

The viscous damping is most important for the roll motion as the damping of the other motions 
is governed by the potential damping. Therefore, regarding the matrix of the viscous damping, 
only the element Bvisc(4,4) is calibrated. Only large changes to the magnitude of the viscous 
damping cause considerable changes to the response spectra. As a result, unrealistic values for 
the viscous damping can be produced by the calibration method. It is therefore suggested to 
examine the viscous damping matrix at the end of the identification process.  
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Figure 11: Algorithm for calibration of the radii of gyration 
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With respect to the identification of the hydrodynamic added mass and damping, the focus lies 
again on the motions showing the maximum inaccuracies. Because of the symmetry, anti-
symmetry conditions of the semi-submersible vessel, the amount of elements that will be 
investigated can be reduced. For example, if the roll motion indicates the highest error, only the 
elements with indices 2, 4, 6 are calibrated. The identification procedure of the added mass and 
damping is similar to the previously described procedures. However, the procedure is 
performed only for the conjugate pairs of residues. The residues are tested by going over the 
matrix, element by element. After testing all relevant residues, only the single pair of residues 
that improves the NRMSE the most, is calibrated.  

For the calibration of the wave forces, the algorithm starts with determining the motions with 
the maximum inaccuracies as well. If the pitch motion indicates the highest error, only F1, F3 
and F5 are calibrated. In addition, for pitch, the hydrodynamic forces with directions within the 
range of -45o to +45o from the main wave direction are investigated. The output of this 
algorithm gives a modified conjugate pair of residues of a specific force with a certain wave 
direction.  

As described before, each algorithm gives one optimal value for one quantity or parameter. 
Thus, 5 possible solutions are obtained: a calibrated value for a radius of gyration, for the CoG 
position, for one element of the viscous damping matrix, for one conjugate pair of residues of 
one element of the added mass and damping matrices and for one conjugate pair of residues of 
one wave force of one wave direction. Among these 5 solutions, the parameter which leads to 
the maximum NRMSE is chosen. After modifying only this parameter, all the algorithms are 
performed again. In the same way, another parameter is investigated and modified. After 
several repetitions the NRMSEs reach a certain limit. This means that all the possible 
parameters are already calibrated and any additional change does not improve the accuracy of 
the calculated response spectra.  
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5 TEST CASES 

The calibration method for the motion RAOs is tested with 2 cases. The procedure that has been 
used is as follows. The vessel mass distribution and hydrodynamic properties have been slightly 
changed. Based on a diffraction calculation, a set of target RAOs have been determined in the 
normal manner. With the target RAOs motion responses have been generated using directional 
wave spectra that have been encountered during offshore installation projects. For the purpose 
of this paper, these motion responses represent the ‘measured’ motions of the imaginary vessel. 
Then, starting from these motion responses and the set of fitted standard RAOs, it has been 
attempted to back-calculate the target RAOs, after which the target RAOs and back-calculated 
RAOs are compared. 

For the first test case, mass distribution (ryy, rzz, zCoG) and viscous roll damping have been 
changed. To examine whether the calibration procedure can be used to improve vessel RAOs 
when the potential mass and damping matrix and the potential wave forces are inaccurate, in 
the second test case it will be attempted to adjust the potential mass, damping and wave forces 
for a change in vessel draught. 

 

5.1 Test case 1 
The directional wave spectrum used in Test case 1 is depicted in Figure 12. The significant 
wave height of the spectrum is Hs = 2.7 m. The vessel is experiencing seas coming from the 
Eastsoutheast. The heading of the vessel is -30o (approximately Northnorthwest). 

 
Figure 12: Wave spectrum used in Test case 1 

 

With the fitted standard RAOs the vessel responses are calculated. The calculated motion 
spectra are compared with the spectra of the given data set in Figure 13. The initial NRMSEs 
for each of the vessel motions are as follows: surge = 0.967, sway = 0.943, heave = 0.985, roll 
= 0.837, pitch = 0.281, yaw = 0.836.  
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Figure 13: Comparison of given response spectra with spectra as calculated with fitted standard RAOs, 

Test case 1 

 

For each repetition the effect of modifying the CoG position, the radii of gyration and the 
viscous roll damping have been investigated. The results of the calibration procedure for Test 
case 1 are given in Table 7. To keep the table readable, for each repetition only the 
modifications of the parameters resulting in the largest possible increase of the NRMSE are 
shown. 

As stated in the previous section, the original value of Bvisc(4,4) should be changed only in the  
last repetition of the identification procedure. For each repetition the element that causes the 
highest accuracy to the response spectra is selected to be modified. In Table 7, the cell of this 
parameter is shaded grey. 
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Table 7: Calibration procedure, Test case 1 

Parameter Original Value Repetition 1 Deviation 
zCoG (m) 24.5 30.7 6.2 

Average (NRMSEs) 0.808 0.894 0.086 

rzz (m) 52.1 54.7 2.6 

Yaw motion (NRMSE) 0.836 0.997 0.161 

Bvisc(4,4)  (kNsm2/m) 2.20E+06 3.28E+07 14.9* Orig.value 

Roll motion (NRMSE) 0.837 0.904 0.067 

Selected Modification: rzz = 54.7 m 

Parameter Repetition 1 Repetition 2 Deviation 
zCoG (m) 24.5 30.1 5.6 

Average (NRMSEs) 0.835 0.922 0.087 

ryy (m) 52.1 59.6 7.5 

Pitch motion (NRMSE) 0.281 0.878 0.597 

Bvisc (4,4)  (kNsm2/m) 2.20E+06 3.14E+07 14.3* Orig.value 

Roll motion (NRMSE) 0.837 0.903 0.066 

Selected Modification: zCoG = 30.1 m 

Parameter Repetition 2 Repetition 3 Deviation 
yCoG (m) 0 1.5 1.5 

Average (NRMSEs) 0.922 0.923 0.001 

ryy (m) 52.1 56.7 4.6 

Pitch motion (NRMSE) 0.605 0.961 0.356 

Bvisc (4,4)  (kNsm2/m) 2.20E+06 1.12E+06 0.5* Orig.value 

Roll motion (NRMSE) 0.958 0.960 0.002 

Selected Modification: ryy = 56.7 m 

Parameter Repetition 3 Repetition 4 Deviation 
zCoG (m) 30.1 28.9 -1.2 

Average (NRMSEs) 0.982 0.992 0.010 

Selected Modification: zCoG = 28.9 m 

Parameter Repetition 4 Repetition 5 Deviation 
ryy (m) 56.7 57.3 0.6 

Pitch motion (NRMSE) 0.960 0.995 0.035 

Bvisc (4,4)  (kNsm2/m) 2.20E+06 3.61E+06 1.6* Orig.value 

Roll motion (NRMSE) 0.995 0.996 0.001 

Selected Modification: ryy = 56.7 m and Bvisc (4,4) = 3.61E+06 

  



  

- 23 - 

 

The final NRMSEs of the vessel response spectra are presented in the following table: 

 
Table 8: Final NRMSEs: Test case 1 

Motions NRMSE-Initial NRMSE-Final 

Surge 0.967 1.000 

Sway 0.943 0.997 

Heave 0.985 0.999 

Roll 0.837 0.996 

Pitch 0.281 0.995 

Yaw 0.836 1.000 

Average (NRMSEs) 0.808 0.998 

 

As explained before, the response spectra of the given data set were obtained by making specific 
changes to the standard vessel properties. These changes are the targets.  To validate the results 
of the calibration procedure, these targets should now be revealed and compared with the 
identified (back-calculated) properties. The identified and the target changes are compared in 
the following table. 

 
Table 9: Final results: Test case 1 

Quantity Standard value Identified value Target value 

ryy (m) 52.1 57.3 57.3 

rzz (m) 52.1 54.7 54.7 

zCoG (m) 24.5 28.9 28.8 

Bvisc(4,4)  (kNsm2/m) 2.20E+06 3.61E+06 4.40E+06 

 

The deviations between the identified and the target values for the radii of gyration and the CoG 
position are within 0.8% of the original values respectively. Thus, the quantities ryy, rzz and zCoG 
are identified with accuracy. However, the identified viscous damping for roll motion Bvisc(4,4) 
is 36% less than the target value.  

In Figure 14, the response spectra based on the identified modifications and the given dataset 
are compared. 
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Figure 14: Comparison of given response spectra with spectra as calculated with identified (back-calculated) 

RAOs, Test case 1 

 

Finally, the target and back-calculated RAOs are compared. In Figure 15 and Figure 16, the 
vessel RAOs for roll and pitch that show the most improvement have been depicted. In these 
figures the following RAOs are shown: 

• Back-calculated RAOs: Specified as ‘Identification-Results’ (in green) 
• Standard RAOs: Specified as ‘Original’ (in red) 
• Target RAOs: Specified as ‘Solution’ (in blue) 

 
Figure 15: Roll-RAO, Amplitude, Test case 1 
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 Figure 16: Pitch-RAO, Amplitude, Test case 1 

 

The NRMSEs of the standard RAOs with respect to the target RAOs and the NRMSEs of the 
back-calculated (identified) RAOs with respect to the target RAOs are shown in Table 10.  

Table 10: Comparison of NRMSEs of standard and identified RAOs: Test case 1 

Surge-RAO  Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.983 0.999 
Minimum NRMSE  0.879 (directions: 90o) 0.996 (directions: 90o) 
Maximum NRMSE  0.993 (directions: 45o) 1.000 (directions: 45o) 

Sway-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.959 0.993 
Minimum NRMSE 0.957 (directions: 90o)  0.993 (directions: 90o)  
Maximum NRMSE 0.960 (directions: 15o) 0.994 (directions: 15o) 

Heave-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.941 0.998 
Minimum NRMSE 0.914 (directions: 180o)  0.996 (directions: 180o) 
Maximum NRMSE 0.966 (directions:   90o) 1.000 (directions:   90o)   

Roll-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.110 0.888 
Minimum NRMSE 0.089 (directions:   90o) 0.880 (directions:  90 o) 
Maximum NRMSE 0.136 (directions: 165o) 0.897 (directions: 165o)  

Pitch-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.220 0.957 
Minimum NRMSE 0.132 (directions:   0o) 0.952 (directions:   0o)  
Maximum NRMSE 0.562 (directions: 90o) 0.985 (directions: 90o) 

Yaw-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.841 0.992 
Minimum NRMSE 0.659 (directions: 90o) 0.982 (directions:   90o) 
Maximum NRMSE 0.899 (directions: 15o)  0.997 (directions: 165o) 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.005

0.01

0.015
Maximum accuracy, W.dir.=90degrees

ω [rad/sec]

R
AO

 (P
itc

h)
 a

m
pl

itu
de

 [d
eg

re
es

/m
]

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.01

0.02

0.03

0.04

0.05

0.06
Minimum accuracy, W.dir..=0degrees

ω [rad/sec]

R
AO

 (P
itc

h)
 a

m
pl

itu
de

 [d
eg

re
es

/m
]

 

 

Solution
Identification-Results
Original

Solution
Identification-Results
Original



  

- 26 - 

 

 

To conclude, the identified RAOs approximate the target RAOs of test case 1 with accuracy 
and therefore the vessel motion spectra are predicted with accuracy by the identified RAOs. 
For real-life situations, the identified RAOs would of course need to be tested against an 
additional set of measurements in a different seastate to ensure their practical usability.   

5.2 Test case 2 
The purpose of this test case is to investigate whether it is possible to calibrate the potential 
added mass, damping and wave forces. The vessel draught has been changed to 23.0 m. The 
vessel’s displacement is now 110650 m3 and the position of the CoG is [62.2, 0.0, 23.0]. The 
water plane area and radii of gyration are unchanged. The target RAOs have been determined 
based on a diffraction calculation performed in the normal manner using the new draught. With 
the target RAOs a data set of motion responses is generated. It will now be attempted to obtain 
the target RAOs on the bases of the given motion responses and the standard RAOs at the old 
draught. 

The directional wave spectrum used in Test case 2 is depicted in Figure 17. The significant 
wave height of the spectrum is Hs = 1.6 m. The vessel is experiencing seas coming from the 
Eastsoutheast. The heading of the vessel is 40o (approximately Northeast). 

 
Figure 17: Wave spectrum used in Test case 2 

 

With the fitted standard RAOs the vessel responses are calculated. The calculated motion 
spectra are compared with the spectra of the given data set in Figure 18. The initial NRMSEs 
for each of the vessel motions are as follows: surge = 0.847, sway = 0.777, heave = 0.852, roll 
= 0.694, pitch = 0.682, yaw = 0.863.  
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Figure 18: Comparison of given response spectra with spectra as calculated with fitted standard RAOs, 

Test case 2 

 

The results of the calibration procedure for the potential mass, damping and wave forces are 
given below. The parameter c denotes the residues of the approximation functions.  

 
Table 11: Calibration of residues of potential mass, damping and wave forces, Test case 2 

Elements New Values 

c= 5-6 for F5(ω,150ο) -3.2016*Orig. Value 

c= 5-6 for F4(ω,90ο) 6.5623*Orig. Value 

c= 9-10 for F2(ω,105ο) 1.8115*Orig. Value 

c= 5-6 for ab26 0.3291*Orig. Value 

c= 13-14 for F6(ω,135ο) -1.8309*Orig. Value 

c= 5-6 for ab15 0.0728*Orig. Value 

c= 3-4 for ab55 0.3291*Orig. Value 

c= 7-8 for F3(ω,150ο) 8.6869*Orig. Value 

c= 5-6 for F3(ω,90ο) 1.0732*Orig. Value 

c= 1-2 for ab55 -1.8421*Orig. Value 

c= 11-12 for ab35 -0.0856*Orig. Value 

c= 7-8 for F3(ω,105ο) -1.5967*Orig. Value 

c= 35-36 for F2(ω,90ο) -5.7984*Orig. Value 

c= 3-4 for F3(ω,75ο) -1.5967*Orig. Value 

c= 7-8 for F2(ω,120ο) 2.3131*Orig. Value 

c= 17-18 for F2(ω,135ο) 6.5623*Orig. Value 

c= 3-4 for F5(ω,150ο) 4.4377*Orig. Value 
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The resulting NRMSEs are given in the Table 12. 

 
Table 12: Final NRMSEs, Test case 2 

Motions NRMSE-Initial NRMSE-Final 

Surge 0.847 0.956 

Sway 0.777 0.903 

Heave 0.852 0.937 

Roll 0.694 0.949 

Pitch 0.682 0.868 

Yaw 0.863 0.933 

Average (NRMSEs) 0.786 0.924 

 

In Figure 19, the response spectra based on the identified modifications and the given dataset 
are compared. 

 
Figure 19: Comparison of given response spectra with spectra as calculated with identified (back-calculated) 

RAOs, Test case 2 

 

In Figure 20, vessel RAOs for heave and roll of wave directions 180 and 120 degrees 
respectively are shown. These RAOs show the most improvement. In Figure 21, vessel RAOs 
for pitch and yaw of wave directions 150 and 135 degrees respectively are shown. These RAOs 
show the least improvement. As before, in these figures the following RAOs are shown: 

• Back-calculated RAOs: Specified as ‘Identification TC2’ (in green) 
• Standard RAOs: Specified as ‘Original’ (in red) 
• Target RAOs: Specified as ‘Solution’ (in blue) 

 

0 0.5 1 1.5 2

 [ rad / sec ]

0

1

2

3

4

5

S
(

)  
[

m
2

 s
]

10 -3 SURGE

Identification

Data

0 0.5 1 1.5 2

 [ rad / sec ]

0

0.002

0.004

0.006

0.008

0.01

S
(

)  
[

m
2

 s
]

SWAY

Identification

Data

0 0.5 1 1.5 2

 [ rad / sec ]

0

0.005

0.01

0.015

0.02

S
(

)  
[

m
2

 s
]

HEAVE

Identification

Data

0 0.5 1 1.5 2

 [ rad / sec ]

0

0.02

0.04

0.06

0.08

S
(

)  
[

de
g

2
 s

]

ROLL

Identification

Data

0 0.5 1 1.5 2

 [ rad / sec ]

0

0.002

0.004

0.006

0.008

0.01

S
(

)  
[

de
g

2
 s

]

PITCH

Identification

Data

0 0.5 1 1.5 2

 [ rad / sec ]

0

0.5

1

1.5

2

2.5

S
(

)  
[

de
g

2
 s

]

10 -3 YAW

Identification

Data



  

- 29 - 

 

 
Figure 20: Amplitude of Heave-RAO, Roll-RAO, Test case 2 

 
 

Figure 21: Amplitude of Pitch-RAO, Yaw-RAO, Test case 2 

 

The NRMSEs of the standard RAOs with respect to the target RAOs and the NRMSEs of the 
back-calculated (identified) RAOs with respect to the target RAOs are shown in Table 13. 
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Table 13: Comparison of NRMSEs of standard and identified RAOs: Test case 2 
Surge-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.925 0.925 
Minimum NRMSE  0.765 (directions: 90o) 0.719 (directions: 90o) 
Maximum NRMSE  0.952 (directions: 165o) 0.966 (directions: 165o) 
Sway-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.955 0.924 
Minimum NRMSE 0.922 (directions: 15o) 0.794 (directions: 90o) 
Maximum NRMSE 0.969 (directions: 150o) 0.968 (directions: 150o) 
Heave-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.862 0.819 
Minimum NRMSE 0.831 (directions: 90o) 0.484 (directions: 105o) 
Maximum NRMSE 0.893 (directions: 0o) 0.899 (directions: 180o) 
Roll-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.811 0.786 
Minimum NRMSE 0.793 (directions: 165o) 0.515 (directions: 90o) 
Maximum NRMSE 0.823 (directions: 75o) 0.850 (directions: 120o) 
Pitch-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.845 0.732 
Minimum NRMSE 0.817 (directions: 75o) 0.210 (directions: 150o) 
Maximum NRMSE 0.859 (directions: 135o) 0.841 (directions: 135o) 
Yaw-RAO Standard RAOs - Target RAOs Identified RAOs - Target RAOs 
Average NRMSE (all wave dir.) 0.771 0.602 
Minimum NRMSE 0.681 (directions: 165o) 0.017 (directions: 135o) 
Maximum NRMSE 0.877 (directions: 75o) 0.828 (directions: 60o) 

 

In general, the modifications as determined by the calibration procedure result in more accurate 
response spectra. The resulting NRMSEs are satisfying. However, the resulting back-calculated 
RAOs differ from the target RAOs.  

It is interesting to note that, in Figure 20 and Figure 21, the largest errors occur at low 
frequencies, where there is little energy in the wave spectrum. See Figure 17. It should be clear 
that, if part of a RAO is not addressed by the wave climate, it is simply not possible to infer any 
information on the RAO in that frequency range from the measured vessel responses.  

5.3 Test case 3 
The purpose of this test case is to investigate whether the target RAOs could still be identified 
in different wave conditions and by using the back-calculated RAOs of Test case 2 as standard 
RAOs. The target RAOs are the same as in test case 2. With the target RAOs a data set of motion 
responses is generated by applying a new wave spectrum. It will now be attempted to obtain 
the target RAOs on the bases of the given motion responses and the back-calculated RAOs of 
test case 2.  

The directional wave spectrum used in Test case 3 is depicted in Figure 22. Note that both the 
frequency content and directions of the new spectrum are different from that in test case 2. The 
vessel is experiencing seas coming from the Westsouthwest. The heading of the vessel is 40o 

(approximately Northeast). 
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Figure 22: Wave spectrum used in Test case 3 

Applying the new wave spectrum and using the back-calculated RAOs of Test case 2 and the 
target RAOs, the new vessel responses are calculated: The responses specified as 
‘Identification TC2’ are based on the back-calculated RAOs of Test case 2 and the responses 
specified as ‘New Data’ are based on the target RAOs. The motion spectra are compared in 
Figure 23. The NRMSEs for each of the vessel motions are as follows: surge = 0.863, sway = 
0.535, heave = 0.708, roll = 0.465, pitch = 0.785, yaw = 0.915. As it is shown from the values 
of the NRMSEs, the vessel responses in different wave conditions do not show a good 
agreement. 

 
Figure 23: Comparison of response spectra as calculated with back-calculated RAOs of Test case 2 and target 

RAOs with new wave spectrum, Test case 3 

The results of the calibration procedure for the potential mass, damping and wave forces are 
given below. The parameter c denotes the residues of the approximation functions. In 
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comparison to test case 2, the predicted modifications of test case 3 for the wave forces refer to 
different wave directions.  

Table 14: Calibration of residues of potential mass, damping and wave forces, Test case 3 

Elements New Values 

c= 5-6 for F5(ω,150ο) -3.2016*Orig. Value 

c= 5-6 for F4(ω,90ο) 6.5623*Orig. Value 

c= 9-10 for F2(ω,105ο) 1.8115*Orig. Value 

c= 5-6 for ab26 0.3291*Orig. Value 

c= 13-14 for F6(ω,135ο) -1.8309*Orig. Value 

c= 5-6 for ab15 0.0728*Orig. Value 

c= 3-4 for ab55 0.3291*Orig. Value 

c= 7-8 for F3(ω,150ο) 8.6869*Orig. Value 

c= 5-6 for F3(ω,90ο) 1.0732*Orig. Value 

c= 1-2 for ab55 -1.8421*Orig. Value 

c= 11-12 for ab35 -0.0856*Orig. Value 

c= 7-8 for F3(ω,105ο) -1.5967*Orig. Value 

c= 35-36 for F2(ω,90ο) -5.7984*Orig. Value 

c= 3-4 for F3(ω,75ο) -1.5967*Orig. Value 

c= 7-8 for F2(ω,120ο) 2.3131*Orig. Value 

c= 17-18 for F2(ω,135ο) 6.5623*Orig. Value 

c= 3-4 for F5(ω,150ο) 4.4377*Orig. Value 

 

The resulting NRMSEs are given in the Table 15. 
Table 15: Final NRMSEs, Test case 3 

Motions NRMSE-Initial NRMSE-Final 

Surge 0.863 0.887 

Sway 0.535 0.833 

Heave 0.708 0.972 

Roll 0.465 0.807 

Pitch 0.785 0.947 

Yaw 0.915 0.956 

Average (NRMSEs) 0.712 0.900 

 

In Figure 24 the response spectra based on the identified modifications of test case 3 and the 
new dataset are compared. 
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Figure 24: Comparison of new response spectra based on target RAOs with spectra as calculated with new 

identified (back-calculated) RAOs, Test case 3 

In Figure 25, vessel RAOs for heave and surge of wave directions 180 and 165 degrees 
respectively are shown. These RAOs show the most improvement. In Figure 26, vessel RAOs 
for yaw of wave directions 15 and 30 degrees are shown. These RAOs show the least 
improvement. In these figures the following RAOs are shown: 

• Back-calculated RAOs of test case 3: Specified as ‘Identification TC3’ (in green) 
• Back-calculated RAOs of test case 2: Specified as ‘Identification TC2’ (in red) 
• Target RAOs: Specified as ‘Solution’ (in blue) 

 
Figure 25: Amplitude of Heave-RAO, Surge-RAO, Test case 3 
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Figure 26: Amplitude of Yaw-RAO, Test case 3 

The NRMSEs between the standard RAOs, the target RAOs, the back-calculated RAOs of test 
case 2 and the back-calculated RAOs of test case 3 are shown in the following table.  

Table 16: Comparison of NRMSEs: Test case 3 
Surge-RAO Standard RAOs - Target RAOs Identified RAOs TC2 - Target RAOs Identified RAOs TC3 - Target RAOs 
Average NRMSE  0.925 0.925 0.900 
Minimum NRMSE  0.765 (directions: 90o) 0.719 (directions: 90o) 0.651 (directions: 90o) 
Maximum NRMSE  0.952 (directions: 165o) 0.966 (directions: 165o) 0.971 (directions: 165o) 
Sway-RAO Standard RAOs - Target RAOs Identified RAOs TC2 - Target RAOs Identified RAOs TC3 - Target RAOs 
Average NRMSE  0.955 0.924 -0.011 
Minimum NRMSE 0.922 (directions: 15o) 0.794 (directions: 90o) -0.018 (directions: 15o) 
Maximum NRMSE 0.969 (directions: 150o) 0.968 (directions: 150o) -0.007 (directions: 30o) 
Heave-RAO Standard RAOs - Target RAOs Identified RAOs TC2 - Target RAOs Identified RAOs TC3 - Target RAOs 
Average NRMSE  0.862 0.819 0.785 
Minimum NRMSE 0.831 (directions: 90o) 0.484 (directions: 105o) 0.116 (directions: 15o) 
Maximum NRMSE 0.893 (directions: 0o) 0.899 (directions: 180o) 0.897 (directions: 180o) 
Roll-RAO Standard RAOs - Target RAOs Identified RAOs TC2 - Target RAOs Identified RAOs TC3 - Target RAOs 
Average NRMSE  0.811 0.786 0.042 
Minimum NRMSE 0.793 (directions: 165o) 0.515 (directions: 90o) 0.018 (directions: 15o) 
Maximum NRMSE 0.823 (directions: 75o) 0.850 (directions: 120o) 0.051 (directions: 75o) 
Pitch-RAO Standard RAOs - Target RAOs Identified RAOs TC2 - Target RAOs Identified RAOs TC3 - Target RAOs 
Average NRMSE  0.845 0.732 0.681 
Minimum NRMSE 0.817 (directions: 75o) 0.210 (directions: 150o) 0.190 (directions: 15o) 
Maximum NRMSE 0.859 (directions: 135o) 0.841 (directions: 135o) 0.820 (directions: 120o) 
Yaw-RAO Standard RAOs - Target RAOs Identified RAOs TC2 - Target RAOs Identified RAOs TC3 - Target RAOs 
Average NRMSE  0.771 0.602 -0.030 
Minimum NRMSE 0.681 (directions: 165o) 0.017 (directions: 135o) -0.035 (directions: 15o) 
Maximum NRMSE 0.877 (directions: 75o) 0.828 (directions: 60o) -0.025 (directions: 30o) 
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As shown in Table 16 the identified modifications of test case 3 do not lead to accurate 
prediction of the target RAOs. However, the vessel responses as determined by the calibration 
procedure again show a good agreement. By comparing the identified modifications of test case 
2 and 3 no pattern can be found that leads to accurate prediction of RAOs. This is because a 
large number of combinations of modified elements can be found that results in matching vessel 
motion spectra. That verifies the non-uniqueness of the solution when a large number of 
parameters needs to be adjusted such as the potential added mass, damping and wave forces.    

6 CONCLUSIONS 

A method for calibrating existing RAOs based on measured ship motions and wave spectra has 
been proposed. The method consists of two steps, namely a) a vector fitting procedure for 
representing the frequency dependent hydrodynamic properties using only a limited number of 
parameters, and b) identification algorithms for identifying these and other unknown 
parameters of the RAOs from measured data. 

It is shown that the frequency dependent hydrodynamic added mass and damping can be 
approximated with accuracy by a ratio of two polynomials using the vector fitting method. The 
accuracy of the fitting process is lower for the wave forces, but the results are still satisfying. 
Additionally, the vector fitting method allows for an interpolation of the wave forces over the 
wave directions. The accuracy of the fitting process was also tested by calculating the response 
spectra and RAOs using the approximation functions. At very low frequencies some of the 
fitted curves of the RAOs were found to contain inaccuracies. Since, however, the swell and 
wind seas occur at higher frequencies, these inaccuracies do not influence the final response 
spectra.  

The main characteristic of the developed identification algorithms is that each parameter of the 
RAOs is investigated separately. It was shown to be important to select only a certain amount 
of elements to calibrate based on logical criteria, e.g. the potential added mass, damping and 
wave forces should be investigated for a change of draught or when there are known 
inaccuracies at an inconvenient draught. For standard draughts where the pontoons of semi-
submersible vessels are below the sea surface, only the radii of gyration, the CoG position and 
viscous roll damping need to be adjusted. In case of semi-submersibles, large changes in 
viscous damping are not realistic, thus the identification method should focus on the calibration 
of the radii of gyration and the CoG position. When the identification method is applied to hull-
geometry ships, then the investigation of viscous roll damping would have an important impact 
on the motion responses.  

To conclude, the proposed methodology was shown to be able to identify RAOs with accuracy 
in situations where the initial discrepancies were caused by errors in the vessel’s radii of 
gyration, center of gravity, or viscous damping. When the errors are related to the potential 
mass, damping and wave forces, however, the non-uniqueness of the solution becomes 
prohibitive. The number of unknowns, in terms of potential mass, damping and wave forces, is 
simply too high in comparison with the number of available equations. Therefore a large 
number of combinations of parameter modifications can lead to accurate response spectra but 
not to accurate RAOs. Nevertheless, the identified modifications can be used as sets of ‘pseudo-
coefficients’ that are able to, in certain situations, predict the vessel response much more 
accurately than standard radiation-diffraction codes. 
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