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Abstract

During the preoperative planning for breast-conserving surgery, the surgeon makes use of an MRI scan of the
breast cancer patient in the prone position to accurately locate the tumour. However, surgery is performed
with the patient in the supine position. The surgeon needs to mentally translate the location of the tumour
from the prone position towards the supine position. The usage of mixed reality systems in the form of the
Microsoft HoloLens could visually aid the surgeon by projecting the tumour in the supine position onto the
patient. This requires us to obtain the tumour in the supine position by dealing with the prone-to-supine
breast image registration problem.

We propose to maximize the overlap between the prone and supine surfaces of the breast through the
use of soft constraints to guide the deformation. An initial subspace FEM simulation pulls the prone and
supine surfaces towards each other at specified landmark correspondences between the surfaces. The result-
ing prone surface is projected onto the supine surface and these surface vertices are restricted to tangential
movement across the surface of the breast. The tissues at the interior of the breast are deformed accordingly.

Our experiments with synthesized data indicate the robustness of our method under various scenarios,
except for the rigid misalignment between the prone and supine meshes. This problem of misalignment
also affects the experiments with real-world data, which results in distances greater than 12 mm between the
centroids of the resulting deformed tumour and the ground-truth tumour.
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1
Introduction

Breast cancer is a prevalent illness affecting women worldwide. The treatment plan for breast cancer com-
monly consists of: chemotherapy to reduce the size of the tumours; surgery to excise the tumours from the
healthy tissue; radiotherapy to eradicate remaining tumour cells and reduce the risk of recurrence. Breast
cancer surgery is divided into two different types, namely mastectomy and lumpectomy. Mastectomy re-
moves the entire breast, whereas lumpectomy attempts to preserve the shape of the breast by only removing
the tumours and a margin of healthy tissue. If the margin was not appropriately chosen, then the patient
might have to undergo additional surgery. Therefore, to accurately locate the tumours for the preoperative
planning of lumpectomy, it is important that the surgeon uses appropriate imaging modalities such as e.g.,
mammography, Positron Emission Tomography-Computed Tomography (PET-CT) and Magnetic resonance
imaging (MRI). MRI scan using breast coils with the patient lying flat on the stomach (prone position) offers
the most accurate image to localize the tumour (C.-B. Wang et al., 2020). However, the surgery is performed
with the patient lying on the back (supine position). There are significant differences between the prone and
supine positions due to large deformations of the breast. This makes it a challenging problem for the surgeon,
who needs to mentally translate the MRI from the prone position to the supine position.

The surrounding context regarding this Master’s project is focused on visually aiding the surgeon during
lumpectomy with the use of mixed reality systems. For example, Perkins et al. proposed an augmented
reality method using the HoloLens mixed-reality glasses (Microsoft, USA) (Perkins et al., 2017). The surgeon
wearing the glasses could see the MRI projection of the breast and the tumours onto the actual breast of the
patient in real-time. In their study, they rigidly align the MRI scan acquired in the supine position with the
patient in surgery using qr-code and MR-visible fiducial markers attached to the patient’s skin around the
breast. Deformation of the breast was not taken into account. It is also not standard protocol for a hospital
to acquire the MRI scan in the supine position instead of the prone position with the breast coils. In this
Master’s project, we would like to focus on the breast deformation and alignment between a scan acquired in
the prone position and the patient during surgery in the supine position. There are three practical settings to
help tackle this problem: the first setting has an additional 3D surface scan of the breast in the supine position
to perform the registration; the second setting has landmark correspondences between the prone and supine
scans; the final setting has both the surface scan as well as the landmark correspondences. The 3D surface
scan of the breast in the supine position could be obtained from the HoloLens depth map sensor. However,
the acquisition of the data would require administrative paperwork, patient consent and timely acquisition
schedule. In order to only focus on the deformable registration, we use already available PET-CT scans of the
breast acquired both in the prone and supine position during breast chemotherapy (H. Wang & Mao, 2020).
The results of our method are evaluated by comparing the Euclidean distance between the centroids of the
deformed tumour and the ground-truth tumour from the PET-CT scan in the supine position.

The problem of prone-to-supine image registration of the breast is commonly tackled by physically sim-
ulating the breast in the prone position using the Finite Element Method (FEM). The simulation simplifies
the real-world forces acting upon the breast to the gravitational forces and elastic forces of the breast. This
simplification disregards unknown constraints, such as the position of the arm. The material model and its
parameters define the elastic behaviour of the breast during the simulation, which should properly reflect
the characteristics of the breast in the reality. The elasticity of the breast differs from patient to patient and
can also change over time (Hipwell et al., 2016). The structure of the breast consists of different types of tis-
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2 1. Introduction

Figure 1.1: The PET-CT scan of patient 1 in the prone position, where the luminance values indicate the different tissue types.

sues (see Fig. 1.1). However, the segmentation of those different tissue regions is a difficult problem and will
not be considered in this thesis. Therefore the material of the breast is assumed to be homogeneous. Be-
sides that, the rest shape of the breast is unknown for the FEM simulation. The rest shape is the shape of the
breast without any forces affecting it. All of these assumptions and challenges make it difficult to solve the
prone-to-supine image registration.

In our method, we propose to maximize the overlap between the breast skin surface mesh in the prone
and supine positions to obtain a sufficiently accurate localization of the tumour for clinical visualization on
the Microsoft HoloLens. The method consists of a landmark guided deformation step and a surface guided
deformation step. The landmark guided deformation uses landmark correspondences between the prone
and supine meshes to guide the regions of the prone surface closer towards the supine surface. This is used
as an initialization for the surface guided deformation, where the surface of the prone mesh is projected onto
the surface of the supine mesh. Afterwards, the projected surface is aligned and the interior of the breast is
deformed accordingly.

The report will discuss and compare the related works in Chapter 2. In Chapter 3, we will provide the
background information to understand our approach and, our method will be then explained in Chapter
4. The setup and results of the experiments are discussed in Chapter 5. Finally, Chapter 6 will discuss the
insights and guidelines gained from the Master’s project.



2
Related Works

2.1. Deformable Simulation
The physical simulation of deformable objects is commonly performed with the Finite Element Method
(FEM) (Sifakis & Barbic, 2012). It splits the deformable object into a finite number of elements. Each finite
element uses a material model to compute its elastic energy, which is afterwards combined using a weighted
sum to obtain the total elastic energy of the entire object. The quasi-static simulation of the object is solved
by minimizing the total elastic energy subject to constraints. Additionally, inertial effects can be introduced
to simulate the dynamics of an object using a numerical time integration scheme (e.g., implicit Euler). The
time integration scheme results into a system of equations, which needs to be solved to obtain the solution
for each timestep. In the particular case of the implicit Euler scheme, the system of equations can be refor-
mulated as an optimization problem (Gast et al., 2015). An accurate solution to the optimization problem can
be obtained with the application of Newton’s method. It uses the Hessian and gradient to produce a descent
direction to search for a solution. The stability of the simulation requires the Hessian matrix to be positive
semi-definite (PSD). The Hessian matrix is computed as the sum of the local Hessian matrices for each fi-
nite element. If all elementary Hessian matrices are positive-definite, then the constructed Hessian matrix is
also positive-definite. Consequently, the Hessian matrix can become indefinite due to summing an indefinite
elementary Hessian from an inverted or degenerate finite element.

For the stability of the simulation, an indefinite Hessian matrix can be replaced with a positive definite
matrix close to the true Hessian matrix. A popular method is to project the local Hessian matrix for each
finite element to become PSD (Irving et al., 2004; Teran et al., 2005). It modifies the deformation gradient
by inverting its smallest singular value. The modified deformation gradient is used to compute a positive
definite Hessian matrix. The material model used in the FEM simulation does need to be able to deal with
flattening or inversion of the finite element. With the definition of a new set of invariants and the closed-
form formulas for the eigensystems of arbitrary isotropic material models (Smith et al., 2019), a PSD Hessian
matrix can be analytically constructed for any isotropic material model. The approach to fix the definiteness
of the Hessian matrix has been applied to a number of different applications. For the application to simu-
late contact between deformable objects, Incremental Potential Contact (M. Li et al., 2020) introduces local
barrier functions to create repulsion forces between contacting finite elements. The physical simulation for
cutting deformable objects can model the cut by changing the topology of the object (J. Wu et al., 2015). An
alternative approach is to use the extended FEM (Koschier et al., 2017) to model the cut using discontinu-
ous enrichment functions without affecting the topology of the object. Another application is the simulation
of elastoplastic objects (X. Li et al., 2022; B. Wang et al., 2021), where the deformation gradient is the prod-
uct of the plastic and elastic deformation gradients. The plastic deformation changes the rest configuration,
whereas the elastic deformation produces elastic forces to recover the rest configuration.

The material model defines the behaviour of the deformable object to any type of deformation by de-
signing a function, which relates the stress and strain in an appropriate manner for the chosen application
(Kim & Eberle, 2020). A popular material model in the field of Computer Graphics for its performance is the
linear corotated material (Kugelstadt et al., 2018). The function consists of a term to preserve the lengths of
the edges between vertices, and a linearized term to preserve the volume of the finite element. This results
in an efficient approximation for small deformations. However, for larger deformations the volume can grow
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4 2. Related Works

or shrink substantially. The Projective Dynamics framework (Bouaziz et al., 2014) defines its Projective Dy-
namics material as a function with a nonlinear constraint projection and a quadratic distance measure. The
formulation of the material model lends the local-global solver of Projective Dynamics its performance. The
existing hyperelastic materials (e.g., Neohookean, St. Venant–Kirchhoff and Mooney–Rivlin) can be applied to
the deformable object for more realistic deformation. These materials are commonly used in the engineering
literature. The Neohookean material has been redesigned to become stable and able to deal with invertible
elements (Smith et al., 2018). This stable version of the Neohookean material consists of a stretching term,
invertible nonlinear volume preservation term and a term for stability of the rest configuration.

A different approach to design a material is to allow for interactive editing of the material model using the
principal stretches (Xu, Sin, et al., 2015). This method formulates the interactive material model according
to the Valanis–Landel hypothesis into three elastic energy functions expressed in the principal stretches. The
first derivative of these functions can then be edited to design the deformation behaviour of the material.

A material model can define parameters to weight the importance of specific terms in the function (e.g.,
stretching and volume preservation), which can heavily affect the deformation behaviour of the object. In
order to move closer to the deformation behaviour in the real-world situation, the material parameters can
be optimized based on given target forces and positions (Xu, Li, et al., 2015). The method uses a model re-
duction of the material distribution space for interactive performance. A different approach to capture the
realistic deformation behaviour uses an alternating optimization between the rest configuration and the ma-
terial parameters (B. Wang et al., 2015). The optimization of the material parameters uses manually specified
control points to linearly blend the material parameters.

2.2. Subspace Simulation
Model reduction (subspace simulation) projects the high-dimensional space of the simulation into a properly
chosen low-dimensional subspace (Sifakis & Barbic, 2012). The projection should ensure that the subspace
simulation sufficiently approximates the full space simulation. There is thus a need to construct an appro-
priate subspace basis for the projection.

The global deformation of the object can be taken into account for the construction of the subspace basis.
Linear Modal Analysis (LMA) (Sifakis & Barbic, 2012) constructs the subspace basis from the low-frequency
vibration modes. These linear modes show the deformation with the lowest increase in elastic strain energy.
LMA provides an appropriate basis for small deformations from the rest configuration. In the case of large
deformation, a subspace basis can be constructed with the linear vibration modes and their modal derivatives
(Barbič & James, 2005). The modal derivatives show deformations that co-appear in a nonlinear system when
the system is excited in the direction of the linear modes. Principal Component Analysis is used on the linear
vibration modes and their modal derivatives in order to reduce the dimensionality of the subspace.

With a localized approach to the subspace construction, the subspace simulation can handle more spa-
tially localized deformations. The linear blend skinning space (Brandt et al., 2018) consists of the affine trans-
formations of a number of sampled points, which uses a radial basis function to indicate its local influence
to the rest of the points. This subspace basis is used in our method to deform localized landmark regions.
A different approach to add local deformations to the subspace basis starts with the global subspace basis
for modal derivatives, and during the simulation it updates the basis by introducing additional basis func-
tions for local deformations (Harmon & Zorin, 2013). These basis functions are computed for the regions of
the object that are experiencing external forces. It does not work well if the region under load increases in
size. Domain decomposition has been used in combination with subspace simulations (Kim & James, 2011;
X. Wu et al., 2015). It partitions the object into multiple domains with its own (global) subspace basis. The
partitioned domains are coupled with the use of elastic coupling forces. However, this can still lead to dis-
continuities among multiple domains due to separate simulation in their own subspace.

Data-driven methods for the subspace simulation require the generation of appropriate training data
from the full space simulation. Cubature approximation (An et al., 2008) is used to approximate the reduced
internal forces and stiffness matrix. The cubature weights are optimized using nonnegative least squares
on the training data. A common subspace basis can be obtained with the application of mass-PCA on the
training data (Sifakis & Barbic, 2012). An extension to this subspace basis attaches the nonlinear autoencoder
after the mass-PCA subspace in order to introduce nonlinearity to the subspace basis (Fulton et al., 2019).
However, the autoencoder subspace can cause global motion from locally applied forces.
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2.3. Prone to supine breast image registration
The tumour of a breast cancer patient in the supine position needs to be accurately located in order plan the
surgery. The MRI scan of the breast in the prone position gives the most accurate location for the tumour.
The registration problem is thus concerned with transforming the breast in the prone position to the supine
position. An overview of the different methods discussed in this section is shown in Table 2.1. The initial
approach commonly used to deal with the problem of prone-to-supine breast image registration is to use a
FEM simulation of the breast in the prone position (Babarenda Gamage et al., 2019; Bessa et al., 2020; Danch-
Wierzchowska et al., 2020; Eiben et al., 2016; Hipwell et al., 2016). The FEM simulation has gravitational
forces acting on the deformable breast, while constraining the vertices of the chest wall to be fixed. There
are a number of unknowns in the FEM simulation, which are approximated using different methods in the
related works.

A deformable object in a FEM simulation always tries to recover back to its rest configuration, where
there are no forces acting on the object. However, the MRI scan of the breast in the prone position does not
correspond to the actual rest configuration of the breast due to the gravitational forces. An iterative gravity
unloading method has been proposed (Bessa et al., 2020; Danch-Wierzchowska et al., 2020; Eiben et al., 2016;
Hipwell et al., 2016) to approximate the rest configuration of the breast by simulating the prone mesh with
gravity acting in the inverse direction. The resulting rest configuration is then simulated with gravity acting
back towards the prone position, and the difference between the simulated and actual prone mesh is itera-
tively used to update the approximation of the rest configuration. This method is sensitive for the choice of
material parameters for the simulations. On the other hand, our method uses the prone configuration of the
breast as its rest shape. The guidance of landmark correspondences counteracts the elastic forces that pull
the breast back to its prone configuration.

The parameters for the material model to physically simulate the behaviour of the breast are unknown
and can also differ from patient to patient. A simple method to optimize the material parameters is to use a
constant multiplicative factor based on an image similarity measure (Eiben et al., 2016). A classification into
different size classes can help with identifying the optimal material parameters into specific ranges (Danch-
Wierzchowska et al., 2020). The material parameters can also be optimized to become spatially varying. With
the knowledge that stiffness parameters are higher at the posterior region of the torso than the breast tissue,
a Laplacian problem can be solved to allow for a smooth transition between these different stiffness param-
eters (Babarenda Gamage et al., 2019). For the FEM simulations in our method, we have chosen to keep the
material model and its parameters fixed. The method puts more emphasis on the soft constraints to guide
the transformation from prone position to the supine position.

Even with the aforementioned improvements to the physical simulation of the breast, it cannot fully cap-
ture the deformation of the breast from the prone position to the supine position. The related works have
instead looked into the application of additional methods onto the result of the FEM simulation. The image
similarity of the prone and supine scans is used to derive forces to deal with any differences between both
scans, which could not be modeled using only the known physical forces (Eiben et al., 2016). On a similar
note, our method uses constraint forces to deal with the differences between the prone and supine scans.
Another method to tackle the problem is to apply Free Form Deformation (FFD) with B-splines onto the re-
sult of the FEM simulation. FFD uses a distance measure between the result of the simulation and the supine
scan to determine the final deformation of the prone mesh (Bessa et al., 2020). The application of FFD can
result into unrealistic deformation of the breast. In comparison, our method projects the prone surface onto
the supine surface and uses the physical simulation for the interior of the breast. For the automatic con-
struction of tetrahedral meshes for individual patients, a Convolutional Neural Network (CNN) is trained to
segment the different tissue types (skin, ribs, lungs) from the prone scan (Babarenda Gamage et al., 2019).
The segmented image data is then processed with the use of Statistical Shape Modelling (SSM) in order to
construct personalized tetrahedral meshes for each patient. This method allows for a large variation of breast
shapes in the FEM simulations. However, our focus is placed on the registration task, and therefore does not
make use of the automatic construction of personalized tetrahedral meshes. A geometric approach to the
problem uses Laplacian editing in order to constrain a set of landmark correspondences onto the positions
in the supine position (Alfano et al., 2019). It uses nonrigid iterative closest point (ICP) algorithm to project
the entire surface of the prone scan onto the surface of the supine scan. The resulting transformation gives a
dense point to point matching of the two surfaces, and this is used to perform FFD with B-splines to deform
the interior of the breast. This approach is similar to our method in the use of landmark correspondences to
pull the prone and supine meshes closer together, and performing a surface projection onto the supine mesh.
However, our method uses FEM simulations to physically simulate the behaviour of the breast and uses the
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Method Imaging Data Single or Both breasts Results
FEM + FFD B-splines (Bessa et al., 2020) MRI + 3D scan Single TRE markers 18.50±3.88 mm

FEM + material optimization + image derived forces (Eiben et al., 2016) MRI + CT Single TRE markers CT 7.3 mm, MRI 6.4 mm
Laplacian editing + nonrigid ICP + FFD B-splines (Alfano et al., 2019) MRI + CT Both Tumour Centroid Distance 10.40 mm

CNN and SSM for FE model + FEM + Laplacian material optimization (Babarenda Gamage et al., 2019) MRI Single Nipple 13mm, Internal tissues 7mm ± 2 mm

Table 2.1: Summary of the different prone-to-supine breast image registration methods. The evaluation for the methods use the Target
Registration Error (TRE) of markers placed on the surface of the breast to indicate its performance. The tumour centroid distance is the
distance between the centroid of the deformed tumour and the ground-truth tumour in the supine position. The last row in the results
indicates the displacement of the nipple and its internal tissues.

landmarks and surface projection to guide the optimization of the breast.



3
Background

3.1. Finite Element Method
The Finite Element Method (FEM) is commonly used for the physical simulation of a deformable object. FEM
discretizes the deformable object into a finite number of elements (usually triangles for 2D and tetrahedrons
for 3D). Each finite element stores the position of the vertices in the rest configuration X . By deforming the
element, the positions of the vertices are transformed from the rest configuration X to a deformed configu-
ration x following the deformation function:

φ(X ) = F X +b = x, (3.1)

where F is the deformation gradient matrix and b is the rigid translation of the finite element (see Fig. 3.1).
The deformation gradient F stores rotation and deformation (stretching and shearing) information of the
finite element.

A material model functionψ(F ) uses the deformation gradient F to determine the amount (and direction)
of deformation and relates it with a corresponding scalar amount of elastic energy. An example of a simple
material model function is a linear spring: ψlinear spring(L) = k

2 (L − l )2, where L is the length of the spring in
the rest configuration, l is the length of the spring in the deformed configuration, and k is the stiffness of the
spring. This material model shows a linear relationship between the amount of deformation and the elastic
energy of the spring.

A common choice for a material model to represent the deformable breast in the prone-to-supine breast
image registration is the Neohookean material (Babarenda Gamage et al., 2019; Eiben et al., 2016; Hipwell
et al., 2016). The formulation of the original Neohookean material introduces a singularity, which explodes
the FEM simulation during squashing. The stable Neohookean material (Smith et al., 2018) offers a different
formulation that does not contain the singularity, and allows degenerate or inverted elements to recover to
a valid configuration. The material model is defined using the invariants shown in Equations 3.2, 3.3, and

Figure 3.1: The rest configuration X (left) and deformed x (right) configuration of a tetrahedron
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8 3. Background

3.4. The invariants use the deformation gradient F to indicate a measure for the amount of deformation by
removing the rotational part of the deformation gradient F. A simpler formulation of the invariants uses the
singular values σ1,σ2,σ3 of the right Cauchy–Green strain tensor F T F .

I1 = tr (F T F ) =σ1 +σ2 +σ3 (3.2)

I2 = tr (F T F F T F ) =σ2
1 +σ2

2 +σ2
3 (3.3)

I3 = det (F T F ) =σ1σ2σ3 (3.4)

The stable Neohookean material is defined as:

ψ= µ

2
(I2 −3)−µ(I3 −1)+ λ

2
(I3 −1)2 (3.5)

It consists of three weighted terms. The edge length term µ
2 (I2 − 3) pulls the edges of a tetrahedron closer

until it collapses into a point. The volume term λ
2 (I3 −1)2 preserves the volume of the tetrahedron, and it is

invertible and well-defined everywhere. The combination of the previous terms moves the elastic energy of
the rest configuration away from 0 (i.e.,ψ(X ) ̸= 0). The elastic energy of 0 coincides with a volume of det (F ) <
1. The last term −µ(I3−1) resolves this by inflating the tetrahedron in such a way that the tetrahedron deflates
into the rest configuration at det (F ) = 1.

The total elastic energy for a deformable object is computed as the sum of the elastic energy for each finite
element weighted by its contribution to the whole object (areas for 2D and volumes for 3D). The equation for
a tetrahedral mesh is shown in Equation 3.6. The elastic forces are computed as fel ast i c =−∇E(x).

E(x) = ∑
i∈tetrahedrons

volumei ·ψ(Fi ) (3.6)

For quasi-static problems, Equation 3.6 can be minimized including any additional energy terms (e.g.,
gravitational energy or penalty functions), which will result in the object attempting to recover back to its
rest configuration while satisfying any additional constraints. Newton’s method is used to solve the resulting
equation, and is described in further detail in Section 3.2.

To simulate the dynamics for a deformable object, time needs to be discretized into different time sam-
ples and integrated. An example for numerical time integration is the implicit Euler method, for which the
resulting update equations are given in Equation 3.7.

xn+1 = xn +hvn+1

vn+1 = vn +hM−1( fel ast i c (xn+1)+ fext ),
(3.7)

where h is the simulation step size, v is the velocity, M is the mass matrix and fext are any external forces.

3.2. Newton’s method
The quasi-static FEM simulation can be formulated as an optimization problem with the energy function
E(x) = Eel ast i c +Eg r avi t y +Econstr ai nt s . Newton’s method can be used to iteratively solve such optimization
problems. In each iteration, the gradient g and the Hessian H of the energy function E are used to compute
the Newton descent direction d =−H−1g . If the symmetric Hessian H is positive definite, then d is guaran-
teed to be a descent direction. The choice of using the stable Neohookean material allows us to compute a
positive definite Hessian matrix from the analytical formulas of its eigendecomposition (Smith et al., 2018).
Any negative eigenvalues of the Hessian are clamped to either 0 or a small positive number. A line search is
commonly performed along the descent direction d to find a suitable step length α that sufficiently reduces
the energy function E , which improves the convergence of the method. The resulting step length α and de-
scent direction d are combined to update the positions of the vertices x = x +αd . These steps are repeated
until convergence of the method or a maximal number of iterations has been reached.

3.3. Constraints
The FEM simulation can be constrained to model any intended behaviour of the deformable object. The
types of constraints are categorized as either hard or soft constraints (Nocedal & Wright, 1999), and are solved
in different ways.



3.4. Subspace Simulation 9

Hard constraints must always be satisfied to obtain a feasible solution. An example of a hard constraint
is fixing the position of a vertex. To find a feasible solution for this specific type of hard constraint, the
quasi-static FEM simulation can simply remove the degrees of freedom for the fixed vertices. A more gen-
eral method to satisfy different types of hard constraints is to solve the Newton–Karush–Kuhn–Tucker system
(Nocedal & Wright, 1999) described in Equation 3.8.[

H AT

A 0

][−d
λ

]
=

[
g
b

]
, (3.8)

where A is the selection matrix for the constraints, b is the value for the constraints, and λ is the Lagrange
multipliers.

Soft constraints can be violated to obtain a feasible solution, but it incurs a penalty to the energy func-
tion corresponding to the severity of the violation. Therefore soft constraints commonly need to define their
constraint penalty function. An example of a constraint penalty function c(x) to fix the position of a vertex

is c(x) = w
2

∥∥x −xt ar g et
∥∥2. This constraint penalty function acts as a spring-type energy to pull the current

position of the vertex closer towards its initial position. The weight of a constraint penalty function w con-
trols whether the optimization of the energy function allows for violating the constraint to incur the weighted
penalty. In the case that the weight w approaches infinity, then the soft constraint will act as a hard constraint.

3.4. Subspace Simulation
The system of equations of the quasi-static FEM simulation can be simplified by applying the model reduc-
tion technique (Sifakis & Barbic, 2012). It approximates the solution of the original high-dimensional space
by projecting from the original space of the deformable object onto a properly chosen lower-dimensional
subspace. The subspace matrix U maps the subspace onto the original space (prolongation operator), and
U T maps the original space onto the subspace (restriction operator). This means that U T U = I should hold
for the chosen subspace matrix U . The vertex positions in the original space can then be defined as u =Ux.

An initial choice for a subspace matrix U can be obtained from the linear vibration modes (Linear Modal
Analysis). The linear vibration modes are obtained from solving the generalized eigenvalue problem in Equa-
tion 3.9. After ordering the eigenvectors e based on ascending eigenvalues λ, then the first k eigenvectors can
be used to construct the subspace matrix U = (e1|...|ek )

Hei =λi Mei , (3.9)

where H is the Hessian matrix in the rest configuration, M is the diagonal mass matrix, λ is the i -th eigen-
value, and e is the i -th eigenvector.

A different choice for the construction of the subspace matrix U is the linear skinning subspace (Brandt
et al., 2018; Nasikun & Hildebrandt, 2022), which is relatively inexpensive to construct in comparison to the
linear vibration mode subspace. It samples k vertices of the deformable object using farthest point sampling.
A Radial Basis Function (RBF) is centered around each sampled vertex with a specified falloff radius, and
assigns a weight w to each vertex. The assigned weights w are then used with the positions of the vertices x
to construct the linear skinning subspace U in Equations 3.10 and 3.11.

U j =

w j
0 xx

0 ·w j
0 x y

0 ·w j
0 xz

0 ·w j
0

w j
1 xx

1 ·w j
1 x y

1 ·w j
1 xz

1 ·w j
1

...

 , (3.10)

where w j
i is the weight of vertex j for RBF i , and x j

i is coordinate number j ∈ (x, y, z) of vertex i .

U = (U1|..|Uk ) (3.11)
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Method

4.1. Overview of the method
Our method optimizes a nonrigid mapping of the breast in the prone position (prone mesh) onto the breast in
the supine position (supine mesh) in order to maximize the overlap between the surface of both meshes. The
resulting nonrigid mapping should offer a good approximation for the mapping of the tumour from prone to
supine.

The MRI or PET-CT scan in the prone position is semi-automatically segmented to extract the triangle
meshes of the surfaces of the breast, the tumour, and the remaining tissue as shown in Figure 4.1. Addition-
ally, we manually segment the single breast containing the tumour from these meshes. As a consequence
of substituting a 3D surface scan of the breast in the supine position with the available PET-CT scan in the
supine position, the same steps need to be taken to extract the triangle meshes for the supine breast and
tumour. Cancer cells are generally also drained to the sentinel lymph nodes in the armpit. This results in
tumours being located in the armpit. Since our method does not include simulating the deformable tissue of
the armpit, those tumour parts are disregarded in the application of our method.

In Figure 4.2, an overview of the method is illustrated. The method takes as input the triangle mesh of the
breast in the prone position, the triangle mesh of the breast skin surface in the supine position, a list of ver-
tices representing the chest wall for the prone mesh, and a correspondence of manually annotated landmark
vertices between both surfaces. For the preprocessing of our method, the prone mesh is tetrahedralized for
use in the FEM simulations. The tumour is implicitly mapped using barycentric coordinates onto the tetrahe-
drons of the tetrahedralized prone mesh. The prone mesh and supine surface mesh are rigidly aligned using
manual alignment and/or Iterative Closest Points method. After the rigid alignment, the landmark guided
deformation step pulls the landmark regions closer together in order to maximize the overlap between the
prone and supine surfaces. This serves as an initialization for the surface guided deformation step, where
the surface of the deformed prone mesh is projected onto the supine surface. Afterwards, the interior of the
prone mesh is optimized in a FEM simulation while keeping the projected surface vertices fixed.

4.2. Preprocessing
Tetrahedralization Tetrahedralization converts the triangle mesh of the breast in the prone position into a
tetrahedral mesh. The tetrahedral mesh can then be used for the FEM simulation of the breast. The quality
of the tetrahedralization (e.g., equally sized tetrahedrons) can affect the accuracy of the FEM simulation. The
input for our method uses a list of vertex indices to define the landmark correspondences as well as the fixed
points of the chest wall. In order to ensure that these vertex indices stay consistent, the tetrahedralization
should construct tetrahedrons using existing vertices and add vertices when necessary.

Tumour barycentric mapping The application of the FEM simulation onto the tetrahedral mesh of the
breast results in the deformation of the breast. However, this does not include the deformation of the tu-
mour. The triangle meshes of the breast and the tumour could be explicitly tetrahedralized together. The
quality of this tetrahedral mesh would be reduced, and could impact the accuracy of the FEM simulation.
Since the constructed tetrahedral mesh would have smaller tetrahedrons located at the tumour and bigger
tetrahedrons elsewhere. The material of the breast is chosen to be modeled to be homogeneous in order to

10
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Figure 4.1: Segmentation of a breast CT scan. The breast and its surrounding tissues (blue) is separated from the rest of the chest (red).

Figure 4.2: An overview of our method
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avoid the problem of tissue segmentation. The entire breast will have the same material and parameters ap-
plied to it. Therefore we have chosen to implicitly map the geometry of the tumour onto the tetrahedrons of
the tetrahedral mesh using barycentric mapping. The implicit mapping can recover the deformation of the
tumour from the result of the FEM simulation.

Rigid Alignment The subsequent steps of our method require a good rigid alignment between the prone
mesh and supine surface mesh. The rigid alignment is needed in order to find the appropriate positions of the
corresponding landmark vertices. Besides that, the rigid chest wall restricts the deformation of the tumour.
This could be problematic if the chest wall of the prone mesh and the chest wall of the patient in the supine
position do not line up due to bad rigid alignment. It could become impossible for the tumour of the prone
mesh to deform to the actual location of the tumour in the supine position. The rigid alignment is performed
either manually and/or with Iterative Closest Points.

4.3. Landmark guided deformation
The shape of the prone and supine surfaces of the breast are very different from each other. The landmark
guided deformation pulls the prone surface closer towards the supine surface in order to provide an initial-
ization for the surface guided deformation (see Section 4.4). The sparse set of landmark correspondences
pulls the regions of the prone mesh surrounding each landmark closer towards the corresponding landmark
of the supine mesh. The steps for the landmark guided deformation are shown in Algorithm 1.

Subspace construction The linear skinning subspace is used to apply model reduction to the FEM simu-
lation (see Sec. 3.4). The application of the subspace is used to suppress high-frequency deformations. Any
deformation applied to a single vertex will also affect the neighbouring vertices.

The subspace chosen for our method is the linear skinning subspace (Brandt et al., 2018) (see Subsec-
tion 3.4). In contrast to the construction of the subspace in Brandt et al., we have chosen to use Euclidean
distances instead of geodesic distances to perform farthest point sampling due to the convex geometry of
the breast. The sampling process takes the vertices from the landmark correspondences as the initial sam-
pled points. As a result, the subspace FEM simulation becomes deterministic. The radius for the subspace is
computed with the adapted heuristic in Equation 4.1 (Nasikun & Hildebrandt, 2022).

r =
√

σ ·volume

number of samples ·π , (4.1)

where the area of the surface in the original formulation is changed for the volume of the mesh. An alternative
choice for the subspace could be the subspace constructed from the linear vibration modes. However, this
requires us to solve an expensive generalized eigenvalue problem.

Setup landmark constraints The landmark constraints need to pull the regions of the prone mesh sur-
rounding each landmark closer towards the corresponding landmark of the supine surface mesh. The pulling
forces are modeled using soft penalty energy constraints in the following form:

c(x) = w

2

∥∥x −xt ar g et
∥∥2 , (4.2)

where w is the weight of the constraint, x is the position of the vertex and xt ar g et is the target position. The
defined constraint pulls only the landmark vertex of the prone mesh towards the corresponding landmark
vertex of the supine mesh in the full-space FEM simulation. The result of using the landmark constraints is
shown in Figure 4.3a. It mostly affects the landmark vertices instead of the surrounding region of vertices in
order to avoid high energy states (Braess, 2007).

A solution for pulling landmark regions is to rigidly transform the neighbouring vertices along with the
landmark vertex as a rigid frame. A radial basis function assigns a weight between 0 and 1 to each neighbour-
ing vertex depending on its distance from the landmark vertex. This can then be used to setup the same type
of constraint energy as described in Equation 4.2 for each vertex inside a landmark region. This approach
requires the user to determine the number of neighbouring rings that should be inside each rigid frame. It
can also become problematic when landmark regions start to overlap, since each vertex inside the overlap-
ping region will have multiple spring constraints to pull the vertex to different target positions. Therefore we
have opted to instead use the landmark constraints in the constructed subspace. The subspace acts as a filter
to avoid high-frequency deformations resulting from the point constraints. Figure 4.3b shows the result of
applying the landmark constraints inside the subspace.
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(a) (b)

Figure 4.3: The landmark guided deformation method applied on patient 1 of the real-world experiments (a) with and (b) without the use
of a subspace. Without the use of a subspace, the landmark constraint mainly affects the landmark vertex and not the region surrounding
the vertex. This problem is resolved with the use of a subspace.

Subspace FEM simulation with landmark constraints The landmark FEM simulation needs to pull the
landmark regions of the prone mesh and supine surface mesh closer together in order to serve as an initial-
ization for the surface guided deformation. The energy function consists of the elastic energy, gravitational
energy and the landmark constraints of the breast. This function is reduced with the application of the linear
skinning subspace. The hard constraints for the fixed vertices at the chest wall are resolved by setting the cor-
responding Degrees Of Freedoms (DOFs) in the subspace to 0. The FEM simulation iteratively uses Newton’s
method to compute the descent direction d and linesearch to find the optimal step length α. The subspace
matrix U is used to project the descent direction d back to the full-space and update the vertex positions of
the prone mesh.

Algorithm 1 Landmark guided deformation

Input: prone breast, chest wall vertices, landmarks
Output: prone breast

Construct subspace matrix U
Setup landmark constraints (Eqn. 4.2)
for each v ∈ chest wall vertices do

Set subspace U DOFs to 0
end for
while

∥∥g
∥∥2 < 1e −3 and the maximum number of iterations is not reached do

d ←−(U T HU )−1U T g
d ←Ud
α← Linesearch(d)
q ← q +αd

end while

4.4. Surface guided deformation
The shape of the surface deformed prone mesh from the landmark registration should be closer towards
the actual surface of the supine mesh, but there can still be differences between the surfaces. To improve
the overlap between the surfaces, the surface of the prone mesh is projected onto the surface of the supine
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surface mesh. Then the interior of the breast is optimized while keeping the surface vertices of the projected
prone mesh restricted on the projected surface. The steps for the surface guided deformation are shown in
Algorithm 2.

Surface projection The simplest way to maximize the overlap of both meshes is to project the surface of
the prone mesh onto the surface of the supine mesh. The vertices in the interior and at the chest wall are
disregarded for the surface projection. Each surface vertex of the prone mesh is projected onto the corre-
sponding closest point on the surface of the supine mesh. The surface normal at the location of the projec-
tion point is also stored. This step can be sped up by using a mesh data structure, such as an Axis-Aligned
Bounding Box.

Setup point-to-plane constraints The point-to-plane constraints in Equation 4.3 constrain the surface
vertices of the prone mesh x to their projected closest points xpl ane . The surface vertices are allowed to slide
across the tangential plane of the projected point using the stored surface normal npl ane . This should prevent
the emergence of high energy states from constraining the entire surface to specified points. On top of that,
the soft fixed point constraint in Equation 4.2 is used to constrain the surface vertices x onto their projected
closest points xpl ane . The combination of both soft constraints should allow for some tangential movement,
but it should keep the surface vertices from moving too far from the projected closest points.

c(x) = w

2
((x −xpl ane ) ·npl ane )2 (4.3)

FEM simulation with surface constraints The interior FEM simulation keeps the projected surface fixed
and optimizes the interior of the breast. The prone and supine surfaces should be very similar to each other,
and this should result in a better approximation for the mapping of the tumour from prone to supine. The
energy function consists of the elastic energy, gravitational energy and the point-to-plane and fixed point
constraints of the breast. The hard constraints for fixing the vertices of the chest wall are resolved in the full-
space by solving the Newton-KKT system to obtain feasible solutions. The result of this system is a Newton
descent direction d , which is used in a linesearch to find an optimal step length α. The combination of the
descent direction d and the step length α is used to update the vertex positions of the prone mesh. If the
method has not converged, then it will return to the surface projection step.

Algorithm 2 Surface guided deformation

Input: prone breast, chest wall vertices, supine breast surface
Output: prone breast

while
∥∥g

∥∥2 < 1e −3 and the maximum number of iterations is not reached do
for each x ∈ surface prone mesh do

xpl ane ,npl ane ← Project x onto surface of supine mesh
Setup point constraint (x, xpl ane ) (Eqn. 4.2)
Setup point-to-plane constraint (xpl ane ,npl ane ) (Eqn.4.3)

end for
d ← Newton-KKT(H, g) (Eqn. 3.8)
α← Linesearch(d)
q ← q +αd

end while
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Experiments

5.1. Implementation
The triangle meshes of the breast and tumour are initially provided as a result of a semi-automatic segmen-
tation, based on region growing using manually annotated seeds for the breast, tumour and chest. The seg-
mentation and triangle mesh reconstruction was done with the MeVisLab software. The tetrahedralization of
the triangle mesh is performed with TetGen (Hang, 2015). The parameters used for TetGen keep the original
triangle mesh, and insert edges and vertices to construct the tetrahedral mesh. For the quality of the tetrahe-
dral mesh, the maximum allowable radius-edge ratio is set to 1.414. The FEM simulation is implemented in
C++ (https://github.com/hmyeh/BreastTumourRegistration), and uses the libigl (Jacobson, Panozzo, et al.,
2018) and Eigen (Guennebaud, Jacob, et al., 2010) libraries to solve the system of equations. The material
models are implemented according to the Dynamic Deformables course (Kim & Eberle, 2020), which defines
the analytic formulas for the gradient and Hessian for arbitrary isotropic materials. The analytic formulas do
require the computation of simple derivatives. These are automatically computed using the autodiff library
(Leal, 2018). Thus any isotropic material model can be used in the simulation by adding the elastic energy
function ψ(F ).

For a more detailed explanation about FEM simulations, the reader is referred to the SIGGRAPH course
of FEM simulation of 3D deformable solids (Sifakis & Barbic, 2012). Afterwards, the Dynamic Deformables
course (Kim & Eberle, 2020) allows for a deeper dive into the topic of material models and the practicalities
of implementing your own FEM simulation.

5.2. Experiments with synthetic data
The application of the method on the real-world scans of patients could be subject to various problems due to
the simplification of the real-world conditions. This makes it difficult to identify any issues with the method.
To this end, different controllable test scenarios are setup using a symmetric synthesized mesh to represent
the breast. Each test scenario is used to determine the influence of a particular variable on the result of the
method. It allows us to identify the strengths and limitations of the method. An overview of the experiments
is given in Table 5.1. In the following sections, we will explain the setup of the experiments and discuss the
results.

5.2.1. Experiment Setup
The rest configuration of the synthesized breast is represented as half an icosphere in Figure 5.1b. The half
icosphere is symmetric and does not contain mesh singularities. It is scaled (72x149x149 mm) to be propor-
tional to the breast in the prone configuration of patient 1 in the real-world experiments (see Subsection 5.4).
The prone and supine configurations of the synthesized breast are generated by physically simulating the
gravitational forces acting in the upwards or downwards direction respectively. The literature on deformable
breast models (Griesenauer et al., 2017; Hipwell et al., 2016) commonly segments the breast into adipose, fi-
broglandular and tumour tissues. Each tissue type is assigned a Neohookean material and the corresponding
material parameters are optimized with the following value ranges: E = 50 - 12000 Pa, v = 0.45 - 0.49 and ρ =
1000 kg /m3. However, our method disregards the different tissue types and assigns a single homogeneous
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(a) Supine (b) Rest (c) Prone

Figure 5.1: The supine, rest and prone configuration of the half icosphere mesh for the synthesized experiments

material to the entire breast. We choose to use the stable Neohookean material with a fixed v = 0.49 and ρ =
1000 kg /m3. The choice for v is to satisfy the incompressibility property of the breast as best as possible. The
elasticity of the breast is coupled to the Young’s modulus E, for which we have sampled the values [200, 400,
600, 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000] Pa from the value range of
E in the literature. The values for E have been sampled to leave out any degenerate prone-supine configura-
tions. The extremes of the value range does show unrealistic prone-supine configurations of the synthesized
breast in Figure 5.3.

The tumour is represented as a simple sphere placed inside the synthesized breast at different locations:
top, middle, bottom, right, left (see Fig. 5.2a). This allows us to determine whether the location of the tumour
affects the results of our method in the various experiments.

For the application of our method in the experiments, the following constants and variables are kept fixed
unless otherwise specified: gravitational constant of 9.81 m/s2, gravitational direction vector downwards,
and a landmark constraint weight of 1e4. The input for our method consists of the material for the FEM
simulations, the landmark correspondences between the prone and supine scans of the breast as well as the
3D surface scan of the breast in the supine position. The Neohookean material model and its parameters (E
= 3400 Pa, v = 0.49 and ρ = 1000 kg /m3) are taken from the literature (Hipwell et al., 2016). The parameters
are fixed for the experiments with exception of the material parameters experiment in Subsection 5.2.6. For
the landmark correspondences, we have manually chosen five vertices spread across the synthesized breast
shown in Figure 5.2b. The spread out placement of the landmarks should ensure that each region of the breast
is affected by the landmark guided deformation of our method. The surface scan of the breast in the supine
position takes the surface of the corresponding generated supine configuration of the synthesized breast.
The experiments evaluate the results of our method with the Euclidean distance between the centroid of the
resulting deformed tumour and the centroid of the tumour from the generated supine configuration.

5.2.2. Practical Settings
For the practical application of the method in a clinical setting, there are three relevant settings to consider
in the context of the mixed reality project. In the first setting, a 3D surface scan of the breast in the supine po-
sition can be obtained from either the Microsoft HoloLens during the surgery or the PET-CT scan during the
chemotherapy. The second setting requires the surgeon to choose appropriate landmark correspondences
in order to pull the regions of the prone scan closer towards the breast in the supine position. It does not
include the 3D surface scan of the breast in the supine position. The third setting has access to both the 3D
surface scan of the breast in the supine position as well as the chosen landmark correspondences. The ad-
ditional data accessible for each setting limits the use of our method. This means that the first setting can
only use the surface guided deformation of our method (see Sec. 4.4). The second setting can only use the
landmark guided deformation of our method (see Sec. 4.3), whereas the third setting allows for the applica-
tion of the entire method. However, the first setting with the surface guided deformation also has the option
to use a gravity FEM simulation without the landmark constraints. In this experiment, we want to compare
and assess the accuracy of the tumour location for each of the different settings. Ideally, it would be benefi-
cial to reduce the burden of the patient and the surgeon by avoiding the PET-CT scan acquisition and/or the
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(a) (b)

Figure 5.2: The settings for the synthesized data experiments. (a) The locations of the tumour inside the symmetric synthesized breast
(top, left, bottom, right, middle). (b) The five landmark locations on the rest configuration for the experiments.

(a) Prone (E = 200) (b) Supine (E = 200)

(c) Prone (E = 12000) (d) Supine (E = 12000)

Figure 5.3: The extreme cases for the generated prone-supine configurations for the synthesized experiments
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Name (Section) Input Variable Variable Value Range
Practical Settings (5.2.2) prone mesh, supine

surface
choice of method landmark guided

deformation, surface
guided deformation,
full method

Rest Shape (5.2.3) prone mesh, rest shape
mesh, supine surface

choice of rest shape prone/rest shape

Rotated Gravity (5.2.4) prone mesh, supine
surface

gravitational direction
vector

rotation 0−15°

Misalignment (5.2.5) prone mesh, supine
surface

rigid alignment
prone-supine meshes

rotation 0−15°,
translation -10−10 mm

Material Parameters
(5.2.6)

prone mesh, supine
surface

Young’s modulus E 200−12000 Pa

Landmark
Correspondence
Weight (5.2.7)

prone mesh, supine
surface

Landmark weight 1e2−1e5

Table 5.1: An overview of the synthetic data experiments. The input includes a stable Neohookean material model with E = 3400 Pa,
v = 0.49 and ρ = 1000 kg /m3, and the five landmarks from Figure 5.2b across the experiments. Each experiment is evaluated with the
Euclidean distance between the tumour centroids of the computed result and the ground-truth supine tumour.

manual annotation of the landmark correspondences. For this experiment, our method takes as input the
different prone-supine configurations, the different tumour locations, the five landmark correspondences
and the fixed material settings (see Sec. 5.2.1).

Discussion In Figure 5.4, a boxplot visualizes the distribution of the tumour centroid distance across the
different prone-supine configurations and tumour locations for the various applicable steps of our method.
The rigid registration method shows the initial high distance distribution between the tumour in the prone
and supine configurations (0.5 - 19.8 mm). The color of the boxplot bar indicates which methods are appli-
cable for each of the different practical settings. The methods applicable to the first practical setting with the
supine surface scan are the surface deformation (0.3 - 5.7 mm) and the gravity simulation + surface deforma-
tion (0.0 - 5.4 mm). From the corresponding plots, we can see that they have similar distance distributions
that have been reduced in comparison to the rigid registration. The gravity simulation without landmarks
does help the surface guided deformation of our method, since the gravitational forces push the surface of
the prone configuration closer towards the supine configuration. The second setting with the landmarks ap-
plies the landmark deformation method, which shows a considerably higher distance distribution from 0.0 -
9.0 mm. The soft constraints used in the landmark deformation can only pull the prone regions closer to the
supine regions, but the elastic forces can oppose the constraint forces in order to recover to the rest config-
uration and preserve the volume of the breast. On the other hand, the surface guided deformation restricts
the location of the tumour inside the supine volume of the breast by projecting the surface of the prone mesh
onto the supine mesh. The third setting contains both the landmarks and the supine surface scan, and is
thus able to apply the full method onto the prone-supine configurations, which results in the smallest dis-
tance distribution from 0.0 - 1.0 mm.

5.2.3. Rest Shape

A deformable object undergoing deformation always tries to recover to its rest configuration. The FEM sim-
ulation needs the rest configuration as input. However in the real-world experiments, the actual rest config-
uration of the breast is unknown. The scans of the breast in the prone and supine positions are subject to
deformation due to gravitational forces. The related works propose to approximate a rest configuration of the
breast (see Section 2). In this experiment, we determine whether not knowing the actual rest configuration is
detrimental to our method. This is evaluated by comparing the results of our method when using the prone
configuration as the rest configuration against using the actual rest configuration shown in Figure 5.1b. Thus
the input to our method becomes the different prone-supine and rest-supine configurations, the different
tumour locations, the five landmark correspondences and the fixed material settings (see Sec. 5.2.1).
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Figure 5.4: The boxplots of the tumour centroid distances for the three practical settings. Each plot indicates the distribution of the
tumour centroid distances across the prone-supine configurations and tumour locations for the applied method. The plot splits the
distribution into four quartiles with the median at the center of the plot, and leaves out any outliers. The color of the plot indicates
which setting corresponds to the method with the exception of the rigid registration method.
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Figure 5.5: The results of the rest shape experiment. The plots average the results across the different tumour locations.

Discussion Figure 5.5 plots the results of the experiments with different values for the Young’s modulus E
for the generated prone-supine / rest-supine configurations on the x-axis and the tumour centroid distance
from the ground-truth on the y-axis. The Young’s modulus E is coupled to the elasticity of the breast, where
higher values of E indicate a stiffer material and lower values of E indicate a more elastic material. The plots
of the prone and rest shape indicate small differences between the averaged results for most values of E with
tumour centroid distances below 1.0 mm. The prone shape keeps performing worse for increasingly lower
values of E in comparison to using the actual rest shape. The surface of the actual rest configuration is always
closer to the surface of the supine configuration, which makes it easier to obtain a good initialization for the
surface guided deformation of our method. The extreme case of E = 200 Pa does result in a high tumour
centroid distance of 2.5 mm, but the deformation of the corresponding prone configuration is unrealistically
soft as can be seen in Figure 5.3a. Therefore it is not very problematic for our method to use the prone
configuration as the rest configuration for the FEM simulations.

5.2.4. Rotated Gravity
The precise direction of gravity affecting the prone and supine scans of the breast is unknown. It could be that
gravity is affecting the breast at a slight angle (see Fig. 5.6b), whereas our method assumes that the direction
of gravity is in a straight downwards direction (see Fig. 5.6a). This experiment is used to determine whether
rotating the direction of gravity has a significant influence on the result of our method. The rotations on the
direction of gravity are performed on the X axis. Since applying a rotation on the Z axis to the direction of
gravity does not change its direction, and due to the symmetry of the synthesized breast it does not matter
whether it is rotated on the X or Y axis. The angle of rotations should be small. (Griesenauer et al., 2017)
estimates the stiffness of the breast by rotating the torso by 15°. It assumes that the gravitational forces have
sufficiently deformed the breast from the supine to the rotated torso position in order to compute the stiff-
ness. Therefore, we choose to keep our rotations within that range of 15° to keep the amount of deformation
limited. The range for the angles of rotation are sampled as: [0, 2, 4, 6, 8, 10, 15] °. The input to our method
is then the rotated gravity direction vector, the prone-supine configurations, the different tumour locations,
the five landmark correspondences and the fixed material settings (see Sec. 5.2.1).
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(a) (b)

Figure 5.6: The rotated gravity experiments change the gravitational direction to determine its influence on our method. (a) shows the
assumed situation with gravity acting straight downwards. (b) shows the situation when the gravitational direction has been rotated by
15 degrees.

(a) (b)

Figure 5.7: The results of the rotated gravity experiment. (a) shows a boxplot for the tumour centroid distance across the 16 prone-supine
configurations and five tumour locations. (b) shows distance plots for each tumour location for the prone-supine configuration with E =
4000.

Discussion The boxplot in Figure 5.7a shows the distributions of the resulting distance between the tu-
mour centroids for the different angles of rotations applied on the downwards gravity vector across the five tu-
mour locations and different prone-supine configurations. The median of the distance distributions slightly
increases with larger angles, but the overall spread of the distance distributions stays around 1.0 mm for the
different rotated gravity directions. This indicates that the result of our method is not significantly influ-
enced by the direction of gravity. The guidance of the landmark constraints and the surface projection of our
method reduce the impact of a rotated gravitational direction. In Figure 5.7b, the distance metric is plotted
for each tumour location of the prone-supine configuration with E = 4000 Pa. The tumour at the bottom
location improves its results with a decreasing tumour centroid distance for smaller angles of rotation. The
direction of gravity is rotated in such a way that the tumour at the bottom location is pushed downwards
towards its ground-truth position, whereas the other tumours can be pushed away from their corresponding
ground-truth positions. However with larger angles of rotation, the distance between the deformed tumour at
the bottom location and the ground-truth tumour increases due to the significant deformation of the breast.

5.2.5. Misalignment
Our method uses landmark correspondences between the prone and supine meshes to perform the landmark
guided deformation (see Subsection 4.3). This requires an accurate initial rigid alignment between the prone
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(a) Rotation (X axis) (b) Rotation (Z axis)

(c) Translation (X axis) (d) Translation (Z axis)

Figure 5.8: The misalignment experiment rotates or translates the supine mesh in order to determine how our method would be affected
by misalignment of the prone and supine meshes.

and supine meshes, for which we have chosen to use the chest walls of the both configurations to perform the
alignment. However in the real-world patient data (see Sec. 5.4), the chest walls in the prone and supine scans
show significant deformation from each other. This can therefore still result in misalignment between the
prone and supine meshes. This experiment is used to determine how significant any misalignment between
the prone and supine meshes is to our method. The misalignment in translation and rotation are considered
separately for the experiment. A visualization of the rotations and translations performed on the supine
meshes is shown in Figure 5.8. Any rotation or translation on the X or Y axis should obtain similar results due
to the symmetry of the synthesized breast. Therefore rotations or translations are performed on the X and
Z axis. The same range of angles for the rotation will be used as the rotated gravity experiment (see Subsec.
5.2.4): [0, 2, 4, 6, 8, 10, 15] °. The amount of translation should be kept small and performed in the positive
and negative directions, which is particularly important for translations on the Z axis. Translations on the Z
axis in the negative direction can result in the ground-truth tumour being positioned behind the fixed chest
wall of the prone mesh (see Fig 5.8), whereas in the positive direction the supine tumour should be inside the
volume of the prone mesh. The sampled range of translations is chosen to be: [-10, -8, -6, -4, -2, 0, 2, 4, 6, 8,
10] mm.

Discussion The results for the misalignment between prone and supine configurations have been sep-
arated into rotation (Fig. 5.9a and 5.9b) and translation (Fig. 5.9c and 5.9d). The boxplots in these figures
visualizes the distance distributions for the chosen rotations or translations of the supine mesh over the dif-
ferent tumour locations and prone-supine configurations. In comparison to the previous experiments, these
plots showcase significantly higher distances for the results of our method. The boxplots regarding the ro-
tational misalignment show that rotations on the X/Y axis incur worse results than rotations on the Z axis.
The spread of the distance distribution for rotations on the X/Y axis increases with higher angles of rotation,
whereas the distance distribution for rotations on the Z axis stays small in comparison. The rotations on the
Z axis are turning the synthesized breast with the locations of the tumours while keeping the alignment of
the chest wall (see Fig. 5.8b). The surface guided deformation then ensures that the tumour is located within
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(a) Rotation (X/Y axis) (b) Rotation (Z axis)

(c) Translation (X/Y axis) (d) Translation (Z axis)

Figure 5.9: The results for the misalignment experiment for rotation and translation around the different axes.
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the volume of the breast in the supine configuration. On the other hand, the rotations on the X/Y axis breaks
the alignment of the chest walls (see Fig. 5.8a). It also results in the rotation of the ground-truth tumour lo-
cations, which can become impossible to reach for our method due to the fixed chest wall. Another problem
with the rotations around the X/Y axis is that the surface guided deformation can incorrectly project vertices
onto the same closest point.

For the boxplots for the translational misalignment, the translations on the X/Y axis do not have a signif-
icant effect on the result of our method. However, the translations on the Z axis does significantly increase
the distance distribution. The landmark constraints partially counteract the misalignment in translation on
the X/Y axis. The translations on the Z axis move both the tumour and the chest wall either forwards or back-
wards (see Fig. 5.9d), which can make it impossible for the result of our method to reach the ground-truth
due to the fixed chest wall.

5.2.6. Material Parameters
The choice of material parameters defines the elastic behaviour of the deformable breast, which would influ-
ence the result of our method due to the use of FEM simulations. In the real-world experiments, the actual
material parameters for a patient are unknown. The related works make use of different material optimiza-
tion techniques to identify optimal material parameters for a patient (see Section 2). The application of our
method during the experiments has been using fixed material parameters instead, and relying on the land-
mark constraints and surface projection to reduce the influence of the unknown material parameters. Thus
with this experiment, we want to determine the influence of the material parameters on the result of our
method. We are particularly interested in the choice of the Young’s modulus E, which is coupled to the elas-
ticity of the material. The Poisson’s ratio v = 0.49 and density ρ = 1000 kg/m3 are kept fixed. The sampled
range of values for E is chosen to be the same range used to generate the prone-supine configurations in Sub-
section 5.2.1: [200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000]
Pa. Our method takes as input the generated prone-supine configurations, the different tumour locations
and the five landmark correspondences (see Sec. 5.2.1).

Figure 5.10: The heatmap visualizes the results of the material parameters experiment, where the Y axis shows the Young’s modulus used
to generate the prone-supine configuration and the X axis is the Young’s modulus used by our method for the FEM simulations.

Discussion The heatmap in Figure 5.10 visualizes on the Y axis the ground-truth E that was used to gen-
erate the prone and supine configurations for the experiment, and on the X axis the choice for E for applying
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our method onto the corresponding generated prone and supine configurations. From the heatmap, it can
be seen that applying the method on a more elastic breast with E < 1000 performs better with lower values
for E. On the other hand, the performance of the method does not change significantly for different values
for E when applied to breasts with stiffer tissues. An exception to this is E = 200 Pa, which makes the material
of the breast unrealistically elastic as can be seen in Figure 5.3. Overall, the method is less dependent on the
choice of material parameter E due to the usage of soft constraints.

5.2.7. Landmark Correspondence Weight
The landmark correspondence constraints are defined as soft penalty energy functions with a specified weight
(see Eq. 4.2). The weight indicates how strongly the constraint pulls the landmark regions closer together. On
the other hand, the elastic forces will work against the landmark constraint to keep the deformable object in
its rest shape. This means that a high weight will not guarantee that the landmark correspondence points
are perfectly overlapping. It can also lead to a stiff system of equations in the FEM simulations. The land-
mark constraints can be re-defined as hard constraints in order to ensure that the landmark correspondence
points always overlap. With this experiment, we want to determine an appropriate weight for the landmark
constraint. The weights for the landmark constraints are chosen to be: [1e2, 1e3, 1e4, 1e5]. The input for
our method is the generated prone-supine configurations, the different tumour locations, the five landmark
correspondences and the fixed material settings (see Sec. 5.2.1).

Figure 5.11: The results of the landmark correspondence weight experiment.

Discussion The boxplot in Figure 5.11 visualizes the distance distribution across each prone-supine con-
figuration and each tumour location categorized for each landmark correspondence weight. It can be seen
that a higher landmark weight results in a more condensed and lower distance distribution, except for the
similar performing landmark weights 1e4 and 1e5. Therefore we choose to use the best performing land-
mark weight 1e4 for our method. The higher landmark weight 1e5 does not improve the performance of the
method, and would only introduce stronger elastic forces to recover to the rest configuration by pulling on
the landmark regions.
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(a) (b)

Figure 5.12: The landmarks experiment looks into using different sets of landmarks. (a) The different sets of landmarks O1-O4, Oa-Od,
and I1-I4 placed on the rest shape. (b) The results for the landmarks experiment.

5.2.8. Landmarks
The usage of landmarks to guide the deformation of the breast makes up for not approximating the unknown
variables, such as the rest shape and the material parameters. Each landmark pulls the surrounding region
of the prone mesh closer towards the surface of the supine mesh, where the linear skinning subspace uses
a heuristic to determine the size of the affected region. It is important to properly distribute the landmarks
across the surface of the breast in order to maximize the overlap of the prone and supine surfaces. Otherwise
the unaffected regions of the prone surface could be too far apart from the supine surface for the surface
projection step of our method. With this experiment we want to take a preliminary look into appropriate
choices for the positioning of the landmarks. The related works have made use of surface markers on top of
the breast for the alignment of multimodal scans of the breast (Bessa et al., 2020). In Figure 5.12a we have used
these surface markers to position the different sets of landmarks on the rest shape of the synthesized breast.
The five landmark positions from Figure 5.2b have been annotated for this experiment as C, O1, O2, O3, O4.
To evaluate the choice of landmarks, we have chosen to compare the following groups of landmarks: [{C, O1-
O4}, {O1-O4, Oa-Od, I1-I4}, {O1-O4, I1-I4}, {O1-O4, Oa-Od}, {Oa-Od, I1-I4}]. The input for our method is the
generated prone-supine configurations, the different tumour locations, the different setups for the landmark
correspondences and the fixed material settings (see Sec. 5.2.1).

Discussion In Figure 5.12b, the boxplot shows the distance distributions across each prone-supine con-
figuration and each tumour location categorized for the different groups of landmarks. The landmarks used
throughout the synthesized data experiments {C, O1-O4} sets a baseline for the other groups of landmarks
with a maximum distance of 1.0 mm. Each of the other landmark groups performs better than the baseline,
where the landmark group {O1-O4, Oa-Od} achieves the lowest maximum distance of 0.3 mm. The resulting
tumour centroid distances in this experiment are less than 1 mm. Therefore the choice of landmarks does
not seem as impactful on the result of our method given that the landmarks are distributed across the surface
of the breast.

5.3. Phantom Breast Experiments
The experiments with synthesized data allowed for an exploration of the different strengths and limitations of
the method using idealized scenarios. To step closer towards a practical application of the method, a phan-
tom breast has been CT scanned in the prone and supine positions with a resolution of 957x512x512 voxels
and an isotropic voxel size of 0.6 mm. The material used to fabricate the phantom breast is soft polyvinyl
chloride plastisol (Lure Flex soft, Lure Factors, UK), which has been tuned to deform similar to a real breast.
However, the phantom breast used for the scans is quite stiff in comparison to the real-world data exper-
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(a) Picture of the Phantom Breast (b) Phantom Breast Scan with markers

(c) Prone mesh (d) Supine pushed mesh

Figure 5.13: The setup for the phantom breast experiments.

iments. Therefore the supine configuration has been additionally deformed by placing a weight on top of
the breast during the CT scan. As can be seen from Figure 5.13c and 5.13d, the surface of the breast barely
changes and the tumour has been slightly translated between the prone and supine meshes. The prone and
supine configurations of the phantom breasts are rigidly aligned using a transformation matrix obtained from
point-based registration of ten fiducial markers placed on the rigid torso of the phantom breast during the
CT scans. For the landmark correspondences, the CT scans have also 42 markers placed on the surface of
the phantom breast. These markers are visualized in Figure 5.13b. The FEM simulations use the Stable Neo-
hookean material model with the following material parameters: E = 3400 Pa, v = 0.49 and ρ = 1000.0 kg /m3.

The results show that the original stiff prone and supine configurations start with a low tumour centroid
distance of 2.71mm, and the application of the method barely improves upon it. The pushed version of
the prone and supine configurations show an improved relative performance between the baseline and the
application of the method.

5.4. Real-World Experiments
For the real-world experiments, anonymized data has been retrospectively obtained from four patients who
underwent breast-conserving surgery with radiotherapy treatment. The patients have been CT scanned in
the prone and supine positions at the Erasmus Medical Center, Rotterdam, the Netherlands. Each CT scan
has been preprocessed with MeVisLab in order to segment the tumors, breast and skin, and thorax using
region growing segmentation with manual annotations. These are then extracted into 3D triangle meshes.
To keep the chest wall of the breast rigid and fixed, the corresponding vertices have been manually selected
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Tumour Centroid Distance
Tumour Centroid Distance

(Rigid Registration)
Prone - Supine 2.59 2.71

Prone - Supine Pushed 2.80 10.81

Table 5.2: The results of the phantom breast experiments with measurements in mm.

Tumour Centroid Distance
Tumour Diameter

(Supine)
Tumour Centroid Distance

(Rigid Registration)
Patient 1 17.3 41.0 68.8
Patient 2 12.6 26.5 19.3
Patient 3 23.4 39.0 56.9
Patient 4 22.7 36.0 68.1

Table 5.3: The results of the real-world experiments with measurements in mm.

from the triangle mesh and kept fixed during the FEM simulations with hard constraints. The CT scans do
not include landmark correspondences for the prone-supine configurations. Thus we choose to manually
select five approximately corresponding vertices between the prone and supine configurations to act as the
landmark correspondences. The material for the breast is chosen to be the stable Neohookean material with
the following material parameters: E = 3400 Pa, v = 0.49, ρ = 1000 kg /m3.

The prone and supine configurations with an outline for the tumours are shown in Figure 5.14. For patient
1 and 4, there are additional tumours located near the anxillary gland. These are disregarded for the method
and not shown in the figure. However, patient 3 has a tumour in the supine position partially outside of
the mesh of the breast due to problems with the segmentation of the breast and chest wall (see Fig. 5.15a).
This makes it impossible for the resulting tumour of our method to completely overlap with the ground-truth
tumour for patient 3 due to the fixed chest wall. Figure 5.15b illustrates another problem with the real-world
data, which is that the chest wall significantly differs between the prone and supine configurations. This is
the case for all patients. As a result, it is difficult to find an accurate rigid alignment.

The results in Table 5.3 show that the method is able to reduce the tumour centroid distance significantly
from the initial distance. However, these distances are still significantly large, especially in comparison to
the results of the idealized scenario in the synthetic data experiments in Section 5.2. The most problematic
variable in the synthesized data experiments is the misalignment between the prone and supine configura-
tions. The poor rigid alignment does show up for the data of each patient due to the significant deformation
between prone and supine configurations (see Fig. 5.15b). This would indicate that the biggest bottleneck
would be the rigid alignment. On top of that, the tumours are located close to the chest wall. The combina-
tion of these problems can make it impossible for the tumour in the prone position to deform to the correct
location in the supine position. Another problem that comes up is that the tumour gets flattened during the
FEM simulations, whereas the ground-truth tumour in the supine position is quite stiff and keeps similar
shape as the tumour in the prone position. This is due to our choice for applying a homogeneous material in
combination with the amount of deformation that is needed to push the prone breast towards the shape of
the supine breast.
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Figure 5.14: The prone and supine configurations of the patients in the real-world experiments. The resulting tumours of our method
are indicated with a blue outline, and the ground-truth tumours are shown with a white outline.
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(a) Patient 3 Supine (Back) (b) Patient 1 Prone-Supine alignment

Figure 5.15: Examples of problems with the real-world data.
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Discussion

Our method deforms the volumetric mesh of the breast in the prone position towards the supine position
with the use of landmark constraints in a subspace simulation, surface projection onto the surface mesh
in the supine position and optimization of the interior tissues of the breast. The result of the method is a
nonrigid prone-to-supine mapping for the tumour, which should give a good approximation for the location
and deformation of the tumour in the supine position. The synthesized data experiments have tested the
method for different variables under idealized conditions using a half icosphere to model the rest shape of the
breast. The prone and supine configurations are synthesized from a specified range of Young’s moduli with a
gravitational FEM simulation. This specified range of Young’s moduli does include extremely unrealistic cases
as can be seen in Figure 5.3. The generation of the prone-supine configurations does not make use of varying
the Poisson’s ratio, whereas the related works (Sec. 2.3) use a range of Poisson’s ratio to optimize the material
parameters. Besides that, the tumours generated from these prone-supine configurations are deformed with
the same material as the rest of the breast. For the more elastic configurations, this can lead to very unrealistic
stretchy tumours for the prone-supine configurations. The tumours from the real-world experiments are
quite stiff and show small amounts of deformation from the prone towards the supine configuration. The
three different practical settings relevant for the clinical application of the method have been evaluated on
the synthesized data by applying the parts of the method, which are applicable according to the data available
for the corresponding setting. The setting with the landmarks and the setting with the supine surface both
result in significantly large tumour centroid distances under these idealized conditions. These settings are
therefore unsuitable for clinical application. On the other hand, the setting with both landmarks and the
supine surface obtains a significantly lower distance by applying the full method.

With regards to the other tested variables, the method showed a difference up to 2.5 mm between using
the prone shape as the rest shape in comparison to using the actual rest shape. This tumour centroid distance
increases with prone-supine configurations synthesized from increasingly lower Young’s moduli. Similarly,
the Young’s modulus used in the FEM simulations of the method is more sensitive with elastic prone-supine
configurations with a low Young’s modulus, which results in distances up to 3.5 mm. This is reduced to 1.7
mm for stiffer prone-supine configurations. The rotation of the gravitational direction evaluates to similar
tumour centroid distance distributions across the tested range of angles. These variables do not significantly
affect the result of the method even though they heavily influence the deformable object in FEM simulations.
The method reduces the impact of these variables with the number of constraints applied during the FEM
simulations, which are used to guide the deformation of the deformable object. The landmarks play an im-
portant role in guiding the deformation with their constraint forces. The method showed tumour centroid
distances below 1.0 mm for the tested groups of landmarks, which are properly distributed across the surface
of the breast. Therefore the usage of these groups of landmarks does not significantly affect the results of our
method. A more thorough investigation into the positioning and distribution of the landmarks could be done
in future works. The most problematic variable in the experiments is the misalignment between the prone
mesh and the supine surface mesh. Any misalignment with regards to the rotation of the meshes results in
tumour centroid distances up to 17.5 mm on the symmetric X/Y axis and 8.0 mm on the Z axis. As for mis-
alignment in translation between the meshes is mostly relevant for the Z axis where it can go up to 7.1 mm,
whereas the X/Y axis has an upper limit of 2.1 mm. The reason for the significantly large distances comes as
a result of our reliance on landmark and surface constraints, which are very sensitive to the rigid alignment
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of both meshes. Since transforming one of the meshes would also transform the corresponding landmark or
surface projection constraints as well.

The phantom breast experiments uses CT scans of a fabricated breast in order to model a more realistic
situation than the synthesized data experiments. It ensures a good rigid alignment between the prone and
supine CT scans with the use of fiducial markers. The landmark correspondences are also obtained from
markers placed during the CT scans. These experiments have two settings due to the stiffness of the phantom
breast: the prone-supine CT scans and the prone-supine pushed CT scans. The supine pushed CT scan is
obtained from additionally deforming the phantom breast in the supine position with an additional force in
the gravitational direction. The application of our method barely improves the location of the tumour from
an initial distance of 2.71 mm to 2.59 mm. The improvement is more significant for prone-supine pushed CT
scans from 10.81 mm to 2.80 mm. We expected the results of the method to be closer to the ground-truth
location due to the stiffness of the phantom breast. Since the choice for Young’s modulus and rest shape has
less impact on the results of the synthesized data experiments.

The real-world experiments contain PET-CT scans of four patients in the prone and supine positions with-
out any marker placements. The rigid alignment between the prone and supine CT scans has been performed
manually. This is a simplification of the relevant clinical setting with the surface scan in the supine position
instead of the volumetric supine CT scan. The landmark correspondences have been chosen at visually sim-
ilar locations by a layman. The results of these experiments are significantly worse than any of the previous
experiments with tumour centroid distances from 12.6 mm to 24.5 mm. It emphasizes the problem pointed
out by the synthesized data experiments of the misalignment between the prone and supine meshes. The
prone and supine meshes are poorly aligned even with the simplification of the supine CT scan. The chest
wall shows significant deformation between the prone and corresponding supine configurations. This could
partially be attributed to the segmentation and meshing process of the CT scan. However, a nonrigid registra-
tion of the torso would need to be performed in order to solve the problem of the misalignment for the prone
and supine CT scans. Additionally, the tumour is located near the chest wall. In the case of patient 3, the
tumour in the supine position is even partially outside of the chest wall. Another problem is that the tumour
deformed by the method has also been flattened significantly in comparison to the ground-truth tumour in
the supine position. The cause is the choice to apply a homogeneous material model to the entire breast. The
tumour is flattened due to the large compressional forces, which are pushing onto the surface of the breast in
order to match the prone and supine surfaces. A solution would be to assign a stiffer material model to the
tumour. In order to assign a different material model to the tumour, the implicit mapping would need to be
able to deal with the tetrahedrons with partial tumour or breast tissue. The tumour could also be explicitly
meshed in the tetrahedral mesh, which would reduce the quality of the tetrahedralization. However, this does
for simple assignment of a different material model to the breast and tumour tissues. The related works offer
a different solution to this problem by optimizing the material parameters across the breast.

The clinical application of the method is to visually aid the surgeon during lumpectomy with mixed reality
systems. The method deforms the scans of the breast in the prone position and deforms the breast and
tumour into the supine position. Before the proposed method could be applied in a clinical setting, the
misalignment and flattening issues in the real-world experiments need to be addressed. The resulting static
meshes would be overlaid onto the patient in the supine position using the Microsoft HoloLens. The static
supine mesh in the mixed reality system does not take into account any additional deformation of the breast
and torso due to the breathing of the patient. A FEM simulation with a linear material model could be applied
to compensate for the breathing, since the amount of deformation should be quite small.
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Conclusion

Mixed reality systems could visually aid the surgeon by overlaying the tumour from the supine position on
top of the patient. Our method uses as input a volumetric scan of the breast in the prone configuration, a
surface scan of the breast in the supine configuration, and landmark correspondences in order to deform the
tumour in the prone position towards the supine position. In the preprocessing stage, the prone volumet-
ric scan is tetrahedralized and the tumour is implicitly mapped. The prone and supine meshes are rigidly
aligned manually or with ICP. A subspace FEM simulation with landmark constraints pulls regions in the
prone configuration closer towards similar regions in the supine configuration. The resulting surface of the
prone configuration is projected onto the surface of the supine surface scan. Then a FEM simulation with
surface constraints is used to optimize the interior of the breast.

The synthetic data experiments showed that our method needs the landmarks and the supine surface
scan to obtain good results. It also showed that the method is not significantly affected by the choice of rest
shape, direction of gravity or the choice of material for the breast. The biggest problem is the sensitivity
to the misalignment between the prone and supine configurations. The real-world experiments resulted in
large tumour centroid distances, which makes it unsuitable for the clinical application of the mixed reality
systems. The major problems with the method are the difficult rigid alignment between the prone and supine
configurations and the flattening of the tumour. The rigid alignment affects the important landmark and
surface constraints used in the method. The choice for assigning a homogeneous material onto the entire
breast results in large compressional forces flattening the tumour.
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